WorldWideScience

Sample records for sapwood xylem based

  1. The dynamics of carbon stored in xylem sapwood to drought-induced hydraulic stress in mature trees.

    Science.gov (United States)

    Yoshimura, Kenichi; Saiki, Shin-Taro; Yazaki, Kenichi; Ogasa, Mayumi Y; Shirai, Makoto; Nakano, Takashi; Yoshimura, Jin; Ishida, Atsushi

    2016-04-15

    Climate-induced forest die-off is widespread in multiple biomes, strongly affecting the species composition, function and primary production in forest ecosystems. Hydraulic failure and carbon starvation in xylem sapwood are major hypotheses to explain drought-induced tree mortality. Because it is difficult to obtain enough field observations on drought-induced mortality in adult trees, the current understanding of the physiological mechanisms for tree die-offs is still controversial. However, the simultaneous examination of water and carbon uses throughout dehydration and rehydration processes in adult trees will contribute to clarify the roles of hydraulic failure and carbon starvation in tree wilting. Here we show the processes of the percent loss of hydraulic conductivity (PLC) and the content of nonstructural carbohydrates (NSCs) of distal branches in woody plants with contrasting water use strategy. Starch was converted to soluble sugar during PLC progression under drought, and the hydraulic conductivity recovered following water supply. The conversion of NSCs is strongly associated with PLC variations during dehydration and rehydration processes, indicating that stored carbon contributes to tree survival under drought; further carbon starvation can advance hydraulic failure. We predict that even slow-progressing drought degrades forest ecosystems via carbon starvation, causing more frequent catastrophic forest die-offs than the present projection.

  2. Effects of age-related increases in sapwood area, leaf area, and xylem conductivity on height-related hydraulic costs in two contrasting coniferous species

    Science.gov (United States)

    Jean-Christophe Domec; Barbara Lachenbruch; Michele L. Pruyn; Rachel Spicer

    2012-01-01

    Introduction: Knowledge of vertical variation in hydraulic parameters would improve our understanding of individual trunk functioning and likely have important implications for modeling water movement to the leaves. Specifically, understanding how foliage area (Al), sapwood area (As), and hydraulic specific...

  3. Comparison of phloem and xylem hydraulic architecture in Picea abies stems.

    Science.gov (United States)

    Jyske, Tuula; Hölttä, Teemu

    2015-01-01

    The hydraulic properties of xylem and phloem differ but the magnitude and functional consequences of the differences are not well understood. Phloem and xylem functional areas, hydraulic conduit diameters and conduit frequency along the stems of Picea abies trees were measured and expressed as allometric functions of stem diameter and distance from stem apex. Conductivities of phloem and xylem were estimated from these scaling relations. Compared with xylem, phloem conduits were smaller and occupied a slightly larger fraction of conducting tissue area. Ten times more xylem than phloem was annually produced along the stem. Scaling of the conduit diameters and cross-sectional areas with stem diameter were very similar in phloem and xylem. Phloem and xylem conduits scaled also similarly with distance from stem apex; widening downwards from the tree top, and reaching a plateau near the base of the living crown. Phloem conductivity was estimated to scale similarly to the conductivity of the outermost xylem ring, with the ratio of phloem to xylem conductivity being c. 2%. However, xylem conductivity was estimated to increase more than phloem conductivity with increasing tree dimensions as a result of accumulation of xylem sapwood. Phloem partly compensated for its smaller conducting area and narrower conduits by having a slightly higher conduit frequency. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Water Filtration Using Plant Xylem

    CERN Document Server

    Lee, Jongho; Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2013-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees - a readily available, inexpensive, biodegradable, and disposable material - can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  5. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.

    Science.gov (United States)

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2008-12-01

    Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.

  6. Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns.

    Science.gov (United States)

    Pittermann, Jarmila; Limm, Emily; Rico, Christopher; Christman, Mairgareth A

    2011-10-01

    The ferns comprise one of the most ancient tracheophytic plant lineages, and occupy habitats ranging from tundra to deserts and the equatorial tropics. Like their nearest relatives the conifers, modern ferns possess tracheid-based xylem but the structure-function relationships of fern xylem are poorly understood. Here, we sampled the fronds (megaphylls) of 16 species across the fern phylogeny, and examined the relationships among hydraulic transport, drought-induced cavitation resistance, the xylem anatomy of the stipe, and the gas-exchange response of the pinnae. For comparison, the results are presented alongside a similar suite of conifer data. Fern xylem is as resistant to cavitation as conifer xylem, but exhibits none of the hydraulic or structural trade-offs associated with resistance to cavitation. On a conduit diameter basis, fern xylem can exhibit greater hydraulic efficiency than conifer and angiosperm xylem. In ferns, wide and long tracheids compensate in part for the lack of secondary xylem and allow ferns to exhibit transport rates on a par with those of conifers. We suspect that it is the arrangement of the primary xylem, in addition to the intrinsic traits of the conduits themselves, that may help explain the broad range of cavitation resistance in ferns.

  7. Scaling of xylem and phloem transport capacity and resource usage with tree size.

    Science.gov (United States)

    Hölttä, Teemu; Kurppa, Miika; Nikinmaa, Eero

    2013-01-01

    Xylem and phloem need to maintain steady transport rates of water and carbohydrates to match the exchange rates of these compounds at the leaves. A major proportion of the carbon and nitrogen assimilated by a tree is allocated to the construction and maintenance of the xylem and phloem long distance transport tissues. This proportion can be expected to increase with increasing tree size due to the growing transport distances between the assimilating tissues, i.e., leaves and fine roots, at the expense of their growth. We formulated whole tree level scaling relations to estimate how xylem and phloem volume, nitrogen content and hydraulic conductance scale with tree size, and how these properties are distributed along a tree height. Xylem and phloem thicknesses and nitrogen contents were measured within varying positions in four tree species from Southern Finland. Phloem volume, nitrogen amount and hydraulic conductance were found to be concentrated toward the branch and stem apices, in contrast to the xylem where these properties were more concentrated toward the tree base. All of the species under study demonstrated very similar trends. Total nitrogen amount allocated to xylem and phloem was predicted to be comparable to the nitrogen amount allocated to the leaves in small and medium size trees, and to increase significantly above the nitrogen content of the leaves in larger trees. Total volume, hydraulic conductance and nitrogen content of the xylem were predicted to increase faster than that of the phloem with increasing tree height in small trees (xylem sapwood turnover to heartwood, if present, would maintain phloem conductance at the same level with xylem conductance with further increases in tree height. Further simulations with a previously published xylem-phloem transport model demonstrated that the Münch pressure flow hypothesis could explain phloem transport with increasing tree height even for the tallest trees.

  8. Lipid-content-normalized polycyclic aromatic hydrocarbons (PAHs) in the xylem of conifers can indicate historical changes in regional airborne PAHs.

    Science.gov (United States)

    Kuang, Yuan-wen; Li, Jiong; Hou, En-qing

    2015-01-01

    The temporal variation of polycyclic aromatic hydrocarbons (PAHs) concentrations as well as the lipid content in the xylem of Masson pine trees sampled from the same site were determined and compared with the days of haze occurrence and with the historical PAHs reported in sedimentary cores. The patterns of the lipid content as well as the PAH concentrations based on the xylem dry weight (PAHs-DW) decreased from the heartwood to the sapwood. The trajectories of PAHs normalized by xylem lipid content (PAHs-LC) coincided well with the number of haze-occurred days and were partly similar with the historical changes in airborne PAHs recorded in the sedimentary cores. The results indicated that PAHs-LC in the xylem of conifers might reliably reflect the historical changes in airborne PAHs at a regional scale. The species-specificity should be addressed in the utility and application of dendrochemical monitoring on historical and comparative studies of airborne PAHs.

  9. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.

    Science.gov (United States)

    Wullschleger, Stan D; Childs, Kenneth W; King, Anthony W; Hanson, Paul J

    2011-06-01

    A variety of thermal approaches are used to estimate sap flux density in stems of woody plants. Models have proved valuable tools for interpreting the behavior of heat pulse, heat balance and heat field deformation techniques, but have seldom been used to describe heat transfer dynamics for the heat dissipation method. Therefore, to better understand the behavior of heat dissipation probes, a model was developed that takes into account the thermal properties of wood, the physical dimensions and thermal characteristics of the probes, and the conductive and convective heat transfer that occurs due to water flow in the sapwood. Probes were simulated as aluminum tubes 20 mm in length and 2 mm in diameter, whereas sapwood, heartwood and bark each had a density and water fraction that determined their thermal properties. Base simulations assumed a constant sap flux density with sapwood depth and no wounding or physical disruption of xylem beyond the 2 mm diameter hole drilled for probe installation. Simulations across a range of sap flux densities showed that the dimensionless quantity k [defined as (ΔT(m) -ΔT)/ΔT, where ΔT(m) is the temperature differential (ΔT) between the heated and unheated probe under zero-flow conditions] was dependent on the thermal conductivity of the sapwood. The relationship between sap flux density and k was also sensitive to radial gradients in sap flux density and to xylem disruption near the probe. Monte Carlo analysis in which 1000 simulations were conducted while simultaneously varying thermal conductivity and wound diameter revealed that sap flux density and k showed considerable departure from the original calibration equation used with this technique. The departure was greatest for variation in sap flux density typical of ring-porous species. Depending on the specific combination of thermal conductivity and wound diameter, use of the original calibration equation resulted in an 81% under- to 48% overestimation of sap flux density

  10. Sapwood Stored Resources Decline in Whitebark and Lodgepole Pines Attacked by Mountain Pine Beetles (Coleoptera: Curculionidae).

    Science.gov (United States)

    Lahr, Eleanor C; Sala, Anna

    2016-12-01

    Recent outbreaks of forest insects have been directly linked to climate change-induced warming and drought, but effects of tree stored resources on insects have received less attention. We asked whether tree stored resources changed following mountain pine beetle (Dendroctonus ponderosae Hopkins) attack and whether they affected beetle development. We compared initial concentrations of stored resources in the sapwood of whitebark pine (Pinus albicaulis Engelmann) and lodgepole pine (Pinus contorta Douglas ex. Louden) with resource concentrations one year later, in trees that were naturally attacked by beetles and trees that remained unattacked. Beetles did not select host trees based on sapwood resources-there were no consistent a priori differences between attacked versus unattacked trees-but concentrations of nonstructural carbohydrate (NSC), lipids, and phosphorus declined in attacked trees, relative to initial concentrations and unattacked trees. Whitebark pine experienced greater resource declines than lodgepole pine; however, sapwood resources were not correlated with beetle success in either species. Experimental manipulation confirmed that the negative effect of beetles on sapwood and phloem NSC was not due to girdling. Instead, changes in sapwood resources were related to the percentage of sapwood with fungal blue-stain. Overall, mountain pine beetle attack affected sapwood resources, but sapwood resources did not contribute directly to beetle success; instead, sapwood resources may support colonization by beetle-vectored fungi that potentially accelerate tree mortality. Closer attention to stored resource dynamics will improve our understanding of the interaction between mountain pine beetles, fungi, and host trees, an issue that is relevant to our understanding of insect range expansion under climate change.

  11. Transcriptome Analysis of the Phytobacterium Xylella fastidiosa Growing under Xylem-Based Chemical Conditions

    Directory of Open Access Journals (Sweden)

    Maristela Boaceff Ciraulo

    2010-01-01

    Full Text Available Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC and grapevine Pierce's disease (PD. Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW, the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.

  12. Response of maple sapwood to injury and infection

    Science.gov (United States)

    W.C. Shortle; K.T. Smith; K.R. Dudzik; Sharon Parker

    1995-01-01

    In sapwood challenge experiments in Acer rubrum, columns of discolouration initiated by wounding and inoculation with pioneer fungi (Cephalosporium sp., Phialophora sp.) were similar in size to untreated wounds. Inoculation with decay fungi (Pleurotus ostreatus, Trametes versicolor) produced...

  13. Xylem sap proteomics.

    Science.gov (United States)

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  14. Relative in vitro wood decay resistance of sapwood from landscape trees of southern temperate regions

    Science.gov (United States)

    Manuela Baietto; A. Dan. Wilson

    2010-01-01

    The development of wood decay caused by 12 major root-rot and trunk-rot fungi was investigated in vitro with sapwood extracted from nine ornamental and landscape hardwood and conifer species native to southern temperate regions of North America, Europe, and the lower Mississippi Delta. Wood decay rates based on dry weight loss for 108 host tree–wood decay fungi...

  15. Structure-function relationships in sapwood water transport and storage.

    Science.gov (United States)

    Barbara L. Gartner; Frederick C. Meinzer

    2005-01-01

    Primary production by plants requires the loss of substantial quantities of water when the stomata are open for carbon assimilation. The delivery of that water to the leaves occurs through the xylem. The structure, condition, and quantity of the xylem control not only the transport efficiency but also the release of water from storage. For example, if there is high...

  16. BOREAS TE-2 Stem Growth and Sapwood Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Ryan, Michael G.; Lavigne, Michael

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of growth and sapwood of the stems conducted in the NSA during the growing season of 1994. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  17. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees.

    Science.gov (United States)

    F.C. Meinzer; S.A. James; G. Goldstein; D. Woodruff

    2003-01-01

    The present study examines the manner in which several whole-tree water transport properties scale with species specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree...

  18. Effects of heat treatment on the physical properties of heartwood and sapwood of Cedrus libani

    Directory of Open Access Journals (Sweden)

    Bekir Cihad Bal

    2013-02-01

    Full Text Available Effects of heat treatment on the physical properties of heartwood and sapwood of Cedrus libani A. Richard, such as density, equilibrium moisture content, swelling, and fiber saturation point were investigated. Heartwood and sapwood samples were treated at 140, 160, 180, 200, and 220°C for 3 h. After heat treatment, the physical properties of the samples of wood were determined according to Turkish standards. The results showed that mass loss increased and physical properties decreased as the treatment temperature increased. As the treatment temperature was increased, the mass of the heartwood decreased more than that of the sapwood, which may be due to the fact that the heartwood had greater extractives content. Conversely, even though the mass of the heartwood decreased more than the mass of the sapwood at the treatment temperature of 220°C, its physical properties, such as equilibrium moisture content, swelling, and fiber saturation point, decreased less than those of the sapwood.

  19. Chemical differences between sapwood and heartwood of Chamaecyparis obtusa detected by ToF-SIMS

    Science.gov (United States)

    Saito, K.; Mitsutani, T.; Imai, T.; Matsushita, Y.; Yamamoto, A.; Fukushima, K.

    2008-12-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate the distribution of elements, Na, Mg, Al, K, and Ca, and lignin, in the contiguous growth rings including the sapwood/heartwood boundary in Hinoki cypress ( Chamaecyparis obtusa). Lignin was distributed almost uniformly from sapwood to heartwood. The concentrations of most of the elements showed a drastic increase or decrease in the transition zone between sapwood and heartwood. The ToF-SIMS mapping analysis showed that most of the elements predominantly localized in the ray parenchyma cells in the inner transition zone and heartwood, while the elements showed no localization and distributed almost uniformly in the outer transition zone near sapwood. The result suggests that the ray parenchyma cells play a role in behaviors of elements during the transition from sapwood to heartwood.

  20. High light decreases xylem contribution to fruit growth in tomato.

    Science.gov (United States)

    Hanssens, Jochen; DE Swaef, Tom; Steppe, Kathy

    2015-03-01

    Recently, contradicting evidence has been reported on the contribution of xylem and phloem influx into tomato fruits, urging the need for a better understanding of the mechanisms involved in fruit growth. So far, little research has been performed on quantifying the effect of light intensity on the different contributors to the fruit water balance. However, as light intensity affects both transpiration and photosynthesis, it might be expected to induce important changes in the fruit water balance. In this study, tomato plants (Solanum lycopersicum L.) were grown in light and shade conditions and the fruit water balance was studied by measuring fruit growth of girdled and intact fruits with linear variable displacement transducers combined with a model-based approach. Results indicated that the relative xylem contribution significantly increased when shading lowered light intensity. This resulted from both a higher xylem influx and a lower phloem influx during the daytime. Plants from the shade treatment were able to maintain a stronger gradient in total water potential between stem and fruits during daytime, thereby promoting xylem influx. It appeared that the xylem pathway was still functional at 35 days after anthesis and that relative xylem contribution was strongly affected by environmental conditions. © 2014 John Wiley & Sons Ltd.

  1. The effects of heartwood and sapwood on kraft pulp properties of Pinus nigra J.F.Arnold and Abies bornmuelleriana Mattf.

    OpenAIRE

    Ataç, Yasin; EROĞLU, Hüdaverdi

    2013-01-01

    The effects of heartwood and sapwood on kraft pulp properties of Pinus nigra J.F.Arnold. and Abies bornmuelleriana Mattf. were investigated. The differences in terms of chemical composition and fiber properties between the heartwood and sapwood of these species were also examined. Heartwood had more holocellulose and extractive compared to sapwood. Moreover, heartwood fiber length was shorter than that of sapwood. Kraft cookings of heartwood and sapwood each species were separately done under...

  2. Induction of embolism in xylem conduits of pre-defined diameter

    NARCIS (Netherlands)

    Ieperen, van W.; Nijsse, J.; Keijzer, C.J.; Meeteren, van U.

    2001-01-01

    A new method is presented that enables the induction of embolisms in a fraction of all xylem vessels, based on diameter, at one cut end of a stem segment. The method is based on the different capillary characteristic of xylem vessels of different cross-sectional size. To verify the method, air

  3. External beam analysis of living sycamore xylem infected by pathogenic fungi

    Science.gov (United States)

    Grime, G. W.; Pearce, R. B.

    1995-09-01

    Interactions between the living xylem (sapwood) of sycamore ( Acer pseudoplatanus) and wood inhabiting fungi have been investigated using a number of techniques including conventional histochemical and biochemical methods, non-invasive NMR imaging and external beam micro PIXE analysis using a 200 μm diameter beam of 3 MeV protons from the new external beam facility on the Oxford Scanning Proton Microprobe. The site of the fungal lesion on a living tree was exposed by a fresh cut immediately prior to analysis and both longitudinal and radial profiles through the infected regions were obtained in a point-by-point fashion. Profiles of several inorganic elements were obtained which correlated well with the observed discoloration due to the infection. The new external beamline at Oxford is described and results are presented. These are discussed in relation to the investigation of anti-microbial defence mechanisms in living trees.

  4. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels

    Science.gov (United States)

    Flow in xylem vessels is modeled based on constructions of three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera) stems. Flow in 6-14% of the vessels was found to be oriented in the opposite direction to the bulk flow under norma...

  5. Increased photosynthesis offsets costs of allocation to sapwood in an arid environment

    Energy Technology Data Exchange (ETDEWEB)

    Carey, E.V.; DeLucia, E.H. [Univ. of Illinois, Urbana, IL (United States). Dept. of Plant Biology; Callaway, R.M. [Univ. of Montana, Missoula, MT (United States). Div. of Biological Sciences

    1998-10-01

    The authors assessed the effect that varying patterns of biomass allocation had on growth of ponderosa pine (Pinus ponderosa) growing in the desert climate of the Great Basin and the montane climate of the eastern Sierra Nevada. Prior work established that desert trees have lower leaf:sapwood area ratios than montane trees and proportionally greater stem respiration. Sapwood:leaf mass ratios are also greater and increase more as a function stem diameter in desert than in montane trees. The authors hypothesized that this increased allocation of carbon to stem sapwood and stem respiration in large trees could decrease growth rates in the desert compared to the montane environment, in addition to any growth reduction imposed by drought on physiology and growth processes. Trees of all diameters (dbh) in the desert environment had lower relative growth rates (RGRs) than montane trees. However, growth rates of desert and montane trees declined similarly with increasing dbh and did not reflect diverging sapwood:leaf mass ratios. Alternatively, the authors hypothesized that desert trees may increase rates of photosynthetic carbon accumulation with diameter, thereby compensating for increased sapwood respiration. Leaf nitrogen (N) concentration and stable-carbon isotope composition ({delta}{sup 13}C) were measured to examine size-dependent and seasonally integrated photosynthetic capacity within desert and montane environments. Nitrogen concentration was correlated with photosynthetic capacity.

  6. Study on the water flow in the xylem of plants

    Science.gov (United States)

    Ma, Wenkui

    2017-05-01

    Water is one of the direct materials of plant photosynthesis, and water through transpiration control plant stomatal opening and closing, which affects the important life activities of plant photosynthesis. Therefore, water transport in plant tissue has been an important topic in the field of plant fluid mechanics. This paper mainly use the method and theory of fluid mechanics to analyses plant xylem water transport mechanism, namely: C - T theory; And based on the knowledge of fluid mechanics, the state of water flow in the xylem is analyzed, and the mass conservation equation, momentum conservation equation, energy conservation equation and so on are obtained.

  7. Quantification of the xylem-to-phloem transfer of amino acids by use of inulin [14C]carboxylic acid as xylem transport marker

    OpenAIRE

    Bel, A.J.E. van

    1984-01-01

    Inulin [¹⁴C] carboxylic acid and ¹⁴C.labelled amino acid (a-aminoisobutyric acid (aib) and valine) solutions were introduced into the transpiration stream through the cut stem bases of young (4-12 leaves) tomato plants. Inulin carboxylic acid (inu) was translocated exclusively by the xylem, whereas the amino acid distribution resulted from both xylem and phloem import. Comparison of the distribution of inu and aib permitted a quantitative assessment of the xylem-to-phloem transfer in the stem...

  8. Sapwood of Carob Tree (Ceratonia siliqua L. as a Potential Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Luísa Custódio

    2013-05-01

    Full Text Available Methanol (ME and hot water extracts (WE of carob tree sapwood (Ceratonia siliqua L. exhibited high antioxidant activity and were rich in phenolic compounds, with the main compounds identified by HPLC/DAD as gentisic acid and (--epicatechin. The ME displayed a high in vitro antitumor activity against human tumoural cell lines and reduced intracellular ROS production by HeLa cells after treatment with H 2O 2. (--Epicatechin was shown to contribute to the cytotoxic activity of the ME. This is the first report on the biological activity of carob tree sapwood.

  9. Xylem and phloem phenology in co-occurring conifers exposed to drought.

    Science.gov (United States)

    Swidrak, Irene; Gruber, Andreas; Oberhuber, Walter

    2014-01-01

    Variability in xylem and phloem phenology among years and species is caused by contrasting temperatures prevailing at the start of the growing season and species-specific sensitivity to drought. The focus of this study was to determine temporal dynamics of xylem and phloem formation in co-occurring deciduous and evergreen coniferous species in a dry inner Alpine environment (750 m a.s.l., Tyrol, Austria). By repeated micro-sampling of the stem, timing of key phenological dates of xylem and phloem formation was compared among mature Pinus sylvestris, Larix decidua and Picea abies during two consecutive years. Xylem formation in P. sylvestris started in mid and late April 2011 and 2012, respectively, and in both years about 2 week later in P. abies and L. decidua. Phloem formation preceded xylem formation on average by 3 week in P. sylvestris, and c. 5 week in P. abies and L. decidua. Based on modeled cell number increase, tracheid production peaked between early through late May 2011 and late May through mid-June 2012. Phloem formation culminated between late April and mid-May in 2011 and in late May 2012. Production of xylem and phloem cells continued for about 4 and 5-6 months, respectively. High variability in xylem increment among years and species is related to exogenous control by climatic factors and species-specific sensitivity to drought, respectively. On the other hand, production of phloem cells was quite homogenous and showed asymptotic decrease with respect to xylem cells indicating endogenous control. Results indicate that onset and culmination of xylem and phloem formation are controlled by early spring temperature, whereby strikingly advanced production of phloem compared to xylem cells suggests lower temperature requirement for initiation of the former.

  10. Changes in sapwood permeability and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans.

    Science.gov (United States)

    England, Jacqueline R; Attiwill, Peter M

    2007-08-01

    Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans F. Muell. Sapwood was sampled at breast height from trees ranging from 8 to 240 years old, and at three height positions on the main stem of 8-year-old trees. Variation in k was not significant among sampling height positions in young trees. However, k at breast height increased with tree age. This was related to increases in both vessel frequency and vessel diameter, resulting in a greater proportion of sapwood being occupied by vessel lumina. Sapwood hydraulic conductivity (the product of k and sapwood area) also increased with increasing tree age. However, at the stand level, there was a decrease in forest sapwood hydraulic conductivity with increasing stand age, because of a decrease in the number of trees per hectare. Across all ages, there were significant relationships between k and anatomy, with individual anatomical characteristics explaining 33-62% of the variation in k. There was also strong agreement between measured k and permeability predicted by the Hagen-Poiseuille equation. The results support the hypothesis of an increase in sapwood permeability at breast height with age. Further measurements are required to confirm this result at other height positions in older trees. The significance of tree-level changes in sapwood permeability for stand-level water relations is discussed.

  11. Heartwood, sapwood, and fungal decay associated with red-cockaded woodpecker cavity trees

    Science.gov (United States)

    Richard N. Conner; D. Craig Rudolph; Daniel Saenz; Richard R. Schaefer

    1994-01-01

    Provision of suitable sites for red-cockaded woodpecker (Picotdes borealis) cavity excavation is essential for successful management of the woodpecker. To evaluate internal characteristics of pines used by the woodpecker, we increment-cored longleaf pines (Pinus palustris) to determine heartwood diameter, sapwood thickness, and...

  12. HEAT TREATMENTS OF HIGH TEMPERATURE DRIED NORWAY SPRUCE BOARDS: SACCHARIDES AND FURFURALS IN SAPWOOD SURFACES

    Directory of Open Access Journals (Sweden)

    Olov Karlsson,

    2012-02-01

    Full Text Available Carbohydrates that migrate to wood surfaces in sapwood during drying might influence properties such as mould susceptibility and colour. Sugars on the surface of Norway spruce boards during various heat treatments were studied. Samples (350mmx125mmx25mm were double-stacked, facing sapwood-side outwards, and dried at 110oC to a target moisture content (MC of 40%. Dried sub-samples (80 mm x 125 mm x 25 mm were stacked in a similar way and further heated at 110oC and at 130oC for 12, 24, and 36 hours, respectively. Glucose, fructose, and sucrose as well as 5-hydroxymethylfurfural (HMF and furfural in the sapwood surface layer of treated wood were analysed using HPLC (RI- and UV-detectors. Carbohydrates degraded to a lower extent at 110oC than at 130oC. Furfural and to a larger extent HMF increased with treatment period and temperature. Heat treatment led to a decrease in lightness and hue of the sapwood surface of sub-samples, while chroma increased somewhat. Furthermore, considerably faster degradation (within a few minutes of the carbohydrates on the surface of the dried spruce boards was observed when single sub-samples were conductively hot pressed at 200oC. Treatment period and initial MC influenced the presence of the carbohydrates in wood surface as well as colour change (Eab of the hot pressed sub-samples.

  13. Protein extraction from xylem and phloem sap.

    Science.gov (United States)

    Kehr, Julia; Rep, Martijn

    2007-01-01

    It is well known that phloem and xylem vessels transport small nutrient molecules over long distances in higher plants. The finding that proteins also occur in both transport fluids was unexpected, and the function of most of these proteins is not yet well understood. This chapter outlines how proteins can be obtained and purified from xylem and phloem saps to perform subsequent proteomic analyses.

  14. Heartwood, sapwood and bark content of teak trees grown in Karna-taka, India

    Institute of Scientific and Technical Information of China (English)

    Vindhya Prasad Tewari; K.M. Mariswamy

    2013-01-01

    We evaluated heartwood, sapwood and bark content in teak trees. A total of 27 sample plots were laid out in teak plantations raised by State Forest Department in Karnataka covering different age groups (11−36 years), density (516−2061 trees/ha) and sites. From these planta-tions, a total of 130 trees were felled for estimating the yield and bark content in relation to diameter at breast height (DBH), age and density. Bark content ranged from 22.2%−54.3%. Heartwood and sapwood con-tent were analyzed by sampling five trees each from two different planta-tions, one 30 years old at 553 trees⋅ha-1 and the other 32 years old at 911 trees⋅ha-1. The highest heartwood proportion of stem wood volume (over-bark) was 56.3%and the lowest was 37.1%. The sapwood propor-tion ranged from 12.9%−23.0%, while the bark content ranged from 27.8%−43.5%. The heartwood proportion increased with DBH, while the proportion of bark decreased. The sapwood proportion did not vary with DBH. The bark content decreased with increasing age, but increased with stand density. There was no significant difference in heartwood content with respect to age or stand density because the ages of the two stands were similar. A larger dataset from young to mature stands is needed to describe the relationships between age and stand density and heartwood, sapwood and bark content of trees.

  15. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter

    OpenAIRE

    2014-01-01

    Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling starte...

  16. Study on Longitudinal Gas Permeability of Air-dried Masson Pine Sapwood

    Institute of Scientific and Technical Information of China (English)

    HOU Zhuqiang; ZHANG Lifei; GUAN Ning; CHEN Guihua

    2006-01-01

    Measurement of the longitudinal gas permeability was made for air-dried sapwood specimens from Masson pine(Pinus massoniana).Results showed that air-dried Masson pine sapwood was one of the most permeable softwoods.The investigated specimens had an average longitudinal gas permeability of 4.60 ×10-13m3/m.and the permeability ranged from 1.06×10-13 to 1.12 ×10-12m3/m.The Kruskal-Wallis Test indicated that,generally,there was no correlation between the longitudinal gas permeability and the trees from which specimens were prepared,and tree height had no significant effect on the longitudinal gas permeability.

  17. Ability of natural extracts to limit mold growth on Douglas-fir sapwood

    OpenAIRE

    Michal Maoz; Joseph J. Karchesy; Jeffrey J. Morrell

    2012-01-01

    The ability of selected plant extracts from wood and foliage to inhibit mold regrowth on fungal colonized wood was evaluated on Douglas-fir sapwood. Most foliage extracts produced some inhibition of Graphium or Trichoderma species, but isolations of other fungi increased following treatment. Five out of eight wood extracts produced 50% reductions in isolations, and those from Alaska cedar, western juniper, and incense cedar produced at least 80% reductions. The results indicate that wood ext...

  18. Treatment of sugi (Cryptomeria japonica D.) sapwood with aqueous solution of acetic acid

    Institute of Scientific and Technical Information of China (English)

    LUBao-wang; DUGuang-hua; MATSUITakanao; MATSUSHITAYoh-ichi

    2003-01-01

    Sugi sapwood samples were processed with aqueous solution of acetic acid in order to find the response of the weight of sugi sapwood and the treatment of aqueous solution of acetic acid. The result showed that loss of weight for the treated sugisapwood was about equal to yield of extracts from sugi sapwood, and increased with the increment of the concentration of aqueous solution of acetic acid. Fourier transform infrared spectroscopy spectra changes of the treated sugi wood and extracts from sugi sapwood were analyzed by FT-IR spectroscopic technique. Increasing tendency of absorption intensities of the stretching vibration at 3 400 cm-1 of hydroxyl group (OH) and C=C in lignin stretching vibration at 1510 cm-1 of benzene ring inlignin were observed from FT-IR of the treated sugi sapwood. From FT-IR spectra of extracts from sugi sapwood by aqueoussolution of acetic acid, the dissolution of lignin was observed during the treatment with 30% acetic acid solution aqueous.

  19. An evolutionary attractor model for sapwood cross section in relation to leaf area.

    Science.gov (United States)

    Westoby, Mark; Cornwell, William K; Falster, Daniel S

    2012-06-21

    Sapwood cross-sectional area per unit leaf area (SA:LA) is an influential trait that plants coordinate with physical environment and with other traits. We develop theory for SA:LA and also for root surface area per leaf area (RA:LA) on the premise that plants maximizing the surplus of revenue over costs should have competitive advantage. SA:LA is predicted to increase in water-relations environments that reduce photosynthetic revenue, including low soil water potential, high water vapor pressure deficit (VPD), and low atmospheric CO(2). Because sapwood has costs, SA:LA adjustment does not completely offset difficult water relations. Where sapwood costs are large, as in tall plants, optimal SA:LA may actually decline with (say) high VPD. Large soil-to-root resistance caps the benefits that can be obtained from increasing SA:LA. Where a plant can adjust water-absorbing surface area of root per leaf area (RA:LA) as well as SA:LA, optimal RA:SA is not affected by VPD, CO(2) or plant height. If selection favours increased height more so than increased revenue-minus-cost, then height is predicted to rise substantially under improved water-relations environments such as high-CO(2) atmospheres. Evolutionary-attractor theory for SA:LA and RA:LA complements models that take whole-plant conductivity per leaf area as a parameter. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Linking phloem function to structure: analysis with a coupled xylem-phloem transport model.

    Science.gov (United States)

    Hölttä, T; Mencuccini, M; Nikinmaa, E

    2009-07-21

    We carried out a theoretical analysis of phloem transport based on Münch hypothesis by developing a coupled xylem-phloem transport model. Results showed that the maximum sugar transport rate of the phloem was limited by solution viscosity and that transport requirements were strongly affected by prevailing xylem water potential. The minimum number of xylem and phloem conduits required to sustain transpiration and assimilation, respectively, were calculated. At its maximum sugar transport rate, the phloem functioned with a high turgor pressure difference between the sugar sources and sinks but the turgor pressure difference was reduced if additional parallel conduits were added or solute relays were introduced. Solute relays were shown to decrease the number of parallel sieve tubes needed for phloem transport, leading to a more uniform turgor pressure and allowing faster information transmission within the phloem. Because xylem water potential affected both xylem and phloem transport, the conductance of the two systems was found to be coupled such that large structural investments in the xylem reduced the need for investment in the phloem and vice versa.

  1. A method to improve tree water use estimates by distinguishing sapwood from heartwood using Electrical Resistivity Tomography

    Science.gov (United States)

    Guyot, A.; Ostergaard, K.; Lenkopane, M.; Fan, J.; Lockington, D. A.

    2011-12-01

    Estimating whole-plant water use in trees requires reliable and accurate methods. Measuring sap velocity and extrapolating to tree water use is seen as the most commonly used. However, deducing the tree water use from sap velocity requires an estimate of the sapwood area. This estimate is the highest cause of uncertainty, and can reach more than 50 % of the uncertainty in the estimate of water use per day. Here, we investigate the possibility of using Electrical Resistivity Tomography to evaluate the sapwood area distribution in a plantation of Pinus elliottii. Electric resistivity tomographs of Pinus elliottii show a very typical pattern of electrical resistivity, which is highly correlated to sapwood and heartwood distribution. To identify the key factors controlling the variation of electrical resistivity, cross sections at breast height for ten trees have been monitored with electrical resistivity tomography. Trees have been cut down after the experiment to identify the heartwood/sapwood boundaries and to extract wood and sap samples. pH, electrolyte concentration and wood moisture content have then been analysed for these samples. Results show that the heartwood/sapwood patterns are highly correlated with electrical resistivity, and that the wood moisture content is the most influencing factor controlling the variability of the patterns. These results show that electric resistivity tomography could be used as a powerful tool to identify the sapwood area, and thus be used in combination with sapflow sensors to map tree water use at stand scale. However, if Pinus elliottii shows typical patterns, further work is needed to identify to see if there are species - specific characterictics as shown in previous works (, electrolyte gradients from the bark to the heartwood). Also, patterns of high resistivity in between needles positions, which are not correlated with either wood moisture content or sapwood, appear to be artifacts. Thus, inversion methods have also to

  2. Air in xylem vessels of cut flowers

    NARCIS (Netherlands)

    Nijsse, J.; Meeteren, van U.; Keijzer, C.J.

    2000-01-01

    Until now all studies on the role of air emboli in the water uptake of cut flowers describe indirect methods to demonstrate the presencFe of air in the plant tissues. Using cut chrysanthemum flowers, this report is the first one that directly visualises both air and water in xylem ducts of cut

  3. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea.

    Science.gov (United States)

    Martin, Rachael; Gazis, Romina; Skaltsas, Demetra; Chaverri, Priscila; Hibbett, David

    2015-01-01

    Research on fungal endophytes has expanded dramatically in recent years, but little is known about the diversity and ecological roles of endophytic basidiomycetes. Here we report the analysis of 310 basidiomycetous endophytes isolated from wild and planted populations of the rubber tree genus, Hevea. Species accumulation curves were nonasymptotic, as in the majority of endophyte surveys, indicating that more sampling is needed to recover the true diversity of the community. One hundred eighteen OTUs were delimited, representing nine orders of Basidiomycota (Agaricales, Atheliales, Auriculariales, Cantharellales, Hymenochaetales, Polyporales, Russulales, Septobasidiales, Tremellales). The diversity of basidiomycetous endophytes found inhabiting wild populations of Hevea was comparable to that present in plantations. However, when samples were segregated by tissue type, sapwood of wild populations was found to contain a higher number of species than sapwood of planted trees. Seventy-five percent of isolates were members of the Polyporales, the majority in the phlebioid clade. Most of the species belong to clades known to cause a white-rot type of wood decay. Two species in the insect-associated genus Septobasidium were isolated. The most frequently isolated genera included Bjerkandera, Ceriporia, Phanerochaete, Phlebia, Rigidoporus, Tinctoporellus, Trametes (Polyporales), Peniophora, Stereum (Russulales) and Coprinellus (Agaricales), all of which have been reported as endophytes from a variety of hosts, across wide geographic locations. Literature records on the geographic distribution and host association of these genera revealed that their distribution and substrate affinity could be extended if the endophytic niche was investigated as part of fungal biodiversity surveys.

  4. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.

    Science.gov (United States)

    Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G

    2014-04-01

    Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems.

  5. Quantification of the xylem-to-phloem transfer of amino acids by use of inulin [14C]carboxylic acid as xylem transport marker

    NARCIS (Netherlands)

    Bel, A.J.E. van

    1984-01-01

    Inulin [¹⁴C] carboxylic acid and ¹⁴C.labelled amino acid (a-aminoisobutyric acid (aib) and valine) solutions were introduced into the transpiration stream through the cut stem bases of young (4-12 leaves) tomato plants. Inulin carboxylic acid (inu) was translocated exclusively by the xylem, whereas

  6. Quantification of the xylem-to-phloem transfer of amino acids by use of inulin [14C]carboxylic acid as xylem transport marker

    NARCIS (Netherlands)

    Bel, A.J.E. van

    1984-01-01

    Inulin [¹⁴C] carboxylic acid and ¹⁴C.labelled amino acid (a-aminoisobutyric acid (aib) and valine) solutions were introduced into the transpiration stream through the cut stem bases of young (4-12 leaves) tomato plants. Inulin carboxylic acid (inu) was translocated exclusively by the xylem,

  7. Distribution of xylem hydraulic resistance in fruiting truss of tomato influenced by water stress.

    Science.gov (United States)

    Van Ieperen, W; Volkov, V S; Van Meeteren, U

    2003-01-01

    In this study xylem hydraulic resistances of peduncles (truss stalk), pedicels (fruit stalk) and the future abscission zone (AZ) halfway along the pedicel of tomato (Lycopersicon esculentum L.) plants were directly measured at different stages of fruit development, in plants grown under two levels of water availability in the root environment. The xylem hydraulic connection between shoot and fruits has previously been investigated, but contradictory conclusions were drawn about the presence of a flow resistance barrier in the pedicel. These conclusions were all based on indirect functional measurements and anatomical observations of water-conducting tissue in the pedicel. In the present study, by far the largest resistances were measured in the AZ where most individual vessels ended. Plants grown at low water availability in the root environment had xylem with higher hydraulic resistances in the peduncle and pedicel segments on both sides of the AZ, while the largest increase in hydraulic resistance was measured in the AZ. During fruit development hydraulic resistances in peduncle and pedicel segments decreased on both sides of the AZ, but tended to increase in the AZ. The overall xylem hydraulic resistance between the shoot and fruit tended to increase with fruit development because of the dominating role of the hydraulic resistance in the AZ. It is discussed whether the xylem hydraulic resistance in the AZ of tomato pedicels in response to water stress and during fruit development contributes to the hydraulic isolation of fruits from diurnal cycles of water stress in the shoot.

  8. De novo transcriptome assemblies of four xylem sap-feeding insects.

    Science.gov (United States)

    Tassone, Erica E; Cowden, Charles C; Castle, S J

    2017-02-24

    Spittle bugs and sharpshooters are well-known xylem sap-feeding insects and vectors of the phytopathogenic bacterium Xylella fastidiosa (Wells), a causal agent of Pierce's disease of grapevines and other crop diseases. Specialized feeding on nutrient-deficient xylem sap is relatively rare among insect herbivores, and only limited genomic and transcriptomic information has been generated for xylem-sap feeders. To develop a more comprehensive understanding of biochemical adaptations and symbiotic relationships that support survival on a nutritionally austere dietary source, transcriptome assemblies for three sharpshooter species and one spittlebug species were produced. Trinity-based de novo transcriptome assemblies were generated for all four xylem-sap feeders using raw sequencing data originating from whole-insect preps. Total transcripts for each species ranged from 91,384 for Cuerna arida to 106,998 for Homalodisca liturata with transcript totals for Graphocephala atropunctata and the spittlebug Clastoptera arizonana falling in between. The percentage of transcripts comprising complete open reading frames ranged from 60 % for H. liturata to 82 % for C. arizonana . BUSCO analyses for each dataset indicated quality assemblies and a high degree of completeness for all four species. These four transcriptomes represent a significant expansion of data for insect herbivores that feed exclusively on xylem sap, a nutritionally deficient dietary source relative to other plant tissues and fluids. Comparison of transcriptome data with insect herbivores that utilize other dietary sources may illuminate fundamental differences in the biochemistry of dietary specialization.

  9. Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening

    Science.gov (United States)

    Hilaire, E.; Young, S. A.; Willard, L. H.; McGee, J. D.; Sweat, T.; Chittoor, J. M.; Guikema, J. A.; Leach, J. E.

    2001-01-01

    The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae is a vascular pathogen that elicits a defensive response through interaction with metabolically active rice cells. In leaves of 12-day-old rice seedlings, the exposed pit membrane separating the xylem lumen from the associated parenchyma cells allows contact with bacterial cells. During resistant responses, the xylem secondary walls thicken within 48 h and the pit diameter decreases, effectively reducing the area of pit membrane exposed for access by bacteria. In susceptible interactions and mock-inoculated controls, the xylem walls do not thicken within 48 h. Xylem secondary wall thickening is developmental and, in untreated 65-day-old rice plants, the size of the pit also is reduced. Activity and accumulation of a secreted cationic peroxidase, PO-C1, were previously shown to increase in xylem vessel walls and lumen. Peptide-specific antibodies and immunogold-labeling were used to demonstrate that PO-C1 is produced in the xylem parenchyma and secreted to the xylem lumen and walls. The timing of the accumulation is consistent with vessel secondary wall thickening. The PO-C1 gene is distinct but shares a high level of similarity with previously cloned pathogen-induced peroxidases in rice. PO-C1 gene expression was induced as early as 12 h during resistant interactions and peaked between 18 and 24 h after inoculation. Expression during susceptible interactions was lower than that observed in resistant interactions and was undetectable after infiltration with water, after mechanical wounding, or in mature leaves. These data are consistent with a role for vessel secondary wall thickening and peroxidase PO-C1 accumulation in the defense response in rice to X. oryzae pv. oryzae.

  10. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison

    2009-01-01

    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  11. Increasing the permeability of spruce sapwood (Picea orientalis l. with enzymatic treatment

    Directory of Open Access Journals (Sweden)

    Sefa Durmaz

    2016-04-01

    Full Text Available The spruce is the one of the refractory wood species. In this study, the spruce sapwood samples were treated with enzymes to improve its permeability. The pit membranes play an important role for water transporting between the adjacent cells. The spruce wood pit membranes are prone to close under the fiber saturated point. As a result of the liquid transportation is blocked, the impregnation process is getting difficult. The wood pits compose of cellulose, hemicellulose, lignin, pectin, and phenolic components. The torus surface is covered with pectin. Bioprep 3000 L, Viscozyme L, Texazym BFE, Texazym DLG are commonly used in the textile industry to remove lignocellulosic materials. It was aimed to destroy the closed pits via enzymatic treatment. At the end of the study, the retention and penetration increments were obtained after the enzymatic treatment. The wood samples treated with enzymes which are composed of enzymes mixtures gave more penetration and retention values.

  12. Ability of natural extracts to limit mold growth on Douglas-fir sapwood

    Directory of Open Access Journals (Sweden)

    Michal Maoz

    2012-11-01

    Full Text Available The ability of selected plant extracts from wood and foliage to inhibit mold regrowth on fungal colonized wood was evaluated on Douglas-fir sapwood. Most foliage extracts produced some inhibition of Graphium or Trichoderma species, but isolations of other fungi increased following treatment. Five out of eight wood extracts produced 50% reductions in isolations, and those from Alaska cedar, western juniper, and incense cedar produced at least 80% reductions. The results indicate that wood extracts may be useful for reducing the incidence of mold on wood products, but none of the materials evaluated completely inhibited the test fungi. These extracts may provide a useful value-added application for by-products of lumber production from these species.

  13. Transcription Factors in Xylem Development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sederoff, Ronald; Whetten, Ross; O' Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  14. Branch xylem density variations across Amazonia

    Directory of Open Access Journals (Sweden)

    S. Patiño

    2008-05-01

    Full Text Available Measurements of branch xylem density, Dx, were made for 1466 trees representing 503 species, sampled from 80 sites across the Amazon basin. Measured values ranged from 240 kg m−3 for a Brosimum parinarioides from Tapajos in West Pará, Brazil to 1130 kg m−3 for an Aiouea sp. from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average Dx across the sample plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that geographic location and plot accounted for 33% of the variation with species identity accounting for an additional 27%; the remaining "residual" 40% of the variance accounted for by tree to tree (within species variation. Variations in plot means, were, however, hardly accountable at all by differences in species composition. Rather, it would seem that variations of xylem density at plot level must be explained by the effects of soils and/or climate. This conclusion is supported by the observation that the xylem density of the more widely distributed species varied systematically from plot to plot. Thus, as well as having a genetic component branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing and in a predictable manner. Exceptions to this general rule may be some pioneers belonging to Pourouma and Miconia and some species within the genera Brosimum, Rinorea and Trichillia which seem to be more constrained in terms of this plasticity than most species sampled as part of this study.

  15. Transcription Factors in Xylem Development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sederoff, Ronald; Whetten, Ross; O' Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  16. Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension

    Science.gov (United States)

    We used two different Synchrotron-based micro-CT facilities (SLS: Swiss Light Source, Villigen, Switzerland, and ALS: Advanced Light Source, Berkeley, CA USA) to test the excision artifact described by Wheeler et al. (2013). Specifically, we examined the impact of cutting xylem under tension and und...

  17. Chemical control of xylem differentiation by thermospermine, xylemin, and auxin.

    Science.gov (United States)

    Yoshimoto, Kaori; Takamura, Hiroyoshi; Kadota, Isao; Motose, Hiroyasu; Takahashi, Taku

    2016-02-16

    The xylem conducts water and minerals from the root to the shoot and provides mechanical strength to the plant body. The vascular precursor cells of the procambium differentiate to form continuous vascular strands, from which xylem and phloem cells are generated in the proper spatiotemporal pattern. Procambium formation and xylem differentiation are directed by auxin. In angiosperms, thermospermine, a structural isomer of spermine, suppresses xylem differentiation by limiting auxin signalling. However, the process of auxin-inducible xylem differentiation has not been fully elucidated and remains difficult to manipulate. Here, we found that an antagonist of spermidine can act as an inhibitor of thermospermine biosynthesis and results in excessive xylem differentiation, which is a phenocopy of a thermospermine-deficient mutant acaulis5 in Arabidopsis thaliana. We named this compound xylemin owing to its xylem-inducing effect. Application of a combination of xylemin and thermospermine to wild-type seedlings negates the effect of xylemin, whereas co-treatment with xylemin and a synthetic proauxin, which undergoes hydrolysis to release active auxin, has a synergistic inductive effect on xylem differentiation. Thus, xylemin may serve as a useful transformative chemical tool not only for the study of thermospermine function in various plant species but also for the control of xylem induction and woody biomass production.

  18. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees.

    Science.gov (United States)

    Schuldt, Bernhard; Leuschner, Christoph; Brock, Nicolai; Horna, Viviana

    2013-02-01

    It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth

  19. Comparative analysis of the anatomical structure of heartwood and sapwood selected Gymnocladus canadensis Lam. trees in Srpska Crnja

    Directory of Open Access Journals (Sweden)

    Vilotić Dragica

    2011-01-01

    Full Text Available This paper shows the results obtained from the study of the macroscopic-microscopic structure (capillary system in the growth stem of Gymnocladus canadensis Lam. originating from North America, which grows in “Muzljanski rit” in the area of Srpska Crnja. Gymnocladus canadensis Lam. falls under the ring-porous species according to its porosity, with large tracheas in its early zone. The early zone trachea lumens, contained in the sapwood, reach dimensions of up to 160 μm, while early zone trachea lumens in the growth stem rings of the sapwood reach dimensions of up to 120 μm. Examination of the microscopic structure of this tree show good properties of the tree.

  20. Variations in bark thickness and sapwood density of Calophyilum inophyllum provenances in Australia and in Sri Lanka

    Institute of Scientific and Technical Information of China (English)

    Subhash Hathurusingha; Nanjappa Ashwath

    2011-01-01

    Sapwood density and bark thickness of Calophyllum inophyl- lum L. (a multipurpose durable timber species) were studied in various locations in Northern Australia and in Sri Lanka. Measurements were taken non-destructively by using core sampling and bark gauge. From each provenance, 4-15 mature trees having girth at breast height over bark (GBHOB) at 100-150 cm were selected on the basis of the popula- tion size. Significant (p<0.05) hemispheric and provenance variations in bark thickness were found. Variations in the bark thickness are influ- enced by environmental variables. Variations in sapwood density were less pronounced compared to that of bark thickness. Variations in sap- wood density are likely to be governed by genotypic variations.

  1. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.

    Science.gov (United States)

    James, Shelley A; Clearwater, Michael J; Meinzer, Frederick C; Goldstein, Guillermo

    2002-03-01

    Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.

  2. Hydrogel Regulation of Xylem Water Flow: An Alternative Hypothesis

    NARCIS (Netherlands)

    Doorn, van W.G.; Hiemstra, T.; Fanourakis, D.

    2011-01-01

    The concentration of cations in the xylem sap influences the rate of xylem water flow in angiosperm plants. It has been speculated that this is due to the shrinking and swelling of pectins in the pit membranes. However, there is as yet minimal evidence for the presence of pectin in pit membranes of

  3. Role of xylem consumption on osmoregulation in Macrosiphum euphorbiae (Thomas).

    Science.gov (United States)

    Pompon, Julien; Quiring, Dan; Giordanengo, Philippe; Pelletier, Yvan

    2010-06-01

    Aphids are phloem feeders that occasionally ingest xylem sap. The duration of xylem consumption by Macrosiphum euphorbiae (Hemiptera: Aphididae) was positively correlated with the level of dehydration of alate aphids of different ages after a period of starvation, supporting the hypothesis that aphids ingest xylem sap to replenish their water balance. However, the duration of xylem sap ingestion but not phloem sap consumption varied in unstarved alate adults of different ages. Furthermore, both alate and apterous aphids ingested xylem sap at the end of their life, when aphids were not dehydrated but when fecundity started to decrease. Fecundity was negatively correlated with the proportion of time spent ingesting xylem sap, and that over the entire reproductive life of alate and apterous aphids. The lower proportion of xylem ingested by apterous than by alate aphids during the first few days of adult life may be related to a higher symbiont density in apterous morphs. As previous studies have demonstrated a relationship between sucrose assimilation, which is directly influenced by fecundity and symbiont density, and osmoregulation, we suggest that xylem consumption may play a role in the osmoregulation of haemolymph of aphids.

  4. Discriminating the indistinguishable sapwood from heartwood in discolored ancient wood by direct molecular mapping of specific extractives using time-of-flight secondary ion mass spectrometry.

    Science.gov (United States)

    Saito, Kaori; Mitsutani, Takumi; Imai, Takanori; Matsushita, Yasuyuki; Fukushima, Kazuhiko

    2008-03-01

    A new method that can chemically discriminate the visually indistinguishable sapwood from heartwood in discolored woods is presented in this paper. Discriminating between sapwood and heartwood, which are normally recognized by color in cross sections of stems of tress, is important in dendrochronological dating, as well as in evaluating qualities of woods such as durability. In tree-ring chronology, the felling date, which affects the construction date of architectures, can be estimated only in woods that have a recognizable sapwood/heartwood boundary. However, the felling date cannot be estimated in discolored woods because it has indistinguishable sapwood. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis of specific chemical substances retained for approximately 1300 years after felling demonstrated the presence of sapwood in a discolored ancient architectural wood of Hinoki cypress (Chamaecyparis obtusa). Direct molecular mapping by TOF-SIMS clearly indicated that the specific substances, hinokinin, hinokiresinol, hinokione, and hinokiol, started to accumulate at the sapwood/heartwood boundary where only hinokinin was localized and retained predominantly in ray parenchyma cells. The result allowed the determination of the felling date of the discolored wood. TOF-SIMS has shown to be useful for investigating the distribution of minute amounts of chemical components in woods.

  5. A microfluidic pump/valve inspired by xylem embolism and transpiration in plants.

    Directory of Open Access Journals (Sweden)

    Li Jingmin

    Full Text Available In plants, transpiration draws the water upward from the roots to the leaves. However, this flow can be blocked by air bubbles in the xylem conduits, which is called xylem embolism. In this research, we present the design of a biomimetic microfluidic pump/valve based on water transpiration and xylem embolism. This micropump/valve is mainly composed of three parts: the first is a silicon sheet with an array of slit-like micropores to mimic the stomata in a plant leaf; the second is a piece of agarose gel to mimic the mesophyll cells in the sub-cavities of a stoma; the third is a micro-heater which is used to mimic the xylem embolism and its self-repairing. The solution in the microchannels of a microfluidic chip can be driven by the biomimetic "leaf" composed of the silicon sheet and the agarose gel. The halting and flowing of the solution is controlled by the micro-heater. Results have shown that a steady flow rate of 1.12 µl/min can be obtained by using this micropump/valve. The time interval between the turning on/off of the micro-heater and the halt (or flow of the fluid is only 2∼3 s. This micropump/valve can be used as a "plug and play" fluid-driven unit. It has the potential to be used in many application fields.

  6. Diversity, Biocontrol, and Plant Growth Promoting Abilities of Xylem Residing Bacteria from Solanaceous Crops

    Directory of Open Access Journals (Sweden)

    Gauri A. Achari

    2014-01-01

    Full Text Available Eggplant (Solanum melongena L. is one of the solanaceous crops of economic and cultural importance and is widely cultivated in the state of Goa, India. Eggplant cultivation is severely affected by bacterial wilt caused by Ralstonia solanacearum that colonizes the xylem tissue. In this study, 167 bacteria were isolated from the xylem of healthy eggplant, chilli, and Solanum torvum Sw. by vacuum infiltration and maceration. Amplified rDNA restriction analysis (ARDRA grouped these xylem residing bacteria (XRB into 38 haplotypes. Twenty-eight strains inhibited growth of R. solanacearum and produced volatile and diffusible antagonistic compounds and plant growth promoting substances in vitro. Antagonistic strains XB86, XB169, XB177, and XB200 recorded a biocontrol efficacy greater than 85% against BW and exhibited 12%–22 % increase in shoot length in eggplant in the greenhouse screening. 16S rRNA based identification revealed the presence of 23 different bacterial genera. XRB with high biocontrol and plant growth promoting activities were identified as strains of Staphylococcus sp., Bacillus sp., Streptomyces sp., Enterobacter sp., and Agrobacterium sp. This study is the first report on identity of bacteria from the xylem of solanaceous crops having traits useful in cultivation of eggplant.

  7. EFFECT OF SITE ON BACTERIAL POPULATIONS IN THE SAPWOOD OF COARSE WOODY DEBRIS.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Emma, G.,; Waldrop, Thomas, A.; McElreath, Susan, D.; Tainter, Frank, H.

    1998-01-01

    Porter, Emma G., T.A. Waldrop, Susan D. McElreath, and Frank H. Tainter. 1998. Effect of site on bacterial populations in the sapwood of coarse woody debris. Pp. 480-484. In: Proc. 9th Bienn. South. Silv. Res. Conf. T.A. Waldrop (ed). USDA Forest Service, Southern Research Station. Gen. Tech. Rep. SRS-20. Abstract: Coarse woody debris (CWD) is an important structural component of southeastern forest ecosystems, yet little is known about its dynamics in these systems. This project identified bacterial populations associated with CWD and their dynamics across landscape ecosystem classification (LEC) units. Bolts of red oak and loblolly pine were placed on plots at each of three hydric, mesic, and xeric sites at the Savannah River Station. After the controls were processed, samples were taken at four intervals over a 16-week period. Samples were ground within an anaerobe chamber using nonselective media. Aerobic and facultative anaerobic bacteria were identified using the Biolog system and the anaerobes were identified using the API 20A system. Major genera isolated were: Bacillus, Buttiauxella, Cedecea, Enterobacter, Erwinia, Escherichia, Klebsiella, Pantoea, Pseudomonas, Serratia, and Xanthomonas. The mean total isolates were determined by LEC units and sample intervals. Differences occurred between the sample intervals with total isolates of 6.67, 13.33, 10.17, and 9.50 at 3, 6, 10, and 16 weeks, respectively. No significant differences in the numbers of bacteria isolated were found between LEC units.

  8. Quo vadis, carbon? High resolution tracing of xylem and phloem carbon transport and release in trees

    Science.gov (United States)

    Ingrisch, J.; Bloemen, J.; Bahn, M.

    2016-12-01

    Carbon (C) allocation defines the flows of C between plant organs, and between storage pools and metabolic processes and is therefore considered an important determinant of ecosystem C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported as sugars via the phloem to above- and below-ground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, above- and below-ground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a transport pathway opposite to the downward transport of sugars along the phloem. So far, it is unclear to what extent these transport pathways interact, for instance by lateral transport of C, and contribute to above- and belowground respiratory fluxes to the atmosphere. We performed a combined canopy and stem infusion 13C labeling study on six year old potted oak (Quercus rubra) trees to trace C transport along the phloem and xylem, respectively, in order to investigate the role of both transport pathways in C allocation. In addition, high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux were used to monitor the contribution of both pathways to respiratory fluxes. Additional tissue analysis was performed to analyze the occurrence of lateral transport of C between the phloem and xylem transport pathway. Our results will permit disentangling the contribution of metabolic versus xylem and phloem transport processes to stem and soil CO2 efflux and give insight into lateral C transport between xylem and phloem in trees.

  9. A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy.

    Science.gov (United States)

    Volkmann, Till H M; Kühnhammer, Kathrin; Herbstritt, Barbara; Gessler, Arthur; Weiler, Markus

    2016-09-01

    Field studies analyzing the stable isotope composition of xylem water are providing important information on ecosystem water relations. However, the capacity of stable isotopes to characterize the functioning of plants in their environment has not been fully explored because of methodological constraints on the extent and resolution at which samples could be collected and analysed. Here, we introduce an in situ method offering the potential to continuously monitor the stable isotope composition of tree xylem water via its vapour phase using a commercial laser-based isotope analyser and compact microporous probes installed into the xylem. Our technique enables efficient high-frequency measurement with intervals of only a few minutes per sample while eliminating the need for costly and cumbersome destructive collection of plant material and laboratory-based processing. We present field observations of xylem water hydrogen and oxygen isotope compositions obtained over several days including a labelled irrigation event and compare them against results from concurrent destructive sampling with cryogenic distillation and mass spectrometric analysis. The data demonstrate that temporal changes as well as spatial patterns of integration in xylem water isotope composition can be resolved through direct measurement. The new technique can therefore present a valuable tool to study the hydraulic architecture and water utilization of trees.

  10. The physiological implications of primary xylem organization in two ferns.

    Science.gov (United States)

    Brodersen, Craig R; Roark, Lindsey C; Pittermann, Jarmila

    2012-11-01

    Xylem structure and function are well described in woody plants, but the implications of xylem organization in less-derived plants such as ferns are poorly understood. Here, two ferns with contrasting phenology and xylem organization were selected to investigate how xylem dysfunction affects hydraulic conductivity and stomatal conductance (g(s)). The drought-deciduous pioneer species, Pteridium aquilinum, exhibits fronds composed of 25 to 37 highly integrated vascular bundles with many connections, high g(s) and moderate cavitation resistance (P50 = -2.23 MPa). By contrast, the evergreen Woodwardia fimbriata exhibits sectored fronds with 3 to 5 vascular bundles and infrequent connections, low g(s) and high resistance to cavitation (P50 = -5.21 MPa). Xylem-specific conductivity was significantly higher in P. aqulinium in part due to its wide, efficient conduits that supply its rapidly transpiring pinnae. These trade-offs imply that the contrasting xylem organization of these ferns mirrors their divergent life history strategies. Greater hydraulic connectivity and g(s) promote rapid seasonal growth, but come with the risk of increased vulnerability to cavitation in P. aquilinum, while the conservative xylem organization of W. fimbriata leads to slower growth but greater drought tolerance and frond longevity.

  11. Xylem development - from the cradle to the grave.

    Science.gov (United States)

    Růžička, Kamil; Ursache, Robertas; Hejátko, Jan; Helariutta, Ykä

    2015-08-01

    The development and growth of plants, as well as their successful adaptation to a variety of environments, is highly dependent on the conduction of water, nutrients and other important molecules throughout the plant body. Xylem is a specialized vascular tissue that serves as a conduit of water and minerals and provides mechanical support for upright growth. Wood, also known as secondary xylem, constitutes the major part of mature woody stems and roots. In the past two decades, a number of key factors including hormones, signal transducers and (post)transcriptional regulators have been shown to control xylem formation. We outline the main mechanisms shown to be essential for xylem development in various plant species, with an emphasis on Arabidopsis thaliana, as well as several tree species where xylem has a long history of investigation. We also summarize the processes which have been shown to be instrumental during xylem maturation. This includes mechanisms of cell wall formation and cell death which collectively complete xylem cell fate. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction?

    NARCIS (Netherlands)

    Ieperen, van W.

    2007-01-01

    Although xylem provides an efficient transport pathway for water in plants, the hydraulic conductivity of xylem (Kh) can still influence plant water status. For decades, the Kh of functional xylem has been assumed to be constant in the short term because xylem consists of a network of dead interconn

  13. The watering of trees. Embolization and recovery in xylem microtubes

    CERN Document Server

    Gouin, Henri

    2014-01-01

    In any tree, crude sap is driven through xylem microtubes. The crude sap is submitted to intermolecular forces shaping it into very thin liquid films in embolized xylem microtubes. The concept of disjoining pressure must be taken into account and a strong negative pressure can be present in liquid-water bulks. The disjoining pressure gradient induced by the flux of transpiration initiates crude sap motion. Applications enable to understand why the xylem microtubes can be refilled and why the ascent of sap is possible even for the tallest trees avoiding the problems due to cavitation.

  14. A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.

    Science.gov (United States)

    Hall, A J; Minchin, P E H

    2013-12-01

    A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. © 2013 John Wiley & Sons Ltd.

  15. Correlations between the anatomical traits of Gymnocladus canadensis Lam. in heartwood and sapwood of early- and latewood zones of growth rings

    Directory of Open Access Journals (Sweden)

    Jokanović Dušan

    2015-01-01

    Full Text Available This paper shows correlations between vessel characteristics and differences in growth-ring width in heartwood and sapwood. Analyzed samples were from an iron-wood tree (Gymnocladus canadensis Lam. that grew in the Mužljanski Rit area, of the Srpska Crnja municipality in Serbia. According to previous research, it was deduced that Gymnocladus canadensis Lam. belongs to ring-porous species with big vessel lumen in the earlywood zone and thicker cell walls in the latewood. Vessels were more numerous in the latewood zone, and the same was true for heartwood and sapwood. For both layers, sapwood possessed a few more vessels than heartwood, and a statistically significant difference was confirmed by t-test during the early phase. The greatest negative value of correlation coefficient was between the number of vessels and growth-ring width during the early phase for sapwood. The number of vessels decreased in the wider growth rings. The correlation between growth-ring width and the area of vessels had a statistically significant positive value of correlative coefficient, which means that wider growth rings had larger vessel areas in the early phase for sapwood. [Projekat Ministarstva nauke Republike Srbije, br. 31041

  16. Hormone interactions in xylem development: a matter of signals.

    Science.gov (United States)

    Milhinhos, Ana; Miguel, Célia M

    2013-06-01

    Xylem provides long-distance transport of water and nutrients as well as structural support in plants. The development of the xylem tissues is modulated by several internal signals. In the last decades, the bloom of genetic and genomic tools has led to increased understanding of the molecular mechanisms underlying the function of the traditional plant hormones in xylem specification and differentiation. Critical functions have been assigned to novel signaling molecules, such as thermospermine. These signals do not function independently, but interact in a manner we are only now beginning to understand. We review the current knowledge of hormone signaling pathways and their crosstalk in cambial cell initiation and maintenance, and in xylem specification and differentiation.

  17. Xylem hydraulic conductivity related to conduit dimensions along chrysanthemum stems.

    NARCIS (Netherlands)

    Nijsse, J.; Heijden, van der G.W.A.M.; Ieperen, van W.; Keijzer, C.J.; Meeteren, van U.

    2001-01-01

    The stem xylem conduit dimensions and hydraulic conductivity of chrysanthemum plants (Dendranthemaxgrandiflorum Tzvelev cv. Cassa) were analysed and quantified. Simple exponential relations describe conduit length distribution, height dependency of conduit length distribution, and height dependency

  18. Using Tree Detection Algorithms to Predict Stand Sapwood Area, Basal Area and Stocking Density in Eucalyptus regnans Forest

    Directory of Open Access Journals (Sweden)

    Dominik Jaskierniak

    2015-06-01

    Full Text Available Managers of forested water supply catchments require efficient and accurate methods to quantify changes in forest water use due to changes in forest structure and density after disturbance. Using Light Detection and Ranging (LiDAR data with as few as 0.9 pulses m−2, we applied a local maximum filtering (LMF method and normalised cut (NCut algorithm to predict stocking density (SDen of a 69-year-old Eucalyptus regnans forest comprising 251 plots with resolution of the order of 0.04 ha. Using the NCut method we predicted basal area (BAHa per hectare and sapwood area (SAHa per hectare, a well-established proxy for transpiration. Sapwood area was also indirectly estimated with allometric relationships dependent on LiDAR derived SDen and BAHa using a computationally efficient procedure. The individual tree detection (ITD rates for the LMF and NCut methods respectively had 72% and 68% of stems correctly identified, 25% and 20% of stems missed, and 2% and 12% of stems over-segmented. The significantly higher computational requirement of the NCut algorithm makes the LMF method more suitable for predicting SDen across large forested areas. Using NCut derived ITD segments, observed versus predicted stand BAHa had R2 ranging from 0.70 to 0.98 across six catchments, whereas a generalised parsimonious model applied to all sites used the portion of hits greater than 37 m in height (PH37 to explain 68% of BAHa. For extrapolating one ha resolution SAHa estimates across large forested catchments, we found that directly relating SAHa to NCut derived LiDAR indices (R2 = 0.56 was slightly more accurate but computationally more demanding than indirect estimates of SAHa using allometric relationships consisting of BAHa (R2 = 0.50 or a sapwood perimeter index, defined as (BAHaSDen½ (R2 = 0.48.

  19. Measurement of xylem translocation of weak electrolytes with the pressure chamber technique

    DEFF Research Database (Denmark)

    Ciucani, Giovannella; Trevisan, M.; Sacchi, G.A.;

    2002-01-01

    Xylem translocation and root uptake of weak electrolytes were investigated with the pressure chamber technique (PCT) using de-topped soybean plants. Two compounds were organic bases (fenpropimorph and imazalil) and four were organic acids (bentazone, primisulfuron-methyl, rimsulfuron and triasulf......Xylem translocation and root uptake of weak electrolytes were investigated with the pressure chamber technique (PCT) using de-topped soybean plants. Two compounds were organic bases (fenpropimorph and imazalil) and four were organic acids (bentazone, primisulfuron-methyl, rimsulfuron.......64-1.35 for rimsulfuron, 0.81-0.93 for triasulfuron and 0.69-0.92 for bentazone. The variation of TSCF of the weak electrolytes was much smaller in these PCT experiments than in recent experiments with intact plants. The likely reason is that de-topped soybean plants in the pressure chamber seemed to be unable...

  20. Xylem cell death: emerging understanding of regulation and function.

    Science.gov (United States)

    Bollhöner, Benjamin; Prestele, Jakob; Tuominen, Hannele

    2012-02-01

    Evolutionary, as well as genetic, evidence suggests that vascular development evolved originally as a cell death programme that allowed enhanced movement of water in the extinct protracheophytes, and that secondary wall formation in the water-conducting cells evolved afterwards, providing mechanical support for effective long-distance transport of water. The extant vascular plants possess a common regulatory network to coordinate the different phases of xylem maturation, including secondary wall formation, cell death, and finally autolysis of the cell contents, by the action of recently identified NAC domain transcription factors. Consequently, xylem cell death is an inseparable part of the xylem maturation programme, making it difficult to uncouple cell death mechanistically from secondary wall formation, and thus identify the key factors specifically involved in regulation of cell death. Current knowledge suggests that the necessary components for xylem cell death are produced early during xylem differentiation, and cell death is prevented through the action of inhibitors and storage of hydrolytic enzymes in inactive forms in compartments such as the vacuole. Bursting of the central vacuole triggers autolytic hydrolysis of the cell contents, which ultimately leads to cell death. This cascade of events varies between the different xylem cell types. The water-transporting tracheary elements rely on a rapid cell death programme, with hydrolysis of cell contents taking place for the most part, if not entirely, after vacuolar bursting, while the xylem fibres disintegrate cellular contents at a slower pace, well before cell death. This review includes a detailed description of cell morphology, function of plant growth regulators, such as ethylene and thermospermine, and the action of hydrolytic nucleases and proteases during cell death of the different xylem cell types.

  1. Vestured pits: a diagnostic character in the secondary xylem of Myrtales

    OpenAIRE

    Jansen, S; Pletsers, A.; Rabaey, D.; Lens, F.

    2008-01-01

    Vestures are small projections from the secondary cell wall associated with tracheary elements of the secondary xylem. They are usually associated with bordered pits and characterize various angiosperm families, including important timber species such as Dipterocarpaceae and Eucalyptus trees. The micromorphology and distribution of vestures were studied in 22 species representing all families within the order Myrtales based on light and scanning electron microscopy. Vestures are consistently ...

  2. Predicting forested catchment evapotranspiration and streamflow from stand sapwood area and Aridity Index

    Science.gov (United States)

    Lane, Patrick

    2016-04-01

    Estimating the water balance of ungauged catchments has been the subject of decades of research. An extension of the fundamental problem of estimating the hydrology is then understanding how do changes in catchment attributes affect the water balance component? This is a particular issue in forest hydrology where vegetation exerts such a strong influence on evapotranspiration (ET), and consequent streamflow (Q). Given the primacy of trees in the water balance, and the potential for change to species and density through logging, fire, pests and diseases and drought, methods that directly relate ET/Q to vegetation structure, species, and stand density are very powerful. Plot studies on tree water use routinely use sapwood area (SA) to calculate transpiration and upscale to the stand/catchment scale. Recent work in south eastern Australian forests have found stand-wide SA to be linearly correlated (R2 = 0.89) with long term mean annual loss (P-Q), and hence, long term mean annual catchment streamflow. Robust relationships can be built between basal area (BA), tree density and stand SA. BA and density are common forest inventory measurements. Until now, no research has related the fundamental stand attribute of SA to streamflow. The data sets include catchments that have been thinned and with varying age classes. Thus far these analyses have been for energy limited systems in wetter forest types. SA has proven to be a more robust biometric than leaf area index which varies seasonally. That long term ET/Q is correlated with vegetation conforms to the Budyko framework. Use of a downscaled (20 m) Aridity Index (AI) has shown distinct correlations with stand SA, and therefore T. Structural patterns at a the hillslope scale not only correlate with SA and T, but also with interception (I) and forest floor evaporation (Es). These correlations between AI and I and Es have given R2 > 0.8. The result of these studies suggest an ability to estimate mean annual ET fluxes at sub

  3. Functional ratios among leaf, xylem and phloem areas in branches change with shade tolerance, but not with local light conditions, across temperate tree species.

    Science.gov (United States)

    Zhang, Lan; Copini, Paul; Weemstra, Monique; Sterck, Frank

    2016-03-01

    Leaf, xylem and phloem areas drive the water and carbon fluxes within branches and trees, but their mutual coordination is poorly understood. We test the hypothesis that xylem and phloem areas increase relative to leaf area when species are selected for, or branches are exposed to, higher levels of light intensity. Trees of 10 temperate, broadleaved and deciduous, tree species were selected. Fifty-centimetre-long branches were collected from shaded and exposed conditions at a height of 3-4 m. We measured the total leaf area, xylem area, phloem area and leaf traits, as well as the area of the constituent cell types, for a stem section at the branch base. Xylem area : leaf area and phloem area : leaf area ratios did not differ consistently between sun and shade branches, but, as expected, they decreased with species' shade tolerance. Similar trends were observed for conductive cell areas in xylem and phloem. Trees of light-demanding species maintain higher water loss and carbon gain rates per leaf area by producing more xylem area and phloem area than shade-tolerant species. We call for more comparative branch studies as they provide an integrated biological perspective on functional traits and their role in the ecology of tree species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Arsenic speciation in phloem and xylem exudates of castor bean.

    Science.gov (United States)

    Ye, Wen-Ling; Wood, B Alan; Stroud, Jacqueline L; Andralojc, P John; Raab, Andrea; McGrath, Steve P; Feldmann, Jörg; Zhao, Fang-Jie

    2010-11-01

    How arsenic (As) is transported in phloem remains unknown. To help answer this question, we quantified the chemical species of As in phloem and xylem exudates of castor bean (Ricinus communis) exposed to arsenate [As(V)], arsenite [As(III)], monomethylarsonic acid [MMA(V)], or dimethylarsinic acid. In the As(V)- and As(III)-exposed plants, As(V) was the main species in xylem exudate (55%-83%) whereas As(III) predominated in phloem exudate (70%-94%). The ratio of As concentrations in phloem to xylem exudate varied from 0.7 to 3.9. Analyses of phloem exudate using high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray mass spectrometry coupled to high-performance liquid chromatography identified high concentrations of reduced and oxidized glutathione and some oxidized phytochelatin, but no As(III)-thiol complexes. It is thought that As(III)-thiol complexes would not be stable in the alkaline conditions of phloem sap. Small concentrations of oxidized glutathione and oxidized phytochelatin were found in xylem exudate, where there was also no evidence of As(III)-thiol complexes. MMA(V) was partially reduced to MMA(III) in roots, but only MMA(V) was found in xylem and phloem exudate. Despite the smallest uptake among the four As species supplied to plants, dimethylarsinic acid was most efficiently transported in both xylem and phloem, and its phloem concentration was 3.2 times that in xylem. Our results show that free inorganic As, mainly As(III), was transported in the phloem of castor bean exposed to either As(V) or As(III), and that methylated As species were more mobile than inorganic As in the phloem.

  5. Stem Xylem Characterization for Vitis Drought Tolerance.

    Science.gov (United States)

    Rustioni, Laura; Ciacciulli, Angelo; Grossi, Daniele; Brancadoro, Lucio; Failla, Osvaldo

    2016-07-06

    Together with stomatal conductance and root conductivity, the stem water reserve and transport systems could be regulatory mechanisms able to participate in the regulation of the plant water status. Lianas, such as Vitis spp., minimize the trunk support role, and stems have evolved to improve their ability in water transport. In this work, stems of 10 different Vitis species were studied in relation to their expected drought tolerance using reflectance spectroscopy. Spectra were measured before (T0) and after coloration with Sudan IV dye. The T0 spectral signature showed characteristic species features. The partial least squares (PLS) regression and the self-organizing map (SOM) neural network analysis were able to predict the expected drought tolerance score; thus, reflectance spectroscopy was demonstrated to be a useful technique for drought tolerance phenotyping. These methods could be applied for the preliminary selection of new rootstocks/cultivars. Wood composition variation appeared to be correlated with the water stress susceptibility. To clarify this relationship, the attention was focused on the wood hydrophobicity. Sudan IV is a microscopy dye traditionally used to underline suberin, waxes, and, in general, hydrophobic substances. Differences between rough and colored spectra evidenced the absorption band of Sudan IV with a maximum at 539 nm. The coloration intensity was used to develop a hydrophobicity index. The obtained values were correlated with the expected drought tolerance score. Therefore, hydrophobic compounds seem to play an important role in water use efficiency, and an hydrophobic barrier in the xylem tissue appears to be a protective mechanism against water stress.

  6. Classifying Taiwan Lianas with Radiating Plates of Xylem

    Directory of Open Access Journals (Sweden)

    Sheng-Zehn Yang

    2015-12-01

    Full Text Available Radiating plates of xylem are a lianas cambium variation, of which, 22 families have this feature. This study investigates 15 liana species representing nine families with radiating plates of xylem structures. The features of the transverse section and epidermis in fresh liana samples are documented, including shapes and colors of xylem and phloem, ray width and numbers, and skin morphology. Experimental results indicated that the shape of phloem fibers in Ampelopsis brevipedunculata var. hancei is gradually tapered and flame-like, which is in contrast with the other characteristics of this type, including those classified as rays. Both inner and outer cylinders of vascular bundles are found in Piper kwashoense, and the irregularly inner cylinder persists yet gradually diminishes. Red crystals are numerous in the cortex of Celastrus kusanoi. Aristolochia shimadai and A. zollingeriana develop a combination of two cambium variants, radiating plates of xylem and a lobed xylem. The shape of phloem in Stauntonia obovatifoliola is square or truncate, and its rays are numerous. Meanwhile, that of Neoalsomitra integrifolia is blunt and its rays are fewer. As for the features of a stem surface within the same family, Cyclea ochiaiana is brownish in color and has a deep vertical depression with lenticels, Pericampylus glaucus is greenish in color with a vertical shallow depression. Within the same genus, Aristolochia shimadai develops lenticels, which are not in A. zollingeriana; although the periderm developed in Clematis grata is a ring bark and tears easily, that of Clematis tamura is thick and soft.

  7. Use of DNA sequencing to detect pathogenic, saprotrophic, and stain fungi in sapwood of declining red pine (Pinus resinosa) in the Upper Midwest

    Science.gov (United States)

    M.T. Banik; D.L. Lindner; J. Juzwik; J.A. Glaeser

    2013-01-01

    An inexpensive kit was developed to collect wood samples for molecular detection of pathogenic, saprotrophic and stain fungi in declining Pinus resinosa in the Upper Midwest. The kit contained materials for "clean" collection of sapwood drill shavings, which were then subjected to PCR of the rDNA ITS region with fungal-specific primers,...

  8. Use of Nested and Real-Time PCR for the Detection of Ceratocystis fagacearum in the Sapwood of Diseased Oak Species in Minnesota

    Science.gov (United States)

    A. Yang; J. Juzwik

    2017-01-01

    Oak wilt caused by Ceratocystis fagacearum is a significant disease of Quercus spp. in the eastern United States. Early and accurate detection of the pathogen is particularly important when disease control is planned. Nested and real-time polymerase chain reaction (PCR) methods utilizing fungal DNA extracted from sapwood drill...

  9. Branch xylem density variations across the Amazon Basin

    Directory of Open Access Journals (Sweden)

    S. Patiño

    2009-04-01

    Full Text Available Xylem density is a physical property of wood that varies between individuals, species and environments. It reflects the physiological strategies of trees that lead to growth, survival and reproduction. Measurements of branch xylem density, ρx, were made for 1653 trees representing 598 species, sampled from 87 sites across the Amazon basin. Measured values ranged from 218 kg m−3 for a Cordia sagotii (Boraginaceae from Mountagne de Tortue, French Guiana to 1130 kg m−3 for an Aiouea sp. (Lauraceae from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average ρx across regions and sampled plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that species identity (family, genera and species accounted for 33% with environment (geographic location and plot accounting for an additional 26%; the remaining "residual" variance accounted for 41% of the total variance. Variations in plot means, were, however, not only accountable by differences in species composition because xylem density of the most widely distributed species in our dataset varied systematically from plot to plot. Thus, as well as having a genetic component, branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing in a predictable manner. Within the analysed taxa, exceptions to this general rule seem to be pioneer species belonging for example to the Urticaceae whose branch xylem density is more constrained than most species sampled in this study. These patterns of variation of branch xylem density across Amazonia suggest a large functional diversity amongst Amazonian trees which is not well understood.

  10. 78 FR 77649 - Notification of Proposed Production Activity, Xylem Water Systems USA LLC, Subzone 37D...

    Science.gov (United States)

    2013-12-24

    ... Foreign-Trade Zones Board Notification of Proposed Production Activity, Xylem Water Systems USA LLC, Subzone 37D, (Centrifugal, Submersible Pumps and Related Components), Auburn, New York Xylem Water Systems USA LLC (Xylem), operator of Subzone 37D, submitted a notification of proposed production activity to...

  11. More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport.

    Science.gov (United States)

    Nardini, Andrea; Salleo, Sebastiano; Jansen, Steven

    2011-10-01

    Major restrictions to the hydraulic conductance of xylem (K(XYL)) in vascular plants have traditionally been attributed to anatomical constraints. More recently, changes in the cationic concentration of xylem sap have been suggested to be responsible for short-term changes in K(XYL) based on data for 35 dicot species, and very few gymnosperms and ferns, indicating that xylem water transport may no longer be considered as an entirely passive process. Recent studies have revealed that this so-called ionic effect: (i) varies from little or no increase to >30%, (ii) is species specific, (iii) changes on a seasonal basis, (iv) depends on the cationic concentration, (v) is enhanced in embolized stems, and (vi) is positively correlated with vessel grouping. Furthermore, the ionic effect has been suggested to play functional roles in planta with respect to: (i) phloem-mediated control of xylem hydraulic properties, (ii) compensation of cavitation-induced loss of hydraulic conductance, with the result of optimizing light and water utilization, and (iii) differential regulation of water delivery to branches exposed to different levels of light. Pits are likely to play a key role in the ionic effect, which has largely been explained as a consequence of the poly-electrolytic nature and hydrogel properties of the pectic matrix of interconduit pit membranes, despite little evidence that pit membrane pectins remain present after cell hydrolysis. More research is needed to address the ionic effect in more species, physico-chemical properties of pit membranes, and how the ionic effect may increase xylem hydraulic conductance 'on demand'.

  12. Mixed xylem and phloem sap ingestion in sheath-feeders as normal dietary behavior: Evidence from the leafhopper Scaphoideus titanus.

    Science.gov (United States)

    Chuche, Julien; Sauvion, Nicolas; Thiéry, Denis

    2017-10-01

    In phytophagous piercing-sucking insects, salivary sheath-feeding species are often described as xylem- or phloem-sap feeding specialists. Because these two food sources have very different characteristics, two feeding tactics are often associated with this supposed specialization. Studying the feeding behavior of insects provides substantial information on their biology, ecology, and evolution. Furthermore, study of feeding behavior is of primary importance to elucidate the transmission ability of insects that act as vectors of plant pathogens. In this study, we compared the durations of ingestion performed in xylem versus phloem by a leafhopper species, Scaphoideus titanus Ball, 1932. This was done by characterizing and statistically analyzing electrical signals recorded using the electropenetrography technique, derived from the feeding behaviors of males and females. We identified three groups of S. titanus based on their feeding behavior: 1) a group that reached the phloem quickly and probed for a longer time in phloem tissue than the other groups, 2) a group that reached the xylem quickly and probed for a longer time in xylem tissue than the other groups, and 3) a group where individuals did not ingest much sap. In addition, the numbers and durations of waveforms representing ingestion of xylem and phloem saps differed significantly depending on the sex of the leafhopper, indicating that the two sexes exhibit different feeding behaviors. Males had longer phloem ingestion events than did females, which indicates that males are greater phloem feeders than females. These differences are discussed, specifically in relation to hypotheses about evolution of sap feeding and phytoplasma transmission from plant to plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Transport of glutamine into the xylem of sunflower (Helianthus annuus).

    NARCIS (Netherlands)

    Findenegg, G.R.; Plaisier, W.; Posthumus, M.A.; Melger, W.C.

    1990-01-01

    Sunflower (Helianthus annuus L.) plants were grown on nutrient solution with ammonium nitrogen. After 12 days of growth the ammonium in the nutrient solution was labeled with N (99%). Three hours later glutamine-N in the xylem exudate was labeled for 56% as shown by GC-MS; this percentage increased

  14. Maximum sustainable xylem sap tensions in Rhododendron and other species.

    Science.gov (United States)

    Crombie, D S; Milburn, J A; Hipkins, M F

    1985-01-01

    The acoustic technique was used in conjunction with the pressure chamber to determine the tensions causing cavitation of xylem sap in leaves of five woody angiosperms (Acer pseudoplatanus L., Alnus glutinosa L. Gaertn., Eucalyptus globulus Labill., Fraxinus excelsior L. and Rhododendron ponticum L.) and three species of herbs (Lycopersicum esculentum Mill., Plantago major L. and Ricinus communis L.). The results showed leaves of most species to suffer considerably from cavitation at sap tensions of 1.6-3 MPa. Two of the herbs, Lycopersicum and Ricinus, cavitated extensively at sap tensions below 1 MPa. Additional evidence is presented that clicks, detected by acoustic amplification, are caused by cavitation of sap in the xylem conduits. A rapid method is suggested for the determination of sap tensions in cavitating leaves and which is suitable for surveys of the critical sap tension in a large number of species.

  15. Xylem embolism alleviated by ion-mediated increase in hydraulic conductivity of functional xylem: insights from field measurements.

    Science.gov (United States)

    Trifilò, Patrizia; Lo Gullo, Maria A; Salleo, Sebastiano; Callea, Katia; Nardini, Andrea

    2008-10-01

    Recent studies have shown that, in some species, xylem hydraulic conductivity (K(h)) increases with increasing cation concentration of xylem sap. Evidence indicates that K(h) increases as a result of the de-swelling of pit membrane pectins caused by cation neutralization of polygalacturonanes. We tested whether this ionic effect partly compensates for the embolism-induced loss of stem hydraulic conductivity (PLC) by increasing K(h) of functioning conduits. We report changes in PLC, leaf water status and potassium concentration ([K(+)]) of xylem sap measured in April and July in two evergreens (Ceratonia siliqua L. and Phytolacca dioica L.) and one deciduous tree (Platanus orientalis L.) growing in the field in Sicily. In summer, Ceratonia siliqua and Phytolacca dioica showed similar native embolism (PLC = 30-40%) and [K(+)] of xylem sap (14 to 17 mM), and K(h) of stems perfused with 10 to 25 mM KCl increased by 15 to 18% compared with K(h) of stems perfused with a low concentration of a multi-ionic solution. In contrast, native [K(+)] of sap of Platanus orientalis was 50% of that in the two evergreens in summer, with a parallel lack of detectable changes in PLC that was below 10% in both spring and summer. The ionic effect was PLC-dependent: the enhancement of K(h) induced by 10 to 25 mM KCl changed from 15% for fully hydrated stems to 50-75% for stems with PLC = 50%. In Ceratonia siliqua, PLC was less than 10% in spring and about 40% in summer; concurrently, xylem sap [K(+)] increased from 3 to about 15 mM. This [K(+)] at the recorded PLC would cause an increase in residual K(h) of about 30%. Hence, the actual reduction in water transport capacity of Ceratonia siliqua stems in summer is about 20%. Similar calculations for Phytolacca dioica suggest that the actual loss of hydraulic conductivity in stems of this species in summer would be only about 10%, and not 30% as suggested by hydraulic measurements performed in the laboratory. We conclude that an increase in

  16. How Does Leaf Anatomy Influence Water Transport outside the Xylem?

    Science.gov (United States)

    Buckley, Thomas N; John, Grace P; Scoffoni, Christine; Sack, Lawren

    2015-08-01

    Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function.

  17. A novel system for xylem cell differentiation in Arabidopsis thaliana.

    Science.gov (United States)

    Kondo, Yuki; Fujita, Takashi; Sugiyama, Munetaka; Fukuda, Hiroo

    2015-04-01

    During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular development in detail. Here, we establish a novel in vitro experimental system in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDR(pro):GUS and TDR(pro):YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF (tracheary element differentiation inhibitory factor) indicates that the key signaling TDIF-TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with analysis using the rich material resources for Arabidopsis including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  18. Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Virag, Istvan [L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Cseh, Edit; Fodor, Ferenc [L. Eoetvoes University, Department of Plant Physiology, Budapest (Hungary); Zaray, Gyula [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary)

    2005-10-01

    Flow injection analysis (FIA) and high-performance liquid chromatography double-focusing sector field inductively coupled plasma mass spectrometry (HPLC-DF-ICP-MS) were used for total arsenic determination and arsenic speciation of xylem sap of cucumber plants (Cucumis sativus L.) grown in hydroponics containing 2 {mu}mol dm{sup -3} arsenate or arsenite, respectively. Arsenite [As(III)], arsenate [As(V)] and dimethylarsinic acid (DMA) were identified in the sap of the plants. Arsenite was the predominant arsenic species in the xylem saps regardless of the type of arsenic treatment, and the following concentration order was determined: As(III) > As(V) > DMA. The amount of total As, calculated taking into consideration the mass of xylem sap collected, was almost equal for both treatments. Arsenite was taken up more easily by cucumber than arsenate. Partial oxidation of arsenite to arsenate (<10% in 48 h) was observed in the case of arsenite-containing nutrient solutions, which may explain the detection of arsenate in the saps of plants treated with arsenite. (orig.)

  19. Persistent Supercooling of Reproductive Shoots Is Enabled by Structural Ice Barriers Being Active Despite an Intact Xylem Connection

    Science.gov (United States)

    Pfaller, Kristian; Wagner, Johanna

    2016-01-01

    Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris. PMID:27632365

  20. Spring bud growth depends on sugar delivery by xylem and water recirculation by phloem Münch flow in Juglans regia.

    Science.gov (United States)

    Tixier, Aude; Sperling, Or; Orozco, Jessica; Lampinen, Bruce; Amico Roxas, Adele; Saa, Sebastian; Earles, J Mason; Zwieniecki, Maciej A

    2017-05-09

    During spring, bud growth relies on long-distance transport of remotely stored carbohydrates. A new hypothesis suggests this transport is achieved by the interplay of xylem and phloem. During the spring, carbohydrate demand of developing buds often exceeds locally available storage, thus requiring the translocation of sugars from distant locations like limbs, stems and roots. Both the phloem and xylem have the capacity for such long-distance transport, but their functional contribution is unclear. To address this ambiguity, the spatial and temporal dynamics of carbohydrate availability in extension shoots of Juglans regia L. were analyzed. A significant loss of extension shoot carbohydrates in remote locations was observed while carbohydrate availability near the buds remained unaffected. This pattern of depletion of carbohydrate reserves supports the notion of long-distance translocation. Girdling and dye perfusion experiments were performed to assess the role of phloem and xylem in the transport of carbohydrate and water towards the buds. Girdling caused a decrease in non-structural carbohydrate concentration above the point of girdling and an unexpected concurrent increase in water content associated with impeded xylem transport. Based on experimental observations and modeling, we propose a novel mechanism for maintenance of spring carbohydrate translocation in trees where xylem transports carbohydrates and this transport is maintained with the recirculation of water by phloem Münch flow. Phloem Münch flow acts as a pump for generating water flux in xylem and allows for transport and mobilization of sugars from distal locations prior to leaves photosynthetic independence and in the absence of transpiration.

  1. Loss of water transport capacity due to xylem cavitation in roots of two CAM succulents.

    Science.gov (United States)

    Linton, M J; Nobel, P S

    1999-11-01

    Loss of axial hydraulic conductance as a result of xylem cavitation was examined for roots of the Crassulacean acid metabolism (CAM) succulents Agave deserti and Opuntia ficus-indica. Vulnerability to cavitation was not correlated with either root size or vessel diameter. Agave deserti had a mean cavitation pressure of -0.93 ± 0.08 MPa by both an air-injection and a centrifugal method compared to -0.70 ± 0.02 MPa by the centrifugal method for O. ficus-indica, reflecting the greater tolerance of the former species to low water potentials in its native habitat. Substantial xylem cavitation would occur at a soil water potential of -0.25 MPa, resulting in a predicted 22% loss of conductance for A. deserti and 32% for O. ficus-indica. For an extended drought of 3 mo, further cavitation could cause a 69% loss of conductance for A. deserti and 62% for O. ficus-indica. A model of axial hydraulic flow based upon the cavitation response of these species predicted that water uptake rates are far below the maximum possible, owing to the high root water potentials of these desert succulents. Despite various shoot adaptations to aridity, roots of A. deserti and O. ficus-indica are highly vulnerable to cavitation, which partially limits water uptake in a wet soil but helps reduce water loss to a drying soil.

  2. A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential.

    Science.gov (United States)

    Pompon, Julien; Quiring, Dan; Goyer, Claudia; Giordanengo, Philippe; Pelletier, Yvan

    2011-09-01

    Phloem-sap feeders (Hemiptera) occasionally consume the dilute sap of xylem, a behaviour that has previously been associated with replenishing water balance following dehydration. However, a recent study reported that non-dehydrated aphids ingested xylem sap. Here, we tested the hypothesis that the consumption of xylem sap, which has a low osmolality, is a general response to osmotic stresses other than dehydration. Alate aphids were subjected to different treatments and subsequently transferred onto a plant, where electrical penetration graph (EPG) was used to estimate durations of passive phloem sap consumption and active sucking of xylem sap. The proportion of time aphids fed on xylem sap (i.e., time spent feeding on xylem sap/total time spent feeding on phloem plus xylem sap) was used as a proxy of the solute concentration of the uptake. The proportion of time alate aphids fed on xylem sap increased: (1) with the time spent imbibing an artificial diet containing a solution of sucrose, which is highly concentrated in phloem sap and is mainly responsible for the high osmotic potential of phloem sap; (2) with the osmotic potential of the artificial diet, when osmotic potential excess was not related to sucrose concentration; and (3) when aphids were deprived of primary symbionts, a condition previously shown to lead to a higher haemolymph osmotic potential. All our results converge to support the hypothesis that xylem sap consumption contributes to the regulation of the osmotic potential in phloem-sap feeders.

  3. RADIAL PATTERNS OF CARBON ISOTOPES IN THE XYLEM EXTRACTIVES AND CELLULOSE OF DOUGLAS-FIR

    Science.gov (United States)

    Heartwood extractives (nonstructural wood components) are believed to be formed from a combination of compounds present in the adjacent sapwood and materials imported from the phloem. The roles of local compounds and imported material in heartwood formation could have important i...

  4. Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa.

    Science.gov (United States)

    Yang, X H; Li, X G; Li, B L; Zhang, D Q

    2014-11-11

    Wood formation occurs via cell division, primary cell wall and secondary wall formation, and programmed cell death in the vascular cambium. Transcriptional profiling of secondary xylem differentiation is essential for understanding the molecular mechanisms underlying wood formation. Differential gene expression in secondary xylem differentiation of Populus has been previously investigated using cDNA microarray analysis. However, little is known about the molecular mechanisms from a genome-wide perspective. In this study, the Affymetrix poplar genome chips containing 61,413 probes were used to investigate the changes in the transcriptome during secondary xylem differentiation in Chinese white poplar (Populus tomentosa). Two xylem tissues (newly formed and lignified) were sampled for genome-wide transcriptional profiling. In total, 6843 genes (~11%) were identified with differential expression in the two xylem tissues. Many genes involved in cell division, primary wall modification, and cellulose synthesis were preferentially expressed in the newly formed xylem. In contrast, many genes, including 4-coumarate:cinnamate-4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and caffeoyl CoA 3-O-methyltransferase (CCoAOMT), associated with lignin biosynthesis were more transcribed in the lignified xylem. The two xylem tissues also showed differential expression of genes related to various hormones; thus, the secondary xylem differentiation could be regulated by hormone signaling. Furthermore, many transcription factor genes were preferentially expressed in the lignified xylem, suggesting that wood lignification involves extensive transcription regulation. The genome-wide transcriptional profiling of secondary xylem differentiation could provide additional insights into the molecular basis of wood formation in poplar species.

  5. Wound-induced and bacteria-induced xylem blockage in roses, Astilbe and Viburnum

    NARCIS (Netherlands)

    Loubaud, M.; Doorn, van W.G.

    2004-01-01

    We previously concluded that the xylem blockage that prevents water uptake into several cut flowers is mainly due to the presence of bacteria, whilst in chrysanthemum and Bouvardia we observed a xylem occlusion that was mainly due to a wound-reaction of the plant. We have further tested which of the

  6. Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root.

    Science.gov (United States)

    Sibout, Richard; Plantegenet, Stéphanie; Hardtke, Christian S

    2008-03-25

    In dicotyledons, biomass predominantly represents cell-wall material of xylem, which is formed during the genetically poorly characterized secondary growth of the vasculature. In Arabidopsis hypocotyls, initially proportional secondary growth of all tissues is followed by a phase of xylem expansion and fiber differentiation. The factors that control this transition are unknown. We observed natural variation in Arabidopsis hypocotyl secondary growth and its coordination with root secondary growth. Quantitative trait loci (QTL) analyses of a recombinant inbred line (RIL) population demonstrated separate genetic control of developmentally synchronized secondary-growth parameters. However, major QTL for xylem expansion and fiber differentiation correlated tightly and coincided with major flowering time QTL. Correlation between xylem expansion and flowering was confirmed in another RIL population and also found across Arabidopsis accessions. Gene-expression analyses suggest that xylem expansion is initiated after flowering induction but before inflorescence emergence. Consistent with this idea, transient activation of an inducer of flowering at the rosette stage promoted xylem expansion. Although the shoot was needed to trigger xylem expansion and can control it in a graft-transmissible fashion, the inflorescence stem was not required to sustain it. Collectively, our results suggest that flowering induction is the condition for xylem expansion in hypocotyl and root secondary growth.

  7. High temporal resolution tracing of xylem CO2 transport in oak trees

    Science.gov (United States)

    Bloemen, Jasper; Ingrisch, Johannes; Bahn, Michael

    2016-04-01

    Carbon (C) allocation defines the flows of C between plant organs and their storage pools and metabolic processes and is therefore considered as an important determinant of forest C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported via the phloem to above- and belowground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, root- and aboveground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a C flux of large magnitude whose role in C allocation yet is unresolved. In this study, we infused 13C labeled water into the stem base of five year old potted oak (Quercus rubra) trees as a surrogate for respired CO2 to investigate the role of respired CO2 transport in trees in C allocation. We used high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux combined with stem gas probes to monitor the transport of 13C label. The high enrichment of the gas probes in the stem at the bottom of the canopy showed that the label was transported upwards from the base of the tree toward the top. During its ascent, the 13C label was removed from the transpiration stream and lost to the atmosphere at stem level, as was observed using the stem CO2 efflux laser-based measurements. This study is the first to show results from tracing xylem CO2 transport in trees at high temporal resolution using a 13C labeling approach. Moreover, they extend results from previous studies on internal CO2 transport in species with high transpiration rates like poplar to species with lower transpiration rates like oak. Internal transport of CO2 indicates that the current concepts of the tree C allocation need to be revisited, as they show that current gas exchange approach to estimating above- and belowground autotrophic respiration is inadequate.

  8. Hypergravity Stimulus Enhances Primary Xylem Development and Decreases Mechanical Properties of Secondary Cell Walls in Inflorescence Stems of Arabidopsis thaliana

    OpenAIRE

    NAKABAYASHI, IZUMI; Karahara, Ichirou; Tamaoki, Daisuke; Masuda, Kyojiro; Wakasugi, Tatsuya; Yamada, Kyoji; Soga, Kouichi; Hoson, Takayuki; Kamisaka, Seiichiro

    2006-01-01

    • Background and Aims The xylem plays an important role in strengthening plant bodies. Past studies on xylem formation in tension woods in poplar and also in clinorotated Prunus tree stems lead to the suggestion that changes in the gravitational conditions affect morphology and mechanical properties of xylem vessels. The aim of this study was to examine effects of hypergravity stimulus on morphology and development of primary xylem vessels and on mechanical properties of isolated secondary wa...

  9. Nitrogen Under- and Over-supply Induces Distinct Protein Responses in Maize Xylem Sap

    Institute of Scientific and Technical Information of China (English)

    Chengsong Liao; Renyi Liu; Fusuo Zhang; Chunjian Li; Xuexian Li

    2012-01-01

    Xylem sap primarily transports water and mineral nutrients such as nitrogen (N) from roots to shoots in vascular plants.However,it remains largely unknown how nitrogenous compounds,especially proteins in xylem sap,respond to N under- or over-supply.We found that reducing N supply increased amino-N percentage of total N in maize (Zea mays L.) xylem sap.Proteomic analysis showed that 23 proteins in the xylem sap of maize plants,including 12 newly identified ones,differentially accumulated in response to various N supplies.Fifteen of these 23 proteins were primarily involved in general abiotic or biotic stress responses,whereas the other five proteins appeared to respond largely to N under- or over-supply,suggesting distinct protein responses in maize xylem upon N under- and over-supply.Furthermore,one putative xylanase inhibitor and two putative O-glycosyl hydrolases had preferential gene expression in shoots.

  10. A model of bubble growth leading to xylem conduit embolism.

    Science.gov (United States)

    Hölttä, T; Vesala, T; Nikinmaa, E

    2007-11-01

    The dynamics of a gas bubble inside a water conduit after a cavitation event was modeled. A distinction was made between a typical angiosperm conduit with a homogeneous pit membrane and a typical gymnosperm conduit with a torus-margo pit membrane structure. For conduits with torus-margo type pits pit membrane deflection was also modeled and pit aspiration, the displacement of the pit membrane to the low pressure side of the pit chamber, was found to be possible while the emboli was still small. Concurrent with pit aspiration, the high resistance to water flow out of the conduit through the cell walls or aspirated pits will make the embolism process slow. In case of no pit aspiration and always for conduits with homogeneous pit membranes, embolism growth is more rapid but still much slower than bubble growth in bulk water under similar water tension. The time needed for the embolism to fill a whole conduit was found to be dependent on pit and cell wall conductance, conduit radius, xylem water tension, pressure rise in adjacent conduits due to water freed from the embolising conduit, and the rigidity and structure of the pits in the case of margo-torus type pit membrane. The water pressure in the conduit hosting the bubble was found to occur almost immediately after bubble induction inside a conduit, creating a sudden tension release in the conduit, which can be detected by acoustic and ultra-acoustic monitoring of xylem cavitation.

  11. Ultrasonic emissions during ice nucleation and propagation in plant xylem.

    Science.gov (United States)

    Charrier, Guillaume; Pramsohler, Manuel; Charra-Vaskou, Katline; Saudreau, Marc; Améglio, Thierry; Neuner, Gilbert; Mayr, Stefan

    2015-08-01

    Ultrasonic acoustic emission analysis enables nondestructive monitoring of damage in dehydrating or freezing plant xylem. We studied acoustic emissions (AE) in freezing stems during ice nucleation and propagation, by combining acoustic and infrared thermography techniques and controlling the ice nucleation point. Ultrasonic activity in freezing samples of Picea abies showed two distinct phases: the first on ice nucleation and propagation (up to 50 AE s(-1) ; reversely proportional to the distance to ice nucleation point), and the second (up to 2.5 AE s(-1) ) after dissipation of the exothermal heat. Identical patterns were observed in other conifer and angiosperm species. The complex AE patterns are explained by the low water potential of ice at the ice-liquid interface, which induced numerous and strong signals. Ice propagation velocities were estimated via AE (during the first phase) and infrared thermography. Acoustic activity ceased before the second phase probably because the exothermal heating and the volume expansion of ice caused decreasing tensions. Results indicate cavitation events at the ice front leading to AE. Ultrasonic emission analysis enabled new insights into the complex process of xylem freezing and might be used to monitor ice propagation in natura.

  12. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses.

    Science.gov (United States)

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2017-08-25

    The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary

  13. The Ca2+-dependent DNases are Involved in Secondary Xylem Development in Eucommia ulmoides

    Institute of Scientific and Technical Information of China (English)

    Hui-Min Chen; Yu Pang; Jun Zeng; Qi Ding; Shen-Yi Yin; Chao Liu; Meng-Zhu Lu; Ke-Ming Cui; Xin-Qiang He

    2012-01-01

    Secondary xylem development has long been recognized as a typical case of programmed cell death (PCD) in plants.During PCD,the degradation of genomic DNA is catalyzed by endonucleases.However,to date,no endonuclease has been shown to participate in secondary xylem development.Two novel Ca2+-dependent DNase genes,EuCaN1 and EuCaN2,were identified from the differentiating secondary xylem of the tree Eucommia ulmoides Oliv.,their functions were studied by DNase activity assay,in situ hybridization,protein immunolocalization and virus-induced gene silencing experiments.Full-length cDNAs of EuCaN1 and EuCaN2 contained an open reading frame of 987 bp,encoding two proteins of 328amino acids with SNase-like functional domains.The genomic DNA sequence for EuCaN1 had no introns,while EuCaN2 had 8 introns.EuCaN1 and EuCaN2 digested ssDNA and dsDNA with Ca2+-dependence at neutral pH.Their expression was confined to differentiating secondary xylem cells and the proteins were localized in the nucleus.Their activity dynamics was closely correlated with secondary xylem development.Secondary xylem cell differentiation is influenced by RNAi of endonuclease genes.The results provide evidence that the Ca2+-dependent DNases are involved in secondary xylem development.

  14. Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes.

    Science.gov (United States)

    Wan, Juan; Cabanillas, Daniel Garcia; Zheng, Huanquan; Laliberté, Jean-François

    2015-04-01

    Plant viruses move systemically in plants through the phloem. They move as virions or as ribonucleic protein complexes, although it is not clear what these complexes are made of. The approximately 10-kb RNA genome of Turnip mosaic virus (TuMV) encodes a membrane protein, known as 6K2, that induces endomembrane rearrangements for the formation of viral replication factories. These factories take the form of vesicles that contain viral RNA (vRNA) and viral replication proteins. In this study, we report the presence of 6K2-tagged vesicles containing vRNA and the vRNA-dependent RNA polymerase in phloem sieve elements and in xylem vessels. Transmission electron microscopy observations showed the presence in the xylem vessels of vRNA-containing vesicles that were associated with viral particles. Stem-girdling experiments, which leave xylem vessels intact but destroy the surrounding tissues, confirmed that TuMV could establish a systemic infection of the plant by going through xylem vessels. Phloem sieve elements and xylem vessels from Potato virus X-infected plants also contained lipid-associated nonencapsidated vRNA, indicating that the presence of membrane-associated ribonucleic protein complexes in the phloem and xylem may not be limited to TuMV. Collectively, these studies indicate that viral replication factories could end up in the phloem and the xylem. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Turnip mosaic virus Moves Systemically through Both Phloem and Xylem as Membrane-Associated Complexes1

    Science.gov (United States)

    Zheng, Huanquan

    2015-01-01

    Plant viruses move systemically in plants through the phloem. They move as virions or as ribonucleic protein complexes, although it is not clear what these complexes are made of. The approximately 10-kb RNA genome of Turnip mosaic virus (TuMV) encodes a membrane protein, known as 6K2, that induces endomembrane rearrangements for the formation of viral replication factories. These factories take the form of vesicles that contain viral RNA (vRNA) and viral replication proteins. In this study, we report the presence of 6K2-tagged vesicles containing vRNA and the vRNA-dependent RNA polymerase in phloem sieve elements and in xylem vessels. Transmission electron microscopy observations showed the presence in the xylem vessels of vRNA-containing vesicles that were associated with viral particles. Stem-girdling experiments, which leave xylem vessels intact but destroy the surrounding tissues, confirmed that TuMV could establish a systemic infection of the plant by going through xylem vessels. Phloem sieve elements and xylem vessels from Potato virus X-infected plants also contained lipid-associated nonencapsidated vRNA, indicating that the presence of membrane-associated ribonucleic protein complexes in the phloem and xylem may not be limited to TuMV. Collectively, these studies indicate that viral replication factories could end up in the phloem and the xylem. PMID:25717035

  16. A xylem sap retrieval pathway in rice leaf blades: evidence of a role for endocytosis?

    Science.gov (United States)

    Botha, C E J; Aoki, N; Scofield, G N; Liu, L; Furbank, R T; White, R G

    2008-01-01

    The structure and transport properties of pit membranes at the interface between the metaxylem and xylem parenchyma cells and the possible role of these pit membranes in solute transfer to the phloem were investigated. Electron microscopy revealed a fibrillar, almost tubular matrix within the pit membrane structure between the xylem vessels and xylem parenchyma of leaf blade bundles in rice (Oryza sativa). These pits are involved primarily with regulating water flux to the surrounding xylem parenchyma cells. Vascular parenchyma cells contain large mitochondrial populations, numerous dictyosomes, endomembrane complexes, and vesicles in close proximity to the pit membrane. Taken collectively, this suggests that endocytosis may occur at this interface. A weak solution of 5,6-carboxyfluorescein diacetate (5,6-CFDA) was applied to cut ends of leaves and, after a minimum of 30 min, the distribution of the fluorescent cleavage product, 5,6-carboxyfluorescein (5,6-CF), was observed using confocal microscopy. Cleavage of 5,6-CFDA occurred within the xylem parenchyma cells, and the non-polar 5,6-CF was then symplasmically transported to other parenchyma elements and ultimately, via numerous pore plasmodesmata, to adjacent thick-walled sieve tubes. Application of Lucifer Yellow, and, separately, Texas Red-labelled dextran (10 kDa) to the transpiration stream, confirmed that these membrane-impermeant probes could only have been offloaded from the xylem via the xylem vessel-xylem parenchyma pit membranes, suggesting endocytotic transmembrane transfer of these membrane-impermeant fluorophores. Accumulation within the thick-walled sieve tubes, but not in thin-walled sieve tubes, confirms the presence of a symplasmic phloem loading pathway, via pore plasmodesmata between xylem parenchyma and thick-walled sieve tubes, but not thin-walled sieve tubes.

  17. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).

    Science.gov (United States)

    Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C

    2011-05-01

    The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.

  18. Ultrasonic emissions from conifer xylem exposed to repeated freezing.

    Science.gov (United States)

    Mayr, Stefan; Zublasing, Verena

    2010-01-01

    Ultrasonic emission measurements enable the analysis of xylem cavitation induced by drought and freeze-thaw events. Several studies have indicated that ultrasonic acoustic emissions (UAE) in conifers occur upon freezing and not upon thawing, although classical theory has postulated gas bubble formation during freezing and cavitation during thawing. We analyzed the pattern and quality of freeze-thaw-induced UAE in seven conifers (Abies alba, Larix decidua, Juniperus communis, Picea abies, Pinus cembra, Pinus mugo, Pinus sylvestris). Axes samples dehydrated to different water potentials were exposed to repeated frost cycles. The number, amplitude and energy of UAE signals were registered and related to water potential, temperature course and wood characteristics (wood density, tracheid diameter). For P. abies, ultrasonic emission analysis was also performed on bark samples, xylem samples without bark, as well as on stems of young potted trees. In all conifers, UAE were registered in water-stressed samples but not in saturated or dehydrated samples. No signals were emitted by the bark of P. abies. Ultrasonic activity occurred only upon freezing, and identical patterns were observed in axes samples and stems of potted P. abies trees. A weak positive relationship between tracheid diameter and UAE energy was observed, indicating wide tracheids to emit signals with higher energy. The classical bubble formation hypothesis cannot sufficiently explain the occurrence of UAE during freezing and upon repeated temperature cycles, as demonstrated in this study. We suggest that the low water potential of ice induces air-seeding near the ice-water interface, and consequently, causes UAE.

  19. Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress

    Directory of Open Access Journals (Sweden)

    Zijing ePu

    2016-02-01

    Full Text Available Fusarium oxysporum f. sp. conlutinans (Foc is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change >=2 fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and ten of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  20. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J.; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions. PMID:26870056

  1. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl.

    Science.gov (United States)

    Zhao, Chengsong; Craig, Johanna C; Petzold, H Earl; Dickerman, Allan W; Beers, Eric P

    2005-06-01

    The growth of secondary xylem and phloem depends on the division of cells in the vascular cambium and results in an increase in the diameter of the root and stem. Very little is known about the genetic mechanisms that control cambial activity and the differentiation of secondary xylem and phloem cell types. To begin to identify new genes required for vascular cell differentiation and function, we performed genome-wide expression profiling of xylem and phloem-cambium isolated from the root-hypocotyl of Arabidopsis (Arabidopsis thaliana). Gene expression in the remaining nonvascular tissue was also profiled. From these transcript profiles, we assembled three sets of genes with expression significantly biased toward xylem, phloem-cambium, or nonvascular tissue. We also assembled three two-tissue sets of genes with expression significantly biased toward xylem/phloem-cambium, xylem/nonvascular, or phloem-cambium/nonvascular tissues. Localizations predicted by transcript profiles were supported by results from promoter-reporter and reverse transcription-polymerase chain reaction experiments with nine xylem- or phloem-cambium-biased genes. An analysis of the members of the phloem-cambium gene set suggested that some genes involved in regulating primary meristems are also regulators of the cambium. Secondary phloem was implicated in the synthesis of auxin, glucosinolates, cytokinin, and gibberellic acid. Transcript profiles also supported the importance of class III HD ZIP and KANADI transcription factors as regulators of radial patterning during secondary growth, and identified several members of the G2-like, NAC, AP2, MADS, and MYB transcription factor families that may play roles as regulators of xylem or phloem cell differentiation and activity.

  2. Transport and coordination in the coupled soil-root-xylem-phloem leaf system

    Science.gov (United States)

    Huang, C. W.; Katul, G. G.; Pockman, W.; Litvak, M. E.; Domec, J. C.; Palmroth, S.

    2016-12-01

    In response to varying environmental conditions, stomatal pores act as biological valves that dynamically adjust their size thereby determining the rate of CO2 assimilation and water loss (i.e., transpiration) to the dry atmosphere. Although the significance of this biotic control on gas exchange is rarely disputed, representing parsimoniously all the underlying mechanisms responsible for stomatal kinetics remain a subject of some debate. It has been conjectured that stomatal control in seed plants (i.e., angiosperm and gymnosperm) represents a compromise between biochemical demand for CO2 and prevention of excessive water loss. This view has been amended at the whole-plant level, where xylem hydraulics and sucrose transport efficiency in phloem appear to impose additional constraints on gas exchange. If such additional constraints impact stomatal opening and closure, then seed plants may have evolved coordinated photosynthetic-hydraulic-sugar transporting machinery that confers some competitive advantages in fluctuating environmental conditions. Thus, a stomatal optimization model that explicitly considers xylem hydraulics and maximum sucrose transport is developed to explore this coordination in the leaf-xylem-phloem system. The model is then applied to progressive drought conditions. The main findings from the model calculations are that (1) the predicted stomatal conductance from the conventional stomatal optimization theory at the leaf and the newly proposed models converge, suggesting a tight coordination in the leaf-xylem-phloem system; (2) stomatal control is mainly limited by the water supply function of the soil-xylem hydraulic system especially when the water flux through the transpiration stream is significantly larger than water exchange between xylem and phloem; (3) thus, xylem limitation imposed on the supply function can be used to differentiate species with different water use strategy across the spectrum of isohydric to anisohydric behavior

  3. Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers

    OpenAIRE

    Gruber, A.; PIRKEBNER, D.; Oberhuber, W.

    2013-01-01

    Recent studies on non-structural carbohydrate (NSC) reserves in trees focused on xylem NSC reserves, while still little is known about changes in phloem carbohydrate pools, where NSC charging might be significantly different. To gain insight on NSC dynamics in xylem and phloem, we monitored NSC concentrations in stems and roots of Pinus cembra and Larix decidua growing at the alpine timberline throughout 2011. Species-specific differences affected tree phenology and carbon allocation in the c...

  4. Scaling of xylem and phloem transport capacity and resource usage with tree size

    OpenAIRE

    Hölttä, Teemu; Kurppa, Miika; Nikinmaa, Eero

    2013-01-01

    Xylem and phloem need to maintain steady transport rates of water and carbohydrates to match the exchange rates of these compounds at the leaves. A major proportion of the carbon and nitrogen assimilated by a tree is allocated to the construction and maintenance of the xylem and phloem long distance transport tissues. This proportion can be expected to increase with increasing tree size due to the growing transport distances between the assimilating tissues, i.e., leaves and fine roots, at th...

  5. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress.

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  6. The hydraulic conductivity of the xylem in conifer needles (Picea abies and Pinus mugo).

    Science.gov (United States)

    Charra-Vaskou, Katline; Mayr, Stefan

    2011-08-01

    Main resistances of the plant water transport system are situated in leaves. In contrast to angiosperm leaves, knowledge of conifer needle hydraulics and of the partitioning of resistances within needles is poor. A new technique was developed which enabled flow-meter measurements through needles embedded in paraffin and thus quantification of the specific hydraulic conductivity (K(s)) of the needle xylem. In Picea abies, xylem K(s) of needle and axes as well as in needles of different age were compared. In Pinus mugo, resistance partitioning within needles was estimated by measurements of xylem K(s) and leaf conductance (K(leaf), measured via 'rehydration kinetics'). Mean K(s) in P. abies needles was 3.5×10(-4) m(2) s(-1) MPa(-1) with a decrease in older needles, and over all similar to K(s) of corresponding axes xylem. In needles of P. mugo, K(s) was 0.9×10(-4) m(2) s(-1) MPa(-1), and 24% of total needle resistance was situated in the xylem. The results indicate species-specific differences in the hydraulic efficiency of conifer needle xylem. The vascular section of the water transport system is a minor but relevant resistance in needles.

  7. Identification and characterization of Arabidopsis thaliana genes involved in xylem secondary cell walls.

    Science.gov (United States)

    Yokoyama, Ryusuke; Nishitani, Kazuhiko

    2006-05-01

    The xylem of higher plants offers support to aerial portions of the plant body and serves as conduit for the translocation of water and nutrients. Terminal differentiation of xylem cells typically involves deposition of thick secondary cell walls. This is a dynamic cellular process accompanied by enhanced rates of cellulose deposition and the induction of synthesis of specific secondary-wall matrix polysaccharides and lignin. The secondary cell wall is essential for the function of conductive and supportive xylem tissues. Recently, significant progress has been made in identifying the genes responsible for xylem secondary cell wall formation. However, our present knowledge is still insufficient to account for the molecular processes by which this complex system operates. To acquire further information about xylem secondary cell walls, we initially focused our research effort on a set of genes specifically implicated in secondary cell wall formation, as well as on loss-of-function mutants. Results from two microarray screens identified several key candidate genes responsible for secondary cell wall formation. Reverse genetic analyses led to the identification of a glycine-rich protein involved in maintaining the stable structure of protoxylem, which is essential for the transport of water and nutrients. A combination of expression analyses and reverse genetics allows us to systematically identify new genes required for the development of physical properties of the xylem secondary wall.

  8. Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions

    Directory of Open Access Journals (Sweden)

    Cho Un-Haing

    2009-09-01

    Full Text Available Abstract Background Plant systemic signaling characterized by the long distance transport of molecules across plant organs involves the xylem and phloem conduits. Root-microbe interactions generate systemic signals that are transported to aerial organs via the xylem sap. We analyzed the xylem sap proteome of soybean seedlings in response to pathogenic and symbiotic interactions to identify systemic signaling proteins and other differentially expressed proteins. Results We observed the increase of a serine protease and peroxidase in the xylem sap in response to Phytophthora sojae elicitor treatment. The high molecular weight fraction of soybean xylem sap was found to promote the growth of Neurospora crassa in vitro at lower concentrations and inhibit growth at higher concentrations. Sap from soybean plants treated with a P. sojae elicitor had a significantly higher inhibitory effect than sap from control soybean plants. When soybean seedlings were inoculated with the symbiont Bradyrhizobium japonicum, the abundance of a xyloglucan transendoglycosyl transferase protein increased in the xylem sap. However, RNAi-mediated silencing of the corresponding gene did not significantly affect nodulation in soybean hairy root composite plants. Conclusion Our study identified a number of sap proteins from soybean that are differentially induced in response to B. japonicum and P. sojae elicitor treatments and a majority of them were secreted proteins.

  9. Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers.

    Science.gov (United States)

    Gruber, A; Pirkebner, D; Oberhuber, W

    2013-10-01

    Recent studies on non-structural carbohydrate (NSC) reserves in trees focused on xylem NSC reserves, while still little is known about changes in phloem carbohydrate pools, where NSC charging might be significantly different. To gain insight on NSC dynamics in xylem and phloem, we monitored NSC concentrations in stems and roots of Pinus cembra (L.) and Larix decidua (Mill.) growing at the alpine timberline throughout 2011. Species-specific differences affected tree phenology and carbon allocation during the course of the year. After a delayed start in spring, NSC concentrations in L. decidua were significantly higher in all sampled tissues from August until the end of growing season. In both species, NSC concentrations were five to seven times higher in phloem than that in xylem. However, significant correlations between xylem and phloem starch content found for both species indicate a close linkage between long-term carbon reserves in both tissues. In L. decidua also, free sugar concentrations in xylem and phloem were significantly correlated throughout the year, while a lack of correlation between xylem and phloem free sugar pools in P. cembra indicate a decline of phloem soluble carbohydrate pools during periods of high sink demand.

  10. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis.

    Science.gov (United States)

    Peuke, Andreas D

    2010-03-01

    Within the last two decades, a series of papers have dealt with the effects of nutrition and nutrient deficiency, as well as salt stress, on the long-distance transport and partitioning of nutrients in castor bean. Flows in xylem and phloem were modelled according to an empirically-based modelling technique that permits additional quantification of the uptake and incorporation into plant organs. In the present paper these data were statistically re-evaluated, and new correlations are presented. Numerous relationships between different compartments and transport processes for single elements, but also between elements, were detected. These correlations revealed different selectivities for ions in bulk net transport. Generally, increasing chemical concentration gradients for mineral nutrients from the rhizosphere to the root and from the xylem to leaf tissue were observed, while such gradients decreased from root tissue to the xylem and from leaves to the phloem. These studies showed that, for the partitioning of nutrients within a plant, the correlated interactions of uptake, xylem and phloem flow, as well as loading and unloading of solutes from transport systems, are of central importance. For essential nutrients, tight correlations between uptake, xylem and phloem flow, and the resulting partitioning of elements, were observed, which allows the stating of general models. For non-essential ions like Na(+) or Cl(-), a statistically significant dependence of xylem transport on uptake was not detected. The central role of the phloem for adjusting, but also signalling, of nutrition status is discussed, since strong correlations between leaf nutrient concentrations and those in phloem saps were observed. In addition, negative correlations between phloem sap sugar concentration and net-photosynthesis, growth, and uptake of nutrients were demonstrated. The question remains whether this is only a consequence of an insufficient use of carbohydrates in plants or a

  11. Proteomic analysis during ontogenesis of secondary xylem in maritime pine.

    Science.gov (United States)

    Garcés, Marcelo; Le Provost, Grégoire; Lalanne, Céline; Claverol, Stéphane; Barré, Aurélien; Plomion, Christophe; Herrera, Raul

    2014-11-01

    Secondary xylem (wood) is formed through an intricate biological process that results in a highly variable final product. Studies have focused on understanding the molecular events for wood formation in conifers. In this process environmental, ontogenic and genetic factors influence variation in wood characteristics, including anatomical, chemical and physical properties. The main objective of this study was to analyse the ageing (ontogenic) effect on protein accumulation in wood-forming tissues along a cambial age (CA) gradient, ranging from juvenile wood (JW) sampled at the top of the tree, to mature wood (MW) sampled at the bottom of the tree. A total of 62 proteins whose accumulation varied by at least 1.5-fold according to CA were selected and identified by ESI-MS/MS; 30 of these were more abundant in MW and 32 were more abundant in JW. Consistent with earlier findings, our results show that JW is a tissue characterized by a high energy demand with the accumulation of gene products involved in energy, protein fate and cellular transport, while proteins identified in MW (heat shock response, oxygen and radical detoxification, and the S-adenosyl methionine cycle) support the idea that this tissue undergoes extended cell-wall thickening and a delay of programmed cell death.

  12. Laser Capture Microdissection Protocol for Xylem Tissues of Woody Plants

    Science.gov (United States)

    Blokhina, Olga; Valerio, Concetta; Sokołowska, Katarzyna; Zhao, Lei; Kärkönen, Anna; Niittylä, Totte; Fagerstedt, Kurt

    2017-01-01

    Laser capture microdissection (LCM) enables precise dissection and collection of individual cell types from complex tissues. When applied to plant cells, and especially to woody tissues, LCM requires extensive optimization to overcome such factors as rigid cell walls, large central vacuoles, intercellular spaces, and technical issues with thickness and flatness of the sections. Here we present an optimized protocol for the laser-assisted microdissection of developing xylem from mature trees: a gymnosperm (Norway spruce, Picea abies) and an angiosperm (aspen, Populus tremula) tree. Different cell types of spruce and aspen wood (i.e., ray cells, tracheary elements, and fibers) were successfully microdissected from tangential, cross and radial cryosections of the current year’s growth ring. Two approaches were applied to achieve satisfactory flatness and anatomical integrity of the spruce and aspen specimens. The commonly used membrane slides were ineffective as a mounting surface for the wood cryosections. Instead, in the present protocol we use glass slides, and introduce a glass slide sandwich assembly for the preparation of aspen sections. To ascertain that not only the anatomical integrity of the plant tissue, but also the molecular features were not compromised during the whole LCM procedure, good quality total RNA could be extracted from the microdissected cells. This showed the efficiency of the protocol and established that our methodology can be integrated in transcriptome analyses to elucidate cell-specific molecular events regulating wood formation in trees. PMID:28101088

  13. Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia.

    Science.gov (United States)

    Arneth, A.; Kelliher, F. M.; Bauer, G.; Hollinger, D. Y.; Byers, J. N.; Hunt, J. E.; McSeveny, T. M.; Ziegler, W.; Vygodskaya, N. N.; Milukova, I.; Sogachov, A.; Varlagin, A.; Schulze, E.-D.

    1996-01-01

    Xylem sap flow and environmental variables were measured on seven consecutive midsummer days in a 130-year-old Larix gmelinii (Rupr.) Rupr. forest located 160 km south of Yakutsk in eastern Siberia, Russia (61 degrees N, 128 degrees E, 300 m asl). The site received 20 mm of rainfall during the 4 days before measurements, and soil samples indicated that the trees were well watered. The tree canopy was sparse with a one-sided leaf area index of 1.5 and a tree density of 1760 ha(-1). On a clear day when air temperature ranged from 9 to 29 degrees C, and maximum air saturation deficit was 3.4 kPa, daily xylem sap flux (F) among 13 trees varied by an order of magnitude from 7 l day(-1) for subcanopy trees (representing 55% of trees in the forest) to 67 l day(-1) for emergent trees (representing 18% of trees in the forest). However, when based on xylem sap flux density (F'), calculated by dividing F by projected tree crown area (a surrogate for the occupied ground area), there was only a fourfold range in variability among the 13 trees, from 1.0 to 4.4 mm day(-1). The calculation of F' also eliminated systematic and large differences in F among emergent, canopy and subcanopy trees. Stand-level F', estimated by combining half-hourly linear relationships between F and stem cross-sectional area with tree size distribution data, ranged between 1.8 +/- 0.4 (standard deviation) and 2.3 +/- 0.6 mm day(-1). These stand-level F' values are about 0.6-0.7 mm day(-1) (30%) larger than daily tree canopy transpiration rates calculated from forest energy balance and understory evaporation measurements. Maximum total tree conductance for water vapor transfer (G(tmax), including canopy and aerodynamic conductances), calculated from the ratio of F' and the above-canopy air saturation deficit (D) for the eight trees with continuous data sets, was 9.9 +/- 2.8 mm s(-1). This is equivalent to a leaf-scale maximum stomatal conductance (g(smax)) of 6.1 mm s(-1), when expressed on a one

  14. Arsenic Speciation in Phloem and Xylem Exudates of Castor Bean[C][W

    Science.gov (United States)

    Ye, Wen-Ling; Wood, B. Alan; Stroud, Jacqueline L.; Andralojc, P. John; Raab, Andrea; McGrath, Steve P.; Feldmann, Jörg; Zhao, Fang-Jie

    2010-01-01

    How arsenic (As) is transported in phloem remains unknown. To help answer this question, we quantified the chemical species of As in phloem and xylem exudates of castor bean (Ricinus communis) exposed to arsenate [As(V)], arsenite [As(III)], monomethylarsonic acid [MMA(V)], or dimethylarsinic acid. In the As(V)- and As(III)-exposed plants, As(V) was the main species in xylem exudate (55%–83%) whereas As(III) predominated in phloem exudate (70%–94%). The ratio of As concentrations in phloem to xylem exudate varied from 0.7 to 3.9. Analyses of phloem exudate using high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray mass spectrometry coupled to high-performance liquid chromatography identified high concentrations of reduced and oxidized glutathione and some oxidized phytochelatin, but no As(III)-thiol complexes. It is thought that As(III)-thiol complexes would not be stable in the alkaline conditions of phloem sap. Small concentrations of oxidized glutathione and oxidized phytochelatin were found in xylem exudate, where there was also no evidence of As(III)-thiol complexes. MMA(V) was partially reduced to MMA(III) in roots, but only MMA(V) was found in xylem and phloem exudate. Despite the smallest uptake among the four As species supplied to plants, dimethylarsinic acid was most efficiently transported in both xylem and phloem, and its phloem concentration was 3.2 times that in xylem. Our results show that free inorganic As, mainly As(III), was transported in the phloem of castor bean exposed to either As(V) or As(III), and that methylated As species were more mobile than inorganic As in the phloem. PMID:20870777

  15. Overexpression and cosuppression of xylem-related genes in an early xylem differentiation stage-specific manner by the AtTED4 promoter.

    Science.gov (United States)

    Endo, Satoshi; Iwamoto, Kuninori; Fukuda, Hiroo

    2017-06-30

    Tissue-specific overexpression of useful genes, which we can design according to their cause-and-effect relationships, often gives valuable gain-of-function phenotypes. To develop genetic tools in woody biomass engineering, we produced a collection of Arabidopsis lines that possess chimeric genes of a promoter of an early xylem differentiation stage-specific gene, Arabidopsis Tracheary Element Differentiation-related 4 (AtTED4) and late xylem development-associated genes, many of which are uncharacterized. The AtTED4 promoter directed the expected expression of transgenes in developing vascular tissues from young to mature stage. Of T2 lines examined, 42%, 49% and 9% were judged as lines with the nonrepeat type insertion, the simple repeat type insertion and the other repeat type insertion of transgenes. In 174 T3 lines, overexpression lines were confirmed for 37 genes, whereas only cosuppression lines were produced for eight genes. The AtTED4 promoter activity was high enough to overexpress a wide range of genes over wild-type expression levels, even though the wild-type expression is much higher than AtTED4 expression for several genes. As a typical example, we investigated phenotypes of pAtTED4::At5g60490 plants, in which both overexpression and cosuppression lines were included. Overexpression but not cosuppression lines showed accelerated xylem development, suggesting the positive role of At5g60490 in xylem development. Taken together, this study provides valuable results about behaviours of various genes expressed under an early xylem-specific promoter and about usefulness of their lines as genetic tools in woody biomass engineering. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. First finding of a dual-meaning X wave for phloem and xylem fluid ingestion: Characterization of Scaphoideus titanus (Hemiptera: Cicadellidae) EPG waveforms.

    Science.gov (United States)

    Chuche, Julien; Backus, Elaine A; Thiéry, Denis; Sauvion, Nicolas

    2017-10-01

    The leafhopper Scaphoideus titanus (Hemiptera: Cicadomorpha: Cicadellidae), an invasive deltocephaline species introduced into Europe from North America, is the vector of the most important phytoplasma disease in European viticulture, flavescence dorée. In this first electropenetrography (EPG) study of S. titanus, we characterized its feeding waveforms and defined their biological meanings. Four typical waveform phases (pathway, X wave, sustained ingestion, and interruption) and four families within those phases (A, B, C, and N) were characterized using DC EPG technology. We proposed biological meanings for these waveforms based on excreta pH-ingestion correlations, presence of X waves, and comparison with previous AC, DC, and AC-DC EPG waveforms conducted on Cicadomorpha. We observed that sustained (i.e., >10min) ingestion by a deltocephaline leafhopper can occur from both xylem and phloem vascular cells. Waveform C2x represented ingestion of xylem fluid, and two waveforms represented behaviors when stylets were inserted into phloem sieve elements: C2p variant 1 (C2p-1), which may represent salivation (perhaps simultaneous with ingestion), and C2p variant 2 (C2p-2), which represented active ingestion. Furthermore, we found that the EPG-recorded X wave has a dual meaning by occurring prior to sustained ingestion from either phloem or xylem. This X wave was very similar in appearance to the model X wave of sharpshooters, an entirely different leafhopper subfamily, Cicadellinae. All cicadellines are obligate xylem-ingesters. Such a "dual-meaning X wave" will provide insights into how the feeding tactics of S. titanus relate to other sheath-feeding hemipterans, and will provide support for future research to clarify the role of this leafhopper as a vector of plant pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions

    Directory of Open Access Journals (Sweden)

    Jozica eGricar

    2015-09-01

    Full Text Available There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce (Picea abies (L. H. Karst. from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

  18. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants

    Directory of Open Access Journals (Sweden)

    Craig eBrodersen

    2013-04-01

    Full Text Available Maintenance of long distance water transport in xylem is essential to plant health and productivity. Both biotic and abiotic environmental conditions lead to embolism formation within the xylem resulting in lost transport capacity and ultimately death. Plants exhibit a variety of strategies to either prevent or restore hydraulic capacity through cavitation resistance with specialized anatomy, replacement of compromised conduits with new growth, and a metabolically active embolism repair mechanism. In recent years, mounting evidence suggests that metabolically active cells surrounding the xylem conduits in some, but not all, species are capable of restoring hydraulic conductivity. This review summarizes our current understanding of the osmotically driven embolism repair mechanism, the known genetic and anatomical components related to embolism repair, rehydration pathways through the xylem, and the role of capacitance. Anatomical differences between functional plant groups may be one of the limiting factors that allow some plants to refill while others do not, but further investigations are necessary to fully understand this dynamic process. Finally, xylem networks should no longer be considered an assemblage of dead, empty conduits, but instead a metabolically active tissue finely tuned to respond to ever changing environmental cues.

  19. Threats to xylem hydraulic function of trees under 'new climate normal' conditions.

    Science.gov (United States)

    Zwieniecki, Maciej A; Secchi, Francesca

    2015-09-01

    Climate models predict increases in frequency and intensity of extreme environmental conditions, such as changes to minimum and maximum temperatures, duration of drought periods, intensity of rainfall/snowfall events and wind strength. These local extremes, rather than average climatic conditions, are closely linked to woody plant survival, as trees cope with such events over long lifespans. While the xylem provides trees with structural strength and is considered the most robust part of a tree's structure, it is also the most physiologically vulnerable as tree survival depends on its ability to sustain water supply to the tree crown under variable environmental conditions. Many structural, functional and biological tree properties evolved to protect xylem from loss of transport function because of embolism or to restore xylem transport capacity following embolism formation. How 'the new climate normal' conditions will affect these evolved strategies is yet to be seen. Our understanding of xylem physiology and current conceptual models describing embolism formation and plant recovery from water stress, however, can provide insight into near-future challenges that woody plants will face. In addition, knowledge of species-specific properties of xylem function may help guide mitigation of climate change impacts on woody plants in natural and agricultural tree communities.

  20. [Investigation on correlation between ratio of xylem to phloem of Radix Isatidis and efficacy, chemical composition].

    Science.gov (United States)

    Yan, Dan; Han, Yu-mei; Luo, Jiao-yang; Yan, Yan; Zhang, Ping; Zhang, Shao-feng; Xiao, Xiao-he

    2011-01-01

    Explore contribution of ratio of xylem to phloem(RXP) to evaluate the quality of Radix Isatidis. Antivirus activity and chemical compositions of xylem, phloem and Radix Isatidis of different RXP were determined by RBC agglutination test and unique chromatogram. Meanwhile, correlation between RXP and bioactivity,components was investigated. the activity of medical material of Radix Isatidis whose RXP was 1:2 or 1:1 is equal to that of phloem sample, while is stronger than that of cylem sample. There was a good consistency among the chemical figureprints of three samples (Radix Isatidis, xylem and phloem). When the RXP was 2:1, the medical material of Radix Isatidi and its xylem had the same activity. But the activity of phloem was not obvious. Their consistency of chemical fingerprint was bad, and the activity of Radix Isatidis which had RXP of 1:2 or 1:1 was better than that formed by xylem and phloem of 2:1. The Radix Isatidis of RXP of 1:2 or 1:1 had less similarity of chemical figureprint with that having RXP of 2:1. The quality of Radix Isatidis made up by the various RXP had significant difference. Radix Isatidis whose RXP is less than 1:1 had good quality and better activity. As a characteristic parameter of biologic morpha, the RXP can be applied to identifying the quality of Radix Isatidis, and also provided a reference to evaluation of other medical material of roots.

  1. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions.

    Science.gov (United States)

    Gričar, Jožica; Prislan, Peter; de Luis, Martin; Gryc, Vladimír; Hacurová, Jana; Vavrčík, Hanuš; Čufar, Katarina

    2015-01-01

    There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate-radial growth relationships of Norway spruce [Picea abies (L.) H. Karst.] from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932-2010, and cell characteristics in xylem and phloem increments formed in the years 2009-2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

  2. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem.

    Science.gov (United States)

    Keller, Markus; Zhang, Yun; Shrestha, Pradeep M; Biondi, Marco; Bondada, Bhaskar R

    2015-06-01

    We tested the common assumption that fleshy fruits become dependent on phloem water supply because xylem inflow declines at the onset of ripening. Using two distinct grape genotypes exposed to drought stress, we found that a sink-driven rise in phloem inflow at the beginning of ripening was sufficient to reverse drought-induced berry shrinkage. Rewatering accelerated berry growth and sugar accumulation concurrently with leaf photosynthetic recovery. Interrupting phloem flow through the peduncle prevented the increase in berry growth after rewatering, but interrupting xylem flow did not. Nevertheless, xylem flow in ripening berries, but not berry size, remained responsive to root or shoot pressurization. A mass balance analysis on ripening berries sampled in the field suggested that phloem water inflow may exceed growth and transpiration water demands. Collecting apoplastic sap from ripening berries showed that osmotic pressure increased at distinct rates in berry vacuoles and apoplast. Our results indicate that the decrease in xylem inflow at the onset of ripening may be a consequence of the sink-driven increase in phloem inflow. We propose a conceptual model in which surplus phloem water bypasses the fruit cells and partly evaporates from the berry surface and partly moves apoplastically to the xylem for outflow. © 2014 John Wiley & Sons Ltd.

  3. Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation.

    Science.gov (United States)

    Sevanto, Sanna; Hölttä, Teemu; Holbrook, N Michele

    2011-04-01

    Measurements of diurnal diameter variations of the xylem and phloem are a promising tool for studying plant hydraulics and xylem-phloem interactions in field conditions. However, both the theoretical framework and the experimental verification needed to interpret phloem diameter data are incomplete. In this study, we analytically evaluate the effects of changing the radial conductance between the xylem and the phloem on phloem diameter variations and test the theory using simple manipulation experiments. Our results show that phloem diameter variations are mainly caused by changes in the radial flow rate of water between the xylem and the phloem. Reducing the hydraulic conductance between these tissues decreases the amplitude of phloem diameter variation and increases the time lag between xylem and phloem diameter variation in a predictable manner. Variation in the amplitude and timing of diameter variations that cannot be explained by changes in the hydraulic conductance, could be related to changes in the osmotic concentration in the phloem. © 2011 Blackwell Publishing Ltd.

  4. The vulnerability to freezing-induced xylem cavitation of Larrea tridentata (Zygophyllaceae) in the Chihuahuan desert.

    Science.gov (United States)

    Martínez-Vilalta, Jordi; Pockman, William T

    2002-12-01

    The temperature dependence of freezing-induced xylem cavitation was studied in a Chihuahuan desert population of Larrea tridentata (Zygophyllaceae). Field measurements of wood temperature and xylem embolism were combined with anatomical studies and laboratory measurements of embolism in stem and root samples frozen under controlled conditions. Our laboratory experiments corroborated the previously observed relationship between minimum freezing temperature and embolism. The area of the low-temperature exotherms produced during the freezing treatments was correlated with the resulting embolism, suggesting that the freezing of water inside parenchyma cells is associated with the occurrence of xylem embolism. In the laboratory experiments, embolism in stems increased only at temperatures below -14°C. Although this meant that the studied population was more resistant to freezing-induced xylem embolism than a previously studied population from the Sonoran desert, the impact of freezing was nevertheless greater because of much lower environmental temperatures. This result suggests that dieback associated with periodic extreme freezes may contribute to limiting the present distribution of L. tridentata in central New Mexico. Although laboratory experiments showed that root xylem embolism increased after freezing to less negative minimum temperatures than stems (significant effects at T = -7°C), root embolism in the field was lower than shoot embolism in accordance with measured soil temperatures throughout the study.

  5. Analysis of xylem formation in pine by cDNA sequencing

    Science.gov (United States)

    Allona, I.; Quinn, M.; Shoop, E.; Swope, K.; St Cyr, S.; Carlis, J.; Riedl, J.; Retzel, E.; Campbell, M. M.; Sederoff, R.; hide

    1998-01-01

    Secondary xylem (wood) formation is likely to involve some genes expressed rarely or not at all in herbaceous plants. Moreover, environmental and developmental stimuli influence secondary xylem differentiation, producing morphological and chemical changes in wood. To increase our understanding of xylem formation, and to provide material for comparative analysis of gymnosperm and angiosperm sequences, ESTs were obtained from immature xylem of loblolly pine (Pinus taeda L.). A total of 1,097 single-pass sequences were obtained from 5' ends of cDNAs made from gravistimulated tissue from bent trees. Cluster analysis detected 107 groups of similar sequences, ranging in size from 2 to 20 sequences. A total of 361 sequences fell into these groups, whereas 736 sequences were unique. About 55% of the pine EST sequences show similarity to previously described sequences in public databases. About 10% of the recognized genes encode factors involved in cell wall formation. Sequences similar to cell wall proteins, most known lignin biosynthetic enzymes, and several enzymes of carbohydrate metabolism were found. A number of putative regulatory proteins also are represented. Expression patterns of several of these genes were studied in various tissues and organs of pine. Sequencing novel genes expressed during xylem formation will provide a powerful means of identifying mechanisms controlling this important differentiation pathway.

  6. Drought-Induced Changes in Xylem Sap pH,ABA and Stomatal Conductance

    Institute of Scientific and Technical Information of China (English)

    GUO Xiu-lin; LIU Zi-hui; Razzaq; LI Guang-min

    2004-01-01

    Upstream signals potentially regulating evaporation and stomatal conductance were investigated using 6-8-leaf-old maize(Zea may L.)seedlings which were grown in a greenhouse.Pressure chamber was used to measure leaf water potential and to collect xylem sap.The pH of xylem sap in stems was higher than that in root,and the abscisic acid(ABA)concentration in stems was the highest in well-watered seedlings.The ABA concentration and pH of xylem sap in roots,stems and leaves increased,and the ABA concentration in leaves reached the maximum during drought stress.The treatment of roots with exogenous ABA solution(100 μmol L-1)increased xylem sap ABA concentration in all organs measured,and induced stomatal closure,but did not change ABA distribution among organs of maize seedlings.The combined effects of external pH buffer on pH,ABA of xylem sap and stomatal behavior indicated that pH,as a root-source signal to leaves under drought stress,regulated stomatal closure through accumulating ABA in leaves or guard cells.

  7. Dieldrin-dissolving abilities of the xylem saps of several plant families, particularly Cucurbita pepo L.

    Science.gov (United States)

    Murano, Hirotatsu; Otani, Takashi; Seike, Nobuyasu

    2010-10-01

    The uptake ability of hydrophobic organic chemicals by plants and the nature of xylem sap of the plants were studied. The plants were grown in soil contaminated with dieldrin. High amounts of dieldrin were detected in the shoots of Cucurbita pepo and Cucumis sativus, but little was seen in the shoots of Brassica oleracea var. italica, Solanum lycopersicum, Glycine max, Zea mays, and Helianthus annuus. The xylem saps of C. pepo and C. sativus leached dieldrin adsorbed on C8 granules, but those of the other plants did not. The xylem saps of C. pepo and C. sativus eluted high amounts of dieldrin from the size-exclusion chromatography column near the fractions of RNase A (13.7 kDa) after Aprotinin (6.5 kDa), which has a larger molecular weight than dieldrin (381). The enhancement of dieldrin solubility by xylem sap was reduced by proteinase and heating. It was suspected that the protein-like materials in the xylem sap delivered dieldrin from the roots to the shoots. Environ. Toxicol. Chem. 2010;29:2269-2277. © 2010 SETAC.

  8. Genome-wide transcriptome analysis of Clavibacter michiganensis subsp. michiganensis grown in xylem mimicking medium.

    Science.gov (United States)

    Hiery, Eva; Adam, Susanne; Reid, Stephen; Hofmann, Jörg; Sonnewald, Sophia; Burkovski, Andreas

    2013-12-01

    The interaction between Clavibacter michiganensis subsp. michiganensis with its host, the tomato plant (Solanum lycopersicum), is poorly understood and only few virulence factors are known. While studying of the bacteria in planta is time-consuming and difficult, the analysis in vitro would facilitate research. Therefore, a xylem mimicking medium (XMM) for C. michiganensis subsp. michiganensis was established in this study based on an apoplast medium for Xanthomonas campestris pv. vesicatoria. In contrast to the apoplast medium, XMM contains no sugars, but amino acids which serve as nitrogen and carbon source. As a result, growth in XMM induced transcriptional changes of genes encoding putative sugar, amino acid and iron uptake systems. In summary, mRNA levels of about 8% of all C. michiganensis subsp. michiganensis genes were changed when XMM-grown bacteria were compared to M9 minimal medium-grown cells. Almost no transcriptional changes of genes encoding hydrolytic enzymes were detected, leading to the idea that XMM reflects the situation in the beginning of infection and therefore allows the characterization of virulence factors in this early stage of infection. The addition of the plant wound substance acetosyringone to the XMM medium led to a change in transcript amount, including genes coding for proteins involved in protein transport, iron uptake and regulation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora.

    Science.gov (United States)

    Koczan, Jessica M; Lenneman, Bryan R; McGrath, Molly J; Sundin, George W

    2011-10-01

    Biofilm formation plays a critical role in the pathogenesis of Erwinia amylovora and the systemic invasion of plant hosts. The functional role of the exopolysaccharides amylovoran and levan in pathogenesis and biofilm formation has been evaluated. However, the role of biofilm formation, independent of exopolysaccharide production, in pathogenesis and movement within plants has not been studied previously. Evaluation of the role of attachment in E. amylovora biofilm formation and virulence was examined through the analysis of deletion mutants lacking genes encoding structures postulated to function in attachment to surfaces or in cellular aggregation. The genes and gene clusters studied were selected based on in silico analyses. Microscopic analyses and quantitative assays demonstrated that attachment structures such as fimbriae and pili are involved in the attachment of E. amylovora to surfaces and are necessary for the production of mature biofilms. A time course assay indicated that type I fimbriae function earlier in attachment, while type IV pilus structures appear to function later in attachment. Our results indicate that multiple attachment structures are needed for mature biofilm formation and full virulence and that biofilm formation facilitates entry and is necessary for the buildup of large populations of E. amylovora cells in xylem tissue.

  10. 檀香心材和边材的精油含量及成分差异%Variations of essential oil content and composition between heartwood and sapwood of Indian sandalwood

    Institute of Scientific and Technical Information of China (English)

    刘小金; 徐大平; 杨曾奖; 张宁南; 陈仁利; 林明平

    2015-01-01

    Heartwood of sandalwood is the main source of natural perfumes and important materials for traditional Chinese medicine . It generally takes a long time to form fragrant heartwood in sandalwood, and the international market is in short supply, while its sapwood has not been used yet.In order to utilize sandalwood resources comprehensively, variations of essential oil content and composition between heartwood and sapwood from Indian sandalwood ( Santalum album ) were studied through diethyl ether extraction and gas chromatography-mass spectrometry ( GC-MS) using wood samples from 21-year-old sandal plantations in Jianfengling, Hainan Island, China.The results showed that essential oil content in heartwood was significantly higher than that in sapwood (P<0.001), the mean oil contents in heartwood and sapwood were 4.44% and 1.33%, respectively.Contents ofα-santalol,β-santalol and total santalol in heartwood were 46.95%, 24.23% and 75.97% in average, which significantly higher than those in sapwood.Oil quality in heartwood accorded with the international standard for trade, while in sapwood, oil quality did not reached the standard.Nevertheless, alkanes, aldehydes, unsaturated acids as well as major ingredients of sandalwood essential oil were detected in sapwood, which could also be utilized.These findings can not only be helpful to improve understanding composition changes during heartwood formation of sandalwood, but also provide evidences for further utilization of sapwood resources of this species.%檀香心材是国际公认的天然高级香料的主要来源,亦是中国传统中药的重要原料。檀香心材的形成较为缓慢,资源奇缺,而其边材尚未加以利用。为了更好地开发利用檀香资源,实现高效利用,以21年生檀香木材为研究对象,采用乙醚浸提法分别提取了其边材和心材的精油,并应用气相色谱—质谱联用仪( GC-MS)对其组分及含量进行了对比分析。结果表明

  11. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    Science.gov (United States)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  12. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  13. Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in Quercus suber L.

    Science.gov (United States)

    Lourenço, Ana; Rencoret, Jorge; Chemetova, Catarina; Gominho, Jorge; Gutiérrez, Ana; del Río, José C.; Pereira, Helena

    2016-01-01

    The composition and structure of lignin in different tissues—phellem (cork), phloem and xylem (wood)—of Quercus suber was studied. Whole cell walls and their respective isolated milled lignins were analyzed by pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) and derivatization followed by reductive cleavage (DFRC). Different tissues presented varied p-hydroxyphenyl:guaiacyl:syringyl (H:G:S) lignin compositions. Whereas lignin from cork has a G-rich lignin (H:G:S molar ratio 2:85:13), lignin from phloem presents more S-units (H:G:S molar ratio of 1:58:41) and lignin from xylem is slightly enriched in S-lignin (H:G:S molar ratio 1:45:55). These differences were reflected in the relative abundances of the different interunit linkages. Alkyl-aryl ethers (β–O–4′) were predominant, increasing from 68% in cork, to 71% in phloem and 77% in xylem, as consequence of the enrichment in S-lignin units. Cork lignin was enriched in condensed structures such as phenylcoumarans (β-5′, 20%), dibenzodioxocins (5–5′, 5%), as corresponds to a lignin enriched in G-units. In comparison, lignin from phloem and xylem presented lower levels of condensed linkages. The lignin from cork was highly acetylated at the γ-OH of the side-chain (48% lignin acetylation), predominantly over G-units; while the lignins from phloem and xylem were barely acetylated and this occurred mainly over S-units. These results are a first time overview of the lignin structure in xylem, phloem (generated by cambium), and in cork (generated by phellogen), in agreement with literature that reports that lignin biosynthesis is flexible and cell specific. PMID:27833631

  14. Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in Quercus suber L.

    Science.gov (United States)

    Lourenço, Ana; Rencoret, Jorge; Chemetova, Catarina; Gominho, Jorge; Gutiérrez, Ana; Del Río, José C; Pereira, Helena

    2016-01-01

    The composition and structure of lignin in different tissues-phellem (cork), phloem and xylem (wood)-of Quercus suber was studied. Whole cell walls and their respective isolated milled lignins were analyzed by pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) and derivatization followed by reductive cleavage (DFRC). Different tissues presented varied p-hydroxyphenyl:guaiacyl:syringyl (H:G:S) lignin compositions. Whereas lignin from cork has a G-rich lignin (H:G:S molar ratio 2:85:13), lignin from phloem presents more S-units (H:G:S molar ratio of 1:58:41) and lignin from xylem is slightly enriched in S-lignin (H:G:S molar ratio 1:45:55). These differences were reflected in the relative abundances of the different interunit linkages. Alkyl-aryl ethers (β-O-4') were predominant, increasing from 68% in cork, to 71% in phloem and 77% in xylem, as consequence of the enrichment in S-lignin units. Cork lignin was enriched in condensed structures such as phenylcoumarans (β-5', 20%), dibenzodioxocins (5-5', 5%), as corresponds to a lignin enriched in G-units. In comparison, lignin from phloem and xylem presented lower levels of condensed linkages. The lignin from cork was highly acetylated at the γ-OH of the side-chain (48% lignin acetylation), predominantly over G-units; while the lignins from phloem and xylem were barely acetylated and this occurred mainly over S-units. These results are a first time overview of the lignin structure in xylem, phloem (generated by cambium), and in cork (generated by phellogen), in agreement with literature that reports that lignin biosynthesis is flexible and cell specific.

  15. Lignin composition and structure differs between xylem, phloem and phellem in Quercus suber L.

    Directory of Open Access Journals (Sweden)

    Ana Lourenço

    2016-10-01

    Full Text Available The composition and structure of lignin in different tissues - phellem (cork, phloem and xylem (wood - of Quercus suber was studied. Whole cell walls and their respective isolated milled lignins were analyzed by pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS, two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR and derivatization followed by reductive cleavage (DFRC. Different tissues presented varied p-hydroxyphenyl:guaiacyl:syringyl (H:G:S lignin compositions. Whereas lignin from cork has a G-rich lignin (H:G:S molar ratio 2:85:13, lignin from phloem presents more S-units (H:G:S molar ratio of 1:58:41 and lignin from xylem is slightly enriched in S-lignin (H:G:S molar ratio 1:45:55. These differences were reflected in the relative abundances of the different interunit linkages. Alkyl-aryl ethers (β–O–4´ were predominant, increasing from 68% in cork, to 71% in phloem and 77% in xylem, as consequence of the enrichment in S-lignin units. Cork lignin was enriched in condensed structures such as phenylcoumarans (β-5´, 20%, dibenzodioxocins (5-5´, 5%, as corresponds to a lignin enriched in G-units. In comparison, lignin from phloem and xylem presented lower levels of condensed linkages. The lignin from cork was highly acetylated at the γ-OH of the side-chain (48% lignin acetylation, predominantly over G-units; while the lignins from phloem and xylem were barely acetylated and this occurred mainly over S-units. These results are a first time overview of the lignin structure in xylem, phloem (generated by cambium, and in cork (generated by phellogen, in agreement with literature that lignin biosynthesis is flexible and cell specific.

  16. The tomato plastidic fructokinase SlFRK3 plays a role in xylem development.

    Science.gov (United States)

    Stein, Ofer; Damari-Weissler, Hila; Secchi, Francesca; Rachamilevitch, Shimon; German, Marcelo A; Yeselson, Yelena; Amir, Rachel; Schaffer, Arthur; Holbrook, N Michele; Aloni, Roni; Zwieniecki, Maciej A; Granot, David

    2016-03-01

    Plants have two kinds of fructokinases (FRKs) that catalyze the key step of fructose phosphorylation, cytosolic and plastidic. The major cytosolic tomato FRK, SlFRK2, is essential for the development of xylem vessels. In order to study the role of SlFRK3, which encodes the only plastidic FRK, we generated transgenic tomato (Solanum lycopersicon) plants with RNAi suppression of SlFRK3 as well as plants expressing beta-glucoronidase (GUS) under the SlFRK3 promoter. GUS staining indicated SlFRK3 expression in vascular tissues of the leaves and stems, including cambium, differentiating xylem, young xylem fibers and phloem companion cells. Suppression of SlFRK3 reduced the stem xylem area, stem and root water conductance, and whole-plant transpiration, with minor effects on plant development. However, suppression of SlFRK3 accompanied by partial suppression of SlFRK2 induced significant growth-inhibition effects, including the wilting of mature leaves. Grafting experiments revealed that these growth effects are imposed primarily by the leaves, whose petioles had unlignified, thin-walled xylem fibers with collapsed parenchyma cells around the vessels. A cross between the SlFRK2-antisense and SlFRK3-RNAi lines exhibited similar wilting and anatomical effects, confirming that these effects are the result of the combined suppression of SlFRK3 and SlFRK2. These results demonstrate a role of the plastidic SlFRK3 in xylem development and hydraulic conductance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Arsenate impact on the metabolite profile, production and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Kalle eUroic

    2012-04-01

    Full Text Available Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analysed including a metabolite profiling under arsenate stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure has a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up regulated, one compound down regulated by arsenate exposure. The compound down regulated was identified to be isoleucine. Furthermore, arsenate has a significant influence on sap production, leading to a reduction of up to 96 % sap production when plants are exposed to 1000 μg kg-1 arsenate. No difference to control plants was observed when plants were exposed to 1000 μg kg-1 DMA. Absolute arsenic amount in xylem sap was the lowest at high arsenate exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  18. Arsenate Impact on the Metabolite Profile, Production, and Arsenic Loading of Xylem Sap in Cucumbers (Cucumis sativus L.).

    Science.gov (United States)

    Uroic, M Kalle; Salaün, Pascal; Raab, Andrea; Feldmann, Jörg

    2012-01-01

    Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (As(V)) and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analyzed including a metabolite profiling under As(V) stress. Produced xylem sap was quantified and absolute arsenic transported was determined. As(V) exposure had a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up-regulated, one compound down-regulated by As(V) exposure. The compound down-regulated was identified to be isoleucine. Furthermore, As(V) exposure had a significant influence on sap production, leading to a reduction of up to 96% sap production when plants were exposed to 1000 μg kg(-1) As(V). No difference to control plants was observed when plants were exposed to 1000 μg kg(-1) DMA. Absolute arsenic amount in xylem sap was the lowest at high As(V) exposure. These results show that As(V) has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  19. Most water in the tomato truss is imported through the xylem, not the phloem. An NMR flow imaging study

    NARCIS (Netherlands)

    Windt, C.W.; Gerkema, E.; As, van H.

    2009-01-01

    In this study, we demonstrate nuclear magnetic resonance flow imaging of xylem and phloem transport toward a developing tomato (Solanum lycopersicum) truss. During an 8-week period of growth, we measured phloem and xylem fluxes in the truss stalk, aiming to distinguish the contributions of the two

  20. Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: cavitation and deformation of xylem in forest fires

    Science.gov (United States)

    S.T. Michaletz; E.A. Johnson; M.T. Tyree

    2012-01-01

    It is widely assumed that post-fire tree mortality results from necrosis of phloem and vascular cambium in stems, despite strong evidence that reduced xylem conductivity also plays an important role. In this study, experiments with Populus balsamifera were used to demonstrate two mechanisms by which heat reduces the hydraulic conductivity of xylem:...

  1. The xylem of rice (Oryza sativa) is colonized by Azorhizobium caulinodans.

    Science.gov (United States)

    Gopalaswamy, G; Kannaiyan, S; O'Callaghan, K J; Davey, M R; Cocking, E C

    2000-01-22

    Following inoculation with Azorhizobium caulinodans ORS571 (pXLGD4), lateral root development of rice and colonization of lateral root cracks by bacteria were shown to be stimulated by the flavonoid naringenin. Rice seedlings growing aseptically in the presence of naringenin were inoculated with ORS571 (pXLGD4), carrying the lacZ reporter gene. By microscopic analysis of sections of inoculated rice roots, it has been demonstrated that the xylem of rice roots can be colonized by Azorhizobium caulinodans. We discuss whether this colonization of the xylem of rice roots by azorhizobia could provide a suitable niche for endophytic nitrogen fixation.

  2. Xylem and phloem phenology in co-occurring conifers exposed to drought

    OpenAIRE

    Swidrak, Irene; GRUBER, Andreas; Oberhuber, Walter

    2014-01-01

    Key message Variability in xylem and phloem phenology among years and species is caused by contrasting temperatures prevailing at the start of the growing season and species-specific sensitivity to drought. Abstract The focus of this study was to determine temporal dynamics of xylem and phloem formation in co-occurring deciduous and evergreen coniferous species in a dry inner Alpine environment (750 m a.s.l., Tyrol, Austria). By repeated micro-sampling of the stem, timing of key phenological ...

  3. Proteolytic activity in the stem cambial region of Pinus sylvestris L. - A contribution to the specific differentiation of secondary xylem and phloem

    OpenAIRE

    Krzysztof J. Rakowski; Tomasz J. Wodzicki

    2014-01-01

    Proteolytic activity was studied in the differentiating xylem and phloem of Scots pine (Pinus sylvestris L.) to determine the specificity of xylem and phloem differentiation. The activity of autolytic proteases was demonstrated in the differentiating xylem during spring, summer and autumn and it was not detectable during winter. It was initiated with the onset of cambial activity in spring and unchanged during subsequent stages of xylem differentiation. The same proteolytic activity was not d...

  4. The activity of uridine diphosphate-D-glucose: Nicotinamide-adenine dinucleotide oxidoreductase in cambial tissue and differentiating xylem isolated from sycamore trees.

    Science.gov (United States)

    Rubery, P H

    1972-06-01

    The activity of UDPGlc: NAD oxidoreductase is measured in enzyme preparations obtained from sycamore cambium and xylem tissue. The activity of this enzyme is greater in xylem than in cambium whether expressed on a specific activity basis or on a per-cell basis. It is suggested that, in developing xylem, direct oxidation of UDPGlc may contribute significantly to the biosynthesis of polysaccharide precursors.

  5. Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don

    Directory of Open Access Journals (Sweden)

    Dillon Shannon K

    2009-01-01

    Full Text Available Abstract Background Wood is a major renewable natural resource for the timber, fibre and bioenergy industry. Pinus radiata D. Don is the most important commercial plantation tree species in Australia and several other countries; however, genomic resources for this species are very limited in public databases. Our primary objective was to sequence a large number of expressed sequence tags (ESTs from genes involved in wood formation in radiata pine. Results Six developing xylem cDNA libraries were constructed from earlywood and latewood tissues sampled at juvenile (7 yrs, transition (11 yrs and mature (30 yrs ages, respectively. These xylem tissues represent six typical development stages in a rotation period of radiata pine. A total of 6,389 high quality ESTs were collected from 5,952 cDNA clones. Assembly of 5,952 ESTs from 5' end sequences generated 3,304 unigenes including 952 contigs and 2,352 singletons. About 97.0% of the 5,952 ESTs and 96.1% of the unigenes have matches in the UniProt and TIGR databases. Of the 3,174 unigenes with matches, 42.9% were not assigned GO (Gene Ontology terms and their functions are unknown or unclassified. More than half (52.1% of the 5,952 ESTs have matches in the Pfam database and represent 772 known protein families. About 18.0% of the 5,952 ESTs matched cell wall related genes in the MAIZEWALL database, representing all 18 categories, 91 of all 174 families and possibly 557 genes. Fifteen cell wall-related genes are ranked in the 30 most abundant genes, including CesA, tubulin, AGP, SAMS, actin, laccase, CCoAMT, MetE, phytocyanin, pectate lyase, cellulase, SuSy, expansin, chitinase and UDP-glucose dehydrogenase. Based on the PlantTFDB database 41 of the 64 transcription factor families in the poplar genome were identified as being involved in radiata pine wood formation. Comparative analysis of GO term abundance revealed a distinct transcriptome in juvenile earlywood formation compared to other stages of

  6. Boron transport in Eucalyptus. 2. Identification in silico of a putative boron transporter for xylem loading in eucalypt

    Directory of Open Access Journals (Sweden)

    Douglas Silva Domingues

    2005-01-01

    Full Text Available Boron (B is a low mobility plant micronutrient whose molecular mechanisms of absorption and translocation are still controversial. Many factors are involved in tolerance to Boron excess or deficiency. Recently, the first protein linked to boron transport in biological systems, BOR1, was characterized in Arabidopsis thaliana. This protein is involved in boron xylem loading and is similar to bicarbonate transporters found in animals. There are indications that BOR1 is a member of a conserved protein family in plants. In this work, FORESTS database was used to identify sequences similar to this protein family, looking for a probable BOR1 homolog in eucalypt. We found five consensus sequences similar to BOR1; three of them were then used in multiple alignment analysis. Based on amino acid similarity and in silico expression patterns, a consensus sequence was identified as a candidate BOR1 homolog, helping deeper experimental assays that could identify the function of this protein family in Eucalyptus.

  7. Evaluation of Xylem EXO water-quality sondes and sensors

    Science.gov (United States)

    Snazelle, Teri T.

    2015-01-01

    Two models of multiparameter sondes manufactured by Xylem, parent company of Yellow Springs Incorporated (YSI)—EXO1 and EXO2—equipped with EXO conductivity/temperature (C/T), pH, dissolved oxygen (DO), and turbidity sensors, were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility. The sondes and sensors were evaluated in two phases for compliance with the manufacturer’s specifications and the USGS acceptance criteria for continuous water-quality monitors. Phase one tested the accuracy of the water-quality sondes equipped: (a) with a C/T, pH, DO, and turbidity sensor by comparing the EXO sensors’ measured values to those of an equivalently configured YSI 6920 V2-2 sensor, and (b) with multiple sensors of the same parameter type (such as three pH sensors and a C/T sensor) on a single sonde at room temperature and at an extended temperature range. In addition to accuracy, the communication protocols and the manufacturing specifications for range of detection and operating temperature were also tested during this phase. Phase two evaluated the sondes’ performance in a surface-water environment by deploying an EXO1 and an EXO2 equipped with pH, C/T, DO, and turbidity sensors at USGS site 02492620 located at East Pearl River near Bay Saint Louis, Mississippi. The EXO sondes’ temperature deviations from a certified YSI 4600 digital thermometer were within the ±0.2 degree Celsius (°C) USGS criteria, but were greater than the ±0.01 °C manufacturing specification. The conductivity sensors met the ±3 percent USGS criteria for specific conductance greater than 100 microsiemens per centimeter. The sensors met the more stringent ±0.5 percent manufacturing specification only at room temperature in the 250 microsiemens per centimeter (µS/cm) standard. The manufacturing and USGS criteria (±0.2 pH unit) were met in pH standards 4, 9.2, 10, and 12.45, but were not met in pH 1.68 standard. The DO sensors met both the ±0.3 milligram

  8. Stem xylem resistance to cavitation is related to xylem structure but not to growth and water-use efficiency at the within-population level in Populus nigra L.

    Science.gov (United States)

    Guet, Justine; Fichot, Régis; Lédée, Camille; Laurans, Françoise; Cochard, Hervé; Delzon, Sylvain; Bastien, Catherine; Brignolas, Franck

    2015-08-01

    Xylem resistance to drought-induced cavitation is a key trait of plant water relations. This study assesses the genetic variation expressed for stem cavitation resistance within a population of a riparian species, the European black poplar (Populus nigra L.), and explores its relationships with xylem anatomy, water-use efficiency (WUE), and growth. Sixteen structural and physiological traits related to cavitation resistance, xylem anatomy, growth, bud phenology, and WUE were measured on 33 P. nigra genotypes grown under optimal irrigation in a 2-year-old clonal experiment in a nursery. Significant genetic variation was expressed for the xylem tension inducing 50% loss of hydraulic conductivity (Ψ50) within the studied population, as attested by the high value of broad-sense heritability estimated for this trait (H (2) ind = 0.72). Stem cavitation resistance was associated with xylem structure: the more cavitation-resistant genotypes exhibited lower hydraulic efficiency and higher mechanical reinforcement as assessed from stem xylem cross sections. By contrast, Ψ50 was not significantly related to shoot height increment, total above-ground dry mass, or bulk leaf carbon isotope discrimination, a proxy for intrinsic WUE. These findings indicate that the trade-offs between xylem resistance to cavitation, hydraulic efficiency, and mechanical reinforcement can occur at the within-population level. Given that the studied genotypes were exposed to the same environmental conditions and evolutionary drivers in situ, the trade-offs detected at this scale are expected to reflect true functional relationships.

  9. Logistics of water and salt transport through the plant: structure and functioning of the xylem

    NARCIS (Netherlands)

    Boer, de A.H.; Volkov, V.

    2003-01-01

    The xylem is a long-distance transport system that is unique to higher plants. It evolved into a very sophisticated plumbing system ensuring controlled loading/unloading of ions and water and their effective translocation to the required sinks. The focus of this overview will be the intrinsic

  10. Processes and xylem anatomical properties involved in rehydration dynamics of cut flowers

    NARCIS (Netherlands)

    Meeteren, van U.; Ieperen, van W.; Nijsse, J.; Scheenen, T.W.J.; As, van H.; Keijzer, C.J.

    2001-01-01

    In cut flowers, which are harvested in air and transported dry, all cut xylem vessels in the basal part of the stem contain air instead of water. These air-emboli initially block water transport at the start of vase life, but usually (partly) disappear during the first hours of vase life, resulting

  11. What HR-CT imaging can teach us about xylem structure and function

    Science.gov (United States)

    It is well established that plant xylem is composed of a complex and interconnected system of vascular elements, but little is known about how the three-dimensional (3D) organization of this network influences properties such as plant hydraulics (Tyree & Zimmermann, 2002), and few studies have measu...

  12. Magnetic resonance imaging of water ascent in embolized xylem vessels of grapevine stem segments

    Science.gov (United States)

    Mingtao Wang; Melvin T. Tyree; Roderick E. Wasylishen

    2013-01-01

    Temporal and spatial information about water refilling of embolized xylem vessels and the rate of water ascent in these vessels is critical for understanding embolism repair in intact living vascular plants. High-resolution 1H magnetic resonance imaging (MRI) experiments have been performed on embolized grapevine stem segments while they were...

  13. The xylem as battleground for plant hosts and vascular wilt pathogens

    NARCIS (Netherlands)

    Yadeta, K.A.; Thomma, B.P.H.J.

    2013-01-01

    Vascular wilts are among the most destructive plant diseases that occur in annual crops as well as in woody perennials. These diseases are generally caused by soil-borne bacteria, fungi, and oomycetes that infect through the roots and enter the water-conducting xylem vessels where they proliferate a

  14. An atypical bHLH transcription factor regulates early xylem development downstream of auxin.

    Science.gov (United States)

    Ohashi-Ito, Kyoko; Matsukawa, Manami; Fukuda, Hiroo

    2013-03-01

    The vascular system in plants, which comprises xylem, phloem and vascular stem cells, originates from provascular cells and forms a continuous network throughout the plant body. Although various aspects of vascular development have been extensively studied, the early process of vascular development remains largely unknown. LONESOME HIGHWAY (LHW), which encodes an atypical basic helix-loop-helix (bHLH) transcription factor, plays an essential role in establishing vascular cells. Here, we report the analysis of LHW homologs in relation to vascular development. Three LHW homologs, LONESOME HIGHWAY LIKE 1-3 (LHL1-LHL3), were preferentially expressed in the plant vasculature. Genetic analysis indicated that, although the LHL3 loss-of-function mutant showed no obvious phenotype, the lhw lhl3 double mutant displayed more severe phenotypic defects in the vasculature of the cotyledons and roots than the lhw single mutant. Only one xylem vessel was formed at the metaxylem position in lhw lhl3 roots, whereas the lhw root formed one protoxylem and one or two metaxylem vessels. Conversely, overexpression of LHL3 enhanced xylem development in the roots. Moreover, N-1-naphthylphthalamic acid caused ectopic LHL3 expression in accordance with induced auxin maximum. These results suggest that LHL3 plays a positive role in xylem differentiation downstream of auxin.

  15. Xylem transcription profiles indicate potential metabolic responses for economically relevant characteristics of Eucalyptus species.

    Science.gov (United States)

    Salazar, Marcela Mendes; Nascimento, Leandro Costa; Camargo, Eduardo Leal Oliveira; Gonçalves, Danieli Cristina; Lepikson Neto, Jorge; Marques, Wesley Leoricy; Teixeira, Paulo José Pereira Lima; Mieczkowski, Piotr; Mondego, Jorge Maurício Costa; Carazzolle, Marcelo Falsarella; Deckmann, Ana Carolina; Pereira, Gonçalo Amarante Guimarães

    2013-03-22

    Eucalyptus is one of the most important sources of industrial cellulose. Three species of this botanical group are intensively used in breeding programs: E. globulus, E. grandis and E. urophylla. E. globulus is adapted to subtropical/temperate areas and is considered a source of high-quality cellulose; E. grandis grows rapidly and is adapted to tropical/subtropical climates; and E. urophylla, though less productive, is considered a source of genes related to robustness. Wood, or secondary xylem, results from cambium vascular differentiation and is mostly composed of cellulose, lignin and hemicelluloses. In this study, the xylem transcriptomes of the three Eucalyptus species were investigated in order to provide insights on the particularities presented by each of these species. Data analysis showed that (1) most Eucalyptus genes are expressed in xylem; (2) most genes expressed in species-specific way constitutes genes with unknown functions and are interesting targets for future studies; (3) relevant differences were observed in the phenylpropanoid pathway: E. grandis xylem presents higher expression of genes involved in lignin formation whereas E. urophylla seems to deviates the pathway towards flavonoid formation; (4) stress-related genes are considerably more expressed in E. urophylla, suggesting that these genes may contribute to its robustness. The comparison of these three transcriptomes indicates the molecular signatures underlying some of their distinct wood characteristics. This information may contribute to the understanding of xylogenesis, thus increasing the potential of genetic engineering approaches aiming at the improvement of Eucalyptus forest plantations productivity.

  16. Logistics of water and salt transport through the plant: structure and functioning of the xylem

    NARCIS (Netherlands)

    Boer, de A.H.; Volkov, V.

    2003-01-01

    The xylem is a long-distance transport system that is unique to higher plants. It evolved into a very sophisticated plumbing system ensuring controlled loading/unloading of ions and water and their effective translocation to the required sinks. The focus of this overview will be the intrinsic inter-

  17. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline

    Science.gov (United States)

    Ecosystems worldwide are facing increasingly severe and prolonged droughts during which hydraulic failure from drought-induced embolism can lead to organ or whole plant death. Understanding the determinants of xylem failure across species is critical especially in leaves, the engine of plant growth....

  18. Water Flow through Xylem: An Investigation of a Fluid Dynamics Principle Applied to Plants

    Science.gov (United States)

    Rice, Stanley A.; McArthur, John

    2004-01-01

    A study was conducted to prove that a large blood or xylem vessel could conduct 256 times more fluid than a vessel or a pipe that is four times smaller. The result of this study proved that if arteriosclerosis causes an artery to loose half its effective diameter, the blood flow would be reduced by fifteen-sixteenths.

  19. Vestured pits: a diagnostic character in the secondary xylem of Myrtales

    NARCIS (Netherlands)

    Jansen, S.; Pletsers, A.; Rabaey, D.; Lens, F.

    2008-01-01

    Vestures are small projections from the secondary cell wall associated with tracheary elements of the secondary xylem. They are usually associated with bordered pits and characterize various angiosperm families, including important timber species such as Dipterocarpaceae and Eucalyptus trees. The mi

  20. Evidence for a wounding-induced xylem occlusion in stems of cut chrysanthemum flowers

    NARCIS (Netherlands)

    Doorn, van W.G.; Cruz, P.

    2000-01-01

    A temperature-dependent xylem occlusion was found in cut chrysanthemum stems (Dendranthema grandiflora, cv. Viking) which were placed for 24 h in air at 5oC prior to vase life evaluation. The response was inhibited by a 5-h treatment, prior to placement in air, with aqueous solutions at low initial

  1. Xylem anisotropy and water transport--a model for the double sawcut experiment

    Science.gov (United States)

    Paul J. Schulte; David G. Costa

    2010-01-01

    Early experiments with overlapping cuts to the stems of trees demonstrated that lateral flow within the stem must be possible to allow such trees to maintain water flow to their leaves. We present a mathematical approach to considering lateral flow in stems by treating the xylem as an anisotropic medium for flow and develop an expression of its conductivity in the form...

  2. Distribution of xylem hydraulic resistance in fruiting truss of tomato influenced by water stress

    NARCIS (Netherlands)

    Ieperen, van W.; Volkov, V.S.; Meeteren, van U.

    2003-01-01

    In this study xylem hydraulic resistances of peduncles (truss stalk), pedicels (fruit stalk) and the future abscission zone (AZ) halfway along the pedicel of tomato (Lycopersicon esculentum L.) plants were directly measured at different stages of fruit development, in plants grown under two levels o

  3. Refilling embolized xylem conduits: is it a matter of phloem unloading?

    Science.gov (United States)

    Nardini, Andrea; Lo Gullo, Maria A; Salleo, Sebastiano

    2011-04-01

    Long-distance water transport in plants relies on negative pressures established in continuous water columns in xylem conduits. Water under tension is in a metastable state and is prone to cavitation and embolism, which leads to loss of hydraulic conductance, reduced productivity and eventually plant death. Experimental evidence suggests that plants can repair embolized xylem by pushing water from living vessel-associated cells into the gas-filled conduit lumina. Most surprisingly, embolism refilling is known to occur even when the bulk of still functioning xylem is under tension, a finding that is in seemingly contradiction to basic principles of thermodynamics. This review summarizes our current understanding of xylem refilling processes and speculates that embolism repair under tension can be envisioned as a particular case of phloem unloading, as suggested by several events and components of embolism repair, typically involved in phloem unloading mechanisms. Far from being a challenge to irreversible thermodynamics, embolism refilling is emerging as a finely regulated vital process essential for plant functioning under different environmental stresses. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Development of Successive Cambia and Structure of Secondary Xylem of Ipomoea Obscura (Convolvulaceae

    Directory of Open Access Journals (Sweden)

    Rajput Kishore S.

    2014-07-01

    Full Text Available Stems of Ipomoea obscura Ker Gawl., increase in thickness by forming multiple rings of cambia. Stems 5-6 mm thick produce parenchymatous derivatives which divide repeatedly to form small arcs of cambium. Several such small arcs initiate simultaneously and form a ring of small cambial arcs. After the formation of a few xylem and phloem elements, all these arcs are interconnected by transdifferentiation of parenchyma cells present between the cambial arcs and constitute a complete cambial cylinder. This newly formed cambium is functionally bidirectional: earlier- formed arcs produce xylem centripetally and phloem centrifugally, while later-formed segments exclusively produce thin-walled parenchyma cells on either side. Young stems are circular in cross section but as stem thickness increases they become oval to elliptic or lobed and dumbbell-shaped. Xylem rays are mostly uni- or biseriate and thin-walled, but multiseriate rays characteristic for a climbing habit are observed occasionally. In thick stems, the marginal ray parenchyma in most of the samples becomes meristematic and develops ray cambia which exclusively produce sieve elements. Similarly, parenchyma cells produced from later-formed cambial segments give rise to several irregularly oriented vascular bundles. The secondary xylem is diffuse porous, with indistinct growth rings and is composed of fibriform and wider vessels, fibres, and axial and ray parenchyma cells, while phloem consists of sieve elements, companion cells, and axial and ray parenchyma cells.

  5. Suppression of Dwarf and irregular xylem Phenotypes Generates Low-Acetylated Biomass Lines in Arabidopsis.

    Science.gov (United States)

    Bensussan, Matthieu; Lefebvre, Valérie; Ducamp, Aloïse; Trouverie, Jacques; Gineau, Emilie; Fortabat, Marie-Noëlle; Guillebaux, Alexia; Baldy, Aurélie; Naquin, Delphine; Herbette, Stéphane; Lapierre, Catherine; Mouille, Gregory; Horlow, Christine; Durand-Tardif, Mylène

    2015-06-01

    eskimo1-5 (esk1-5) is a dwarf Arabidopsis (Arabidopsis thaliana) mutant that has a constitutive drought syndrome and collapsed xylem vessels, along with low acetylation levels in xylan and mannan. ESK1 has xylan O-acetyltransferase activity in vitro. We used a suppressor strategy on esk1-5 to screen for variants with wild-type growth and low acetylation levels, a favorable combination for ethanol production. We found a recessive mutation in the KAKTUS (KAK) gene that suppressed dwarfism and the collapsed xylem character, the cause of decreased hydraulic conductivity in the esk1-5 mutant. Backcrosses between esk1-5 and two independent knockout kak mutants confirmed suppression of the esk1-5 effect. kak single mutants showed larger stem diameters than the wild type. The KAK promoter fused with a reporter gene showed activity in the vascular cambium, phloem, and primary xylem in the stem and hypocotyl. However, suppression of the collapsed xylem phenotype in esk1 kak double mutants was not associated with the recovery of cell wall O-acetylation or any major cell wall modifications. Therefore, our results indicate that, in addition to its described activity as a repressor of endoreduplication, KAK may play a role in vascular development. Furthermore, orthologous esk1 kak double mutants may hold promise for ethanol production in crop plants. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Invasion of xylem of mature tree stems by Phytophthora ramorum and P. kernoviae

    Science.gov (United States)

    Anna Brown; Clive Brasier

    2008-01-01

    The aetiology and frequency of Phytophthoras in discoloured xylem tissue beneath phloem lesions was investigated in a range of broadleaved trees infected with P. ramorum, P. kernoviae and several other Phytophthoras. Isolation was attempted from the inner surface of 81, 6 x 4 cm sterilised...

  7. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv.

    Science.gov (United States)

    Pang, Yu; Zhang, Jing; Cao, Jing; Yin, Shen-Yi; He, Xin-Qiang; Cui, Ke-Ming

    2008-01-01

    Eucommia ulmoides Oliv. (Eucommiaceae), a traditional Chinese medicinal plant, was used to study phloem cell differentiation during bark regeneration after girdling on a large scale. Here it is shown that new sieve elements (SEs) appeared in the regenerated tissues before the formation of wound cambium during bark regeneration after girdling, and they could originate from the transdifferentiation of immature/differentiating axial xylem cells left on the trunk. Assays of water-cultured twigs revealed that girdling blocked sucrose transport until the formation of new SEs, and the regeneration of the functional SEs was not dependent on the substance provided by the axis system outside the girdled areas, while exogenous indole acetic acid (IAA) applied on the wound surface accelerated SE differentiation. The experiments suggest that the immature xylem cells can transdifferentiate into phloem cells under certain conditions, which means xylem and phloem cells might share some identical features at the beginning of their differentiation pathway. This study also showed that the bark regeneration system could provide a novel method for studying xylem and phloem cell differentiation.

  8. Interaction of xylem and phloem during exudation and wound occlusion in Cucurbita maxima.

    Science.gov (United States)

    Zimmermann, Matthias R; Hafke, Jens B; van Bel, Aart J E; Furch, Alexandra C U

    2013-01-01

    Collection of cucurbit exudates from cut petioles has been a powerful tool for gaining knowledge on phloem sap composition without full notion of the complex exudation mechanism. Only few publications explicitly mentioned that exudates were collected from the basal side of the cut, which exudes more copiously than the apical side. This is surprising since only exudation from the apical side is supposedly driven by phloem pressure gradients. Composition of carbohydrates and pH values at both wounding sides are equal, whereas protein concentration is higher at the basal side. Apparently, exudation is far more complex than just the delivery of phloem sap. Xylem involvement is indicated by lower protein concentrations after elimination of root pressure. Moreover, dye was sucked into xylem vessels owing to relaxation of negative pressure after cutting. The lateral water efflux from the vessels increases turgor of surrounding cells including sieve elements. Simultaneously, detached parietal proteins (PP1/PP2) induce occlusion of sieve plates and cover wound surface. If root pressure is strong enough, pure xylem sap can be collected after removal of the occlusion plug at the wound surface. The present findings provide a mechanism of sap exudation in Cucurbita maxima, in which the contribution of xylem water is integrated. © 2012 Blackwell Publishing Ltd.

  9. Polyphenols in ceratocystis minor infected Pinus Taeda: fungal metabolites, phloem, and xylem phenols

    Science.gov (United States)

    R.W. Hemingway; G.W. McGraw; S.J. Barras

    1977-01-01

    Since Ceratocystis minor is central to the death of pines infested by southern pine beetles, changes in polyphenols of infected loblolly pine were examined with regard to accumulation of fungal metabolites and changes in concentrations of fungitoxic and fungistatic phloem and xylem constitutents. C. minor grown in liquid culture...

  10. Seasonal development of cambial activity in relation to xylem formation in Chinese fir.

    Science.gov (United States)

    Wu, Hongyang; Xu, Huimin; Li, Hanyin; Wei, Dongmei; Lin, Jinxing; Li, Xiaojuan

    2016-05-20

    The vascular cambium is a lateral meristem which can differentiate into secondary phloem and xylem. The secondary growth of woody plants resulting from vascular cambium activity has been a focus of considerable attention, but the quantitative relationships between cambial activity and secondary xylem formation have been little studied. Our analysis of cytological changes in the cambium of Chinese fir (Cunninghamia lanceolata), revealed a significant positive correlation between vascular cambium cell numbers and cambium zone width through the seasonal cycle. Cambium cell numbers and the cambium cell radial diameter were closely related to xylem formation. Immuno-labeling showed that de-esterified homogalacturonan and (1-4)-β-d-galactan epitopes were highly abundant in cell walls of dormant-stage cambium, whereas high methylesterified homogalacturonan was strongly labeled in the active stage. Raman spectroscopy detected significant changes in the chemical composition of cell walls during the active-dormant stage transition. More pectin and less monolignols occurred in radial cell walls than in tangential walls during the dormant stage, but no significant changes were found in other stages, indicating that pectin accumulation facilitates cell wall expansion, with cambium activity transition. Our quantitative analysis of the relationship between cambial activity and xylem formation, as well as the cell wall modification during the active stage provides useful information about cambial characteristics and xylogenesis. Copyright © 2016. Published by Elsevier GmbH.

  11. Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry.

    Science.gov (United States)

    Schenk, H Jochen; Espino, Susana; Visser, Ate; Esser, Bradley K

    2016-04-01

    A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples.

  12. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes

    Science.gov (United States)

    The phloem sap, xylem sap and apoplastic fluid play key roles in long and short distance transport of signals and nutrients, and act as a barrier against local and systemic pathogen infection. Among other components, these plant fluids contain proteins which are likely to be important players in the...

  13. Interspecific variation in xylem vulnerability to cavitation among tropical tree and shrub species.

    Science.gov (United States)

    Lopez, Omar R; Kursar, Thomas A; Cochard, Hervé; Tyree, Melvin T

    2005-12-01

    In tropical moist forests, seasonal drought limits plant survival, productivity and diversity. Drought-tolerance mechanisms of tropical species should reflect the maximum seasonal water deficits experienced in a particular habitat. We investigated stem xylem vulnerability to cavitation in nine tropical species with different life histories and habitat associations. Stem xylem vulnerability was scored as the xylem water potential causing 50 and 75% loss of hydraulic conductivity (P50 and P75, respectively). Four shade-tolerant shrubs ranged from moderately resistant (P50=-1.9 MPa for Ouratea lucens Kunth. Engl.) to highly resistant to cavitation (P50=-4.1 MPa for Psychotria horizontalis Sw.), with shallow-rooted species being the most resistant. Among the tree species, those characteristic of waterlogged soils, Carapa guianensis Aubl., Prioria copaifera Griseb. and Ficus citrifolia Mill., were the most vulnerable to cavitation (P50=-0.8 to -1.6 MPa). The wet-season, deciduous tree, Cordia alliodora (Ruiz and Pav.) Oken., had resistant xylem (P50=-3.2 MPa), whereas the dry-season, deciduous tree, Bursera simaruba (L.) Sarg. was among the most vulnerable to cavitation (P50=-0.8 MPa) of the species studied. For eight out of the nine study species, previously reported minimum seasonal leaf water potentials measured in the field during periods of drought correlated with our P50 and P75 values. Rooting depth, deciduousness, soil type and growth habit might also contribute to desiccation tolerance. Our results support the functional dependence of drought tolerance on xylem resistance to cavitation.

  14. Stomatal factors and vulnerability of stem xylem to cavitation in poplars.

    Science.gov (United States)

    Arango-Velez, Adriana; Zwiazek, Janusz J; Thomas, Barb R; Tyree, Melvin T

    2011-10-01

    The relationships between the vulnerability of stem xylem to cavitation, stomatal conductance, stomatal density, and leaf and stem water potential were examined in six hybrid poplar (P38P38, Walker, Okanese, Northwest, Assiniboine and Berlin) and balsam poplar (Populus balsamifera) clones. Stem xylem cavitation resistance was examined with the Cavitron technique in well-watered plants grown in the greenhouse. To investigate stomatal responses to drought, plants were subjected to drought stress by withholding watering for 5 (mild drought) and 7 (severe drought) days and to stress recovery by rewatering severely stressed plants for 30 min and 2 days. The clones varied in stomatal sensitivity to drought and vulnerability to stem xylem cavitation. P38P38 reduced stomatal conductance in response to mild stress while the balsam poplar clone maintained high leaf stomatal conductance under more severe drought stress conditions. Differences between the severely stressed clones were also observed in leaf water potentials with no or relatively small decreases in Assiniboine, P38P38, Okanese and Walker. Vulnerability to drought-induced stem xylem embolism revealed that balsam poplar and Northwest clones reached loss of conductivity at lower stem water potentials compared with the remaining clones. There was a strong link between stem xylem resistance to cavitation and stomatal responsiveness to drought stress in balsam poplar and P38P38. However, the differences in stomatal responsiveness to mild drought suggest that other drought-resistant strategies may also play a key role in some clones of poplars exposed to drought stress. Copyright © Physiologia Plantarum 2011.

  15. Translocation of nitrogen in the xylem of field-grown cherry and poplar trees during remobilization.

    Science.gov (United States)

    Millard, Peter; Wendler, Renate; Grassi, Giacomo; Grelet, Gwen-Aelle; Tagliavini, Massimo

    2006-04-01

    Studies of small trees growing in pots have established that individual amino acids or amides are translocated in the xylem sap of a range of tree species following bud burst, as a consequence of nitrogen (N) remobilization from storage. This paper reports the first study of N translocation in the xylem of large, deciduous, field-grown trees during N remobilization in the spring. We applied 15N fertilizer to the soil around 10-year-old Prunus avium L. and Populus trichocharpa Torr. & Gray ex Hook var. Hastata (Dode) A. Henry x Populus balsamifera L. var. Michauxii (Dode) Farwell trees before bud burst to label N taken up by the roots. Recovery of unlabeled N in xylem sap and leaves was used to demonstrate that P. avium remobilizes N in both glutamine (Gln) and asparagine (Asn). Sap concentrations of both amides rose sharply after bud burst, peaking 14 days after bud burst for Gln, and remaining high some 45 days for Asn. There was no 15N enrichment of either amide until 21 days after bud burst. In the Populus trees, nearly all the N was translocated in the sap as Gln, the concentration of which peaked and then declined before the amide was enriched with 15N, 40 days after bud burst. Xylem sap of clonal P. avium trees was sampled at different positions in the crown to assess if the amino acid and amide composition of the sap varied within the crown. Sap was sampled during remobilization (when the concentration of Gln was maximal), at the end of remobilization and at the end of the experiment (68 days after bud burst). Although the date of sampling had a highly significant effect on sap composition, the effect of position of sampling was marginal. The results are discussed in relation to N translocation in adult trees and the possibility of measuring N remobilization by calculating the flux of N translocation in the xylem.

  16. Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii.

    Science.gov (United States)

    Lu, Lingli; Tian, Shengke; Zhang, Jie; Yang, Xiaoe; Labavitch, John M; Webb, Samuel M; Latimer, Matthew; Brown, Patrick H

    2013-05-01

    Sedum alfredii is one of a few species known to hyperaccumulate zinc (Zn) and cadmium (Cd). Xylem transport and phloem remobilization of Zn in hyperaccumulating (HP) and nonhyperaccumulating (NHP) populations of S. alfredii were compared. Micro-X-ray fluorescence (μ-XRF) images of Zn in the roots of the two S. alfredii populations suggested an efficient xylem loading of Zn in HP S. alfredii, confirmed by the seven-fold higher Zn concentrations detected in the xylem sap collected from HP, when compared with NHP, populations. Zn was predominantly transported as aqueous Zn (> 55.9%), with the remaining proportion (36.7-42.3%) associated with the predominant organic acid, citric acid, in the xylem sap of HP S. alfredii. The stable isotope (68)Zn was used to trace Zn remobilization from mature leaves to new growing leaves for both populations. Remobilization of (68)Zn was seven-fold higher in HP than in NHP S. alfredii. Subsequent analysis by μ-XRF, combined with LA-ICPMS (laser ablation-inductively coupled plasma mass spectrometry), confirmed the enhanced ability of HP S. alfredii to remobilize Zn and to preferentially distribute the metal to mesophyll cells surrounding phloem in the new leaves. The results suggest that Zn hyperaccumulation by HP S. alfredii is largely associated with enhanced xylem transport and phloem remobilization of the metal. To our knowledge, this report is the first to reveal enhanced remobilization of metal by phloem transport in hyperaccumulators. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. Circadian patterns of xylem sap properties and their covariation with plant hydraulic traits in hybrid aspen.

    Science.gov (United States)

    Meitern, Annika; Õunapuu-Pikas, Eele; Sellin, Arne

    2017-06-01

    Physiological processes taking place in plants are subject to diverse circadian patterns but some of them are poorly documented in natural conditions. The daily dynamics of physico-chemical properties of xylem sap and their covariation with tree hydraulic traits were investigated in hybrid aspen (Populus tremula L.×P. tremuloides Michx) in field conditions in order to clarify which environmental drivers govern the daily variation in these parameters. K(+) concentration ([K(+)]), electrical conductivity (σsap), osmolality (Osm) and pH of the xylem sap, as well as branch hydraulic traits, were measured in the field over 24-h cycles. All studied xylem sap properties and hydraulic characteristics including whole-branch (Kwb), leaf blade (Klb) and petiole hydraulic conductances (KP) showed clear daily dynamics. Air temperature (TA) and photosynthetic photon flux density (PPFD), but also water vapour pressure deficit (VPD) and relative humidity (RH), had significant impacts on KwbKlb, KP, [K(+)] and σsap. Osm varied only with light intensity, while KB varied depending on atmospheric evaporative demand expressed as TA, VPD or RH. Xylem sap pH depended inversely on soil water potential (ΨS) and during daylight also on VPD. Although soil water content was close to saturation during the study period, ΨS influenced also [K(+)] and σsap. The present study presents evidence of coupling between circadian patterns of xylem sap properties and plant hydraulic conductance providing adequate water supply to foliage under environmental conditions characterised by diurnal variation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. The entry of cucumber mosaic virus into cucumber xylem is facilitated by co-infection with zucchini yellow mosaic virus.

    Science.gov (United States)

    Mochizuki, Tomofumi; Nobuhara, Shinya; Nishimura, Miho; Ryang, Bo-Song; Naoe, Masaki; Matsumoto, Tadashi; Kosaka, Yoshitaka; Ohki, Satoshi T

    2016-10-01

    We investigated the synergistic effects of co-infection by zucchini yellow mosaic virus (ZYMV) and cucumber mosaic virus (CMV) on viral distribution in the vascular tissues of cucumber. Immunohistochemical observations indicated that ZYMV was present in both the phloem and xylem tissues. ZYMV-RNA was detected in both the xylem wash and guttation fluid of ZYMV-inoculated cucumber. Steam treatment at a stem internode indicated that ZYMV enters the xylem vessels and moves through them but does not cause systemic infection in the plant. CMV distribution in singly infected cucumbers was restricted to phloem tissue. By contrast, CMV was detected in the xylem tissue of cotyledons in plants co-infected with CMV and ZYMV. Although both ZYMV-RNA and CMV-RNA were detected in the xylem wash and upper internodes of steam-treated, co-infected cucumbers grown at 24 °C, neither virus was detected in the upper leaves using an ELISA assay. Genetically modified CMV harboring the ZYMV HC-Pro gene was distributed in the xylem and phloem tissues of singly inoculated cucumber cotyledons. These results indicate that the ZYMV HC-Pro gene facilitates CMV entry into the xylem vessels of co-infected cucumbers.

  19. Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma.

    Science.gov (United States)

    Pfautsch, Sebastian; Renard, Justine; Tjoelker, Mark G; Salih, Anya

    2015-03-01

    The transfer of water from phloem into xylem is thought to mitigate increasing hydraulic tension in the vascular system of trees during the diel cycle of transpiration. Although a putative plant function, to date there is no direct evidence of such water transfer or the contributing pathways. Here, we trace the radial flow of water from the phloem into the xylem and investigate its diel variation. Introducing a fluorescent dye (0.1% [w/w] fluorescein) into the phloem water of the tree species Eucalyptus saligna allowed localization of the dye in phloem and xylem tissues using confocal laser scanning microscopy. Our results show that the majority of water transferred between the two tissues is facilitated via the symplast of horizontal ray parenchyma cells. The method also permitted assessment of the radial transfer of water during the diel cycle, where changes in water potential gradients between phloem and xylem determine the extent and direction of radial transfer. When injected during the morning, when xylem water potential rapidly declined, fluorescein was translocated, on average, farther into mature xylem (447 ± 188 µm) compared with nighttime, when xylem water potential was close to zero (155 ± 42 µm). These findings provide empirical evidence to support theoretical predictions of the role of phloem-xylem water transfer in the hydraulic functioning of plants. This method enables investigation of the role of phloem tissue as a dynamic capacitor for water storage and transfer and its contribution toward the maintenance of the functional integrity of xylem in trees. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. YeATS - a tool suite for analyzing RNA-seq derived transcriptome identifies a highly transcribed putative extensin in heartwood/sapwood transition zone in black walnut.

    Science.gov (United States)

    Chakraborty, Sandeep; Britton, Monica; Wegrzyn, Jill; Butterfield, Timothy; Martínez-García, Pedro José; Reagan, Russell L; Rao, Basuthkar J; Leslie, Charles A; Aradhaya, Mallikarjuna; Neale, David; Woeste, Keith; Dandekar, Abhaya M

    2015-01-01

    The transcriptome provides a functional footprint of the genome by enumerating the molecular components of cells and tissues. The field of transcript discovery has been revolutionized through high-throughput mRNA sequencing (RNA-seq). Here, we present a methodology that replicates and improves existing methodologies, and implements a workflow for error estimation and correction followed by genome annotation and transcript abundance estimation for RNA-seq derived transcriptome sequences (YeATS - Yet Another Tool Suite for analyzing RNA-seq derived transcriptome). A unique feature of YeATS is the upfront determination of the errors in the sequencing or transcript assembly process by analyzing open reading frames of transcripts. YeATS identifies transcripts that have not been merged, result in broken open reading frames or contain long repeats as erroneous transcripts. We present the YeATS workflow using a representative sample of the transcriptome from the tissue at the heartwood/sapwood transition zone in black walnut. A novel feature of the transcriptome that emerged from our analysis was the identification of a highly abundant transcript that had no known homologous genes (GenBank accession: KT023102). The amino acid composition of the longest open reading frame of this gene classifies this as a putative extensin. Also, we corroborated the transcriptional abundance of proline-rich proteins, dehydrins, senescence-associated proteins, and the DNAJ family of chaperone proteins. Thus, YeATS presents a workflow for analyzing RNA-seq data with several innovative features that differentiate it from existing software.

  1. Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in Noccaea caerulescens.

    Science.gov (United States)

    Kozhevnikova, Anna D; Seregin, Ilya V; Verweij, Rudo; Schat, Henk

    2014-01-01

    Histidine is known to be involved in Ni hyperaccumulation. Recently, histidine-dependent xylem loading of Ni and Zn has been demonstrated in the Zn/Ni/Cd hyperaccumulator, Noccaea caerulescens. Here we tested the hypothesis whether Cd xylem loading is histidine-dependent, too. In contrast to that of Ni and Zn, the xylem loading of Cd was not affected by exogenous histidine. Histidine accumulation in root cells appears to facilitate the radial transport of Ni and Zn, but not Cd, across the roots. This may be due to the relatively high preference of Cd for coordination with sulfur over coordination with nitrogen, in comparison with Ni and Zn.

  2. Growth of Verticillium longisporum in Xylem Sap of Brassica napus is Independent from Cultivar Resistance but Promoted by Plant Aging.

    Science.gov (United States)

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-09-01

    As Verticillium stem striping of oilseed rape (OSR), a vascular disease caused by Verticillium longisporum, is extending into new geographic regions and no control with fungicides exists, the demand for understanding mechanisms of quantitative resistance increases. Because V. longisporum is strictly limited to the xylem and resistance is expressed in the systemic stage post root invasion, we investigated a potential antifungal role of soluble constituents and nutritional conditions in xylem sap as determinants of cultivar resistance of OSR to V. longisporum. Assessment of biometric and molecular genetic parameters applied to describe V. longisporum resistance (net area under disease progress curve, stunting, stem thickness, plant biomass, and V. longisporum DNA content) showed consistent susceptibility of cultivar 'Falcon' in contrast to two resistant genotypes, 'SEM' and 'Aviso'. Spectrophotometric analysis revealed a consistently stronger in vitro growth of V. longisporum in xylem sap extracted from OSR compared with the water control. Further comparisons of fungal growth in xylem sap of different cultivars revealed the absence of constitutive or V. longisporum induced antifungal activity in the xylem sap of resistant versus susceptible genotypes. The similar growth of V. longisporum in xylem sap, irrespective of cultivar, infection with V. longisporum and xylem sap filtration, was correlated with about equal amounts of total soluble proteins in xylem sap from these treatments. Interestingly, compared with younger plants, xylem sap from older plants induced significantly stronger fungal growth. Growth enhancement of V. longisporum in xylem sap of aging plants was reflected by increased contents of carbohydrates, which was consistent in mock or V. longisporum-infected plants and independent from cultivar resistance. The improved nutritional conditions in the xylem of more mature plants may explain the late appearance of disease symptoms, which are observed only in

  3. Evaluation of the Storm 3 data logger manufactured by WaterLOG/Xylem Incorporated—Results of bench, temperature, and field deployment testing

    Science.gov (United States)

    Kunkle, Gerald A.

    2016-05-04

    The Storm 3 is a browser-based data logger manufactured by WaterLOG/Xylem Incorporated that operates over a temperature range of −40 to 60 degrees Celsius (°C). A Storm logger with no built-in telemetry (Storm3-00) and a logger with built-in cellular modem (Storm3-03) were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to the manufacturer’s specifications with bench tests, for recording data over the device’s operating temperature range with temperature chamber tests, and for field performance with an outdoor deployment test.

  4. Analyses of the xylem sap proteomes identified candidate Fusarium virguliforme proteinacious toxins.

    Directory of Open Access Journals (Sweden)

    Nilwala S Abeysekara

    Full Text Available BACKGROUND: Sudden death syndrome (SDS caused by the ascomycete fungus, Fusarium virguliforme, exhibits root necrosis and leaf scorch or foliar SDS. The pathogen has never been identified from the above ground diseased foliar tissues. Foliar SDS is believed to be caused by host selective toxins, including FvTox1, secreted by the fungus. This study investigated if the xylem sap of F. virguliforme-infected soybean plants contains secreted F. virguliforme-proteins, some of which could cause foliar SDS development. RESULTS: Xylem sap samples were collected from five biological replications of F. virguliforme-infected and uninfected soybean plants under controlled conditions. We identified five F. virguliforme proteins from the xylem sap of the F. virguliforme-infected soybean plants by conducting LC-ESI-MS/MS analysis. These five proteins were also present in the excreted proteome of the pathogen in culture filtrates. One of these proteins showed high sequence identity to cerato-platanin, a phytotoxin produced by Ceratocystis fimbriata f. sp. platani to cause canker stain disease in the plane tree. Of over 500 soybean proteins identified in this study, 112 were present in at least 80% of the sap samples collected from F. virguliforme-infected and -uninfected control plants. We have identified four soybean defense proteins from the xylem sap of F. virguliforme-infected soybean plants. The data have been deposited to the ProteomeXchange with identifier PXD000873. CONCLUSION: This study confirms that a few F. virguliforme proteins travel through the xylem, some of which could be involved in foliar SDS development. We have identified five candidate proteinaceous toxins, one of which showed high similarity to a previously characterized phytotoxin. We have also shown the presence of four soybean defense proteins in the xylem sap of F. virguliforme-infected soybean plants. This study laid the foundation for studying the molecular basis of foliar SDS

  5. 冷冻处理对日本柳杉边材炭化的影响%Effect of Pretreatment with Freezhing on Carbonization of Sugi ( Cryptomeria japonica ) Sapwood

    Institute of Scientific and Technical Information of China (English)

    鲁保旺; 杜冠华; 松井隆尚; 松下洋一; 菅本和宽

    2005-01-01

    将冷冻处理前后的日本柳杉边材在400℃下进行炭化,得到了木醋液、木焦油和木炭.与没有处理相比,虽然处理过边材的木焦油的收率几乎不变,木醋液的收率显示增加倾向,但是木炭的收率有减少迹象.用毛细管气相色谱法对得到的木醋液中的11种成分进行了定量分析.与无处理相比较后,发现处理过边材木醋液中的甲醇、脂肪酸及糠醛(呋喃甲醛)的收量有了变化,但是5-羟甲基糠醛、麦芽酚、苯酚、邻苯二酚及愈创苯酚的收量几乎没有变化.%Sugi sapwoods at different moisture content after and before freezing treatment were carbonized at 400 ℃ to afford wood-vinegar, wood-tar and charcoal. Yield of wood-vinegar prepared from the treated wood tended to increase, and yield of charcoal indicated opposite tendency, but yield of wood-tar was almost constant. 11 components in wood-vinegar obtained from the Sugi sapwoods after and before treatment were determined by capillary gas chromatography (capillary GC). The change in amounts of methanol, carboxylic acids and 2 - furaldehyde in wood-vinegar from the treated sapwood was observed, but amounts of 5 - hydroxymethyl - 2 - furaldehyde, maltol, phenols, pyrocatechol, and guaiacols were almost constant.

  6. Identification of systemic responses in soybean nodulation by xylem sap feeding and complete transcriptome sequencing reveal a novel component of the autoregulation pathway.

    Science.gov (United States)

    Reid, Dugald E; Hayashi, Satomi; Lorenc, Michal; Stiller, Jiri; Edwards, David; Gresshoff, Peter M; Ferguson, Brett J

    2012-08-01

    Establishment of the nitrogen-fixing nodulation symbiosis between legumes and rhizobia requires plant-wide reprogramming to allow infection and development of nodules. Nodulation is regulated principally via a mechanism called autoregulation of nodulation (AON). AON is dependent on shoot and root factors and is maintained by the nodulation autoregulation receptor kinase (NARK) in soybean. We developed a bioassay to detect root-derived signalling molecules in xylem sap of soybean plants which may function in AON. The bioassay involves feeding of xylem extracts via the cut hypocotyl of soybean seedlings and monitoring of molecular markers of AON in the leaf. Transcript abundance changes occurring in the leaf in response to feeding were used to determine the biological activity of the extracts. To identify transcript abundance changes that occur during AON, which may also be used in the bioassay, we used an RNA-seq-based transcriptomics approach. We identified changes in the leaves of bioassay plants fed with xylem extracts derived from either Bradyrhizobium japonicum-inoculated or uninoculated plants. Differential expression responses were detected for genes involved in jasmonic acid metabolism, pathogenesis and receptor kinase signalling. We identified an inoculation- and NARK-dependent candidate gene (GmUFD1a) that responds in both the bioassay and intact, inoculated plants. GmUFD1a is a component of the ubiquitin-dependent protein degradation pathway and provides new insight into the molecular responses occurring during AON. It may now also be used in our feeding bioassay as a molecular marker to assist in identifying the factors contributing to the systemic regulation of nodulation. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  7. Most water in the tomato truss is imported through the xylem, not the phloem: a nuclear magnetic resonance flow imaging study.

    Science.gov (United States)

    Windt, Carel W; Gerkema, Edo; Van As, Henk

    2009-10-01

    In this study, we demonstrate nuclear magnetic resonance flow imaging of xylem and phloem transport toward a developing tomato (Solanum lycopersicum) truss. During an 8-week period of growth, we measured phloem and xylem fluxes in the truss stalk, aiming to distinguish the contributions of the two transport tissues and draw up a balance between influx and efflux. It is commonly estimated that about 90% of the water reaches the fruit by the phloem and the remaining 10% by the xylem. The xylem is thought to become dysfunctional at an early stage of fruit development. However, our results do not corroborate these findings. On the contrary, we found that xylem transport into the truss remained functional throughout the 8 weeks of growth. During that time, at least 75% of the net influx into the fruit occurred through the external xylem and about 25% via the perimedullary region, which contains both phloem and xylem. About one-half of the net influx was lost due to evaporation. Halfway through truss development, a xylem backflow appeared. As the truss matured, the percentage of xylem water that circulated into the truss and out again increased in comparison with the net uptake, but no net loss of water from the truss was observed. The circulation of xylem water continued even after the fruits and pedicels were removed. This indicates that neither of them was involved in generating or conducting the circulation of sap. Only when the main axis of the peduncle was cut back did the circulation stop.

  8. A low cost apparatus for measuring the xylem hydraulic conductance in plants

    Directory of Open Access Journals (Sweden)

    Luciano Pereira

    2012-01-01

    Full Text Available Plant yield and resistance to drought are directly related to the efficiency of the xylem hydraulic conductance and the ability of this system to avoid interrupting the flow of water. In this paper we described in detail the assembling of an apparatus proposed by TYREE et al. (2002, and its calibration, as well as low cost adaptations that make the equipment accessible for everyone working in this research area. The apparatus allows measuring the conductance in parts of roots or shoots (root ramifications or branches, or in the whole system, in the case of small plants or seedlings. The apparatus can also be used to measure the reduction of conductance by embolism of the xylem vessels. Data on the hydraulic conductance of eucalyptus seedlings obtained here and other reports in the literature confirm the applicability of the apparatus in physiological studies on the relationship between productivity and water stress.

  9. Plant-PET Scans: In Vivo Mapping of Xylem and Phloem Functioning.

    Science.gov (United States)

    Hubeau, Michiel; Steppe, Kathy

    2015-10-01

    Medical imaging techniques are rapidly expanding in the field of plant sciences. Positron emission tomography (PET) is advancing as a powerful functional imaging technique to decipher in vivo the function of xylem water flow (with (15)O or (18)F), phloem sugar flow (with (11)C or (18)F), and the importance of their strong coupling. However, much remains to be learned about how water flow and sugar distribution are coordinated in intact plants, both under present and future climate regimes. We propose to use PET analysis of plants (plant-PET) to visualize and generate these missing data about integrated xylem and phloem transport. These insights are crucial to understanding how a given environment will affect plant physiological processes and growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Comparison of electric and growth responses to excision in cucumber and pea seedlings. II. Long-distance effects are caused by the release of xylem pressure

    Science.gov (United States)

    Stahlberg, R.; Cosgrove, D. J.

    1995-01-01

    Excision of a growing stem causes local wound responses, such as membrane depolarization and growth inhibition, as well as effects at larger distances from the cut. In this study, cucumber hypocotyls were excised 100 mm below the hook, so that the growing region was beyond the reach of the wound-induced depolarization (up to 40 mm). Even at such a distance, the cut still caused a considerable and rapid drop in the hypocotyl growth rate. This growth response is not a direct wound response because it does not result from the cut-induced depolarization and because it can be simulated by root pressure manipulation (using a pressure chamber). The results indicate that the growth response resulted from the rapid release of the xylem pressure upon excision. To test this conclusion we measured the xylem pressure by connecting a pressure probe to the cut surface of the stem. Xylem pressure (Px) was found to be +10 to +40 kPa in cucumber hypocotyls and -5 to -10 kPa or lower in pea epicotyls. Excision of the cucumber hypocotyl base led to a rapid drop in Px to negative values, whereas excision in pea led to a rapid rise in Px to ambient (zero) pressure. These fast and opposite Px changes parallel the excision-induced changes in growth rate (GR): a decrease in cucumber and a rise in pea. The sign of the endogenous xylem pressure also determined whether excision induced a propagating depolarization in the form of a slow wave potential (SWP). Under normal circumstances pea seedlings generated an SWP upon excision whereas cucumber seedlings failed to do so. When the Px in cucumber hypocotyls was experimentally inverted to negative values by incubating the cumber roots in solutions of NaCN or n-ethylmaleimide, excision caused a propagating depolarization (SWP). The experiment shows that only hydraulic signals in the form of positive Px steps are converted into propagating electric SWP signals. These propagating depolarizations might be causally linked to systemic 'wound

  11. Ear Rachis Xylem Occlusion and Associated Loss in Hydraulic Conductance Coincide with the End of Grain Filling for Wheat.

    Science.gov (United States)

    Neghliz, Hayet; Cochard, Hervé; Brunel, Nicole; Martre, Pierre

    2016-01-01

    Seed dehydration is the normal terminal event in the development of orthodox seeds and is physiologically related to the cessation of grain dry mass accumulation and crop grain yield. For a better understanding of grain dehydration, we evaluated the hypothesis that hydraulic conductance of the ear decreases during the latter stages of development and that this decrease results from disruption or occlusion of xylem conduits. Whole ear, rachis, and stem nodes hydraulic conductance and percentage loss of xylem conductivity were measured from flowering to harvest-ripeness on bread wheat (Triticum aestivum L.) cv. Récital grown under controlled environments. Flag leaf transpiration, stomatal conductance, chlorophyll content and grain and ear water potentials were also measured during grain development. We show that grain dehydration was not related with whole plant physiology and leaf senescence, but closely correlated with the hydraulic properties of the xylem conduits irrigating the grains. Indeed, there was a substantial decrease in rachis hydraulic conductance at the onset of the grain dehydration phase. This hydraulic impairment was not caused by the presence of air embolism in xylem conduits of the stem internodes or rachis but by the occlusion of the xylem lumens by polysaccharides (pectins and callose). Our results demonstrate that xylem hydraulics plays a key role during grain maturation.

  12. Antifungal and cytotoxicity activities of the fresh xylem sap of Hymenaea courbaril L. and its major constituent fisetin.

    Science.gov (United States)

    da Costa, Maysa Paula; Bozinis, Marize Campos Valadares; Andrade, Wanessa Machado; Costa, Carolina Rodrigues; da Silva, Alessandro Lopes; Alves de Oliveira, Cecília Maria; Kato, Lucília; Fernandes, Orionalda de Fátima Lisboa; Souza, Lúcia Kioko Hasimoto; Silva, Maria do Rosário Rodrigues

    2014-07-16

    The great potential of plants as Hymenaea courbaril L (jatoba) has not yet been throughly explored scientifically and therefore it is very important to investigate their pharmacological and toxicological activities to establish their real efficacy and safety. This study investigated the cytotoxicity of xylem sap of Hymenaea courbaril L and its bioactivity against the fungi Cryptococcus neoformans species complex and dermatophytes. The fresh xylem sap of H. courbaril was filtered resulting in an insoluble brown color precipitate and was identified as fisetin. In the filtrate was identified the mixture of fisetinediol, fustin, 3-O-methyl-2,3-trans-fustin and taxifolin, which were evaluated by broth microdilution antifungal susceptibility testing against C. neoformans species complex and dermatophytes. The fresh xylem sap and fisetin were screened for cytotoxicity against the 3T3-A31 cells of Balb/c using neutral red uptake (NRU) assay. The fresh xylem sap and the fisetin showed higher in vitro activity than the filtrate. The xylem sap of H. courbaril inhibited the growth of dermatophytes and of C. neoformans with minimal inhibition concentration (MIC) fisetin showed MIC Fisetin showed lower toxicity (IC50 = 158 μg/mL) than the fresh xylem sap (IC50 = 109 μg/mL). Naturally occurring fisetin can provide excellent starting points for clinical application and can certainly represent a therapeutic potential against fungal infections, because it showed in vitro antifungal activity and low toxicity on animal cells.

  13. Promoter Deletion Analysis of Xylem Cysteine Protease 2 (XCP2) in Arabidopsis thaliana

    OpenAIRE

    Petzold III, Herman Earl

    2007-01-01

    The process of xylem tracheary element differentiation involves the coordination of vascular cambium activity, cell fate determination, cell expansion/elongation, secondary wall synthesis, programmed cell death, and cellular autolysis. The end result of tracheary element differentiation is a cellular corpse lacking a protoplast and consisting of a thickened cell wall composed mostly of lignin and cellulose. Little is known about the genetic mechanisms regulating the process of tracheary ele...

  14. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.

    Science.gov (United States)

    Hajek, Peter; Leuschner, Christoph; Hertel, Dietrich; Delzon, Sylvain; Schuldt, Bernhard

    2014-07-01

    Trees face the dilemma that achieving high plant productivity is accompanied by a risk of drought-induced hydraulic failure due to a trade-off in the trees' vascular system between hydraulic efficiency and safety. By investigating the xylem anatomy of branches and coarse roots, and measuring branch axial hydraulic conductivity and vulnerability to cavitation in 4-year-old field-grown aspen plants of five demes (Populus tremula L. and Populus tremuloides Michx.) differing in growth rate, we tested the hypotheses that (i) demes differ in wood anatomical and hydraulic properties, (ii) hydraulic efficiency and safety are related to xylem anatomical traits, and (iii) aboveground productivity and hydraulic efficiency are negatively correlated to cavitation resistance. Significant deme differences existed in seven of the nine investigated branch-related anatomical and hydraulic traits but only in one of the four coarse-root-related anatomical traits; this likely is a consequence of high intra-plant variation in root morphology and the occurrence of a few 'high-conductivity roots'. Growth rate was positively related to branch hydraulic efficiency (xylem-specific conductivity) but not to cavitation resistance; this indicates that no marked trade-off exists between cavitation resistance and growth. Both branch hydraulic safety and hydraulic efficiency significantly depended on vessel size and were related to the genetic distance between the demes, while the xylem pressure causing 88% loss of hydraulic conductivity (P88 value) was more closely related to hydraulic efficiency than the commonly used P50 value. Deme-specific variation in the pit membrane structure may explain why vessel size was not directly linked to growth rate. We conclude that branch hydraulic efficiency is an important growth-influencing trait in aspen, while the assumed trade-off between productivity and hydraulic safety is weak.

  15. Components in Wood-vinegar of Sugi ( Cryptomeria Japonica D. Don) Sapwood%柳杉木材边材木醋液中的成分研究

    Institute of Scientific and Technical Information of China (English)

    魏立纲; 鲁保旺; 马英冲; 李中原

    2011-01-01

    Thirty-seven components in wood-vinegar obtained from the carbonization of sugi sapwood were determined by capillary gas chromatography(GC).The results showed that main components in sugi wood-vinegar were methanol,ketones, carboxylic cids,furans,phenols and guaiacols.The methods of solvent extraction and silica gel column chromatography were used to further investigate the unknown components in the wood-vinegar.The chiral levoglucosan(LGA,1,6-anhydroβ-D-glucose) as an unknown component was isolated form sugi wood-vinegar, which was not able to be detected by the capillaryGC. 60.5 g LGA can be separated from 150 mL sugi wood-vinegar.The pathway of the formation of major components in sugiwood-vinegar was also analyzed and discussed.%用毛细管气相色谱法对日本柳杉木材边材炭化得到的木醋液中的37种成分进行定性和定量分析.结果表明,醇类、酮类、羧酸类、呋喃类、苯酚类及愈创苯酚类是其主要成分.用溶剂萃取-硅胶柱层析法进一步分离处理木醋液,纯化出炭化过程中产生的手性脱水内醚糖-左旋葡聚糖(LGA,1,6-脱水-β-D-葡萄糖),但其不能被毛细管气相色谱法检测出.从150 mL木醋液中可分离纯化出60.5 mg LGA.另外,对木醋液中主要成分的生成路线也进行了分析和讨论.

  16. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions.

    Science.gov (United States)

    Ghuge, Sandip A; Tisi, Alessandra; Carucci, Andrea; Rodrigues-Pousada, Renato A; Franchi, Stefano; Tavladoraki, Paraskevi; Angelini, Riccardo; Cona, Alessandra

    2015-07-14

    Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H₂O₂) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H₂O₂ biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H₂O₂ derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  17. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species.

    Science.gov (United States)

    Christensen-Dalsgaard, Karen K; Tyree, Melvin T; Mussone, Paolo G

    2011-04-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus aucuparia over 3 months. We measured the instantaneous surface tension and followed changes over a period of 0.5-5 h using the pendant drop technique. In all three species the instantaneous surface tension was equal to or within a few percent of that of pure water. Further, in B. papyrifera and S. aucuparia the change over time following drop establishment, although significant, was very small. In P. tremuloides, however, there was a steep decline in surface tension over time that leveled off towards values 21-27% lower than that of pure water. This indicated the presence of surfactants. The values were lower for thinner distal branch segments than for proximal ones closer to the trunk. In some species it appears valid to assume that the surface tension of xylem sap is equal to that of water. However, in branch segments of P. tremuloides close to the terminal bud and hence potentially in other species as well, it may be necessary to take into account the presence of surfactants that reduce the surface tension over time.

  18. Free amino acids in the xylem sap of pear trees during dormancy

    Directory of Open Access Journals (Sweden)

    Anderson Carlos Marafon

    2016-01-01

    Full Text Available ABSTRACT: Storage and remobilization are considered key processes for the effective use of nitrogen in temperate fruit trees. As dormancy begins, storage proteins are synthesized, coinciding with a reduction in the levels of free amino acids. Consequently, as dormancy breaks, these storage proteins are degraded, and an increase in the concentrations of amino acids occurs, in order to support new growth. The objective of this study was to evaluate water content of different vegetative tissues (buds, bark, and bole wood, volume of xylem sap, and free amino acid concentrations of xylem sap, during winter dormancy of Hosui Japanese pear trees (VL. Plant material was obtained from the Embrapa Temperate Climate experimental orchard at Pelotas, in the state of Rio Grande do Sul, Brazil. Xylem sap was extracted from the branches with the aid of a vacuum pump, and the free amino acids were determined by gas chromatography, using the EZ kit: Faast GC/FID (Phenomenex. Water content of buds, as well as the volume of sap and concentrations of both aspartic acid and asparagine, substantially increased over time, reaching maximum values in the phase preceding sprouting.

  19. Response of xylem-feeding leafhopper to host plant species and plant quality.

    Science.gov (United States)

    Rossi, A M; Brodbeck, B V; Strong, D R

    1996-04-01

    Carneocephala floridana, an oligophagous leafhopper that inhabits the salt marshes along the coasts of Florida, utilizesBorrichia frutescens andSalicornia virginica (both herbs) as primary summer hosts, but uses two grasses,Distichlis spicata andSpartina alterniflora, during the winter. We tested whether the seasonal patterns of abundance and apparent host-switching byCarneocephala are related to plant quality. In laboratory experiments, nymphs ofCarneocephala reared on nonfertilized control plants of the two herbs produced adults that were similar in size to field-collected insects. OnlyCarneocephala raised at the lowest densities onSpartina andDistichlis from the highest fertilizer treatments produced adults similar in body mass to those reared on nonfertilizedBorrichia andSalicornia. ForDistichlis, superior quality (high foliar nitrogen) plants were able to mitigate the negative effect of nymphal crowding on adult body mass. However, laboratory fertilization regimes produced an extremely high foliar nitrogen content in the two herbs and the organic acid concentration in the xylem fluid ofBorrichia, the only host species suitable for xylem fluid extraction, increased 2.5- to 3-fold. Total amino acid concentration in the xylem fluid of fertilizedBorrichia decreased compared to nonfertilized plants.Carneocephala demonstrated reduced feeding efficiencies on high nitrogenBorrichia. Our results suggest thatCarneocephala prefers, and performs better on, plants with high nitrogen content up to a threshold, beyond which high nitrogen levels result in reduced leafhopper feeding rates and assimilation efficiencies.

  20. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens.

    Science.gov (United States)

    Kozhevnikova, Anna D; Seregin, Ilya V; Erlikh, Nadezhda T; Shevyreva, Taisiya A; Andreev, Igor M; Verweij, Rudo; Schat, Henk

    2014-07-01

    Histidine plays a crucial role in nickel (Ni) translocation in Ni-hyperaccumulating plants. Here, we investigated its role in zinc (Zn) translocation in four accessions of the Zn hyperaccumulator, Noccaea caerulescens, using the related non-hyperaccumulator, Thlaspi arvense, as a reference. We compared the effects of exogenous histidine supply on Zn xylem loading, and of Zn-histidine complex formation on Zn uptake in energized tonoplast vesicles. The Zn distribution patterns over root tissues were also compared. Exogenous histidine supply enhanced Zn xylem loading in all the N. caerulescens accessions, but decreased it in T. arvense. Zn distribution patterns over root tissues were similar, apart from the accumulation in cortical and endodermal cells, which was much lower in N. caerulescens than in T. arvense. Zn uptake in energized tonoplast vesicles was inhibited significantly in N. caerulescens, but not affected significantly in T. arvense, when Zn was supplied in combination with histidine in a 1:2 molar ratio. Histidine-mediated Zn xylem loading seems to be a species-wide character in N. caerulescens. It may well have evolved as a component trait of the hyperaccumulation machinery for Zn, rather than for Ni. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  1. Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in Elms (Ulmus spp..

    Directory of Open Access Journals (Sweden)

    Juan A Martín

    Full Text Available Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp. trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

  2. Drought increases freezing tolerance of both leaves and xylem of Larrea tridentata.

    Science.gov (United States)

    Medeiros, Juliana S; Pockman, William T

    2011-01-01

    Drought and freezing are both known to limit desert plant distributions, but the interaction of these stressors is poorly understood. Drought may increase freezing tolerance in leaves while decreasing it in the xylem, potentially creating a mismatch between water supply and demand. To test this hypothesis, we subjected Larrea tridentata juveniles grown in a greenhouse under well-watered or drought conditions to minimum temperatures ranging from -8 to -24 °C. We measured survival, leaf retention, gas exchange, cell death, freezing point depression and leaf-specific xylem hydraulic conductance (k₁). Drought-exposed plants exhibited smaller decreases in gas exchange after exposure to -8 °C compared to well-watered plants. Drought also conferred a significant positive effect on leaf, xylem and whole-plant function following exposure to -15 °C; drought-exposed plants exhibited less cell death, greater leaf retention, higher k₁ and higher rates of gas exchange than well-watered plants. Both drought-exposed and well-watered plants experienced 100% mortality following exposure to -24 °C. By documenting the combined effects of drought and freezing stress, our data provide insight into the mechanisms determining plant survival and performance following freezing and the potential for shifts in L. tridentata abundance and range in the face of changing temperature and precipitation regimes.

  3. X-ray CT and histological imaging of xylem vessels organization in Mimosa pudica.

    Science.gov (United States)

    Lee, Sang Joon; Song, Kahye; Kim, Hae Koo; Park, Joonghyuk

    2013-11-01

    Mimosa pudica has three distinct specialized organs, namely, pulvinus, secondary pulvinus, and pulvinule, which are respectively controlling the movements of petioles, leaflets, and pinna in response to external stimuli. Water flow is a key factor for such movements, but detailed studies on the organization of the vascular system for water transport in these organs have not been published yet. In this study, organizations of the xylem vessels and morphological features of the pulvinus, the secondary pulvinus, and the pulvinule were experimentally investigated by X-ray computed tomography and histological technique. Results showed that the xylem vessels were circularly distributed in the specialized motile organs and reorganized into distinct vascular bundles at the extremities. The number and the total cross-sectional area of the xylem vessels were increased inside the specialized motile organs. Morphological characteristics obtained in this study provided new insight to understand the functions of the vascular networks in the dynamic movements of M. pudica. Copyright © 2013 Wiley Periodicals, Inc.

  4. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions

    Directory of Open Access Journals (Sweden)

    Sandip A. Ghuge

    2015-07-01

    Full Text Available Polyamines (PAs are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs, including copper amine oxidases (CuAOs and flavin adenine dinucleotide (FAD-dependent polyamine oxidases (PAOs. The biologically-active hydrogen peroxide (H2O2 is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  5. Curios relationship revealed by looking at long term data sets-The geometry and allometric scaling of diel xylem sap flux in tropical trees.

    Science.gov (United States)

    Kunert, Norbert

    2016-10-20

    Daily xylem sap flux values (daily Js) and maximum xylem sap flux values (max Js) from 125 tropical trees from different study sites in the Neotropics were compared. A cross species and study site relationship was found between daily and maximum values. The relationship can be expressed as daily Js=6.5x max Js. The geometrical relationship between the maximum xylem sap flux of a given day is thus defining the daily xylem sap flux rates. Assuming a bell-shaped diurnal sap flux course and a relatively constant day length the maximum xylem sap flux is the only possible changing variable to define daily fluxes. Further, this relationship is showing the inertia of the xylem sap flux as a physical object and highlights the delayed response to environmental changes and its subsequent inevitable susceptibility under environmental stress to hydraulic failure. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms.

    Science.gov (United States)

    Nairn, C Joseph; Haselkorn, Tamara

    2005-06-01

    Specific plant cellulose synthases (CesA), encoded by a multigene family, are necessary for secondary wall synthesis in vascular tissues and are critical to wood production. We obtained full-length clones for the three CesAs that are highly expressed in developing xylem and examined their phylogenetic relationships and expression patterns in loblolly pine tissues. Full-length CesA clones were isolated from cDNA of developing loblolly pine (Pinus taeda) xylem and phylogenetic inferences made from plant CesA protein sequences. Expression of the three genes was examined by Northern blot analysis and semiquantitative RT-PCR. Each of three PtCesA genes is orthologous to one of the three angiosperm secondary cell wall CesAs. The PtCesAs are coexpressed in tissues of loblolly pine with tissues undergoing secondary cell wall biosynthesis showing the highest levels of expression. Phylogenetic and expression analyses suggest that functional roles for these loblolly pine CesAs are analogous to those of orthologs in angiosperm taxa. Based upon evidence from this and other studies, we suggest division of seed plant CesA genes into six major paralogous groups, each containing orthologs from various taxa. Available evidence suggests that paralogous CesA genes and their distinct functional roles evolved before the divergence of gymnosperm and angiosperm lineages.

  7. Transport of Nitrogen Assimilation in Xylem Vessels of Green Tea Plants Fed with NH4-N and NO3-N

    Institute of Scientific and Technical Information of China (English)

    K.OH; T.KATO; H.L.XU

    2008-01-01

    An experiment was carried out to study the transport process of nitrogen (N) assimilation from tea roots by monitoring the dynamic composition of N compounds in xylem sap after 15N-NO3 and 15N-NH4 were fed to the root of tea plants (Camellia sinensis L.).Results showed that the main amino acids were glutamine,theanine,arginine,asparic acid and glutamic acid,which accounted for 49e/0,17%,8%,7%,and 4%,respectively,of the total amino acids in the xylem sap.After the tea plants were fed with 15N-NO3 and 15N-NH4 for 48 h,the amount of total amino acids in xylem sap significantly increased and those fed with 15N-NH4 had higher increment than those with 15N-NO3.Two hours after 15N-NO3 and 15N-NH4 were fed,15N abundance in glutamine,asparagine,glutaxnic acid,aianine,and arginine were detected and increased quickly over time.This indicated that it took less than 2 h for NO3-N and NH4-N to be absorbed by tea roots,incorporated into the above amino acids and transported to the xylem sap.Rapid increase in 15N-NO3 in the xylem sap of tea plants fed with 15N-NO3 indicated that nitrate could be directly transported to the xylem sap.Glutamine,theanine,and alanine were the main amino acids transported in xylem sap of tea plants fed with both 15N-NO3 and 15N-NH4.

  8. Coordination and transport of water and carbohydrates in the coupled soil-root-xylem-phloem leaf system

    Science.gov (United States)

    Katul, Gabriel; Huang, Cheng-Wei

    2017-04-01

    In response to varying environmental conditions, stomatal pores act as biological valves that dynamically adjust their size thereby determining the rate of CO2 assimilation and water loss (i.e., transpiration) to the atmosphere. Although the significance of this biotic control on gas exchange is rarely disputed, representing parsimoniously all the underlying mechanisms responsible for stomatal kinetics remain a subject of some debate. It has been conjectured that stomatal control in seed plants (i.e., angiosperm and gymnosperm) represents a compromise between biochemical demand for CO2 and prevention of excessive water loss. This view has been amended at the whole-plant level, where xylem hydraulics and sucrose transport efficiency in phloem appear to impose additional constraints on gas exchange. If such additional constraints impact stomatal opening and closure, then seed plants may have evolved coordinated photosynthetic-hydraulic-sugar transporting machinery that confers some competitive advantages in fluctuating environmental conditions. Thus, a stomatal optimization model that explicitly considers xylem hydraulics and maximum sucrose transport is developed to explore this coordination in the leaf-xylem-phloem system. The model is then applied to progressive drought conditions. The main findings from the model calculations are that (1) the predicted stomatal conductance from the conventional stomatal optimization theory at the leaf and the newly proposed models converge, suggesting a tight coordination in the leaf-xylem-phloem system; (2) stomatal control is mainly limited by the water supply function of the soil-xylem hydraulic system especially when the water flux through the transpiration stream is significantly larger than water exchange between xylem and phloem; (3) thus, xylem limitation imposed on the supply function can be used to differentiate species with different water use strategy across the spectrum of isohydric to anisohydric behavior.

  9. Phloem as Capacitor: Radial Transfer of Water into Xylem of Tree Stems Occurs via Symplastic Transport in Ray Parenchyma[OPEN

    Science.gov (United States)

    Renard, Justine; Tjoelker, Mark G.; Salih, Anya

    2015-01-01

    The transfer of water from phloem into xylem is thought to mitigate increasing hydraulic tension in the vascular system of trees during the diel cycle of transpiration. Although a putative plant function, to date there is no direct evidence of such water transfer or the contributing pathways. Here, we trace the radial flow of water from the phloem into the xylem and investigate its diel variation. Introducing a fluorescent dye (0.1% [w/w] fluorescein) into the phloem water of the tree species Eucalyptus saligna allowed localization of the dye in phloem and xylem tissues using confocal laser scanning microscopy. Our results show that the majority of water transferred between the two tissues is facilitated via the symplast of horizontal ray parenchyma cells. The method also permitted assessment of the radial transfer of water during the diel cycle, where changes in water potential gradients between phloem and xylem determine the extent and direction of radial transfer. When injected during the morning, when xylem water potential rapidly declined, fluorescein was translocated, on average, farther into mature xylem (447 ± 188 µm) compared with nighttime, when xylem water potential was close to zero (155 ± 42 µm). These findings provide empirical evidence to support theoretical predictions of the role of phloem-xylem water transfer in the hydraulic functioning of plants. This method enables investigation of the role of phloem tissue as a dynamic capacitor for water storage and transfer and its contribution toward the maintenance of the functional integrity of xylem in trees. PMID:25588734

  10. Xylella fastidiosa Infection and Ethylene Exposure Result in Xylem and Water Movement Disruption in Grapevine Shoots1[OA

    Science.gov (United States)

    Pérez-Donoso, Alonso G.; Greve, L. Carl; Walton, Jeffrey H.; Shackel, Ken A.; Labavitch, John M.

    2007-01-01

    It is conventionally thought that multiplication of the xylem-limited bacterium Xylella fastidiosa (Xf) within xylem vessels is the sole factor responsible for the blockage of water movement in grapevines (Vitis vinifera) affected by Pierce's disease. However, results from our studies have provided substantial support for the idea that vessel obstructions, and likely other aspects of the Pierce's disease syndrome, result from the grapevine's active responses to the presence of Xf, rather than to the direct action of the bacterium. The use of magnetic resonance imaging (MRI) to observe the distribution of water within the xylem has allowed us to follow nondestructively the development of vascular system obstructions subsequent to inoculation of grapevines with Xf. Because we have hypothesized a role for ethylene produced in vines following infection, the impact of vine ethylene exposure on obstruction development was also followed using MRI. In both infected and ethylene-exposed plants, MRI shows that an important proportion of the xylem vessels become progressively air embolized after the treatments. The loss of xylem water-transporting function, assessed by MRI, has been also correlated with a decrease in stem-specific hydraulic conductivity (KS) and the presence of tyloses in the lumens of obstructed water conduits. We have observed that the ethylene production of leaves from infected grapevines is greater than that from healthy vines and, therefore, propose that ethylene may be involved in a series of cellular events that coordinates the vine's response to the pathogen. PMID:17189331

  11. Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: cavitation and deformation of xylem in forest fires.

    Science.gov (United States)

    Michaletz, S T; Johnson, E A; Tyree, M T

    2012-04-01

    • It is widely assumed that post-fire tree mortality results from necrosis of phloem and vascular cambium in stems, despite strong evidence that reduced xylem conductivity also plays an important role. • In this study, experiments with Populus balsamifera were used to demonstrate two mechanisms by which heat reduces the hydraulic conductivity of xylem: air seed cavitation and conduit wall deformation. Heat effects on air seed cavitation were quantified using air injection experiments that isolate potential temperature-dependent changes in sap surface tension and pit membrane pore diameters. Heat effects on conduit wall structure were demonstrated using air conductivity measurements and light microscopy. • Heating increased vulnerability to cavitation because sap surface tension varies inversely with temperature. Heating did not affect cavitation via changes in pit membrane pore diameters, but did cause significant reductions in xylem air conductivity that were associated with deformation of conduit walls (probably resulting from thermal softening of viscoelastic cell wall polymers). • Additional work is required to understand the relative roles of cavitation and deformation in the reduction of xylem conductivity, and how reduced xylem conductivity in roots, stems, and branches correlates and interacts with foliage and root necroses to cause tree mortality. Future research should also examine how heat necrosis of ray parenchyma cells affects refilling of embolisms that occur during and after the fire event. © No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.

  12. Relax and refill: xylem rehydration prior to hydraulic measurements favours embolism repair in stems and generates artificially low PLC values.

    Science.gov (United States)

    Trifilò, Patrizia; Raimondo, Fabio; Lo Gullo, Maria A; Barbera, Piera M; Salleo, Sebastiano; Nardini, Andrea

    2014-11-01

    Diurnal changes in percentage loss of hydraulic conductivity (PLC), with recorded values being higher at midday than on the following morning, have been interpreted as evidence for the occurrence of cycles of xylem conduits' embolism and repair. Recent reports have suggested that diurnal PLC changes might arise as a consequence of an experimental artefact, that is, air entry into xylem conduits upon cutting stems, even if under water, while under substantial tension generated by transpiration. Rehydration procedures prior to hydraulic measurements have been recommended to avoid this artefact. In the present study, we show that xylem rehydration prior to hydraulic measurements might favour xylem refilling and embolism repair, thus leading to PLC values erroneously lower than those actually experienced by transpiring plants. When xylem tension relaxation procedures were performed on stems where refilling mechanisms had been previously inhibited by mechanical (girdling) or chemical (orthovanadate) treatment, PLC values measured in stems cut under native tension were the same as those measured after sample rehydration/relaxation. Our data call for renewed attention to the procedures of sample collection in the field and transport to the laboratory, and suggest that girdling might be a recommendable treatment prior to sample collection for PLC measurements.

  13. Spatial and temporal variability of xylan distribution in differentiating secondary xylem of hybrid aspen.

    Science.gov (United States)

    Kim, Jong Sik; Sandquist, David; Sundberg, Björn; Daniel, Geoffrey

    2012-06-01

    Xylans occupy approximately one-third of the cell wall components in hardwoods and their chemical structures are well understood. However, the microdistribution of xylans (O-acetyl-4-O-methylglucuronoxylans, AcGXs) in the cell wall and their correlation with functional properties of cells in hardwood xylem is poorly understood. We demonstrate here the spatial and temporal distribution of xylans in secondary xylem cells of hybrid aspen using immunolocalization with LM10 and LM11 antibodies. Xylan labeling was detected earliest in fibers at the cell corner of the S₁ layer, and then later in vessels and ray cells respectively. Fibers showed a heterogeneous labeling pattern in the mature cell wall with stronger labeling of low substituted xylans (lsAcGXs) in the outer than inner cell wall. In contrast, vessels showed uniform labeling in the mature cell wall with stronger labeling of lsAcGXs than fibers. Xylan labeling in ray cells was detected much later than that in fibers and vessels, but was also detected at the beginning of secondary cell wall formation as in fibers and vessels with uniform labeling in the cell wall regardless of developmental stage. Interestingly, pit membranes including fiber-, vessel- and ray-vessel pits showed strong labeling of highly substituted xylans (hsAcGXs) during differentiation, although this labeling gradually disappeared during pit maturation. Together our observations indicate that there are temporal and spatial variations of xylan deposition and chemical structure of xylans between cells in aspen xylem. Differences in xylan localization between aspen (hardwood) and cedar (softwood) are also discussed.

  14. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species.

    Science.gov (United States)

    López-Portillo, Jorge; Ewers, Frank W; Méndez-Alonzo, Rodrigo; Paredes López, Claudia L; Angeles, Guillermo; Alarcón Jiménez, Ana Luisa; Lara-Domínguez, Ana Laura; Torres Barrera, María Del Carmen

    2014-06-01

    • Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na(+), K(+), and Cl(-)), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution. © 2014 Botanical Society of America, Inc.

  15. Nutrient mediation of behavioral plasticity and resource allocation in a xylem-feeding leafhopper.

    Science.gov (United States)

    Brodbeck, Brent V; Andersen, Peter C; Mizell, Russell F

    2011-01-01

    Phenotypic plasticity may be critical for nutrient-limited organisms that allocate ingested nutrients to the competing demands of reproduction and survivorship. Leafhoppers that feed on xylem fluid allow assessment of plasticity in response to the constant selective pressure of nutritional inadequacy. We examined feeding behavior (host selection and consumption rates) and nutrient allocation (fecundity, change in body mass and composition) of the xylem fluid-feeding leafhopper Homalodisca vitripennis (Hemiptera:Cicadellidae) on ten genotypes of related Prunus germplasm when adults first seasonally appear, and later during population peaks, to examine the effects of genotypes and season on plasticity of life history and behavioral traits. Behavior and resource allocation to life history traits were both mediated by xylem nutrients, although nutrients impacting behavior differed from those mediating life history. Host selection and consumption varied with genotype between June and July, yet behavior consistently reflected concentrations of dietary glutamine. Resource allocations also increased linearly with nutrient concentrations, but were best correlated to ingested essential amino acids rather than glutamine. Body mass and composition were highly correlated to dietary essential amino acids in June; 6 weeks later, fecundity was instead proportional to essential amino acids. The discrepancy in nutrients which impact behavior versus those mediating life history may explain the weak preference-performance linkage documented for many insects. The demarcation in allocating resources to biomass in June to fecundity in July suggests increased allocation to reproduction during periods of nutrient stress as predicted by the theory of optimal resource allocation; other contributing biotic and abiotic factors are also discussed.

  16. Increase of xylan synthetase activity during xylem differentiation of the vascular cambium of sycamore and poplar trees.

    Science.gov (United States)

    Dalessandro, G; Northcote, D H

    1981-01-01

    The activity of a β-(1-4)-xylan synthetase, a membrane-bound enzymic system, was measured in particulate enzymic preparations (1,000 g and 1,000-100,000 g pellets) obtained from homogenates of cambial cells, differentiating xylem cells and differentiated xylem cells isolated from actively growing trees of sycamore (Acer pseudoplatamus) and poplar (Populus robusta). The specific activity (nmol of xylan formed min(-1) mg(-1) of protein) as well as the activity calculated on a per cell basis (nmol of xylan formed min(-1) cell(-1)) of this enzymic system, markedly increased as cells differentiate from the vascular cambium to xylem. This increase is closely correlated with the enhanced deposition of xylan occurring during the formation of secondary thickening. The possible control of xylan synthesis during the biogenesis of plant cell wall is discussed.

  17. Coping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens.

    Science.gov (United States)

    Trifilò, Patrizia; Barbera, Piera M; Raimondo, Fabio; Nardini, Andrea; Lo Gullo, Maria A

    2014-02-01

    Embolism repair and ionic effects on xylem hydraulic conductance have been documented in different tree species. However, the diurnal and seasonal patterns of both phenomena and their actual role in plants' responses to drought-induced xylem cavitation have not been thoroughly investigated. This study provides experimental evidence of the ability of three Mediterranean species to maintain hydraulic function under drought stress by coordinating the refilling of xylem conduits and ion-mediated enhancement of stem hydraulic conductance (K stem). Vessel grouping indices and starch content in vessel-associated parenchyma cells were quantified to verify eventual correlations with ionic effects and refilling, respectively. Experiments were performed on stems of Ceratonia siliqua L., Olea europaea L. and Laurus nobilis L. Seasonal, ion-mediated changes in K stem (ΔK stem) and diurnal and/or seasonal embolism repair were recorded for all three species, although with different temporal patterns. Field measurements of leaf specific stem hydraulic conductivity showed that it remained quite constant during the year, despite changes in the levels of embolism. Starch content in vessel-associated parenchyma cells changed on diurnal and seasonal scales in L. nobilis and O. europaea but not in C. siliqua. Values of ΔK stem were significantly correlated with vessel multiple fraction values (the ratio of grouped vessels to total number of vessels). Our data suggest that the regulation of xylem water transport in Mediterranean plants relies on a close integration between xylem refilling and ionic effects. These functional traits apparently play important roles in plants' responses to drought-induced xylem cavitation.

  18. Lotus tenuis tolerates the interactive effects of salinity and waterlogging by 'excluding' Na+ and Cl- from the xylem.

    Science.gov (United States)

    Teakle, Nl; Flowers, Tj; Real, D; Colmer, Td

    2007-01-01

    Salinity and waterlogging interact to reduce growth of poorly adapted species by, amongst other processes, increasing the rate of Na(+) and Cl(-) transport to shoots. Xylem concentrations of these ions were measured in sap collected using xylem-feeding spittlebugs (Philaenus spumarius) from Lotus tenuis and Lotus corniculatus in saline (NaCl) and anoxic (stagnant) treatments. In aerated NaCl solution (200 mM), L. corniculatus had 50% higher Cl(-) concentrations in the xylem and shoot compared with L. tenuis, whereas concentrations of Na(+) and K(+) did not differ between the species. In stagnant-plus-NaCl solution, xylem Cl(-) and Na(+) concentrations of L. corniculatus increased to twice those of L. tenuis. These differences in xylem ion concentrations, which were not caused by variation in transpiration between the two species, contributed to lower net accumulation of Na(+) and Cl(-) in shoots of L. tenuis, indicating that ion transport mechanisms in roots of L. tenuis were contributing to better 'exclusion' of Cl(-) and Na(+) from shoots, compared with L. corniculatus. Root porosity was also higher in L. tenuis, due to constitutive aerenchyma, than in L. corniculatus, suggesting that enhanced root aeration contributed to the maintenance of Na(+) and Cl(-) 'exclusion' in L. tenuis exposed to stagnant-plus-NaCl treatment. Lotus tenuis also had greater dry mass than L. corniculatus after 56 d in NaCl or stagnant-plus-NaCl treatment. Thus, Cl(-) 'exclusion' is a key trait contributing to salt tolerance of L. tenuis, and 'exclusion' of both Cl(-) and Na(+) from the xylem enables L. tenuis to tolerate, better than L. corniculatus, the interactive stresses of salinity and waterlogging.

  19. The amino acid distribution in rachis xylem sap and phloem exudate of Vitis vinifera 'Cabernet Sauvignon' bunches.

    Science.gov (United States)

    Gourieroux, Aude M; Holzapfel, Bruno P; Scollary, Geoffrey R; McCully, Margaret E; Canny, Martin J; Rogiers, Suzy Y

    2016-08-01

    Amino acids are essential to grape berry and seed development and they are transferred to the reproductive structures through the phloem and xylem from various locations within the plant. The diurnal and seasonal dynamics of xylem and phloem amino acid composition in the leaf petiole and bunch rachis of field-grown Cabernet Sauvignon are described to better understand the critical periods for amino acid import into the berry. Xylem sap was extracted by the centrifugation of excised leaf petioles and rachises, while phloem exudate was collected by immersing these structures in an ethylenediaminetetraacetic acid (EDTA) buffer. Glutamine and glutamic acid were the predominant amino acids in the xylem sap of both grapevine rachises and petioles, while arginine and glycine were the principal amino acids of the phloem exudate. The amino acid concentrations within the xylem sap and phloem exudate derived from these structures were greatest during anthesis and fruit set, and a second peak occurred within the rachis phloem at the onset of ripening. The concentrations of the amino acids within the phloem and xylem sap of the rachis were highest just prior to or after midnight while the flow of sugar through the rachis phloem was greatest during the early afternoon. Sugar exudation rates from the rachis was greater than that of the petiole phloem between anthesis and berry maturity. In summary, amino acid and sugar delivery through the vasculature to grape berries fluctuates over the course of the day as well as through the season and is not necessarily related to levels near the source. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Functional ratios among leaf, xylem and phloem areas in branches change with shade tolerance, but not with local light conditions, across temperate tree species

    NARCIS (Netherlands)

    Zhang, Lan; Copini, Paul; Weemstra, Monique; Sterck, Frank

    2016-01-01

    Leaf, xylem and phloem areas drive the water and carbon fluxes within branches and trees, but their mutual coordination is poorly understood. We test the hypothesis that xylem and phloem areas increase relative to leaf area when species are selected for, or branches are exposed to, higher levels

  1. MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco

    NARCIS (Netherlands)

    Windt, C.W.; Vergeldt, F.J.; Jager, de P.A.; As, van H.

    2006-01-01

    We used dedicated magnetic resonance imaging (MRI) equipment and methods to study phloem and xylem transport in large potted plants. Quantitative flow profiles were obtained on a per-pixel basis, giving parameter maps of velocity, flow-conducting area and volume flow (flux). The diurnal xylem and

  2. Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots.

    Science.gov (United States)

    Ernst, Laura; Goodger, Jason Q D; Alvarez, Sophie; Marsh, Ellen L; Berla, Bert; Lockhart, Eric; Jung, Jiyul; Li, Pinghua; Bohnert, Hans J; Schachtman, Daniel P

    2010-07-01

    Recent reports suggest that early sensing of soil water stress by plant roots and the concomitant reduction in stomatal conductance may not be mediated by root-sourced abscisic acid (ABA), but that other xylem-borne chemicals may be the primary stress signal(s). To gain more insight into the role of root-sourced ABA, the timing and location of the expression of genes for key enzymes involved in ABA biosynthesis in Zea mays roots was measured and a comprehensive analysis of root xylem sap constituents from the early to the later stages of water stress was conducted. Xylem sap and roots were sampled from plants at an early stage of water stress when only a reduction in leaf conductance was measured, as well as at later stages when leaf xylem pressure potential decreased. It was found that the majority of ABA biosynthetic genes examined were only significantly expressed in the elongation region of roots at a later stage of water stress. Apart from ABA, sulphate was the only xylem-borne chemical that consistently showed significantly higher concentrations from the early to the later stages of stress. Moreover, there was an interactive effect of ABA and sulphate in decreasing maize transpiration rate and Vicia faba stomatal aperture, as compared to ABA alone. The expression of a sulphate transporter gene was also analysed and it was found that it had increased in the elongation region of roots from the early to the later stages of water stress. Our results support the suggestion that in the early stage of water stress, increased levels of ABA in xylem sap may not be due to root biosynthesis, ABA glucose ester catabolism or pH-mediated redistribution, but may be due to shoot biosynthesis and translocation to the roots. The analysis of xylem sap mineral content and bioassays indicate that the anti-transpirant effect of the ABA reaching the stomata at the early stages of water stress may be enhanced by the increased concentrations of sulphate in the xylem which is also

  3. Effect of root pruning and irrigation regimes on leaf water relations and xylem ABA and ionic concentrations in pear trees

    DEFF Research Database (Denmark)

    Wang, Yufei; Bertelsen, Marianne G.; Petersen, Karen Koefoed

    2014-01-01

    relation characteristics, stomatal conductance and xylem sap abscisic acid (ABA) and ionic concentrations. Results showed that leaf water potential, leaf turgor and stomatal conductance of root pruning (RP) treatment was significantly lower than those of non-root pruning (NP) treatment indicating that root...... potential, leaf turgor and stomatal conductance were highest for full irrigation (FI), followed by the deficit irrigation (DI) and non-irrigation (NI) treatments. Osmotic potential was not affected by root pruning and irrigation regimes while the xylem ABA concentration was higher in the RP compared to NP...

  4. Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: phenotypic and environmental sources of variability.

    Science.gov (United States)

    Herbette, Stephane; Wortemann, Remi; Awad, Hosam; Huc, Roland; Cochard, Herve; Barigah, Tete Severien

    2010-11-01

    Xylem vulnerability to cavitation is a key parameter in understanding drought resistance of trees. We determined the xylem water pressure causing 50% loss of hydraulic conductivity (P(50)), a proxy of vulnerability to cavitation, and we evaluated the variability of this trait at tree and population levels for Fagus sylvatica. We checked for the effects of light on vulnerability to cavitation of stem segments together with a time series variation of P(50). Full sunlight-exposed stem segments were less vulnerable to cavitation than shade-exposed ones. We found no clear seasonal change of P(50), suggesting that this trait was designed for a restricted period. P(50) varied for populations settled along a latitudinal gradient, but not for those sampled along an altitudinal gradient. Moreover, mountainside exposure seemed to play a major role in the vulnerability to cavitation of beech populations, as we observed the differences along north-facing sides but not on south-facing sides. Unexpectedly, both north-facing mountainside and northern populations appeared less vulnerable than those grown on the southern mountainside or in the South of France. These results on beech populations were discussed with respect to the results at within-tree level.

  5. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Norma Fàbregas

    2015-04-01

    Full Text Available Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.

  6. Golgi enrichment and proteomic analysis of developing Pinus radiata xylem by free-flow electrophoresis.

    Directory of Open Access Journals (Sweden)

    Harriet T Parsons

    Full Text Available Our understanding of the contribution of Golgi proteins to cell wall and wood formation in any woody plant species is limited. Currently, little Golgi proteomics data exists for wood-forming tissues. In this study, we attempted to address this issue by generating and analyzing Golgi-enriched membrane preparations from developing xylem of compression wood from the conifer Pinus radiata. Developing xylem samples from 3-year-old pine trees were harvested for this purpose at a time of active growth and subjected to a combination of density centrifugation followed by free flow electrophoresis, a surface charge separation technique used in the enrichment of Golgi membranes. This combination of techniques was successful in achieving an approximately 200-fold increase in the activity of the Golgi marker galactan synthase and represents a significant improvement for proteomic analyses of the Golgi from conifers. A total of thirty known Golgi proteins were identified by mass spectrometry including glycosyltransferases from gene families involved in glucomannan and glucuronoxylan biosynthesis. The free flow electrophoresis fractions of enriched Golgi were highly abundant in structural proteins (actin and tubulin indicating a role for the cytoskeleton during compression wood formation. The mass spectrometry proteomics data associated with this study have been deposited to the ProteomeXchange with identifier PXD000557.

  7. Transport via xylem and accumulation of aflatoxin in seeds of groundnut plant.

    Science.gov (United States)

    Snigdha, M; Hariprasad, P; Venkateswaran, G

    2015-01-01

    Aflatoxin contamination in groundnut seeds in the absence of any aflatoxigenic fungi leads to a hypothesis that aflatoxins are present naturally in soil and is transferred to seeds through uptake by roots. A survey was conducted on the natural occurrence of aflatoxins in agricultural soils, among nine main groundnut-growing regions of Karnataka state, India. All 71 soil samples collected in this survey were contaminated with aflatoxins esp. AFB1. An in vitro xylem sap experiment proved the ability of groundnut plant roots to absorb AFB1, and transport to aerial plant parts via the xylem. Hydroponics experiment also proved the uptake of AFB1 by the roots and their translocation to shoot. Uptake was affected by the initial concentration of toxin and pH of the medium. Among the 14 varieties screened, GPBD4 and MLT.K.107 (III) recorded highest and least AFB1 uptake, respectively. The above results were validated using a greenhouse experiment. Here, the aflatoxin absorbed by root gradually transferred to shoot that was later found in seeds towards the end of experiment. Thus, the groundnut seeds can also get contaminated with aflatoxin by direct uptake of aflatoxin through conducting tissue in addition to fungal infection. The present study revealed the novel mode of aflatoxin contamination in groundnut seeds without fungal infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change?

    Science.gov (United States)

    Savi, Tadeja; Bertuzzi, Stefano; Branca, Salvatore; Tretiach, Mauro; Nardini, Andrea

    2015-02-01

    Urban trees help towns to cope with climate warming by cooling both air and surfaces. The challenges imposed by the urban environment, with special reference to low water availability due to the presence of extensive pavements, result in high rates of mortality of street trees, that can be increased by climatic extremes. We investigated the water relations and xylem hydraulic safety/efficiency of Quercus ilex trees growing at urban sites with different percentages of surrounding impervious pavements. Seasonal changes of plant water potential and gas exchange, vulnerability to cavitation and embolism level, and morpho-anatomical traits were measured. We found patterns of increasing water stress and vulnerability to drought at increasing percentages of impervious pavement cover, with a consequent reduction in gas exchange rates, decreased safety margins toward embolism development, and increased vulnerability to cavitation, suggesting the occurrence of stress-induced hydraulic deterioration. The amount of impermeable surface and chronic exposure to water stress influence the site-specific risk of drought-induced dieback of urban trees under extreme drought. Besides providing directions for management of green spaces in towns, our data suggest that xylem hydraulics is key to a full understanding of the responses of urban trees to global change.

  9. Evaluation of a novel promoter from Populus trichocarpa for mature xylem tissue specific gene delivery.

    Science.gov (United States)

    Nguyen, Van Phap; Cho, Jin-Seong; Choi, Young-Im; Lee, Sang-Won; Han, Kyung-Hwan; Ko, Jae-Heung

    2016-07-01

    Wood (i.e., secondary xylem) is an important raw material for many industrial applications. Mature xylem (MX) tissue-specific genetic modification offers an effective means to improve the chemical and physical properties of the wood. Here, we describe a promoter that drives strong gene expression in a MX tissue-specific manner. Using whole-transcriptome genechip analyses of different tissue types of poplar, we identified five candidate genes that had strong expression in the MX tissue. The putative promoter sequences of the five MX-specific genes were evaluated for their promoter activity in both transgenic Arabidopsis and poplar. Among them, we found the promoter of Potri.013G007900.1 (called the PtrMX3 promoter) had the strongest activity in MX and thus was further characterized. In the stem and root tissues of transgenic Arabidopsis plants, the PtrMX3 promoter activity was found exclusively in MX tissue. MX-specific activity of the promoter was reproduced in the stem tissue of transgenic poplar plants. The PtrMX3 promoter activity was not influenced by abiotic stresses or exogenously applied growth regulators, indicating the PtrMX3 promoter is bona fide MX tissue-specific. Our study provides a strong MX-specific promoter for MX-specific modifications of woody biomass.

  10. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Norma Fàbregas

    2015-04-01

    Full Text Available Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.

  11. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes.

    Science.gov (United States)

    Rodríguez-Celma, Jorge; Ceballos-Laita, Laura; Grusak, Michael A; Abadía, Javier; López-Millán, Ana-Flor

    2016-08-01

    The phloem sap, xylem sap and apoplastic fluid play key roles in long and short distance transport of signals and nutrients, and act as a barrier against local and systemic pathogen infection. Among other components, these plant fluids contain proteins which are likely to be important players in their functionalities. However, detailed information about their proteomes is only starting to arise due to the difficulties inherent to the collection methods. This review compiles the proteomic information available to date in these three plant fluids, and compares the proteomes obtained in different plant species in order to shed light into conserved functions in each plant fluid. Inter-species comparisons indicate that all these fluids contain the protein machinery for self-maintenance and defense, including proteins related to cell wall metabolism, pathogen defense, proteolysis, and redox response. These analyses also revealed that proteins may play more relevant roles in signaling in the phloem sap and apoplastic fluid than in the xylem sap. A comparison of the proteomes of the three fluids indicates that although functional categories are somewhat similar, proteins involved are likely to be fluid-specific, except for a small group of proteins present in the three fluids, which may have a universal role, especially in cell wall maintenance and defense. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of Salinity on Growth, Xylem Structure and Anatomical Characteristics of Soybean

    Directory of Open Access Journals (Sweden)

    Aria DOLATABADIAN

    2011-03-01

    Full Text Available This research was conducted in order to evaluation the salinity stress effect on growth parameters and stem anatomical changes of soybean grown under controlled conditions. Soybean seeds were surface sterilized and then sown into plastic pots filled up with perlite and vermiculite. Seeds were irrigated with Broughton and Dilworth solution daily. At full folded cotyledons stage (5 day after sowing, salinity stress was induced by adding NaCl into nutrition solution with final concentration of 0, 25, 50 and 100 mM. Thirty days after sowing plants were harvested and growth parameters and anatomical changes were evaluated. The results showed that, salinity stress was significantly decreased shoot and root weight either fresh weight or dry weight, in addition, total plant weight, plant height and leaf number were decreased due to salinity stress. Interestingly, leaf area was not affected by salinity stress. Stem microscopic study demonstrated that, salinity stress significantly increased cutin mass and trichome density on epidermal cells. On the other hand, cortex thickness was decreased because of salinity stress while xylem thickness had upward increase when soybean plants were grown under salinity stress especially high level of salinity. Additionally, there were changed in xylem formation and arrangement in stressed plants.

  13. Immunolocalization of phenylalanine ammonia-lyase and cinnamate-4-hydroxylase in differentiating xylem of poplar.

    Science.gov (United States)

    Sato, Takahiko; Takabe, Keiji; Fujita, Minoru

    2004-01-01

    Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) and cinnamate-4-hydroxylase (C4H; EC 1.14.13.11) are pivotal enzymes involved in lignification. We synthesized peptides as the epitopes according to the amino acid sequences of these enzymes, coupled them with hemocyanin, and injected them into mice. The antiserums against peptides of PAL and C4H specifically detected PAL and C4H in the crude enzymes extracted from differentiating xylem of poplar, respectively. PAL and C4H were localized in differentiating xylem of poplar. PAL labeling was mainly localized in the cytosol, and somewhat localized on the rough-endoplasmic reticulum (r-ER) and the Golgi apparatus. In contrast, C4H was mainly observed on r-ER and the Golgi apparatus. These findings suggest that conversion of phenylalanine to cinnamic acid occurs in the cytosol and the following reaction occurs near the membrane of r-ER and the Golgi apparatus. The possibility of coordinated localization of PAL and C4H is discussed.

  14. Uncoupling between soil and xylem water isotopic composition: how to discriminate mobile and tightly-bound water?

    Science.gov (United States)

    Martín Gómez, Paula; Aguilera, Mònica; Pemán, Jesús; Gil Pelegrín, Eustaquio; Ferrio, Juan Pedro

    2014-05-01

    As a general rule, no isotopic fractionation occurs during water uptake and water transport, thus, xylem water reflects source water. However, this correspondence does not always happen. Isotopic enrichment of xylem water has been found in several cases and has been either associated to 'stem processes' like cuticular evaporation 1 and xylem-phloem communication under water stress 2,3 or to 'soil processes' such as species-specific use of contrasting water sources retained at different water potential forces in soil. In this regard, it has been demonstrated that mobile and tightly-bound water may show different isotopic signature 4,5. However, standard cryogenic distillation does not allow to separate different water pools within soil samples. Here, we carried out a study in a mixed adult forest (Pinus sylvestris, Quercus subpyrenaica and Buxus sempervirens) growing in a relatively deep loamy soil in the Pre-Pyrenees. During one year, we sampled xylem from twigs and soil at different depths (10, 30 and 50 cm). We also sampled xylem from trunk and bigger branches to assess whether xylem water was enriched in the distal parts of the tree. We found average deviations in the isotopic signature from xylem to soil of 4o 2o and 2.4o in δ18O and 18.3o 7.3o and 8.9o in δ2H, for P.sylvestris, Q.subpyrenaica and B.sempervirens respectively. Xylem water was always enriched compared to soil. In contrast, we did not find clear differences in isotopic composition between xylem samples along the tree. Declining the hypothesis that 'stem processes' would cause these uncoupling between soil and xylem isotopic values, we tested the possibility to separate mobile and tightly-bound water by centrifugation. Even though we could separate two water fractions in soils close to saturation, we could not recover a mobile fraction in drier soils. In this regard, we welcome suggestions on alternatives to separate different soil fractions in order to find the correspondence between soil and

  15. Quantifying the impact of daily and seasonal variation in sap pH on xylem dissolved inorganic carbon estimates in plum trees.

    Science.gov (United States)

    Erda, F G; Bloemen, J; Steppe, K

    2014-01-01

    In studies on internal CO2 transport, average xylem sap pH (pH(x)) is one of the factors used for calculation of the concentration of dissolved inorganic carbon in the xylem sap ([CO2 *]). Lack of detailed pH(x) measurements at high temporal resolution could be a potential source of error when evaluating [CO2*] dynamics. In this experiment, we performed continuous measurements of CO2 concentration ([CO2]) and stem temperature (T(stem)), complemented with pH(x) measurements at 30-min intervals during the day at various stages of the growing season (Day of the Year (DOY): 86 (late winter), 128 (mid-spring) and 155 (early summer)) on a plum tree (Prunus domestica L. cv. Reine Claude d'Oullins). We used the recorded pH(x) to calculate [CO2*] based on T(stem) and the corresponding measured [CO2]. No statistically significant difference was found between mean [CO2*] calculated with instantaneous pH(x) and daily average pH(x). However, using an average pH(x) value from a different part of the growing season than the measurements of [CO2] and T(stem) to estimate [CO2*] led to a statistically significant error. The error varied between 3.25 ± 0.01% under-estimation and 3.97 ± 0.01% over-estimation, relative to the true [CO2*] data. Measured pH(x) did not show a significant daily variation, unlike [CO2], which increased during the day and declined at night. As the growing season progressed, daily average [CO2] (3.4%, 5.3%, 7.4%) increased and average pH(x) (5.43, 5.29, 5.20) decreased. Increase in [CO2] will increase its solubility in xylem sap according to Henry's law, and the dissociation of [CO2*] will negatively affect pH(x). Our results are the first quantifying the error in [CO2*] due to the interaction between [CO2] and pH(x) on a seasonal time scale. We found significant changes in pH(x) across the growing season, but overall the effect on the calculation of [CO2*] remained within an error range of 4%. However, it is possible that the error could be more

  16. BRANCH JUNCTIONS AND THE FLOW OF WATER THROUGH XYLEM IN DOUGLAS-FIR AND PONDEROSA PINE STEMS

    Science.gov (United States)

    Water flowing through the xylem of most plants from the roots to the leaves must pass through junctions where branches have developed from the main stem. These junctions have been studied as both flow constrictions and components of a hydraulic segmentation mechanism to protect ...

  17. 0.7 and 3 T MRI and sap flow in intact trees: xylem and phloem in action

    NARCIS (Netherlands)

    Homan, N.; Windt, C.W.; Vergeldt, F.J.; Gerkema, E.; As, van H.

    2007-01-01

    Dedicated magnetic resonance imaging (MRI) hardware is described that allows imaging of sap flow in intact trees with a maximal trunk diameter of 4 cm and height of several meters. This setup is used to investigate xylem and phloem flow in an intact tree quantitatively. Due to the fragile gradients

  18. Potassium co-transport and antiport during the uptake of sucrose and glutamic acid from the xylem vessels

    NARCIS (Netherlands)

    Bel, A.J.E. van; Erven, A.J. van

    1979-01-01

    Perfusion experiments with excised internodes of tomato (Lycopersicon esculentum cv Moneymaker) showed that the uptake of glutamic acid and sucrose from the xylem vessels is accompanied with coupled proton co-transport and potassium antiport at low pH (<5.5). At high pH (5.5) both proton and potassi

  19. Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem?

    NARCIS (Netherlands)

    Jansen, S.; Gortan, E.; Lens, F.; Assunta Lo Gullo, M.; Salleo, S.; Scholtz, A.; Stein, A.; Trifilò, P.; Nardini, A.

    2011-01-01

    • The hydraulic conductance of angiosperm xylem has been suggested to vary with changes in sap solute concentrations because of intervessel pit properties. • The magnitude of the ‘ionic effect’ was linked with vessel and pit dimensions in 20 angiosperm species covering 13 families including six Laur

  20. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density

    DEFF Research Database (Denmark)

    Shabala, Sergey; Hariadi, Yuda; Jacobsen, Sven-Erik

    2013-01-01

    old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially...

  1. Potassium co-transport and antiport during the uptake of sucrose and glutamic acid from the xylem vessels

    NARCIS (Netherlands)

    Bel, A.J.E. van; Erven, A.J. van

    1979-01-01

    Perfusion experiments with excised internodes of tomato (Lycopersicon esculentum cv Moneymaker) showed that the uptake of glutamic acid and sucrose from the xylem vessels is accompanied with coupled proton co-transport and potassium antiport at low pH (<5.5). At high pH (5.5) both proton and potassi

  2. 0.7 and 3 T MRI and sap flow in intact trees: xylem and phloem in action

    NARCIS (Netherlands)

    Homan, N.; Windt, C.W.; Vergeldt, F.J.; Gerkema, E.; As, van H.

    2007-01-01

    Dedicated magnetic resonance imaging (MRI) hardware is described that allows imaging of sap flow in intact trees with a maximal trunk diameter of 4 cm and height of several meters. This setup is used to investigate xylem and phloem flow in an intact tree quantitatively. Due to the fragile gradients

  3. Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars.

    Science.gov (United States)

    Savi, Tadeja; Casolo, Valentino; Luglio, Jessica; Bertuzzi, Stefano; Trifilo', Patrizia; Lo Gullo, Maria A; Nardini, Andrea

    2016-09-01

    Recent reports on tree mortality associated with anomalous drought and heat have raised interest into processes underlying tree resistance/resilience to water stress. Hydraulic failure and carbon starvation have been proposed as main causes of tree decline, with recent theories treating water and carbon metabolism as interconnected processes. We subjected young plants of two native (Quercus pubescens [Qp] and Prunus mahaleb [Pm]) and two invasive (Robinia pseudoacacia [Rp] and Ailanthus altissima [Aa]) woody angiosperms to a prolonged drought leading to stomatal closure and xylem embolism, to induce carbon starvation and hydraulic failure. At the end of the treatment, plants were measured for embolism rates and NSC content, and re-irrigated to monitor recovery of xylem hydraulics. Data highlight different hydraulic strategies in native vs invasive species under water stress, and provide physiological explanations for species-specific impacts of recent severe droughts. Drought-sensitive species (Qp and Rp) suffered high embolism rates and were unable to completely refill xylem conduits upon restoration of water availability. Species that better survived recent droughts were able to limit embolism build-up (Pm) or efficiently restored hydraulic functionality after irrigation (Aa). Species-specific capacity to reverse xylem embolism correlated to stem-level concentration of soluble carbohydrates, but not to starch content. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations.

    Science.gov (United States)

    Mayr, Stefan; Hacke, Uwe; Schmid, Peter; Schwienbacher, Franziska; Gruber, Andreas

    2006-12-01

    Drought stress can cause xylem embolism in trees when the water potential (psi) in the xylem falls below specific vulnerability thresholds. At the alpine timberline, frost drought is known to cause excessive winter embolism unless xylem vulnerability or transpiration is sufficiently reduced to avoid critical psi. We compared annual courses of psi and embolism in Picea abies, Pinus cembra, Pinus mugo, Larix decidua, and Juniperus communis growing at the timberline vs. low altitude. In addition, vulnerability properties and related anatomical parameters as well as wood density (D(t)) and wall reinforcement (wall thickness related to conduit diameter) were studied. This allowed an estimate of stress intensities as well as a detection of adaptations that reduce embolism formation. At the alpine timberline, psi was lowest during winter with corresponding embolism rates of up to 100% in three of the conifers studied. Only Pinus cembra and Larix decidua avoided winter embolism due to moderate psi. Minor embolism was observed at low altitude where the water potentials of all species remained within a narrow range throughout the year. Within species, differences in psi50 (psi at 50% loss of conductivity) at high vs. low altitude were less than 1 MPa. In Picea abies and Pinus cembra, psi50 was more negative at the timberline while, in the other conifer species, psi50 was more negative at low altitude. Juniperus communis exhibited the lowest (-6.4 +/- 0.04 MPa; mean +/- SE) and Pinus mugo the highest psi50 (-3.34 +/- 0.03 MPa). In some cases, D(t) and tracheid wall reinforcement were higher than in previously established relationships of these parameters with psi50, possibly because of mechanical demands associated with the specific growing conditions. Conifers growing at the alpine timberline were exposed to higher drought stress intensities than individuals at low altitude. Frost drought during winter caused high embolism rates which were probably amplified by freeze

  5. Pantoea stewartii subsp. stewartii: lessons learned from a xylem-dwelling pathogen of sweet corn.

    Science.gov (United States)

    Roper, M Caroline

    2011-09-01

    Pantoea stewartii subsp. stewartii is a Gram-negative enteric bacterium that primarily infects sweet corn. Studies of this bacterium have provided useful insight into how xylem-dwelling bacteria establish themselves and incite disease in their hosts. Pantoea stewartii subsp. stewartii is a remarkable bacterial system for laboratory studies because of its relative ease of propagation and genetic manipulation, and the fact that it appears to employ a minimal number of pathogenicity mechanisms. In addition, P. stewartii subsp. stewartii produces copious amounts of its quorum sensing (QS) signal, acyl-homoserine lactone (AHL), making it an excellent organism for studying QS-controlled gene regulation in a plant-pathogenic bacterium. In fact, P. stewartii subsp. stewartii has become the microbial paradigm for QS control of gene expression by both repression and activation via a QS regulator that binds DNA in the absence and dissociates in the presence of the signal ligand. Moreover, P. stewartii subsp. stewartii is a member of the Enterobacteriaceae, and lessons learned from its interaction with plants may be extrapolated to other plant-associated enterics, such as Erwinia, Dickeya and Pectobacterium spp., or enteric human pathogens associated with plants, such as Escherichia coli and Salmonella spp. Bacteria; Gammaproteobacteria; family Enterobacteriaceae; genus Pantoea; species stewartii (Mergaert et al., 1993). Gram-negative, motile, yellow pigmented, mucoid, facultative anaerobe. Pantoea stewartii subsp. stewartii (Smith, 1898) Dye causes Stewart's wilt of corn (Zea mays). Early-maturing sweet corn varieties and some elite inbred maize lines are particularly susceptible. There are two major phases of Stewart's wilt disease: (i) wilt and (ii) leaf blight. The wilt phase occurs when young seedlings are infected with P. stewartii subsp. stewartii (Fig. 1A). Water-soaked lesions first appear on the young expanding leaves and, later, seedlings may become severely wilted

  6. Chronological Sequence of Leaf Phenology, Xylem and Phloem Formation and Sap Flow of Quercus pubescens from Abandoned Karst Grasslands.

    Science.gov (United States)

    Lavrič, Martina; Eler, Klemen; Ferlan, Mitja; Vodnik, Dominik; Gričar, Jožica

    2017-01-01

    Intra-annual variations in leaf development, radial growth, including the phloem part, and sap flow have rarely been studied in deciduous trees from drought-prone environments. In order to understand better the chronological order and temporal course of these processes, we monitored leaf phenology, xylem and phloem formation and sap flow in Quercus pubescens from abandoned karst grasslands in Slovenia during the growing season of 2014. We found that the initial earlywood vessel formation started before bud opening at the beginning of April. Buds started to open in the second half of April and full leaf unfolding occurred by the end of May. LAI values increased correspondingly with leaf development. About 28% of xylem and 22% of phloem annual increment were formed by the time of bud break. Initial earlywood vessels were fully lignified and ready for water transport, indicating that they are essential to provide hydraulic conductivity for axial water flow during leaf development. Sap flow became active and increasing contemporarily with leaf development and LAI values. Similar early spring patterns of xylem sap flow and LAI denoted that water transport in oaks broadly followed canopy leaf area development. In the initial 3 weeks of radial growth, phloem growth preceded that of xylem, indicating its priority over xylem at the beginning of the growing season. This may be related to the fact that after bud break, the developing foliage is a very large sink for carbohydrates but, at the same time, represents a small transpirational area. Whether the interdependence of the chronological sequence of the studied processes is fixed in Q. pubescens needs to be confirmed with more data and several years of analyses, although the 'correct sequence' of processes is essential for synchronized plant performance and response to environmental stress.

  7. Ultrasonic Acoustic Emissions from Leaf Xylem of Potted Wheat Subject to a Soil Drought and Rewatering Cycle

    Institute of Scientific and Technical Information of China (English)

    JIA Xiu-ling; ZHANG Li-hua; MA Rui-kun; WANG Zhen-lin; ZHANG Quan-guo; YAO Yan-rong

    2006-01-01

    Ultrasonic acoustic emissions (AEs) from leaf xylem of both water stressed and well watered potted winter wheat (Triticum Acoustics Corp. New Jersey, USA) for estimation of leaf xylem cavitation and embolism. Very few AEs occurred in xylem of wheat leaves in well-watered plant, and also in plant subject to mild and moderate soil water stress conditions over the first 4 d of the drought cycle. Great amounts of AEs have occurred since d 5 of the drought cycle as plant showed obvious leaf curling, indicating significant cavitation in leaf xylem on plant exposed to severe soil water deficit. At this point,relative soil water content (RSWC) and leaf xylem pressure (ψ1) dropped to 24.0-26.5% and -1.92 MPa, respectively, with reductions in leaf stomatal conductance (gs), leaf transpiration (Tr) and leaf CO2 assimilation rate (A) of as much as 69.8,60.7 and 46.5%, respectively. The effect of soil water deficit was in the order gs > Tr> A > AE. Waveform physical property parameters such as amplitude, counts, rise time, duration, absolute energy and signal strength were analyzed. These parameters varied within very broad ranges, with frequency distribution of most parameters being well fitted by the exponential function y = Yo- A exp (-x/t). The proportion of stronger AE signals rose as soil dehydrated. While AEs occurrence in water stressed plant remained higher than in well-watered control at the following day after rewatering,waveform signal strength and related physical property parameters dropped immediately to that of control. Difference in AEs occurrence characterization between field-grown and potted wheat leaves was discussed.

  8. Transcriptome sequencing and profiling of expressed genes in phloem and xylem of ramie (Boehmeria nivea L. Gaud.

    Directory of Open Access Journals (Sweden)

    Jianrong Chen

    Full Text Available Ramie (Boehmeria nivea L. Gaud is a highly versatile herbaceous plant which is widely cropped in southern China. The success of this herbaceous plant relies on wide use in modern industry. Understanding the profiling of expressed genes in phloem and xylem of ramie is crucial for improving its industrial performance. Herein, we uncover the transcriptome profile in phloem and xylem in present study. Using Illumina paired-end sequencing technology, 57 million high quality reads were generated. De novo assembly yielded 87,144 unigenes with an average length of 635 bp. By sequence similarity searching for public databases, a total of 32,541 (41.77% unigenes were annotated for their function. Among these genes, 57,873 (66.4% and 28,678 (32.9% unigenes were assigned to categories of Gene Ontology and Orthologous Groups database, respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG, 18,331 (21.0% unigenes were mapped to 125 pathways. The metabolic pathways were assigned the most unigene (4,793, 26.2%. Furthermore, Pol II and Pol III subunits as well as the genes of Galactose metabolism pathway had higher expression in phloem compared to xylem. In addition, fatty acid metabolism pathway genes showed more abundant in xylem than phloem. These results suggest that high activities of RNA synthesis and Galactose metabolism pathway promises fiber synthesis in phloem. The present study is the initial exploration to uncover the fiber biosynthesis difference between phloem and xylem in ramie through the analysis of deep sequencing data.

  9. Interpreting the Climatic Effects on Xylem Functional Traits in Two Mediterranean Oak Species: The Role of Extreme Climatic Events

    Science.gov (United States)

    Rita, Angelo; Borghetti, Marco; Todaro, Luigi; Saracino, Antonio

    2016-01-01

    In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data set, with the aim of (i) detecting non-linear long-term responses to climate and (ii) exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport, resulting

  10. Chronological Sequence of Leaf Phenology, Xylem and Phloem Formation and Sap Flow of Quercus pubescens from Abandoned Karst Grasslands

    Science.gov (United States)

    Lavrič, Martina; Eler, Klemen; Ferlan, Mitja; Vodnik, Dominik; Gričar, Jožica

    2017-01-01

    Intra-annual variations in leaf development, radial growth, including the phloem part, and sap flow have rarely been studied in deciduous trees from drought-prone environments. In order to understand better the chronological order and temporal course of these processes, we monitored leaf phenology, xylem and phloem formation and sap flow in Quercus pubescens from abandoned karst grasslands in Slovenia during the growing season of 2014. We found that the initial earlywood vessel formation started before bud opening at the beginning of April. Buds started to open in the second half of April and full leaf unfolding occurred by the end of May. LAI values increased correspondingly with leaf development. About 28% of xylem and 22% of phloem annual increment were formed by the time of bud break. Initial earlywood vessels were fully lignified and ready for water transport, indicating that they are essential to provide hydraulic conductivity for axial water flow during leaf development. Sap flow became active and increasing contemporarily with leaf development and LAI values. Similar early spring patterns of xylem sap flow and LAI denoted that water transport in oaks broadly followed canopy leaf area development. In the initial 3 weeks of radial growth, phloem growth preceded that of xylem, indicating its priority over xylem at the beginning of the growing season. This may be related to the fact that after bud break, the developing foliage is a very large sink for carbohydrates but, at the same time, represents a small transpirational area. Whether the interdependence of the chronological sequence of the studied processes is fixed in Q. pubescens needs to be confirmed with more data and several years of analyses, although the ‘correct sequence’ of processes is essential for synchronized plant performance and response to environmental stress. PMID:28321232

  11. Transcriptome sequencing and profiling of expressed genes in phloem and xylem of ramie (Boehmeria nivea L. Gaud).

    Science.gov (United States)

    Chen, Jianrong; Liu, Fang; Tang, Yinghong; Yuan, Youmei; Guo, Qingquan

    2014-01-01

    Ramie (Boehmeria nivea L. Gaud) is a highly versatile herbaceous plant which is widely cropped in southern China. The success of this herbaceous plant relies on wide use in modern industry. Understanding the profiling of expressed genes in phloem and xylem of ramie is crucial for improving its industrial performance. Herein, we uncover the transcriptome profile in phloem and xylem in present study. Using Illumina paired-end sequencing technology, 57 million high quality reads were generated. De novo assembly yielded 87,144 unigenes with an average length of 635 bp. By sequence similarity searching for public databases, a total of 32,541 (41.77%) unigenes were annotated for their function. Among these genes, 57,873 (66.4%) and 28,678 (32.9%) unigenes were assigned to categories of Gene Ontology and Orthologous Groups database, respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 18,331 (21.0%) unigenes were mapped to 125 pathways. The metabolic pathways were assigned the most unigene (4,793, 26.2%). Furthermore, Pol II and Pol III subunits as well as the genes of Galactose metabolism pathway had higher expression in phloem compared to xylem. In addition, fatty acid metabolism pathway genes showed more abundant in xylem than phloem. These results suggest that high activities of RNA synthesis and Galactose metabolism pathway promises fiber synthesis in phloem. The present study is the initial exploration to uncover the fiber biosynthesis difference between phloem and xylem in ramie through the analysis of deep sequencing data.

  12. LeFRK2 is required for phloem and xylem differentiation and the transport of both sugar and water.

    Science.gov (United States)

    Damari-Weissler, Hila; Rachamilevitch, Shimon; Aloni, Roni; German, Marcelo A; Cohen, Shabtai; Zwieniecki, Maciej A; Michele Holbrook, N; Granot, David

    2009-09-01

    It has been suggested that LeFRK2, the major fructose-phosphorylating enzyme in tomato plants, may be required for stem xylem development. Yet, we do not know if this enzyme affects the development of individual vessels, whether it affects water conductance, or whether it affects phloem development and sugar transport. Here, we show that suppression of LeFRK2 results in a significant reduction in the size of vascular cells and slows fiber maturation. The vessels in stems of LeFRK2-antisense plants are narrower than in WT plants and have thinner secondary cell walls. Although the cambium produces rounded secondary vessels, these vessels become deformed during the early stages of xylem maturation. Water conductance is then reduced in stems, roots, and leaves, suggesting that LeFRK2 influences xylem development throughout the entire vascular system. Interestingly, the build-up of positive xylem pressure under static (no-flow) conditions was also decreased. Suppression of LeFRK2 reduced the length and width of the sieve elements, as well as callose deposition. To examine the effect of LeFRK2 suppression on phloem transport, we created triple-grafted plants in which a portion of the wild-type stem was replaced with an antisense interstcok, and compared the contents of the transported sugar, sucrose, in the different portions of these stems. Sucrose contents above and within the LeFRK2-antisense interstock were significantly higher than those below the graft. These results show that the antisense interstock restricted the downward movement of sucrose, suggesting that LeFRK2 is required for both phloem and xylem development.

  13. Interpreting the climatic effects on xylem functional traits in two Mediterranean oak species: the role of extreme climatic events

    Directory of Open Access Journals (Sweden)

    Angelo Rita

    2016-08-01

    Full Text Available In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale and Shape (GAMLSS technique and Bayesian modeling procedures to xylem traits data set, with the aim of i detecting non-linear long-term responses to climate and ii exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks rises at extreme values of Standardized Precipitation Index (SPI. Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport

  14. Altitudinal variations of ground tissue and xylem tissue in terminal shoot of woody species: implications for treeline formation.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available 1. The terminal shoot (or current-year shoot, as one of the most active parts on a woody plant, is a basic unit determining plant height and is potentially influenced by a variety of environmental factors. It has been predicted that tissues amount and their allocation in plant stems may play a critical role in determining plant size in alpine regions. The primary structure in terminal shoots is a key to our understanding treeline formation. The existing theories on treeline formation, however, are still largely lacking of evidence at the species level, much less from anatomy for the terminal shoot. 2. The primary structures within terminal shoot were measured quantitatively for 100 species from four elevation zones along the eastern slope of Gongga Mountain, southwestern China; one group was sampled from above the treeline. An allometric approach was employed to examine scaling relationships interspecifically, and a principal components analysis (PCA was performed to test the relation among primary xylem, ground tissue, species growth form and altitude. 3. The results showed that xylem tissue size was closely correlated with ground tissue size isometrically across species, while undergoing significant y- or/and x-intercept shift in response to altitudinal belts. Further, a conspicuous characteristic of terminal shoot was its allocation of contrasting tissues between primary xylem and ground tissues with increasing elevation. The result of the PCA showed correlations between anatomical variation, species growth form/height classes and environment. 4. The current study presents a comparative assessment of the allocation of tissue in terminal shoot across phylogenically and ecologically diverse species, and analyzes tissue, function and climate associations with plant growth forms and height classes among species. The interspecific connection between primary xylem ratio and plant size along an elevation gradient suggests the importance of primary

  15. Altitudinal variations of ground tissue and xylem tissue in terminal shoot of woody species: implications for treeline formation.

    Science.gov (United States)

    Chen, Hong; Wang, Haiyang; Liu, Yanfang; Dong, Li

    2013-01-01

    1. The terminal shoot (or current-year shoot), as one of the most active parts on a woody plant, is a basic unit determining plant height and is potentially influenced by a variety of environmental factors. It has been predicted that tissues amount and their allocation in plant stems may play a critical role in determining plant size in alpine regions. The primary structure in terminal shoots is a key to our understanding treeline formation. The existing theories on treeline formation, however, are still largely lacking of evidence at the species level, much less from anatomy for the terminal shoot. 2. The primary structures within terminal shoot were measured quantitatively for 100 species from four elevation zones along the eastern slope of Gongga Mountain, southwestern China; one group was sampled from above the treeline. An allometric approach was employed to examine scaling relationships interspecifically, and a principal components analysis (PCA) was performed to test the relation among primary xylem, ground tissue, species growth form and altitude. 3. The results showed that xylem tissue size was closely correlated with ground tissue size isometrically across species, while undergoing significant y- or/and x-intercept shift in response to altitudinal belts. Further, a conspicuous characteristic of terminal shoot was its allocation of contrasting tissues between primary xylem and ground tissues with increasing elevation. The result of the PCA showed correlations between anatomical variation, species growth form/height classes and environment. 4. The current study presents a comparative assessment of the allocation of tissue in terminal shoot across phylogenically and ecologically diverse species, and analyzes tissue, function and climate associations with plant growth forms and height classes among species. The interspecific connection between primary xylem ratio and plant size along an elevation gradient suggests the importance of primary xylem in explaining

  16. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2016-05-01

    Full Text Available Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce’s disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.

  17. Effects of Xylem-Sap Composition on Glassy-Winged Sharpshooter (Hemiptera: Cicadellidae) Egg Maturation on High- and Low-Quality Host Plants.

    Science.gov (United States)

    Sisterson, Mark S; Wallis, Christopher M; Stenger, Drake C

    2017-04-01

    Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in egg production, effects of xylem-sap chemistry on glassy-winged sharpshooter egg maturation was compared for females confined to cowpea and sunflower. Females confined to cowpea consumed more xylem-sap than females held on sunflower. In response, females held on cowpea produced more eggs, had heavier bodies, and greater lipid content than females held on sunflower. Analysis of cowpea and sunflower xylem-sap found that 17 of 19 amino acids were more concentrated in cowpea xylem-sap than in sunflower xylem-sap. Thus, decreased consumption of sunflower xylem-sap was likely owing to perceived lower quality, with decreased egg production owing to a combination of decreased feeding and lower return per unit volume of xylem-sap consumed. Examination of pairwise correlation coefficients among amino acids indicated that concentrations of several amino acids within a plant species were correlated. Principal component analyses identified latent variables describing amino acid composition of xylem-sap. For females held on cowpea, egg maturation was affected by test date, volume of excreta produced, and principal components describing amino acid composition of xylem-sap. Principal component analyses aided in identifying amino acids that were positively or negatively associated with egg production, although determining causality with respect to key nutritional requirements for glassy-winged sharpshooter egg production will require additional testing. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  18. An arabinogalactan protein associated with secondary cell wall formation in differentiating xylem of loblolly pine.

    Science.gov (United States)

    Zhang, Yi; Brown, Garth; Whetten, Ross; Loopstra, Carol A; Neale, David; Kieliszewski, Marcia J; Sederoff, Ronald R

    2003-05-01

    Arabinogalactan proteins (AGPs) are abundant plant proteoglycans implicated in plant growth and development. Here, we report the genetic characterization, partial purification and immunolocalization of a classical AGP (PtaAGP6, accession number AF101785) in loblolly pine (Pinus taeda L.). A PtaAGP6 full-length cDNA clone was expressed in bacteria. PtaAGP6 resembles tomato LeAGP-1 and Arabidopsis AtAGP17-19 in that they all possess a subdomain composed of basic amino acids. The accessibility of this domain in the glycoprotein makes it possible to label the PtaAGP6 epitopes on the cell surface or in the cell wall with polyclonal antibodies raised against this subdomain. The antibodies recognize the peptide of the basic subdomain and bind to the intact protein molecule. A soluble protein-containing fraction was purified from the differentiating xylem of pine trees by using beta-glucosyl Yariv reagent (beta-glcY) and was recognized by antibodies against the basic subdomain. Immunolocalization studies showed that the PtaAGP6 epitopes are restricted to a file of cells that just precede secondary cell wall thickening, suggesting roles in xylem differentiation and wood formation. The location of apparent labeling of the PtaAGP6 epitopes is separated from the location of lignin deposition. Multiple single nucleotide polymorphisms (SNPs) were detected in EST variants. Denaturing HPLC analysis of PCR products suggests that PtaAGP6 is encoded by a single gene. Mobility variation in denaturing gel electrophoresis was used to map PtaAGP6 SNPs to a site on linkage group 5.

  19. Nickel affects xylem Sap RNase a and converts RNase A to a urease

    Science.gov (United States)

    2013-01-01

    Background Nickel (Ni) is an essential micronutrient; however, its metabolic or physiological functions in plants and animals are largely uncharacterized. The ribonucleases (RNase, e.g., RNase A) are a large family of hydrolases found in one form or many forms facilitating nitrogen (N) cycling. It is currently unknown how either a deficiency or excess of Ni influences the functionality of ribonucleases, like RNase A. This is especially true for perennial crops possessing relatively high Ni requirements. Results We report that the 'rising’ xylem sap of pecan [Carya illinoinensis (Wangenh.) K. Koch, a long-lived tree] at bud break contains a 14 kDa RNase A (aka, RNase 1), which amount has a 33% greater in Ni-deficient as in Ni-sufficient trees when exposed to Ni ions exhibits ureolytic activity. The homologous 13.4 kDa bovine pancreatic RNase A likewise exhibits ureolytic activity upon exposure to Ni ions. Ni therefore affects enzymatic function of a typically non-metalloenzyme, such as it transforms to an enzyme capable of hydrolyzing a linear amide; thus, converting an endonuclease esterase into a urease. Conclusions We conclude that Ni potentially affects the level and activity of RNase A present in the spring xylem sap of pecan trees, and probably in other crops, it has the same influence. The catalytic property of RNase A appears to shift from a nuclease to a urease relying on Ni exposure. This is suggestive that RNase A might possess novel metabolic functionality regarding N-metabolism in perennial plants. The ability of Ni to convert the activity of plant and animal RNase A from that of a ribonuclease to a urease indicates a possible unrecognized beneficial metabolic function of Ni in organisms, while also identifying a potential detrimental effect of excessive Ni on N related metabolic activity if there is sufficient disruption of Ni homeostasis. PMID:24320827

  20. Nickel affects xylem Sap RNase a and converts RNase A to a urease.

    Science.gov (United States)

    Bai, Cheng; Liu, Liping; Wood, Bruce W

    2013-12-09

    Nickel (Ni) is an essential micronutrient; however, its metabolic or physiological functions in plants and animals are largely uncharacterized. The ribonucleases (RNase, e.g., RNase A) are a large family of hydrolases found in one form or many forms facilitating nitrogen (N) cycling. It is currently unknown how either a deficiency or excess of Ni influences the functionality of ribonucleases, like RNase A. This is especially true for perennial crops possessing relatively high Ni requirements. We report that the 'rising' xylem sap of pecan [Carya illinoinensis (Wangenh.) K. Koch, a long-lived tree] at bud break contains a 14 kDa RNase A (aka, RNase 1), which amount has a 33% greater in Ni-deficient as in Ni-sufficient trees when exposed to Ni ions exhibits ureolytic activity. The homologous 13.4 kDa bovine pancreatic RNase A likewise exhibits ureolytic activity upon exposure to Ni ions. Ni therefore affects enzymatic function of a typically non-metalloenzyme, such as it transforms to an enzyme capable of hydrolyzing a linear amide; thus, converting an endonuclease esterase into a urease. We conclude that Ni potentially affects the level and activity of RNase A present in the spring xylem sap of pecan trees, and probably in other crops, it has the same influence. The catalytic property of RNase A appears to shift from a nuclease to a urease relying on Ni exposure. This is suggestive that RNase A might possess novel metabolic functionality regarding N-metabolism in perennial plants. The ability of Ni to convert the activity of plant and animal RNase A from that of a ribonuclease to a urease indicates a possible unrecognized beneficial metabolic function of Ni in organisms, while also identifying a potential detrimental effect of excessive Ni on N related metabolic activity if there is sufficient disruption of Ni homeostasis.

  1. Xylan synthetase activity in differentiated xylem cells of sycamore trees (Acer pseudoplatanus).

    Science.gov (United States)

    Dalessandro, G; Northcote, D H

    1981-01-01

    Particulate enzymic preparations obtained from homogenates of differentiated xylem cells isolated from sycamore trees, catalyzed the formation of a radioactive xylan in the presence of UDP-D-[U-(14)C]xylose as substrate. The synthesized xylan was not dialyzable through Visking cellophane tubing. Successive extraction with cold water, hot water and 5% NaOH dissolved respectively 15, 5 and 80% of the radioactive polymer. Complete acid hydrolysis of the water-insoluble polysaccharide synthesized from UDP-D-[U-(14)C]xylose released all the radioactivity as xylose. β-1,4-Xylodextrins, degree of polymerization 2, 3, 4, 5 and 6, were obtained by partial acid hydrolysis (fuming HCl or 0.1 M HCl) of radioactive xylan. The polymer was hydrolysed to xylose, xylobiose and xylotriose by Driselase which contains 1,4-β xylanase activities. Methylation and then hydrolysis of the xylan released two methylated sugars which were identified as di-O-methyl[(14)C]xylose and tri-O-methyl-[(14)C]xylose, suggesting a 1→4-linked polymer. The linkage was confirmed by periodate oxidation studies. The apparent Km value of the synthetase for UDP-D-xylose was 0.4 mM. Xylan synthetase activity was not potentiated in the presence of a detergent. The enzymic activity was stimulated by Mg(2+) and Mn(2+) ions, although EDTA in the range of concentrations between 0.01 and 1 mM did not affect the reaction rate. It appears that the xylan synthetase system associated with membranes obtained from differentiated xylem cells of sycamore trees may serve for catalyzing the in vivo synthesis of the xylan main chain during the biogenesis of the plant cell wall.

  2. Lignin depletion enhances the digestibility of cellulose in cultured xylem cells.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    Full Text Available Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinniaelegans. Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis

  3. Drought effects on hydraulic conductivity and xylem vulnerability to embolism in diverse species and provenances of Mediterranean cedars.

    Science.gov (United States)

    Ladjal, Mehdi; Huc, Roland; Ducrey, Michel

    2005-09-01

    We studied hydraulic traits of young plants of the Mediterranean cedar species Cedrus atlantica (Endl.) G. Manetti ex Carrière (Luberon, France), C. brevifolia (Hook. f.) Henry (Cyprus), C. libani A. Rich (Hadeth El Jebbe, Lebanon) and C. libani (Armut Alani, Turkey). With an optimum water supply, no major differences were observed among species or provenances in either stem hydraulic conductivity (Ks) or leaf specific conductivity (Kl) measured on the main shoot. A moderate soil drought applied for 10 weeks induced marked acclimation through a reduction in Ks, particularly in the Lebanese provenance of C. libani, and a decrease in tracheid lumen size in all species. Cedrus atlantica, which had the smallest tracheids, was the species most vulnerable to embolism: a 50% loss in hydraulic conductivity (PsiPLC50) occurred at a water potential of -4.4 MPa in the well-watered treatment, and at -6.0 MPa in the moderate drought treatment. In the other species, PsiPLC50 was unaffected by moderate soil drought, and only declined sharply at water potentials between -6.4 and -7.5 MPa in both irrigation treatments. During severe drought, Ks of twigs and stomatal conductance (g(s)) were measured simultaneously as leaf water potential declined. For all species, lower vulnerability to embolism based on loss of Ks was recorded on current-year twigs. The threshold for stomatal closure (10% of maximum g(s)) was reached at a predawn water potential (Psi(pd)) of -2.5 MPa in C. atlantica (Luberon) and at -3.1 MPa in C. libani (Lebanon), whereas the other provenance and species had intermediate Psi(pd) values. Cedrus brevifolia, with a Psi(pd) (-3.0 MPa) close to that of C. libani (Lebanon), had the highest stomatal conductance of the study species. The importance of a margin of safety between water potential causing stomatal closure and that causing xylem embolism induction is discussed.

  4. Xylem anatomical responses of Vaccinium myrtillus exposed to air CO2 enrichment and soil warming at treeline

    Science.gov (United States)

    Anadon-Rosell, Alba; Fonti, Patrick; Dawes, Melissa; von Arx, Georg

    2016-04-01

    Plant life at treeline is limited by harsh growth conditions. In this study we used nine years of free air CO2 enrichment (+200 ppm from 2001 to 2009) and six years of soil warming (+4 °C from 2007 to 2012) at a treeline experimental site in the Swiss Alps to investigate xylem anatomical responses of Vaccinium myrtillus, a co-dominant dwarf shrub in many treeline communities. Our aim was to identify whether the release from limiting growth conditions induced adjustments of the water conductive and storage tissues. High-resolution images of wood anatomical microsections from the stem base of 40 individuals were captured with a digital camera mounted on a microscope. We used the specialized image analysis tool ROXAS to quantify size, density, grouping patterns, and potential hydraulic conductivity of vessels. In addition, we measured the abundance and distribution of ray parenchyma. Our preliminary results show that CO2 enrichment and soil warming induced contrasting anatomical responses. In the last years of the CO2 enhancement vessels were larger, whereas soil warming induced an immediate reduction of vessel size. Moreover, larger vessels were found when V. myrtillus was in cohabitation with pine as opposed to larch. Results for ray parenchyma measurements did not show clear trends, although warming seemed to have a slightly positive effect on the fraction of uniseriate vs. multiseriate rays. These results suggest that release from the growth limiting factors can result in contrasting and partially lagged responses in the hydraulic system with little impact on the storage tissues. In addition, the overstory species seem to play a key role on the anatomy of V. myrtillus at treeline.

  5. VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 Effectively Induce Transdifferentiation into Xylem Vessel Elements under Control of an Induction System

    National Research Council Canada - National Science Library

    Masatoshi Yamaguchi; Nadia Goué; Hisako Igarashi; Misato Ohtani; Yoshimi Nakano; Jennifer C. Mortimer; Nobuyuki Nishikubo; Minoru Kubo; Yoshihiro Katayama; Koichi Kakegawa; Paul Dupree; Taku Demura

    2010-01-01

    We previously showed that the VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 genes, which encode NAM/ATAF/CUC domain protein transcription factors, act as key regulators of xylem vessel differentiation...

  6. Effects of branch solid Fe sulphate implants on xylem sap composition in field-grown peach and pear: changes in Fe, organic anions and pH.

    Science.gov (United States)

    Larbi, Ajmi; Morales, Fermín; Abadía, Javier; Abadía, Anunciación

    2003-12-01

    The effects of placing solid implants containing Fe sulfate in branches of Fe-deficient pear and peach trees on the composition of the xylem sap have been studied. Iron sulfate implants are commercially used in northeastern Spain to control iron chlorosis in fruit trees. Implants increased Fe concentrations and decreased organic acid concentrations in the xylem sap, whereas xylem sap pH was only moderately changed. The citrate to Fe ratios decreased markedly after implants, therefore improving the possibility that Fe could be reduced by the leaf plasma membrane enzyme reductase, known to be inhibited by high citrate/Fe ratios. In peach, the effects of the implants could be observed many months post treatment. In pear, some effects were still observed one year after the implants had taken place. Results obtained indicate that solid Fe sulfate implants were capable of significantly changing the chemical composition of the xylem sap in fruit trees.

  7. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method.

    Science.gov (United States)

    Garvin, Naho; Doucette, William J; White, Jason C

    2015-07-01

    A pressure chamber method was used to examine differences in the root to shoot transfer and xylem sap solubility of caffeine (log Kow=-0.07), triclocarban (log Kow=3.5-4.2) and endosulfan (log Kow=3.8-4.8) for zucchini (cucurbita pepo ssp pepo), squash (cucurbita pepo ssp ovifera), and soybean (glycine max L.). Transpiration stream concentration factors (TSCF) for caffeine (TSCF=0.8) were statistically equivalent for all plant species. However, for the more hydrophobic endosulfan and triclocarban, the TSCF values for zucchini (TSCF=0.6 and 0.4, respectively) were 3 and 10 times greater than the soybean and squash (TSCF=0.2 and 0.05, respectively). The difference in TSCF values was examined by comparing the measured solubilities of caffeine, endosulfan and triclocarban in deionized water to those in soybean and zucchini xylem saps using a modified shake flask method. The measured solubility of organic contaminants in xylem sap has not previously been reported. Caffeine solubilities in the xylem saps of soybean and zucchini were statistically equal to deionized water (21500mgL(-1)) while endosulfan and triclocarban solubilities in the zucchini xylem sap were significantly greater (0.43 and 0.21mgL(-1), respectively) than that of the soybean xylem sap (0.31 and 0.11mgL(-1), respectively) and deionized water (0.34 and 0.11mgL(-1), respectively). This suggests that the enhanced root to shoot transfer of hydrophobic organics reported for zucchini is partly due to increased solubility in the xylem sap. Further xylem sap characterization is needed to determine the mechanism of solubility enhancement.

  8. A noninvasive optical system for the measurement of xylem and phloem sap flow in woody plants of small stem size.

    Science.gov (United States)

    Helfter, Carole; Shephard, Jonathon D; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Hand, Duncan P

    2007-02-01

    Over the past 70 years, heat has been widely used as a tracer for estimating the flow of water in woody and herbaceous plants. However, most commercially available techniques for monitoring whole plant water use are invasive and the measurements are potentially flawed because of wounding of the xylem tissue. The study of photosynthate transport in the phloem remains in its infancy, and little information about phloem transport rates is available owing to the fragility of the vascular tissue. The aim of our study was to develop a compact, stand-alone non-invasive system allowing for direct detection of phloem and xylem sap movement. The proposed method uses a heat pulse as a tracer for sap flow. Heat is applied to the surface of the stem with a near-infrared laser source, and heat propagation is monitored externally by means of an infrared camera. Heat pulse velocities are determined from the thermometric data and related to the more useful quantity, mass flow rate. Simulation experiments on the xylem tissue of severed silver birch (Betula pendula Roth.) branch segments were performed to assess the feasibility of the proposed approach, highlight the characteristics of the technique and outline calibration strategies. Good agreement between imposed and measured flow rates was achieved leading to experimentation with live silver birch and oak (Quercus robur L.) saplings. It was demonstrated that water flow through xylem vessels can be monitored non-invasively on an intact stem with satisfactory accuracy despite simultaneous sugar transport in the phloem. In addition, it was demonstrated that the technique allows for unequivocal detection of phloem flow velocities.

  9. Identification of Xylem Occlusions Occurring in Cut Clematis (Clematis L., fam. Ranunculaceae Juss. Stems during Their Vase Life

    Directory of Open Access Journals (Sweden)

    Agata Jedrzejuk

    2012-01-01

    Full Text Available During the vase life of cut stems obstruction of xylem vessels occurs due to microbial growth, formation of tyloses, deposition of materials in the lumen of xylem vessels and the presence of air emboli in the vascular system. Such obstructions may restrict water uptake and its transport towards upwards thus lowering their ornamental value and longevity of cut flowers. Clematis is a very attractive plant material which may be used as cut flower in floral compositions. Nothing is known about the histochemical or cytological nature of xylem blockages occurring in cut stems of this plant. This study shows that in clematis, tyloses are the main source of occlusions, although bacteria and some amorphic substances may also appear inside the vessels. A preservative composed of 200 mg dm−3 8-HQC (8-hydroxyquinolin citrate and 2% sucrose arrested bacterial development and the growth of tyloses. This information can be helpful in the development of new treatments to improve keeping qualities of cut clematis stems.

  10. Identification of Xylem Occlusions Occurring in Cut Clematis (Clematis L., fam. Ranunculaceae Juss.) Stems during Their Vase Life

    Science.gov (United States)

    Jedrzejuk, Agata; Rochala, Julia; Zakrzewski, Jacek; Rabiza-Świder, Julita

    2012-01-01

    During the vase life of cut stems obstruction of xylem vessels occurs due to microbial growth, formation of tyloses, deposition of materials in the lumen of xylem vessels and the presence of air emboli in the vascular system. Such obstructions may restrict water uptake and its transport towards upwards thus lowering their ornamental value and longevity of cut flowers. Clematis is a very attractive plant material which may be used as cut flower in floral compositions. Nothing is known about the histochemical or cytological nature of xylem blockages occurring in cut stems of this plant. This study shows that in clematis, tyloses are the main source of occlusions, although bacteria and some amorphic substances may also appear inside the vessels. A preservative composed of 200 mg dm−3 8-HQC (8-hydroxyquinolin citrate) and 2% sucrose arrested bacterial development and the growth of tyloses. This information can be helpful in the development of new treatments to improve keeping qualities of cut clematis stems. PMID:22919351

  11. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa.

    Science.gov (United States)

    Loziuk, Philip L; Parker, Jennifer; Li, Wei; Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Sederoff, Ronald R; Chiang, Vincent L; Muddiman, David C

    2015-10-02

    Cellulose, the main chemical polymer of wood, is the most abundant polysaccharide in nature.1 The ability to perturb the abundance and structure of cellulose microfibrils is of critical importance to the pulp and paper industry as well as for the textile, wood products, and liquid biofuels industries. Although much has been learned at the transcript level about the biosynthesis of cellulose, a quantitative understanding at the proteome level has yet to be established. The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. Development of an effective discovery proteomic strategy through a combination of subcellular fractionation of stem differentiating xylem tissue (SDX) with recently optimized FASP digestion protocols, StageTip fractionation, as well as optimized instrument parameters for global proteomic analysis using the quadrupole-orbitrap mass spectrometer resulted in the deepest proteomic coverage of SDX protein from P. trichocarpa with 9,146 protein groups being identified (1% FDR). Of these, 20 cellulosic/hemicellulosic enzymes and 43 xylem-specific transcription factor groups were identified. Finally, selection of surrogate peptides led to an assay for absolute quantification of 14 cellulosic proteins in SDX of P. trichocarpa.

  12. Isolation of developing secondary xylem specific cellulose synthase genes and their expression profiles during hormone signalling in Eucalyptus tereticornis

    Indian Academy of Sciences (India)

    Balachandran Karpaga Raja Sundari; Modhumita Ghosh Dasgupta

    2014-08-01

    Cellulose synthases (CesA) represent a group of -1, 4 glycosyl transferases involved in cellulose biosynthesis. Recent reports in higher plants have revealed that two groups of CesA gene families exist, which are associated with either primary or secondary cell wall deposition. The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from Eucalyptus tereticornis, a species predominantly used in paper and pulp industries in the tropics. The differential expression analysis of the three EtCesA genes using qRT-PCR revealed 49 to 87 fold relative expression in developing secondary xylem tissues. Three full length gene sequences of EtCesA1, EtCesA2 and EtCesA3 were isolated with the size of 2940, 3114 and 3123 bp, respectively. Phytohormone regulation of all three EtCesA genes were studied by exogenous application of gibberellic acid, naphthalene acetic acid, indole acetic acid and 2, 4-epibrassinolide in internode tissues derived from three-month-old rooted cuttings. All three EtCesA transcripts were upregulated by indole acetic acid and gibberellic acid. This study demonstrates that the increased cellulose deposition in the secondary wood induced by hormones can be attributed to the upregulation of xylem specific CesAs.

  13. Cellular distribution of alkaloids and their translocation via phloem and xylem: the importance of compartment pH.

    Science.gov (United States)

    Nowak, M; Selmar, D

    2016-11-01

    The physico-chemical background of alkaloid allocation within plants is outlined and discussed exemplarily for pyrrolizidine alkaloids (PAs) and nicotine. The trigger for this discourse is the finding that, for example, PAs, which are taken up from the soil, are translocated in the xylem, whereas - when genuinely present in plants - they are allocated as N-oxides via phloem. Special emphasis is put on the impact of different pH values in certain compartments, as this entails significant changes in the relative lipophilic character of alkaloids: tertiary alkaloids diffuse readily through biomembranes, while the corresponding protonated alkaloids are retained in acidic compartments, i.e. vacuoles or xylem. Therefore, this phenomenon, well known as the 'ion trap mechanism', is also relevant for long-distance transport of alkaloids. Any efficient allocation of typical tertiary alkaloids within the phloem can thus be excluded. In contrast, due to their strongly increased hydrophilic properties, alkaloid-N-oxides or quarternary alkaloids cannot diffuse through biomembranes and, consequently, would be retained in the acidic xylem during translocation. The major aim of this paper is to sharpen the mind for the chemical peculiarities of alkaloids and to consider them adequately in forthcoming investigations on allocation of alkaloids.

  14. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla

    Directory of Open Access Journals (Sweden)

    Huiyan Guo

    2015-09-01

    Full Text Available Gibberellin (GA is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch seeds were treated with 300 ppm GA3 and/or 300 ppm paclobutrazol (PAC, seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA3 and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol–HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA3, and reduced by PAC; the xylem development was wider in GA3-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA3 treatment, suggesting their role in GA3-induced xylem development in the birch. Our results suggest that GA3 induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants.

  15. Transcript Accumulation Dynamics of Phenylpropanoid Pathway Genes in the Maturing Xylem and Phloem of Picea abies during Latewood Formation.

    Science.gov (United States)

    Emiliani, Giovanni; Traversi, Maria Laura; Anichini, Monica; Giachi, Guido; Giovannelli, Alessio

    2011-10-01

    In temperate regions, latewood is produced when cambial activity declines with the approach of autumnal dormancy. The understanding of the temporal (cambium activity vs dormancy) and spatial (phloem, cambial region, maturing xylem) regulation of key genes involved in the phenylpropanoid pathway during latewood formation represents a crucial step towards providing new insights into the molecular basis of xylogenesis. In this study, the temporal pattern of transcript accumulation of 12 phenylpropanoid genes (PAL1, C4H3/5, C4H4, 4CL3, 4CL4, HCT1, C3H3, CCoAOMT1, COMT2, COMT5, CCR2) was analyzed in maturing xylem and phloem of Picea abies during latewood formation. Quantitative reverse transcription-polymerase chain reaction analyses revealed a well-defined RNA accumulation pattern of genes involved in the phenylpropanoid pathway during latewood formation. Differences in the RNA accumulation patterns were detected between the different tissue types analyzed. The results obtained here demonstrated that the molecular processes involved in monolignol biosynthesis are not restricted to the cambial activity timeframe but continued after the end of cambium cell proliferation. Furthermore, since it has been shown that lignification of maturing xylem takes place in late autumn, we argue on the basis of our data that phloem could play a key role in the monolignol biosynthesis process. © 2011 Institute of Botany, Chinese Academy of Sciences.

  16. Transcript Accumulation Dynamics of Phenylpropanoid Pathway Genes in the Maturing Xylem and Phloem of Picea abies during Latewood Formation

    Institute of Scientific and Technical Information of China (English)

    Giovanni Emiliani; Maria Laura Traversi; Monica Anichini; Guido Giachi; Aiessio Giovannelli

    2011-01-01

    In temperate regions,latewood is produced when cambial activity declines with the approach of autumnal dormancy.The understanding of the temporal (cambium activity vs dormancy) and spatial (phloem,cambial region,maturing xylem) regulation of key genes involved in the phenylpropanoid pathway during latewood formation represents a crucial step towards providing new insights into the molecular basis of xylogenesis.In this study,the temporal pattern of transcript accumulation of 12 phenylpropanoid genes (PAL1,C4H3I5,C4H4,4CL3,4CL4,HCT1,C3H3,CCoAOMT1,COMT2,COMT5,CCR2) was analyzed in maturing xylem and phloem of Picea abies during latewood formation.Quantitative reverse transcription-polymerase chain reaction analyses revealed a well-defined RNA accumulation pattern of genes involved in the phenylpropanoid pathway during latewood formation.Differences in the RNA accumulation patterns were detected between the different tissue types analyzed.The results obtained here demonstrated that the molecular processes involved in monolignol biosynthesis are not restricted to the cambial activity timeframe but continued after the end of cambium cell proliferation.Furthermore,since it has been shown that lignification of maturing xylem takes place in late autumn,we argue on the basis of our data that phloem could play a key role in the monolignol biosynthesis process.

  17. Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in sycamore and poplar.

    Science.gov (United States)

    Dalessandro, G; Northcote, D H

    1977-02-15

    During the transition from primary wall formation to secondary thickening there is a marked shift in the synthesis of pectin, hemicellulose and cellulose. The activities of the enzymes [UDP-D-galactose 4-epimerase (EC 5.1.3.2)8 UDP-l-arabinose 4-epimerase (EC 5.1.3.5), UDP-D-glucose dehydrogenase (EC 1.1.1.22) and UDP-D--glucuronate decarboxylase (EC 4.1.1.35)] were measured in cambial cells, differentiating xylem cells and differentiated xylem cells isolated from sycamore and poplar trees, and phloem cells from poplar. At the final stage of the differentiation of cambium to xylem there was a decrease in activity of the enzymes directly involved in producing the soluble precursors of pectin (DUP-D-galactose 4-epimerase and UDP-L-arabinose 4-epimerase and an increase in those producing the precursors of hemicellulose (UDP-D-glucose dehydrogenase and UDP-D-glucuronate decarboxylase). These results strongly suggest ahat the changes were correlated with the differences observed in the chemical composition of the wall during development. The changes found in the catalytic activity of the enzymes of nucleoside diphosphate sugar interconversion exert a coarse control over the synthesis of pectin and hemicelluloses. The tissues at all stages of development contained the necessary enzyme activities to produce all the precursors of pectin and hemicellulose, even at the final stage of differentiation when no pectin was formed.

  18. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na(+) loading and stomatal density.

    Science.gov (United States)

    Shabala, Sergey; Hariadi, Yuda; Jacobsen, Sven-Erik

    2013-07-01

    Quinoa is regarded as a highly salt tolerant halophyte crop, of great potential for cultivation on saline areas around the world. Fourteen quinoa genotypes of different geographical origin, differing in salinity tolerance, were grown under greenhouse conditions. Salinity treatment started on 10 day old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially increased K(+) concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na(+) content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups (includers and excluders) depending on their strategy of handling Na(+) under saline conditions. Under control (non-saline) conditions, a strong positive correlation was observed between salinity tolerance and plants ability to accumulate Na(+) in the shoot. Increased leaf sap K(+), controlled Na(+) loading to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family.

  19. Source of sustained voltage difference between the xylem of a potted Ficus benjamina tree and its soil.

    Directory of Open Access Journals (Sweden)

    Christopher J Love

    Full Text Available It has long been known that there is a sustained electrical potential (voltage difference between the xylem of many plants and their surrounding soil, but the mechanism behind this voltage has remained controversial. After eliminating any extraneous capacitive or inductive couplings and ground-mediated electric current flows, we have measured sustained differences of 50-200 mV between the xylem region of a Faraday-caged, intact, potted Ficus benjamina tree and its soil, as well as between its cut branches and soils and ionic solutions standardized to various pH values. Using identical platinum electrodes, no correlation between the voltage and time of day, illumination, sap flow, electrode elevation, or ionic composition of soil was found, suggesting no direct connection to simple dissimilar-metal redox reactions or transpirational activity. Instead, a clear relationship between the voltage polarity and magnitude and the pH difference between xylem and soil was observed. We attribute these sustained voltages to a biological concentration cell likely set up by the homeostatic mechanisms of the tree. Potential applications of this finding are briefly explored.

  20. The chemical identity of intervessel pit membranes in Acer challenges hydrogel control of xylem hydraulic conductivity

    Science.gov (United States)

    Klepsch, Matthias M.; Schmitt, Marco; Paul Knox, J.; Jansen, Steven

    2016-01-01

    Ion-mediated enhancement of the hydraulic conductivity of xylem tissue (i.e. the ionic effect) has been reported for various angiosperm species. One explanation of the ionic effect is that it is caused by the swelling and shrinking of intervessel pit membranes due to the presence of pectins and/or other cell-wall matrix polymers such as heteroxylans or arabinogalactan–proteins (AGPs) that may contain acidic sugars. Here, we examined the ionic effect for six Acer species and their pit membrane chemistry using immunocytochemistry, including antibodies against glycoproteins. Moreover, anatomical features related to the bordered pit morphology and vessel dimensions were investigated using light and electron microscopy. The ionic effect varied from 18 % (± 9) to 32 % (± 13). Epitopes of homogalacturonan (LM18) and xylan (LM11) were not detected in intervessel pit membranes. Negative results were also obtained for glycoproteins (extensin: LM1, JIM20; AGP glycan: LM2), although AGP (JIM13)-related epitopes were detected in parenchyma cells. The mean vessel length was significantly correlated with the magnitude of the ionic effect, unlike other pit or vessel-related characteristics. Our results suggest that intervessel pit membranes of Acer are unlikely to contain pectic or other acidic polysaccharides. Therefore, alternative explanations should be tested to clarify the ionic effect. PMID:27354661

  1. Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism.

    Science.gov (United States)

    Cochard, H; Tyree, M T

    1990-12-01

    The seasonal progression of xylem dysfunction from tyloses and embolism induced both by cavitation and frost was studied in Quercus rubra L. and Quercus alba L. branches. Vessel lengths and diameters were measured in current-year rings of branches of various ages. Vessels in current-year shoots are about the same size as those in many diffuse porous trees, but vessels in older branches are two to six times larger in diameter and typically more than 10 times longer. Large Quercus vessels were more vulnerable to cavitation than small vessels. The small vessels in current-year shoots were more vulnerable to cavitation than vessels of comparable size in diffuse porous species. Earlywood vessels are completely blocked by tyloses within a year of their formation. Tylose growth starts in winter, but the vessels are not fully blocked until the next summer. Many latewood vessels, by contrast, remain free of complete blockage for several years. In Q. rubra, loss of hydraulic conductivity in current-year shoots due to cavitation reaches 20% by August and > 90% after the first hard frost. Both laboratory and field observations confirm that the role of frost in causing loss of hydraulic conduction by embolism is much more dramatic in Quercus than in conifers and diffuse porous hardwoods.

  2. Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ.

    Science.gov (United States)

    Christensen-Dalsgaard, Karen K; Tyree, Melvin T

    2014-05-01

    Frost has been shown to cause frost fatigue (reduced cavitation resistance) in branch segments in the lab. Here, we studied the change in cavitation resistance and percent loss of conductivity (PLC) from fall to spring over 2 consecutive years in three diffuse-porous species in situ. We used the cavitron technique to measure P25 , P50 and P90 (the xylem pressure causing a 25, 50 and 90% conductivity loss) and PLC and stained functioning vessels. Cavitation resistance was reduced by 64-87% (in terms of P50 ), depending on the species and year. P25 was impacted the most and P90 the least, changing the vulnerability curves from s- to r-shaped over the winter in all three species. The branches suffered an almost complete loss of conductivity, but frost fatigue did not necessarily occur concurrently with increases in PLC. In two species, there was a trade-off between conduit size and vulnerability. Spring recovery occurred by growth of new vessels, and in two species by partial refilling of embolized conduits. Although newly grown and functioning conduits appeared more vulnerable to cavitation than year-old vessels, cavitation resistance generally improved in spring, suggesting other mechanisms for partial frost fatigue repair. © 2013 John Wiley & Sons Ltd.

  3. The xylem as battleground for plant hosts and vascular wilt pathogens

    Directory of Open Access Journals (Sweden)

    Koste eYadeta

    2013-04-01

    Full Text Available Vascular wilts are among the most destructive plant diseases that occur in annual crops as well as in woody perennials. These diseases are generally caused by soil-borne bacteria, fungi and oomycetes that infect through the roots and enter the water-conducting xylem vessels where they proliferate and obstruct the transportation of water and minerals. As a consequence, leaves wilt and die, which may lead to impairment of the whole plant and eventually to death of the plant. Cultural, chemical and biological measures to control this group of plant pathogens are generally ineffective, and the most effective control strategy is the use of genetic resistance. Owing to the fact that vascular wilt pathogens live deep in the interior of their host plants, studies into the biology of vascular pathogens are complicated. However, to design novel strategies to combat vascular wilt diseases, understanding the (molecular biology of vascular pathogens and the molecular mechanisms underlying plant defense against these pathogens is crucial. In this review we discuss the current knowledge on interactions of vascular wilt pathogens with their host plants, with emphasis on host defense responses against this group of pathogens.

  4. Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid.

    Science.gov (United States)

    Kirst, Matias; Basten, Christopher J; Myburg, Alexander A; Zeng, Zhao-Bang; Sederoff, Ronald R

    2005-04-01

    Species diversity may have evolved by differential regulation of a similar set of genes. To analyze and compare the genetic architecture of transcript regulation in different genetic backgrounds of Eucalyptus, microarrays were used to examine variation in mRNA abundance in the differentiating xylem of a E. grandis pseudobackcross population [E. grandis x F(1) hybrid (E. grandis x E. globulus)]. Least-squares mean estimates of transcript levels were generated for 2608 genes in 91 interspecific backcross progeny. The quantitative measurements of variation in transcript abundance for specific genes were mapped as expression QTL (eQTL) in two single-tree genetic linkage maps (F(1) hybrid paternal and E. grandis maternal). EQTL were identified for 1067 genes in the two maps, of which 811 were located in the F(1) hybrid paternal map, and 451 in the E. grandis maternal map. EQTL for 195 genes mapped to both parental maps, the majority of which localized to nonhomologous linkage groups, suggesting trans-regulation by different loci in the two genetic backgrounds. For 821 genes, a single eQTL that explained up to 70% of the transcript-level variation was identified. Hotspots with colocalized eQTL were identified in both maps and typically contained genes associated with specific metabolic and regulatory pathways, suggesting coordinated genetic regulation.

  5. Drought-induced xylem pit membrane damage in aspen and balsam poplar.

    Science.gov (United States)

    Hillabrand, Rachel M; Hacke, Uwe G; Lieffers, Victor J

    2016-10-01

    Drought induces an increase in a tree's vulnerability to a loss of its hydraulic conductivity in many tree species, including two common in western Canada, trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera). Termed 'cavitation fatigue' or 'air-seeding fatigue', the mechanism of this phenomenon is not well understood, but hypothesized to be a result of damage to xylem pit membranes. To examine the validity of this hypothesis, the effect of drought on the porosity of pit membranes in aspen and balsam poplar was investigated. Controlled drought and bench dehydration treatments were used to induce fatigue and scanning electron microscopy (SEM) was used to image pit membranes for relative porosity evaluations from air-dried samples after ethanol dehydration. A significant increase in the diameter of the largest pore was found in the drought and dehydration treatments of aspen, while an increase in the percentage of porous pit membranes was found in the dehydration treatments of both species. Additionally, the location of the largest pore per pit membrane was observed to tend toward the periphery of the membrane.

  6. The concentration and efflux of tree stem CO2 and the role of xylem sap flow

    Institute of Scientific and Technical Information of China (English)

    Ping ZHAO; Dirk H(O)LSCHER

    2009-01-01

    The accurate assessment of actual tree stem respiration and its relation with temperature plays a considerable role in investigating the forest carbon cycle.An increasing number of research reports have indicated that tree stem respiration determined with the commonlyapplied chamber gas exchange measuring system does not follow expectations regarding temperature relationships.theory that the respired CO2 in a tree stem would all diffuse outward into the atmosphere,However,it neglects partial CO2 that is dissolved in the xylem sap and is carried away by the transpirational stream.Scientists have started to realize that the respired CO2 measured with the chamber gas exchange method is only a portion of the total stem respiration (CO2 efflux),while the other portion,which is sometimes very substantial in quantity (thought to occupy maybe 15%-75% of the total stem respiration),is transported to the upper part of the stem and to the canopy by sap flow.This suggests that the CO2 produced by respiration is re-allocated within the stem.Accordingly,the change in CO2 efflux could be reflected in the rates of sap flow in addition to its dependence on temperature.Proper methods and instruments are required to quantify the internal and external CO2 fluxes in the trunk and their interaction with related environmental factors.

  7. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings.

    Science.gov (United States)

    Fonti, Patrick; von Arx, Georg; García-González, Ignacio; Eilmann, Britta; Sass-Klaassen, Ute; Gärtner, Holger; Eckstein, Dieter

    2010-01-01

    Variability in xylem anatomy is of interest to plant scientists because of the role water transport plays in plant performance and survival. Insights into plant adjustments to changing environmental conditions have mainly been obtained through structural and functional comparative studies between taxa or within taxa on contrasting sites or along environmental gradients. Yet, a gap exists regarding the study of hydraulic adjustments in response to environmental changes over the lifetimes of plants. In trees, dated tree-ring series are often exploited to reconstruct dynamics in ecological conditions, and recent work in which wood-anatomical variables have been used in dendrochronology has produced promising results. Environmental signals identified in water-conducting cells carry novel information reflecting changes in regional conditions and are mostly related to short, sub-annual intervals. Although the idea of investigating environmental signals through wood anatomical time series goes back to the 1960s, it is only recently that low-cost computerized image-analysis systems have enabled increased scientific output in this field. We believe that the study of tree-ring anatomy is emerging as a promising approach in tree biology and climate change research, particularly if complemented by physiological and ecological studies. This contribution presents the rationale, the potential, and the methodological challenges of this innovative approach.

  8. Leaf size serves as a proxy for xylem vulnerability to cavitation in plantation trees.

    Science.gov (United States)

    Schreiber, Stefan G; Hacke, Uwe G; Chamberland, Sabrina; Lowe, Christopher W; Kamelchuk, David; Bräutigam, Katharina; Campbell, Malcolm M; Thomas, Barb R

    2016-02-01

    Hybrid poplars are an important renewable forest resource known for their high productivity. At the same time, they are highly vulnerable to water stress. Identifying traits that can serve as indicators for growth performance remains an important task, particularly under field conditions. Understanding which trait combinations translate to improved productivity is key in order to satisfy the demand for poplar wood in an uncertain future climate. In this study, we compared hydraulic and leaf traits among five hybrid poplar clones at 10 plantations in central Alberta. We also assessed the variation of these traits between 2- to 3-year-old branches from the lower to mid-crown and current-year long shoots from the mid to upper crown. Our results showed that (1) hybrid poplars differed in key hydraulic parameters between branch type, (2) variation of hydraulic traits among clones was relatively large for some clones and less for others, and (3) strong relationships between measured hydraulic traits, such as vessel diameter, cavitation resistance, xylem-specific and leaf-specific conductivity and leaf area, were observed. Our results suggest that leaf size could serve as an additional screening tool when selecting for drought-tolerant genotypes in forest management and tree improvement programmes.

  9. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation

    Science.gov (United States)

    Konings, A. G.; Williams, A. P.; Gentine, P.

    2017-03-01

    The terrestrial water and carbon cycles are coupled through plant regulation of stomatal closure. Both soil moisture and vapour pressure deficit--the amount of moisture in the air relative to its potential maximum--can govern stomatal closure, which reduces plant carbon uptake. However, plants vary in the degree to which they regulate their stomata--and in association, xylem conductance--in response to increasing aridity: isohydric plants exert tight regulation of stomata and the water content of the plant, whereas anisohydric plants do not. Here we use remote-sensing data sets of anisohydricity and vegetation greenness to show that productivity in United States grasslands--especially anisohydric ones--is far more sensitive to variations in vapour pressure deficit than to variations in precipitation. Anisohydric ecosystem productivity is over three times more sensitive to vapour pressure deficit than isohydric ecosystem productivity. The precipitation sensitivity of summer productivity increases with anisohydricity only for the most anisohydric ecosystems. We conclude that increases in vapour pressure deficit rather than changes in precipitation--both of which are expected impacts of climate change--will be a dominant influence on future grassland productivity.

  10. Microbial symbionts shape the sterol profile of the xylem-feeding woodwasp, Sirex noctilio.

    Science.gov (United States)

    Thompson, Brian M; Grebenok, Robert J; Behmer, Spencer T; Gruner, Daniel S

    2013-01-01

    The symbiotic fungus Amylostereum areolatum is essential for growth and development of larvae of the invasive woodwasp, Sirex noctilio. In the nutrient poor xylem of pine trees, upon which Sirex feeds, it is unknown whether Amylostereum facilitates survival directly through consumption (mycetophagy) and/or indirectly through digestion of recalcitrant plant polymers (external rumen hypothesis). We tested these alternative hypotheses for Amylostereum involvement in Sirex foraging using the innate dependency of all insects on dietary sources of sterol and the unique sterols indicative of fungi and plants. We tested alternative hypotheses by using GC-MS to quantify concentrations of free and bound sterol pools from multiple life-stages of Sirex, food sources, and waste products in red pine (Pinus resinosa). Cholesterol was the primary sterol found in all life-stages of Sirex. However, cholesterol was not found in significant quantities in either plant or fungal resources. Ergosterol was the most prevalent sterol in Amylostereum but was not detectable in either wood or insect tissue (importance for fungal enzymes, including the external digestion of recalcitrant plant polymers (e.g., lignin and cellulose), shaping this insect-fungal symbiosis.

  11. Xylem-Transported Glucose as an Additional Carbon Source for Leaf Isoprene Formation in Quercus Robur L.

    Science.gov (United States)

    Graus, M.; Kreuzwieser, J.; Schnitzler, J.; Wisthaler, A.; Hansel, A.; Rennenberg, H.

    2003-04-01

    Isoprene is emitted from mature, photosynthesizing leaves of many plant species, particularly of trees. Current interest in understanding the biochemical and physiological mechanisms controlling isoprene formation is caused by the important role isoprene plays in atmospheric chemistry. Isoprene reacts with hydroxyl radicals (OH) thereby generating oxidizing agents such as ozone and organic peroxides. Ozone causes significant deterioration in air quality and can pose threats to human health therefore its control is a major goal in Europe and the United States. In recent years, much progress has been made in elucidating the pathways of isoprene biosynthesis. Nevertheless the regulatory mechanisms controlling isoprene emission are not completely understood. Light and temperature appear to be the main factors controlling short-term variations in isoprene emission. Exposure of plants to C-13 labeled carbon dioxide showed instantaneous assimilated carbon is the primary carbon source for isoprene formation. However, variations in diurnal and seasonal isoprene fluxes, which cannot be explained by temperature, light, and leaf development led to the suggestion that alternative carbon sources may exist contributing to isoprene emissions. The aim of the present study was to test whether xylem-transported carbohydrates act as additional sources for isoprene biosynthesis. For this purpose, [U-C-13] alpha-D-glucose was fed to photosynthesizing leaves via the xylem of Quercus robur L. seedlings and the incorporation of glucose derived C-13 into emitted isoprene was monitored in real time using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). A rapid incorporation of C-13 from xylem-fed glucose into single (mass 70) and double (mass 71) C-13 labeled isoprene molecules was observed after a lag phase of approximately 5 to 10 minutes. This incorporation was temperature dependent and was highest (up to 13% C-13 of total carbon emitted as isoprene) at the temperature optimum of

  12. Determining Accuracy of Thermal Dissipation Methods-based Sap Flux in Japanese Cedar Trees

    Science.gov (United States)

    Su, Man-Ping; Shinohara, Yoshinori; Laplace, Sophie; Lin, Song-Jin; Kume, Tomonori

    2017-04-01

    Thermal dissipation method, one kind of sap flux measurement method that can estimate individual tree transpiration, have been widely used because of its low cost and uncomplicated operation. Although thermal dissipation method is widespread, the accuracy of this method is doubted recently because some tree species materials in previous studies were not suitable for its empirical formula from Granier due to difference of wood characteristics. In Taiwan, Cryptomeria japonica (Japanese cedar) is one of the dominant species in mountainous area, quantifying the transpiration of Japanese cedar trees is indispensable to understand water cycling there. However, no one have tested the accuracy of thermal dissipation methods-based sap flux for Japanese cedar trees in Taiwan. Thus, in this study we conducted calibration experiment using twelve Japanese cedar stem segments from six trees to investigate the accuracy of thermal dissipation methods-based sap flux in Japanese cedar trees in Taiwan. By pumping water from segment bottom to top and inserting probes into segments to collect data simultaneously, we compared sap flux densities calculated from real water uptakes (Fd_actual) and empirical formula (Fd_Granier). Exact sapwood area and sapwood depth of each sample were obtained from dying segment with safranin stain solution. Our results showed that Fd_Granier underestimated 39 % of Fd_actual across sap flux densities ranging from 10 to 150 (cm3m-2s-1); while applying sapwood depth corrected formula from Clearwater, Fd_Granier became accurately that only underestimated 0.01 % of Fd_actual. However, when sap flux densities ranging from 10 to 50 (cm3m-2s-1)which is similar with the field data of Japanese cedar trees in a mountainous area of Taiwan, Fd_Granier underestimated 51 % of Fd_actual, and underestimated 26 % with applying Clearwater sapwood depth corrected formula. These results suggested sapwood depth significantly impacted on the accuracy of thermal dissipation

  13. Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy.

    Science.gov (United States)

    Kitin, Peter; Voelker, Steven L; Meinzer, Frederick C; Beeckman, Hans; Strauss, Steven H; Lachenbruch, Barbara

    2010-10-01

    Of 14 transgenic poplar genotypes (Populus tremula × Populus alba) with antisense 4-coumarate:coenzyme A ligase that were grown in the field for 2 years, five that had substantial lignin reductions also had greatly reduced xylem-specific conductivity compared with that of control trees and those transgenic events with small reductions in lignin. For the two events with the lowest xylem lignin contents (greater than 40% reduction), we used light microscopy methods and acid fuchsin dye ascent studies to clarify what caused their reduced transport efficiency. A novel protocol involving dye stabilization and cryo-fluorescence microscopy enabled us to visualize the dye at the cellular level and to identify water-conducting pathways in the xylem. Cryo-fixed branch segments were planed in the frozen state on a sliding cryo-microtome and observed with an epifluorescence microscope equipped with a cryo-stage. We could then distinguish clearly between phenolic-occluded vessels, conductive (stain-filled) vessels, and nonconductive (water- or gas-filled) vessels. Low-lignin trees contained areas of nonconductive, brown xylem with patches of collapsed cells and patches of noncollapsed cells filled with phenolics. In contrast, phenolics and nonconductive vessels were rarely observed in normal colored wood of the low-lignin events. The results of cryo-fluorescence light microscopy were supported by observations with a confocal microscope after freeze drying of cryo-planed samples. Moreover, after extraction of the phenolics, confocal microscopy revealed that many of the vessels in the nonconductive xylem were blocked with tyloses. We conclude that reduced transport efficiency of the transgenic low-lignin xylem was largely caused by blockages from tyloses and phenolic deposits within vessels rather than by xylem collapse.

  14. Rice sucrose transporter1 (OsSUT1) up-regulation in xylem parenchyma is caused by aphid feeding on rice leaf blade vascular bundles.

    Science.gov (United States)

    Ibraheem, O; Botha, C E J; Bradley, G; Dealtry, G; Roux, S

    2014-07-01

    The role of the sucrose transporter OsSUT1 in assimilate retrieval via the xylem, as a result of damage to and leakage from punctured phloem was examined after rusty plum aphid (Hysteroneura setariae, Thomas) infestation on leaves from 3-week-old rice (Oryza sativa L. cv Nipponbare) plants. Leaves were examined over a 1- to 10-day infestation time course, using a combination of gene expression and β-glucuronidase (GUS) reporter gene analyses. qPCR and Western blot analyses revealed differential expression of OsSUT1 during aphid infestation. Wide-field fluorescence microscopy was used to confirm the expression of OsSUT1-promoter::GUS reporter gene in vascular parenchyma associated with xylem elements, as well as in companion cells associated with phloem sieve tubes of large, intermediate and small vascular bundles within the leaf blade, in regions where the aphids had settled and were feeding. Of great interest was up-regulation of OsSUT1 expression associated with the xylem parenchyma cells, abutting the metaxylem vessels, which confirmed that OsSUT1 was not only involved in loading of sugars into the phloem under normal physiological conditions, but was apparently involved in the retrieval of sucrose leaked into the xylem conduits, which occurred as a direct result of aphid feeding, probing and puncturing of vascular bundles. The up-regulation of OsSUT1 in xylem vascular parenchyma thus provides evidence in support of the location within the xylem parenchyma cells of an efficient mechanism to ensure sucrose recovery after loss to the apoplast (xylem) after aphid-related feeding damage and its transfer back to the symplast (phloem) in O. sativa leaves. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast

    Science.gov (United States)

    Dié, Agathe; Kitin, Peter; Kouamé, François N'Guessan; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans

    2012-01-01

    Background and Aims Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known. Methods The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy. Key Results A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R2 = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season. Conclusions The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution. PMID:22805529

  16. Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast.

    Science.gov (United States)

    Dié, Agathe; Kitin, Peter; Kouamé, François N'guessan; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans

    2012-09-01

    Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known. The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy. A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R(2) = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season. The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution.

  17. YeATS - a tool suite for analyzing RNA-seq derived transcriptome identifies a highly transcribed putative extensin in heartwood/sapwood transition zone in black walnut [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2015-11-01

    Full Text Available The transcriptome provides a functional footprint of the genome by enumerating the molecular components of cells and tissues. The field of transcript discovery has been revolutionized through high-throughput mRNA sequencing (RNA-seq. Here, we present a methodology that replicates and improves existing methodologies, and implements a workflow for error estimation and correction followed by genome annotation and transcript abundance estimation for RNA-seq derived transcriptome sequences (YeATS - Yet Another Tool Suite for analyzing RNA-seq derived transcriptome. A unique feature of YeATS is the upfront determination of the errors in the sequencing or transcript assembly process by analyzing open reading frames of transcripts. YeATS identifies transcripts that have not been merged, result in broken open reading frames or contain long repeats as erroneous transcripts. We present the YeATS workflow using a representative sample of the transcriptome from the tissue at the heartwood/sapwood transition zone in black walnut. A novel feature of the transcriptome that emerged from our analysis was the identification of a highly abundant transcript that had no known homologous genes (GenBank accession: KT023102. The amino acid composition of the longest open reading frame of this gene classifies this as a putative extensin. Also, we corroborated the transcriptional abundance of proline-rich proteins, dehydrins, senescence-associated proteins, and the DNAJ family of chaperone proteins. Thus, YeATS presents a workflow for analyzing RNA-seq data with several innovative features that differentiate it from existing software.

  18. The Integrated Role of Water Availability, Nutrient Dynamics, and Xylem Hydraulic Dysfunction on Plant Rooting Strategies in Managed and Natural Ecosystems

    Science.gov (United States)

    Mackay, D. S.; Savoy, P.; Pleban, J. R.; Tai, X.; Ewers, B. E.

    2015-12-01

    Plants adapt or acclimate to changing environments in part by allocating biomass to roots and leaves to strike a balance between water and nutrient uptake requirements on the one hand and growth and hydraulic safety on the other hand. In a recent study examining experimental drought with the TREES model, which couples plant ecophysiology with rhizosphere-and-xylem hydraulics, we hypothesized that the asynchronous nature of soil water availability and xylem repair supported root-to-leaf area (RLA) proportionality that favored long-term survival over short-term carbon gain or water use. To investigate this as a possible general principal of plant adjustment to changing environmental conditions, TREES was modified to allocate carbon to fine and coarse roots organized in ten orders differing in biomass allocated per unit absorbing root area, root lifespan, and total absorbing root area in each of several soil-root zones with depth. The expanded model allowed for adjustment of absorbing root area and rhizosphere volume based on available carbohydrate production and nitrogen (N) availability, resulting in dynamic expansion and contraction of the supply-side of the rhizosphere-plant hydraulics and N uptake capacity in response to changing environmental conditions and plant-environment asynchrony. The study was conducted partly in a controlled experimental setting with six genotypes of a widely grown crop species, Brassica rapa. The implications for forests were investigated in controlled experiments and at Fluxnet sites representing temperate mixed forests, semi-arid evergreen needle-leaf, and Mediterranean biomes. The results showed that the effects of N deficiency on total plant growth was modulated by a relative increase in fine root biomass representing a larger absorbing root volume per unit biomass invested. We found that the total absorbing root area per unit leaf area was consistently lower than that needed to maximize short-term water uptake and carbohydrate gain

  19. A new method of tree xylem water extraction for isotopic analysis

    Science.gov (United States)

    Gierke, C.; Newton, B. T.

    2011-12-01

    The Sacramento Mountain Watershed Study in the southern Sacramento Mountains of New Mexico is designed to assess the forest restoration technique of tree thinning in mountain watersheds as an effective method of increasing local and regional groundwater recharge. The project is using a soil water balance approach to quantify the partitioning of local precipitation within this watershed before and after thinning trees. Understanding what sources trees extract their water from (e.g. shallow groundwater, unsaturated fractured bedrock, and soils) is difficult due to a complex hydrologic system and heterogeneous distribution of soil thicknesses. However, in order to accurately quantify the soil water balance and to assess how thinning trees will affect this water balance, it is important determine the sources from which trees extract their water. We plan to use oxygen and hydrogen stable isotopic analysis of various end member waters to identify these different sources. We are in the process of developing a new method of determining the isotopic composition of tree water that has several advantages over conventional methods. Within the tree there is the xylem which transports water from the roots to the leaves and the phloem which transports starches and sugars in a water media throughout the tree. Previous studies have shown that the isotopic composition of xylem water accurately reflects that of source water, while phloem water has undergone isotopic fractionation during photosynthesis and metabolism. The distillation of water from twigs, which is often used to extract tree water for isotopic analysis, is very labor intensive. Other disadvantages to distillation methods include possible fractionation due to phase changes and the possible extraction of fractionated phloem waters. Employing a new mixing method, the composition of the twig water (TW) can be determined by putting twigs of unknown isotopic water composition into waters of known compositions or initial

  20. Xylem development and cell wall changes of soybean seedlings grown in space.

    Science.gov (United States)

    de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia

    2008-04-01

    Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth.

  1. Comprehensive transcriptome analysis of developing xylem responding to artificial bending and gravitational stimuli in Betula platyphylla.

    Directory of Open Access Journals (Sweden)

    Chao Wang

    Full Text Available Betula platyphylla Suk (birch is a fast-growing woody species that is important in pulp industries and the biofuels. However, as an important pulp species, few studies had been performed on its wood formation. In the present study, we investigated the molecular responses of birch xylem to artificial bending and gravitational stimuli. After trunks of birch trees were subjected to bending for 8 weeks, the cellulose content was significantly greater in tension wood (TW than in opposite wood (OW or normal wood (NW, whereas the lignin content in TW was significantly lower than that in OW and NW. In addition, TW grew more rapidly than OW and generated TW-specific fibers with an additional G-layer. Three transcriptome libraries were constructed from TW, OW and NW of B. platyphylla, respectively, after the plants were subjected to artificial bending. Overall, 80,909 nonredundant unigenes with a mean size of 768 nt were assembled. Expression profiles were generated, and 9,684 genes were found to be significantly differentially expressed among the TW, OW and NW libraries. These included genes involved in secondary cell wall structure, wood composition, and cellulose or lignin biosynthesis. Our study showed that during TW formation, genes involved in cellulose synthesis were induced, while the expression of lignin synthesis-related genes decreased, resulting in increased cellulose content and decreased lignin levels in TW. In addition, fasciclin-like arabinogalactan proteins play important role in TW formation. These findings may provide important insights into wood formation at the molecular level.

  2. Xylem of early angiosperms: Nuphar (Nymphaeaceae) has novel tracheid microstructure1.

    Science.gov (United States)

    Carlquist, Sherwin; Schneider, Edward L; Hellquist, C Barre

    2009-01-01

    SEM studies of xylem of stems of Nuphar reveal a novel feature, not previously reported for any angiosperm. Pit membranes of tracheid end walls are composed of coarse fibrils, densest on the distal (outside surface, facing the pit of an adjacent cell) surface of the pit membrane of a tracheid, thinner, and disposed at various levels on the lumen side of a pit membrane. The fibrils tend to be randomly oriented on the distal face of the pit membrane; the innermost fibrils facing the lumen take the form of longitudinally oriented strands. Where most abundantly present, the fibrils tend to be disposed in a spongiform, three-dimensional pattern. Pores that interconnect tracheids are present within the fibrillar meshwork. Pit membranes on lateral walls of stem tracheids bear variously diminished versions of this pattern. Pits of root tracheids are unlike those of stems in that the lumen side of pit membranes bears a reticulum revealed on the outer surface of the tracheid after most of the thickness of a pit membrane is shaved away by the sectioning process. No fibrillar texturing is visible on the root tracheid pits when they are viewed from the inside of a tracheid. Tracheid end walls of roots do contain pores of various sizes in pit membranes. These root and stem patterns were seen in six species representing the two sections of Nuphar, plus one intersectional hybrid, as well as in one collection of Nymphaea, included for purposes of comparison. Differences between root and stem tracheids with respect to microstructure are consistent in all species studied. Microstructural patterns reported here for stem tracheid pits of Nymphaeaceae are not like those of Chloranthaceae, Illiciaceae, or other basal angiosperms. They are not referable to any of the patterns reported for early vascular plants. The adaptational nature of the pit membrane structure in these tracheids is not apparent; microstructure of pit membranes in basal angiosperms is more diverse than thought prior to

  3. Topography mediates plant water stress: coupling groundwater flow and rhizosphere-xylem hydraulics

    Science.gov (United States)

    Mackay, D. S.; Tai, X.

    2016-12-01

    Explicit representation of groundwater movement and its subsidy to the unsaturated zone have long been recognized to affect land surface fluxes. But its impact on mediating plant safety during drought has not yet been evaluated, due to the oversimplified representation of the soil-plant-atmospheric continuum in current mainstream land surface models. Here we evaluated the interaction between groundwater processes and plant hydraulics by integrating a three-dimensional groundwater model - ParFlow with a physiologically sophisticated plant model - TREES. A series of simulation experiments using representative hillslope shapes during a general dry down period were carried out to explore the impacts of topography, soil properties, and plant traits - maximum hydraulic conductance (Kmax), root area (Ar), and vulnerability to cavitation on plant hydraulic stress and the potential feedbacks to soil water spatial dynamics. From an initial condition of uniform pressure, lateral redistribution dominated the first stage when soils were wet, resulting in various water table depths. As drought progressed, the tension wetted zone provided a water subsidy to the root zone, causing various rates of soil dry down at different locations. In the end, the root zone soil water remains stable and dry, with diurnal fluctuations induced by the hydraulic redistribution of plant roots. Plants, in general, had higher transpiration and lower hydraulic stress on concave hillslopes. The same plant growing on fine-textured soils had higher transpiration rate, and therefore stronger feedbacks to the water table depths, compared to coarse-textured soil. But these responses could further vary by plant traits. For locations with shallow water table, Kmax is the most important factor determining plant function. When soil is dry, plants with higher Ar and more resistant xylem sustained higher transpiration rates. Those promising performance suggests that the coupled model could be a powerful tool for

  4. Cloning, expression, functional validation and modeling of cinnamyl alcohol dehydrogenase isolated from xylem of Leucaena leucocephala.

    Science.gov (United States)

    Pandey, Brijesh; Pandey, Veda Prakash; Dwivedi, Upendra Nath

    2011-10-01

    A cDNA encoding cinnamyl alcohol dehydrogenase (CAD), catalyzing conversion of cinnamyl aldehydes to corresponding cinnamyl alcohols, was cloned from secondary xylem of Leucaena leucocephala. The cloned cDNA was expressed in Escherichia coli BL21 (DE3) pLysS cells. Temperature and Zn(2+) ion played crucial role in expression and activity of enzyme, such that, at 18°C and at 2 mM Zn(2+) the CAD was maximally expressed as active enzyme in soluble fraction. The expressed protein was purified 14.78-folds to homogeneity on Ni-NTA agarose column with specific activity of 346 nkat/mg protein. The purified enzyme exhibited lowest Km with cinnamyl alcohol (12.2 μM) followed by coniferyl (18.1 μM) and sinapyl alcohol (23.8 μM). Enzyme exhibited high substrate inhibition with cinnamyl (beyond 20 μM) and coniferyl (beyond 100 μM) alcohols. The in silico analysis of CAD protein exhibited four characteristic consensus sequences, GHEXXGXXXXXGXXV; C(100), C(103), C(106), C(114); GXGXXG and C(47), S(49), H(69), L(95), C(163), I(300) involved in catalytic Zn(2+) binding, structural Zn(2+) binding, NADP(+) binding and substrate binding, respectively. Tertiary structure, generated using Modeller 9v5, exhibited a trilobed structure with bulged out structural Zn(2+) binding domain. The catalytic Zn(2+) binding, substrate binding and NADP(+) binding domains formed a pocket protected by two major lobes. The enzyme catalysis, sequence homology and 3-D model, all supported that the cloned CAD belongs to alcohol dehydrogenase family of plants.

  5. Experimental evidence for heat plume-induced cavitation and xylem deformation as a mechanism of rapid post-fire tree mortality.

    Science.gov (United States)

    West, Adam G; Nel, Jacques A; Bond, William J; Midgley, Jeremy J

    2016-08-01

    Recent work suggests that hydraulic mechanisms, rather than cambium necrosis, may account for rapid post-fire tree mortality. We experimentally tested for xylem cavitation, as a result of exposure to high-vapour-deficit (D) heat plumes, and permanent xylem deformation, as a result of thermal softening of lignin, in two tree species differing in fire tolerance. We measured percentage loss of conductance (PLC) in distal branches that had been exposed to high-D heat plumes or immersed in hot water baths (high temperature, but not D). Results were compared with predictions from a parameterized hydraulic model. Physical damage to the xylem was examined microscopically. Both species suffered c. 80% PLC when exposed to a 100°C plume. However, at 70°C, the fire-sensitive Kiggelaria africana suffered lower PLC (49%) than the fire-resistant Eucalytpus cladocalyx (80%). Model simulations suggested that differences in PLC between species were a result of greater hydraulic segmentation in E. cladocalyx. Kiggelaria africana suffered considerable PLC (59%), as a result of heat-induced xylem deformation, in the water bath treatments, but E. cladocalyx did not. We suggest that a suite of 'pyrohydraulic' traits, including hydraulic segmentation and heat sensitivity of the xylem, may help to explain why some tree species experience rapid post-fire mortality after low-intensity fires and others do not.

  6. Tracing Cationic Nutrients from Xylem into Stem Tissue of French Bean by Stable Isotope Tracers and Cryo-Secondary Ion Mass Spectrometry[W][OA

    Science.gov (United States)

    Metzner, Ralf; Schneider, Heike Ursula; Breuer, Uwe; Thorpe, Michael Robert; Schurr, Ulrich; Schroeder, Walter Heinz

    2010-01-01

    Fluxes of mineral nutrients in the xylem are strongly influenced by interactions with the surrounding stem tissues and are probably regulated by them. Toward a mechanistic understanding of these interactions, we applied stable isotope tracers of magnesium, potassium, and calcium continuously to the transpiration stream of cut bean (Phaseolus vulgaris) shoots to study their radial exchange at the cell and tissue level with stem tissues between pith and phloem. For isotope localization, we combined sample preparation with secondary ion mass spectrometry in a completely cryogenic workflow. After 20 min of application, tracers were readily detectable to various degrees in all tissues. The xylem parenchyma near the vessels exchanged freely with the vessels, its nutrient elements reaching a steady state of strong exchange with elements in the vessels within 20 min, mainly via apoplastic pathways. A slow exchange between vessels and cambium and phloem suggested that they are separated from the xylem, parenchyma, and pith, possibly by an apoplastic barrier to diffusion for nutrients (as for carbohydrates). There was little difference in these distributions when tracers were applied directly to intact xylem via a microcapillary, suggesting that xylem tension had little effect on radial exchange of these nutrients and that their movement was mainly diffusive. PMID:19965970

  7. Assimilation of xylem-transported 13C-labelled CO2 in leaves and branches of sycamore (Platanus occidentalis L.).

    Science.gov (United States)

    McGuire, M A; Marshall, J D; Teskey, R O

    2009-01-01

    Previous reports have shown that CO(2) dissolved in xylem sap in tree stems can move upward in the transpiration stream. To determine the fate of this dissolved CO(2), the internal transport of respired CO(2) at high concentration from the bole of the tree was simulated by allowing detached young branches of sycamore (Platanus occidentalis L.) to transpire water enriched with a known quantity of (13)CO(2) in sunlight. Simultaneously, leaf net photosynthesis and CO(2) efflux from woody tissue were measured. Branch and leaf tissues were subsequently analysed for (13)C content to determine the quantity of transported (13)CO(2) label that was fixed. Treatment branches assimilated an average of 35% (SE=2.4) of the (13)CO(2) label taken up in the treatment water. The majority was fixed in the woody tissue of the branches, with smaller amounts fixed in the leaves and petioles. Overall, the fixation of internally transported (13)CO(2) label by woody tissues averaged 6% of the assimilation of CO(2) from the atmosphere by the leaves. Woody tissue assimilation rates calculated from measurements of (13)C differed from rates calculated from measurements of CO(2) efflux in the lower branch but not in the upper branch. The results of this study showed unequivocally that CO(2) transported in xylem sap can be fixed in photosynthetic cells in the leaves and branches of sycamore trees and provided evidence that recycling of xylem-transported CO(2) may be an important means by which trees reduce the carbon cost of respiration.

  8. Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii.

    Science.gov (United States)

    Burbank, Lindsey; Mohammadi, Mojtaba; Roper, M Caroline

    2015-01-01

    Iron is a key micronutrient for microbial growth but is often present in low concentrations or in biologically unavailable forms. Many microorganisms overcome this challenge by producing siderophores, which are ferric-iron chelating compounds that enable the solubilization and acquisition of iron in a bioactive form. Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a siderophore under iron-limiting conditions. The proteins involved in the biosynthesis and export of this siderophore are encoded by the iucABCD-iutA operon, which is homologous to the aerobactin biosynthetic gene cluster found in a number of enteric pathogens. Mutations in iucA and iutA resulted in a decrease in surface-based motility that P. stewartii utilizes during the early stages of biofilm formation, indicating that active iron acquisition impacts surface motility for P. stewartii. Furthermore, bacterial movement in planta is also dependent on a functional siderophore biosynthesis and uptake pathway. Most notably, siderophore-mediated iron acquisition is required for full virulence in the sweet corn host, indicating that active iron acquisition is essential for pathogenic fitness for this important xylem-dwelling bacterial pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Response pattern of amino compounds in phloem and xylem of trees to soil drought depends on drought intensity and root symbiosis.

    Science.gov (United States)

    Liu, X-P; Gong, C-M; Fan, Y-Y; Eiblmeier, M; Zhao, Z; Han, G; Rennenberg, H

    2013-01-01

    This study aimed to identify drought-mediated differences in amino nitrogen (N) composition and content of xylem and phloem in trees having different symbiotic N(2)-fixing bacteria. Under controlled water availability, 1-year-old seedlings of Robinia pseudoacacia (nodules with Rhizobium), Hippophae rhamnoides (symbiosis with Frankia) and Buddleja alternifolia (no such root symbiosis) were exposed to control, medium drought and severe drought, corresponding soil water content of 70-75%, 45-50% and 30-35% of field capacity, respectively. Composition and content of amino compounds in xylem sap and phloem exudates were analysed as a measure of N nutrition. Drought strongly reduced biomass accumulation in all species, but amino N content in xylem and phloem remained unaffected only in R. pseudoacacia. In H. rhamnoides and B. alternifolia, amino N in phloem remained constant, but increased in xylem of both species in response to drought. There were differences in composition of amino compounds in xylem and phloem of the three species in response to drought. Proline concentrations in long-distance transport pathways of all three species were very low, below the limit of detection in phloem of H. rhamnoides and in phloem and xylem of B. alternifolia. Apparently, drought-mediated changes in N composition were much more connected with species-specific changes in C:N ratios. Irrespective of soil water content, the two species with root symbioses did not show similar features for the different types of symbiosis, neither in N composition nor in N content. There was no immediate correlation between symbiotic N fixation and drought-mediated changes in amino N in the transport pathways. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology.

    Science.gov (United States)

    Redak, Richard A; Purcell, Alexander H; Lopes, João R S; Blua, Matthew J; Mizell, Russell F; Andersen, Peter C

    2004-01-01

    Xylophagous leafhopppers are common and abundant insects of tropical and subtropical environments and play important ecological roles in these ecosystems. The feeding biology of these insects is unique in terms of their high feeding rates and a digestive physiology that allows them to assimilate amino acids, organic acids, and sugars at approximately 99% efficiency. For those species well studied, fluctuations in plant xylem chemistry and tension appear to determine the diurnal and seasonal use of their host plants. Relatively few species of xylem fluid-feeding leafhoppers are considered important pests in commercial agriculture, as they transmit the bacterial plant pathogen Xylella fastidiosa. X. fastidiosa induces diseases of grapevines, citrus, coffee, almond, alfalfa, stone fruits, landscape ornamentals, and native hardwoods for which there is no cure. Two Xylella diseases, citrus variegated chlorosis (CVC) and Pierce's disease (PD) of grapevines, have emerged as important issues within the past decade. In Brazil, CVC became important in the early 1990s and has now expanded throughout many citrus-growing areas of South America and threatens to spread to North America. The recent establishment of the exotic glassy-winged sharpshooter (Homalodisca coagulata) in California now threatens much of the United States' wine grape, table grape, and almond production. The spread of H. coagulata throughout southern California and the spread of CVC northward from Argentina through Brazil exemplifies the biological risks from exotic species. The occurrence and epidemiology of leafhopper-vectored Xylella diseases are discussed.

  11. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 regulates xylem development and growth by a conserved mechanism that modulates hormone signaling.

    Science.gov (United States)

    Grienenberger, Etienne; Douglas, Carl J

    2014-04-01

    Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways.

  12. Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants.

    Science.gov (United States)

    Tsuyama, Taku; Kawai, Ryo; Shitan, Nobukazu; Matoh, Toru; Sugiyama, Junji; Yoshinaga, Arata; Takabe, Keiji; Fujita, Minoru; Yazaki, Kazufumi

    2013-06-01

    Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms.

  13. Pathogen-induced conditioning of the primary xylem vessels - a prerequisite for the formation of bacterial emboli by Pectobacterium atrosepticum.

    Science.gov (United States)

    Gorshkov, V Y; Daminova, A G; Mikshina, P V; Petrova, O E; Ageeva, M V; Salnikov, V V; Gorshkova, T A; Gogolev, Y V

    2016-07-01

    Representatives of Pectobacterium genus are some of the most harmful phytopathogens in the world. In the present study, we have elucidated novel aspects of plant-Pectobacterium atrosepticum interactions. This bacterium was recently demonstrated to form specific 'multicellular' structures - bacterial emboli in the xylem vessels of infected plants. In our work, we showed that the process of formation of these structures includes the pathogen-induced reactions of the plant. The colonisation of the plant by P. atrosepticum is coupled with the release of a pectic polysaccharide, rhamnogalacturonan I, into the vessel lumen from the plant cell wall. This polysaccharide gives rise to a gel that serves as a matrix for bacterial emboli. P. atrosepticum-caused infection involves an increase of reactive oxygen species (ROS) levels in the vessels, creating the conditions for the scission of polysaccharides and modification of plant cell wall composition. Both the release of rhamnogalacturonan I and the increase in ROS precede colonisation of the vessels by bacteria and occur only in the primary xylem vessels, the same as the subsequent formation of bacterial emboli. Since the appearance of rhamnogalacturonan I and increase in ROS levels do not hamper the bacterial cells and form a basis for the assembly of bacterial emboli, these reactions may be regarded as part of the susceptible response of the plant. Bacterial emboli thus represent the products of host-pathogen integration, since the formation of these structures requires the action of both partners.

  14. Increasing water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow.

    Science.gov (United States)

    Morandi, Brunella; Losciale, Pasquale; Manfrini, Luigi; Zibordi, Marco; Anconelli, Stefano; Galli, Fabio; Pierpaoli, Emanuele; Corelli Grappadelli, Luca

    2014-10-15

    Drought stress negatively affects many physiological parameters and determines lower yields and fruit size. This paper investigates on the effects of prolonged water restriction on leaf gas exchanges, water relations and fruit growth on a 24-h time-scale in order to understand how different physiological processes interact to each other to face increasing drought stress and affect pear productive performances during the season. The diurnal patterns of tree water relations, leaf gas exchanges, fruit growth, fruit vascular and transpiration flows were monitored at about 50, 95 and 145 days after full bloom (DAFB) on pear trees of the cv. Abbé Fétel, subjected to two irrigation regimes, corresponding to a water restitution of 100% and 25% of the estimated Etc, respectively. Drought stress progressively increased during the season due to lower soil tensions and higher daily vapour pressure deficits (VPDs). Stem water potential was the first parameter to be negatively affected by stress and determined the simultaneous reduction of fruit xylem flow, which at 95 DAFB was reflected by a decrease in fruit daily growth. Leaf photosynthesis was reduced only from 95 DAFB on, but was not immediately reflected by a decrease in fruit phloem flow, which instead was reduced only at 145 DAFB. This work shows how water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow. This determines a progressive increase in the phloem relative contribution to growth, which lead to the typical higher dry matter percentages of stressed fruit.

  15. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal.

    Science.gov (United States)

    Mencuccini, Maurizio; Hölttä, Teemu; Sevanto, Sanna; Nikinmaa, Eero

    2013-06-01

    · Currently, phloem transport in plants under field conditions is not well understood. This is largely the result of the lack of techniques suitable for the measurement of the physiological properties of phloem. · We present a model that interprets the changes in xylem diameter and live bark thickness and separates the components responsible for such changes. We test the predictions from this model on data from three mature Scots pine trees in Finland. The model separates the live bark thickness variations caused by bark water capacitance from a residual signal interpreted to indicate the turgor changes in the bark. · The predictions from the model are consistent with processes related to phloem transport. At the diurnal scale, this signal is related to patterns of photosynthetic activity and phloem loading. At the seasonal scale, bark turgor showed rapid changes during two droughts and after two rainfall events, consistent with physiological predictions. Daily cumulative totals of this turgor term were related to daily cumulative totals of canopy photosynthesis. Finally, the model parameter representing radial hydraulic conductance between phloem and xylem showed a temperature dependence consistent with the temperature-driven changes in water viscosity. · We propose that this model has potential for the continuous field monitoring of tree phloem function. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Tetraena mongolica Maxim can accumulate large amounts of triacylglycerol in phloem cells and xylem parenchyma of stems.

    Science.gov (United States)

    Wang, Geliang; Lin, Qingqing; Xu, Yinong

    2007-08-01

    Tetraena mongolica Maxim is a narrowly monotypic genus of Zygophyllaceae found in a very limited area in the western part of Inner Mongolia, China. The plant is called "oil firewood" and its stems and branches are used as fuelwood. As triacylglycerol (TAG) is the main component of the plant oil, the TAG content was analyzed, as were the distribution of oleosomes in different tissues of the stem. This was in order to ascertain whether the term "oil firewood" referred to this storage lipid. Stems of T. mongolica indeed contained high levels of TAG (approximately 46 mg/g of dry matter or DM). The concentration of TAG in phloem (90 mg/g of DM) was much higher than that in xylem (20mg/g of DM), and semi-thin sections stained by Sudan Black B showed that almost all cells in the phloem contained oleosomes whereas in the xylem, oleosomes were found only in parenchymatous cells. These results suggest that T. mongolica has a high capacity to accumulate TAG in its stem cells.

  17. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera.

    Science.gov (United States)

    Tombesi, Sergio; Nardini, Andrea; Farinelli, Daniela; Palliotti, Alberto

    2014-11-01

    Current understanding of physiological mechanisms governing stomatal behavior under water stress conditions is still incomplete and controversial. It has been proposed that coordination of stomatal kinetics with xylem vulnerability to cavitation [vulnerability curve (VC)] leads to different levels of isohydry/anisohydry in different plant species/cultivars. In this study, this hypothesis is tested in Vitis vinifera cultivars displaying contrasting stomatal behavior under drought stress. The cv Montepulciano (MP, near-isohydric) and Sangiovese (SG, anisohydric) were compared in terms of stomatal response to leaf and stem water potential, as possibly correlated to different petiole hydraulic conductivity (k(petiole)) and VC, as well as to leaf water relations parameters. MP leaves showed almost complete stomatal closure at higher leaf and stem water potentials than SG leaves. Moreover, MP petioles had higher maximum k(petiole) and were more vulnerable to cavitation than SG. Water potential at the turgor loss point was higher in MP than in SG. In SG, the percentage reduction of stomatal conductance (PLg(s)) under water stress was almost linearly correlated with corresponding percentage loss of k(petiole) (PLC), while in MP PLg(s) was less influenced by PLC. Our results suggest that V. vinifera near-isohydric and anisohydric genotypes differ in terms of xylem vulnerability to cavitation as well as in terms of k(petiole) and that the coordination of these traits leads to their different stomatal responses under water stress conditions.

  18. In-situ visualization of the dynamics in xylem embolism formation and removal in the absence of root pressure: A study on excised grapevine stems

    Science.gov (United States)

    Gas embolisms formed during drought can disrupt long-distance water transport through plant xylem vessels, but some species have the ability to remove these blockages. Despite evidence suggesting that embolism removal is linked to the presence of vessel-associated parenchyma, the underlying mechanis...

  19. XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana.

    Science.gov (United States)

    Bryan, Anthony C; Obaidi, Adam; Wierzba, Michael; Tax, Frans E

    2012-01-01

    The regulation of cell specification in plants is particularly important in vascular development. The vascular system is comprised two differentiated tissue types, the xylem and phloem, which form conductive elements for the transport of water, nutrients and signaling molecules. A meristematic layer, the procambium, is located between these two differentiated cell types and divides to initiate vascular growth. We report the identification of a receptor-like kinase (RLK) that is expressed in the vasculature. Histochemical analyses of mutants in this kinase display an aberrant accumulation of highly lignified cells, typical of xylem or fiber cells, within the phloem. In addition, phloem cells are sometimes located adjacent to xylem cells in these mutants. We, therefore, named this RLK XYLEM INTERMIXED WITH PHLOEM 1 (XIP1). Analyses of longitudinal profiles of xip1 mutant stems show malformed cell files, indicating defects in oriented cell divisions or cell morphology. We propose that XIP1 prevents ectopic lignification in phloem cells and is necessary to maintain the organization of cell files or cell morphology in conductive elements.

  20. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status.

    Science.gov (United States)

    J-C. Domec; F.G. Scholz; S.J. Bucci; F.C. Meinzer; G. Goldstein; R. Villalobos-Vega

    2006-01-01

    Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occuring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (ψroot...

  1. Influence of xylem ray integrity and degree of polymerization on bending strength of beech wood decayed by Pleurotus ostreatus and Trametes versicolor

    Science.gov (United States)

    Ehsan Bari; Reza Oladi; Olaf Schmidt; Carol A. Clausen; Katie Ohno; Darrel D. Nicholas; Mehrdad Ghodskhah Daryaei; Maryam Karim

    2015-01-01

    The scope of this research was to evaluate the influence of xylem ray (XR) and degree of polymerization (DP) of holocellulose in Oriental beech wood (Fagus orientalis Lipsky.) on impact bending strength against two white-rot fungi. Beech wood specimens, exposed to Pleurotus ostreatus and Trametes versicolor, were evaluated for...

  2. Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K(+) -permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley.

    Science.gov (United States)

    Bose, Jayakumar; Shabala, Lana; Pottosin, Igor; Zeng, Fanrong; Velarde-Buendía, Ana-Maria; Massart, Amandine; Poschenrieder, Charlotte; Hariadi, Yuda; Shabala, Sergey

    2014-03-01

    Salt sensitive (pea) and salt tolerant (barley) species were used to understand the physiological basis of differential salinity tolerance in crops. Pea plants were much more efficient in restoring otherwise depolarized membrane potential thereby effectively decreasing K(+) efflux through depolarization-activated outward rectifying potassium channels. At the same time, pea root apex was 10-fold more sensitive to physiologically relevant H2 O2 concentration and accumulated larger amounts of H2 O2 under saline conditions. This resulted in a rapid loss of cell viability in the pea root apex. Barley plants rapidly loaded Na(+) into the xylem; this increase was only transient, and xylem and leaf Na(+) concentration remained at a steady level for weeks. On the contrary, pea plants restricted xylem Na(+) loading during the first few days of treatment but failed to prevent shoot Na(+) elevation in the long term. It is concluded that superior salinity tolerance of barley plants compared with pea is conferred by at least three different mechanisms: (1) efficient control of xylem Na(+) loading; (2) efficient control of H2 O2 accumulation and reduced sensitivity of non-selective cation channels to H2 O2 in the root apex; and (3) higher energy saving efficiency, with less ATP spent to maintain membrane potential under saline conditions.

  3. Investigation on the Assimilation of Nitrogen by Maize Roots and the Transport of Some Major Nitrogen Compounds by Xylem Sap. III

    DEFF Research Database (Denmark)

    Ivanko, S.; Ingversen, J.

    1971-01-01

    Xylem sap was collected from nitrogen-starved maize plants and investigations were made on the nitrogen transported. It appears from the results that several pools for different amino acids exist, which have different relations to the transport of nitrogen taken up. While in maize roots Glu, Glu...

  4. Experimental evidence for diel δ15N-patterns in different tissues, xylem and phloem saps of castor bean (Ricinus communis L.).

    Science.gov (United States)

    Peuke, A D; Gessler, A; Tcherkez, G

    2013-12-01

    Nitrogen isotope signatures in plants might give insights in the metabolism and allocation of nitrogen. To obtain a deeper understanding of the modifications of the nitrogen isotope signatures, we determined δ(15)N in transport saps and in different fractions of leaves, axes and roots during a diel course along the plant axis. The most significant diel variations were observed in xylem and phloem saps where δ(15)N was significantly higher during the day compared with during the night. However in xylem saps, this was observed only in the canopy, but not at the hypocotyl positions. In the canopy, δ(15)N was correlated fairly well between phloem and xylem saps. These variations in δ(15)N in transport saps can be attributed to nitrate reduction in leaves during the photoperiod as well as to (15)N-enriched glutamine acting as transport form of N. δ(15)N of the water soluble fraction of roots and leaves partially affected δ(15)N of phloem and xylems saps. δ(15)N patterns are likely the result of a complex set of interactions and N-fluxes between plant organs. Furthermore, the natural nitrogen isotope abundance in plant tissue is not constant during the diel course - a fact that needs to be taken into account when sampling for isotopic studies.

  5. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.

    Science.gov (United States)

    Domec, J-C; Warren, J M; Meinzer, F C; Brooks, J R; Coulombe, R

    2004-09-01

    Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-growth Douglas-fir [ Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine ( Pinus ponderosa Dougl. Ex Laws) trees growing in four sites. During the 2002 growing season, in situ xylem embolism, water deficit and xylem vulnerability to embolism were measured on medium roots (2-4-mm diameter) collected at 20-30 cm depth. Soil water content and water potentials were monitored concurrently to determine the extent of HR. Additionally, the water potential and stomatal conductance ( g(s)) of upper canopy leaves were measured throughout the growing season. In the site with young Douglas-fir trees, root embolism increased from 20 to 55 percent loss of conductivity (PLC) as the dry season progressed. In young ponderosa pine, root embolism increased from 45 to 75 PLC. In contrast, roots of old-growth Douglas-fir and ponderosa pine trees never experienced more than 30 and 40 PLC, respectively. HR kept soil water potential at 20-30 cm depth above -0.5 MPa in the old-growth Douglas-fir site and -1.8 MPa in the old-growth ponderosa pine site, which significantly reduced loss of shallow root function. In the young ponderosa pine stand, where little HR occurred, the water potential in the upper soil layers fell to about -2.8 MPa, which severely impaired root functioning and limited recovery when the fall rains returned. In both species, daily maximum g(s) decreased linearly with increasing root PLC, suggesting that root xylem embolism acted in concert with stomata to limit water loss, thereby maintaining minimum leaf water potential above critical values. HR appears to be an important mechanism for maintaining shallow root function during drought and preventing total stomatal closure.

  6. Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels

    Directory of Open Access Journals (Sweden)

    Pieretti Isabelle

    2012-11-01

    Full Text Available Abstract Background Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa—another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH, genomic features of two strains differing in pathogenicity. Results Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the “artillery” of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity. Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism

  7. Xylem and Leaf Functional Adjustments to Drought in Pinus sylvestris and Quercus pyrenaica at Their Elevational Boundary

    Directory of Open Access Journals (Sweden)

    Laura Fernández-de-Uña

    2017-07-01

    Full Text Available Climatic scenarios for the Mediterranean region forecast increasing frequency and intensity of drought events. Consequently, a reduction in Pinus sylvestris L. distribution range is projected within the region, with this species being outcompeted at lower elevations by more drought-tolerant taxa such as Quercus pyrenaica Willd. The functional response of these species to the projected shifts in water availability will partially determine their performance and, thus, their competitive success under these changing climatic conditions. We studied how the cambial and leaf phenology and xylem anatomy of these two species responded to a 3-year rainfall exclusion experiment set at their elevational boundary in Central Spain. Additionally, P. sylvestris leaf gas exchange, water potential and carbon isotope content response to the treatment were measured. Likewise, we assessed inter-annual variability in the studied functional traits under control and rainfall exclusion conditions. Prolonged exposure to drier conditions did not affect the onset of xylogenesis in either of the studied species, whereas xylem formation ceased 1–3 weeks earlier in P. sylvestris. The rainfall exclusion had, however, no effect on leaf phenology on either species, which suggests that cambial phenology is more sensitive to drought than leaf phenology. P. sylvestris formed fewer, but larger tracheids under dry conditions and reduced the proportion of latewood in the tree ring. On the other hand, Q. pyrenaica did not suffer earlywood hydraulic diameter changes under rainfall exclusion, but experienced a cumulative reduction in latewood width, which could ultimately challenge its hydraulic performance. The phenological and anatomical response of the studied species to drought is consistent with a shift in resource allocation under drought stress from xylem to other sinks. Additionally, the tighter stomatal control and higher intrinsic water use efficiency observed in drought

  8. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  9. Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice.

    Science.gov (United States)

    Aki, Toshihiko; Shigyo, Mikao; Nakano, Ryouhei; Yoneyama, Tadakatsu; Yanagisawa, Shuichi

    2008-05-01

    The main physiological roles of phloem and xylem in higher plants involve the transport of water, nutrients and metabolites. They are also involved, however, in whole plant events including stress responses and long-distance signaling. Phloem and xylem saps therefore include a variety of proteins. In this study, we have performed a shotgun analysis of the proteome of phloem and xylem saps from rice, taking advantage of the complete and available genomic information for this plant. Xylem sap was prepared using the root pressure method, whereas phloem sap was prepared with a unique method with the assistance of planthoppers to ensure the robustness of the detected proteins. The technical difficulties caused by the very limited availability of rice samples were overcome by the use of nano-flow liquid chromatography linked to a mass spectrometer. We identified 118 different proteins and eight different peptides in xylem sap, and 107 different proteins and five different peptides in phloem sap. Signal transduction proteins, putative transcription factors and stress response factors as well as metabolic enzymes were identified in these saps. Interestingly, we found the presence of three TERMINAL FLOWER 1/FLOWERING LOCUS T (FT)-like proteins in phloem sap. The detected FT-like proteins were not rice Hd3a (OsFTL2) itself that acted as a non-cell-autonomous signal for flowering control, but they were members of distinct subfamilies of the FT family with differential expression patterns. These results imply that proteomics on a nano scale is a potent tool for investigation of biological processes in plants.

  10. A sublethal dose of thiamethoxam causes a reduction in xylem feeding by the bird cherry-oat aphid (Rhopalosiphum padi), which is associated with dehydration and reduced performance.

    Science.gov (United States)

    Daniels, M; Bale, J S; Newbury, H J; Lind, R J; Pritchard, J

    2009-08-01

    The active ingestion of xylem sap by aphids is hypothesised to be an important mechanism for rehydration. When starved bird cherry-oat aphids (Rhopalosiphum padi) were allowed to feed on wheat (Triticum aestivum) treated with a sublethal dose of the xylem-mobile neonicotinoid thiamethoxam, analysis of feeding behaviours using the electrical penetration graph revealed a reduction in xylem feeding that was reversed on removal of the toxin. To test the importance of xylem-feeding behaviour as a rehydration mechanism, the effects of the sublethal dose of thiamethoxam on aphid water content, honeydew excretion, growth and fecundity were investigated. Body water contents of starved R. padi feeding on wheat treated with thiamethoxam were significantly reduced compared to aphids feeding on wheat treated with distilled water (74.5+/-0.23 and 75.6+/-0.18%, respectively). In addition, the sublethal dose of thiamethoxam had detrimental effects on aphid performance. At reproductive maturity, aphids that had been born on wheat treated with thiamethoxam were significantly smaller (as measured by body plan area; 1.07+/-0.03mm(2)), lighter (0.31+/-0.04mg) and less fecund (2.85+/-0.36nymphs/day) than aphids born on wheat treated with distilled water (1.87+/-0.02mm(2), 0.72+/-0.03mg, 11.28+/-0.58nymphs/day, respectively). Regardless of whether the observed impairment of xylem feeding is due to a neurotoxic or an antifeedant effect, these results have important implications for commercial crop protection as the behaviour-modifying effects of the sublethal dose of thiamethoxam may change the efficacy of this pesticide throughout the growing season.

  11. Daily irrigation attenuates xylem abscisic acid concentration and increases leaf water potential of Pelargonium × hortorum compared with infrequent irrigation.

    Science.gov (United States)

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-09-01

    The physiological response of plants to different irrigation frequencies may affect plant growth and water use efficiency (WUE; defined as shoot biomass/cumulative irrigation). Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at 100% of plant evapotranspiration (ET) (well-watered; WW), or at 50% ET applied either daily [frequent deficit irrigation (FDI)] or cumulatively every 4 days [infrequent deficit irrigation (IDI)], for 24 days. Both FDI and IDI applied the same irrigation volume. Xylem sap was collected from the leaves, and stomatal conductance (gs ) and leaf water potential (Ψleaf ) measured every 2 days. As soil moisture decreased, gs decreased similarly under both FDI and IDI throughout the experiment. Ψleaf was maintained under IDI and increased under FDI. Leaf xylem abscisic acid (ABA) concentrations ([X-ABA]leaf ) increased as soil moisture decreased under both IDI and FDI, and was strongly correlated with decreased gs , but [X-ABA]leaf was attenuated under FDI throughout the experiment (at the same level of soil moisture as IDI plants). These physiological changes corresponded with differences in plant production. Both FDI and IDI decreased growth compared with WW plants, and by the end of the experiment, FDI plants also had a greater shoot fresh weight (18%) than IDI plants. Although both IDI and FDI had higher WUE than WW plants during the first 10 days of the experiment (when biomass did not differ between treatments), the deficit irrigation treatments had lower WUE than WW plants in the latter stages when growth was limited. Thus, ABA-induced stomatal closure may not always translate to increased WUE (at the whole plant level) if vegetative growth shows a similar sensitivity to soil drying, and growers must adapt their irrigation scheduling according to crop requirements.

  12. Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.

    Science.gov (United States)

    Salomón, Roberto; Valbuena-Carabaña, María; Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug; González-Doncel, Inés; Gil, Luis; Rodríguez-Calcerrada, Jesús

    2016-04-01

    Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*].

  13. Genome-Wide Identification of Differentially Expressed Genes Associated with the High Yielding of Oleoresin in Secondary Xylem of Masson Pine (Pinus massoniana Lamb by Transcriptomic Analysis.

    Directory of Open Access Journals (Sweden)

    Qinghua Liu

    Full Text Available Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS and (--alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9, phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (--alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase

  14. Effects of dormancy progression and low-temperature response on changes in the sorbitol concentration in xylem sap of Japanese pear during winter season.

    Science.gov (United States)

    Ito, Akiko; Sugiura, Toshihiko; Sakamoto, Daisuke; Moriguchi, Takaya

    2013-04-01

    In order to elucidate which physiological event(s) are involved in the seasonal changes of carbohydrate dynamics during winter, we examined the effects of different low temperatures on the carbohydrate concentrations of Japanese pear (Pyrus pyrifolia (Burm.) Nakai). For four winter seasons, large increases in the sorbitol concentration of shoot xylem sap occurred during mid- to late December, possibly due to the endodormancy completion and low-temperature responses. When trees were kept at 15 °C from 3 November to 3 December in order to postpone the initiation and completion of chilling accumulation that would break endodormancy, sorbitol accumulation in xylem sap was always higher from trees with sufficient chilling accumulation than from trees that received insufficient chilling. However, an additional increase in xylem sap sorbitol occurred around late December in trees regardless of whether their chilling accumulation naturally progressed or was postponed. To examine different temperature effects more closely, we compared the carbohydrate concentrations of trees subjected to either 6 or 0 °C treatment. The sorbitol concentration in xylem sap tremendously increased at 0 °C treatment compared with 6 °C treatment. However, an additional increase in xylem sap sorbitol occurred at both the temperatures when sufficient chilling accumulated with a peak coinciding with the peak expression in shoots of the sorbitol transporter gene (PpSOT2). Interestingly, the total carbohydrate concentration of shoots tremendously increased with exposure to 0 °C compared with exposure to 6 °C, but was not affected by the amount of accumulated chilling. Instead, as chilling accumulated the ratio of sorbitol to total soluble sugars in shoots increased. We presumed that carbohydrates in the shoot tissues may be converted to sorbitol and loaded into the xylem sap so that the sorbitol accumulation patterns were synchronized with the progression of dormancy, whereas the total

  15. Dysfunctionality of the xylem in Olea europaea L. Plants associated with the infection process by Verticillium dahliae Kleb. Role of phenolic compounds in plant defense mechanism.

    Science.gov (United States)

    Báidez, Ana G; Gómez, Pedro; Del Río, José A; Ortuño, Ana

    2007-05-02

    Xylem ultrastructural modification and the possible participation of phenolic compounds in the natural defense or resistance mechanisms of olive plants infected with Verticillium dahliae Kleb. were studied. Microscopic study showed that the mycelium propagated and passed from one element to another through the pit. The formation of tyloses and aggregates contributed to obstruction of the xylem lumen. In vivo changes in the levels of these phenolic compounds in infected olive plants and their antifungal activity against Verticillium dahliae Kleb., as revealed by in vitro study, strongly suggest that they are involved in natural defense or resistance mechanisms in this plant material, the most active being quercetin and luteolin aglycons, followed by rutin, oleuropein, luteolin-7-glucoside, tyrosol, p-coumaric acid, and catechin. .

  16. Can the structure of dormant cambium and the widths of phloem and xylem increments be used as indicators for tree vitality?

    OpenAIRE

    Gričar, Jožica; Jagodic, Špela; Šefc, Bogoslav; Trajković, Jelena; Eler, Klemen

    2014-01-01

    We investigated the structure and width of the dormant cambium and of the increments of phloem and xylem of Quercus robur to estimate their potential as indicators for tree vitality. The samples were taken from three woodlands, two in Slovenia [Krakovo forest (KRA) and Murska Suma (MUS)] and one in Croatia [Kobiljak (KOB)], with reported tree decline. The number of dormant cells seems to reflect the initial capacity of the cambium to accomplish cell division. With the exception of two trees a...

  17. Fast-growing Acer rubrum differs from slow-growing Quercus alba in leaf, xylem and hydraulic trait coordination responses to simulated acid rain.

    Science.gov (United States)

    Medeiros, Juliana S; Tomeo, Nicholas J; Hewins, Charlotte R; Rosenthal, David M

    2016-08-01

    We investigated the effects of historic soil chemistry changes associated with acid rain, i.e., reduced soil pH and a shift from nitrogen (N)- to phosphorus (P)-limitation, on the coordination of leaf water demand and xylem hydraulic supply traits in two co-occurring temperate tree species differing in growth rate. Using a full-factorial design (N × P × pH), we measured leaf nutrient content, water relations, leaf-level and canopy-level gas exchange, total biomass and allocation, as well as stem xylem anatomy and hydraulic function for greenhouse-grown saplings of fast-growing Acer rubrum (L.) and slow-growing Quercus alba (L.). We used principle component analysis to characterize trait coordination. We found that N-limitation, but not P-limitation, had a significant impact on plant water relations and hydraulic coordination of both species. Fast-growing A. rubrum made hydraulic adjustments in response to N-limitation, but trait coordination was variable within treatments and did not fully compensate for changing allocation across N-availability. For slow-growing Q. alba, N-limitation engendered more strict coordination of leaf and xylem traits, resulting in similar leaf water content and hydraulic function across all treatments. Finally, low pH reduced the propensity of both species to adjust leaf water relations and xylem anatomical traits in response to nutrient manipulations. Our data suggest that a shift from N- to P-limitation has had a negative impact on the water relations and hydraulic function of A. rubrum to a greater extent than for Q. alba We suggest that current expansion of A. rubrum populations could be tempered by acidic N-deposition, which may restrict it to more mesic microsites. The disruption of hydraulic acclimation and coordination at low pH is emphasized as an interesting area of future study.

  18. Relationships between xylem embolism and eco-physiological indices in eight woody plants in sltu(Ⅱ):The relationship with photosynthetic eco-physiological indices

    Institute of Scientific and Technical Information of China (English)

    AN Feng; CAI Jing; JIANG Zaimin; ZHANG Yuanying; ZHAO Pingjuan; ZHANG Shuoxin

    2007-01-01

    The relationship between xylem embolism and eco-physiology indices (I.e.photosynthetic available radiation,temperature,relative humidity,photosynthetic rate,transpiration rate,stomatal conductance and water use efficiency) in eight tree species was investigated in situ.The species studied,Robinia pseudoacacia L.,Acer truncatum Bge.,Hippophae rhamnoides L.,Ulmus pumila L.,Pinus tabulaeformis Carr., Pinus bungeana Zucc.ex Endl.,Ligustrum lucidum Ait.,and Salix matsudana Koidz.f.pendula Schneid,grow well on the Xilin campus of Northwest A&F University.Results indicated that photosynthetic available radiation,air temperature and relative humidity can affect xylem embolism by daily adjustment of stomatal conductance,transpiration rate and water relations of a tree.Embolism was a common case in the daily growth of the plants,and there was some correlation between xylem embolism and photosynthetic rate,transpiration rate,stornatal conductance,and water use efficiency.Embolism may thus be an adaptive mechanism by some tree species to water stress.

  19. Root produced DHZR-, ZR- and IPA-like cytokinins in xylem sap in relation to coppice shoot initiation and growth in cloned trees of Betula pubescens.

    Science.gov (United States)

    Rinne, P; Saarelainen, A

    1994-10-01

    Six-year-old cloned Betula pubescens Ehrh. trees, grown outdoors at 65 degrees 01' N, were cut on six dates during the growing season to study coppice shoot development in relation to root-produced cytokinin-like compounds. Bleeding sap was collected over timed intervals for two days after cutting, and endogenous cytokinin-like compounds were measured by ELISA assay in HPLC-purified fractions of xylem sap. Initiation and development of coppice shoots on the clonally propagated plants were comparable to those in seedlings. Coppice shoot initiation was affected by the time of cutting, diminishing significantly after June. Of the cytokinin-like compounds detected in the xylem sap, zeatin riboside-like (ZR) compounds were present in the highest concentrations, and the concentrations of dihydrozeatin riboside-like (DHZR) and isopentenyladenoside-like (IPA) compounds were approximately one third and one eighth of the ZR concentrations, respectively. The concentration of cytokinin-like compounds was positively correlated with xylem sap flow rate. The export of cytokinin-like compounds, especially DHZR- and ZR-types, was positively correlated with the initiation and elongation rate of coppice shoots, the number of lateral branches, and the radial growth of the more slowly growing coppice shoots. The export of cytokinin-like compounds collected immediately after cutting may represent the basal value for each tree. This value is probably affected by the size and activity of the root system and may be a relevant estimate for predicting the success of coppicing.

  20. Characterization of cadmium ((108)Cd) distribution and accumulation in Tagetes erecta L. seedlings: effect of split-root and of remove-xylem/phloem.

    Science.gov (United States)

    Qin, Qin; Li, Xuemei; Wu, Haiyan; Zhang, Yinqiu; Feng, Qian; Tai, Peidong

    2013-11-01

    Tagetes erecta has a high potential for cadmium (Cd) phytoremediation. Through several hydroponic experiments, characteristics of (108)Cd distribution and accumulation were investigated in T. erecta with split -roots or removed xylem/phloem. The results showed that (108)Cd transport from roots to aboveground tissues showed the homolateral transport phenomenon in split-root seedlings. (108)Cd content of leaves on the +(108)Cd side and the -(108)Cd side was not significantly different, which implied that there was horizontal transport of (108)Cd from the +(108)Cd side to the -(108)Cd side in cut-root seedlings. Like (108)Cd transport, the transport of (70)Zn was homolateral. Reduction of water consumption in the removed xylem treatment significantly decreased (108)Cd accumulation; whereas, the removed phloem treatment had no significant effect on water consumption, but did decrease (108)Cd accumulation in leaves of the seedlings. The removal of phloem significantly reduced distal leaf (108)Cd content, which was significantly lower than that in the basal leaves in both the split-root and unsplit-root seedlings. Overall, the results presented in this study revealed that the root to aboveground cadmium translocation via phloem is as an important and common physiological process as xylem determination of the cadmium accumulation in stems and leaves of marigold seedlings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Reduced content of homogalacturonan does not alter the ion-mediated increase in xylem hydraulic conductivity in tobacco.

    Science.gov (United States)

    Nardini, Andrea; Gascó, Antonio; Cervone, Felice; Salleo, Sebastiano

    2007-04-01

    Xylem hydraulic conductivity (K(s)) in stems of tobacco (Nicotiana tabacum) wild-type SR1 was compared to that of PG7 and PG16, two transgenic lines with increased levels of expression of the gene encoding the Aspergillus niger endopolygalacturonase (AnPGII). Activity of AnPGII removes in planta blocks of homogalacturonan (HG) with deesterified carboxyls, thus increasing the degree of neutrality of pectins. The effect of K+ was tested in increasing stem K(s) using model plants with more neutral polysaccharides in primary walls and, hence, in intervessel pit membranes. K(s) measured with deionized water was compared to that with KCl solutions at increasing concentrations (DeltaK(s), %). Plants transformed for HG degree of neutrality showed a dwarfed phenotype, but DeltaK(s) did not differ among the three experimental groups. The ion-mediated hydraulic effect saturated at a KCl concentration of 25 mm in SR1 plants. All the three tobacco lines showed DeltaK(s) of around +12.5% and +17.0% when perfused with 10 and 25 mm KCl, respectively. Because modification of HG content did not influence ion-mediated hydraulic enhancement, we suggest that pectin components other than HG, like rhamnogalacturonan-I and/or rhamnogalacturonan-II, might play important roles in the hydrogel behavior of pit membranes.

  2. Impact of Laurel Wilt, Caused by Raffaelea lauricola, on Leaf Gas Exchange and Xylem Sap Flow in Avocado, Persea americana.

    Science.gov (United States)

    Ploetz, Randy C; Schaffer, Bruce; Vargas, Ana I; Konkol, Joshua L; Salvatierra, Juanpablo; Wideman, Ronney

    2015-04-01

    Laurel wilt, caused by Raffaelea lauricola, is a destructive disease of avocado (Persea americana). The susceptibility of different cultivars and races was examined previously but more information is needed on how this host responds to the disease. In the present study, net CO2 assimilation (A), stomatal conductance of H2O (gs), transpiration (E), water use efficiency (WUE), and xylem sap flow rates were assessed in cultivars that differed in susceptibility. After artificial inoculation with R. lauricola, there was a close relationship between symptom development and reductions in A, gs, E, WUE, and mean daily sap flow in the most susceptible cultivar, 'Russell', and significantly greater disease and lower A, gs, E, WUE, and sap flow rates were usually detected after 15 days compared with the more tolerant 'Brogdon' and 'Marcus Pumpkin'. Significant differences in preinoculation A, gs, E, and WUE were generally not detected among the cultivars but preinoculation sap flow rates were greater in Russell than in Brogdon and Marcus Pumpkin. Preinoculation sap flow rates and symptom severity for individual trees were correlated at the end of an experiment (r=0.46), indicating that a plant's susceptibility to laurel wilt was related to its ability to conduct water. The potential management of this disease with clonal rootstocks that reduce sap flow rates is discussed.

  3. Identification and analysis of differentially expressed genes in differentiating xylem of Chinese fir (Cunninghamia lanceolata) by suppression subtractive hybridization.

    Science.gov (United States)

    Wang, Guifeng; Gao, Yan; Yang, Liwei; Shi, Jisen

    2007-12-01

    Wood is an important raw material for global industries with rapidly increasing demand. To isolate the genes differentially expressed during xylogenesis of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), we used a novel system. Forward and reverse subtracted cDNA libraries were constructed using the suppression subtractive hybridization method; for the forward library we used cDNA from the mutant Dugansha as the tester and cDNA from the wild-type clone Jurong 0 as the driver, and for the reverse library we used Jurong 0 cDNA as the tester and Dugansha cDNA as the driver. Transcriptional profiling was performed using a macroarray with 4 digoxigenin-labeled probes. We obtained 618 and 409 clones from the forward and the reverse subtracted library, respectively. A total of 405 unique expressed sequence tags (ESTs) were obtained. Forty percent of the ESTs exhibited homologies with proteins of known function and fell into 4 major classes: metabolism, cell wall biogenesis and remodeling, signal transduction, and stress. Real-time PCR was performed to confirm the results. The expression levels of 11 selected ESTs were consistent with both macroarray and real-time PCR results. The systematic analysis of genes involved in wood formation in Chinese fir provides valuable insights into the molecular mechanisms involved in xylem differentiation and is an important resource for forest research that can be directed toward understanding the genetic control of wood formation and future endeavors to modify wood and fiber properties for industrial use.

  4. Immunolocalization of solanaceous SUT1 proteins in companion cells and xylem parenchyma: new perspectives for phloem loading and transport.

    Science.gov (United States)

    Schmitt, Bianca; Stadler, Ruth; Sauer, Norbert

    2008-09-01

    Leaf sucrose (Suc) transporters are essential for phloem loading and long-distance partitioning of assimilates in plants that load their phloem from the apoplast. Suc loading into the phloem is indispensable for the generation of the osmotic potential difference that drives phloem bulk flow and is central for the long-distance movement of phloem sap compounds, including hormones and signaling molecules. In previous analyses, solanaceous SUT1 Suc transporters from tobacco (Nicotiana tabacum), potato (Solanum tuberosum), and tomato (Solanum lycopersicum) were immunolocalized in plasma membranes of enucleate sieve elements. Here, we present data that identify solanaceous SUT1 proteins with high specificity in phloem companion cells. Moreover, comparisons of SUT1 localization in the abaxial and adaxial phloem revealed higher levels of SUT1 protein in the abaxial phloem of all three solanaceous species, suggesting different physiological roles for these two types of phloem. Finally, SUT1 proteins were identified in files of xylem parenchyma cells, mainly in the bicollateral veins. Together, our data provide new insight into the role of SUT1 proteins in solanaceous species.

  5. Effect of auxin (iaa upon the proteolytic system in differentiating secondary xylem of pine (Pinus sylvestris L.

    Directory of Open Access Journals (Sweden)

    Krzysztof J. Rakowski

    2014-01-01

    Full Text Available Effects of decapitation and IAA on proteolytic activity were studied in main stem of 4-7 year-old Pinus sylvestris trees. Proteolytic activity in the extract from differentiating secondary xylem was found to be totally reduced in decapitated 2-3 year-old segments of the main stem after a few weeks. Simultaneous application of IAA in lanolin paste prevented this reduction. Proteolytic activity reduced totally after decapitation was restored within 2 days when auxin was applied. Analogous responses to decapitated and auxin application were observed in respect to cambial activity and protein level. The latter effects were not correlated in time with the effects upon the activity of proteases. The differences were especially visible when phloem continuity between the decapited stem segment and the rest of the tree crown was broken by ring-barking. The results suggest dependence of a proteolytic system on the shoot apical control. In this epigenetic system of control the role of auxin seems to be directly associated with the seasonal meristematic activity of the cambium, which was observed in earlier studies.

  6. Differentiation in light energy dissipation between hemiepiphytic and non-hemiepiphytic Ficus species with contrasting xylem hydraulic conductivity.

    Science.gov (United States)

    Hao, Guang-You; Wang, Ai-Ying; Liu, Zhi-Hui; Franco, Augusto C; Goldstein, Guillermo; Cao, Kun-Fang

    2011-06-01

    Hemiepiphytic Ficus species (Hs) possess traits of more conservative water use compared with non-hemiepiphytic Ficus species (NHs) even during their terrestrial growth phase, which may result in significant differences in photosynthetic light use between these two growth forms. Stem hydraulic conductivity, leaf gas exchange and chlorophyll fluorescence were compared in adult trees of five Hs and five NHs grown in a common garden. Hs had significantly lower stem hydraulic conductivity, lower stomatal conductance and higher water use efficiency than NHs. Photorespiration played an important role in avoiding photoinhibition at high irradiance in both Hs and NHs. Under saturating irradiance levels, Hs tended to dissipate a higher proportion of excessive light energy through thermal processes than NHs, while NHs dissipated a larger proportion of electron flow than Hs through the alternative electron sinks. No significant difference in maximum net CO2 assimilation rate was found between Hs and NHs. Stem xylem hydraulic conductivity was positively correlated with maximum electron transport rate and negatively correlated with the quantum yield of non-photochemical quenching across the 10 studied Ficus species. These findings indicate that a canopy growth habit during early life stages in Hs of Ficus resulted in substantial adaptive differences from congeneric NHs not only in water relations but also in photosynthetic light use and carbon economy. The evolution of epiphytic growth habit, even for only part of their life cycle, involved profound changes in a suite of inter-correlated ecophysiological traits that persist to a large extent even during the later terrestrial growth phase.

  7. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance.

    Science.gov (United States)

    Yang, Xiaoe; Li, Tingqiang; Yang, Juncheng; He, Zhenli; Lu, Lingli; Meng, Fanhua

    2006-06-01

    Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 microM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 microM for 48 h. At 1,000 microM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.

  8. Accounting for sap flow from different parts of the root system improves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture.

    Science.gov (United States)

    Dodd, Ian C; Egea, Gregorio; Davies, William J

    2008-01-01

    When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.

  9. Differences in functional and xylem anatomical features allow Cistus species to co-occur and cope differently with drought in the Mediterranean region.

    Science.gov (United States)

    Torres-Ruiz, José M; Cochard, Hervé; Fonseca, Elsa; Badel, Eric; Gazarini, Luiz; Vaz, Margarida

    2017-02-27

    A significant increase in drought events frequency is predicted for the next decades induced by climate change, potentially affecting plant species mortality rates and distributions worldwide. The main trigger of plant mortality is xylem hydraulic failure due to embolism and induced by the low pressures at which water is transported through xylem. As the Mediterranean basin will be severely affected by climate change, the aim of this study was to provide novel information about drought resistance and tolerance of one of its most widely distributed and common genera as a case study: the genus Cistus. Different functional and anatomical traits were evaluated in four co-occurring Cistus species in the Mediterranean Montado ecosystem. Soil water availability for each species was also assessed to evaluate if they show different ecological niches within the area. Results showed physiological and xylem anatomical differences between the four co-occurring species, as well as in the soil water availability of the sites they occupy. Despite the significant differences in embolism resistance across species, no trade-off between hydraulic safety and efficiency was observed. Interestingly, species with narrower vessels showed lower resistance to embolism than those with higher proportions of large conduits. No correlation, however, was observed between resistance to embolism and wood density. The four species showed different water-use and drought-tolerance strategies, occupying different ecological niches that would make them cope differently with drought. These results will allow us to improve the predictions about the expected changes in vegetation dynamics in this area due to ongoing climate change.

  10. 11C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled.

    Science.gov (United States)

    Thorpe, Michael R; Ferrieri, Abigail P; Herth, Matthias M; Ferrieri, Richard A

    2007-07-01

    The long-distance transport and actions of the phytohormone methyl jasmonate (MeJA) were investigated by using the short-lived positron-emitting isotope 11C to label both MeJA and photoassimilate, and compare their transport properties in the same tobacco plants (Nicotiana tabacum L.). There was strong evidence that MeJA moves in both phloem and xylem pathways, because MeJA was exported from the labeled region of a mature leaf in the direction of phloem flow, but it also moved into other parts of the same leaf and other mature leaves against the direction of phloem flow. This suggests that MeJA enters the phloem and moves in sieve tube sap along with photoassimilate, but that vigorous exchange between phloem and xylem allows movement in xylem to regions which are sources of photoassimilate. This exchange may be enhanced by the volatility of MeJA, which moved readily between non-orthostichous vascular pathways, unlike reports for jasmonic acid (which is not volatile). The phloem loading of MeJA was found to be inhibited by parachloromercuribenzenesulfonic acid (PCMBS) (a thiol reagent known to inhibit membrane transporters), and by protonophores carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP) suggesting proton co-transport. MeJA was found to promote both its own transport and that of recent photoassimilate within 60 min. Furthermore, we found that MeJA can counter the inhibitory effect of the uncoupling agent, CCCP, on sugar transport, suggesting that MeJA affects the plasma membrane proton gradient. We also found that MeJA's action may extend to the sucrose transporter, since MeJA countered the inhibitory effects of the sulfhydryl reagent, PCMBS, on the transport of photoassimilate.

  11. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown.

    Science.gov (United States)

    Nikinmaa, Eero; Sievänen, Risto; Hölttä, Teemu

    2014-09-01

    Tree models simulate productivity using general gas exchange responses and structural relationships, but they rarely check whether leaf gas exchange and resulting water and assimilate transport and driving pressure gradients remain within acceptable physical boundaries. This study presents an implementation of the cohesion-tension theory of xylem transport and the Münch hypothesis of phloem transport in a realistic 3-D tree structure and assesses the gas exchange and transport dynamics. A mechanistic model of xylem and phloem transport was used, together with a tested leaf assimilation and transpiration model in a realistic tree architecture to simulate leaf gas exchange and water and carbohydrate transport within an 8-year-old Scots pine tree. The model solved the dynamics of the amounts of water and sucrose solute in the xylem, cambium and phloem using a fine-grained mesh with a system of coupled ordinary differential equations. The simulations predicted the observed patterns of pressure gradients and sugar concentration. Diurnal variation of environmental conditions influenced tree-level gradients in turgor pressure and sugar concentration, which are important drivers of carbon allocation. The results and between-shoot variation were sensitive to structural and functional parameters such as tree-level scaling of conduit size and phloem unloading. Linking whole-tree-level water and assimilate transport, gas exchange and sink activity opens a new avenue for plant studies, as features that are difficult to measure can be studied dynamically with the model. Tree-level responses to local and external conditions can be tested, thus making the approach described here a good test-bench for studies of whole-tree physiology.

  12. The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Seol Ah, E-mail: s6022029@korea.ac.kr; Choi, Young-Im, E-mail: yichoi99@forest.go.kr; Cho, Jin-Seong, E-mail: jinsung3932@gmail.com; Lee, Hyoshin, E-mail: hslee@forest.go.kr

    2015-06-19

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem.

  13. Genomic and evolutionary features of the SPI-1 type III secretion system that is present in Xanthomonas albilineans but is not essential for xylem colonization and symptom development of sugarcane leaf scald.

    Science.gov (United States)

    Marguerettaz, Mélanie; Pieretti, Isabelle; Gayral, Philippe; Puig, Jérôme; Brin, Chrystelle; Cociancich, Stéphane; Poussier, Stéphane; Rott, Philippe; Royer, Monique

    2011-02-01

    Xanthomonas albilineans is the causal agent of sugarcane leaf scald. Interestingly, this bacterium, which is not known to be insect or animal associated, possesses a type III secretion system (T3SS) belonging to the injectisome family Salmonella pathogenicity island 1 (SPI-1). The T3SS SPI-1 of X. albilineans shares only low similarity with other available T3SS SPI-1 sequences. Screening of a collection of 128 plant-pathogenic bacteria revealed that this T3SS SPI-1 is present in only two species of Xanthomonas: X. albilineans and X. axonopodis pv. phaseoli. Inoculation of sugarcane with knockout mutants showed that this system is not required by X. albilineans to spread within xylem vessels and to cause disease symptoms. This result was confirmed by the absence of this T3SS SPI-1 in an X. albilineans strain isolated from diseased sugarcane. To investigate the importance of the T3SS SPI-1 during the life cycle of X. albilineans, we analyzed T3SS SPI-1 sequences from 11 strains spanning the genetic diversity of this species. No nonsense mutations or frameshifting indels were observed in any of these strains, suggesting that the T3SS SPI-1 system is maintained within the species X. albilineans. Evolutionary features of T3SS SPI-1 based on phylogenetic, recombination, and selection analyses are discussed in the context of the possible functional importance of T3SS SPI-1 in the ecology of X. albilineans.

  14. Comparison of ecosystem water flux measured with the Eddy covariance- and the direct xylem sap flux method in a mountainous forest

    Energy Technology Data Exchange (ETDEWEB)

    Stefanicki, G.; Geissbuehler, P.; Siegwolf, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The Eddy covariance technique allows to measure different components of turbulent air fluxes, including the flow of water vapour. Sap flux measurements determine directly the water flow in tree stems. We compared the water flux just above the crowns of trees in a forest by the technique of Eddy covariance and the water flux by the xylem sap flux method. These two completely different approaches showed a good qualitative correspondence. The correlation coefficient is 0.8. With an estimation of the crown diameter of the measured tree we also find a very good quantitative agreement. (author) 3 figs., 5 refs.

  15. Toward a better δDalkanes paleoclimate proxy; Partitioning of seasonal water sources and xylem-leaf deuterium enrichment according to plant growth form and phenology

    Science.gov (United States)

    Wispelaere, Lien; Bodé, Samuel; Herve-Fernández, Pedro; Hemp, Andreas; Verschuren, Dirk; Boeckx, Pascal

    2016-04-01

    The DeepCHALLA consortium is preparing an ICDP (International Continental Drilling Program) deep-drilling project on Lake Challa, a crater lake near Mt. Kilimanjaro in equatorial East Africa, where the climate is tropical semi-arid climate and characterized by two distinct rainy seasons. The main objective of this project is to acquire high-resolution and accurately dated proxy data of continental climate and ecosystem change near the Equator over 250,000 years. One of the paleoclimate proxies to be used is the hydrogen-isotopic composition of sedimentary n-alkanes (δDalkanes) derived from fossil plant leaf wax. However, this requires a better understanding of seasonal variability in the isotopic composition of precipitation, and of the fractionation of its hydrogen during incorporation in the plant waxes. In addition, recent studies have described the existence of "two water worlds", resulting in an additional deviation of the isotopic composition of the water taken up by plants. In this study, we measured the δD and δ18O of local precipitation, lake water, and xylem and leaf water from different plant species, seasons and sites with varying distances to Lake Challa. We use these data to set up a local meteoric water line (LMWL), and to assess spatial and temporal patterns of water utilization by local plants. Our data show a seasonal change in water-isotope partitioning with plants tapping water from isotopically lighter water sources during the dry seasons, as indicated by more negative xylem δD values and higher offsets from precipitation (i.e. greater distances from the LMWL), therefore supporting the "two water worlds" hypothesis. Surprisingly, trees appear to preferentially exploit isotopically more enriched sources of soil water, suggesting shallower water sources, than shrubs. Plants located at the lake shore use a mixture of precipitation and lake water, reflected in enriched xylem δD values and in the intersection of 2H and 18O with the LMWL. Leaf

  16. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium.

    Science.gov (United States)

    Hazama, Kenji; Nagata, Shinji; Fujimori, Tamaki; Yanagisawa, Shuichi; Yoneyama, Tadakatsu

    2015-06-01

    We examined the concentrations of metals (Cd, Zn, Cu, Fe and Mn) and potential metal-binding compounds [nicotianamine (NA), thiol compounds and citrate] in xylem and phloem saps from 4-week-old castor bean plants (Ricinus communis) treated with 0 (control), 0.1, 1.0, and 10 μM Cd for 3 weeks. Treatment with 0.1 and 1 μM Cd produced no visible damage, while 10 μM Cd retarded growth. Cadmium concentrations in both saps were higher than those in the culture solution at 0.1 μM, similar at 1.0 μM and lower at 10 μM. Cd at 10 μM reduced Cu and Fe concentrations in both saps. NA concentrations measured by capillary electrophoresis-mass spectrometry (MS) in xylem sap (20 μM) were higher than the Cu concentrations, and those in phloem sap (150 μM) were higher than those of Zn, Fe and Cu combined. Reduced glutathione concentrations differed in xylem and phloem saps (1-2 and 30-150 μM, respectively), but oxidized glutathione concentrations were similar. Phloem sap phytochelatin 2 concentration increased from 0.8 μM in controls to 8 μM in 10 μM Cd. Free citrate was 2-4 μM in xylem sap and 70-100 μM in phloem sap. Total bound forms of Cd in phloem and xylem saps from 1 μM Cd-treated plants were 54 and 8%, respectively. Treatment of phloem sap with proteinaseK reduced high-molecular compounds while increasing fractions of low-molecular Cd-thiol complexes. Zinc-NA, Fe-NA and Cu-NA were identified in the phloem sap fraction of control plants by electrospray ionization time-of-flight MS, and the xylem sap contained Cu-NA.

  17. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height.

    Science.gov (United States)

    Wei, Zhigang; Qu, Zanshuang; Zhang, Lijie; Zhao, Shuanjing; Bi, Zhihong; Ji, Xiaohui; Wang, Xiaowen; Wei, Hairong

    2015-01-01

    Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the

  18. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height.

    Directory of Open Access Journals (Sweden)

    Zhigang Wei

    Full Text Available Sucrose synthase (SuSy is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines

  19. A 6-year-long manipulation with soil warming and canopy nitrogen additions does not affect xylem phenology and cell production of mature black spruce

    Directory of Open Access Journals (Sweden)

    Madjelia Cangre Ebou eDAO

    2015-11-01

    Full Text Available The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill. BSP] in Quebec, Canada. During 2008-2013, the soil around mature trees was warmed up by 4 °C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected.

  20. Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato.

    Science.gov (United States)

    Albacete, Alfonso; Martínez-Andújar, Cristina; Ghanem, Michel Edmond; Acosta, Manuel; Sánchez-Bravo, José; Asins, María J; Cuartero, Jesús; Lutts, Stanley; Dodd, Ian C; Pérez-Alfocea, Francisco

    2009-07-01

    Tomato crop productivity under salinity can be improved by grafting cultivars onto salt-tolerant wild relatives, thus mediating the supply of root-derived ionic and hormonal factors that regulate leaf area and senescence. A tomato cultivar was grafted onto rootstocks from a population of recombinant inbred lines (RILs) derived from a Solanum lycopersicum x Solanum cheesmaniae cross and cultivated under moderate salinity (75 mM NaCl). Concentrations of Na(+), K(+) and several phytohormones [abscisic acid (ABA); the cytokinins (CKs) zeatin, Z; zeatin riboside, ZR; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)] were analysed in leaf xylem sap in graft combinations of contrasting vigour. Scion leaf area correlated with photosystem II (PSII) efficiency (F(v)/F(m)) and determined fruit productivity. Xylem K(+) (but not Na(+)), K(+)/Na(+), the active CK Z, the ratio with its storage form Z/ZR and especially the ratio between CKs and ACC (Z/ACC and Z + ZR/ACC) were positively loaded into the first principal component (PC) determining both leaf growth and PSII efficiency. In contrast, the ratio ACC/ABA was negatively correlated with leaf biomass. Although the underlying physiological mechanisms by which rootstocks mediate leaf area or chlorophyll fluorescence (and thus influence tomato salt tolerance) seem complex, a putative potassium-CK interaction involved in regulating both processes merits further attention.

  1. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth.

    Science.gov (United States)

    Hsu, Po-Kai; Tsay, Yi-Fang

    2013-10-01

    This study of the Arabidopsis (Arabidopsis thaliana) nitrate transporters NRT1.11 and NRT1.12 reveals how the interplay between xylem and phloem transport of nitrate ensures optimal nitrate distribution in leaves for plant growth. Functional analysis in Xenopus laevis oocytes showed that both NRT1.11 and NRT1.12 are low-affinity nitrate transporters. Quantitative reverse transcription-polymerase chain reaction and immunoblot analysis showed higher expression of these two genes in larger expanded leaves. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.11 and NRT1.12 are plasma membrane transporters expressed in the companion cells of the major vein. In nrt1.11 nrt1.12 double mutants, more root-fed (15)NO3(-) was translocated to mature and larger expanded leaves but less to the youngest tissues, suggesting that NRT1.11 and NRT1.12 are required for transferring root-derived nitrate into phloem in the major veins of mature and larger expanded leaves for redistributing to the youngest tissues. Distinct from the wild type, nrt1.11 nrt1.12 double mutants show no increase of plant growth at high nitrate supply. These data suggested that NRT1.11 and NRT1.12 are involved in xylem-to-phloem transfer for redistributing nitrate into developing leaves, and such nitrate redistribution is a critical step for optimal plant growth enhanced by increasing external nitrate.

  2. Effect of auxin on xylem tracheids differentiation in decapitated stems of Pinus silvestris L. and its interaction with some vitamins and growth regulators

    Directory of Open Access Journals (Sweden)

    T. J. Wodzicki

    2015-05-01

    Full Text Available The effects of several vitamins and substances known as important agents in regulation of cell metabolism upon secondary xylem differentiation were studied in interaction with auxin (IAA as applied in lanoline to decapitated stems of 5-year-old Pinus silvestris trees in early and late-summer. Tested substances were: gibberellic acid, kinetin, nicotinic acid, thiamine, pyridoxine, calcium panthotenate, choline chloride, riboflavin, inositol, ascorbic acid, vitamin, A (alcohol, vitamin A (ester, saponin. None of the effects of these substances appeared significant enough to indicate the involvement in the seasonal variation of the response of cambium or differentiating tracheids to auxin. However, several effects, especially those of inositol, vitamin A and pyridoxine upon cambial xylem production and further stages of tracheid differentiation were observed. Auxin (IAA affected cambial activity and subsequent differentiation of tracheids during the earliest stages of cell ontogenesis. At these stages auxin treatment induced quantitative expression of the developmental processes involving radial growth and secondary wall formation by tracheids. In this respect, auxin did not affect cells advanced in differentiation, however, it proved to be an essential factor in the completion of the full cycle of tracheid ontogenesis.

  3. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis.

    Science.gov (United States)

    Zhang, Lizhi; Tan, Qiumin; Lee, Raymond; Trethewy, Alexander; Lee, Yong-Hwa; Tegeder, Mechthild

    2010-11-01

    Seed development and nitrogen (N) storage depend on delivery of amino acids to seed sinks. For efficient translocation to seeds, amino acids are loaded into the phloem in source leaves and along the long distance transport pathway through xylem-phloem transfer. We demonstrate that Arabidopsis thaliana AMINO ACID PERMEASE2 (AAP2) localizes to the phloem throughout the plant. AAP2 T-DNA insertion lines showed changes in source-sink translocation of amino acids and a decrease in the amount of seed total N and storage proteins, supporting AAP2 function in phloem loading and amino acid distribution to the embryo. Interestingly, in aap2 seeds, total carbon (C) levels were unchanged, while fatty acid levels were elevated. Moreover, branch and silique numbers per plant and seed yield were strongly increased. This suggests changes in N and C delivery to sinks and subsequent modulations of sink development and seed metabolism. This is supported by tracer experiments, expression studies of genes of N/C transport and metabolism in source and sink, and by phenotypic and metabolite analyses of aap2 plants. Thus, AAP2 is key for xylem to phloem transfer and sink N and C supply; moreover, modifications of N allocation can positively affect C assimilation and source-sink transport and benefit sink development and oil yield.

  4. Altered Xylem-Phloem Transfer of Amino Acids Affects Metabolism and Leads to Increased Seed Yield and Oil Content in Arabidopsis[W

    Science.gov (United States)

    Zhang, Lizhi; Tan, Qiumin; Lee, Raymond; Trethewy, Alexander; Lee, Yong-Hwa; Tegeder, Mechthild

    2010-01-01

    Seed development and nitrogen (N) storage depend on delivery of amino acids to seed sinks. For efficient translocation to seeds, amino acids are loaded into the phloem in source leaves and along the long distance transport pathway through xylem-phloem transfer. We demonstrate that Arabidopsis thaliana AMINO ACID PERMEASE2 (AAP2) localizes to the phloem throughout the plant. AAP2 T-DNA insertion lines showed changes in source-sink translocation of amino acids and a decrease in the amount of seed total N and storage proteins, supporting AAP2 function in phloem loading and amino acid distribution to the embryo. Interestingly, in aap2 seeds, total carbon (C) levels were unchanged, while fatty acid levels were elevated. Moreover, branch and silique numbers per plant and seed yield were strongly increased. This suggests changes in N and C delivery to sinks and subsequent modulations of sink development and seed metabolism. This is supported by tracer experiments, expression studies of genes of N/C transport and metabolism in source and sink, and by phenotypic and metabolite analyses of aap2 plants. Thus, AAP2 is key for xylem to phloem transfer and sink N and C supply; moreover, modifications of N allocation can positively affect C assimilation and source-sink transport and benefit sink development and oil yield. PMID:21075769

  5. Expression profile of small RNAs in Acacia mangium secondary xylem tissue with contrasting lignin content - potential regulatory sequences in monolignol biosynthetic pathway.

    Science.gov (United States)

    Ong, Seong Siang; Wickneswari, Ratnam

    2011-11-30

    Lignin, after cellulose, is the second most abundant biopolymer accounting for approximately 15-35% of the dry weight of wood. As an important component during wood formation, lignin is indispensable for plant structure and defense. However, it is an undesirable component in the pulp and paper industry. Removal of lignin from cellulose is costly and environmentally hazardous process. Tremendous efforts have been devoted to understand the role of enzymes and genes in controlling the amount and composition of lignin to be deposited in the cell wall. However, studies on the impact of downregulation and overexpression of monolignol biosynthesis genes in model species on lignin content, plant fitness and viability have been inconsistent. Recently, non-coding RNAs have been discovered to play an important role in regulating the entire monolignol biosynthesis pathway. As small RNAs have critical functions in various biological process during wood formation, small RNA profiling is an important tool for the identification of complete set of differentially expressed small RNAs between low lignin and high lignin secondary xylem. In line with this, we have generated two small RNAs libraries from samples with contrasting lignin content using Illumina GAII sequencer. About 10 million sequence reads were obtained in secondary xylem of Am48 with high lignin content (41%) and a corresponding 14 million sequence reads were obtained in secondary xylem of Am54 with low lignin content (21%). Our results suggested that A. mangium small RNAs are composed of a set of 12 highly conserved miRNAs families found in plant miRNAs database, 82 novel miRNAs and a large proportion of non-conserved small RNAs with low expression levels. The predicted target genes of those differentially expressed conserved and non-conserved miRNAs include transcription factors associated with regulation of the lignin biosynthetic pathway genes. Some of these small RNAs play an important role in epigenetic silencing

  6. Anatomical Structure Analyses of Secondary Xylem of Quercus mongolica%蒙古栎次生木质部解剖结构分析

    Institute of Scientific and Technical Information of China (English)

    赵西平; 张超男; 刘高均; 梁芳; 李伟丽; 吴珍

    2013-01-01

    运用木材解剖图像分析系统和显微照相的方法对蒙古栎次生木质部的解剖结构进行观察分析。结果表明,蒙古栎的次生木质部由导管、环管管胞、木纤维、木射线及轴向薄壁细胞组成;蒙古栎在个体发育过程中,树根和树枝的管状分子明显较树干窄小,在分布规律和形态上,也有显著差异。对蒙古栎次生木质部离析发现,蒙古栎为单穿孔,管间纹孔式互列,导管分子类型多为两端具尾,长度大于宽度,这种现象表明蒙古栎在进化过程中是不同步的。%The anatomical structure of the secondary xylem of Quercus mongolica tree species was observed and analyzed by means of applying timber image analysis system and photomicrography observation method.The obser-vation showed that the secondary xylem of Q.mongolica was composed of duct,ring tube tracheid wood fiber,wood ray and axial parenchyma cells.In the ontogenetic process of Q.mongolica,the size of tubular molecules of roots and branches was significantly smaller than that of the trunk,and there were significant differences in the morpholo-gy and distribution of these molecules.The segregation of secondary xylem showed that Q.mongolica was single perforation,pitting tube between each row,majority of the ducts were in the form with a tail at both ends,and the length of the ducts was greater than the width.This phenomenon showed that the evolutionary process of Q.mon-golica was not synchronized.

  7. Seasonal dynamics of secondary growth and xylem anatomy in two coexisting Mediterranean Quercus; Dinamica estacional del crecimiento secundario y anatomia del xilema en dos Quercus mediterraneos que coexisten

    Energy Technology Data Exchange (ETDEWEB)

    Albuixech, J.; Camarero, J. J.; Montserrat-Marti, G.

    2012-11-01

    The contribution of secondary growth's patterns and wood anatomy on the coexistence of two species of Quercus (Quercus ilex subsp ballota diffused porous wood and Quercus faginea ring porous wood) were studied in a location with continental Mediterranean climate, which has been studied during two years with contrasted climatology. According to our results secondary growth pattern of Q. faginea is concentrated in the spring, starting before, and responding more than Q. ilex to a rainfall increase during this period. Q. ilex extends wood formation into the fall and late summer growth. Q. ilex growth during the fall and late summer has a greater importance in terms of theoretical hydraulic conductivity than in Q. faginea, which concentrates hydraulic conductivity in spring vessels. Therefore, different response of wood phenology formation and xylem anatomy in both species to the seasonal pattern of precipitation could contribute to explain the coexistence of Q. ilex and Q. faginea. (Author) 48 refs.

  8. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar.

    Science.gov (United States)

    Jeon, Hyung-Woo; Cho, Jin-Seong; Park, Eung-Jun; Han, Kyung-Hwan; Choi, Young-Im; Ko, Jae-Heung

    2016-04-01

    Woody biomass has gained popularity as an environmentally friendly, renewable and sustainable resource for liquid fuel production. Here, we demonstrate biotechnological improvement of the quantity and quality of woody biomass by employing developing xylem (DX)-preferential production of gibberellin (GA), a phytohormone that positively regulates stem growth. First, for the proof of concept experiment, we produced transgenic Arabidopsis plants expressing GA20-oxidase, a key enzyme in the production of bioactive GAs, from Pinus densiflora (PdGA20ox1) under the control of either a constitutive 35S promoter, designated 35S::PdGA20ox1, or a DX-specific promoter (originated from poplar), designated DX15::PdGA20ox1. As we hypothesized, both transgenic Arabidopsis plants (35S::PdGA20ox1 and DX15::PdGA20ox1) exhibited an accelerated stem growth that resulted in a large increase of biomass, up to 300% compared to wild-type control plants, together with increased secondary wall thickening and elongation of fibre cells. Next, we applied our concept to the production of transgenic poplar trees. Both transgenic poplar trees (35S::PdGA20ox1 and DX15::PdGA20ox1) showed dramatic increases in biomass, up to 300%, with accelerated stem growth and xylem differentiation. Cell wall monosaccharide composition analysis revealed that in both Arabidopsis and poplar, glucose and xylose contents were significantly increased. However, undesirable phenotypes of 35S::PdGA20ox1 poplar, including poor root growth and leaf development, were found. Interestingly, DX15::PdGA20ox1 poplar resulted in a reduction of undesirable phenotypes. Our results indicate that the controlled production of GAs through a tissue-specific promoter can be utilized as an efficient biotechnological tool for producing enhanced plant biomass, minimizing unwanted effects.

  9. Cambial activity and xylem cell development in Pinus cembra and Pinus sylvestris at their climatic limits in the Eastern Alps in 2007.

    Science.gov (United States)

    Swidrak, Irene; Gruber, Andreas; Oberhuber, Walter

    2011-12-20

    It has been frequently stressed that at distributional boundaries, like at the Alpine timberline and within dry inner Alpine environments, tree growth will be affected first by changing climate conditions. Climate in 2007 was characterized by the occurrence of exceptionally mild temperatures in spring (3.4 and 2.7 °C above long-term mean (LTM) at timberline and the valley sites, respectively) with an almost continuous drought period recorded in April and slightly warmer than average temperatures throughout summer (1.3 °C above LTM at both sites). We compared temporal dynamics of cambial activity and xylem cell development in Pinus cembra at the Alpine timberline (1950 m a.s.l.) and Pinus sylvestris at a xeric inner Alpine site (750 m a.s.l.) by repeated cellular analyses of micro-cores (n = 5 trees/site). While onset of wood formation in P. sylvestris and P. cembra differed by about two weeks (12 and 27 April, respectively), maximum daily growth rates peaked on 6 May at the valley site and on 23 June at timberline. At both sites maximum tracheid production was reached prior to occurrence of more favourable climatic conditions during summer, i.e. an increase in precipitation and temperature. Xylem formation ended on 31 August and 28 October at the xeric site and at timberline, respectively. This study demonstrates the plasticity of tree-ring formation along an altitudinal transect in response to water availability and temperature. Whether early achievement of maximum growth rates is an adaptation to cope with extreme environmental conditions prevailing at limits of tree growth needs to be analysed more closely by taking belowground carbon allocation into account.

  10. Co-ordination among leaf water relations and xylem vulnerability to embolism of Eucalyptus trees growing along a depth-to-groundwater gradient.

    Science.gov (United States)

    Zolfaghar, Sepideh; Villalobos-Vega, Randol; Cleverly, James; Eamus, Derek

    2015-07-01

    The importance of groundwater resources in arid and semi-arid areas for plant survival is well documented. However, there have been few studies examining the importance and impacts of groundwater availability in mesic environments. The aim of this study was to determine how depth-to-groundwater (DGW) impacts on leaf water relations, leaf structure and branch xylem vulnerability to embolism in a mesic environment. We hypothesize that increasing DGW results in increased resistance to drought stress and that this will be manifested across leaf and branch attributes pertaining to water relations. We further investigate whether there is co-ordination across leaf and branch-scale level responses to increased DGW. Four species were used in this study: Eucalyptus globoidea Blakely, E. piperita Sm., E. sclerophylla (Blakely) L.A.S.Johnson & Blaxell and E. sieberi L.A.S.Johnson. Six sites were chosen along an 11 km transect to span a range of average DGW: 2.4, 4.3, 9.8, 13, 16.3 and 37.5 m. Leaf water relations of trees showed less sensitivity to drought stress as DGW increased. This was reflected in significantly lower leaf turgor loss point and maximum osmotic potential, increased maximum turgor and a reduced leaf relative water content as DGW increased. At shallow DGW sites, minimum diurnal leaf water potentials were generally more negative than leaf water potential at zero turgor, but the reverse was observed at deep sites, indicating a larger growth potential safety margin at deep sites compared with shallow sites. Leaf cell wall elasticity varied independently of DGW. Xylem vulnerability to embolism was quantified as the water potential associated with 50% loss of conductance (P 50). In both summer and winter P 50 was significantly and negatively correlated with DGW. Co-ordination between leaf- and branch-level responses to increase in DGW was apparent, which strongly supports the conclusion that groundwater supply influenced woodland structure and functional behaviour.

  11. Anatomical, chemical, and ecological factors affecting tree species choice in dendrochemistry studies

    Energy Technology Data Exchange (ETDEWEB)

    Cutter, B.E.; Guyette, R.P. [Univ. of Missouri, Columbia, MO (United States)

    1993-07-01

    Recently, element concentrations in tree rings have been used to monitor metal contamination, fertilization, and the effects of acid precipitation on soils. This has stimulated interest in which tree species may be suitable for use in studies of long-term trends in environmental chemistry. Potential radial translocation of elements across living boundaries can be a confounding factor in assessing environmental change. The selection of species which minimizes radial translocation of elements can be critical to the success of dendrochemical research. Criteria for selection of species with characteristics favorable for dendrochemical analysis are categorized into (1) habitat-based factors, (2) xylem-based factors, and (3) element-based factors. A wide geographic range and ecological amplitude provide an advantage in calibration and better controls on the effects of soil chemistry. The most important xylem-based criteria are heartwood moisture content, permeability, and the nature of the sapwood-heartwood transition. The element of interest is important in determining suitable tree species because all elements are not equally mobile or detectable in the xylem. Ideally, the tree species selected for dendrochemical study will be long-lived, grow on a wide range of sites over a large geographic distribution, have a distinct heartwood with a low number of rings in the sapwood, a low heartwood moisture content, and have low radial permeability. Recommended temperate zone North American species include white oak (Quercus alba L.), post oak (Q. stellate Wangenh.), eastern redcedar (funiperus virginiana L.), old-growth Douglas-fir [Pseudoaugu menziesii (Mirb.) Franco] and big sagebrush (Artemisia tridentata Nutt.). In addition, species such as bristlecone pine (Pinus aristata Engelm. syn. longaeva), old-growth redwood [Sequoia sempervirens (D. Don) Endl.], and giant sequoia [S. gigantea (Lindl.) Deene] may be suitable for local purposes. 118 refs., 2 tabs.

  12. 人工兴安落叶松次生木质部的解剖学研究%Anatomical studies about the secondary xylem of artificial Larix gmeini

    Institute of Scientific and Technical Information of China (English)

    赵西平; 秦丽丽; 杨利梅; 王大帅; 郑权; 张磊

    2014-01-01

    With wood anatomy image analysis system and micrography , anatomical structure of secondary xylem was ob-served and measured in artificial Larix gmeini.The results showed that Larix gmeini contained normal and injured resin ca-nal.The normal resin canal was commonly in latewood .From the earlywood to the latewood , the change was sharp in stem or branch, but was mild in the root .The shape of earlywood tracheid was hexagon or polygon .The single bordered pit was common in cell wall of earlywood tracheid , while the double bordered pit was unusual in them .The shape of Latewood tra-cheid was rectangular .The bordered pits were found seldom in the cell walls of latewood tracheid .It must be single bor-dered pit if the pits are found .There were single wood ray and spindle wood ray in Larix gmeini.Spindle wood rays only contained one longitudinal resin canal .The pit field formed by longitudinal tracheids and xylem rays is spruce type .From the root to the stem and branch , the size of tracheid was progressive elaboration , the length of xylem decreased , and distri-bution of rays were by the close to the sparse .%运用木材解剖图像分析系统和显微照相的方法对人工兴安落叶松次生木质部的解剖结构进行研究,结果表明:落叶松具正常树脂道和受伤树脂道两种类型,前者常见于晚材。落叶松生长轮内的早晚材在干和枝内急变,在根内缓变。早材管胞呈六边形至多边形,胞壁常见单列具缘纹孔,偶见对列具缘纹孔;晚材管胞多呈矩形,胞壁鲜见具缘纹孔,通常为单列具缘纹孔。落叶松木射线同时具有单列木射线和纺锤形木射线两种类型,纺锤形木射线中仅含一枚纵行树脂道。纵行管胞与木射线交叉形成的纹孔场为云杉型。从根到干再到枝,管胞逐渐细化,管胞长度逐渐减小,木射线分布由密到疏。

  13. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yadav Narendra

    2012-10-01

    Full Text Available Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1 gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC, chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other

  14. Chemical Composition of Hypodermal and Endodermal Cell Walls and Xylem Vessels Isolated from Clivia miniata (Identification of the Biopolymers Lignin and Suberin).

    Science.gov (United States)

    Zeier, J.; Schreiber, L.

    1997-01-01

    The occurrence of the biopolymers lignin and suberin was investigated with hypodermal (HCW) and endodermal cell walls (ECW) and xylem vessels (XV) isolated from Clivia miniata Reg. roots. Both biopolymers were detected in HCW and ECW, whereas in XV, typical aliphatic suberin monomers were missing and only representative lignin monomers such as guaiacyl (G) and syringyl (S) units could be detected. The absolute amounts of lignin were about one order of magnitude higher compared with suberin in both HCW and ECW. The ratios of the two aromatic lignin units (G/S) decreased from 39 in XV and 10 in HCW to about 1 in ECW, indicating significant differences in lignin structure and function between the three investigated samples. Additionally, compared with the detectable lignin-derived aromatic units G and S, significantly higher amounts of esterified p-coumaric acid-derived aromatic monomers were obtained with HCW, but not with ECW. This is interpreted as a functional adaption of HCW toward pathogen defense at the root/soil interface. The final aim of this study was to provide a thorough chemical characterization of the composition of HCW, ECW, and XV, which in turn will form the basis for a better understanding of the relevant barriers toward the passive, radial, and apoplastic diffusion of solutes from the soil across the root cortex into the root cylinder. PMID:12223670

  15. Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments.

    Science.gov (United States)

    Gričar, Jožica; Prislan, Peter; Gryc, Vladimír; Vavrčík, Hanuš; de Luis, Martin; Cufar, Katarina

    2014-08-01

    Despite its major economic importance and the vulnerability of Picea abies (L.) H. Karst. to climate change, how its radial growth at intra-annual resolution is influenced by weather conditions in forest stands with a high production capacity has scarcely been explored. Between 2009 and 2011, phenological variation in seasonal cambial cell production (CP) was analysed in adult P. abies trees from three contrasting sites, differing in altitude and latitude. The results indicate that the timing of cambial CP is a highly synchronic process within populations since in all cases the cambium simultaneously started and stopped producing xylem and phloem cells. Our results also demonstrate that the phenology of cambial CP is highly variable and plastic between years, depending on seasonal temperature and precipitation variation. Differences among sites, however, are only partially explained by different environmental (elevation and altitude) and climatic conditions, suggesting that local adaptation may also play a decisive role in the strategy of P. abies for adapting wood and phloem increments to function optimally under local conditions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Effects of mid-season frost and elevated growing season temperature on stomatal conductance and specific xylem conductivity of the arctic shrub, Salix pulchra

    Energy Technology Data Exchange (ETDEWEB)

    Gorsuch, D. M.; Oberbauer, S. F. [Florida International Univ., Dept. of Biological Sciences, Miami, FL (United States)

    2002-10-01

    It is hypothesized that because deciduous plants have a growth season limited in length and also have generally larger conduit volumes, they are more likely to be injured by freeze-thaw induced cavitation during the growing season. To test this hypothesis, the deciduous arctic shrub, Salix pulchra, was grown in simulated Alaskan summer temperatures and at five degrees C above the ambient simulation in controlled environments. Specific hydraulic conductivity and leaf stomatal conductance were measured in plants grown at both temperatures before and after freeze treatment simulating a mid-season frost. Before freeze treatment specific hydraulic conductivity was 2.5 times higher and stomatal conductance was 1.3 times higher in plants grown at elevated temperature. After freeze treatment reduction in hydraulic conductivity and stomatal conductance was 3.5 and 1.8 times higher in the plants grown at the higher temperature than plants grown at ambient temperature. Plants grown at the higher temperature also had larger vessel diameters and higher vessel densities than ambient-grown plants. These results suggest that higher growing season temperatures will make arctic deciduous shrubs more susceptible to frost damage. The implication of these results for plant growth in the arctic tundra is that while climate warming favours plants with larger vessels and higher specific xylem conductivity over plants with lower values, this competitive advantage may be lost if there is an increase in the risk of frost during the growing season. 43 refs., 5 figs.

  17. SAFETY FACTORS FOR XYLEM FAILURE BY IMPLOSION AND AIR-SEEDING WITHIN ROOTS, TRUNKS AND BRANCHES OF YOUNG AND OLD CONIFER TREES

    Energy Technology Data Exchange (ETDEWEB)

    Domec, Jean-Christophe [North Carolina State University; Warren, Jeffrey M. [Oak Ridge National Laboratory (ORNL); Meinzer, Rick [USDA Forest Service; Lachenbruch, Barbara [Oregon State University, Corvallis

    2009-01-01

    The cohesion-tension theory of water transport states that hydrogen bonds hold water molecules together and that they are pulled through the xylem under tension. This tension could cause transport failure in at least two ways: collapse of the conduit walls (implosion), or rupture of the water column through air-seeding. The objective of this research was to elucidate the functional significance of variations in tracheid anatomical features, earlywood to latewood ratios and wood densities with position in young and old Douglas-fir and ponderosa pine trees in terms of their consequences for the safety factors for tracheid implosion and air-seeding. For both species, wood density increased linearly with percent latewood for root, trunk and branch samples. However, the relationships between anatomy and hydraulic function in trunks differed from those in roots and branches. In roots and branches increased hydraulic efficiency was achieved at the cost of increased vulnerability to air-seeding. Mature wood of trunks had earlywood with wide tracheids that optimized water transport and had a high percentage of latewood that optimized structural support. Juvenile wood had higher resistance to air-seeding and cell wall implosion. The two safety factors followed similar axial trends from roots to terminal branches and were similar for both species studied and between juvenile and mature wood.

  18. Investigating the potential of Aucoumea klaineana Pierre sapwood ...

    African Journals Online (AJOL)

    vainqueuer

    2016-11-16

    Nov 16, 2016 ... Key words: Aucoumea klaineana Pierre, wood wastes, ethanol organosolv lignin, enzymatic hydrolysis, ... less volume fuels, lignocellulose like cellulose which is .... with 98 mL of sodium acetate buffer (0.05 M; pH=4.8). Then ...

  19. Variação diurna e sazonal do pH e composição mineral da seiva do xilema em tomateiro Seasonal and diurnal changes on pH and mineral composition of tomato xylem sap

    Directory of Open Access Journals (Sweden)

    Maria Neudes S. Oliveira

    2003-03-01

    Full Text Available Variações diárias e sazonais do pH e composição mineral da seiva do xilema foram medidas em plantas de tomateiro com 40 dias, cultivadas em solução nutritiva e em casa de vegetação, visando avaliar os fatores que regulam sua variação. No primeiro experimento, a seiva foi coletada, sempre às 9:00 horas, em alguns meses do ano, em plantas da mesma idade. No segundo, a coleta da seiva ocorreu ao longo do dia, sempre na mesma planta. No terceiro, a seiva foi coletada em dois locais na planta, a 5 cm acima do colo e na base do pecíolo da 5ª folha. Na seiva, avaliaram-se o pH e as concentrações de Ca+2, K+, Mg+2, NH4+, NO3-, PO4-3 e SO4-. O pH variou de 5,3 a 6,4 no período experimental. pH acima de 6,0 ocorreu nos meses com maior temperatura média ambiente e o menor valor, 5,4, nos meses com menor temperatura ambiente. Potássio foi o cátion e nitrato o ânion encontrados em maior concentração na seiva.Considerando a variação diurna, uma maior concentração de nitrato, proporção cátions/ânions e pH ocorreram na seiva coletada à tarde. Considerando a variação sazonal, a maior concentração de nitrato e a proporção cátions/ânions ocorreram na seiva coletada nos meses com menor temperatura média e menores valores de pH. O pH da seiva exsudada do caule a 5 cm acima do colo foi menos ácido (pH 6,13 quando comparado ao pH da seiva exsudada no pecíolo da 5ª folha (pH 5,64. Os resultados sugerem que os fatores que regulam o pH da seiva influenciam diferentemente nas variações diurna e sazonal do pH.Mineral composition and pH seasonal and diurnal changes of xylem sap were measured in tomato plants, 40 days old, cultivated in nutritive solution under green house conditions in order to evaluate the factors that can regulate it. On a first experiment, the sap was obtained from different plants, same age, always at 9:0 AM, during selected months. On a second experiment, the sap was obtained trough the day, at different

  20. Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings

    Science.gov (United States)

    Mark D. Coleman; Caroline S. Bledsoe; Barbara A. Smit

    1990-01-01

    Mechanistic hypotheses to explain mycorrhizal enhancement of root hydraulic conductivity (Lp) suggest that phosphorus (P) nutrition, plant growth substances and/or altered morphology may be responsible. Such ideas are based on work with VA (vesicular-arbuscular) mycorrhizas. Since VA mycorrhizas and ectomycorrhizas differ in many respects, they...

  1. The Effect of Latitudes on the Structure of Secondary Xylem in Liriodendron chinense Sarg.%不同纬度对鹅掌楸次生木质部结构的影响

    Institute of Scientific and Technical Information of China (English)

    韩丽娟; 林月惠; 吴树明

    2001-01-01

    对生长在北纬23至32度的鹅掌楸(Liriodendron chinense Sarg.)的次生木质部进行了比较解剖学研究。观察的特征有:导管分子的长度、直径、壁厚、梯状穿孔板横闩的数目;导管密度、纤维长度、直径、壁厚;射线的高度、宽度,单列射线的比例,射线的密度等。结果表明,随着纬度的增加,导管分子变短变细,壁变薄,梯状穿孔板的横闩数目减少;纤维也变短变细,壁变薄;木射线变矮变窄,单列射线的比例和射线密度增加。%This paper reports a comparative anatomical study of the secondary xylem of Liriodendron chinense Sarg. growing in lat 23°~32°N. A detailed description is given of the characteristics of the secondary xylem in L. chinense Sarg.,including vessel element and fibre lengths, diameters, wall ticknesses, the number of bars of perforation plate,the density of versels,the height, width and density of rays,and ratio of uniseriate rays.It is shown that with the increase of latitude, vessel elements and fibres become thinner and shorter, vessel and fibre walls become thinner in early wood and late wood,the number of bars of perforation plate decreases, rays become shorter and narrower, the ratio of uniseriate rays and the density of rays increase in secondary xylem.

  2. The progressive and ancestral traits of the secondary xylem within Magnolia clad – the early diverging lineage of flowering plants

    Directory of Open Access Journals (Sweden)

    Magdalena Marta Wróblewska

    2015-01-01

    Full Text Available The qualitative and quantitative studies, presented in this article, on wood anatomy of various species belonging to ancient Magnolia genus reveal new aspects of phylogenetic relationships between the species and show evolutionary trends, known to increase fitness of conductive tissues in angiosperms. They also provide new examples of phenotypic plasticity in plants. The type of perforation plate in vessel members is one of the most relevant features for taxonomic studies. In Magnolia, until now, two types of perforation plates have been reported: the conservative, scalariform and the specialized, simple one. In this paper, are presented some findings, new to magnolia wood science, like exclusively simple perforation plates in some species or mixed perforation plates – simple and scalariform in one vessel member. Intravascular pitting is another taxonomically important trait of vascular tissue. Interesting transient states between different patterns of pitting in one cell only have been found. This proves great flexibility of mechanisms, which elaborate cell wall structure in maturing tracheary element. The comparison of this data with phylogenetic trees, based on the fossil records and plastid gene expression, clearly shows that there is a link between the type of perforation plate and the degree of evolutionary specialization within Magnolia genus.

  3. Citrus sinensis leaf petiole and blade colonization by Xylella fastidiosa: details of xylem vessel occlusion Colonização de pecíolo e folha de Citrus sinensis por Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Eduardo Alves

    2009-04-01

    Full Text Available Citrus variegated chlorosis (CVC, caused by Xylella fastidiosa, is an important disease of citrus in Brazil. X. fastidiosa is restricted to xylem vessels of plants and knowledge regarding xylem colonization is still limited. Our goal was to verify how this bacterium colonizes and spreads within xylem vessels of sweet orange Citrus sinensis cv. Pêra. Petioles and pieces of leaf blades from naturally infected plant exhibiting characteristic symptoms were prepared for light microscopy (LM, scanning electron microscopy (SEM, transmission electron microscopy (TEM and immunogold labeling (IGL. Petioles from healthy plants were used as control. IGL results, using an antibody against wall hemicelluloses, revealed that the pit membrane of vessels was altered. Bacterial cells were observed in the pit between adjacent vessels. Results support the contention that X. fastidiosa produces cellulases to reach adjacent vessels. SEM revealed that colonization of sweet orange started with X. fastidiosa cells attaching to the xylem wall, followed by an increase in the number of bacterial cells, the production of fibrous material, and finally vessel occlusion by biofilm composed of copious amounts of amorphous material, strands and cells. Phenolic materials, hyperplasia and hypertrophy were noticed in leaves with gummy material. Xylem vessels frequently contained an unknown needle-like, crystallized matter blocking the vessel.A clorose variegada dos citrus (CVC, causada por uma bactéria restrita ao xilema (Xylella fastidiosa, é uma importante doença de citros no Brasil, entretanto, pouco se sabe sobre a colonização dos vasos do xilema pela bactéria. O objetivo deste trabalho foi estudar como X. fastidiosa invade os vasos adjacentes do xilema e algumas das alterações expressas por plantas de laranja Pêra. Foram coletadas 15 amostras de pecíolos e áreas das folhas de plantas com sintomas característicos da doença, as quais foram preparadas para

  4. Application of point-process statistical tools to stable isotopes in xylem water for the study of inter- and intra-specific interactions in water uptake patterns in a mixed stand of Pinus halepensis Mill. and Quercus ilex L.

    Science.gov (United States)

    Comas, Carles; del Castillo, Jorge; Voltas, Jordi; Ferrio, Juan Pedro

    2013-04-01

    The stable isotope composition of xylem water reflects has been used to assess inter-specific differences in uptake patterns, revealing synergistic and competition processes in the use of water resources (see e.g. Dawson et al. 1993). However, there is a lack of detailed studies on spatial and temporal variability of inter- and intra-specific competition within forest stands. In this context, the aim of this work was to compare the isotope composition of xylem water (δ18O , δ2H) in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill, in order to understand their water uptake patterns throughout the growing season. In addition, we analyze the spatial variability of xylem water, to get insight into inter-specific strategies employed to cope with drought and the interaction between the individuals. Our first hypothesis was that both species used different strategies to cope with drought by uptaking water at different depths; and our second hypothesis was that individual trees would behave in different manner according to the distance to their neighbours as well as to whether the neighbour is from one species or the other. The study was performed in a mixed stand where both species are nearly co-dominant, adding up to a total of 33 oaks and 77 pines (plot area= 893 m2). We sampled sun-exposed branches of each tree six times over the growing season, and extracted the xylem water with a cryogenic trap. The isotopic composition of the water was determined using a Picarro Water Analizer L2130-i. Tree mapping for spatial analysis was done using a high resolution GPS technology (Trimble GeoExplorer 6000). For the spatial analysis, we used the pair-correlation function to study intra-specific tree configuration and the bivariate pair correlation function to analyse the inter-specific spatial configurations (Stoyan et al 1995). Moreover, the isotopic composition of xylem water was assumed to be a mark associated to each tree and analysed as a

  5. Anatomic Study of the Secondary Xylem in Oplopanax elatus Stems%东北刺人参茎次生木质部结构植物学研究

    Institute of Scientific and Technical Information of China (English)

    朱俊义; 陆静梅; 刘扬; 周繇

    2005-01-01

    Oplopanax elatus is a plant belonging to Araliaceae. The anatomic study of the secondary xylem in Oplopanax elatus stems were conducted and its results showed that it was a ring-porous wood and its rays were heterogeneous Ⅱ ones. There were two types of vessel perforation plates, simple perforation one and scalariform plant. There were 8 types of vessels according to different perforation plates. Vascular trachied, fibretracheid and libriform wood fibres were also found. There were vessels with only one simple perforation plate at their center, vessels with two perforation plates, simple perforation one and scalariform perforation one, at their center, vessels with scalariform perforation plate at one end and pitted thickening at the other end, vessels with simple perforation plate at one end and pitted thickening at the other end, vessels with scalarifiorm perforation plates at their two ends, vessels with three perforation plates on their side wall, and vessels with two simple perforation plates at their two ends. The evolution of Oplopanax elatus vessel perforation in ontogeny recapitulated the process in phylogeny.%东北刺人参为五加科植物[1],本文对其茎次生木质部进行结构植物学研究,发现其为环孔材,射线为异形Ⅱ型.在离析材料中,发现其导管分子穿孔板有单穿孔板和梯状穿孔板2种.具不同穿孔板的导管分子可分为8种,还有维管管胞、纤维管胞和韧型木纤维.8种导管分子是只有中央具1个单穿孔的导管;中央有2个穿孔的导管,其中一个孔是单穿孔,另一个是梯状穿孔;一端是梯状穿孔板,另一端为孔纹增厚的导管;一端是单穿孔,另一端是孔纹增厚的导管;一端为单穿孔板,另一端为梯状穿孔板的导管;两端都是梯状穿孔板的导管;侧壁具有3个穿孔的导管;两端都具单穿孔的导管.在东北刺人参的个体发育中重演了系统发育过程中导管分子穿孔板的演化过程.

  6. Correlative Analysis of Chlorophyll Content between Xylem and Phloem in Weixian Radish Fleshy Roots%潍县萝卜肉质根木质部与韧皮部叶绿素含量的相关分析

    Institute of Scientific and Technical Information of China (English)

    刘春香; 阚世红; 杨军; 武丹亮

    2012-01-01

    Experiments were carried out to detect the contents of chlorophyll and soluble solids in Weixian radish ( Raphanus sativus L. ) fleshy roots from 42 ascensions of different resources, and correlations between various factors were analyzed. The results showed that the contents of chlorophyll a in xylem of fleshy roots displayed distinct positive correlations with chlorophyll b, r=0.873, while no correlations was found in phloem of radish fleshy root. The contents of chlorophyll a and total chlorophyll in phloem displayed distinct positive correlations with contents of chlorophyll a, chlorophyll b and total chlorophyll in xylem. So we can roughly estimate the color depth and limit by detecting pigment information in phloem. The contents of total chlorophyll and chlorophyll b in phloem show significant positive correlations with the contents of soluble solids in xylem. That means radish with dark green color peel usually has higher saccharinity.%对不同来源的42份潍县萝卜肉质根进行叶绿素和可溶性固形物含量的测定,并分析各因素间的相关关系.结果表明:潍县萝卜肉质根木质部叶绿素a含量和叶绿素b含量呈极显著正相关(r=0.873),而韧皮部中两者却无相关性;韧皮部叶绿素a和总叶绿素含量都与木质部叶绿素a、叶绿素b及总叶绿素含量呈极显著正相关,在无损检测时可以通过韧皮部的色素信息粗略估计肉色的深浅.韧皮部总叶绿素含量及叶绿素b含量与木质部可溶性固形物含量呈显著正相关,即皮色深绿的萝卜一般甜度较高.

  7. Carbon content variation in boles of mature sugar maple and giant sequoia.

    Science.gov (United States)

    Lamlom, Sabah H; Savidge, Rodney A

    2006-04-01

    At present, a carbon (C) content of 50% (w/w) in dry wood is widely accepted as a generic value; however, few wood C measurements have been reported. We used elemental analysis to investigate C content per unit of dry matter and observed that it varied both radially and vertically in boles of two old-growth tree species: sugar maple (Acer saccharum Marsh.) and giant sequoia (Sequoiadendron giganteum (Lindl.) Bucholz). In sugar maple there was considerable variation in tree ring widths among four radii for particular annual layers of xylem, revealing that the annual rate of C assimilation differs around the circumference and from the base of each tree to its top, but the observed variation in C content was unrelated to diameter growth rate and strongly related to the calendar year when the wood was formed. Carbon content in sugar maple wood increased in an approximately linear fashion, from 55% across many hundreds of years of heartwood, but it declined abruptly at the sapwood-heartwood boundary and remained lower in all sapwood samples, an indication that heartwood formation involves anabolic metabolism. Factors that may be responsible for the different C contents and trends with age between sugar maple and sequoia trees are considered. Tree-ring data from this study do not support some of the key assumptions made by dendrochronology.

  8. Sap flow index as an indicator of water storage use

    Directory of Open Access Journals (Sweden)

    Nadezhdina Nadezhda

    2015-06-01

    Full Text Available Symmetrical temperature difference also known as the sap flow index (SFI forms the basis of the Heat Field Deformation sap flow measurement and is simultaneously collected whilst measuring the sap flow. SFI can also be measured by any sap flow method applying internal continuous heating through the additional installation of an axial differential thermocouple equidistantly around a heater. In earlier research on apple trees SFI was found to be an informative parameter for tree physiological studies, namely for assessing the contribution of stem water storage to daily transpiration. The studies presented in this work are based on the comparative monitoring of SFI and diameter in stems of different species (Pseudotsuga menziesii, Picea omorika, Pinus sylvestris and tree sizes. The ability of SFI to follow the patterns of daily stem water storage use was empirically confirmed by our data. Additionally, as the HFD multipointsensors can measure sap flow at several stem sapwood depths, their use allowed to analyze the use of stored water in different xylem layers through SFI records. Radial and circumferential monitoring of SFI on large cork oak trees provided insight into the relative magnitude and timing of the contribution of water stored in different sapwood layers or stem sectors to transpiration.

  9. Method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H (tritium) concentrations of xylem waters and subsurface waters using time series sampling

    Science.gov (United States)

    Smith, Brian; Menchaca, Leticia

    1999-01-01

    A method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H concentrations of xylem and subsurface waters using time series sampling, insulating sampling chambers, and combined .sup.18 O/.sup.16 O, .sup.2 H/.sup.1 H and .sup.3 H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen (.sup.18 O/.sup.16 O) and hydrogen (.sup.2 H/.sup.1 H and/or .sup.3 H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  10. A fasciclin-domain containing gene, ZeFLA11, is expressed exclusively in xylem elements that have reticulate wall thickenings in the stem vascular system of Zinnia elegans cv Envy.

    Science.gov (United States)

    Dahiya, Preeti; Findlay, Kim; Roberts, Keith; McCann, Maureen C

    2006-05-01

    The vascular cylinder of the mature stem of Zinnia elegans cv Envy contains two anatomically distinct sets of vascular bundles, stem bundles and leaf-trace bundles. We isolated a full-length cDNA of ZeFLA11, a fasciclin-domain-containing gene, from a zinnia cDNA library derived from in vitro cultures of mesophyll cells induced to form tracheary elements. Using RNA in situ hybridization, we show that ZeFLA11 is expressed in the differentiating xylem vessels with reticulate type wall thickenings and adjacent parenchyma cells of zinnia stem bundles, but not in the leaf-trace bundles that deposit spiral thickenings. Our results suggest a function for this cell-surface GPI-anchored glycoprotein in secondary wall deposition during differentiation of metaxylem tissue with reticulate vessels.

  11. Two Phloem Nitrate Transporters, NRT1.11 and NRT1.12, Are Important for Redistributing Xylem-Borne Nitrate to Enhance Plant Growth1[C][W][OPEN

    Science.gov (United States)

    Hsu, Po-Kai; Tsay, Yi-Fang

    2013-01-01

    This study of the Arabidopsis (Arabidopsis thaliana) nitrate transporters NRT1.11 and NRT1.12 reveals how the interplay between xylem and phloem transport of nitrate ensures optimal nitrate distribution in leaves for plant growth. Functional analysis in Xenopus laevis oocytes showed that both NRT1.11 and NRT1.12 are low-affinity nitrate transporters. Quantitative reverse transcription-polymerase chain reaction and immunoblot analysis showed higher expression of these two genes in larger expanded leaves. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.11 and NRT1.12 are plasma membrane transporters expressed in the companion cells of the major vein. In nrt1.11 nrt1.12 double mutants, more root-fed 15NO3− was translocated to mature and larger expanded leaves but less to the youngest tissues, suggesting that NRT1.11 and NRT1.12 are required for transferring root-derived nitrate into phloem in the major veins of mature and larger expanded leaves for redistributing to the youngest tissues. Distinct from the wild type, nrt1.11 nrt1.12 double mutants show no increase of plant growth at high nitrate supply. These data suggested that NRT1.11 and NRT1.12 are involved in xylem-to-phloem transfer for redistributing nitrate into developing leaves, and such nitrate redistribution is a critical step for optimal plant growth enhanced by increasing external nitrate. PMID:24006285

  12. 几个杨树木质部特异启动子片段表达载体的构建与功能分析%Construction of Expression Vector and Functional Characterization of Xylem Specific Promoters from Poplar

    Institute of Scientific and Technical Information of China (English)

    张爽; 武会; 杜克久

    2012-01-01

    木质部纤维素合酶基因(CesA)在植物正常生长期的木质部特异表达,受到外界压力时可诱导在韧皮部表达,因而被用作杨树抗桑天牛转基因研究中的特异性表达启动子.将前期分离的CesA上游DNA片段JCesAP、YCesAP和MDCesAP分别替换植物表达载体pCAMBIA1302中的组成型启动子CaMV35S,构建成新的植物组织特异性表达载体pJCesAP-GFP、pYCesAP-GFP和pMDCesAP-GFP,然后采用农杆菌介导法转化烟草,均得到完整的再生烟草植株.经PCR初步检测证明目的基因已整合到烟草基因组中.荧光检测JCesAP、YCesAP和MDCesAP片段均能启动GFP蛋白的表达,在395 nm激发光下出现黄绿色荧光,显示3个GesA片段均具有在木质部特异表达的启动子活性.%Expression of xylem-specific cellulose synthase gene (CesA) is confined in xylem cells during plant normal growth and can be induced in phloem cells by exogenous stress.The promoter of CesA gene has been used for tissue-specific expression in preparing transgentc poplar against mulberry longicorn.In present study,the previously isolated JCesAP,YCesAP and MDCesAP,all of which were upstream DNA segments of the CesA gene,were used to substitute the constitutive promoter CaMV35S in plant expression vector pCAMBIA1302 to construct novel plant tissue-specific expression vectors pJCesAP-GFP,pYCesAP-GFP and pMDCesAP-GFP,which were subsequently used to regenerate transgenic tobacco plants by Agrabacterium-mediated transformation.PCR analysis verified that the target genes have been integrated into tobacco genome.Fluorescence detection demonstrated that all JCesAP,YCesAP and MDCesAP segments could promote expression of GFP protein.Excitation by 395 nm light could emit yellowish green fluorescent light,indicating that these three segments had the xylem-specific promoter activity.

  13. A low cost apparatus for measuring the xylem hydraulic conductance in plants Um aparato de baixo custo para medição da condutância hidráulica do xilema em plantas

    Directory of Open Access Journals (Sweden)

    Luciano Pereira

    2012-01-01

    Full Text Available Plant yield and resistance to drought are directly related to the efficiency of the xylem hydraulic conductance and the ability of this system to avoid interrupting the flow of water. In this paper we described in detail the assembling of an apparatus proposed by TYREE et al. (2002, and its calibration, as well as low cost adaptations that make the equipment accessible for everyone working in this research area. The apparatus allows measuring the conductance in parts of roots or shoots (root ramifications or branches, or in the whole system, in the case of small plants or seedlings. The apparatus can also be used to measure the reduction of conductance by embolism of the xylem vessels. Data on the hydraulic conductance of eucalyptus seedlings obtained here and other reports in the literature confirm the applicability of the apparatus in physiological studies on the relationship between productivity and water stress.A produtividade das plantas e a capacidade de resistência à seca estão diretamente relacionadas com a eficiência da condutância hidráulica do xilema e a capacidade desse sistema em evitar a interrupção do fluxo de água. No presente trabalho, detalha-se a montagem de um aparato proposto por TYREE et al. (2002, e sua calibração, bem como adaptações com peças de menor custo que tornam o aparelho acessível a qualquer um trabalhando nesta linha de pesquisa. Esse aparato possibilita medir a condutância de partes do sistema radicular ou da parte aérea (ramificações radiculares ou ramos, ou em todo o sistema, no caso de plantas de porte pequeno ou plântulas. O aparato também pode ser usado para medir a redução da condutância pela embolização dos vasos do xilema. Medições de condutância hidráulica feitas em plântulas de eucalipto e outros trabalhos encontrados na literatura confirmaram a aplicabilidade desse aparato em estudos fisiológicos de produtividade relacionada ao estresse hídrico.

  14. Accumulation of Cd, Cu and Zn in shoots of maize (Zea mays L.) exposed to 0.8 or 20 nM Cd during vegetative growth and the relation with xylem sap composition.

    Science.gov (United States)

    Nguyen, C; Soulier, A J; Masson, P; Bussière, S; Cornu, J Y

    2016-02-01

    This work focuses on the exposure of maize plants to nanomolar concentrations of Cd, which is relevant for agricultural soils cropped with food and feed plants. Maize plants were cultivated in nutrient solution at 0.8 or 20 nM Cd during the vegetative growth stages. No significant hormesis or toxic effects of Cd were observed on maize growth, but a decrease in the allocation of Cd to shoots between the 0.8 and 20 nM Cd exposures revealed that the plants already responded to these low concentrations of Cd according to a shoot Cd excluder strategy. The Cd, Cu and Zn concentrations in shoots decreased with time as the result of an early decrease in the root/shoot ratio and of a decrease in the coefficient of allocation to aboveground for Zn and Cd at 20 nM. As a consequence, shoots of young plants were richer in micronutrients Cu and Zn but also in toxic Cd. The rate of delivery of Cd, Cu and Zn from xylem sap was successfully used to predict the time course of concentrations of Cd, Cu and Zn in the shoot. However, it overestimated the actual concentrations of Cd in the shoot, presumably because the reallocation of this trace element from shoots back to roots was not taken into account.

  15. 牡丹和芍药次生木质部导管的解剖学结构%Anatomy of Vessel Elements in the Secondary Xylem of Paeonia lactiflora Pal1. and Paeonia suffruticosa Andr

    Institute of Scientific and Technical Information of China (English)

    郑玲; 姚琳琳; 程彦伟

    2014-01-01

    对牡丹和芍药的次生木质部离析材料进行了观察,结果表明,牡丹和芍药的次生木质部具有螺纹、环纹、梯纹和孔纹4种类型的导管,穿孔板具有孔状穿孔板、梯状穿孔板和网状穿孔板3种类型,并具有大孔状穿孔板、混合穿孔板等特殊类型的导管。芍药科植物导管形态特征的多样性及特殊性对进一步研究芍药科植物的系统发育有所启示。%The vessel elements of secondary xylem in Paeonia suffruticosa Andr. and Paeonia lactiflora Pal1. were observed by micrography. The results showed that there were 4 types of vessel elements including ringed vessel,reticulated vessel,scalari-form vessel and pitted vessel. The perforation plates had three types of scalarforms and reticulate plates, pitted perforation plates and coarse-pored perforation plates. The diverse and distinctive characters of vessel elements are useful for the phylo-genic study of Paeoniaceae.

  16. Selective uptake, distribution, and redistribution of (109)Cd, (57)Co, (65)Zn, (63)Ni, and (134)Cs via xylem and phloem in the heavy metal hyperaccumulator Solanum nigrum L.

    Science.gov (United States)

    Wei, Shuhe; Anders, Iwona; Feller, Urs

    2014-06-01

    The focus of this article was to explore the translocation of (109)Cd, (57)Co, (65)Zn, (63)Ni, and (134)Cs via xylem and phloem in the newly found hyperaccumulator Solanum nigrum L. Two experiments with the uptake via the roots and transport of (109)Cd, (57)Co, and (65)Zn labeled by roots, and the redistribution of (109)Cd, (65)Zn, (57)Co, (63)Ni, and (134)Cs using flap label in S. nigrum in a hydroponic culture with a standard nutrient solution were conducted. The results showed that (109)Cd added for 24 h to the nutrient medium of young plants was rapidly taken up, transferred to the shoot, and accumulated in the cotyledons and the oldest leaves but was not efficiently redistributed within the shoot afterward leading to a rather low content in the fruits. In contrast, (57)Co was more slowly taken up and released to the shoot, but afterward, this element was redistributed from older leaves to younger leaves and maturing fruits. (65)Zn was rapidly taken up and transferred to the shoot (mainly to the youngest leaves and not to the cotyledons). Afterward, this radionuclide was redistributed within the shoot to the youngest organs and finally accumulated in the maturing fruits. After flap labeling, all five heavy metals tested ((109)Cd, (57)Co, (65)Zn, (63)Ni, (134)Cs) were exported from the labeled leaf and redistributed within the plant. The accumulation in the fruits was most pronounced for (63)Ni and (65)Zn, while a relatively high percentage of (57)Co was finally found in the roots. (134)Cs was roughly in the middle of them. The transport of (109)Cd differed from that previously reported for wheat or lupin and might be important for the potential of S. nigrum to hyperaccumulate cadmium.

  17. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    Science.gov (United States)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; Fyllas, Nikolaos M.; Galbraith, David R.; Baker, Timothy R.; Kruijt, Bart; Rowland, Lucy; Fisher, Rosie A.; Binks, Oliver J.; Sevanto, Sanna; Xu, Chonggang; Jansen, Steven; Choat, Brendan; Mencuccini, Maurizio; McDowell, Nate G.; Meir, Patrick

    2016-11-01

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait-trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant

  18. Estudo anatômico do xilema secundário da raiz e do caule de Maytenus guyanensis Klotzsch ex Reissek (Celastraceae Anatomic study of secundary xylem of root and stem of Maytenus guyanensis Klotzsch ex Reissek (Celastraceae

    Directory of Open Access Journals (Sweden)

    Ressiliane Ribeiro Prata

    2009-01-01

    Full Text Available Maytenus guyanensis é uma planta medicinal, conhecida popularmente por chichuá, possuindo ação analgésica, antiinflamatória, afrodisíaca e antireumática. O objetivo do presente trabalho foi analisar as características estruturais, da raiz e caule desta espécie como contribuição aos trabalhos anatômicos já realizados para o gênero. O material botânico foi coletado na Reserva Florestal Adolpho Ducke, Manaus/AM onde foram selecionados três indivíduos e de cada um deles retirados fragmentos de 1cm³ do caule e raiz. Amostras foram seccionadas em micrótomo de deslize e coradas com safranina e azul de astra. A análise estrutural revelou-se de acordo com o registrado pela literatura para o gênero. O xilema secundário da raiz e do caule apresentam parênquima axial apotraqueal, raios multisseriados, heterogêneos, vasos solitários, de distribuição difusa, uniforme, seção circular, com parede delgada, pontoações intervasculares alternas e areoladas.Maytenus guyanensis, known popularly as chichuá, possess analgesic, anti-inflammatory, aphrodisiac and anti-rheumatic agents. The object of this present wor was the anatomical analysis of material collected of this species at the Adolpho Ducke Forest Reserve. Stem and root fragments of 1cm were removed from 3 selected individuals. Sections from the stem and root were cut with slide microtome, and stained with astra blue and safranin. The structural analysis of stems and roots was in accordance with the literature available for the Maytenus genus. The secondary xylem of the root and stem presented parenchyma axial apotracheal, multiseriates, heterogeneous rays, solitary vessels, of diffuse distribution, uniform, circular section, with thin wall, bordered and alternate intervascular pits.

  19. 8种木本旱生植物的木质部解剖学特性研究%Study on Anatomical Property of Xylem Cells of the Eight Woody Xerophytes Grown in China

    Institute of Scientific and Technical Information of China (English)

    杨淑敏; 江泽慧; 任海青

    2007-01-01

    The Secondary xylem characteristics were described and compared in details from an ecological perspective in eight xerophytic species grown in arid sandy region in China. All the species showed similar wood structure: obvious growth ring boundaries except sometimes discontinuous in Tetraena mongolica and Zygophyllum xanthoxylum. Ring to semi-ring-porosity; simple perforation plate; alternate intervessel pitting;non-septate fibres; paratracheal confluent axial parenchyma; helical thickenings and heterocellular rays. But there were few quantitative differences of ray and vessel observed among them. Rays are mainly uniseriate in T. mongolica , 2 ~ 5-seriate in Ammopiptanthus mongolicus , Lespedeza bicolor , Nitraria tangutorum and Z. xanthoxylon, commonly 4~10-seriate in other three species. T. mongolica and A. mongolicus had narrower vessels and larger vessel frequency than other six species that had wider and smaller vessel frequency, which could lead to a smaller vulnerability and mesomorphy value. There was significant difference in both fibre length and vessel element length among-tree and within-tree. Thus it was considered that the anatomical features of T. mongolica and A. mongolicus were more likely to suffer from water stress than that of other species.%从生态学角度对8种旱生植物木材的次生木质部结构进行了对比研究.结果表明,8树种次生木质部结构的共同特点为:生长轮分界明显(霸王和四合木的年轮有时不连续),半环孔材,单穿孔,导管壁间纹孔互列,木纤维无横隔膜,联合傍管轴向薄壁组织丰富,导管壁上呈现螺纹加厚,都具有异型射线;它们主要差异在于射线和导管的数量化指标:四合木异型射线1~2列,霸王、白刺、沙冬青和胡枝子射线2~5列,柽柳、柠条和花棒大型射线4~10列;导管分子长度和纤维长度在树种间和同一树种个体间差异较明显.四合木和沙冬青导管频率较大,导管管孔较

  20. Resistência estomática, tensão de água no xilema e teor de clorofila em genótipos de gravioleira Stomatal resistance, xylem water tension and chlorophyll concentration of soursop genotypes

    Directory of Open Access Journals (Sweden)

    Rejane Jurema Mansur Custódio Nogueira

    2001-09-01

    characteristics. Leaf diffusive resistence to vapor, xylem water tension and chlorophyll concentration were evaluated for two soursop genotypes (Morada and Comum cultivated under field conditions. The trial was carried out during two seasons (September and December/1998, in a commercial orchard of Paudalho, PE, Brazil. An entirely randomized experimental design was used, with six replicates per genotype. In each replicate two healthy and completely developed leaves, located on the medial one third of the canopies were selected. These leaves were directly exposed to solar radiation. During three consecutive days on each season, and at the most evaporative activity time (between 12:00 a.m. and 2:00 p.m., the transpiration (E, leaf diffusive resistance to vapour (Rs, leaf temperature (LT, xylem water tension (psiw and the chlorophyll a and b concentrations were measured. Differences in the seasonal behavior were verified in relation to gaseous changes, psiw and LT between those genetic materials. Correlations between psiw and E, and between psiw and LT were found. Relative humidity showed correlation with LT and with Rs. Comum soursop was most efficient photosynteticly, decreasing the chlorophyll b degradation by luminosity incidence. In general, genotypes Morada and Comum showed different behavior for all evaluated ecophysiological parameters. psiw is a good parameter to distinguish soursop genotypes. Rs can be used as a parameter for differentiation of environmental adaptation among soursop genotypes in higher evaporative requirement seasons.

  1. The effects of Phytophthora ramorum infection on hydraulic conductivity and tylosis formation in tanoak sapwood

    Science.gov (United States)

    Bradley R. Collins; Jennifer L. Parke; Barb Lachenbruch; Everett M. Hansen

    2009-01-01

    Tanoak (Lithocarpus densiflorus (Hook. and Arn.) Rehder) is highly susceptible to sudden oak death, a disease caused by the oomycete Phytophthora ramorum Werres, De Cock & Man in’t Veld. Symptoms include a dying crown, bleeding cankers, and, eventually, death of infected trees. The cause of mortality is not well understood, but recent research indicates that...

  2. DendroCT - Dendrochronology without damage

    DEFF Research Database (Denmark)

    Bill, Jan; Daly, Aoife; Johnsen, Øistein

    2012-01-01

    for dendrochronological analyses. In the scans it was possible to separate tree-rings down to 0.2. mm width, and it was possible to identify the sapwood-heartwood border when sufficient sapwood rings were present. It was found, however, that a visual inspection of the object was required to distinguish between sapwood...... and decayed wood. Comparisons between direct measurements of tree-rings and measurements based on CT-imagery revealed no significant differences. The scanning and subsequent dating of more than 90 objects showed that dendrochronological dating based on CT-scanning has a success rate equal to conventional...

  3. 胡杨茎木质部解剖结构与水力特性对干旱胁迫处理的响应%Response of anatomy and hydraulic characteristics of xylem stem of Populus euphratica Oliv.to drought stress

    Institute of Scientific and Technical Information of China (English)

    徐茜; 陈亚宁

    2012-01-01

    Populus euphratica Oliv. is a precious woody plant in arid regions with vital ecological functions such as high tolerance to salinity/alkalinity, high drought resistance, wind-break/sand-fixation, etc. Because of human socio-economic activities and the resulting development of water resources in recent years, a large number of P. euphratica decayed. Current studies on P. euphratica have focused on changes in physiological and biochemical characteristics, changes in dominant P. euphratica community characteristics, vitro morphogenesis development and histological trend observations. However, there have been little studies on the anatomy and hydraulic characteristics of xylem stems under drought stress. Analysis of changes in the anatomy and hydraulic characteristics of P. euphratica stem xylem under drought stress was significant for interpreting its resistance mechanism. This water control experiment analyzed the response of the anatomy and hydraulic characteristics of P. euphratica stem xylem to different degrees of drought stress. Results showed that with increasing drought stress, the xylem vessel density significantly decreased (P < 0.01). Also xylem vessel diameter, wall thickness and wall mechanical strength increased significantly (P < 0.01). The large the vessels diameter, the more water transported. Also thicker and harder vessel walls ensured secure water relay. Perforation and pit diameters also significantly increased (P < 0.05) with increasing drought stress, resulting in more efficient axial and radial water relay. However, no observable changes were noted in vessel micro-morphology. There were two types of vessel - pitted vessel and spiral vessel. Most of the pits were bordered pits with alternate arrangement. Spiral thickening was noted at end walls of vessel. All perforations were of the single type, probably due to common natural growth and long-term evolution. For hydraulic characteristics, conductivity (Ks) and native embolism level (PLC

  4. Base

    DEFF Research Database (Denmark)

    Hjulmand, Lise-Lotte; Johansson, Christer

    2004-01-01

    BASE - Engelsk basisgrammatik er resultatet af Lise-Lotte Hjulmands grundige bearbejdning og omfattende revidering af Christer Johanssons Engelska basgrammatik. Grammatikken adskiller sig fra det svenske forlæg på en lang række punkter. Den er bl.a. tilpasset til et dansk publikum og det danske...

  5. Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements.

    Science.gov (United States)

    Poyatos, Rafael; Cermák, Jan; Llorens, Pilar

    2007-04-01

    Radial variation in sap flux density across the sapwood was assessed by the heat field deformation method in several trees of Quercus pubescens Wild., a ring-porous species. Sapwood depths were delimited by identifying the point of zero flow in radial patterns of sap flow, yielding tree sapwood areas that were 1.5-2 times larger than assumed based on visual examinations of wood cores. The patterns of sap flow varied both among trees and diurnally. Rates of sap flow were higher close to the cambium, although there was a significant contribution from the inner sapwood, which was greater (up to 60% of total flow) during the early morning and late in the day. Accordingly, the normalized difference between outer and inner sapwood flow was stable during the middle of the day, but showed a general decline in the afternoon. The distribution of sap flux density across the sapwood allowed us to derive correction coefficients for single-point heat dissipation sap flow measurements. We used daytime-averaged coefficients that depended on the particular shape of the radial profile and ranged between 0.45 and 1.28. Stand transpiration calculated using the new method of estimating sapwood areas and the radial correction coefficients was similar to (Year 2003), or about 25% higher than (Year 2004), previous uncorrected values, and was 20-30% of reference evapotranspiration. We demonstrated how inaccuracies in determining sapwood depths and mean sap flux density across the sapwood of ring-porous species could affect tree and stand transpiration estimates.

  6. 有机物对红外光谱技术测定植物叶片和茎秆水δ18O和δD的影响%Potential impacts of organic contaminant on δ18O and δD in leaf and xylem water detected by isotope ratio infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    孟宪菁; 温学发; 张心昱; 韩佳音; 孙晓敏; 李晓波

    2012-01-01

    植物叶片、茎秆和土壤水δ18O和δD是研究土壤-植被-大气系统生态水文循环过程的重要示踪剂.与传统的稳定同位素质谱(IRMS)技术相比,稳定同位素红外光谱(IRIS)技术具有测量速度快、运行成本低等优势,将促进稳定同位素生态学的发展.但是利用低温真空蒸馏抽提技术获得的植物叶片和茎秆水中含有甲醇和乙醇类有机污染物,造成δ18O和δD的IRIS测量值偏离IRMS测量值(2.64±0.43)‰和(3.6±0.8)‰,超过了仪器精度.本研究利用纯水混入不同浓度的色谱纯甲醇或乙醇,结合Los Gatos公司的光谱分析软件确定甲醇(NB)和乙醇(BB)类物质污染程度的光谱度量值,建立了δ18O和δD的光谱污染校正方法.研究表明,同一台分析仪建立的校正曲线无明显的时间漂移;不同分析仪建立的校正曲线存在显著差异;IRIS校正值与IRMS测量值的交叉验证表明,IRIS测定冬小麦和夏玉米叶片和茎秆水的δ18O和δD可以被准确地校正,与IRMS的差值分别为(-0.11±0.12)‰0和(-0.7±0.4)‰.%There is considerable interest in the use of δ18O and δD of leaf (δL), xylem (δx) and soil water (δS) as important tracers in analyzing the role of terrestrial biosphere in eco-hydrological cycle. Isotope ratio infrared spectroscopy (IRIS) has emerged as a faster, more cost-effective and field-deployable method for water stable isotope analysis. However, previous studies have also demonstrated the potential for large errors in IRIS. These errors included considerable deviation from isotope ratio mass spectrometry (IRMS) values in the range of (2.64±0.43)‰ for δ18O and (3.6±0.8)‰ for δD when water stable isotopes were cryogenically extracted from plants/soils with methanol/ethanol-based organic contaminants. As this study focused mainly on establishing correction methods, deionized water spiked with varying amounts of methanol (MeOH, 10~800 μL·L-1) and ethanol (EtOH, 2~40 mL·L-1) was

  7. QuantitatiVe Characteristics of Xylem Cells and Variation in Vessel Element Length and Fibre Length for 13 Psammophytes%13种沙生植物纤维和导管分子长度变异的研究及木质部特征的定量研究

    Institute of Scientific and Technical Information of China (English)

    杨淑敏; 江泽慧; 任海青; 古川郁夫

    2007-01-01

    对13种沙生植物的纤维长和导管分子长度进行了测定分析,二者的径向变异规律呈现上升,下降,波动或恒定不变趋势.所选树种的平均纤维长度小于900μm,属于较短纤维.所选树种的纤维长度和导管分子长度除沙冬青年轮内差异不显著外,其他树种间及树种年轮间的差异极其显著.对沙生植物的解剖特征的定量研究可以看出,所选树种的次生木质部特征体现了对沙漠环境的高度适应性.较短,孔径较窄导管以单管孔或复管孔形态出现,纹孔较小使干旱区沙生植物具有较大的水分运输能力,也是水分安全传导的一种策略.%Fibre length and vessel element length were measured and analyzed in 13 psammophytes grown in arid sandy region,and the horizontal variations of them showed decreasing,increasing,considerable fluctuations or constant tendency with age.Fibre length is less than 900 μm which included in short range according to IAWA Committee.There was significant difference in both fibre length and vessel element length among-tree and within-tree except A.mongolicus.From the quantitative study of anatomical characteristics,the secondary xylem cells have high adaptability to desert.Vessels solitary or grouped in multiples with small diameter,very short elements and minute pits ale in respond to demands for greater water transport capacity and the above appearances in the xylem of arid zone species are interpreted as a strategy for conductive safety.

  8. Mechanisms regulating grain contamination with trichothecenes translocated from the stem base of wheat (Triticum aestivum) infected with Fusarium culmorum.

    Science.gov (United States)

    Winter, Mark; Koopmann, Birger; Döll, Katharina; Karlovsky, Petr; Kropf, Ute; Schlüter, Klaus; von Tiedemann, Andreas

    2013-07-01

    Factors limiting trichothecene contamination of mature wheat grains after Fusarium infection are of major interest in crop production. In addition to ear infection, systemic translocation of deoxynivalenol (DON) may contribute to mycotoxin levels in grains after stem base infection with toxigenic Fusarium spp. However, the exact and potential mechanisms regulating DON translocation into wheat grains from the plant base are still unknown. We analyzed two wheat cultivars differing in susceptibility to Fusarium head blight (FHB), which were infected at the stem base with Fusarium culmorum in climate chamber experiments. Fungal DNA was found only in the infected stem base tissue, whereas DON and its derivative, DON-3-glucoside (D3G), were detected in upper plant parts. Although infected stem bases contained more than 10,000 μg kg⁻¹ dry weight (DW) of DON and mean levels of DON after translocation in the ear and husks reached 1,900 μg kg⁻¹ DW, no DON or D3G was detectable in mature grains. D3G quantification revealed that DON detoxification took mainly place in the stem basis, where ≤ 50% of DON was metabolized into D3G. Enhanced expression of a gene putatively encoding a uridine diphosphate-glycosyltransferase (GenBank accession number FG985273) was observed in the stem base after infection with F. culmorum. Resistance to F. culmorum stem base infection, DON glycosylation in the stem base, and mycotoxin translocation were unrelated to cultivar resistance to FHB. Histological studies demonstrated that the vascular transport of DON labeled with fluorescein as a tracer from the peduncle to the grain was interrupted by a barrier zone at the interface between grain and rachilla, formerly described as "xylem discontinuity". This is the first study to demonstrate the effective control of influx of systemically translocated fungal mycotoxins into grains at the rachilla-seed interface by the xylem discontinuity tissue in wheat ears.

  9. Nitrate levels and stages of growth in hypernodulating mutants of Lupinus albus. II. Enzymatic activity and transport of N in the xylem sap Diferentes níveis de nitrato e estágio de crescimento em mutantes hipernodulantes de Lupinus albus II. Atividade enzimática e transporte de N na seiva do xilema

    Directory of Open Access Journals (Sweden)

    Hélio Almeida Burity

    1999-04-01

    Full Text Available The enzymatic study and transport of N in the xylem sap was carried out with a view to observing the influence of different nitrate levels and growth stages of the plant in chemically treated mutants of Lupinus albus. Several stresses induce a reduction in plant growth, resulting in the accumulation of free amino acids, amides or ureides, not only in the shoot, but also in the roots and nodules. Although enzyme activity is decisive in avoiding products that inhibit nitrogenase by ammonium, little is known about the mechanism by which the xylem carries these products. However, this process may be the key to the function of avoiding the accumulation of amino acids in the cells of infected nodules. The behaviour of the enzymes nitrate reductase (NR, phosphoenolpyruvate carboxylase (PEPC, glutamine synthetase (GS and nitrogen compounds derived from fixation, such as N-a-amino, N-ureides and N-amide in mutant genotypes were observed. The NR enzyme activity was highly influenced by the application of nitrate showing much higher values than those in the non-application of nitrate, independently of genotype, being that the NR, the best evaluation period was in the tenth week. The L-62 genotype characterized with nitrate- resistance, clearly showed that the enzyme PEPC is inhibited by presence of nitrate. The L-135 genotype (nod- fix- showed GS activity extremely low, thus demonstrating that GS is an enzyme highly correlated with fixation. With regard to the best growth stage for GS, Lupinus albus should be evaluated in the seventh week.O estudo enzimático e o transporte de N na seiva do xilema foi realizado visando observar a influência de diferentes níveis de nitrato e estágios de crescimento da planta em mutantes tratadas quimicamente. Vários estresses induzem a redução no crescimento da planta da qual resulta na acumulação de aminoácidos livres, amidas ou ureídos, tanto na parte aérea como nas raízes e nódulos. A atividade de enzimas

  10. Xylem Characteristics of Tension Wood and Endogenous Hormones Distributions during Its Early Formation Period in Betula luminifera%光皮桦应拉木的显微特征及其形成早期内源激素分布

    Institute of Scientific and Technical Information of China (English)

    何辉; 楼雄珍; 林二培; 俞友明; 童再康; 黄华宏

    2016-01-01

    ,physical and chemical characteristics of B. luminifera TW were determined,and distributions of endogenous hormones were analyzed during the early period of its formation to provide knowledge of the TW formation mechanism in birch.[Method]B. luminifera clone 1V25-2 was used for artificially inducing tension wood by bending. Anatomical characteristics of xylems were observed,and fiber characteristics, microfibril angle,and contents of cellulose and lignin were determined. The distributions of four endogenous hormones were analyzed using the ELISA during the early period of TW formation ( from 6 h to 7 d of a tension time course) .[Result]TWber presented a conspicuously thickened inner layer of the cell wall after bending for 12 months,and the fiber of the double wall was averagely 1. 8 times more thickness than the opposite wood (OW) fiber. The double-stained results with Safranin-Astra blue showed that a gelatinous layer deposited in the lumen side of secondary cell wall of TW. Fiber lengths and cellulose contents of TW were both obviously greater than those of OW,but lignin contents exhibited the converse tendency. At the early stages of bending treatment,four endogenous hormones showed the distinct distributions in different xylem regions. The IAA content of TW was all lower than that of OW,but the difference between the two regions reached to significant level only after 7 days bending. The distributions of GAs ( GA1 +GA3 ) were same as IAA. Except for the sample of 6 h bending,the BR contents of OW were significantly higher than those of TW,and showed a rising tendency as bending progressed. Although ZR content showed a rising tendency as bending progressed,their differences between TW and OW were insignificant for each sampling time. However,the ZR content of TW and OW was significantly higher than that of the control after 7-day of bending.[Conclusion]After 12 months bending,cell walls of B. luminifera were obviously thickened in TW xylem. A typical gelatinous layer

  11. Modelling the impact of the light regime on single tree transpiration based on 3D representations of plant architecture

    Science.gov (United States)

    Bittner, S.; Priesack, E.

    2012-04-01

    We apply a functional-structural model of tree water flow to single old-growth trees in a temperate broad-leaved forest stand. Roots, stems and branches are represented by connected porous cylinder elements further divided into the inner heartwood cylinders surrounded by xylem and phloem. Xylem water flow is simulated by applying a non-linear Darcy flow in porous media driven by the water potential gradient according to the cohesion-tension theory. The flow model is based on physiological input parameters such as the hydraulic conductivity, stomatal response to leaf water potential and root water uptake capability and, thus, can reflect the different properties of tree species. The actual root water uptake is calculated using also a non-linear Darcy law based on the gradient between root xylem water potential and rhizosphere soil water potential and by the simulation of soil water flow applying Richards equation. A leaf stomatal conductance model is combined with the hydrological tree and soil water flow model and a spatially explicit three-dimensional canopy light model. The structure of the canopy and the tree architectures are derived by applying an automatic tree skeleton extraction algorithm from point clouds obtained by use of a terrestrial laser scanner allowing an explicit representation of the water flow path in the stem and branches. The high spatial resolution of the root and branch geometry and their connectivity makes the detailed modelling of the water use of single trees possible and allows for the analysis of the interaction between single trees and the influence of the canopy light regime (including different fractions of direct sunlight and diffuse skylight) on the simulated sap flow and transpiration. The model can be applied at various sites and to different tree species, enabling the up-scaling of the water usage of single trees to the total transpiration of mixed stands. Examples are given to reveal differences between diffuse- and ring

  12. Stable-isotope labeling and probing of recent photosynthates into respired CO2, soil microbes and soil mesofauna using a xylem and phloem stem-injection technique on Sitka spruce (Picea sitchensis).

    Science.gov (United States)

    Churchland, Carolyn; Weatherall, Andrew; Briones, Maria J I; Grayston, Sue J

    2012-11-15

    Here we report on the successful application of a novel stem-injection stable-isotope-labeling and probing technique in mature trees to trace the spatial and temporal distribution of rhizosphere carbon belowground. Three 22-year-old Sitka spruce trees were injected with 6.66 g of (13)C-labeled aspartic acid. Over the succeeding 30 days, soil CO(2) efflux, phospholipid fatty-acid (PLFA) microbial biomarkers and soil invertebrates (mites, collembolans and enchytraeids) were analyzed along a 50 m transect from each tree to determine the temporal and spatial patterns in the translocation of recently fixed photosynthates belowground. Soil δ(13)CO(2) values peaked 13-23 days after injection, up to 5 m from the base of the injected tree and was, on average, 3.5‰ enriched in (13)C relative to the baseline. Fungal PLFA biomarkers peaked 2-4 days after stem-injection, up to 20 m from the base of the injected tree and were (13)C-enriched by up to 50‰. Significant (13)C enrichment in mites and enchytraeids occurred 4-6 days after injection (by, on average, 1.5‰). Stem injection of large trees with (13)C-enriched compounds is a successful tool to trace C-translocation belowground. In particular, the significant (13)C enrichment of CO(2) and enchytraeids near the base of the tree and the significant (13)C enrichment of PLFAs up to 20 m away indicate that mature Sitka spruce (Picea sitchensis) have the capacity to support soil communities over large distances. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Axial and radial water transport and internal water storage in tropical forest canopy trees.

    Science.gov (United States)

    James, Shelley A; Meinzer, Frederick C; Goldstein, Guillermo; Woodruff, David; Jones, Timothy; Restom, Teresa; Mejia, Monica; Clearwater, Michael; Campanello, Paula

    2003-01-01

    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single individual of Anacardium excelsum, Ficus insipida, Schefflera morototoni, and Cordia alliodora during two consecutive dry seasons. Vessel lumen diameter and vessel density did not exhibit a consistent trend axially from the base of the stem to the base of the crown. However, lumen diameter decreased sharply from the base of the crown to the terminal branches. The ratio of vessel lumen area to sapwood cross-sectional area was consistently higher at the base of the crown than at the base of the trunk in A. excelsum, F. insipida and C. alliodora, but no axial trend was apparent in S. morototoni. Radial profiles of the preceding wood anatomical characteristics varied according to species and the height at which the wood samples were obtained. Radial profiles of sap flux density measured with thermal dissipation sensors of variable length near the base of the crown were highly correlated with radial profiles of specific hydraulic conductivity (k(s)) calculated from xylem anatomical characteristics. The relationship between sap flux density and k(s) was species-independent. Deuterium oxide (D(2)O) injected into the base of the trunk of the four study trees was detected in the water transpired from the upper crown after only 1 day in the 26-m-tall C. alliodora tree, 2 days in the 28-m-tall F. insipida tree, 3 days in the 38-m-tall A. excelsum tree, and 5 days in the 22-m-tall S. morototoni tree. Radial transport of injected D(2)O was detected in A. excelsum, F. insipida and S. morototoni, but not C. alliodora. The rate of axial D(2)O transport, a surrogate for maximum sap velocity, was positively correlated

  14. Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA.

    Science.gov (United States)

    Neuner, Gilbert; Xu, Bingcheng; Hacker, Juergen

    2010-08-01

    Infrared differential thermal analysis (IDTA) was used to monitor the velocity and pattern of ice propagation and deep supercooling of xylem parenchyma cells (XPCs) during freezing of stems of Castanea sativa L., Morus nigra L. and Quercus robur L. that exhibit a macro- and ring-porous xylem. Measurements were conducted on the surface of cross- and longitudinal stem sections. During high-temperature freezing exotherms (HTEs; -2.8 to -9.4°C), initial freezing was mainly observed in the youngest year ring of the sapwood (94%), but occasionally elsewhere (older year rings: 4%; bark: 2%). Initially, ice propagated rapidly in the largest xylem conduits. This resulted in a distinct freezing pattern of concentric circles in C. sativa and M. nigra. During HTEs, supercooling of XPCs became visible in Q. robur stems, but not in the other species that have narrower pith rays. Intracellular freezing of supercooled XPCs of Q. robur became visible by IDTA during low-temperature freezing exotherms (<-17.4 °C). Infrared differential thermal analysis revealed the progress and the two-dimensional pattern of XPC freezing. XPCs did not freeze at once, but rather small cell groups appeared to freeze at random anywhere in the xylem. By IDTA, ice propagation and deep supercooling in stems can be monitored at meaningful spatial and temporal resolutions.

  15. Quantification of Emboli by Visualization of Air Filled Xylem Vessels

    NARCIS (Netherlands)

    Nijsse, J.; Keijzer, C.J.; Meeteren, van U.

    2001-01-01

    Between harvest and vase life the cut surface of most cut flowers is exposed to air for a longer or shorter period. It was hypothesized that under normal harvest and transport conditions air only enters the cut open vessels and does not move to non-cut vessels. The vessel length distribution of

  16. Quantification of Emboli by Visualization of Air Filled Xylem Vessels

    OpenAIRE

    Nijsse, J.; Keijzer, C.J.; Meeteren, van, U.

    2001-01-01

    Between harvest and vase life the cut surface of most cut flowers is exposed to air for a longer or shorter period. It was hypothesized that under normal harvest and transport conditions air only enters the cut open vessels and does not move to non-cut vessels. The vessel length distribution of chrysanthemum stems was analyzed with the latex particle method and compared to the distribution of air embolisms in 5øw/w) desiccated stems, visualized using cryo-scanning electron microscopy. It was ...

  17. Xylem Development of Loblolly Pine During Irrigation and Simulated Drought

    Science.gov (United States)

    David M. Moehring; Charles X. Grano; John R. Bassett

    1975-01-01

    Induced drought decreased the total number of tracheid cells produced in a season and the radial width of late wood tracheids. Transition from earlywood to late woodo ccurred in early June and was little affected by irrigation.

  18. Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees.

    Science.gov (United States)

    Domec, Jean-Christophe; Pruyn, Michele L

    2008-10-01

    Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.

  19. Suppression of plant resistance gene-based immunity by a fungal effector.

    Directory of Open Access Journals (Sweden)

    Petra M Houterman

    2008-05-01

    Full Text Available The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R genes that mediate recognition of effectors, proteins secreted by pathogens to suppress or evade basal resistance. Here, we show that a plant-pathogenic fungus secretes an effector that can both trigger and suppress R gene-based immunity. This effector, Avr1, is secreted by the xylem-invading fungus Fusarium oxysporum f.sp. lycopersici (Fol and triggers disease resistance when the host plant, tomato, carries a matching R gene (I or I-1. At the same time, Avr1 suppresses the protective effect of two other R genes, I-2 and I-3. Based on these observations, we tentatively reconstruct the evolutionary arms race that has taken place between tomato R genes and effectors of Fol. This molecular analysis has revealed a hitherto unpredicted strategy for durable disease control based on resistance gene combinations.

  20. Use of the correct heat conduction-convection equation as basis for heat-pulse sap flow methods in anisotropic wood.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-05-01

    Heat-pulse methods to determine sap flux density in trees are founded on the theory of heat conduction and heat convection in an isotropic medium. However, sapwood is clearly anisotropic, implying a difference in thermal conductivity along and across the grain, and hence necessitates the theory for an anisotropic medium. This difference in thermal conductivities, which can be up to 50%, is, however, not taken into account in the key equation leading to the currently available heat-pulse methods. Despite this major flaw, the methods remain theoretically correct as they are based on derivations of the key equation, ruling out any anisotropic aspects. The importance of specifying the thermal characteristics of the sapwood according to axial, tangential or radial direction is revealed as well as referring to and using the proper anisotropic theory in order to avoid confusion and misinterpretation of thermal properties when dealing with sap flux density measurements or erroneous results when modelling heat transport in sapwood.

  1. Direct and individual analysis of stress-related phytohormone dispersion in the vascular system of Cucurbita maxima after flagellin 22 treatment.

    Science.gov (United States)

    Furch, Alexandra C U; Zimmermann, Matthias R; Kogel, Karl-Heinz; Reichelt, Michael; Mithöfer, Axel

    2014-03-01

    • The stress-related phytohormones, salicylic acid (SA) and abscisic acid (ABA), and the three jasmonates, jasmonic acid (JA), cis-12-oxo-phytodienoic acid (cis-OPDA), and (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), were investigated in phloem and xylem exudates of Cucurbita maxima. • Phloem and xylem exudates were separately collected and analysed via liquid chromatography-mass spectrometry. • We show direct evidence for all three jasmonates, ABA, and SA in both phloem and xylem exudates of C. maxima. JA and JA-Ile concentrations are higher in xylem (JA: c(xylem) ≈ 199.5 nM, c(phloem) ≈ 43.9 nM; JA-Ile: c(xylem) ≈ 7.9 nM, c(phloem) ≈ 1.6 nM), whereas ABA and SA concentrations are higher in phloem exudates (ABA: c(xylem) ≈ 37.1 nM, c(phloem) ≈ 142.6 nM; SA: c(xylem) ≈ 61.6 nM, c(phloem) ≈ 1319 nM). During bacteria-derived flagellin 22 (flg22)-triggered remote root-to-shoot signalling, phytohormone concentration changed rapidly both in phloem and xylem. • The unequal distribution of phytohormones suggests that phloem and xylem have distinct roles in defence responses. Our data shed light on systemic phytohormone signalling and help explain how plants cope with environmental challenges by lateral exchange between phloem and xylem. Our analysis is a starting point for further investigations of how phytohormones contribute to phloem- and xylem-based defence signalling. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Feedbacks between earlywood anatomy and non-structural carbohydrates affect spring phenology and wood production in ring-porous oaks

    Science.gov (United States)

    Pérez-de-Lis, Gonzalo; García-González, Ignacio; Rozas, Vicente; Olano, José Miguel

    2016-10-01

    Non-structural carbohydrates (NSC) play a central role in the construction and maintenance of a tree's vascular system, but feedbacks between the NSC status of trees and wood formation are not fully understood. We aimed to evaluate multiple dependencies among wood anatomy, winter NSC, and phenology for coexisting temperate (Quercus robur) and sub-Mediterranean (Q. pyrenaica) oaks along a water-availability gradient in the NW Iberian Peninsula. Sapwood NSC concentrations were quantified at three sites in December 2012 (N = 240). Leaf phenology and wood anatomy were surveyed in 2013. Structural equation modelling was used to analyse the interplay among hydraulic diameter (Dh), winter NSC, budburst date, and earlywood vessel production (EVP), while the effect of Dh and EVP on latewood width was assessed by using a mixed-effects model. NSC and wood production increased under drier conditions for both species. Q. robur showed a narrower Dh and lower soluble sugar (SS) concentration (3.88-5.08 % dry matter) than Q. pyrenaica (4.06-5.57 % dry matter), but Q. robur exhibited larger EVP and wider latewood (1403 µm) than Q. pyrenaica (667 µm). Stem diameter and Dh had a positive effect on SS concentrations, which were related to an earlier leaf flushing in both species. Sapwood sugar content appeared to limit EVP exclusively in Q. pyrenaica. In turn, Dh and EVP were found to be key predictors of latewood growth. Our results confirm that sapwood SS concentrations are involved in modulating growth resumption and xylem production in spring. Q. pyrenaica exhibited a tighter control of carbohydrate allocation to wood formation than Q. robur, which would play a role in protecting against environmental stress in the sub-Mediterranean area.

  3. Multiple Ceratocystis smalleyi infections associated with reduced stem water transport in bitternut hickory.

    Science.gov (United States)

    Park, J-H; Juzwik, J; Cavender-Bares, J

    2013-06-01

    Hundreds of cankers caused by Ceratocystis smalleyi are associated with hickory bark beetle-attacked bitternut hickory exhibiting rapid crown decline in the north-central and northeastern United States. Discolored sapwood colonized by the fungus commonly underlies the cankers. Field studies were conducted to test the hypothesis that C. smalleyi infections cause vascular system dysfunction in infected trees. Fifty C. smalleyi inoculations made at 1.8 to 3.8 m in height on stems of healthy bitternut hickory trees (13 to 28 cm in diameter at 1.4 m in height) resulted in extensive canker formation and sapwood discoloration 12 to 14 months after treatment compared with water-inoculated and noninoculated controls. Sap flow velocity (midday) was significantly lower in the infected trees compared with that in the controls. Sap flow velocity also was inversely correlated with the proportion of bark area with cankered tissues and with tylose abundance in the youngest two growth rings. Tylose formation in current-year vessels associated with C. smalleyi infections is likely responsible for much of the water transport disruption. It is hypothesized that multiple stem infections of C. smalleyi and the resulting xylem dysfunction contribute to crown wilt development in bitternut hickory exhibiting rapid crown decline.

  4. Assessing the determinism of the seasonal variations of trunk CO2 efflux by combining field-isotopic composition monitoring and process-based modeling

    Science.gov (United States)

    Ngao, J.; Berveiller, D.; Eglin, T.; Bazot, S.; Pontailler, J.; Damesin, C.

    2008-12-01

    Trunk CO2 efflux is a major component of total CO2 forest ecosystem efflux but its determinism is still poorly understood. This CO2 flux could originate from different carbon sources (respiration of newly assimilates or reserves; xylem sap flow dissolved CO2). These potential CO2 sources of the ecosystem vary at a diurnal and seasonal time scale. They follow distinct metabolic pathways within the tree and could potentially differ in terms of stable C isotopes composition (δ13C). During this last decade, new techniques such as tunable diode laser absorption spectroscopy (TDLAS) has enabled to track both the δ13C and rate of CO2 fluxes at a high temporal frequency compared to conventional isotope ratio mass spectroscopy and chamber-based techniques. In this context, our objective is to examine the diurnal and day-to-day variations of δ13C trunk CO2 efflux and to test if they are driven by climate, xylem sap flow and photosynthetic activity. A TDLAS (TGA100A, Campbell Sci., UT) was installed in early July 2008 in a mature oak (Quercus petraea, L.) stand of the Barbeau forest (France, Carboeurope site). It has been connected to three opened trunk chambers placed at breast height. Before each chamber measurement, which occurred every six minutes, the analyzer was calibrated with four calibration gas bottles with known CO2 concentration (in air) and δ13C values. Concurrently to trunk CO2 efflux rate and δ13C, xylem sap flow rate, air and trunk temperatures, and vapor pressure deficit above canopy were recorded. Data for the summer and fall seasons will be presented and discussed. Preliminary results showed that in summer both trunk CO2 efflux rate and CO2 followed the time evolution but at a different level among trees. The mean hourly averages of CO2 of trunk CO2 efflux values ranged from -29.6‰ to - 23.2‰, and hourly means of CO2 efflux were positively and linearly linked to trunk temperature. The diurnal variations of δ13C of CO2 efflux are less obvious that

  5. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    Science.gov (United States)

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  6. UV-laser-based microscopic dissection of tree rings - a novel sampling tool for δ(13) C and δ(18) O studies.

    Science.gov (United States)

    Schollaen, Karina; Heinrich, Ingo; Helle, Gerhard

    2014-02-01

    UV-laser-based microscopic systems were utilized to dissect and sample organic tissue for stable isotope measurements from thin wood cross-sections. We tested UV-laser-based microscopic tissue dissection in practice for high-resolution isotopic analyses (δ(13) C/δ(18) O) on thin cross-sections from different tree species. The method allows serial isolation of tissue of any shape and from millimetre down to micrometre scales. On-screen pre-defined areas of interest were automatically dissected and collected for mass spectrometric analysis. Three examples of high-resolution isotopic analyses revealed that: in comparison to δ(13) C of xylem cells, woody ray parenchyma of deciduous trees have the same year-to-year variability, but reveal offsets that are opposite in sign depending on whether wholewood or cellulose is considered; high-resolution tree-ring δ(18) O profiles of Indonesian teak reflect monsoonal rainfall patterns and are sensitive to rainfall extremes caused by ENSO; and seasonal moisture signals in intra-tree-ring δ(18) O of white pine are weighted by nonlinear intra-annual growth dynamics. The applications demonstrate that the use of UV-laser-based microscopic dissection allows for sampling plant tissue at ultrahigh resolution and unprecedented precision. This new technique facilitates sampling for stable isotope analysis of anatomical plant traits like combined tree eco-physiological, wood anatomical and dendroclimatological studies.

  7. On the coupled use of sapflow and eddy covariance measurements: environmental impacts on the evapotranspiration of an heterogeneous - wild olives based - Sardinian ecosystem.

    Science.gov (United States)

    Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Oren, Ram

    2015-04-01

    Sapflow and eddy covariance techniques are attractive methods for evapotranspiration (ET) estimates. We demonstrated that in Mediterranean ecosystems, characterized by an heterogeneous spatial distribution of different plant functional types (PFT) such as grass and trees, the combined use of these techniques becomes essential for the actual ET estimates. Indeed, during the dry summers these water-limited heterogeneous ecosystems are typically characterized by a simple dual PFT system with strong-resistant woody vegetation and bare soil, since grass died. An eddy covariance - micrometeorological tower has been installed over an heterogeneous ecosystem at the Orroli site in Sardinia (Italy) from 2003. The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. Where patchy land cover leads and the surface fluxes from different cover are largely different, ET evaluation may be not robust enough and eddy covariance method hypothesis are not anymore preserved. In these conditions the sapflow measurements, performed by thermodissipation probes, provide robust estimates of the transpiration from woody vegetation. Through the coupled use of the sapflow sensor observations, a 2D footprint model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. Based on the Granier technique, 33 thermo-dissipation probes have been built and 6 power regulators have been assembled to provide a constant current of 3V to the sensors. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. The sap flow sensors outputs are analyzed to estimate

  8. Study on the Retention and Distributions of the Copper-Based Preservative in Standing Tree Chinese Fir (Cunninghamia lanceolata

    Directory of Open Access Journals (Sweden)

    Youhua Fan

    2016-01-01

    Full Text Available In spite of some studies about the wood permeability and its improving measures, some progress has been made to study the diffusion and transmission of preservative solutions in standing trees. In the present study, copper- (Cu- based preservative with other reagents is injected into the standing tree Chinese fir using sap-flow method. The chemical compositions of the retreated woods are analyzed with Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS. The samples from different height positions are analyzed with scanning electron microscope (SEM and atomic absorption spectroscopy (AAS to obtain microstructures and preservative retention, respectively. The results indicate that the preservative solutions with lower concentrations are more conducive to diffusion and transmission in the wood. Moreover, the preservative retention at different height position has a greater concentration gradient for composite preservative solutions than those of the single preservative solutions. Solidified preservative particles are observed in xylem rays with SEM. The results of the present study provide some useful information for the functional design of the target wood products.

  9. Molecular and phenotypic profiling from the base to the crown in maritime pine wood-forming tissue.

    Science.gov (United States)

    Paiva, Jorge A P; Garcés, Marcelo; Alves, Ana; Garnier-Géré, Pauline; Rodrigues, José Carlos; Lalanne, Céline; Porcon, Stéphane; Le Provost, Grégoire; Perez, Denilson da Silva; Brach, Jean; Frigerio, Jean-Marc; Claverol, Stéphane; Barré, Aurélien; Fevereiro, Pedro; Plomion, Christophe

    2008-01-01

    Environmental, developmental and genetic factors affect variation in wood properties at the chemical, anatomical and physical levels. Here, the phenotypic variation observed along the tree stem was explored and the hypothesis tested that this variation could be the result of the differential expression of genes/proteins during wood formation. Differentiating xylem samples of maritime pine (Pinus pinaster) were collected from the top (crown wood, CW) to the bottom (base wood, BW) of adult trees. These samples were characterized by Fourier transform infrared spectroscopy (FTIR) and analytical pyrolysis. Two main groups of samples, corresponding to CW and BW, could be distinguished from cell wall chemical composition. A genomic approach, combining large-scale production of expressed sequence tags (ESTs), gene expression profiling and quantitative proteomics analysis, allowed identification of 262 unigenes (out of 3512) and 231 proteins (out of 1372 spots) that were differentially expressed along the stem. A good relationship was found between functional categories from transcriptomic and proteomic data. A good fit between the molecular mechanisms involved in CW-BW formation and these two types of wood phenotypic differences was also observed. This work provides a list of candidate genes for wood properties that will be tested in forward genetics.

  10. Na+ and Water Uptake in Relation to the Radial Reflection Coefficient of Root in Arrowleaf Saltbush Under Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Xin-Fu Bai; Jian-Jun Zhu; Ping Zhang; Yan-Hua Wang; Li-Qun Yang; Lei Zhang

    2007-01-01

    The response of halophyte arrowleaf saltbush (Atriplex triangularis Willd) plants to a gradient of salt stress were investigated with hydroponically cultured seedlings. Under salt stress, both the Na+ uptake into root xylem and negative pressures in xylem vessels increased with the elevation of salinity (up to 500 mol/m3) in the root environment. However, the increment in negative pressures in root xylem far from matches the decrease in the osmotic potential of the root bathing solutions, even when the osmotic potential of xylem sap is taken into consideration. The total water potential of xylem sap in arrowleaf saltbush roots was close to the osmotic potential of root bathing solutions when the salt stress was low, but a progressively increased gap between the water potential of xylem sap and the osmotic potential of root bathing solutions was observed when the salinity in the root environment was enhanced. The maximum gap was 1.4 MPa at a salinity level of 500 mol/m3 without apparent dehydration of the tested plants. This discrepancy could not be explained with the current theories in plant physiology. The radial reflection coefficient of root in arrowleaf saltbush decreased with the enhanced salt stress was and accompanied by an increase in the Na+ uptake into xylem sap. However, the relative Na+ in xylem exudates based on the corresponding NaCl concentration in the root bathing solutions showed a tendency of decrease. The results showed that the reduction in the radial reflection coefficient of roots in the arrowleaf saltbush did not lead to a mass influx of NaCl into xylem when the radial reflection coefficient of the root was considerably small; and that arrowleaf saltbush could use small xylem pressures to counterbalance the salt stresses, either with the uptake of large amounts of salt, or with the development of xylem pressures dangerously negative. This strategy could be one of the mechanisms behind the high resistance of arrowleaf saltbush plants to salt

  11. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation.

    Science.gov (United States)

    Choat, Brendan; Sack, Lawren; Holbrook, N Michele

    2007-01-01

    Inter- and intraspecific variation in hydraulic traits was investigated in nine Cordia (Boraginaceae) species growing in three tropical rainforests differing in mean annual precipitation (MAP). Interspecific variation was examined for the different Cordia species found at each site, and intraspecific variation was studied in populations of the widespread species Cordia alliodora across the three sites. Strong intra- and interspecific variation were observed in vulnerability to drought-induced embolism. Species growing at drier sites were more resistant to embolism than those growing at moister sites; the same pattern was observed for populations of C. alliodora. By contrast, traits related to hydraulic capacity, including stem xylem vessel diameter, sapwood specific conductivity (K(s)) and leaf specific conductivity (K(L)), varied strongly but independently of MAP. For C. alliodora, xylem anatomy, K(s), K(L) and Huber value varied little across sites, with K(s) and K(L) being consistently high relative to other Cordia species. A constitutively high hydraulic capacity coupled with plastic or genotypic adjustment in vulnerability to embolism and leaf water relations would contribute to the ability of C. alliodora to establish and compete across a wide precipitation gradient.

  12. Defense Responses in Aspen with Altered Pectin Methylesterase Activity Reveal the Hormonal Inducers of Tyloses1[OPEN

    Science.gov (United States)

    Leśniewska, Joanna; Krzesłowska, Magdalena; Kushwah, Sunita; Sundberg, Björn; Moritz, Thomas

    2017-01-01

    Tyloses are ingrowths of parenchyma cells into the lumen of embolized xylem vessels, thereby protecting the remaining xylem from pathogens. They are found in heartwood, sapwood, and in abscission zones and can be induced by various stresses, but their molecular triggers are unknown. Here, we report that down-regulation of PECTIN METHYLESTERASE1 (PtxtPME1) in aspen (Populus tremula × tremuloides) triggers the formation of tyloses and activation of oxidative stress. We tested whether any of the oxidative stress-related hormones could induce tyloses in intact plantlets grown in sterile culture. Jasmonates, including jasmonic acid (JA) and methyl jasmonate, induced the formation of tyloses, whereas treatments with salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid (ACC) were ineffective. SA abolished the induction of tyloses by JA, whereas ACC was synergistic with JA. The ability of ACC to stimulate tyloses formation when combined with JA depended on ethylene (ET) signaling, as shown by a decrease in the response in ET-insensitive plants. Measurements of internal ACC and JA concentrations in wild-type and ET-insensitive plants treated simultaneously with these two compounds indicated that ACC and JA regulate each other’s concentration in an ET-dependent manner. The findings indicate that jasmonates acting synergistically with ethylene are the key molecular triggers of tyloses. PMID:27923986

  13. Cell culture based production of Homalodisca Coagulata Virus 1 (HOCV-1): Towards a glassy-winged Sharpshooter biological control system

    Science.gov (United States)

    We show that HoCV-1 can cause mortality and occurs in Texas populations of glassy-winged sharpshooter (GWSS; Homalodisca vitripennis, Hemiptera: Cicadellidae). The GWSS is an invasive pest and important vector of Xylella fastidiosa, a xylem-limited bacteria that causes Pierce’s disease in grapevine...

  14. Change in hydraulic properties and leaf traits of a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    Directory of Open Access Journals (Sweden)

    B. Schuldt

    2010-11-01

    Full Text Available In a throughfall displacement experiment on Sulawesi, Indonesia, three 0.16 ha stands of a premontane perhumid rainforest were exposed to a two-year soil desiccation period that reduced the soil moisture in the upper soil layers beyond the conventional wilting point. About 25 variables, including leaf morphological and chemical traits, stem diameter growth and hydraulic properties of the xylem in the trunk and terminal twigs, were investigated in trees of the tall-growing tree species Castanopsis acuminatissima (Fagaceae by comparing desiccated roof plots with nearby control plots. We tested the hypotheses that this tall and productive species is particularly sensitive to drought, and the exposed upper sun canopy is more affected than the shade canopy. Hydraulic conductivity in the xylem of terminal twigs normalised to vessel lumen area was reduced by 25%, leaf area-specific conductivity by 10–33% during the desiccation treatment. Surprisingly, the leaves present at the end of the drought treatment were significantly larger, but not smaller in the roof plots, though reduced in number (about 30% less leaves per unit of twig sapwood area, which points to a drought effect on the leaf bud formation while the remaining leaves may have profited from a surplus of water. Mean vessel diameter and axial conductivity in the outermost xylem of the trunk were significantly reduced and wood density increased, while annual stem diameter increment decreased by 26%. In contradiction to our hypotheses, (i we found no signs of major damage to the C. acuminatissima trees nor to any other drought sensitivity of tall trees, and (ii the exposed upper canopy was not more drought susceptible than the shade canopy.

  15. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures.

    Science.gov (United States)

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-09-30

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area

  16. Variation in xylem structure from tropics to tundra: Evidence from vestured pits

    NARCIS (Netherlands)

    Jansen, S.; Baas, P.; Gasson, P.; Lens, F.; Smets, E.

    2004-01-01

    Bordered pits play an important role in permitting water flow among adjacent tracheary elements in flowering plants. Variation in the bordered pit structure is suggested to be adaptive in optimally balancing the conflict between hydraulic efficiency (conductivity) and safety from air entry at the

  17. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem

    Science.gov (United States)

    Steven G Hussey; Eshchar Mizrachi; Andrew Groover; Dave K Berger; Alexander A Myburg

    2015-01-01

    Background: Histone modifications play an integral role in plant development, but have been poorly studied inwoody plants. Investigating chromatin organization in wood-forming tissue and its role in regulating gene expression allows us to understand the mechanisms underlying cellular differentiation during xylogenesis (wood...

  18. Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis.

    Science.gov (United States)

    Derbyshire, Paul; Ménard, Delphine; Green, Porntip; Saalbach, Gerhard; Buschmann, Henrik; Lloyd, Clive W; Pesquet, Edouard

    2015-10-01

    Plant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiation of TEs in Arabidopsis thaliana suspension cultures. Quantitative proteomic analysis of microtubule pull-downs, using ratiometric (14)N/(15)N labeling, revealed 605 proteins exhibiting differential accumulation during TE differentiation. Microtubule interacting proteins associated with membrane trafficking, protein synthesis, DNA/RNA binding, and signal transduction peaked during secondary cell wall formation, while proteins associated with stress peaked when approaching TE cell death. In particular, CELLULOSE SYNTHASE-INTERACTING PROTEIN1, already associated with primary wall synthesis, was enriched during secondary cell wall formation. RNAi knockdown of genes encoding several of the identified proteins showed that secondary wall formation depends on the coordinated presence of microtubule interacting proteins with nonoverlapping functions: cell wall thickness, cell wall homogeneity, and the pattern and cortical location of the wall are dependent on different proteins. Altogether, proteins linking microtubules to a range of metabolic compartments vary specifically during TE differentiation and regulate different aspects of wall patterning.

  19. Examining diel patterns of soil and xylem moisture using electrical resistivity imaging

    Science.gov (United States)

    Mares, Rachel; Barnard, Holly R.; Mao, Deqiang; Revil, André; Singha, Kamini

    2016-05-01

    The feedbacks among forest transpiration, soil moisture, and subsurface flowpaths are poorly understood. We investigate how soil moisture is affected by daily transpiration using time-lapse electrical resistivity imaging (ERI) on a highly instrumented ponderosa pine and the surrounding soil throughout the growing season. By comparing sap flow measurements to the ERI data, we find that periods of high sap flow within the diel cycle are aligned with decreases in ground electrical conductivity and soil moisture due to drying of the soil during moisture uptake. As sap flow decreases during the night, the ground conductivity increases as the soil moisture is replenished. The mean and variance of the ground conductivity decreases into the summer dry season, indicating drier soil and smaller diel fluctuations in soil moisture as the summer progresses. Sap flow did not significantly decrease through the summer suggesting use of a water source deeper than 60 cm to maintain transpiration during times of shallow soil moisture depletion. ERI captured spatiotemporal variability of soil moisture on daily and seasonal timescales. ERI data on the tree showed a diel cycle of conductivity, interpreted as changes in water content due to transpiration, but changes in sap flow throughout the season could not be interpreted from ERI inversions alone due to daily temperature changes.

  20. Xylem occlusion in Bouvardia flowers : evidence for a role of peroxidase and catechol oxidase

    NARCIS (Netherlands)

    Vaslier, N.; Doorn, van W.G.

    2003-01-01

    During vase life, Bouvardia flowers show rapid leaf wilting, especially if they are stored dry prior to placement in water. Wilting is due to a blockage in the basal stem end. We investigated the possible role of peroxidase and catechol oxidase in the blockage in cv. van Zijverden flowers, which wer

  1. Organic acids rather than histidine predominate in Ni chelation in Alyssum hyperaccumulator xylem exudate

    Science.gov (United States)

    A better understanding of Ni uptake mechanisms by hyperaccumulator plants is necessary to improve Ni uptake efficiency for phytoremediation technologies i.e. phytomining. It is known that an important aspect of Ni translocation involves Ni chelation with organic ligands. However, it is still not cle...

  2. Xylem transcription profiles indicate potential metabolic responses for economically relevant characteristics of Eucalyptus species

    OpenAIRE

    Salazar, Marcela Mendes; Nascimento, Leandro Costa; Camargo, Eduardo Leal Oliveira; Gonçalves, Danieli Cristina; Lepikson Neto, Jorge; Marques, Wesley Leoricy; Teixeira, Paulo José Pereira Lima; Mieczkowski, Piotr; Mondego, Jorge Maurício Costa; Carazzolle,Marcelo Falsarella; Deckmann, Ana Carolina; Pereira, Gonçalo Amarante Guimarães

    2013-01-01

    Background: Eucalyptus is one of the most important sources of industrial cellulose. Three species of this botanical group are intensively used in breeding programs: E. globulus, E. grandis and E. urophylla. E. globulus is adapted to subtropical/temperate areas and is considered a source of high-quality cellulose; E. grandis grows rapidly and is adapted to tropical/subtropical climates; and E. urophylla, though less productive, is considered a source of genes related to robustness. Wood, or s...

  3. Auxin Influx Carriers Control Vascular Patterning and Xylem Differentiation in Arabidopsis thaliana: e1005183

    National Research Council Canada - National Science Library

    Norma Fàbregas; Pau Formosa-Jordan; Ana Confraria; Riccardo Siligato; Jose M Alonso; Ranjan Swarup; Malcolm J Bennett; Ari Pekka Mähönen; Ana I Caño-Delgado; Marta Ibañes

    2015-01-01

    .... Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem...

  4. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana

    National Research Council Canada - National Science Library

    Fàbregas, Norma; Formosa-Jordan, Pau; Confraria, Ana; Siligato, Riccardo; Alonso, Jose M; Swarup, Ranjan; Bennett, Malcolm J; Mähönen, Ari Pekka; Caño-Delgado, Ana I; Ibañes, Marta

    2015-01-01

    .... Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem...

  5. Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem

    Science.gov (United States)

    Kris Morreel; John Ralph; Hoon Kim; Fachuang Lu; Geert Goeminne; Sally Ralph; Eric Messens; Wout Boerjan

    2004-01-01

    Lignin is an aromatic heteropolymer, abundantly present in the walls of secondary thickened cells. Although much research has been devoted to the structure and composition of the polymer to obtain insight into lignin polymerization, the low-molecular weight oligolignol fraction has escaped a detailed characterization. This fraction, in contrast to the rather...

  6. Xylem Phenology of Fagus sylvatica in Rarău Mountains (Eastern Carpathians, Romania

    Directory of Open Access Journals (Sweden)

    Anca SEMENIUC

    2014-06-01

    Full Text Available The cambium activity and the tree ring formation of European beech (Fagus sylvatica L. from the Rarău Mountains was monitored during 2009, 2010 and 2011 in a beech - coniferous stand, representative for Eastern Carpathian mixed forests. Wood microcores were collected weekly from five trees and prepared in order to describe the different phases of wood formation. Four phases of tree ring development were quantified, in number of cells and phase duration: cambial phase, cell enlargement, cell wall thickening and cell maturation. The onset of the cambial activity took place in the first week of May 2009, one week later in 2010 and in the last week of April 2011. The beech tree ring development period varies between 127 days in 2009 and 137 days in 2011.

  7. Expression of an expansin carbohydrate-binding module affects xylem and phloem formation

    NARCIS (Netherlands)

    Obembe, O.; Jacobsen, E.; Visser, R.G.F.; Vincken, J.P.

    2007-01-01

    Expansins are believed to be involved in disrupting the non-covalent adhesion of cellulose to matrix polysaccharides, thereby promoting wall creep. We have targeted a putative potato expansin (EXPA) carbohydrate-binding module (CBM) to the cell walls of tobacco plants. Histological examinations and

  8. Xylem monoterpenes of some hard pines of Western North America: three studies

    Science.gov (United States)

    Richard H. Smith

    1982-01-01

    Monoterpene composition was studied in a number of hard pine species and results were compared with earlier work. (1) Intratree measurements showed strong constancy of composition in both single-stemmed and forked trees of ponderosa, Jeffrey, Coulter, and Jeffrey x ponderosa pines. In grafts of these and other pines, the scion influenced the root stock, but not the...

  9. Let’s not forget the critical role of surface tension in xylem water relations

    Science.gov (United States)

    Jean-Christophe Domec

    2011-01-01

    The widely supported cohesion–tension theory of water transport explains the importance of a continuous water column and the mechanism of long-distance ascent of sap in plants (Dixon 1914, Tyree 2003, Angeles et al. 2004). The evaporation of water from the surfaces of mesophyll cells causes the air–water interface to retreat into the cellulose matrix of the plant cell...

  10. Evaluation of the sap flow using heat pulse method to determine transpiration of the Populus euphratica canopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaoyou; KANG Ersi; ZHOU Maoxian

    2007-01-01

    The sap flow of the sampled Populus euphratica stems at different radial depths and directions had been studied in Ejina Oasis,in the lower reaches of the Heihe River.Based on sap flow measurements,the transpiration of the entire canopy was calculated.Results showed a linear correlation between the sap flow and the sapwood area of the P.euphratica.Through the analysis of the diameter at breast height in the sample plot,it was found that the distribution of the diameters and the corresponding sapwood area was exponentially correlated,with the coefficient of correlation being 0.976,7.The calculated transpiration of the Populus euphratica canopy was 214.9 mm based on the specific conductivity method.

  11. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.;

    2015-01-01

    across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection...

  12. Evaluation of Compatibility between Beetle-Killed Lodgepole Pine (Pinus Contorta var. Latifolia Wood with Portland Cement

    Directory of Open Access Journals (Sweden)

    Ian D. Hartley

    2010-12-01

    Full Text Available The compatibility of wood from mountain pine beetle (Dendroctonus ponderosa killed lodgepole pine (Pinus contorta var. latifolia with Portland cement was investigated based on time-since-death as a quantitative estimator, and the presence of blue-stained sapwood, brown rot, or white rot as qualitative indicators. The exothermic behavior of cement hydration, maximum heat rate, time to reach this maximum, and total heat released within a 3.5–24 h interval were used for defining a new wood-cement compatibility index (CX. CX was developed and accounted for large discrepancies in assessing wood-cement compatibility compared to the previous methods. Using CX, no significant differences were found between fresh or beetle-killed wood with respect to the suitability for cement; except for the white rot samples which reached or exceeded the levels of incompatibility. An outstanding physicochemical behavior was also found for blue-stained sapwood and cement, producing significantly higher compatibility indices.

  13. Improving sap flux density measurements by correctly determining thermal diffusivity, differentiating between bound and unbound water.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-07-01

    Several heat-based sap flow methods, such as the heat field deformation method and the heat ratio method, include the thermal diffusivity D of the sapwood as a crucial parameter. Despite its importance, little attention has been paid to determine D in a plant physiological context. Therefore, D is mostly set as a constant, calculated during zero flow conditions or from a method of mixtures, taking into account wood density and moisture content. In this latter method, however, the meaning of the moisture content is misinterpreted, making it theoretically incorrect for D calculations in sapwood. A correction to this method, which includes the correct application of the moisture content, is proposed. This correction was tested for European and American beech and Eucalyptus caliginosa Blakely & McKie. Depending on the dry wood density and moisture content, the original approach over- or underestimates D and, hence, sap flux density by 10% and more.

  14. Diurnal and seasonal variability in radial distribution of sap flux density: Implications for estimating stand transpiration.

    Science.gov (United States)

    Fiora, Alessandro; Cescatti, Alessandro

    2006-09-01

    Daily and seasonal patterns in radial distribution of sap flux density were monitored in six trees differing in social position in a mixed coniferous stand dominated by silver fir (Abies alba Miller) and Norway spruce (Picea abies (L.) Karst) in the Alps of northeastern Italy. Radial distribution of sap flux was measured with arrays of 1-cm-long Granier probes. The radial profiles were either Gaussian or decreased monotonically toward the tree center, and seemed to be related to social position and crown distribution of the trees. The ratio between sap flux estimated with the most external sensor and the mean flux, weighted with the corresponding annulus areas, was used as a correction factor (CF) to express diurnal and seasonal radial variation in sap flow. During sunny days, the diurnal radial profile of sap flux changed with time and accumulated photosynthetic active radiation (PAR), with an increasing contribution of sap flux in the inner sapwood during the day. Seasonally, the contribution of sap flux in the inner xylem increased with daily cumulative PAR and the variation of CF was proportional to the tree diameter, ranging from 29% for suppressed trees up to 300% for dominant trees. Two models were developed, relating CF with PAR and tree diameter at breast height (DBH), to correct daily and seasonal estimates of whole-tree and stand sap flow obtained by assuming uniform sap flux density over the sapwood. If the variability in the radial profile of sap flux density was not accounted for, total stand transpiration would be overestimated by 32% during sunny days and 40% for the entire season.

  15. Canopy transpiration of pure and mixed forest stands with variable abundance of European beech

    Science.gov (United States)

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2012-06-01

    SummaryThe importance of tree species identity and diversity for biogeochemical cycles in forests is not well understood. In the past, forestry has widely converted mixed forests to pure stands while contemporary forest policy often prefers mixed stands again. However, the hydrological consequences of these changes remain unclear. We tested the hypotheses (i) that significant differences in water use per ground area exist among the tree species of temperate mixed forests and that these differences are more relevant for the amount of stand-level canopy transpiration (Ec) than putative complementarity effects of tree water use, and (ii) that the seasonal patterns of Ec in mixed stands are significantly influenced by the identity of the present tree species. We measured xylem sap flux during 2005 (average precipitation) and 2006 (relatively dry) synchronously in three nearby old-growth forest stands on similar soil differing in the abundance of European beech (pure beech stand, 3-species stand with 70% beech, 5-species stand with species stand than in the two stands with moderate to high beech presence (158 vs. 97 and 101 mm yr-1); in the dry summer 2006, all stands converged toward similar Ec totals (128-139 mm yr-1). Species differences in Ec were large on a sapwood area basis, reflecting a considerable variation in hydraulic architecture and leaf conductance regulation among the co-existing species. Moreover, transpiration per crown projection area (ECA) also differed up to 5-fold among the different species in the mixed stands, probably reflecting contrasting sapwood/crown area ratios. We conclude that Ec is not principally higher in mixed forests than in pure beech stands. However, tree species-specific traits have an important influence on the height of Ec and affect its seasonal variation. Species with a relatively high ECA (notably Tilia) may exhaust soil water reserves early in summer, thereby increasing drought stress in dry years and possibly reducing

  16. Etude des déterminants de la vulnérabilité à la cavitation du xylème chez les peupliers

    OpenAIRE

    Awad, Hosam

    2011-01-01

    Climatic models predict greater frequency and intensity of drought episodes in the future that would seriously affected forest ecosystems. As a consequence, there has been a rising demand for more drought-resistant plant materials and for the understanding of the physiological and genetic bases of tree drought tolerance. Under drought conditions, the tension in the xylem conduits increases and cavitation can occur that causes embolism and makes the vessel non functional. Xylem vulnerability t...

  17. Broad Anatomical Variation within a Narrow Wood Density Range--A Study of Twig Wood across 69 Australian Angiosperms.

    Science.gov (United States)

    Ziemińska, Kasia; Westoby, Mark; Wright, Ian J

    2015-01-01

    Just as people with the same weight can have different body builds, woods with the same wood density can have different anatomies. Here, our aim was to assess the magnitude of anatomical variation within a restricted range of wood density and explore its potential ecological implications. Twig wood of 69 angiosperm tree and shrub species was analyzed. Species were selected so that wood density varied within a relatively narrow range (0.38-0.62 g cm-3). Anatomical traits quantified included wood tissue fractions (fibres, axial parenchyma, ray parenchyma, vessels, and conduits with maximum lumen diameter below 15 μm), vessel properties, and pith area. To search for potential ecological correlates of anatomical variation the species were sampled across rainfall and temperature contrasts, and several other ecologically-relevant traits were measured (plant height, leaf area to sapwood area ratio, and modulus of elasticity). Despite the limited range in wood density, substantial anatomical variation was observed. Total parenchyma fraction varied from 0.12 to 0.66 and fibre fraction from 0.20 to 0.74, and these two traits were strongly inversely correlated (r = -0.86, P < 0.001). Parenchyma was weakly (0.24 ≤|r|≤ 0.35, P < 0.05) or not associated with vessel properties nor with height, leaf area to sapwood area ratio, and modulus of elasticity (0.24 ≤|r|≤ 0.41, P < 0.05). However, ve