WorldWideScience

Sample records for sapphire oscillator cso

  1. Adapting a Cryogenic Sapphire Oscillator for Very Long Baseline Interferometry

    CERN Document Server

    Doeleman, Sheperd; Rogers, Alan; Hartnett, John; Tobar, Michael; Nand, Nitin; 10.1086/660156

    2011-01-01

    Extension of very long baseline interferometry (VLBI) to observing wavelengths shorter than 1.3mm provides exceptional angular resolution (~20 micro arcsec) and access to new spectral regimes for the study of astrophysical phenomena. To maintain phase coherence across a global VLBI array at these wavelengths requires that ultrastable frequency references be used for the heterodyne receivers at all participating telescopes. Hydrogen masers have traditionally been used as VLBI references, but atmospheric turbulence typically limits (sub) millimeter VLBI coherence times to ~1-30 s. Cryogenic Sapphire Oscillators (CSO) have better stability than Hydrogen masers on these time scale and are potential alternatives to masers as VLBI references. Here, We describe the design, implementation and tests of a system to produce a 10 MHz VLBI frequency standard from the microwave (11.2 GHz) output of a CSO. To improve long-term stability of the new reference, the CSO was locked to the timing signal from the Global Positionin...

  2. Autonomous cryogenic sapphire oscillators employing low vibration pulse-tube cryocoolers at NMIJ

    Science.gov (United States)

    Ikegami, Takeshi; Watabe, Ken-ichi; Yanagimachi, Shinya; Takamizawa, Akifumi; Hartnett, John G.

    2016-06-01

    Two liquid-helium-cooled cryogenic sapphire-resonator oscillators (CSOs), have been modified to operate using cryo-refrigerators and low-vibration cryostats. The Allan deviation of the first CSO was evaluated to be better than 2 x 10-15 for averaging times of 1 s to 30 000 s, which is better than that of the original liquid helium cooled CSO. The Allan deviation of the second CSO is better than 4 x 10-15 from 1 s to 6 000 s averaging time.

  3. Cryogenic sapphire oscillator using a low-vibration design pulse-tube cryocooler: first results.

    Science.gov (United States)

    Hartnett, John; Nand, Nitin; Wang, Chao; Floch, Jean-Michel

    2010-05-01

    A cryogenic sapphire oscillator (CSO) has been implemented at 11.2 GHz using a low-vibration design pulsetube cryocooler. Compared with a state-of-the-art liquid helium cooled CSO in the same laboratory, the square root Allan variance of their combined fractional frequency instability is sigma(y) = 1.4 x 10(-15)tau(-1/2) for integration times 1 < tau < 10 s, dominated by white frequency noise. The minimum sigmay = 5.3 x 10(-16) for the two oscillators was reached at tau = 20 s. Assuming equal contributions from both CSOs, the single oscillator phase noise S(phi) approximately -96 dB x rad(2)/Hz at 1 Hz set from the carrier.

  4. The Autonomous Cryocooled Sapphire Oscillator: A Reference for Frequency Stability and Phase Noise Measurements

    Science.gov (United States)

    Giordano, V.; Grop, S.; Fluhr, C.; Dubois, B.; Kersalé, Y.; Rubiola, E.

    2016-06-01

    The Cryogenic Sapphire Oscillator (CSO) is the microwave oscillator which feature the highest short-term stability. Our best units exhibit Allan deviation σy (τ) of 4.5x10-16 at 1s, ≈ 1.5x10-16 at 100 s ≤ t ≤ 5,000 s (floor), and ≤ 5x10-15 at one day. The use of a Pulse-Tube cryocooler enables full two year operation with virtually no maintenance. Starting with a short history of the CSO in our lab, we go through the architecture and we provide more details about the resonator, the cryostat, the oscillator loop, and the servo electronics. We implemented three similar oscillators, which enable the evaluation of each with the three- cornered hat method, and provide the potential for Allan deviation measurements at parts of 10-17 level. One of our CSOs (ULISS) is transportable, and goes with a small customized truck. The unique feature of ULISS is that its σy (τ) can be validated at destination by measuring before and after the roundtrip. To this extent, ULISS can be regarded as a traveling standard of frequency stability. The CSOs are a part of the Oscillator IMP project, a platform dedicated to the measurement of noise and short-term stability of oscillators and devices in the whole radio spectrum (from MHz to THz), including microwave photonics. The scope spans from routine measurements to the research on new oscillators, components, and measurement methods.

  5. Stability and Phase Noise Tests of Two Cryo-Cooled Sapphire Oscillators

    Science.gov (United States)

    Dick, G. John; Wang, Rabi T.

    1998-01-01

    A cryocooled Compensated Sapphire Oscillator (CSO), developed for the Cassini Ka-band Radio Science experiment, and operating in the 8K - 10K temperature range was previously demonstrated to show ultra-high stability of sigma(sub y) = 2.5 x 10 (exp -15) for measuring times 200 seconds less than or equal to tau less than or equal to 600 seconds using a hydrogen maser as reference. We present here test results for a second unit which allows CSO short-term stability and phase noise to be measured for the first time. Also included are design details of a new RF receiver and an intercomparison with the first CSO unit. Cryogenic oscillators operating below about 10K offer the highest possible short term stability of any frequency sources. However, their use has so far been restricted to research environments due to the limited operating periods associated with liquid helium consumption. The cryocooled CSO is being built in support of the Cassini Ka-band Radio Science experiment and is designed to operate continuously for periods of a year or more. Performance targets are a stability of 3-4 x 10 (exp -15) (1 second less than or equal to tau less than or equal to 100 seconds) and phase noise of -73dB/Hz @ 1Hz measured at 34 GHz. Installation in 5 stations of NASA's deep space network (DSN) is planned in the years 2000 - 2002. In the previous tests, actual stability of the CSO for measuring times tau less than or equal to 200 seconds could not be directly measured, being masked by short-term fluctuations of the H-maser reference. Excellent short-term performance, however, could be inferred by the success of an application of the CSO as local oscillator (L.O.) to the JPL LITS passive atomic standard, where medium-term stability showed no degradation due to L.O. instabilities at a level of (sigma)y = 3 x 10 (exp -14)/square root of tau. A second CSO has now been constructed, and all cryogenic aspects have been verified, including a resonator turn-over temperature of 7.907 K

  6. Cryogenic Sapphire Oscillator using a low-vibration design pulse-tube cryocooler: First results

    CERN Document Server

    Hartnett, John G; Wang, Chao; Floch, Jean-Michel Le

    2010-01-01

    A Cryogenic Sapphire Oscillator has been implemented at 11.2 GHz using a low-vibration design pulse-tube cryocooler. Compared with a state-of-the-art liquid helium cooled CSO in the same laboratory, the square root Allan variance of their combined fractional frequency instability is $\\sigma_y = 1.4 \\times 10^{-15}\\tau^{-1/2}$ for integration times $1 < \\tau < 10$ s, dominated by white frequency noise. The minimum $\\sigma_y = 5.3 \\times 10^{-16}$ for the two oscillators was reached at $\\tau = 20$ s. Assuming equal contributions from both CSOs, the single oscillator phase noise $S_{\\phi} \\approx -96 \\; dB \\; rad^2/Hz$ at 1 Hz offset from the carrier.

  7. Second generation 50 K dual-mode sapphire oscillator.

    Science.gov (United States)

    Anstie, James D; Hartnett, John G; Tobar, Michael E; Ivanov, Eugene N; Stanwix, Paul L

    2006-02-01

    Low-temperature, high-precision sapphire resonators exhibit a turning point in mode frequency-temperature dependence at around 10 K. This, along with sapphire's extremely low dielectric losses at microwave frequencies, results in oscillator fractional frequency stabilities on the order of 10(-15). At higher temperatures the lack of a turning point makes single-mode oscillators very sensitive to temperature fluctuations. By exciting two quasi-orthogonal whispering gallery (WG) modes in a single sapphire resonator, a turning point in the frequency-temperature dependence can be found in the beat frequency between the two modes. A temperature control technique based on mode frequency temperature dependence has been used to maintain the sapphire at this turning point and the fractional frequency instability of the beat frequency has been measured to be at a level of 4.3 X 10(-14) over 1 s, dropping to 3.5 X 10(-14) over 4 s integration time.

  8. Voltage-Controlled Sapphire Oscillator: Design, Development, and Preliminary Performance

    Science.gov (United States)

    Wang, R. T.; Dick, G. J.; Tjoelker, R. L.

    2007-08-01

    We present the design for a new short-term frequency standard, the voltage-controlled sapphire oscillator, as a practical and lower-cost alternative to a cryogenic sapphire oscillator operating at liquid helium temperatures. Performance goals are a frequency stability of 1 x 10^-14 (1 second equal to or less than tau equal to or less than 100 seconds), more than 2 years of continuous operation, and practical operability. Key elements include the sapphire resonator, low-power and long-life cryocooler, frequency compensation method, and cryo-Pound design. We report the design verification, experimental results, and test results of the cryocooler environmental sensitivity, as well as a preliminary stability measurement.

  9. Multiphoton imaging with a novel compact diode-pumped Ti:sapphire oscillator

    DEFF Research Database (Denmark)

    König, Karsten; Andersen, Peter E.; Le, Tuan;

    2015-01-01

    Multiphoton laser scanning microscopy commonly relies on bulky and expensive femtosecond lasers. We integrated a novel minimal-footprint Ti:sapphire oscillator, pumped by a frequency-doubled distributed Bragg reflector tapered diode laser, into a clinical multiphoton tomograph and evaluated its...

  10. Room Temperature Experiments with a Macroscopic Sapphire Mechanical Oscillator

    Science.gov (United States)

    Bourhill, Jeremy; Ivanov, Eugene; Tobar, Micahel

    2015-03-01

    We present initial results from a number of experiments conducted on a 0.53 kg sapphire ``dumbbell'' crystal. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects frequency modulate resonant microwave whispering gallery modes, simultaneously excited within the crystal. A novel microwave readout system is described allowing extremely low noise measurements of this frequency modulation with a phase noise floor of -160 dBc/Hz at 100 kHz, near our modes of interest. Fine-tuning of the crystal's suspension have allowed for the optimisation of mechanical Q-factors in preparation for cryogenic experiments, with a value of 8 x 107 achieved so far. Finally, results are presented that demonstrate the excitation of mechanical modes via radiation pressure force. These are all important steps towards the overall goal of the experiment; to cool a macroscopic device to the quantum ground state.

  11. Intra-cavity gain shaping of mode-locked Ti:Sapphire laser oscillations

    CERN Document Server

    Yefet, Shai; Pe'er, Avi

    2015-01-01

    The gain properties of an oscillator strongly affect its behavior. When the gain is homogeneous, different modes compete for gain resources in a `winner takes all' manner, whereas with inhomogeneous gain, modes can coexist if they utilize different gain resources. We demonstrate precise control over the mode competition in a mode locked Ti:sapphire oscillator by manipulation and spectral shaping of the gain properties, thus steering the competition towards a desired, otherwise inaccessible, oscillation. Specifically, by adding a small amount of spectrally shaped inhomogeneous gain to the standard homogeneous gain oscillator, we selectively enhance a desired two-color oscillation, which is inherently unstable to mode competition and could not exist in a purely homogeneous gain oscillator. By tuning the parameters of the additional inhomogeneous gain we flexibly control the center wavelengths, relative intensities and widths of the two colors.

  12. Achieving λ/10 resolution CW STED nanoscopy with a Ti:Sapphire oscillator.

    Directory of Open Access Journals (Sweden)

    Yujia Liu

    Full Text Available In this report, a Ti:Sapphire oscillator was utilized to realize synchronization-free stimulated emission depletion (STED microscopy. With pump power of 4.6 W and sample irradiance of 310 mW, we achieved super-resolution as high as 71 nm. With synchronization-free STED, we imaged 200 nm nanospheres as well as all three cytoskeletal elements (microtubules, intermediate filaments, and actin filaments, clearly demonstrating the resolving power of synchronization-free STED over conventional diffraction limited imaging. It also allowed us to discover that, Dylight 650, exhibits improved performance over ATTO647N, a fluorophore frequently used in STED. Furthermore, we applied synchronization-free STED to image fluorescently-labeled intracellular viral RNA granules, which otherwise cannot be differentiated by confocal microscopy. Thanks to the widely available Ti:Sapphire oscillators in multiphoton imaging system, this work suggests easier access to setup super-resolution microscope via the synchronization-free STED.

  13. A microwave exciter for Cs frequency standards based on a sapphire-loaded cavity oscillator.

    Science.gov (United States)

    Koga, Y; McNeilage, C; Searls, J H; Ohshima, S

    2001-01-01

    A low noise and highly stable microwave exciter system has been built for Cs atomic frequency standards using a tunable sapphire-loaded cavity oscillator (SLCO), which works at room temperature. This paper discusses the successful implementation of a control system for locking the SLCO to a long-term reference signal and reports an upper limit of the achieved frequency tracking error 6 x 10(-15) at tau = 1 s.

  14. Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator.

    Science.gov (United States)

    Takamizawa, Akifumi; Yanagimachi, Shinya; Tanabe, Takehiko; Hagimoto, Ken; Hirano, Iku; Watabe, Ken-ichi; Ikegami, Takeshi; Hartnett, John G

    2014-09-01

    The frequency stability of an atomic fountain clock was significantly improved by employing an ultra-stable local oscillator and increasing the number of atoms detected after the Ramsey interrogation, resulting in a measured Allan deviation of 8.3 × 10(-14)τ(-1/2)). A cryogenic sapphire oscillator using an ultra-low-vibration pulse-tube cryocooler and cryostat, without the need for refilling with liquid helium, was applied as a local oscillator and a frequency reference. High atom number was achieved by the high power of the cooling laser beams and optical pumping to the Zeeman sublevel m(F) = 0 employed for a frequency measurement, although vapor-loaded optical molasses with the simple (001) configuration was used for the atomic fountain clock. The resulting stability is not limited by the Dick effect as it is when a BVA quartz oscillator is used as the local oscillator. The stability reached the quantum projection noise limit to within 11%. Using a combination of a cryocooled sapphire oscillator and techniques to enhance the atom number, the frequency stability of any atomic fountain clock, already established as primary frequency standard, may be improved without opening its vacuum chamber.

  15. Characteristics and kinetics of laser-pumped Ti:Sapphire oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, J.M.; De Shazer, L.G.; Kangas, K.W.

    1988-06-01

    The experimental performance of a gain-switched Ti:Sapphire laser oscillator pumped by a frequency-doubled Q-switched Nd:YAG laser system is presented for a variety of operating conditions. A theoretical model developed for this oscillator predicts well its performance. In particular, the observed curved input-output energy plots for the oscillator result from the kinetics of gain switching and fluorescence decay during the gain buildup period. Fluorescence decay also produces observed oscillator thresholds higher than those normally predicted by the standard gain-equals-loss condition. Gain-switched parasitic modes, with a higher threshold but shorter roundtrip time than the resonator mode, cause the resonator mode to oscillate only over a finite range of pump energies. Also, spectroscopic investigations show that the Ti:Sapphire cross-section spectrum is well fit by a Poisson distribution, giving a peak cross section of 3 x 10/sup -19/ cm/sup 2/ for the ..pi.. polarization.

  16. Ultra stable and very low noise signal source using a cryocooled sapphire oscillator for VLBI

    CERN Document Server

    Nand, Nitin R; Ivanov, Eugene N; Santarelli, Giorgio

    2011-01-01

    Here we present the design and implementation of a novel frequency synthesizer based on low phase noise digital dividers and a direct digital synthesizer. The synthesis produces two low noise accurate and tunable signals at 10 MHz and 100 MHz. We report on the measured residual phase noise and frequency stability of the synthesizer, and estimate the total frequency stability, which can be expected from the synthesizer seeded with a signal near 11.2 GHz from an ultra-stable cryocooled sapphire oscillator. The synthesizer residual single sideband phase noise, at 1 Hz offset, on 10 MHz and 100 MHz signals, respectively, were measured to be -135 dBc/Hz and -130 dBc/Hz. Their intrinsic frequency stability contributions, on the 10 MHz and 100 MHz signals, respectively, were measured as sigma_y = 9 x 10^-15 and sigma_y = 2.2 x 10^-15, at 1 s integration time. The Allan Deviation of the total fractional frequency noise on the 10 MHz and 100 MHz signals derived from the synthesizer with the cryocooled sapphire oscilla...

  17. Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators

    CERN Document Server

    Stanwix, P L; Wolf, P; Susli, M; Locke, C R; Ivanov, E N; Winterflood, J; Van Kann, F; Stanwix, Paul L.; Tobar, Michael E.; Wolf, Peter; Susli, Mohamad; Locke, Clayton R.; Ivanov, Eugene N.; Winterflood, John; Kann, Frank van

    2005-01-01

    We present the first results from a rotating Michelson-Morley experiment that uses two orthogonally orientated cryogenic sapphire resonator-oscillators operating in whispering gallery modes near 10 GHz. The experiment is used to test for violations of Lorentz Invariance in the frame-work of the photon sector of the Standard Model Extension (SME), as well as the isotropy term of the Robertson-Mansouri-Sexl (RMS) framework. In the SME we set a new bound on the previously unmeasured kappa_{e-}^{ZZ} component of 2.1(5.7)x10^{-14}, and set more stringent bounds by up to a factor of 7 on seven other components. In the RMS a more stringent bound of -2.6(2.1)x10^{-10} on the isotropy parameter, P_{MM}= delta - beta + 1/2 is set, which is a factor of 7 improvement.

  18. Cryo-Cooled Sapphire Oscillator for the Cassini Ka-Band Experiment

    Science.gov (United States)

    Wang, Rabi T.; Dick, G. John

    1997-01-01

    We present features for an ultra-stable sapphire cryogenic oscillator which has been designed to support the Cassini Ka-band Radio Science experiment. The design of this standard is new in several respects. It is cooled by a commercial cryocooler instead of liquid cryogens to increase operating time, and it uses a technology to adjust the temperature turn-over point to extend the upper operating temperature limit and to enable construction of multiple units with uniform operating characteristics. Objectives are 3 x 10(exp -15) stability for measuring times 1 second less than or equal to (tau) less than or equal to 100 seconds, phase noise of -85 dBc/Hz from offset frequencies of 1 Hz to 1000 Hz at 10 GHz carrier frequency, and a one year continuous operating period.

  19. Design of a Cryocooled Sapphire Oscillator for the Cassini Ka-Band Experiment

    Science.gov (United States)

    Dick, G. J.; Wang, R. T.

    1998-04-01

    We present design aspects of a cryogenic sapphire oscillator that is being developed for ultra-high short-term stability and low phase noise in support of the Cassini Ka-band (32-GHz) radio science experiment. With cooling provided by a commercial cryocooler instead of liquid helium, this standard is designed to operate continuously for periods of a year or more. Performance targets are a stability of 3 x 10^(-15) (1 second ≤ τ ≤ 100 seconds) and a phase noise of -73 dBc/Hz at 1 Hz measured at 34 GHz. Test results are reported for several subsystems, including the cryocooler, vibration isolation system, and ruby compensating element.

  20. Ultra-low vibration pulse-tube cryocooler stabilized cryogenic sapphire oscillator with 10^-16 fractional frequency stability

    CERN Document Server

    Hartnett, John G

    2010-01-01

    A low maintenance long-term operational cryogenic sapphire oscillator has been implemented at 11.2 GHz using an ultra-low-vibration cryostat and pulse-tube cryocooler. It is currently the world's most stable microwave oscillator employing a cryocooler. Its performance is explained in terms of temperature and frequency stability. The phase noise and the Allan deviation of frequency fluctuations have been evaluated by comparing it to an ultra-stable liquid-helium cooled cryogenic sapphire oscillator in the same laboratory. Assuming both contribute equally, the Allan deviation evaluated for the cryocooled oscillator is sigma_y = 1 x 10^-15 tau^-1/2 for integration times 1 < tau < 10 s with a minimum sigma_y = 3.9 x 10^-16 at tau = 20 s. The long term frequency drift is less than 5 x 10^-14/day. From the measured power spectral density of phase fluctuations the single side band phase noise can be represented by L_phi(f) = 10^-14.0/f^4+10^-11.6/f^3+10^-10.0/f^2+10^-10.2/f+ 10^-11.0 for Fourier frequencies 10...

  1. CSO$_c$ superpotentials

    CERN Document Server

    Guarino, Adolfo

    2015-01-01

    Motivated by their application to holographic RG flows and hairy black holes in Einstein-scalar systems, we present a collection of superpotentials driving the dynamics of $\\mathcal{N}=2$ and $\\mathcal{N}=1$ four-dimensional supergravities. These theories arise as consistent truncations of the electric/magnetic families of $\\textrm{CSO}(p,q,r)_{c}$ maximal supergravities, with ${p+q+r=8}$, discovered by Dall'Agata et al. The $\\mathcal{N}=2$ and $\\mathcal{N}=1$ truncations describe $\\textrm{SU}(3)$ and $\\mathbb{Z}_{2} \\times \\textrm{SO}(3)$ invariant sectors, respectively, and contain AdS$_4$ solutions preserving $\\mathcal{N}=1,2,3,4$ supersymmetry within the full theories, as well as various gauge symmetries. Realisations in terms of non-geometric type IIB as well as geometric massive type IIA backgrounds are also discussed. The aim of this note is to provide easy to handle superpotentials that facilitate the study of gravitational and gauge aspects of the $\\textrm{CSO}(p,q,r)_{c}$ maximal supergravities avoi...

  2. PUMP-TUNING KTP OPTICAL PARAMETRIC OSCILLATOR WITH CONTINUOUS OUTPUT WAVELENGTH PUMPED BY A PULSED TUNABLE Ti:SAPPHIRE LASER

    Institute of Scientific and Technical Information of China (English)

    DING XIN; YAO JIAN-QUAN; YU YI-ZHONG; YU XUAN-YI; XU JING-JUN; ZHANG GUANG-YIN

    2001-01-01

    We report on the implementation of a KTP optical parametric oscillator pumped by a pulsed tunable Ti:sapphire laser. Two major improvements were achieved, including the connection of the signal and idler tuning ranges and the high-output conversion efficiency through the signal and idler tuning ranges. Both in the signal and idler, the continuous output wavelength from 1.261 to 2.532μm was obtained by varying the pump wavelength from 0.7 to 0.98μm. The maximum output pulse energy was 27.2mJ and the maximum conversion efficiency was 35.7% at 1.311μm (signal).

  3. Drift-compensated Low-noise Frequency Synthesis Based on a cryoCSO for the KRISS-F1

    CERN Document Server

    Heo, Myoung-Sun; Lee, Won-Kyu; Lee, Sang-Bum; Hong, Hyun-Gue; Kwon, Taeg Yong; Park, Chang Yong; Yu, Dai-Hyuk; Santarelli, G; Hilton, Ashby; Luiten, Andre N; Hartnett, John G

    2016-01-01

    In this paper we report on the implementation and stability analysis of a drift-compensated frequency synthesizer from a cryogenic sapphire oscillator (CSO) designed for a Cs/Rb atomic fountain clock. The synthesizer has two microwave outputs of 7 GHz and 9 GHz for Rb and Cs atom interrogation, respectively. The short-term stability of these microwave signals, measured using an optical frequency comb locked to an ultra-stable laser, is better than $5\\times10^{-15}$ at an averaging time of 1 s. We demonstrate that the short-term stability of the synthesizer is lower than the quantum projection noise limit of the Cs fountain clock, KRISS-F1(Cs) by measuring the short-term stability of the fountain with varying trapped atom number. The stability of the fountain at 1-s averaging time reaches $2.5\\times10^{-14}$ at the highest atom number in the experiment when the synthesizer is used as an interrogation oscillator of the fountain. In order to compensate the frequency drift of the CSO, the output frequency of a wa...

  4. Few-cycle, Broadband, Mid-infrared Optical Parametric Oscillator Pumped by a 20-fs Ti:sapphire Laser

    CERN Document Server

    Kumar, Suddapalli Chaitanya; Ideguchi, Takuro; Yan, Ming; Holzner, Simon; Hänsch, Theodor W; Picqué, Nathalie; Ebrahim-Zadeh, Majid

    2014-01-01

    We report a few-cycle, broadband, singly-resonant optical parametric oscillator (OPO) for the mid-infrared based on MgO-doped periodically-poled LiNbO3 (MgO:PPLN), synchronously pumped by a 20-fs Ti:sapphire laser. By using crystal interaction lengths as short as 250 um, and careful dispersion management of input pump pulses and the OPO resonator, near-transform-limited, few-cycle idler pulses tunable across the mid-infrared have been generated, with as few as 3.7 optical cycles at 2682 nm. The OPO can be continuously tuned over 2179-3732 nm by cavity delay tuning, providing up to 33 mW of output power at 3723 nm. The idler spectra exhibit stable broadband profiles with bandwidths spaning over 422 nm (FWHM) recorded at 3732 nm. We investigate the effect of crystal length on spectral bandwidth and pulse duration at a fixed wavelength, confirming near-transform-limited idler pulses for all grating interaction lengths. By locking the repetition frequency of the pump laser to a radio-frequency reference, and with...

  5. Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator

    Science.gov (United States)

    Li, Bei; Borri, Paola; Langbein, Wolfgang

    2013-06-01

    In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical solutions for its efficient suppression, and the limited acquisition speed of multiplex techniques addressing several vibrational resonances, if improved chemical specificity is needed. We have recently reported a differential CARS technique (D-CARS), which simultaneously measures two vibrational frequencies, enhancing the chemical selectivity and sensitivity without introducing costly hardware, while maintaining fast acquisition. In this study, we demonstrate a compact, fully automated, cost-effective module, which integrates on hardware and software level with a commercial multiphoton microscope based on a single 100 fs Ti:Sapphire oscillator and enables D-CARS microscopy in a user-friendly format for applications in the life sciences.

  6. Compact fixed wavelength femtosecond oscillators as an add-on for tunable Ti:sapphire lasers extend the range of applications towards multimodal imaging and optogenetics

    Science.gov (United States)

    Hakulinen, T.; Klein, J.

    2016-03-01

    Two-photon (2P) microscopy based on tunable Ti:sapphire lasers has become a widespread tool for 3D imaging with sub-cellular resolution in living tissues. In recent years multi-photon microscopy with simpler fixed-wavelength femtosecond oscillators using Yb-doped tungstenates as gain material has raised increasing interest in life-sciences, because these lasers offer one order of magnitude more average power than Ti:sapphire lasers in the wavelength range around 1040 nm: Two-photon (2P) excitation of mainly red or yellow fluorescent dyes and proteins (e.g. YFP, mFruit series) simultaneously has been proven with a single IR laser wavelength. A new approach is to extend the usability of existing tunable Titanium sapphire lasers by adding a fixed IR wavelength with an Yb femtosecond oscillator. By that means a multitude of applications for multimodal imaging and optogenetics can be supported. Furthermore fs Yb-lasers are available with a repetition rate of typically 10 MHz and an average power of typically 5 W resulting in pulse energy of typically 500 nJ, which is comparably high for fs-oscillators. This makes them an ideal tool for two-photon spinning disk laser scanning microscopy and holographic patterning for simultaneous photoactivation of large cell populations. With this work we demonstrate that economical, small-footprint Yb fixed-wavelength lasers can present an interesting add-on to tunable lasers that are commonly used in multiphoton microscopy. The Yb fs-lasers hereby offer higher power for imaging of red fluorescent dyes and proteins, are ideally enhancing existing Ti:sapphire lasers with more power in the IR, and are supporting pulse energy and power hungry applications such as spinning disk microscopy and holographic patterning.

  7. A Voltage Controlled Oscillator for a Phase-Locked Loop Frequency Synthesizer in a Silicon-on-Sapphire Process

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, Sean [Univ. of Missouri, Rolla, MO (United States)

    2009-05-21

    Engineers from a government-owned engineering and manufacturing facility were contracted by government-owned research laboratory to design and build an S-band telemetry transmitter using Radio Frequency Integrated Circuit (RFIC) technology packaged in a Low-Temperature Co-fired Ceramic (LTCC) Multi-Chip Module. The integrated circuit technology chosen for the Phase-Locked Loop Frequency Synthesizer portion of the telemetry transmitter was a 0.25 um CMOS process that utilizes a sapphire substrate and is fabricated by Peregrine Semiconductor corporation. This thesis work details the design of the Voltage Controlled Oscillator (VCO) portion of the PLL frequency synthesizer and constitutes an fully integrated VCO core circuit and a high-isolation buffer amplifier. The high-isolation buffer amplifier was designed to provide 16 dB of gain for 2200-3495 MHz as well as 60 dB of isolation for the oscillator core to provide immunity to frequency pulling due to RF load mismatch. Actual measurements of the amplifier gain and isolation showed the gain was approximately 5 dB lower than the simulated gain when all bond-wire and test substrate parasitics were taken into account. The isolation measurements were shown to be 28 dB at the high end of the frequency band but the measurement was more than likely compromised due to the aforementioned bond-wire and test substrate parasitics. The S-band oscillator discussed in this work was designed to operate over a frequency range of 2200 to 2300 MHz with a minimum output power of 0 dBm with a phase-noise of -92 dBc/Hz at a 100 kHz offset from the carrier. The tuning range was measured to be from 2215 MHz to 2330 MHz with a minimum output power of -7 dBm over the measured frequency range. A phase-noise of -90 dBc was measured at a 100 kHz offset from the carrier.

  8. Ultra-low-phase-noise cryocooled microwave dielectric-sapphire-resonator oscillators with frequency instability below 1 x 10^-16

    CERN Document Server

    Hartnett, John G; Lu, Chuan

    2012-01-01

    Two nominally identical ultra-stable cryogenic microwave oscillators are compared. Each incorporates a dielectric-sapphire resonator cooled to near 6 K in an ultra-low vibration cryostat using a low-vibration pulse-tube cryocooler. The phase noise for a single oscillator is measured at -105 dBc/Hz at 1 Hz offset on the 11.2 GHz carrier. The oscillator fractional frequency stability is characterized in terms of Allan deviation by 5.3 x 10^-16 tau^-1/2 + 9 x 10^-17 for integration times 0.1 s < tau < 100 s and is limited by a flicker frequency noise floor below 1 x 10^-16.

  9. Precision measurement of a low-loss cylindrical dumbbell-shaped sapphire mechanical oscillator using radiation pressure

    Science.gov (United States)

    Bourhill, J.; Ivanov, E.; Tobar, M. E.

    2015-08-01

    We present first results from a number of experiments conducted on a 0.53-kg cylindrical dumbbell-shaped sapphire crystal. Here we report on an optomechanical experiment utilizing a modification to the typical cylindrical architecture. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects result in parametric frequency modulation of resonant microwave whispering gallery modes that are simultaneously excited within the crystal. A microwave readout system is implemented, allowing extremely low noise measurements of this frequency modulation near our modes of interest, having a phase noise floor of -165 dBc/Hz at 100 kHz. Fine tuning of the crystal's suspension has allowed for the optimization of mechanical quality factors in preparation for cryogenic experiments, with a value of Q =8 ×107 achieved at 127 kHz. This results in a Q ×f product of 1013, equivalent to the best measured values in a macroscopic sapphire mechanical system. Results are presented that demonstrate the excitation of mechanical modes via radiation pressure force, allowing an experimental method of determining the transducer's displacement sensitivity d f /d x and calibrating the system. Finally, we demonstrate parametric backaction phenomenon within the system. These are all important steps towards the goal of achieving quantum limited measurements of a kilogram-scale macroscopic device for the purpose of detecting deviations from standard quantum theory resulting from quantum gravitational effects.

  10. Precision Measurement of a low-loss Cylindrical Dumbbell-Shaped Sapphire Mechanical Oscillator using Radiation Pressure

    CERN Document Server

    Bourhill, Jeremy; Tbar, Michael

    2015-01-01

    We present first results from a number of experiments conducted on a 0.53 kg cylindrical dumbbell-shaped sapphire crystal. This is the first reported optomechanical experiment of this nature utilising a novel modification to the typical cylindrical architecture. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects result in parametric frequency modulation of resonant microwave whispering gallery modes that are simultaneously excited within the crystal. A novel low-noise microwave readout system is implemented allowing extremely low noise measurements of this frequency modulation near our modes of interest, having a phase noise floor of -165 dBc/Hz at 100 kHz. Fine-tuning of the crystal's suspension has allowed for the optimisation of mechanical quality factors in preparation for cryogenic experiments, with a value of Q=8 x 10^7 achieved at 127 kHz. This results in a Q x f product of 10^13, equivalent to the best mea...

  11. Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences

    Science.gov (United States)

    Mailhot, A.; Talbot, G.; Lavallée, B.

    2015-04-01

    Combined Sewer Overflow (CSO) has been recognized as a major environmental issue in many countries. In Canada, the proposed reinforcement of the CSO frequency regulations will result in new constraints on municipal development. Municipalities will have to demonstrate that new developments do not increase CSO frequency above a reference level based on historical CSO records. Governmental agencies will also have to define a framework to assess the impact of new developments on CSO frequency and the efficiency of the various proposed measures to maintain CSO frequency at its historic level. In such a context, it is important to correctly assess the average number of days with CSO and to define relationships between CSO frequency and rainfall characteristics. This paper investigates such relationships using available CSO and rainfall datasets for Quebec. CSO records for 4285 overflow structures (OS) were analyzed. A simple model based on rainfall thresholds was developed to forecast the occurrence of CSO on a given day based on daily rainfall values. The estimated probability of days with CSO have been used to estimate the rainfall threshold value at each OS by imposing that the probability of exceeding this rainfall value for a given day be equal to the estimated probability of days with CSO. The forecast skill of this model was assessed for 3437 OS using contingency tables. The statistical significance of the forecast skill could be assessed for 64.2% of these OS. The threshold model has demonstrated significant forecast skill for 91.3% of these OS confirming that for most OS a simple threshold model can be used to assess the occurrence of CSO.

  12. A narrow-band injection-seeded pulsed titanium : sapphire oscillator-amplifier system with on-line chirp analysis for high-resolution spectroscopy

    NARCIS (Netherlands)

    Hannemann, S.; Duijn, van E.J.; Ubachs, W.M.G.

    2007-01-01

    A narrow-band tunable injection-seeded pulsed titanium:sapphire laser system has been developed for application in high-resolution spectroscopic studies at the fundamental wavelengths in the near infrared as well as in the ultraviolet, deep ultraviolet, and extreme ultraviolet after upconversion.

  13. A narrow-band injection-seeded pulsed titanium : sapphire oscillator-amplifier system with on-line chirp analysis for high-resolution spectroscopy

    NARCIS (Netherlands)

    Hannemann, S.; Duijn, van E.J.; Ubachs, W.M.G.

    2007-01-01

    A narrow-band tunable injection-seeded pulsed titanium:sapphire laser system has been developed for application in high-resolution spectroscopic studies at the fundamental wavelengths in the near infrared as well as in the ultraviolet, deep ultraviolet, and extreme ultraviolet after upconversion. Sp

  14. Thermal Conductance through Sapphire-Sapphire Bonding

    Science.gov (United States)

    Suzuki, T.; Tomaru, T.; Haruyama, T.; Shintomi, T.; Uchinyama, T.; Miyoki, S.; Ohashi, M.; Kuroda, K.

    2003-07-01

    Thermal conductance on sapphire-sapphire bonded interface has been investigated. Two pieces of single crystal sapphire bar with square cross section were bonded together by adhesion free bonding. In two sections of the bar, thermal conductivity was measured between 5 K to 300K. One section contains a bonded interface and the other section measured a thermal conductivity of the sapphire as a reference. No significant thermal resistance due to bonded interface was found from this measurement. Obtained thermal conductivity reaches κ 1 × 104 [W/m·K] in temperature range of T = 20 ˜ 30 K which is a planned operating temperature of a cryogenic mirror of the Large scale Cryogenic Gravitational wave telescope. It looks promising for sapphire bonding technique to improve a heat transfer from a large cryogenic mirror to susp ension wires.

  15. 33 CFR 106.205 - Company Security Officer (CSO).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Company Security Officer (CSO...) Facility Security Requirements § 106.205 Company Security Officer (CSO). (a) General. (1) An OCS facility...; (6) Ensure the timely correction of problems identified by audits or inspections; (7)...

  16. Secondary particle emission from sapphire single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Minnebaev, K.F., E-mail: minnebaev@mail.ru [Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Khvostov, V.V.; Zykova, E.Yu.; Tolpin, K.A. [Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Colligon, J.S. [Manchester Metropolitan University, Chester Street, Manchester M1 5GD (United Kingdom); Yurasova, V.E. [Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation)

    2015-07-01

    Secondary ion emission from sapphire single crystal has been studied experimentally and by means of computer simulation. The particular oscillations of secondary ion energy spectra and two specific maxima of O{sup +} and Al{sup +} ions were observed under irradiation of (0001) sapphire face by 1 and 10 keV Ar{sup +} ions. We have explained this by the interplay of the charge exchange processes between moving particles and solids. The existence of two maxima in energy spectra of O{sup +} and Al{sup +} secondary ions can be also connected with special features of single-crystal sputtering: the low-energy peak can be formed by random sputtering and the high-energy peak from focusing collisions. In addition some similarity was found between the positions of low-energy maximum in energy spectra of Al{sup +} ions emitted from sapphire and the principal maxima of Al{sup +} ions ejected from the aluminum single crystal. This indicates a possibility to explain the presence of low-energy maximum in energy spectra of secondary ions ejecting from sapphire by emission of Al{sup +} ions from aluminum islands appearing in a number of cases on the sapphire surface due to preferential sputtering of oxygen. These different mechanisms of creating the energy spectra of ions emitted from sapphire should be taken in account.

  17. Improvement of Small Signal Stability of SMIB System Using PSO and CSO based Power System Stabilizer

    Directory of Open Access Journals (Sweden)

    Y. Raghuvamsi

    2015-08-01

    Full Text Available In a power system, Low Frequency Oscillations (LFOs are dangerous and make system unstable. These oscillations are referred to small signal stability and they are mainly due to lack of damping torque. This insufficient damping torque is because of high gain and low time constant of Automatic Voltage Regulator (AVR. AVR is useful for maintaining the terminal voltage of synchronous machine as constant. While doing so, it will make the system damping torque as negative. For providing required damping torque thereby minimizing the LFOs, Power System Stabilizer is used in conjunction with AVR. In this paper for SMIB system, the stability is studied with the help of eigen values before and after placement of PSS with optimized PSS parameters using Particle Swarm Optimization (PSO and Cat Swarm Optimization (CSO. The simulation work is performed in the MATLAB/SIMULINK and corresponding results are presented and analyzed.

  18. 全啁啾镜色散补偿的亚8 fs钛宝石激光器∗%All chirp ed mirrors long-term stable sub-8 fs Ti:sapphire oscillator

    Institute of Scientific and Technical Information of China (English)

    范海涛; 魏志义; 王胭脂; 王兆华; 叶蓬; 胡国行; 秦爽; 何会军; 易葵; 邵建达

    2015-01-01

    A long-term stable sub-8 fs Ti:sapphire oscillator based on domestic chirped mirrors is reported. It outputs 300 mW mode-locked pulses at 86 MHz under 4 W pump power. The second order and third order of dispersion introduced by the components of the oscillator are analyzed. Two pairs of domestically designed and fabricated chirped mirrors are utilized to compensate the dispersion introduced by the crystal and the air in cavity. By precisely controlling the dispersion of chirp mirrors, the output pulses have an ultra-broad bandwidth exceeding 150 nm (FWHM) without the insertion of wedges. With the assistance of extra-cavity dispersion compensation, a pulse duration of 7.9 fs is achieved. This is the shortest pulse duration ever reported by using domestic chirped mirrors, and the shortest pulse duration achieved without intra-cavity wedges, to the best of our knowledge. Structure design and electronic feed-back loops are employed to improve the stability of the oscillator passively and actively, respectively. With the assistance of piezoelectric ceramic, the power stability within 24 h is measured to be 0.6%, which is significantly better than that without them.%报道了一种基于全啁啾镜腔内色散补偿的、可长期稳定运行的亚8 fs钛宝石激光器.在4 W绿光抽运下,可获得300 mW、86 MHz脉冲输出.腔内用于色散补偿的两对啁啾镜是国内自主设计自行镀膜的,其对色散的精确控制可以在腔内不加尖劈对的情况下获得半宽超过150 nm超宽带输出.利用腔外色散补偿,脉冲宽度被压缩至7.9 fs,这是目前采用国产啁啾镜获得的最短脉宽,也是无尖劈对谐振腔获得的最短脉宽.同时,利用电路系统提供实时反馈调节,可保证钛宝石激光器长期稳定运行,24 h内功率抖动约0.6%.

  19. CsoR Is Essential for Maintaining Copper Homeostasis in Mycobacterium tuberculosis

    OpenAIRE

    2016-01-01

    Mycobacterium tuberculosis, a pathogen infecting one third of the world population, faces numerous challenges within the host, including high levels of copper. We have previously shown that M. tuberculosis CsoR is a copper inducible transcriptional regulator. Here we examined the hypothesis that csoR is necessary for maintaining copper homeostasis and surviving under various stress conditions. With an unmarked csoR knockout strain, we were able to characterize the role of csoR in M. tuberculo...

  20. Eesti keeles ilmus Sandor Cso̤ri "Piiririkkuja"

    Index Scriptorium Estoniae

    2008-01-01

    Cso̤ri, Sandor. Piiririkkuja : esseid / [ungari keelest tõlkinud ja toimetanud Edvin Hiedel ; järelsõna: Béla Javorszky. Tallinn] : Eesti Keele Sihtasutus, 2007. Esitlus oli 22. apr. Vt. ka Looming, nr. 5, 2008, lk. 792

  1. 33 CFR 104.210 - Company Security Officer (CSO).

    Science.gov (United States)

    2010-07-01

    ... inspections under 46 CFR part 2; (7) Ensure the timely or prompt correction of problems identified by audits... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Company Security Officer (CSO... MARITIME SECURITY MARITIME SECURITY: VESSELS Vessel Security Requirements § 104.210 Company...

  2. Ti : sapphire laser synchronised with femtosecond Yb pump laser via nonlinear pulse coupling in Ti : sapphire active medium

    Science.gov (United States)

    Didenko, N. V.; Konyashchenko, A. V.; Konyashchenko, D. A.; Kostryukov, P. V.; Kuritsyn, I. I.; Lutsenko, A. P.; Mavritskiy, A. O.

    2017-02-01

    A laser system utilising the method of synchronous pumping of a Ti : sapphire laser by a high-power femtosecond Yb3+-doped laser is described. The pulse repetition rate of the Ti : sapphire laser is successfully locked to the repetition rate of the Yb laser for more than 6 hours without the use of any additional electronics. The measured timing jitter is shown to be less than 1 fs. A simple qualitative model addressing the synchronisation mechanism utilising the cross-phase modulation of oscillation and pump pulses within a Ti : sapphire active medium is proposed. Output parameters of the Ti : sapphire laser as functions of its cavity length are discussed in terms of this model.

  3. CsoR Is Essential for Maintaining Copper Homeostasis in Mycobacterium tuberculosis.

    Science.gov (United States)

    Marcus, Sarah A; Sidiropoulos, Sarah W; Steinberg, Howard; Talaat, Adel M

    2016-01-01

    Mycobacterium tuberculosis, a pathogen infecting one third of the world population, faces numerous challenges within the host, including high levels of copper. We have previously shown that M. tuberculosis CsoR is a copper inducible transcriptional regulator. Here we examined the hypothesis that csoR is necessary for maintaining copper homeostasis and surviving under various stress conditions. With an unmarked csoR knockout strain, we were able to characterize the role of csoR in M. tuberculosis as it faced copper and host stress. Growth under high levels of copper demonstrated that M. tuberculosis survives copper stress significantly better in the absence of csoR. Yet under minimal levels of copper, differential expression analysis revealed that the loss of csoR results in a cell wide hypoxia-type stress response with the induction of the DosR regulon. Despite the stress placed on M. tuberculosis by the loss of csoR, survival of the knockout strain was increased compared to wild type during the early chronic stages of mouse infection, suggesting that csoR could play an active role in modulating M. tuberculosis fitness within the host. Overall, analysis of CsoR provided an increased understanding of the M. tuberculosis copper response with implications for other intracellular pathogens harboring CsoR.

  4. CsoR Is Essential for Maintaining Copper Homeostasis in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sarah A Marcus

    Full Text Available Mycobacterium tuberculosis, a pathogen infecting one third of the world population, faces numerous challenges within the host, including high levels of copper. We have previously shown that M. tuberculosis CsoR is a copper inducible transcriptional regulator. Here we examined the hypothesis that csoR is necessary for maintaining copper homeostasis and surviving under various stress conditions. With an unmarked csoR knockout strain, we were able to characterize the role of csoR in M. tuberculosis as it faced copper and host stress. Growth under high levels of copper demonstrated that M. tuberculosis survives copper stress significantly better in the absence of csoR. Yet under minimal levels of copper, differential expression analysis revealed that the loss of csoR results in a cell wide hypoxia-type stress response with the induction of the DosR regulon. Despite the stress placed on M. tuberculosis by the loss of csoR, survival of the knockout strain was increased compared to wild type during the early chronic stages of mouse infection, suggesting that csoR could play an active role in modulating M. tuberculosis fitness within the host. Overall, analysis of CsoR provided an increased understanding of the M. tuberculosis copper response with implications for other intracellular pathogens harboring CsoR.

  5. Modelling CSO impacts on the river Miño (Lugo)

    OpenAIRE

    José Anta Álvarez; Bermúdez, M.; Cea, L.; J. Suárez; P. Ures; J. Puertas

    2015-01-01

    This study presents an integrated modelling approach to estimate dissolved oxygen and ammonia impacts of CSO of the city of Lugo sewer network in the Miño river. Sewer network modelling was performed with the SWMM software package, while Iber 2D shallow water code was used for river quality modelling. CSO impacts were evaluated by means of Emission Standards (CSO spill frequency/volume), and the Environmental Quality Standards presented in the Urban Pollution Manual were applied to evaluate t...

  6. VLBI observations of the CSO Source Mrk 231

    Science.gov (United States)

    Tamura, S.; Murata, Y.; Asada, K.

    2009-08-01

    We present the images of Mrk 231 using VSOP and VLBA archival data. Mrk 231 is one of the nearby objects with a developed radio lobe at parsec-scales, and is categorized as a Compact Symmetric Object (CSO). These images allows us to estimate the age of last Mrk 231 outburst using three different methods: kinematic aging, the synchrotron aging and an adiabatic cooling model aging. With kinematic aging, we derived upper limit of the proper motion of 0.47 c, which gives the lower limit for the age of 170 yrs.

  7. Using Megaplanning in CSO Projects--Bringing Social Sectors Together for Measurable and Sustainable Social Impact

    Science.gov (United States)

    Uranga, Silvia; Lucellas, Mariana C.

    2005-01-01

    Civil Society Organizations (CSO) can improve their effectiveness and add measurable value to society by using a megaplanning approach as the guiding criteria for their organizational planning. This article shows how Asociacion Conciencia, a leading Argentinean CSO, has used megaplanning to clarify its vision, mission, align its goals and programs…

  8. World's largest sapphire for many applications

    Science.gov (United States)

    Khattak, Chandra P.; Shetty, Raj; Schwerdtfeger, C. Richard; Ullal, Saurabh

    2016-10-01

    Sapphire has been used for many high technology applications because of its excellent optical, mechanical, high temperature, abrasion resistance and dielectric properties. However, it is expensive and the volume of sapphire used has been limited. The potential sapphire requirements for LED and consumer electronic applications are very high. Emphasis has been on producing larger sapphire boules to achieve significant cost reductions so these applications are realized. World's largest sapphire boules, 500 mm diameter 300+kg, have been grown to address these markets.

  9. Pumping of titanium sapphire laser

    Science.gov (United States)

    Jelínková, H.; Vaněk, P.; Valach, P.; Hamal, K.; Kubelka, J.; Škoda, V.; Jelínek, M.

    1993-02-01

    Two methods of Ti:Sapphire pumping for the generation of tunable laser radiation in the visible region were studied. For coherent pumping, the radiation of the second harmonic of a Nd:YAP laser was used and a maximum output energy of E out=4.5 mJ was reached from the Ti:Sapphire laser. For noncoherent pumping, two different lengths of flashlamp pulses were used and a maximum of E out=300 mJ was obtained. Preliminary estimations of the wavelength range of tunability were made.

  10. Neutron Transmission through Sapphire Crystals

    DEFF Research Database (Denmark)

    Sapphire crystals are excellent filters of fast neutrons, while at the same time exhibit moderate to very little absorption at smaller energies. We have performed an extensive series of measurements in order to quantify the above effect. Alongside our experiments, we have performed a series...... of simulations, in order to reproduce the transmission of cold neutrons through sapphire crystals. Those simulations were part of the effort of validating and improving the newly developed interface between the Monte-Carlo neutron transport code MCNP and the Monte Carlo ray-tracing code McStas....

  11. Me4NO2CSO3H.2SnPh3Cl AND enH2O2CSO3.SnPh3Cl SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    DAOUDA NDOYE

    2013-12-01

    Full Text Available Me4NO2C-SO3H.2SnPh3Cl and enH2O2C-SO3.SnPh3Cl are obtained on allowing Me4NO2C-SO3H and enH2O2C-SO3 to react with SnPh3Cl in respectively mixed solution (ethanol/water or ethanolic solution in specific ratios. Their infrared studies have been carried out and structures as dimers, suggested when hydrogen bonds are involved.

  12. Modelling CSO impacts on the river Miño (Lugo

    Directory of Open Access Journals (Sweden)

    José Anta Álvarez

    2015-04-01

    Full Text Available This study presents an integrated modelling approach to estimate dissolved oxygen and ammonia impacts of CSO of the city of Lugo sewer network in the Miño river. Sewer network modelling was performed with the SWMM software package, while Iber 2D shallow water code was used for river quality modelling. CSO impacts were evaluated by means of Emission Standards (CSO spill frequency/volume, and the Environmental Quality Standards presented in the Urban Pollution Manual were applied to evaluate the receiving water quality. The main results show that the studied river reach is not suitable for salmonid fishery in terms of dissolved oxygen concentrations, whereas total ammonia limitations are verified throughout the reach.

  13. Hydrogen effect on the properties of sapphire

    Science.gov (United States)

    Mogilevsky, Radion N.; Sharafutdinova, Liudmila G.; Nedilko, Sergiy; Gavrilov, Valeriy; Verbilo, Dmitriy; Mittl, Scott D.

    2009-05-01

    Sapphire is a widely used material for optical, electronic and semiconductor applications due to its excellent optical properties and very high durability. Optical and mechanical properties of sapphire depend on many factors such as the starting materials that are used to grow crystals, methods to grow sapphire crystals, etc. Demand for highest purity and quality of sapphire crystals increased ten fold for the last several years due to new applications for this material. In this work we studied the effect of starting materials and crystal growth methods on the optical and mechanical properties of sapphire, especially concentrating on the effect of hydrogen on the properties of sapphire. It was found that the infrared (IR) absorption which is traditionally used to measure the hydrogen content in sapphire crystals cannot be reliably used and the data obtained by this method provides a much lower hydrogen concentration than actual. We have shown for the first time that Nuclear Magnetic Resonance techniques can be successfully used to determine hydrogen concentration in sapphire crystals. We have shown that hydrogen concentration in sapphire can reach thousands of ppm if these crystals are grown from Verneuil starting material or aluminum oxide powder. Alternatively, the hydrogen concentration is very low if sapphire crystals are grown from High Purity Densified Alumina (HPDA®) as a starting material. HPDA® is produced by EMT, Inc through their proprietary patented technology. It was found that optical and mechanical properties of sapphire crystals grown using EMT HPDA® starting material are much better than those sapphire crystals grown using a starting material of Verneuil crystals or aluminum oxide powder.

  14. La condizione del CsO, o la politica della sensazione

    Directory of Open Access Journals (Sweden)

    Eric Alliez

    2015-04-01

    Full Text Available This is a translation of the original text, published on Multitudes (http://www.multitudes.net/The- BwO-Condition-or-The-Politics, realized with the generous permission of the author. Being the transcription of a lecture (Symposium TransArt IV, 2001 we decided to maintain the evocative style, as well as the formula "CsO" (BwO where originally used.

  15. Sapphire Viewports for a Venus Probe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will demonstrate that sapphire viewports are feasible for use in Venus probes. TvU's commercial viewport products have demonstrated that...

  16. Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component.

    Science.gov (United States)

    Cai, Fei; Dou, Zhicheng; Bernstein, Susan L; Leverenz, Ryan; Williams, Eric B; Heinhorst, Sabine; Shively, Jessup; Cannon, Gordon C; Kerfeld, Cheryl A

    2015-03-27

    The marine Synechococcus and Prochlorococcus are the numerically dominant cyanobacteria in the ocean and important in global carbon fixation. They have evolved a CO2-concentrating-mechanism, of which the central component is the carboxysome, a self-assembling proteinaceous organelle. Two types of carboxysome, α and β, encapsulating form IA and form IB d-ribulose-1,5-bisphosphate carboxylase/oxygenase, respectively, differ in gene organization and associated proteins. In contrast to the β-carboxysome, the assembly process of the α-carboxysome is enigmatic. Moreover, an absolutely conserved α-carboxysome protein, CsoS2, is of unknown function and has proven recalcitrant to crystallization. Here, we present studies on the CsoS2 protein in three model organisms and show that CsoS2 is vital for α-carboxysome biogenesis. The primary structure of CsoS2 appears tripartite, composed of an N-terminal, middle (M)-, and C-terminal region. Repetitive motifs can be identified in the N- and M-regions. Multiple lines of evidence suggest CsoS2 is highly flexible, possibly an intrinsically disordered protein. Based on our results from bioinformatic, biophysical, genetic and biochemical approaches, including peptide array scanning for protein-protein interactions, we propose a model for CsoS2 function and its spatial location in the α-carboxysome. Analogies between the pathway for β-carboxysome biogenesis and our model for α-carboxysome assembly are discussed.

  17. Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component

    Directory of Open Access Journals (Sweden)

    Fei Cai

    2015-03-01

    Full Text Available The marine Synechococcus and Prochlorococcus are the numerically dominant cyanobacteria in the ocean and important in global carbon fixation. They have evolved a CO2-concentrating-mechanism, of which the central component is the carboxysome, a self-assembling proteinaceous organelle. Two types of carboxysome, α and β, encapsulating form IA and form IB d-ribulose-1,5-bisphosphate carboxylase/oxygenase, respectively, differ in gene organization and associated proteins. In contrast to the β-carboxysome, the assembly process of the α-carboxysome is enigmatic. Moreover, an absolutely conserved α-carboxysome protein, CsoS2, is of unknown function and has proven recalcitrant to crystallization. Here, we present studies on the CsoS2 protein in three model organisms and show that CsoS2 is vital for α-carboxysome biogenesis. The primary structure of CsoS2 appears tripartite, composed of an N-terminal, middle (M-, and C-terminal region. Repetitive motifs can be identified in the N- and M-regions. Multiple lines of evidence suggest CsoS2 is highly flexible, possibly an intrinsically disordered protein. Based on our results from bioinformatic, biophysical, genetic and biochemical approaches, including peptide array scanning for protein-protein interactions, we propose a model for CsoS2 function and its spatial location in the α-carboxysome. Analogies between the pathway for β-carboxysome biogenesis and our model for α-carboxysome assembly are discussed.

  18. A point source of a different color: identifying a gap in United States regulatory policy for "green" cso treatment using constructed wetlands

    OpenAIRE

    Zeno F. Levy; Smardon, Richard C.; James S. Bays; Daniel Meyer

    2014-01-01

    Up to 850 billion gallons of untreated combined sewer overflow (CSO) is discharged into waters of the United States each year. Recent changes in CSO management policy support green infrastructure (GI) technologies as “front of the pipe” approaches to discharge mitigation by detention/reduction of urban stormwater runoff. Constructed wetlands for CSO treatment have been considered among suites of GI solutions. However, these wetlands differ fundamentally from other GI technologies ...

  19. Method of surface treatment on sapphire substrate

    Institute of Scientific and Technical Information of China (English)

    NIU Xin-huan; LIU Yu-ling; TAN Bai-mei; HAN Li-ying; ZHANG Jian-xin

    2006-01-01

    Sapphire single crystals are widely used in many areas because of the special physic properties and important application value. As an important substrate material,stringent surface quality requirements,i.e. surface finish and flatness,are required. The use of CMP technique can produce high quality surface finishes at low cost and with fast material removal rates. The sapphire substrate surface is treated by using CMP method. According to sapphire substrate and its product properties,SiO2 sol is chosen as abrasive. The particle size is 15-25 nm and the concentration is 40%. According to the experiment results,pH value is 10.5-11.5. After polishing and cleaning the sapphire surface,the surface roughness was measured by using AFM method and the lowest value of Ra 0.1 nm was obtained. From the results,it can be seen that using such method,the optimal sapphire surface can be gotten,which is advantageous for epitaxial growth and device making-up.

  20. Generation of 7-fs laser pulse directly from a compact Ti:sapphire laser with chirped mirrors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A compact femtosecond Ti:sapphire laser resonator consisting of three chirped mirrors and one output coupler was designed. By accurately balancing the intra- cavity dispersions between Ti:sapphire crystal, air and chirped mirrors, we directly generated the laser pulse shorter than 7 fs at the average power of 340 mW with 3.1 W pump. The repetition rate of the laser oscillator is 173 MHz at the centre wavelength of 791 nm, and the ultrabroaden spectrum covers from 600 nm to 1000 nm. To the best of our knowledge, this is the simplest laser resonator capable of generating sub-10 fs laser pulse.

  1. Generation of 7-fs laser pulse directly from a compact Ti:sapphire laser with chirped mirrors

    Institute of Scientific and Technical Information of China (English)

    ZHAO YanYing; WANG Peng; ZHANG Wei; TIAN JinRong; WEI ZhiYi

    2007-01-01

    A compact femtosecond Ti:sapphire laser resonator consisting of three chirped mirrors and one output coupler was designed. By accurately balancing the intracavity dispersions between Ti:sapphire crystal, air and chirped mirrors, we directly generated the laser pulse shorter than 7 fs at the average power of 340 mW with 3.1 W pump. The repetition rate of the laser oscillator is 173 MHz at the centre wavelength of 791 nm, and the ultrabroaden spectrum covers from 600 nm to 1000 nm. To the best of our knowledge, this is the simplest laser resonator capable of generating sub-10 fs laser pulse.

  2. High-power solid-state sapphire whispering gallery mode maser.

    Science.gov (United States)

    Creedon, Daniel L; Benmessaï, Karim; Tobar, Michael E; Hartnett, John G; Bourgeois, Pierre-Yves; Kersale, Yann; Le Floch, Jean-Michel; Giordano, Vincent

    2010-03-01

    We present new results on a cryogenic solid-state maser frequency standard, which relies on the excitation of whispering gallery (WG) modes within a doped monocrystalline sapphire resonator (alpha-Al2O3). Included substitutively within the highest purity HEMEX-grade sapphire crystal lattice are Fe2+ impurities at a concentration of parts per million, an unavoidable result of the manufacturing process. Mass conversion of Fe2+ to Fe3+ ions was achieved by thermally annealing the sapphire in air. Above-threshold maser oscillation was then excited in the resonator at zero applied DC magnetic field by pumping high-Q WG modes coincident in frequency with the electron spin resonance (ESR) energy levels of the Fe3+ spin population. A 2 stage annealing process was undertaken for a sapphire resonator with exceptionally low Fe3+ concentration, resulting in an improvement of 6 orders of magnitude in output power for this particular crystal, and exceeding the previous best implementation of our scheme in another crystal by nearly 20 dB. This represents an output signal 7 orders of magnitude more powerful than a typical commercial hydrogen maser. At this power level, we estimate a limit on the frequency stability of order 1 x 10(-17)/square root(tau) due to the Schawlow-Townes fundamental thermal noise limit.

  3. Radio Properties of the $\\gamma$-ray Emitting CSO Candidate 2234+282

    CERN Document Server

    An, T; Gabanyi, K E; Frey, S; Baan, W A; Zhao, W

    2016-01-01

    Most of the gamma-ray emitting active galactic nuclei (AGN) are blazars, although there is still a small fraction of non-blazar AGN in the Fermi/LAT catalog. Among these misaligned gamma-ray-emitting AGN, a few can be classified as Compact Symmetric Objects (CSOs). In contrast to blazars in which gamma-ray emission is generally thought to originate from highly beamed relativistic jets, the source of gamma-ray emission in unbeamed CSOs remains an open question. The rarity of the gamma-ray emitting CSOs is a mystery as well. Here we present the radio properties of the gamma-ray CSO candidate 2234+282.

  4. Sapphire Energy - Integrated Algal Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    White, Rebecca L. [Sapphire Energy, Inc., Columbus, NM (United States). Columbus Algal Biomass Farm; Tyler, Mike [Sapphire Energy, Inc., San Diego, CA (United States)

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  5. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    Science.gov (United States)

    Deluca, J. J. (Inventor)

    1979-01-01

    An element comprising sapphire, ruby or blue sapphire can be bonded to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  6. A comparative study on methods to structure sapphire

    NARCIS (Netherlands)

    Crunteanu, A.; Hoffmann, P.; Pollnau, M.; Buchal, C.

    2003-01-01

    Ti:sapphire is an attractive material for applications as a tunable or short-pulse laser and as a broadband light source in low-coherence interferometry. We investigated several methods to fabricate rib structures in sapphire that can induce channel waveguiding in Ti:sapphire planar waveguides. Thes

  7. VLBI observations of 10 CSO candidates: expansion velocities of hot spots

    CERN Document Server

    An, Tao; Yang, Jun; Taylor, Gregory B; Hong, Xiaoyu; Baan, Willem A; Liu, Xiang; Wang, Min; Zhang, Hongbo; Wang, Weihua; Chen, Xi; Cui, Lang; Hao, Longfei; Zhu, Xinying

    2011-01-01

    Observations of ten Compact Symmetric Objects ({\\rm CSO}) candidates have been made with the Very Long Baseline Array at 8.4 GHz in 2005 and with a combined Chinese and European VLBI array at 8.4 GHz in 2009. The 2009 observations incorporate for the first time the two new Chinese telescopes at Miyun and Kunming for international astrophysical observations. The observational data, in combination with archival VLBA data from previous epochs, have been used to derive the proper motions of the VLBI components. Because of the long time baseline of $\\sim$16 years of the VLBI data sets, the expansion velocities of the hot spots can be measured at an accuracy as high as $\\sim$1.3 $\\mu$as yr$^{-1}$. Six of the ten sources are identified as CSOs with a typical double or triple morphology on the basis of both spectral index maps and their mirror-symmetry of proper motions of the terminal hot spots. The compact double source J1324+4048 is also identified as a CSO candidate. Among the three remaining sources, J1756+5748 ...

  8. Sapphire and other dielectric waveguide devices

    NARCIS (Netherlands)

    Pollnau, Markus

    2008-01-01

    Different fabrication methods have been explored successfully and surface and buried channel waveguide lasers have been demonstrated in Ti:sapphire for the first time. Since the propagation losses of these first-generation waveguides are still rather high, substantial improvement is required in orde

  9. Sapphire and other dielectric waveguide devices

    NARCIS (Netherlands)

    Pollnau, Markus

    Different fabrication methods have been explored successfully and surface and buried channel waveguide lasers have been demonstrated in Ti:sapphire for the first time. Since the propagation losses of these first-generation waveguides are still rather high, substantial improvement is required in

  10. Advanced thin dicing blade for sapphire substrate

    Directory of Open Access Journals (Sweden)

    Koji Matsumaru, Atsushi Takata and Kozo Ishizaki

    2005-01-01

    Full Text Available Advanced thin dicing blades for cutting sapphire were fabricated and evaluated for cutting performance with respect to dicing blade wear and meandering of cutting lines. Three kinds of different commercial blades were used to compare the cutting performance. These blades had the same thickness and the same diamond grain size. The matrix material of one dicing blade was nickel–phosphorus alloy and two other were a vitric material. Newly developed dicing blades consisted of a vitric material with pore. A dicing machine was used for cutting sapphire. Turning velocity, cutting depth and feeding rate were 20,000 min−1, 200 μm and 1 mm s−1, respectivity. Cutting directions were 110 and 010. All blades could cut 1000 mm and more in the 110 direction. On the other hand, commercial dicing blades generated meandering lines and were broken only by 50 mm of cutting length in 010 direction. Fabricated blade can cut 1000 mm and more in 010 direction. The wear of fabricated dicing blade was the largest in the dicing blades. Although cutting performance of commercial dicing blades depended on the sapphire orientation, that of fabricated blade was independent of the sapphire orientation. It has been confirmed that the fabricated dicing blade was kept a cutting ability by flash diamonds on the dicing blade surface, which were created by wear of blade during cutting sapphire. Low cutting ability of commercial blades increased cutting force between with increase of cutting length. The increased cutting force produced to bend a blade and cutting lines, and finally a fracture of blade.

  11. Degradation of picosecond temporal contrast of Ti:sapphire lasers with coherent pedestals.

    Science.gov (United States)

    Khodakovskiy, Nikita; Kalashnikov, Mikhail; Gontier, Emilien; Falcoz, Franck; Paul, Pierre-Mary

    2016-10-01

    Recompressed pulses from Ti:sapphire chirped-pulse lasers are accompanied by a slowly decaying post-pulse pedestal that is coherent with the main pulse. The pedestal typically consists of numerous pulses with temporal separation in the picosecond range. The source of this artifact lies in the Ti:sapphire active medium itself, both in the Kerr-lens mode-locked oscillator and in subsequent amplifiers. In the presence of substantial self-phase modulation, after recompression the post-pedestal generates a mirror-symmetric pre-pulse pedestal. This pedestal severely degrades the leading edge of the output pulse. This degradation is far more limiting than the original post-pedestal and severely lowers the achievable temporal contrast.

  12. Achieving strong doubling power by optical phase-locked Ti:sapphire laser and MOPA system

    Institute of Scientific and Technical Information of China (English)

    Yu Peng; Baike Lin; Qiang Wang; Yang Zhao; Ye Li; Jianping Cao; Zhanjun Fang; Erjun Zang

    2012-01-01

    We show two external cavity-enhanced second-harmonic generations of 922 nm with periodically poled potassium titanyl phosphate crystal,whose doubling cavities are locked separately with Hansch-Couillaud and intra-modulation methods.The outputs of second-harmonic generation reach 310 mW,54.8% of the conversion efficiency from the Ti;sapphire laser with the crystal length of 10 mm,and 208 mW,59% of the conversion efficiency from the MOPA system with the crystal length of 30 mm.It consists of heterodyning the Ti;sapphire laser and the MOPA system,and compares the phase of the beat frequency signal with the phase of a reference RF local oscillator.The resulting phase error is used as a feedback signal and fed back to the reference cavity of the Ti;sapphire laser to lock the two lasers in phase.A stable blue power of 520 mW is obtained,which supplies enough power for the cooling and trapping step of the strontium (Sr) optical lattice clock.Four stable isotopes of Sr,84Sr,86Sr,87Sr,and 88Sr,are detected by probing the laser during a strong 460.7-nm cycling transition (5s21S0-5s5p1P1).%We show two external cavity-enhanced second-harmonic generations of 922 nm with periodically poled potassium titanyl phosphate crystal, whose doubling cavities are locked separately with Hansch-Couillaud and intra-modulation methods. The outputs of second-harmonic generation reach 310 mW, 54.8% of the conversion efficiency from the Ti:sapphire laser with the crystal length of 10 mm, and 208 mW, 59% of the conversion efficiency from the MOPA system with the crystal length of 30 mm. It consists of heterodyning the Ti:sapphire laser and the MOPA system, and compares the phase of the beat frequency signal with the phase of a reference RF local oscillator. The resulting phase error is used as a feedback signal and fed back to the reference cavity of the Ti:sapphire laser to lock the two lasers in phase. A stable blue power of 520 mW is obtained, which supplies enough power for the cooling

  13. XMM-Newton Spectroscopy of the X-ray Detected Broad Absorption Line QSO CSO 755

    Science.gov (United States)

    Brandt, Niel

    2005-01-01

    We present the results from XMM-Newton observations of the highly optically polarized broad absorption line quasar (BALQSO) CSO 755. By analyzing its X-ray spectrum with a total of approximately 3000 photons we find that this source has an X-ray continuum of "typical" radio-quiet quasars, with a photon index of Gamma=1.83, and a rather flat (X-ray bright) intrinsic optical-to-X-ray spectral slope of alpha_ox=- 1.51. The source shows evidence for intrinsic absorption, and fitting the spectrum with a neutral-absorption model gives a column density of N_H approximately 1.2x10^22 cm^{-2}; this is among the lowest X-ray columns measured for BALQSOs. We do not detect, with high significance, any other absorption features in the X-ray spectrum. Upper limits we place on the rest-frame equivalent width of a neutral (ionized) Fe K-alpha line, less than =180 eV (less than =120 eV), and on the Compton-reflection component parameter, R less than =0.2, suggest that most of the X-rays from the source are directly observed rather than being scattered or reflected; this is also supported by the relatively flat intrinsic alpha ox we measure. The possibility that most of the X-ray flux is scattered due to the high level of UV-optical polarization is ruled out. Considering data for 46 BALQSOs from the literature, including CSO 755, we have found that the UV-optical continuum polarization level of BALQSOs is not correlated with any of their X-ray properties. A lack of significant short-term and long-term X-ray flux variations in the source may be attributed to a large black-hole mass in CSO 755. We note that another luminous BALQSO, PG 2112+059, has both similar shallow C IV BALs and moderate X-ray absorption.

  14. Evolutionary and Holistic Assessment of Green-Grey Infrastructure for CSO Reduction

    Directory of Open Access Journals (Sweden)

    Alida Alves

    2016-09-01

    Full Text Available Recent research suggests future alterations in rainfall patterns due to climate variability, affecting public safety and health in urban areas. Urban growth, one of the main drivers of change in the current century, will also affect these conditions. Traditional drainage approaches using grey infrastructure offer low adaptation to an uncertain future. New methodologies of stormwater management focus on decentralized approaches in a long-term planning framework, including the use of Green Infrastructure (GI. This work presents a novel methodology to select, evaluate, and place different green-grey practices (or measures for retrofitting urban drainage systems. The methodology uses a hydrodynamic model and multi-objective optimization to design solutions at a watershed level. The method proposed in this study was applied in a highly urbanized watershed to evaluate the effect of these measures on Combined Sewer Overflows (CSO quantity. This approach produced promising results and may become a useful tool for planning and decision making of drainage systems.

  15. CSO/CTB/BER performances improvement in a bi-directional hybrid DWDM system

    Institute of Scientific and Technical Information of China (English)

    Hai-Han Lu(吕海涵); Hsu-Hung Huang(黄旭弘); Ming-Chuan Wang(王明傅); Heng-Sheng Su(蘇(恒)生)

    2003-01-01

    Experimental verifications of the feasibility of using chirped fiber grating (CFG) as the dispersion compen-sation device in a bi-directional hybrid dense-wavelength-division-multiplexing (DWDM) system to reducethe dispersion and cross-phase modulation (XPM) induced crosstalk were proposed and demonstrated.Not only channel capacity was increased, but also good performances of carrier-to-noise ratio (CNR) ≥ 50dB, composite second order (CSO) ≥72 dB, composite triple beat (CTB) ≥69 dB and low bit error rate(BER) < 10-9 were achieved in our proposed system over a 50-km single-mode fiber (SMF) transport.

  16. Modelling of enhanced CSO treatment in secondary clarifiers with a modified Activated Sludge Model no. 3.

    Science.gov (United States)

    Ahnert, M; Günther, N; Kuehn, V; Krebs, P; Svardal, K; Spatzierer, G

    2008-01-01

    An alternative approach for combined water treatment as opposed to its CSO discharge into receiving water is its bypass to the inlet of secondary clarifiers (SC). To analyse the processes and to evaluate the performance of this approach, experiments and numerical modelling were carried out. In batch and pilot scale experiments major effects were identified and quantified. The Activated Sludge Model No. 3 (ASM3) was modified to simulate the batch and pilot scale experiments for implementation of the bypass-specific processes and thus to set up an overall balance of the relevant compounds. With some modifications of ASM3, good agreement of the modelling results with measurements of COD, nitrogen and phosphorus were achieved. (c) IWA Publishing 2008.

  17. Consumption of a Diet Rich in Cottonseed Oil (CSO Lowers Total and LDL Cholesterol in Normo-Cholesterolemic Subjects

    Directory of Open Access Journals (Sweden)

    Kathleen E. Davis

    2012-06-01

    Full Text Available Animal data indicates that dietary cottonseed oil (CSO may lower cholesterol; however, the effects of a CSO-rich diet have not been evaluated in humans. Thirty-eight healthy adults (aged 18–40; 12 males, 26 females consumed a CSO rich diet (95 g CSO daily for one week. Anthropometric measurements were obtained, and blood was drawn pre- and post-intervention. Serum lipids (total cholesterol (TC, high density lipoprotein (HDL, low density lipoprotein (LDL, triglyceride (TG, and free fatty acids (FFA were assayed. There was no change in weight or waist circumference among participants. There was no change in HDL (Pre: 1.27 ± 0.4 mmol/L; Post: 1.21 ± 0.3 mmol/L or TG (Pre: 0.91 ± 0.6 mmol/L; Post: 1.06 ± 1.0 mmol/L. Total cholesterol and LDL were reduced (TC Pre: 4.39 ± 0.9 mmol/L; Post: 4.16 ± 0.8 mmol/L; LDL Pre: 2.70 ± 0.8 mmol/L; Post: 2.47 ± 0.6 mmol/L. When data were grouped by sex, total cholesterol was reduced in female participants (Pre: 4.34 ± 0.9 mmol/L; Post: 4.09 ± 0.8 mmol/L. Consumption of a high fat, CSO-rich diet for one week reduced total cholesterol in female participants without reducing HDL.

  18. Surface modification of sapphire by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J.

    1998-11-01

    The range of microstructures and properties of sapphire (single crystalline Al{sub 2}O{sub 3}) that are produced by ion implantation are discussed with respect to the implantation parameters of ion species, fluence, irradiation temperature and the orientation of the ion beam relative to crystallographic axes. The microstructure of implanted sapphire may be crystalline with varying concentrations of defects or it may be amorphous perhaps with short-range order. At moderate to high fluences, implanted metallic ions often coalesce into pure metallic colloids and gas ions form bubbles. Many of the implanted microstructural features have been identified from studies using transmission electron microscopy (TEM), optical spectroscopy, Moessbauer spectroscopy, and Rutherford backscattering-channeling. The chemical, mechanical, and physical properties reflect the microstructures.

  19. The growth of sapphire single crystals

    Directory of Open Access Journals (Sweden)

    STEVAN DJURIC

    2001-06-01

    Full Text Available Sapphire (Al2O3 single crystals were grown by the Czochralski technique both in air and argon atmospheres. The conditions for growing sapphire single crystals were calculated by using a combination of Reynolds and Grashof numbers. Acritical crystal diameter dc = 20 mm and the critical rate of rotation wc = 20 rpm were calculated from the hydrodynamics of the melt. The value of the rate of crystal growth was experimentally found to be 3.5 mm/h. According to our previous experiments, it was confirmed that three hours exposures to conc. H3PO4 at 593 K was suitable for chemical polishing. Also, three hours exposure to conc.H3PO4 at 523 K was found to be a suitable etching solution. The lattice parameters a = 0.47573 nm and c = 1.29893 nm were determined by X-ray powder diffraction. The obtained results are discussed and compared with published data.

  20. DC-powered Fe3+:sapphire Maser and its Sensitivity to Ultraviolet Light

    CERN Document Server

    Oxborrow, Mark; Kersalé, Yann; Giordano, Vincent

    2010-01-01

    The zero-field Fe3+:sapphire whispering-gallery-mode maser oscillator exhibits several alluring features: Its output is many orders of magnitude brighter than that of an active hydrogen maser and thus far less degraded by spontaneous-emission (Schawlow-Townes) and/or receiving-amplifier noise. Its oscillator loop is confined to a piece of mono-crystalline rock bolted into a metal can. Its quiet amplification combined with high resonator Q provide the ingredients for exceptionally low phase noise. We here concentrate on novelties addressing the fundamental conundrums and technical challenges that impede progress. (1) Roasting: The "mase-ability" of sapphire depends significantly on the chemical conditions under which it is grown and heat-treated. We provide some fresh details and nuances here. (2) Simplification: This paper obviates the need for a Ka-band synthesizer: it describes how a 31.3 GHz loop oscillator, operating on the preferred WG pump mode, incorporating Pound locking, was built from low-cost compo...

  1. Pulse formation and characteristics of the cw mode-locked titanium-doped sapphire laser

    Science.gov (United States)

    Zschocke, Wolfgang; Stamm, Uwe; Heumann, Ernst; Ledig, Mario; Guenzel, Uwe; Kvapil, Jiri; Koselja, Michael P.; Kubelka, Jiri

    1991-10-01

    We report on measurements of transient and steady-state pulse characteristics of an acousto- optically mode-locked titanium-doped sapphire laser. During the pulse evolution, oscillations in the pulse width and pulse energy are found. A steady state is reached after about 40 to 60 microsecond(s) . The steady-state pulse width is strongly influenced by the mode-locking loss as well as the intracavity bandwidth. Shortest pulses of typically 15 ps are obtained. The experiment is compared with results of a simple computer simulation.

  2. Photonic detection and characterization of DNA using sapphire microspheres

    OpenAIRE

    Serpengüzel, Ali; Murib, Mohammed Sharif; Yeap, Weng-Siang; Martens, Daan; Bienstman, Peter; De Ceuninck, Ward; van Grinsven, Bart; Schoening, Michael J.; Michiels, Luc; Haenen, Ken; Ameloot, Marcel; Wagner, Patrick

    2014-01-01

    A microcavity-based deoxyribonucleic acid (DNA) optical biosensor is demonstrated for the first time using synthetic sapphire for the optical cavity. Transmitted and elastic scattering intensity at 1510 nm are analyzed from a sapphire microsphere (radius 500 mu m, refractive index 1.77) on an optical fiber half coupler. The 0.43 nm angular mode spacing of the resonances correlates well with the optical size of the sapphire sphere. Probe DNA consisting of a 36-mer fragment was covalently immob...

  3. Sapphire Multiple Filament and Large Plate Growth Processes

    Science.gov (United States)

    1972-10-01

    for sapphire filaments is scrap white verneuil -grown sapphire boules. These boules are processed here at Tyco to achieve the proper mesh size...entrapped liquid freeze, they shrink, resulting in voids. Raw material for our growth process is provided by use of scap verneuil sapphire boules. In...J ;~ ;t" ,, ,, .. ::~ ,:~~\\i : i .<’\\ :1 ’ r .,l,, .. ’ ... :,J_ ’ ’~~ .. ;~ 1-.. i d;·, AFML-TR -7---190 1;).-- SAPPHIRE MULTIPLE

  4. REINFORCEMENT OF NICKEL CHROMIUM ALLOYS WITH SAPPHIRE WHISKERS.

    Science.gov (United States)

    SAPPHIRE, COMPOSITE MATERIALS, CERAMIC FIBERS , CERAMIC FIBERS , TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, HYDRIDES, ADDITIVES, CHROMIUM ALLOYS, FIBER METALLURGY, IRON COMPOUNDS, ENCAPSULATION, DENSITY, SURFACE TENSION.

  5. Structure of the Dislocation in Sapphire

    DEFF Research Database (Denmark)

    Bilde-Sørensen, Jørgen; Thölen, A. R.; Gooch, D. J.;

    1976-01-01

    of ⅓ 01 0 and are separated by two identical faults. The distance between two partials is in the range 75-135 Å, corresponding to a fault energy of 320±60 mJ/m2. Perfect 01 0 dislocations have also been observed. These dislocations exhibited either one or two peaks when imaged in the (03 0) reflection......Experimental evidence of the existence of 01 0 dislocations in the {2 0} prism planes in sapphire has been obtained by transmission electron microscopy. By the weak-beam technique it has been shown that the 01 0 dislocations may dissociate into three partials. The partials all have a Burgers vector...

  6. Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.

  7. Characteristics of a Ti:sapphire laser pumped by a Nd:YAG laser and its analysis. Nd:YAG laser reiki Ti:sapphire laser no dosa tokusei to sono kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T.; Masumoto, J.; Mizunami, T.; Maeda, M.; Muraoka, K. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1991-06-29

    Although Ti: Sapphire expects of a possibility of being a light source much superior to a dye laser having been used as a wavelength variable laser for spectral analyses, it has a limitation that it does not oscillate directly in the visible and ultraviolet regions. In order to develop a light source that is synchronizable over ultraviolet-near infrared regions, by means of combining a Ti: Sapphire laser of a high peak power, comprising an oscillator and a multistage amplifier, with a non-linear frequency conversion method for harmonic generation and Raman conversion, a prototype Ti:Sapphire laser that is excited by YAG laser second harmonic, and that synchronizes with a prism was fabricated, and its operational characteristics were investigated. As a result, an output energy of 35.6 mJ at a maximum was obtained at a wavelength of 773 nm against an excitation energy of 129 mJ, a conversion efficiency of 38.2% was obtained against the absorption energy of the crystals, and a continuous synchronism was achieved over 750 to 900 nm. 4 refs., 9 figs., 1 tab.

  8. Rain Erosion Behavior of Silicon Dioxide Films Prepared on Sapphire

    Institute of Scientific and Technical Information of China (English)

    Liping FENG; Zhengtang LIU; Wenting LIU

    2005-01-01

    Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to in crease both transmission and rain erosion resistant performance of infrared domes of sapphire. Composition and structure of SiO2 films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD),respectively. The transmittance of uncoated and coated sapphire was measured using a Fourier transform infrared(FTIR) spectrometer. Rain erosion tests of the uncoated and coated sapphire were performed at 211 m/s impact velocity with an exposure time ranging from 1 to 8 min on a whirling arm rig. Results show that the deposited films can greatly increase the transmission of sapphire in mid-wave IR. After rain erosion test, decreases in normalized transmission were less than 1% for designed SiO2 films and the SiO2 coating was strongly bonded to the sapphire substrate. In addition, sapphires coated with SiO2 films had a higher transmittance than uncoated ones after rain erosion.

  9. Effect of Propellant Combustion on Sapphire

    Directory of Open Access Journals (Sweden)

    Mark L. Bundy

    2000-10-01

    Full Text Available Sapphire (Al2O3 is the window material of choice for laser beam transmission into the combustion chamber of laser-ignited guns. To evaluate the long-term effects of propellant combustion on an Al/sub 2/O/sub 3/ laser window, it is important to know the window temperature during firing. This paper presents temperature data on an Al/sub 2/O/sub 3/ sample located in the breech face of the gun where the laser window would be in a laser-ignited 155 mm(M199 cannon. Al/sub 2/O/sub 3/ sample is a substrate material of a commercially sold thin-film thermocouple, and is therefore thermally, if not optically, representative of an actual Al/sub 2/O/sub 3/ laser window.

  10. Ruby and sapphire from Jegdalek, Afghanistan

    Science.gov (United States)

    Bowersox, G.W.; Foord, E.E.; Laurs, B.M.; Shigley, J.E.; Smith, C.P.

    2000-01-01

    This study provides detailed mining and gemological information on the Jegdalek deposit, in east-central Afghanistan, which is hosted by elongate beds of corundum-bearing marble. Some facet-grade ruby has been recovered, but most of the material consists of semitransparent pink sapphire of cabochon or carving quality. The most common internal features are dense concentrations of healed and nonhealed fracture planes and lamellar twin planes. Color zoning is common, and calcite, apatite, zircon, mica, iron sulfide minerals, graphite, rutile, aluminum hydroxide, and other minerals are also present in some samples. Although the reserves appear to be large, future potential will depend on the establishment of a stable government and the introduction of modern mining and exploration techniques. ?? 2000 Gemological Institute of America.

  11. Synthesis of titanium sapphire by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Morpeth, L.D.; McCallum, J.C.; Nugent, K.W. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1998-06-01

    Since laser action was first demonstrated in titanium sapphire (Ti:Al{sub 2}O{sub 3}) in 1982, it has become the most widely used tunable solid state laser source. The development of a titanium sapphire laser in a waveguide geometry would yield an elegant, compact, versatile and highly tunable light source useful for applications in many areas including optical telecommunications. We are investigating whether ion implantation techniques can be utilised to produce suitable crystal quality and waveguide geometry for fabrication of a Ti:Al{sub 2}O{sub 3} waveguide laser. The implantation of Ti and O ions into c-axis oriented {alpha}-Al{sub 2}O{sub 3} followed by subsequent thermal annealing under various conditions has been investigated as a means of forming the waveguide and optimising the fraction of Ti ions that have the correct oxidation state required for laser operation. A Raman Microprobe is being used to investigate the photo-luminescence associated with Ti{sup 3+} ion. Initial photoluminescence measurements of ion implanted samples are encouraging and reveal a broad luminescence profile over a range of {approx} .6 to .9 {mu}m, similar to that expected from Ti{sup 3+}. Rutherford Backscattering and Ion Channelling analysis have been used to study the crystal structure of the samples following implantation and annealing. This enables optimisation of the implantation parameters and annealing conditions to minimise defect levels which would otherwise limit the ability of light to propagate in the Ti:Al{sub 2O}3 waveguide. (authors). 8 refs., 3 figs.

  12. Polishing Sapphire Substrates by 355 nm Ultraviolet Laser

    Directory of Open Access Journals (Sweden)

    X. Wei

    2012-01-01

    Full Text Available This paper tries to investigate a novel polishing technology with high efficiency and nice surface quality for sapphire crystal that has high hardness, wear resistance, and chemical stability. A Q-switched 355 nm ultraviolet laser with nanosecond pulses was set up and used to polish sapphire substrate in different conditions in this paper. Surface roughness Ra of polished sapphire was measured with surface profiler, and the surface topography was observed with scanning electronic microscope. The effects of processing parameters as laser energy, pulse repetition rate, scanning speed, incident angle, scanning patterns, and initial surface conditions on surface roughness were analyzed.

  13. A Point Source of a Different Color: Identifying a Gap in United States Regulatory Policy for “Green” CSO Treatment Using Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Zeno F. Levy

    2014-04-01

    Full Text Available Up to 850 billion gallons of untreated combined sewer overflow (CSO is discharged into waters of the United States each year. Recent changes in CSO management policy support green infrastructure (GI technologies as “front of the pipe” approaches to discharge mitigation by detention/reduction of urban stormwater runoff. Constructed wetlands for CSO treatment have been considered among suites of GI solutions. However, these wetlands differ fundamentally from other GI technologies in that they are “end of the pipe” treatment systems that discharge from a point source, and are therefore regulated in the U.S. under the National Pollution Discharge Elimination System (NPDES. We use a comparative regulatory analysis to examine the U.S. policy framework for CSO treatment wetlands. We find in all cases that permitting authorities have used best professional judgment to determine effluent limits and compliance monitoring requirements, referencing technology and water quality-based standards originally developed for traditional “grey” treatment systems. A qualitative comparison with Europe shows less stringent regulatory requirements, perhaps due to institutionalized design parameters. We recommend that permitting authorities develop technical guidance documents for evaluation of “green” CSO treatment systems that account for their unique operational concerns and benefits with respect to sustainable development.

  14. Buffer layers for high-Tc thin films on sapphire

    Science.gov (United States)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  15. Study on the Anisotropy of Meniscus in the Growing Sapphire

    Institute of Scientific and Technical Information of China (English)

    YAO Tai; ZUO Hong-bo; HAN Jie-cai; MENG Song-he; ZHANG Ming-fu; LI Chang-qing; Grigoryan Benik

    2006-01-01

    This study is aimed at predicting the relationship between the meniscus and the quality of the sapphire crystals produced by the micro-pulling and shoulder at cooled center (SAPMIC) technique. As with different orientations, the shapes of the meniscus vary, so an investigation into the anisotropy of the meniscus shapes is very important for the final quality of the sapphire crystal. An effective model to describe meniscus shapes and their formation process has been presented. The model has been applied to a sapphire crystal of 200 mm diameter in order to check its reliability. The results show that the model proves to be useful for forecasting the final shapes of the sapphire crystal made by the SAPMIC technique.

  16. Buffer layers for high-Tc thin films on sapphire

    Science.gov (United States)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  17. Nanostructured sapphire optical fiber for sensing in harsh environments

    Science.gov (United States)

    Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry

    2017-05-01

    We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.

  18. Neutron Transmission through Sapphire Crystals: Experiments and Simulations

    OpenAIRE

    Rantsiou, Emmanouela; Filges, Uwe; Panzner, Tobias; Klinkby, Esben Bryndt

    2013-01-01

    Sapphire crystals are excellent filters of fast neutrons, while at the same time exhibit moderate to very little absorption at smaller energies. We have performed an extensive series of measurements in order to quantify the above effect. Alongside our experiments, we have performed a series of simulations, in order to reproduce the transmission of cold neutrons through sapphire crystals. Thosesimulations were part of the effort of validating and improving the newly developed interface between...

  19. Investigation of sapphire detector designed for single particle detection

    Energy Technology Data Exchange (ETDEWEB)

    Karacheban, Olena; Hempel, Maria [DESY, Zeuthen (Germany); Brandenburg University of Technology, Cottbus (Germany); Afanaciev, Konstantin [NCPHEP, Minsk (Belarus); Henschel, Hans; Lange, Wolfgang; Leonard, Jessica [DESY, Zeuthen (Germany); Levy, Itamar [Tel Aviv University, Tel Aviv (Israel); Lohmann, Wolfgang [Brandenburg University of Technology, Cottbus (Germany); CERN, Geneva (Switzerland); Novgorodova, Olga [Technical University, Dresden (Germany); Schuwalow, Sergej [DESY, Hamburg (Germany)

    2015-07-01

    For beam halo and beam loss monitoring systems at accelerators extremely radiation hard sensors are needed. Single crystal sapphire is a promising material. Industrially grown sapphire wafers are available in large sizes, are low in cost and can be operated at room temperature. Currently sapphire sensors are used for a beam-loss monitor at FLASH,detecting bunches of particles crossing the sensors simultaneously. Here we present a multichannel detector designed for single minimum ionising particle detection using a stack of sapphire plates. The performance of the detector was studied in a 5 GeV electron beam at DESY-II. The detector was operated together with the EUDET beam telescope, which allowed the reconstruction of the position of the hits at the detector. For each sapphire plate the charge collection efficiency was measured as a function of the bias voltage and the signal size as a function of the hit position with respect to the metal electrodes. The data confirms that mainly electrons contribute to the signal. Based on these results the next generation sapphire detector will be designed.

  20. Potential for CSO treatment with horizontal flow constructed wetlands: influence of hydraulic load, plant presence and loading frequency.

    Science.gov (United States)

    Pisoeiro, J; Galvão, A; Ferreira, F; Matos, J

    2016-10-01

    This study aimed at analysing the performance of horizontal subsurface flow constructed wetlands (CWs) to treat combined sewer overflow (CSO). Four horizontal subsurface flow CWs, organized in two groups (A and B) each with a planted (Phragmites australis) and a non-planted bed, were loaded with simulated CSO, with group B receiving twice the hydraulic load of group A. Beds were monitored for pH, dissolved oxygen, conductivity, redox potential, chemical oxygen demand (COD), total suspended solids (TSS) and enterococci. Porosity variations were also estimated. Monitoring was conducted during spring and wintertime, with regular and irregular loading frequencies. Results showed an average treatment efficiency of 90-100 % for TSS, 60-90 % for COD and 2-6 log for enterococci. Removal rates were especially relevant in the first 24 h for COD and TSS. TSS and enterococci removal did not exhibit the influence of macrophytes or the applied hydraulic load while COD's removal efficiency was lower in the higher load group and in planted beds.

  1. GaN on sapphire mesa technology

    Energy Technology Data Exchange (ETDEWEB)

    Herfurth, Patrick; Men, Yakiv; Kohn, Erhard [Institute of Electron Devices and Circuits, Ulm University, Albert-Einstein Allee 45, 89081 Ulm (Germany); Roesch, Rudolph [Institute of Optoelectronics, Albert-Einstein Allee 45, 89081 Ulm (Germany); Carlin, Jean-Francois; Grandjean, Nicolas [Laboratory of Advanced Semiconductors for Photonics and Electronics, Ecole Polytechnique Federal de Lausanne, 1015 Lausanne (Switzerland)

    2012-03-15

    This contribution reports on a GaN on sapphire mesa technology for lattice matched InAlN/GaN HEMTs similar to a silicon on insulator technology. Ultrathin buffer layers between 500 nm and 100 nm have been deep mesa etched down to the substrate to avoid cross talk between devices through the buffer and provide full transparency outside the active device area (of special interest to biochemical sensor applications).The heterostructure characteristics were: N{sub S}> 1.6 x 10{sup 13} cm{sup -2}, R{sub sh}< 600 {omega}/{open_square}. 0.25 {mu}m gate length HEMT device characteristics are moderate, but essentially similar down to 200 nm buffer thickness. Devices on 100 nm buffer layer are still difficult to reproduce. I{sub on}/I{sub off} was up to 10{sup 9} and sub-threshold slopes down to 90 mV/dec (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability

    CERN Document Server

    Grop, S; Bazin, N; Kersale, Y; Rubiola, E; Langham, C; Oxborrow, M; Clapton, D; Walker, S; De Vicente, J; Giordano, V

    2009-01-01

    This article reports the design, the breadboarding and the validation of an ultra-stable Cryogenic Sapphire Oscillator operated in an autonomous cryocooler. The objective of this project was to demonstrate the feasibility of a frequency stability of 3x10-15 between 1 s and 1,000 s for the European Space Agency deep space stations. This represents the lowest fractional frequency instability ever achieved with cryocoolers. The preliminary results presented in this paper validate the design we adopted for the sapphire resonator, the cold source and the oscillator loop.

  3. ELISA: a cryocooled 10 GHz oscillator with 10(-15) frequency stability.

    Science.gov (United States)

    Grop, S; Bourgeois, P Y; Bazin, N; Kersalé, Y; Rubiola, E; Langham, C; Oxborrow, M; Clapton, D; Walker, S; De Vicente, J; Giordano, V

    2010-02-01

    This article reports the design, the breadboarding, and the validation of an ultrastable cryogenic sapphire oscillator operated in an autonomous cryocooler. The objective of this project was to demonstrate the feasibility of a frequency stability of 3x10(-15) between 1 and 1000 s for the European Space Agency deep space stations. This represents the lowest fractional frequency instability ever achieved with cryocoolers. The preliminary results presented in this paper validate the design we adopted for the sapphire resonator, the cold source, and the oscillator loop.

  4. A peek into the history of sapphire crystal growth

    Science.gov (United States)

    Harris, Daniel C.

    2003-09-01

    After the chemical compositions of sapphire and ruby were unraveled in the middle of the 19th century, chemists set out to grow artificial crystals of these valuable gemstones. In 1885 a dealer in Geneva began to sell ruby that is now believed to have been created by flame fusion. Gemnologists rapidly concluded that the stones were artificial, but the Geneva ruby stimulated A. V. L. Verneuil in Paris to develop a flame fusion process to produce higher quality ruby and sapphire. By 1900 there was brisk demand for ruby manufactured by Verneuil's method, even though Verneuil did not publicly announce his work until 1902 and did not publish details until 1904. The Verneuil process was used with little alteration for the next 50 years. From 1932-1953, S. K. Popov in the Soviet Union established a capability for manufacturing high quality sapphire by the Verneuil process. In the U.S., under government contract, Linde Air Products Co. implemented the Verneuil process for ruby and sapphire when European sources were cut off during World War II. These materials were essential to the war effort for jewel bearings in precision instruments. In the 1960s and 1970s, the Czochralski process was implemented by Linde and its successor, Union Carbide, to make higher crystal quality material for ruby lasers. Stimulated by a government contract for structural fibers in 1966, H. LaBelle invented edge-defined film-fed growth (EFG). The Saphikon company, which is currently owned by Saint-Gobain, evolved from this effort. Independently and simultaneously, Stepanov developed edge-defined film-fed growth in the Soviet Union. In 1967 F. Schmid and D. Viechnicki at the Army Materials Research Lab grew sapphire by the heat exchanger method (HEM). Schmid went on to establish Crystal Systems, Inc. around this technology. Rotem Industries, founded in Israel in 1969, perfected the growth of sapphire hemispheres and near-net-shape domes by gradient solidification. In the U.S., growth of near

  5. Evolution of the sapphire industry: Rubicon Technology and Gavish

    Science.gov (United States)

    Harris, Daniel C.

    2009-05-01

    A. Verneuil developed flame fusion to grow sapphire and ruby on a commercial scale around 1890. Flame fusion was further perfected by Popov in the Soviet Union in the 1930s and by Linde Air Products Co. in the U.S. during World War II. Union Carbide Corp., the successor to Linde, developed Czochralski crystal growth for sapphire laser materials in the 1960s. Stepanov in the Soviet Union published his sapphire growth method in 1959. Edge-Defined Film-Fed Growth (EFG), which is similar to the Stepanov method, was developed by H. Labelle in the U. S. in the 1960s and 1970s. The Heat Exchanger Method (HEM), invented by F. Schmid and D. Viechnicki in 1967 was commercialized in the 1970s. Gradient solidification was invented in Israel in the 1970s by J. Makovsky. The Horizontal Directional Solidification Method (HDSM) proposed by Kh. S. Bagdasorov in the Soviet Union in the 1960s was further developed at the Institute for Single Crystals in Ukraine. Kyropoulos growth of sapphire, known as GOI crystal growth in the Soviet Union, was developed by M. Musatov at the State Optical Institute in St. Petersburg in the 1970s and 1980s. At the Institute for Single Crystals in Ukraine, E. Dobrovinskaya characterized Verneuil, Czochralsky, Bagdasarov, and GOI sapphire. In 1995, she emigrated to the United States and joined S&R Rubicon, founded near Chicago by R. Mogilevsky initially to import sapphire and ruby. Mogilevsky began producing sapphire by the Kyropoulos method in 1999. In 2000 the company name was changed to Rubicon Technology. Today, Dobrovinskaya is Chief Scientist and Rubicon produces high quality Kyropoulos sapphire substrates for solid-state lighting. In 1995, H. Branover of Ben Gurion University and a sole investor founded Gavish, which is Hebrew for "crystal." They invited another veteran of the Ukrainian Institute for Single Crystals, V. Pishchik, to become Chief Scientist. Under Pishchik's technical leadership and J. Sragowicz's business leadership, Gavish now

  6. Scaling STI's sapphire cryocooler for applications requiring higher heat loads

    Science.gov (United States)

    Karandikar, Abhijit; Fiedler, Andreas

    2012-06-01

    Superconductor Technologies Inc. (STI) developed the Sapphire cryocooler specifically for the SuperLink® product; a high performance superconducting Radio Frequency (RF) front-end receiver used by wireless carriers such as Verizon Wireless and AT&T to improve network cell coverage and data speeds. STI has built and deployed over 6,000 systems operating 24 hours a day (24/7), 7 days a week in the field since 1999. Sapphire is an integrated free piston Stirling cycle cryocooler with a cooling capacity of 5 Watts at 77 Kelvin (K) with less than 100 Watts (W) input power. It has a field-proven Mean Time Between Failure (MTBF) of well over 1 million hours, requires zero maintenance and has logged over 250 million cumulative runtime hours. The Sapphire cooler is built on a scalable technology platform, enabling the design of machines with cooling capacities greater than 1 kilowatt (kW). This scalable platform also extends the same outstanding attributes as the Sapphire cooler, namely high reliability, zero maintenance, and compact size - all at a competitive cost. This paper will discuss emerging applications requiring higher heat loads and these attributes, describe Sapphire, and show a preliminary concept of a scaled machine with a 100 W cooling capacity.

  7. Clinical Application of the Sapphire Unfolder Lens Injection System

    Institute of Scientific and Technical Information of China (English)

    Weiai Guo; Danying Zheng; Zhenyu Li; Yiyong Qian; Zhenping Zhang

    2002-01-01

    Purpose: To summarize the clinical experience of 300 cases using the Sapphire unfloder intraocular lens (IOL) injection system.Methods: After the standard phacoemulsification, an AR40e IOL was implanted using the Sapphire Unfolder. The involved problems during and after the operation were observed and analyzed.Results:The complications occurred during the operation including the crack at the haptic-optic junction in 2 cases, slight kink in the haptic in 5 cases, IOL clamp into the cartridge in 2 cases, posterior capsular rupture in 2 cases and endothelium damage in the central small area in 4 cases. All the patients recovered successfully with IOLs in good position.Conclusion: IOL implantation with the Sapphire Unfolder led to no serious complications and got the satisfactory results.

  8. Blocks and residual stresses in shaped sapphire single crystals

    Science.gov (United States)

    Krymov, V. M.; Nosov, Yu. G.; Bakholdin, S. I.; Maslov, V. N.; Shul‧pina, I. L.; Nikolaev, V. I.

    2017-01-01

    The formation of blocks and residual stresses in shaped sapphire crystals grown from the melt by the Stepanov method (EFG) has been studied. The probability of block formation is higher for the growth along the c axis compared to that grown in the a-axis direction. The distribution of residual stress in sapphire crystals of tubular, rectangular and round cross section was measured by the conoscopy method. It was found that the magnitude of the residual stress increases from the center to the periphery of the crystal and reaches up to about 20 MPa. Residual stress tensor components for solid round rod and tubular single crystals were determined by numerical integration.

  9. Inversion domains in AlN grown on (0001) sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, J.; Liliental-Weber, Z.; Paduano, Q.S.; Weyburne, D.W.

    2003-08-25

    Al-polarity inversion domains formed during AlN layer growth on (0001) sapphire were identified using transmission electron microscopy (TEM). They resemble columnar inversion domains reported for GaN films grown on (0001) sapphire. However, for AlN, these columns have a V-like shape with boundaries that deviate by 2 {+-} 0.5{sup o} from the c-axis. TEM identification of these defects agrees with the post-growth surface morphology as well as with the microstructure revealed by etching in hot aqueous KOH.

  10. Sea level characterization of a 1100 g sapphire bolometer

    CERN Document Server

    Pécourt, S; Bobin, C; Coron, N; Jesus, M D; Hadjout, J P; Leblanc, J W; Marcillac, P D

    1999-01-01

    A first characterization of a 1100 g sapphire bolometer, performed at sea level and at a working temperature of 40 mK, is presented. Despite perturbations coming from the high-radioactive background and cosmic rays, calibration spectra could be achieved with an internal alpha source and a sup 5 sup 7 Co gamma-ray source: the experimental threshold is 25 keV, while the FWHM resolution is 17.4 keV for the 122 keV peak. Possible heat release effects are discussed, and a new limit of 9x10 sup - sup 1 sup 4 W/g is obtained for sapphire.

  11. Nonlinear optical characterization of GaN layers grown by MOCVD on sapphire[Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tiginyanu, I.M.; Kravetsky, I.V.; Pavlidis, D.; Eisenbach, A.; Hildebrandt, R.; Marowsky, G.; Hartnagel, H.L.

    2000-07-01

    Optical second and third harmonic generation measurements were carried out on GaN layers grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The measured d{sub 33} is 33 times the d{sub 11} of quartz. The angular dependence of second-harmonic intensity as well as the measured ratios d{sub 33}/d{sub 15} = {minus}2.02 and d{sub 33}/d{sub 31} = {minus}2.03 confirm the wurzite structure of the studied GaN layers with the optical c-axis oriented perpendicular to the sample surface. Fine oscillations were observed in the measured second and third harmonic angular dependencies. A simple model based on the interference of the fundamental beam in the sample was used to explain these oscillations.

  12. Neurodynamic oscillators

    Science.gov (United States)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  13. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire. II. Electron energy loss spectroscopic study

    Directory of Open Access Journals (Sweden)

    Sung Bo Lee

    2015-07-01

    Full Text Available In Part I, we have shown that the addition of Si into sapphire by ion implantationmakes the sapphire substrate elastically softer than for the undoped sapphire. The more compliant layer of the Si-implanted sapphire substrate can absorb the misfit stress at the GaN/sapphire interface, which produces a lower threading-dislocation density in the GaN overlayer. Here in Part II, based on experimental results by electron energy loss spectroscopy and a first-principle molecular orbital calculation in the literature, we suggest that the softening effect of Si results from a reduction of ionic bonding strength in sapphire (α-Al2O3 with the substitution of Si for Al.

  14. Structure of shaped sapphire grown from multicapillary dies

    Science.gov (United States)

    Dobrovinskaya, E. R.; Litvinov, L. A.; Pischik, V. V.

    1990-07-01

    Peculiarities in grain structure development have been studied in sapphire crystals grown with multicapillary channels in the die to feed melt to the crystallization zone. A new mechanism of grain boundary formation based on gas-bubble collapse at the crystal-melt interface is proposed.

  15. Single-transverse-mode Ti:sapphire rib waveguide laser

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, M.

    2005-01-01

    Laser operation of Ti:sapphire rib waveguides fabricated using photolithography and ion beam etching in pulsed laser deposited layers is reported. Polarized laser emission was observed at 792.5 nm with an absorbed pump power threshold of 265 mW, which is more than a factor of 2 lower in comparison t

  16. Neurosurgery contact handheld probe based on sapphire shaped crystal

    Science.gov (United States)

    Shikunova, I. A.; Stryukov, D. O.; Rossolenko, S. N.; Kiselev, A. M.; Kurlov, V. N.

    2017-01-01

    A handheld contact probe based on sapphire shaped crystal is developed for intraoperative spectrally-resolved optical diagnostics, laser coagulation and aspiration of malignant brain tissue. The technology was integrated into the neurosurgical workflow for intraoperative real-time identification and removing of invasive brain cancer.

  17. Meixner oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Atakishiyev, N.M. [Instituto de Matematicas. Universidad Nacional Autonoma de Mexico. Cuernavaca, Morelos (Mexico); Jafarov, E.I.; Nagiyev, S.M. [Institute of Physics, Azerbaijan Academy of Sciences. Baku, Azerbaijan (Azerbaijan); Wolf, K.B. [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas. Universidad Nacional Autonoma de Mexico. Cuernavaca, Morelos (Mexico)

    1998-10-01

    Meixner oscillators have a ground state and an energy spectrum that is equally spaced; they are a two-parameter family of models that satisfy a Hamiltonian equation with a difference operator. Meixner oscillators include as limits and particular cases the Charlier, Kravchuk and Hermite (common quantum-mechanical) harmonic oscillators. By the Sommerfeld-Watson transformation they are also related with a relativistic model of the linear harmonic oscillator, built in terms of the Meixner-Pollaczek polynomials, and their continuous weight function. We construct explicitly the corresponding coherent states with the dynamical symmetry group Sp(2,R). The reproducing kernel for the wavefunctions of these models is also found. (Author)

  18. Temperature-modulated annealing of c-plane sapphire for long-range-ordered atomic steps

    Science.gov (United States)

    Yatsui, Takashi; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao; Yoshimoto, Mamoru

    2016-03-01

    High-quality single-crystalline sapphire is used to prepare various semiconductors because of its thermal stability. Here, we applied the tempering technique, which is well known in the production of chocolate, to prepare a sapphire substrate. Surprisingly, we successfully realised millimetre-range ordering of the atomic step of the sapphire substrate. We also obtained a sapphire atomic step with nanometre-scale uniformity in the terrace width and atomic-step height. Such sapphire substrates will find applications in the preparation of various semiconductors and devices.

  19. Integrated Optical Pumping of Cr & Ti-Doped Sapphire Substrates With III-V Nitride Materials

    Science.gov (United States)

    2005-08-24

    the Cr in sapphire could also permit the construction of white light LEDs . Ultimately, an integrated III-V Nitride optical pump for Ti:Sapphire could...substrates by MOCVD. 2. Characterization of doped sapphire/ InGaN structures byPL to simulate electrical injection by laser or LED device structures Part 2 1...Cr:sapphire substrate. Solid line is the spectrum of blue and red light emitted by InGaN LED epitaxially grown on Cr:sapphire substrate. The light was collected

  20. THE IMPORTANCE OF THE MAGNETIC FIELD FROM AN SMA-CSO-COMBINED SAMPLE OF STAR-FORMING REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Patrick M.; Tang, Ya-Wen; Ho, Paul T. P.; Chen, Huei-Ru Vivien; Liu, Hau-Yu Baobab; Yen, Hsi-Wei; Lai, Shih-Ping [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Zhang, Qizhou; Chen, How-Huan; Ching, Tao-Chung [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Girart, Josep M. [Institut de Ciències de l' Espai, CSIC-IEEC, Campus UAB, Facultat de Ciències, C5p 2, 08193 Bellaterra, Catalonia (Spain); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong (Hong Kong); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Padovani, Marco [Laboratoire Univers et Particules de Montpellier, UMR 5299 du CNRS, Université de Montpellier II, place E. Bataillon, cc072, F-34095 Montpellier (France); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjiing 210093 (China); Rao, Ramprasad, E-mail: pmkoch@asiaa.sinica.edu.tw [Academia Sinica, Institute of Astronomy and Astrophysics, 645 N. Aohoku Place, Hilo, HI 96720 (United States)

    2014-12-20

    Submillimeter dust polarization measurements of a sample of 50 star-forming regions, observed with the Submillimeter Array (SMA) and the Caltech Submillimeter Observatory (CSO) covering parsec-scale clouds to milliparsec-scale cores, are analyzed in order to quantify the magnetic field importance. The magnetic field misalignment δ—the local angle between magnetic field and dust emission gradient—is found to be a prime observable, revealing distinct distributions for sources where the magnetic field is preferentially aligned with or perpendicular to the source minor axis. Source-averaged misalignment angles (|δ|) fall into systematically different ranges, reflecting the different source-magnetic field configurations. Possible bimodal (|δ|) distributions are found for the separate SMA and CSO samples. Combining both samples broadens the distribution with a wide maximum peak at small (|δ|) values. Assuming the 50 sources to be representative, the prevailing source-magnetic field configuration is one that statistically prefers small magnetic field misalignments |δ|. When interpreting |δ| together with a magnetohydrodynamics force equation, as developed in the framework of the polarization-intensity gradient method, a sample-based log-linear scaling fits the magnetic field tension-to-gravity force ratio (Σ {sub B}) versus (|δ|) with (Σ {sub B}) = 0.116 · exp (0.047 · (|δ|)) ± 0.20 (mean error), providing a way to estimate the relative importance of the magnetic field, only based on measurable field misalignments |δ|. The force ratio Σ {sub B} discriminates systems that are collapsible on average ((Σ {sub B}) < 1) from other molecular clouds where the magnetic field still provides enough resistance against gravitational collapse ((Σ {sub B}) > 1). The sample-wide trend shows a transition around (|δ|) ≈ 45°. Defining an effective gravitational force ∼1 – (Σ {sub B}), the average magnetic-field-reduced star formation efficiency is at least a

  1. Oscillate Boiling

    CERN Document Server

    Li, Fenfang; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2016-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about $10\\,\\mu$m in diameter onto a 165\\,nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatably at several $100\\,$kHz. The microbubble's oscillations are accompanied with bubble pinch-off leading to a stream of gaseous bubbles into the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by the non-spherical collapses and by surface pinning. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may allow to overcome the heat transfer thresholds observed dur...

  2. Multi-Frequency Optical-Depth Maps and the Case for Free-Free Absorption in Two Compact Symmetric Radio Sources: the CSO candidate J1324+4048 and the CSO J0029+3457

    CERN Document Server

    Marr, Jonathan M; Read, James; Taylor, Gregory B; Morris, Aaron O

    2013-01-01

    We obtained dual-polarization VLBI observations at six frequencies of the compact symmetric object J0029+3457 and the CSO candidate J1324+4048. By comparing the three lower-frequency maps with extrapolations of the high frequency maps we produced maps of the optical depth as a function of frequency. The morphology of the optical-depth maps of J1324+4048 is strikingly smooth, suggestive of a foreground screen of absorbing gas. The spectra at the intensity peaks fit a simple free-free absorption model, with a reduced chi square ~ 2, better than a simple synchrotron self-absorption model, in which the reduced chi square ~ 3.5 - 5.5. We conclude that the case for free-free absorption in J1324+4048 is strong. The optical-depth maps of J0029+3457 exhibit structure, but the morphology does not correlate with that in the intensity maps. The fit of the spectra at the peaks to a simple free-free absorption model yields a reduced chi square ~ 1, but since the turnover is gradual the fit is relatively insensitive to the ...

  3. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Wang, Anbo [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Yu, Zhihao [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States)

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier

  4. Cold Atom Clocks, Precision Oscillators and Fundamental Tests

    CERN Document Server

    Bize, S; Abgrall, M; Cacciapuoti, L; Clairon, A; Gruenert, J; Laurent, P; Lemonde, P; Maksimovic, I; Mandache, C; Marion, H; Dos Santos, F P; Rosenbusch, P; Santarelli, G; Sortais, Y; Vian, C; Zhang, S; Salomon, C; Luiten, A N; Tobar, M E; Laurent, Ph.

    2003-01-01

    We describe two experimental tests of the Equivalence Principle that are based on frequency measurements between precision oscillators and/or highly accurate atomic frequency standards. Based on comparisons between the hyperfine frequencies of 87Rb and 133Cs in atomic fountains, the first experiment constrains the stability of fundamental constants. The second experiment is based on a comparison between a cryogenic sapphire oscillator and a hydrogen maser. It tests Local Lorentz Invariance. In both cases, we report recent results which improve significantly over previous experiments.

  5. Impact of urban WWTP and CSO fluxes on river peak flow extremes under current and future climate conditions.

    Science.gov (United States)

    Keupers, Ingrid; Willems, Patrick

    2013-01-01

    The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (-14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.

  6. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus.

    Science.gov (United States)

    Luebke, Justin L; Shen, Jiangchuan; Bruce, Kevin E; Kehl-Fie, Thomas E; Peng, Hui; Skaar, Eric P; Giedroc, David P

    2014-12-01

    How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR [Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor] represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high-resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60' interprotomer cross-links, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR.

  7. Ti:sapphire laser with long-pulse lamp pumping

    Science.gov (United States)

    Koselja, Michael P.; Kubelka, Jiri; Kvapil, Jiri

    1992-06-01

    Lamp pumping of Ti:Sapphire has some advantages over laser pumping and represents some interest due to possible applications. The paper will present laser behavior of Ti:Sapphire under very long lamp pulse pumping. Pulse lamp duration (FWHM) was more than 100 times greater than the lifetime of Ti3+. Output energy with no tuning element was achieved greater than 1.5 J with 0.12% electrical-to-optical efficiency. Dimensions of the rod used was 7 mm in diameter and 148 mm in length. The doping level of Ti3+ was 0.09% Ti2O3 in the rod. Tuning characteristics with different tuning elements are also presented. Further development to obtain CW lamp pumping operation will be discussed.

  8. A GRASP for Next Generation Sapphire Image Acquisition Scheduling

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2016-01-01

    Full Text Available This paper investigates an image acquisition scheduling problem for a Canadian surveillance-of-space satellite named Sapphire that takes images of deep space Earth-orbiting objects. For a set of resident space objects (RSOs that needs to be imaged within the time horizon of one day, the Sapphire image acquisition scheduling (SIAS problem is to find a schedule that maximizes the “Figure of Merit” of all the scheduled RSO images. To address the problem, we propose an effective GRASP heuristic that alternates between a randomized greedy constructive procedure and a local search procedure. Experimental comparisons with the currently used greedy algorithm are presented to demonstrate the merit of the proposed algorithm in handling the SIAS problem.

  9. AlN growth on sapphire substrate by ammonia MBE

    Science.gov (United States)

    Mansurov, V. G.; Nikitin, A. Yu.; Galitsyn, Yu. G.; Svitasheva, S. N.; Zhuravlev, K. S.; Osvath, Z.; Dobos, L.; Horvath, Z. E.; Pecz, B.

    2007-03-01

    Kinetics of (0 0 0 1) Al 2O 3 surface nitridation and subsequent growth of AlN films on the sapphire substrate by ammonia molecular beam epitaxy (MBE) are investigated. Surface morphology evolution during AlN growth is studied in situ by reflection high energy electron diffraction and ex situ by atomic force microscopy. It is found that the surfaces of AlN layers thicker than 100 nm have two major features: a quite smooth background and noticeable amount of hillocks. The influence of growth conditions on the AlN surface morphology is studied in order to find a way for reducing of the hillocks density. A modification of nitridated sapphire surface by small amount of Al (1-2 monolayers) with subsequent treatment of the surface under ammonia flux is proposed. An improvement of AlN surface morphology of the layers grown on the modified surfaces is demonstrated.

  10. Measurements of prompt radiation induced conductivity of alumina and sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, E. Frederick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zarick, Thomas Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sheridan, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preston, Eric F. [ITT Coporation, Colorado Springs, CO (United States)

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  11. Color Enhancement by Diffusion of Beryllium in Dark Blue Sapphire

    Institute of Scientific and Technical Information of China (English)

    Kyungj in Kim; Yongkil Ahn

    2016-01-01

    Diffusion of beryllium was performed on dark blue sapphire from China and Australia.The samples were heated with beryllium as a dopant in a furnace at 1 600 ℃ for 42 h in air.After beryllium diffusion,sam-ples were analyzed by UV-Vis,FTIR,and WD-XRF spectroscopy.After heat-treatment with Be as a catalyst, the irons of the ferrous state were changed to the ferric state.Therefore,reaction of Fe2+/Ti4+ IVCT was de-creased.The absorption peaks at 3 309 cm-1 attributed to OH radical were disappeared completely due to carry out heat treatment.Consequently,the intensity of absorption band was decreased in the visible region.Espe-cially,decreased absorption band in the vicinity of 570 nm was responsible for the lighter blue color.There-fore,we confirmed that the dark blue sapphires from China and Australia were changed to vivid blue.

  12. Ordered gold nanostructures on sapphire surfaces: Fabrication and optical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Konovko, A. A. [Moscow State University (Russian Federation); Smirnov, I. S. [Moscow State University of Electronics and Mathematics (Russian Federation); Roshchin, B. S.; Volkov, Yu. O. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Angelutz, A. A.; Andreev, A. V.; Shkurinov, A. P. [Moscow State University (Russian Federation); Kanevskii, V. M.; Asadchikov, V. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-05-15

    The possibilities of obtaining ordered gold nanoarrays on sapphire surfaces with oriented nanorelief are demonstrated. The structures are morphologically described using atomic force microscopy data. A study of the angular dependence of the reflectivity in the visible range of electromagnetic waves has revealed some features which are likely to indicate surface plasmon-polariton excitation at the air-gold interface under exposure to p-polarized radiation. The experimental results are found to be in good agreement with the theoretical calculations.

  13. Route to 100 TW Ti: Sapphire laser at repetitive mode

    Directory of Open Access Journals (Sweden)

    Teng Hao

    2013-11-01

    Full Text Available We demonstrated a 100 TW-class femtosecond Ti: sapphire laser running at repetition rate of 0.1 Hz by adding a stage amplifier in the 20 TW/10 Hz laser facility (XL-II. Pumping the new stage amplifier with the 25 J green Nd:glass laser, we successfully upgraded the laser energy to 3.4 J with duration of 29 fs, corresponding to a peak power of 117 TW.

  14. SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    A. Wang; G. Pickrell; R. May

    2002-09-10

    Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire

  15. Oscillation death in coupled oscillators

    Institute of Scientific and Technical Information of China (English)

    Wei ZOU; Xin-gang WANG; Qi ZHAO; Meng ZHAN

    2009-01-01

    We study dynamical behaviors in coupled nonlinear oscillators and find that under certain condi- tions, a whole coupled oscillator system can cease oscil- lation and transfer to a globally nonuniform stationary state [I.e., the so-called oscillation death (OD) state], and this phenomenon can be generally observed. This OD state depends on coupling strengths and is clearly differ- ent from previously studied amplitude death (AD) state, which refers to the phenomenon where the whole system is trapped into homogeneously steady state of a fixed point, which already exists but is unstable in the ab- sence of coupling. For larger systems, very rich pattern structures of global death states are observed. These Turing-like patterns may share some essential features with the classical Turing pattern.

  16. Leveraging Python Interoperability Tools to Improve Sapphire's Usability

    Energy Technology Data Exchange (ETDEWEB)

    Gezahegne, A; Love, N S

    2007-12-10

    The Sapphire project at the Center for Applied Scientific Computing (CASC) develops and applies an extensive set of data mining algorithms for the analysis of large data sets. Sapphire's algorithms are currently available as a set of C++ libraries. However many users prefer higher level scripting languages such as Python for their ease of use and flexibility. In this report, we evaluate four interoperability tools for the purpose of wrapping Sapphire's core functionality with Python. Exposing Sapphire's functionality through a Python interface would increase its usability and connect its algorithms to existing Python tools.

  17. Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires

    Science.gov (United States)

    Peucat, J. J.; Ruffault, P.; Fritsch, E.; Bouhnik-Le Coz, M.; Simonet, C.; Lasnier, B.

    2007-10-01

    Using ICP-MS-LA analyses, we demonstrate that the use of the Ga/Mg ratio, in conjunction with the Fe concentration, is an efficient tool in discriminating between "metamorphic" and "magmatic" blue sapphires. Magmatic blue sapphires found in alkali basalts (e.g. southeastern Asia, China, Africa) are commonly medium-rich to rich in Fe (with average contents between 2000 and 11000 ppm), high in Ga (> 140 ppm), and low in Mg (generally 10). Conversely, metamorphic blue sapphires found in basalts (e.g. Pailin pastel) and in metamorphic terrains (e.g. Mogok, Sri Lanka, Ilakaka) are characterized by low average iron contents ( 60 ppm) with low average Ga/Mg ratios (< 10). Basaltic magmatic sapphires have Fe, Ga and Mg contents similar to those obtained for primary magmatic sapphires found in the Garba Tula syenite. This suggests that these both sets of sapphires have a possible common "syenitic" origin, as previously proposed from other criteria. In addition, plumasite-related sapphires and metamorphic sapphires also exhibit similar composition in trace elements. Based on results from the present study, we suggest that fluid circulations during a metamorphic stage produced metasomatic exchanges between mafic and acidic rocks (plumasite model), thus explaining the high Mg contents and converging Ga/Mg ratios observed in metamorphic sapphires.

  18. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire.

    Science.gov (United States)

    Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk

    2016-05-11

    Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.

  19. Neutrino Oscillations

    Directory of Open Access Journals (Sweden)

    G. Bellini

    2014-01-01

    Full Text Available In the last decades, a very important breakthrough has been brought about in the elementary particle physics by the discovery of the phenomenon of the neutrino oscillations, which has shown neutrino properties beyond the Standard Model. But a full understanding of the various aspects of the neutrino oscillations is far to be achieved. In this paper the theoretical background of the neutrino oscillation phenomenon is described, referring in particular to the paradigmatic models. Then the various techniques and detectors which studied neutrinos from different sources are discussed, starting from the pioneering ones up to the detectors still in operation and to those in preparation. The physics results are finally presented adopting the same research path which has been crossed by this long saga. The problems not yet fixed in this field are discussed, together with the perspectives of their solutions in the near future.

  20. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  1. Antiperiodic oscillations

    Science.gov (United States)

    Freire, Joana G.; Cabeza, Cecilia; Marti, Arturo; Pöschel, Thorsten; Gallas, Jason A. C.

    2013-06-01

    The investigation of regular and irregular patterns in nonlinear oscillators is an outstanding problem in physics and in all natural sciences. In general, regularity is understood as tantamount to periodicity. However, there is now a flurry of works proving the existence of ``antiperiodicity'', an unfamiliar type of regularity. Here we report the experimental observation and numerical corroboration of antiperiodic oscillations. In contrast to the isolated solutions presently known, we report infinite hierarchies of antiperiodic waveforms that can be tuned continuously and that form wide spiral-shaped stability phases in the control parameter plane. The waveform complexity increases towards the focal point common to all spirals, a key hub interconnecting them all.

  2. Detection of beryllium treatment of natural sapphires by NRA

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, P.C., E-mail: carolina.gutierrez@uam.e [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Ynsa, M.-D.; Climent-Font, A. [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Dpto. Fisica Aplicada C-12, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Calligaro, T. [Centre de Recherche et de Restauration des musees de France C2RMF, CNRS-UMR171, 14 quai Francois Mitterrand, 75001 Paris (France)

    2010-06-15

    Since the 1990's, artificial treatment of natural sapphires (Al{sub 2}O{sub 3} crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of {mu}g/g of beryllium in Al{sub 2}O{sub 3} crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-{mu}m diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction {sup 9}Be({alpha}, n{gamma}){sup 12}C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt {gamma}-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt {gamma}-ray produced during irradiation by the aluminium of the sapphire matrix through the {sup 27}Al({alpha}, p{gamma}){sup 30}Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required {mu}g/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 {mu}C, beryllium concentrations from 5 to 16 {mu}g/g have been measured in the samples, with a detection limit of 1 {mu}g/g.

  3. Detection of beryllium treatment of natural sapphires by NRA

    Science.gov (United States)

    Gutiérrez, P. C.; Ynsa, M.-D.; Climent-Font, A.; Calligaro, T.

    2010-06-01

    Since the 1990's, artificial treatment of natural sapphires (Al 2O 3 crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of μg/g of beryllium in Al 2O 3 crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-μm diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction 9Be(α, nγ) 12C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt γ-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt γ-ray produced during irradiation by the aluminium of the sapphire matrix through the 27Al(α, pγ) 30Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required μg/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 μC, beryllium concentrations from 5 to 16 μg/g have been measured in the samples, with a detection limit of 1 μg/g.

  4. Thermal Control of a Dual Mode Parametric Sapphire Transducer

    CERN Document Server

    Belfi, Jacopo; De Michele, Andrea; Gabbriellini, Gianluca; Mango, Francesco; Passaquieti, Roberto

    2010-01-01

    We propose a method to control the thermal stability of a sapphire dielectric transducer made with two dielectric disks separated by a thin gap and resonating in the whispering gallery (WG) modes of the electromagnetic field. The simultaneous measurement of the frequencies of both a WGH mode and a WGE mode allows one to discriminate the frequency shifts due to gap variations from those due to temperature instability. A simple model, valid in quasi equilibrium conditions, describes the frequency shift of the two modes in terms of four tuning parameters. A procedure for the direct measurement of them is presented.

  5. Ultrafast, ultrahigh-peak power Ti:sapphire laser system

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, Koichi; Aoyama, Makoto; Matsuoka, Shinichi; Akahane, Yutaka; Kase, Teiji; Nakano, Fumihiko; Sagisaka, Akito [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan)

    2001-01-01

    We review progress in the generation of multiterawatt optical pulses in the 10-fs range. We describe a design, performance and characterization of a Ti:sapphire laser system based on chirped-pulse amplification, which has produced a peak power in excess of 100-TW with sub-20-fs pulse durations and an average power of 19-W at a 10-Hz repetition rate. We also discuss extension of this system to the petawatt power level and potential applications in the relativistic, ultrahigh intensity regimes. (author)

  6. Lattice-Matched Semiconductor Layers on Single Crystalline Sapphire Substrate

    Science.gov (United States)

    Choi, Sang; King, Glen; Park, Yeonjoon

    2009-01-01

    SiGe is an important semiconductor alloy for high-speed field effect transistors (FETs), high-temperature thermoelectric devices, photovoltaic solar cells, and photon detectors. The growth of SiGe layer is difficult because SiGe alloys have different lattice constants from those of the common Si wafers, which leads to a high density of defects, including dislocations, micro-twins, cracks, and delaminations. This innovation utilizes newly developed rhombohedral epitaxy of cubic semiconductors on trigonal substrates in order to solve the lattice mismatch problem of SiGe by using trigonal single crystals like sapphire (Al2O3) as substrate to give a unique growth-orientation to the SiGe layer, which is automatically controlled at the interface upon sapphire (0001). This technology is different from previous silicon on insulator (SOI) or SGOI (SiGe on insulator) technologies that use amorphous SiO2 as the growth plane. A cubic semiconductor crystal is a special case of a rhombohedron with the inter-planar angle, alpha = 90 deg. With a mathematical transformation, all rhombohedrons can be described by trigonal crystal lattice structures. Therefore, all cubic lattice constants and crystal planes (hkl) s can be transformed into those of trigonal crystal parameters. These unique alignments enable a new opportunity of perfect lattice matching conditions, which can eliminate misfit dislocations. Previously, these atomic alignments were thought to be impossible or very difficult. With the invention of a new x-ray diffraction measurement method here, growth of cubic semiconductors on trigonal crystals became possible. This epitaxy and lattice-matching condition can be applied not only to SiGe (111)/sapphire (0001) substrate relations, but also to other crystal structures and other materials, including similar crystal structures which have pointgroup rotational symmetries by 120 because the cubic (111) direction has 120 rotational symmetry. The use of slightly miscut (less than

  7. Flashlamp pumped Ti-sapphire laser for ytterbium glass chirped pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akihiko; Ohzu, Akira; Sugiyama, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-03-01

    A flashlamp pumped Ti:sapphire laser is designed for ytterbium glass chirped pulse amplification. A high quality Ti:sapphire rod and a high energy long pulse discharging power supply are key components. The primary step is to produce the output power of 10 J per pulse at 920 nm. (author)

  8. Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide

    NARCIS (Netherlands)

    Crunteanu, A.; Jänchen, G.; Salathé, R.P.; Hoffmann, P.; Pollnau, M.; Eason, R.W.; Shepherd, D.P.

    2002-01-01

    We were successful in creating 1.4-µm high ribs in a Ti:sapphire planar waveguide by reactive ion etching. Optical investigations of the obtained structure showed channel-waveguide fluorescence emission of the Ti:sapphire layer after Ar-ion excitation.

  9. Fiber-laser-pumped Ti:sapphire laser

    CERN Document Server

    Samanta, G K; Devi, Kavita; Ebrahim-Zadeh, M

    2010-01-01

    We report the first experimental demonstration of efficient and high-power operation of a Ti:sapphire laser pumped by a simple, compact, continuous-wave (cw) fiber-laser-based green source. The pump radiation is obtained by direct single-pass second-harmonic-generation (SHG) of a 33-W, cw Yb-fiber laser in 30-mm-long MgO:sPPLT crystal, providing 11 W of single-frequency green power at 532 nm in TEM00 spatial profile with power and frequency stability better than 3.3% and 32 MHz, respectively, over one hour. The Ti:sapphire laser is continuously tunable across 743-970 nm and can deliver an output power up to 2.7 W with a slope efficiency as high as 32.8% under optimum output coupling of 20%. The laser output has a TEM00 spatial profile with M2<1.44 across the tuning range and exhibits a peak-to-peak power fluctuation below 5.1% over 1 hour.

  10. Temperature behavior of damage in sapphire implanted with light ions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, E. [Ion Beam Laboratory, Instituto Tecnologico e Nuclear, Sacavem 2686-953 (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Lisbon (Portugal)], E-mail: ealves@itn.pt; Marques, C. [Ion Beam Laboratory, Instituto Tecnologico e Nuclear, Sacavem 2686-953 (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Lisbon (Portugal); Safran, G. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest (Hungary); McHargue, Carl J. [University of Tennessee, Knoxville, TN 37996-0750 (United States)

    2009-05-01

    In this study, we compare and discuss the defect behavior of sapphire single crystals implanted with different fluences (1 x 10{sup 16}-1 x 10{sup 17} cm{sup -2}) of carbon and nitrogen with 150 keV. The implantation temperatures were RT, 500 deg. C and 1000 deg. C to study the influence of temperature on the defect structures. For all the ions the Rutherford backscattering-channeling (RBS-C) results indicate a surface region with low residual disorder in the Al-sublattice. Near the end of range the channeled spectrum almost reaches the random indicating a high damage level for fluences of 1 x 10{sup 17} cm{sup -2}. The transmission electron microscopy (TEM) photographs show a layered contrast feature for the C implanted sample where a buried amorphous region is present. For the N implanted sample the Electron Energy Loss Spectroscopy (EELS) elemental mapping give evidence for the presence of a buried damage layer decorated with bubbles. Samples implanted at high temperatures (500 deg. C and 1000 deg. C) show a strong contrast fluctuation indicating a defective crystalline structure of sapphire.

  11. The effect of crystal orientation on the cryogenic strength of hydroxide catalysis bonded sapphire

    Science.gov (United States)

    Haughian, K.; Douglas, R.; van Veggel, A. A.; Hough, J.; Khalaidovski, A.; Rowan, S.; Suzuki, T.; Yamamoto, K.

    2015-04-01

    Hydroxide catalysis bonding has been used in gravitational wave detectors to precisely and securely join components of quasi-monolithic silica suspensions. Plans to operate future detectors at cryogenic temperatures has created the need for a change in the test mass and suspension material. Mono-crystalline sapphire is one candidate material for use at cryogenic temperatures and is being investigated for use in the KAGRA detector. The crystalline structure of sapphire may influence the properties of the hydroxide catalysis bond formed. Here, results are presented of studies of the potential influence of the crystal orientation of sapphire on the shear strength of the hydroxide catalysis bonds formed between sapphire samples. The strength was tested at approximately 8 K; this is the first measurement of the strength of such bonds between sapphire at such reduced temperatures. Our results suggest that all orientation combinations investigated produce bonds of sufficient strength for use in typical mirror suspension designs, with average strengths >23 MPa.

  12. Electronic structure analysis of GaN films grown on r- and a-plane sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna TC, Shibin; Aggarwal, Neha [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Vihari, Saket [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2015-10-05

    Graphical abstract: Substrate orientation induced changes in surface chemistry, band bending, hybridization states, electronic properties and surface morphology of epitaxially grown GaN were investigated via photoemission spectroscopic and Atomic Force Microscopic measurements. - Highlights: • Electronic structure and surface properties of GaN film grown on r/a-plane sapphire. • Downward band bending (0.5 eV) and high surface oxide is observed for GaN/a-sapphire. • Electron affinity and ionization energy is found to be higher for GaN/a-sapphire. - Abstract: The electronic structure and surface properties of epitaxial GaN films grown on r- and a-plane sapphire substrates were probed via spectroscopic and microscopic measurements. X-ray photoemission spectroscopic (XPS) measurements were performed to analyse the surface chemistry, band bending and valence band hybridization states. It was observed that GaN/a-sapphire display a downward band bending of 0.5 eV and possess higher amount of surface oxide compared to GaN/r-sapphire. The valence band (VB) investigation revealed that the hybridization corresponds to the interactions of Ga 4s and Ga 4p orbitals with N 2p orbital, and result in N2p–Ga4p, N2p–Ga4s{sup ∗}, mixed and N2p–Ga4s states. The energy band structure and electronic properties were measured via ultraviolet photoemission spectroscopic (UPS) experiments. The band structure analysis and electronic properties calculations divulged that the electron affinity and ionization energy of GaN/a-sapphire were 0.3 eV higher than GaN/r-sapphire film. Atomic Force Microscopic (AFM) measurements revealed faceted morphology of GaN/r-sapphire while a smooth pitted surface was observed for GaN/a-sapphire film, which is closely related to surface oxide coverage.

  13. High-temperature sapphire optical sensor fiber coatings

    Science.gov (United States)

    Desu, Seshu B.; Claus, Richard O.; Raheem, Ruby; Murphy, Kent A.

    1990-10-01

    the filter. These modes may be attributed to a number of material degradation mechanisms, such as thermal shock, oxidation corrosion of the material, mechanical loads, or phase changes in the filter material. Development of high temperature optical fiber (sapphire) sensors embedded in the CXF filters would be very valuable for both monitoring the integrity of the filter during its use and understanding the mechanisms of degradation such that durable filter development will be facilitated. Since the filter operating environment is very harsh, the high temperature sapphire optical fibers need to be protected and for some sensing techniques the fiber must also be coated with low refractive index film (cladding). The objective of the present study is to identify materials and develop process technologies for the application of claddings and protective coatings that are stable and compatible with sapphire fibers at both high temperatures and pressures.

  14. Superexciplex of Coumarin Molecules using Tunable Ti-Sapphire Laser

    Science.gov (United States)

    Al-Ghamdi, Attieh Ali; Al-Dwayyan, Abdullah S.; Masilamani, Vadivel; Al-Saud, Turki Saud M.; Al-Salhi, Mohammed Saleh

    2003-10-01

    Certain highly polar dye molecules exhibit an additional optical gain band under pulsed laser excitation, while there is no such band under steady-state continuous wave (CW) lamp excitation. This new band is not due to an excimer, an exciplex or a two-photon fluorescence band but stems from the formation of a new molecular complex in which two excited molecules remain associated with a solvent molecule acting as a bridge. In this paper, the characteristics of superexciplexes of four related coumarin molecules are presented. All molecules were excited using a tunable Ti-sapphire laser pulse 10 ns in width. The distinct difference between the amplified spontaneous emission (ASE) spectra obtained with tunable laser and tunable lamp excitation demonstrated that twisted intramolecular charge transfer (TICT) conformations might also assist in the formation of these superexciplexes.

  15. The charge state of iron implanted into sapphire

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J.; Sklad, P.S.; White, C.W.; Farlow, G.C.; Perez, A.; Kornilios, N.; Marest, G.

    1987-08-01

    Several techniques (RBS, TEM, CEMS) have been used to characterize sapphire single crystals implanted with iron at room temperature to fluences of 10/sup 16/ to 10/sup 17/ ions cm/sup -2/. At low fluences the as-implanted iron is found mainly in the ferrous state. As the fluence is increased, Fe/sup 3 +/ and metallic iron clusters became dominant. There is a strong correlation between the probability of finding specific configurations of iron ions within four cation coordination shells and the relative amounts of each charge state observed. The superparamagnetic behavior of the clusters suggest that they are of the order of 2 nm in size but the large amount of irradiation-induced damage and residual stress has prevented their imaging by TEM. 13 refs., 7 figs.

  16. Numerical computation of sapphire crystal growth using heat exchanger method

    Science.gov (United States)

    Lu, Chung-Wei; Chen, Jyh-Chen

    2001-05-01

    The finite element software FIDAP is employed to study the temperature and velocity distribution and the interface shape during a large sapphire crystal growth process using a heat exchanger method (HEM). In the present study, the energy input to the crucible by the radiation and convection inside the furnace and the energy output through the heat exchanger is modeled by the convection boundary conditions. The effects of the various growth parameters are studied. It is found that the contact angle is obtuse before the solid-melt interface touches the sidewall of the crucible. Therefore, hot spots always appear in this process. The maximum convexity decreases significantly when the cooling-zone radius (RC) increases. The maximum convexity also decreases significantly as the combined convection coefficient inside the furnace (hI) decreases.

  17. Analysis and modification of blue sapphires from Rwanda by ion beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bootkul, D., E-mail: mo_duangkhae@hotmail.com [Department of General Science - Gems & Jewelry, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Chaiwai, C.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanthanachaisaeng, B. [Gems Enhancement Research Unit, Faculty of Gems, Burapha University, Chanthaburi Campus, Chanthaburi 22170 (Thailand); Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-12-15

    Highlights: • Ion beam analysis is an effective method for detecting trace elements. • Ion beam treatment is able to improve optical and color appearances of the blue sapphire from Rwanda. • These alternative methods can be extended to jewelry industry for large scale application. - Abstract: Blue sapphire is categorised in a corundum (Al{sub 2}O{sub 3}) group. The gems of this group are always amazed by their beauties and thus having high value. In this study, blue sapphires from Rwanda, recently came to Thai gemstone industry, are chosen for investigations. On one hand, we have applied Particle Induced X-ray Emission (PIXE), which is a highly sensitive and precise analytical technique that can be used to identify and quantify trace elements, for chemical analysis of the sapphires. Here we have found that the major element of blue sapphires from Rwanda is Al with trace elements such as Fe, Ti, Cr, Ga and Mg as are commonly found in normal blue sapphire. On the other hand, we have applied low and medium ion implantations for color improvement of the sapphire. It seems that a high amount of energy transferring during cascade collisions have altered the gems properties. We have clearly seen that the blue color of the sapphires have been intensified after nitrogen ion bombardment. In addition, the gems were also having more transparent and luster. The UV–Vis–NIR measurement detected the modification of their absorption properties, implying of the blue color increasing. Here the mechanism of these modifications is postulated and reported. In any point of view, the bombardment by using nitrogen ion beam is a promising technique for quality improvement of the blue sapphire from Rwanda.

  18. Unprecedented High Long Term Frequency Stability with a Macroscopic Resonator Oscillator

    CERN Document Server

    Grop, Serge; Bourgeois, Pierre-Yves; Bazin, Nicolas; Kersalé, Yann; Oxborrow, Mark; Rubiola, Enrico; Giordano, Vincent

    2010-01-01

    This article reports on the long-term frequency stabilty characterisation of a new type of cryogenic sapphire oscillator using an autonomous pulse-tube cryocooler as its cold source. This new design enables a relative frequency stability of better than 4.5e-15 over one day of integration. This represents to our knowledge the best long-term frequency stability ever obtained with a signal source based on a macroscopic resonator.

  19. Large-scale inhomogeneity in sapphire test masses revealed by Rayleigh scattering imaging

    Science.gov (United States)

    Yan, Zewu; Ju, Li; Eon, François; Gras, Slawomir; Zhao, Chunnong; Jacob, John; Blair, David G.

    2004-03-01

    Rayleigh scattering in test masses can introduce noise and reduce the sensitivity of laser interferometric gravitational wave detectors. In this paper, we present laser Rayleigh scattering imaging as a technique to investigate sapphire test masses. The system provides three-dimensional Rayleigh scattering mapping of entire test masses and quantitative evaluation of the Rayleigh scattering coefficient. Rayleigh scattering mapping of two sapphire samples reveals point defects as well as inhomogeneous structures in the samples. We present results showing significant non-uniform scattering within two 4.5 kg sapphire test masses manufactured by the heat exchanger method.

  20. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  1. Grid oscillators

    Science.gov (United States)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  2. MOBOTIX:创新先导 德国制造——专访MOBOTIX全球销售副总裁(CSO)Magnus Ekerot博士

    Institute of Scientific and Technical Information of China (English)

    陈薇荔

    2012-01-01

    MOBOTIX——来自德国的品牌,其网络摄像机销量已经创造了欧洲市场占有份额排名第二,世界排名第四的成绩。如今,MOBOTIX进入中国已经有四年了,它正在被越来越多的人所认知。2012年6月,当欧洲杯小组赛如火如荼,德国队势如破竹之时,MOBOTIX中国区合作伙伴大会在上海黄浦江畔如期召开。在会议期间,我们采访了MOBOTIX全球销售副总裁(CSO)Magnus Ekerot博士。

  3. Frequency-doubled diode laser for direct pumping of Ti:sapphire lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2012-01-01

    A single-pass frequency doubled high-power tapered diode laser emitting nearly 1.3 W of green light suitable for direct pumping of Ti:sapphire lasers generating ultrashort pulses is demonstrated. The pump efficiencies reached 75 % of the values achieved with a commercial solid-state pump laser....... However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20...... fs are measured. These results open the opportunity of establishing diode laser pumped Ti:sapphire lasers for e.g. biophotonic applications like retinal optical coherence tomography or pumping of photonic crystal fibers for CARS microscopy....

  4. MBE growth and characterization of ZnTe epilayers on m-plane sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nakasu, Taizo; Sun, Wei-Che; Yamashita, Sotaro; Aiba, Takayuki; Taguri, Kosuke [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555 (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26, Tokyo 169-0051 (Japan); Asahi, Toshiaki [Technology Development Center, JX Nippon Mining and Metals Corporation, Hitachi 317-0056 (Japan); Togo, Hiroyoshi [NTT Microsystem Integration Laboratories, Atsugi 243-0198 (Japan)

    2014-07-15

    ZnTe epilayers were grown on transparent (10-10) oriented (m -plane) sapphire substrates by molecular beam epitaxy (MBE). Pole figure imaging was used to study the domain distribution within the layer. (211)-oriented ZnTe domains were formed on m -plane sapphire. The presence of only one kind of (211) ZnTe domain formed on the 2 -tilted m -plane sapphire substrates was confirmed. Thus, single domain (211) ZnTe epilayers can be grown on the m -plane sapphire using MBE. Although differences in the crystal structure and lattice mismatch are large, precise control of the substrate surface lattice arrangement result in the formation of high-quality epitaxial layers. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Annealing effects of sapphire substrate on properties of ZnO films grown by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.Z. [South China Normal University, School of Physics and Telecommunication Engineering, Guangzhou (China); Xu, J. [Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, P.O. Box 800-211, Shanghai (China)

    2007-09-15

    The annealing effects of sapphire substrates on the quality of epitaxial ZnO films grown by dc reactive magnetron sputtering were studied. The atomic steps formed on (0001) sapphire ({alpha}-Al{sub 2}O{sub 3}) substrates surface by annealing at high temperature were analyzed by atomic force microscopy. Their influence on the growth of ZnO films was examined by X-ray diffraction and photoluminescence measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface. The optimum annealing temperature of sapphire substrates for ZnO grown by magnetron sputtering is 1400 C for 1 h in air. (orig.)

  6. Dislocation Analysis for Large-sized Sapphire Single Crystal Grown by SAPMAC Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, large-sized sapphire (Φ230×210 mm, 27.5 kg) was grown by SAPMAC method (sapphire growth technique with micro-pulling and shoulder-expanding at the cooled center). Dislocation peculiarity in large sapphire boule (0001) basal plane was investigated by chemical etching, scanning electron microscopy and X-ray topography method. The triangular dislocation etch pit measured is 7.6×101~8.0×102 cm-2, in which relative high-density dislocations were generated at both initial and final stages of crystal growth. The analysis of single-crystal X-ray topography shows that there are no apparent sub-grain boundaries; the dislocation lines are isolated and straight. Finally, the origins of low-density dislocation in sapphire crystal are discussed by numerical analysis method.

  7. Advances in Trace Element "Fingerprinting" of Gem Corundum, Ruby and Sapphire, Mogok Area, Myanmar

    National Research Council Canada - National Science Library

    F Lin Sutherland; Khin Zaw; Sebastien Meffre; Tzen-Fui Yui; Kyaw Thu

    2015-01-01

    ... corundum area and also identified rare alluvial ruby and sapphire grains characterised by unusually high silicon, calcium and gallium, presence of noticeable boron, tin and niobium and very low iron, titanium and magnesium contents...

  8. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  9. Newly designed multilayer thin film mirror for dispersion compensation in Ti: sapphire femtosecond lasers

    Institute of Scientific and Technical Information of China (English)

    Chunyan Liao; Jianda Shao; Jianbing Huang; Zhengxiu Fan; Hongbo He

    2005-01-01

    @@ There are two different effects to generate group delay dispersion by multilayer thin film mirrors: chirper effect and Gires-Tournois effect. Both effects are employed to introduce desired dispersion in the designed mirror. Thus the designed mirror provides large dispersion throughout broad waveband. Such mirror can be used for dispersion compensation in Ti:sapphire femtosecond lasers. Most group delay dispersion of a 5-mm Ti:sapphire crystal can be compensated perfectly with only four bounces of the designed mirror.

  10. Growth of crystalline ZnO films on the nitridated (0001) sapphire surface

    Energy Technology Data Exchange (ETDEWEB)

    Butashin, A. V.; Kanevsky, V. M.; Muslimov, A. E., E-mail: amuslimov@mail.ru; Prosekov, P. A.; Kondratev, O. A.; Blagov, A. E.; Vasil’ev, A. L.; Rakova, E. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Babaev, V. A.; Ismailov, A. M. [Dagestan State University (Russian Federation); Vovk, E. A.; Nizhankovsky, S. V. [National Academy of Sciences of Ukraine, Institute for Single Crystals (Ukraine)

    2015-07-15

    The surface morphology and structure of (0001) sapphire substrates subjected to thermochemical nitridation in a mixture of N{sub 2}, CO, and H{sub 2} gases are investigated by electron and probe microscopy and X-ray and electron diffraction. It is shown that an aluminum nitride layer is formed on the substrate surface and heteroepitaxial ZnO films deposited onto such substrates by magnetron sputtering have a higher quality when compared with films grown on sapphire.

  11. Determining residual impurities in sapphire by means of electron paramagnetic resonance and nuclear activation analysis

    Science.gov (United States)

    Bletskan, D. I.; Bratus', V. Ya.; Luk'yanchuk, A. R.; Maslyuk, V. T.; Parlag, O. A.

    2008-07-01

    Sapphire (α-Al2O3) single crystals grown using the Verneuil and Kyropoulos methods have been analyzed using electron paramagnetic resonance and γ-ray spectroscopy with 12-MeV bremsstrahlung excitation. It is established that uncontrolled impurities in the final sapphire single crystals grown by the Kyropoulos method in molybdenum-tungsten crucibles are supplied both from the initial materials and from the furnace and crucible materials

  12. Jones calculus modeling and analysis of the thermal distortion in a Ti:sapphire laser amplifier.

    Science.gov (United States)

    Cho, Seryeyohan; Jeong, Jihoon; Yu, Tae Jun

    2016-06-27

    The mathematical modeling of an anisotropic Ti:sapphire crystal with a significant thermal load is performed. The model is expressed by the differential Jones matrix. A thermally induced distortion in the chirped-pulse amplification process is shown by the solution of the differential Jones matrix. Using this model, the thermally distorted spatio-temporal laser beam shape is calculated for a high-power and high-repetition-rate Ti:sapphire amplifier.

  13. High power all-solid-state quasi-continuous-wave tunable Ti: sapphire laser system

    Institute of Scientific and Technical Information of China (English)

    Lei Zou; Xin Ding; Yue Zou; Hongmei Ma; Wuqi Wen; Peng Wang; Jianquan Yao

    2005-01-01

    This paper reports a high power, all-solid-state, quasi-continuous-wave tunable Ti:sapphire laser system pumped by laser diode (LD) pumped frequency-doubled Nd:YAG laser. The maximum tuned output power of 4.2 W (797 nm) and tuned average power of 3.7 W were achieved when fixing the Ti:sapphire broadband output power at 5.0 W and applying 750-850 nm broadband coated mirror.

  14. Aleutian disease of mink: the antibody response of sapphire and pastel mink to Aleutian disease virus.

    Science.gov (United States)

    Bloom, M E; Race, R E; Hadlow, W J; Chesebro, B

    1975-10-01

    The specific antiviral antibody response of sapphire and pastel mink to Pullman strain of ADV has been examined. Sapphire mink inoculated with from 300,000-3 LD50 developed high levels of specific antibody and AD. Pastel mink inoculated with parallel doses of ADV also produced antibody but did not develop AD. The low incidence of AD in pastel mink inoculated with Pullman strain of ADV is probably related to factors other than antiviral antibody.

  15. Interface defects in GaN/sapphire studied using Rutherford backscattering spectroscopy and channeling

    Indian Academy of Sciences (India)

    S K Sinha; P K Barhai

    2004-06-01

    GaN on sapphire was grown by MOCVD technique. Rutherford backscattering spectra together with channeling along [0 0 0 1] axis were recorded to study the defects at the interface. Detailed calculation shows that the defects at GaN/sapphire interface are due to dislocations which are distributed into the whole thickness of the film and are mainly aligned on the growth direction.

  16. Oscillating Permanent Magnets.

    Science.gov (United States)

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  17. Solar neutrinos: Oscillations or No-oscillations?

    CERN Document Server

    Smirnov, A Yu

    2016-01-01

    The Nobel prize in physics 2015 has been awarded "... for the discovery of neutrino oscillations which show that neutrinos have mass". While SuperKamiokande (SK), indeed, has discovered oscillations, SNO observed effect of the adiabatic (almost non-oscillatory) flavor conversion of neutrinos in the matter of the Sun. Oscillations are irrelevant for solar neutrinos apart from small $\

  18. Supersmooth and modified surface of sapphire crystals: Formation, characterization, and applications in nanotechnologies

    Science.gov (United States)

    Muslimov, A. E.; Asadchikov, V. E.; Butashin, A. V.; Vlasov, V. P.; Deryabin, A. N.; Roshchin, B. S.; Sulyanov, S. N.; Kanevsky, V. M.

    2016-09-01

    The results of studying the state of the surface of sapphire crystals by a complex of methods in different stages of crystal treatment are considered by an example of preparing sapphire substrates with a supersmooth surface. The possibility of purposefully forming regular micro- and nanoreliefs and thin transition layers using thermal and thermochemical impacts are considered. The advantages of sapphire substrates with a modified surface for forming heteroepitaxial CdTe and ZnO semiconductor films and ordered ensembles of gold nanoparticles are described. The results of the experiments on the application of crystalline sapphire as a material for X-ray optical elements are reported. These elements include total external reflection mirrors and substrates for multilayer mirrors, output windows for synchrotron radiation, and monochromators working in the reflection geometry in X-ray spectrometers. In the latter case, the problems of the defect structure of bulk crystals sapphire and the choice of a method for growing sapphire crystals of the highest structural quality are considered.

  19. Structural and electronic characterization of graphene grown by chemical vapor deposition and transferred onto sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Joucken, Frédéric, E-mail: frederic.joucken@unamur.be; Colomer, Jean-François; Sporken, Robert; Reckinger, Nicolas

    2016-08-15

    Highlights: • CVD graphene is transferred onto sapphire. • Transport measurements reveal relatively low charge carriers mobility. • Scanning probe microscopy experiments reveal the presence of robust contaminant layers between the graphene and the sapphire, responsible for the low carriers mobility. - Abstract: We present a combination of magnetotransport and local probe measurements on graphene grown by chemical vapor deposition on copper foil and subsequently transferred onto a sapphire substrate. A rather strong p-doping is observed (∼9 × 10{sup 12} cm{sup −2}) together with quite low carrier mobility (∼1350 cm{sup 2}/V s). Atomic force and tunneling imaging performed on the transport devices reveals the presence of contaminants between sapphire and graphene, explaining the limited performance of our devices. The transferred graphene displays ridges similar to those observed whilst graphene is still on the copper foil. We show that, on sapphire, these ridges are made of different thicknesses of the contamination layer and that, contrary to what was reported for hBN or certain transition metal dichalcogenides, no self-cleansing process of the sapphire substrate is observed.

  20. Cellular and humoral antibody responses of normal pastel and sapphire mink to goat erythrocytes.

    Science.gov (United States)

    Lodmell, D L; Bergman, R K; Hadlow, W J; Munoz, J J

    1971-02-01

    This study was undertaken to determine whether normal sapphire and royal pastel mink differ immunologically at the cellular and humoral levels. Two days after primary intraperitoneal (ip) inoculation of goat erythrocytes (GE), essentially no 19 or 7S plaque-forming cells (PFC) per 10(6) cells were detected in spleen or in abdominal and peripheral lymph nodes of either color phase. On the 4th day, more 19S PFC were detected in pastel than in sapphire tissues; pastel tissues also contained 7S PFC, whereas essentially none was present in sapphires until the 6th day. After an ip booster inoculation, the number of PFC was markedly different between the two color phases. These differences were most apparent in spleen and peripheral lymph nodes. In parallel with differences observed in PFC responses between the color phases, total hemolysin and 2-mercaptoethanol-resistant hemolysin titers of pastels exceeded those of sapphires in all but one interval after the primary, and at every interval after the booster, inoculation. These data indicate that sapphire mink are not immunological cripples, nor are they immunologically hyperactive, but that differences do exist between sapphire and royal pastel mink, especially in the response to booster injections of GE.

  1. Laser surface and subsurface modification of sapphire using femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, G., E-mail: eberle@iwf.mavt.ethz.ch [Institute of Machine Tools and Manufacturing, ETH Zurich, Leonhardstrasse 21, 8092 Zurich (Switzerland); Schmidt, M. [Chair of Photonic Technologies, University of Erlangen-Nuremberg, Konrad-Zuse-Strasse 3-5, 91052 Erlangen (Germany); Pude, F. [Inspire AG, Technoparkstrasse 1, 8005 Zurich (Switzerland); Wegener, K. [Institute of Machine Tools and Manufacturing, ETH Zurich, Leonhardstrasse 21, 8092 Zurich (Switzerland); Inspire AG, Technoparkstrasse 1, 8005 Zurich (Switzerland)

    2016-08-15

    Highlights: • Single and multipulse ablation threshold of aluminium oxide is determined. • Laser ablation, and in-volume modification followed by wet etching are demonstrated. • Quality following laser processing and laser-material interactions are studied. - Abstract: Two methods to process sapphire using femtosecond laser pulses are demonstrated, namely ablation (surface), and in-volume laser modification followed by wet etching (subsurface). Firstly, the single and multipulse ablation threshold is determined and compared with previous literature results. A unique application of ablation is demonstrated by modifying the entrance aperture of water jet orifices. Laser ablation exhibits advantages in terms of geometric flexibility and resolution, however, defects in the form of edge outbreaks and poor surface quality are evident. Secondly, the role of material transformation, polarisation state and formation of multi-focus structures after in-volume laser modification is investigated in order to explain their influence during the wet etching process. Laser scanning and electron microscopy as well as electron backscatter diffraction measurements supported by ion beam polishing are used to better understand quality and laser-material interactions of the two demonstrated methods of processing.

  2. Local dielectric permittivity profiles of sapphire/polypropylene interfaces

    Science.gov (United States)

    Yu, Liping; Ranjan, V.; Buongiorno Nardelli, M.; Bernholc, J.

    2009-03-01

    Recently, the need for high-power-density capacitors has stimulated research to develop composite dielectric materials with high-k nanoparticles embedded in a polymer matrix. In these materials, surfaces and interfaces may play an important role in determining the overall dielectric properties. We present first-principles investigations of the dielectric permittivity profiles across slabs and interfaces of sapphire(α-Al2O3)/isotactic-polypropylene(iPP). Our results indicate that the permittivity profile at interface strongly depends on the nanoscale averaging procedure. We propose an averaging model that ensures near-locality of the dielectric function. We find that: (i) the dielectric permittivity approaches the corresponding bulk value just a few atomic layers away from the interface or surface; (ii) the dielectric constant is enhanced at the surfaces of the isolated α-Al2O3 slabs, while no enhancement is observed at the iPP slab surfaces; and (iii) the dielectric transition at the αAl2O3/iPP is mainly confined in the αAl2O3 side.

  3. Q-Switching the Flash Ti: Sapphire Laser

    Energy Technology Data Exchange (ETDEWEB)

    Cone, Kelly

    2003-09-05

    The Stanford Linear Accelerator Center (SLAC) uses a flash lamp pumped Ti:Sapphire laser to generate the electron beam inside of the Linac. This laser system was installed at the SLAC Polarized Light Source in 1993. During the past, the system has been upgraded in several steps (eg. installation of Rhodium coated reflectors, cavity redesign, and remote controlled wavelength tunability). Q-switching the laser cavity to increase the peak pulse energy was successfully investigated and further improves the capabilities of the laser system for future polarized beam experiments. Two Pockels cells were used to perform the Q-switch and various diagnostics were used to characterize the modified laser pulse. The timing in relation to the laser trigger, pulse width, and pulse shape applied to the Q-switching Pockels cells (PC) were optimized. No damage to the laser cavity or optical elements occurred. At optimal conditions of Q-switching, the pulse energy of the laser increased from 0.4 mJ to over 3 mJ in a 300 ns pulse. The Q-switched pulse energy can be further increased by extending the hold-off pulse applied to the PC. The laser pulse produced by the Q-switch was long enough (full width half maximum (FWHM) > 200 ns) for pulse shaping and demonstrated good intensity stability (< 0.5% jitter). The increase in output power suggests that Q-switching will be used for future accelerator projects.

  4. Origin of Difference in Photocatalytic Activity of ZnO (002 Grown on a- and c-Face Sapphire

    Directory of Open Access Journals (Sweden)

    Guoqiang Li

    2014-01-01

    Full Text Available The oriented (002 ZnO films were grown on a- and c-face sapphire by pulsed laser deposition. The X-ray diffraction analysis revealed that the oriented (002 ZnO films were epitaxially grown on the substrate successfully. The sample on a-face sapphire had higher crystal quality. However, the photocatalytic activity for Rhodamine B degradation of ZnO film on c-face sapphire was higher than that on a-face sapphire. The Raman spectrum and XPS analysis suggested that the sample on a-face sapphire had higher concentration of defects. The result of the contact angle measurement revealed that the sample on c-face sapphire had higher surface energy. And the investigation of the surface conductance implied that the higher light conductance was helpful for the photocatalytic activity.

  5. Effects of sapphire substrates surface treatment on the ZnO thin films grown by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yinzhen [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: agwyz@yahoo.com.cn; Chu Benli [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)

    2008-06-01

    The surface treatment effects of sapphire substrate on the ZnO thin films grown by magnetron sputtering were studied. The sapphire substrates properties have been investigated by means of atomic force microscopy (AFM) and X-ray diffraction rocking curves (XRCs). The results show that sapphire substrate surfaces have the best quality by CMP with subsequent chemical etching. The surface treatment effects of sapphire substrate on the ZnO thin films were examined by X-ray diffraction (XRD) and photoluminescence (PL) measurements. Results show that the intensity of (0 0 2) diffraction peak of ZnO thin films on sapphire substrates treated by CMP with subsequent chemical etching was strongest, FWHM of (0 0 2) diffraction peak is the narrowest and the intensity of UV peak of PL spectrum is strongest, indicating surface treatment on sapphire substrate preparation may improve ZnO thin films crystal quality and photoluminescent property.

  6. Oscillations of Eccentric Pulsons

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Groenbech-Jensen, Niels; Lomdahl, Peter;

    1997-01-01

    Perturbation theory for elliptic pulsons is developed and predicts pulson and eccentricity oscillations. The pulson oscillation period is predicted qualitatively correct.......Perturbation theory for elliptic pulsons is developed and predicts pulson and eccentricity oscillations. The pulson oscillation period is predicted qualitatively correct....

  7. Shock Induced Emission from Sapphire in High-Pressure Phase of Rh2O3 (Ⅱ) Structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dai-Yu; LIU Fu-Sheng; HAO Gao-Yu; SUN Yu-Huai

    2007-01-01

    @@ A distinct optical emission from the Rh2 O3 (Ⅱ) structural sapphire is observed under shock compression of 125,132, and 143 Gpa. The emission intensity continuously increases with the thickness of shocked sapphire. The colour temperature is determined to be about 4000K, which is obviously smaller than the reported value of the alpha phase alumina at the pressures below 80 Gpa. The present results suggest that the structural transformation will cause an obvious change of optical property in sapphire.

  8. Surface tension of liquid Al-Cu and wetting at the Cu/Sapphire solid-liquid interface

    Science.gov (United States)

    Schmitz, J.; Brillo, J.; Egry, I.

    2014-02-01

    For the study of the interaction of a liquid alloy with differently oriented single crystalline sapphire surfaces precise surface tension data of the liquid are fundamental. We measured the surface tension of liquid Al-Cu contactlessly on electromagnetically levitated samples using the oscillating drop technique. Data were obtained for samples covering the entire range of composition and in a broad temperature range. The surface tensions can be described as linear functions of temperature with negative slopes. Moreover, they decrease monotonically with an increase of aluminium concentration. The observed behaviour with respect to both temperature and concentration is in agreement with a thermodynamic model calculation using the regular solution approximation. Surface tensions were used to calculate interfacial energies from the contact angles of liquid Cu droplets, deposited on the C(0001), A(11-20), R(1-102) surfaces of an α-Al2O3 substrate. The contact angles were measured by means of the sessile drop method at 1380 K. In the Cu/α-Al2O3 system, no anisotropy is evident neither for the contact angles nor for the interfacial energies of different surfaces. The work of adhesion of this system is isotropic, too.

  9. Generation of a Sub-10 fs Laser Pulse by a Ring Oscillator with a High Repetition Rate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing; ZHAO Yan-Ying; WEI Zhi-Yi

    2009-01-01

    @@ A compact femtoescond Ti:sapphire ring oscillator composed of chirped mirrors is designed. By accurately optimizing the intra-cavity dispersion and the mode locking range of the ring configuration, we generate laser pulses as short as 7.7 fs with a repetition rate as high as 745 MHz. The spectrum spans from 660nm to 940nm and the average output power is 480row under the cw pump laser of 7.5 W.

  10. Nanoscratch Characterization of GaN Epilayers on c- and a-Axis Sapphire Substrates

    Directory of Open Access Journals (Sweden)

    Wen Hua-Chiang

    2010-01-01

    Full Text Available Abstract In this study, we used metal organic chemical vapor deposition to form gallium nitride (GaN epilayers on c- and a-axis sapphire substrates and then used the nanoscratch technique and atomic force microscopy (AFM to determine the nanotribological behavior and deformation characteristics of the GaN epilayers, respectively. The AFM morphological studies revealed that pile-up phenomena occurred on both sides of the scratches formed on the GaN epilayers. It is suggested that cracking dominates in the case of GaN epilayers while ploughing during the process of scratching; the appearances of the scratched surfaces were significantly different for the GaN epilayers on the c- and a-axis sapphire substrates. In addition, compared to the c-axis substrate, we obtained higher values of the coefficient of friction (μ and deeper penetration of the scratches on the GaN a-axis sapphire sample when we set the ramped force at 4,000 μN. This discrepancy suggests that GaN epilayers grown on c-axis sapphire have higher shear resistances than those formed on a-axis sapphire. The occurrence of pile-up events indicates that the generation and motion of individual dislocation, which we measured under the sites of critical brittle transitions of the scratch track, resulted in ductile and/or brittle properties as a result of the deformed and strain-hardened lattice structure.

  11. Growth and Crystal Orientation of ZnTe on m-Plane Sapphire with Nanofaceted Structure

    Science.gov (United States)

    Nakasu, Taizo; Sun, Wei-Che; Kobayashi, Masakazu; Asahi, Toshiaki

    2016-11-01

    ZnTe thin films on sapphire substrate with nanofaceted structure have been studied. The nanofaceted structure of the m-plane (10-10) sapphire was obtained by heating the substrate at above 1100°C in air, and the r-plane (10-12) and S-plane (1-101) were confirmed. ZnTe layers were prepared on the nanofaceted m-plane sapphire substrates by molecular beam epitaxy (MBE). The effect of the nanofaceted structure on the orientation of the thin films was examined based on x-ray diffraction (XRD) pole figures. Transmission electron microscopy (TEM) was also employed to characterize the interface structures. The ZnTe layer on the nanofaceted m-plane sapphire substrate exhibited (331)-plane orientation, compared with (211)-plane without the nanofaceted structure. After thermal treatment, the m-plane surface vanished and (211) layer could not be formed because of the lack of surface lattice matching. On the other hand, (331)-plane thin film was formed on the nanofaceted m-plane sapphire substrate, since the (111) ZnTe domains were oriented on the S-facet. The orientation of the ZnTe epilayer depended on the atomic ordering on the surface and the influence of the S-plane.

  12. Carbon nanotube assisted Lift off of GaN layers on sapphire

    Science.gov (United States)

    Long, Hao; Feng, Xiaohui; Wei, Yang; Yu, Tongjun; Fan, Shoushan; Ying, Leiying; Zhang, Baoping

    2017-02-01

    Laser lift off (LLO) was one of the most essential processes in fabrication of vertical GaN-based LEDs. However, traditional laser lift off of GaN on sapphire substrates needed high laser energy threshold, which deteriorated the GaN crystal. In this paper, it was found that inserting carbon nanotube between GaN and sapphire could effectively reduce the laser energy threshold in GaN LLO, from 1.5 J /cm2 of conventional GaN/sapphire to 1.3 J /cm2 of CNT inserted GaN/sapphire. The temperature distributions at the GaN/sapphire interfaces with and without CNTs were simulated by the finite elements calculation under laser irradiation. It was found that, due to the higher laser absorption coefficient of CNT, the CNT played as a powerful heating wire, sending out the thermal outside to elevate the GaN's temperature, and thus reduce the laser threshold for LLO. Raman and photoluminescence measurements indicated that residual stress of GaN membranes was as small as 0.3 GPa by the carbon nanotube assisted LLO. This work not only opens new application of CNTs, but also demonstrates the potential of high performance blue and green LEDs.

  13. Variable Energy Positron Annihilation Spectroscopy of GaN Grown on Sapphire Substrates with MOCVD

    Institute of Scientific and Technical Information of China (English)

    HU Yi-Fan; C.D. Beling; S. Fung

    2005-01-01

    @@ Depth profiled Doppler broadening of positron annihilation spectroscopy (DBPAS), which is also called the variable energy positron annihilation spectroscopy (VEPAS), is used in characterization of GaN grown on sapphire substrates with metal-organic chemical vapour deposition (MOCVD). The GaN film and the film/substrate interface are investigated. The VEPFIT (variable energy positron fit) software was used for analysing the data,and the positron diffusion length of the sapphire is obtained. The results suggest that there is a highly defected region near the GaN/sapphire interface. This thin dislocated region is generated at the film/substrate interface to relieve the strain. Effects of implantation dose on defect formation, for the GaN/Sapphire samples, which implanted by Al+ ions, are also investigated. Studies on Al+ implanted GaN films (not including the interface and sapphire) have revealed that there are two different regions of implantation damage. For the low Al+ implantation dose samples, in the region close to the surface, defects are mainly composed of vacancy pairs with small amount of vacancy clusters, and in the interior region of the film the positron traps are vacancy clusters without micro-voids. For the highest dose sample, however, some positron trap centres are in the form of micro-voids in the second region.

  14. Sapphire scintillation tests for cryogenic detectors in the Edelweiss dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Luca, M

    2007-07-15

    Identifying the matter in the universe is one of the main challenges of modern cosmology and astrophysics. An important part of this matter seems to be made of non-baryonic particles. Edelweiss is a direct dark matter search using cryogenic germanium bolometers in order to look for particles that interact very weakly with the ordinary matter, generically known as WIMPs (weakly interacting massive particles). An important challenge for Edelweiss is the radioactive background and one of the ways to identify it is to use a larger variety of target crystals. Sapphire is a light target which can be complementary to the germanium crystals already in use. Spectroscopic characterization studies have been performed using different sapphire samples in order to find the optimum doping concentration for good low temperature scintillation. Ti doped crystals with weak Ti concentrations have been used for systematic X ray excitation tests both at room temperature and down to 30 K. The tests have shown that the best Ti concentration for optimum room temperature scintillation is 100 ppm and 50 ppm at T = 45 K. All concentrations have been checked by optical absorption and fluorescence. After having shown that sapphire had interesting characteristics for building heat-scintillation detectors, we have tested if using a sapphire detector was feasible within a dark matter search. During the first commissioning tests of Edelweiss-II, we have proved the compatibility between a sapphire heat scintillation detector and the experimental setup. (author)

  15. Revelation of Causes of Colour Change in Beryllium-Treated Sapphires

    Institute of Scientific and Technical Information of China (English)

    Pichet Limsuwan; Siwaporn Meejoo; Asanee Somdee; Kheamrutai Thamaphat; Treedej Kittiauchawal; Atitaya Siripinyanond; Jurek Krzystck

    2008-01-01

    Blue sapphires are treated with Be in oxidizing atmosphere to change the blue colour into yellow. Untreated and Be-treated samples are examined using laser ablation inductively coupled-plasma-mass spectrometry (LA-ICP-MS), electron spin resonance (ESR) and ultraviolet-visible (UV-vis) spectroscopy. The results show that the yellow colouration in Be-heated blue sapphires is not due to Be diffusion from the surface of sapphire. Be behaves as a sole catalyst in this process. We find that the charge transfer between the ferrous (Fe2+) and ferric (Fe3+) is the reason of the colour change. The above conclusions are confirmed by ESR measurements to determine the connections between the Fe3+ ions before and after Be-treated heat treatments.

  16. Sapphire hard X-ray Fabry-Perot resonators for synchrotron experiments.

    Science.gov (United States)

    Tsai, Yi Wei; Wu, Yu Hsin; Chang, Ying Yi; Liu, Wen Chung; Liu, Hong Lin; Chu, Chia Hong; Chen, Pei Chi; Lin, Pao Te; Fu, Chien Chung; Chang, Shih Lin

    2016-05-01

    Hard X-ray Fabry-Perot resonators (FPRs) made from sapphire crystals were constructed and characterized. The FPRs consisted of two crystal plates, part of a monolithic crystal structure of Al2O3, acting as a pair of mirrors, for the backward reflection (0 0 0 30) of hard X-rays at 14.3147 keV. The dimensional accuracy during manufacturing and the defect density in the crystal in relation to the resonance efficiency of sapphire FPRs were analyzed from a theoretical standpoint based on X-ray cavity resonance and measurements using scanning electron microscopic and X-ray topographic techniques for crystal defects. Well defined resonance spectra of sapphire FPRs were successfully obtained, and were comparable with the theoretical predictions.

  17. High Temperature Testing with Sapphire Fiber White-Light Michelson Interferometers

    Science.gov (United States)

    Barnes, A.; Pedrazzani, J.; May, R.; Murphy, K.; Tran, T.; Coate, J.

    1996-01-01

    In the design of new aerospace materials, developmental testing is conducted to characterize the behavior of the material under severe environmental conditions of high stress, temperature, and vibration. But to test these materials under extreme conditions requires sensors that can perform in harsh environments. Current sensors can only monitor high temperature test samples using long throw instrumentation, but this is inherently less accurate than a surface mounted sensor, and provides no means for fabrication process monitoring. A promising alternative is the use of sapphire optical fiber sensors. Sapphire is an incredibly rugged material, being extremely hard (9 mhos), chemically inert, and having a melting temperature (over 2000 C). Additionally, there is a extensive background of optical fiber sensors upon which to draw for sapphire sensor configurations.

  18. Stability of trapped charges in sapphires and alumina ceramics: Evaluation by secondary electron emission

    Science.gov (United States)

    Zarbout, K.; Si Ahmed, A.; Moya, G.; Bernardini, J.; Goeuriot, D.; Kallel, A.

    2008-03-01

    The stability of trapped charges in sapphires and alumina ceramics is characterized via an experimental parameter expressing the variation of the secondary electron emission yield between two electron injections performed in a scanning electron microscope. Two types of sapphires and polycrystalline alumina, which differ mainly by their impurity content, are investigated in the temperature range 300-663K. The stable trapping behavior in sapphires is attributed to trapping in different defects, whose nature depends on the purity level. In alumina ceramics, the ability to trap charges in a stable way is stronger in samples of high impurity content. In the low impurity samples, stable trapping is promoted when the grain diameter decreases, whereas the reverse is observed in high impurity materials. These behaviors can stem from a gettering effect occurring during sintering. The strong dependence of the variation of the secondary electron emission yield on the grain diameter and impurities enables a scaling of the stable trapping ability of alumina materials.

  19. Temperature and thermal stress evolutions in sapphire crystal during the cooling process by heat exchanger method

    Science.gov (United States)

    Ma, Wencheng; Zhao, Wenhan; Wu, Ming; Ding, Guoqiang; Liu, Lijun

    2017-09-01

    Transient numerical calculations were carried out to predict the evolutions of temperature and thermal stress in sapphire single crystal during the cooling process by heat exchanger method (HEM). Internal radiation in the semitransparent sapphire crystal was taken into account using the finite volume method (FVM) in the global heat transfer model. The numerical results seem to indicate that the narrow bottom region of the sapphire crystal is subjected to high thermal stress during the cooling process, which could be responsible for the seed cracking of the as-grown crystal, while the thermal stress is relatively small in the central main body of the crystal, and is less than 10 MPa during the whole cooling process. The fast decrease of the thermal stress in the bottom region of the crystal during the initial stage of cooling process is dominated by the reduction of the cooling helium gas in the heat exchanger shaft, and is not significantly affected by the heating power reduction rate.

  20. Rate of F center formation in sapphire under low-energy low-fluence Ar+ irradiation

    Science.gov (United States)

    Epie, E. N.; Wijesundera, D. N.; Tilakaratne, B. P.; Chen, Q. Y.; Chu, W. K.

    2016-03-01

    Ionoluminescence, optical absorption spectroscopy and Rutherford backscattering spectrometry channelling (RBS-C) have been used to study the rate of F center formation with fluence in 170 keV Ar+ irradiated single crystals of α-Al2O3 (sapphire) at room temperature. Implantation fluences range between 1013 cm-2 and 5 ×1014 cm-2. F center density (NF) has been found to display an initial rapid linear increase with Ar+ fluence followed by saturation to a maximum value of 1.74 ×1015 cm-2. Experimental results show a 1-1 correlation between radiation damage in the oxygen sublattice and F center density. This suggest F center kinetics in sapphire under low-energy low-fluence Ar irradiation is a direct consequence of dynamic competition between oxygen defect creation and recombination. An attempt has also been made to extend this discussion to F center kinetics in sapphire under swift heavy ion irradiation.

  1. High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.

    Science.gov (United States)

    Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L

    2014-01-24

    The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather

  2. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  3. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    G Rajasekaran

    2000-07-01

    The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  4. Quantum Duffing Oscillators

    OpenAIRE

    Sanin, A.; Semyonov, E.

    2012-01-01

    Numerical integration of the non-stationary Schrödinger equation with Duffing potential depending on two coordinates has been carried out. Oscillation types and the influence of coupling between two oscillators on frequency spectra are analyzed in detail.

  5. The Influence of Surface Anisotropy Crystalline Structure on Wetting of Sapphire by Molten Aluminum

    Science.gov (United States)

    Aguilar-Santillan, Joaquin

    2013-05-01

    The wetting of sapphire by molten aluminum was investigated by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) at PO2 <10-15 Pa under Ar atmosphere. This study focuses on sapphire crystalline structure and its principle to the interface. The planes " a" and " b" are oxygen terminated structures and wet more by Al, whereas the " c" plane is an aluminum terminated structure. A wetting transition at 1273 K (1000 °C) was obtained and a solid surface tension proves the capillarity trends of the couple.

  6. Synthesis of ZnO nanocrystals in sapphire by ion implantation and vacuum annealing

    Science.gov (United States)

    Marques, C.; Franco, N.; Alves, L. C.; da Silva, R. C.; Alves, E.; Safran, G.; McHargue, C. J.

    2007-04-01

    The synthesis of embedded ZnO nanoparticles in m-cut sapphire was achieved through high fluence Zn ion implantation, 0.9 × 1017 cm-2 at room temperature, followed by annealing at 1000 °C in vacuum. In c-cut samples subjected to similar annealing conditions only buried precipitates of Zn form. TEM results in these samples show a high concentration of faceted precipitates distributed along the c-plane and the presence of Kirkendall voids distributed along the entire implanted region. In both cases a strong loss of Zn is observed upon annealing, which depends on the sapphire host orientation.

  7. Tunable Sum Frequency Mixing of a Ti∶sapphire Laser and a Nd∶YAG Laser

    Institute of Scientific and Technical Information of China (English)

    DING Xin; YAO Jianquan; YU Yizhong; YU Xuanyi; XU Jingjun; ZHANG Guangyin

    2001-01-01

    In this paper the theoretical and experimental results of sum-frequency mixing of a Ti∶sapphire laser and a 1.064 μm Nd∶YAG laser are presented. By using two KTP crystals cut at θ=76° and 85° (φ=90° in both crystals), respectively, the sum-frequency mixing tuning range from 459.3 to 509.6 nm in one Ti∶sapphire laser setup is experimentally achieved. The maximum output energy was 14.6 mJ and the energy conversion efficiency was up to 15.2%.

  8. Synthesis of ZnO nanocrystals in sapphire by ion implantation and vacuum annealing

    Energy Technology Data Exchange (ETDEWEB)

    Marques, C. [LFI, Dep. Fisica, Instituto Tecnologico e Nuclear, E.N. 10, 2686-953 Sacavem (Portugal); Centro Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal); Franco, N. [LFI, Dep. Fisica, Instituto Tecnologico e Nuclear, E.N. 10, 2686-953 Sacavem (Portugal); Centro Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal); Alves, L.C. [LFI, Dep. Fisica, Instituto Tecnologico e Nuclear, E.N. 10, 2686-953 Sacavem (Portugal); Centro Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal); Silva, R.C. da [LFI, Dep. Fisica, Instituto Tecnologico e Nuclear, E.N. 10, 2686-953 Sacavem (Portugal) and Centro Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal); Alves, E. [LFI, Dep. Fisica, Instituto Tecnologico e Nuclear, E.N. 10, 2686-953 Sacavem (Portugal) and Centro Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal)]. E-mail: ealves@itn.pt; Safran, G. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest (Hungary); McHargue, C.J. [University of Tennessee, Knoxville, TN 37996-0750 (United States)

    2007-04-15

    The synthesis of embedded ZnO nanoparticles in m-cut sapphire was achieved through high fluence Zn ion implantation, 0.9 x 10{sup 17} cm{sup -2} at room temperature, followed by annealing at 1000 deg. C in vacuum. In c-cut samples subjected to similar annealing conditions only buried precipitates of Zn form. TEM results in these samples show a high concentration of faceted precipitates distributed along the c-plane and the presence of Kirkendall voids distributed along the entire implanted region. In both cases a strong loss of Zn is observed upon annealing, which depends on the sapphire host orientation.

  9. Birefringence measurements in single crystal sapphire and calcite shocked along the a axis

    Science.gov (United States)

    Tear, Gareth R.; Chapman, David J.; Eakins, Daniel E.; Proud, William G.

    2017-01-01

    Calcite and sapphire were shock compressed along the direction (a axis) in a plate impact configuration. Polarimetery and Photonic Doppler Velocimetery (PDV) were used to measure the change in birefringence with particle velocity in the shock direction. Results for sapphire agree well with linear photoelastic theory and current literature showing a linear relationship between birefringence and particle velocity up to 310 m s-1. A maximum change in birefringence of 5% was observed. Calcite however showed anomolous behaviour with no detectable change in birefringence (less than 0.1%) over the range of particle velocities studied (up to 75 m s-1).

  10. Intracavity frequency doubling of CW Ti:Sapphire laser utilising BiBO nonlinear crystal

    DEFF Research Database (Denmark)

    Thorhauge, Morten; Mortensen, Jesper Liltorp; Tidemand-Lichtenberg, Peter

    Utilising BiBO nonlinear crystal frequency doubling a Ti:Sapphire CW laser gave 100 mW at 405 nm and 53 mW at 392 nm. Stability proved excellent without servo control. Broad tunability was shown around 392 nm.......Utilising BiBO nonlinear crystal frequency doubling a Ti:Sapphire CW laser gave 100 mW at 405 nm and 53 mW at 392 nm. Stability proved excellent without servo control. Broad tunability was shown around 392 nm....

  11. Behaviors of optical and chemical state of Nb+ implanted sapphire after annealing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The behavior of the radiation damage of sapphire crystal, produced by implantation with 380 keV Nb+ ion followed by annealing in a series of steps from 500 to 1100℃C at reducing atmosphere, was investigated in optical absorption and XPS measurements. It is found that the implanted niobium in sapphire is in different local environments with different chemical states after the annealing. The changes in optical density (OD) from the bands, based on the well known F-type centers, show that the annealing behavior of the radiation damage may be divided into different stages due to different mechanisms.

  12. Measurement for titanium density distribution on Ti:sapphire rods for high intensity pump source

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Tsutomu; Nishimura, Akihiko; Sugiyama, Akira [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment

    2001-10-01

    A Ti:sapphire rod of 190 mm length made by Czochralski (CZ) technique was used in the flashlamp pumped high intensity laser for Yb:glass chirped pulse amplification. In the absorption spectroscopy of the rod immersed in an index matching liquid of methylene iodide, heterogeneous Ti{sup 3+} density distribution was measured along the direction of length. It has been first clarified that the Ti:sapphire rod grown by the CZ technique has 20% difference of the Ti{sup 3+} density at the both ends. (author)

  13. Sapphire: Relation between luminescence of starting materials and luminescence of single crystals

    Science.gov (United States)

    Mogilevsky, R.; Nedilko, S.; Sharafutdinova, L.; Burlay, S.; Sherbatskii, V.; Boyko, V.; Mittl, S.

    2009-10-01

    A relation between photoluminescence (PL) characteristics of different starting materials used for crystal growth and un-doped sapphire single crystals manufactured using various methods of crystal growth (Kyropolus, HEM, Czochralski, and EFG) was found. The crystals grown using the Verneuil starting material exhibited significant PL when any method of crystal growth was used. On the contrary, sapphire samples grown by the same technologies wherein the starting material was EMT HPDA R revealed very low PL. (HPDA R is produced by EMT, Inc., with proprietary and patented technology.)

  14. Neutrino Masses and Oscillations

    CERN Document Server

    Valle, J W F

    2005-01-01

    I summarize the status of three--neutrino oscillations that follow from combining the relevant world's data. The discussion includes the small parameters Delta_m-sol/Delta_m-atm and \\sin^2\\theta_{13}, which characterize the strength of CP violation in neutrino oscillations, the impact of oscillation data on the prospects for probing the absolute scale of neutrino mass in \

  15. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  16. Neutrino oscillations: theory and phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, E.K., E-mail: akhmedov@ictp.trieste.it [Department of Theoretical Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm (Sweden)

    2011-12-15

    A brief overview of selected topics in the theory and phenomenology of neutrino oscillations is given. These include: oscillations in vacuum and in matter; phenomenology of 3-flavour neutrino oscillations; CP and T violation in neutrino oscillations in vacuum and in matter; matter effects on {nu}{sub {mu}}{r_reversible}{nu}{sub {tau}} oscillations; parametric resonance in neutrino oscillations inside the earth; oscillations below and above the MSW resonance; unsettled issues in the theory of neutrino oscillations.

  17. Covariant harmonic oscillators and coupled harmonic oscillators

    Science.gov (United States)

    Han, Daesoo; Kim, Young S.; Noz, Marilyn E.

    1995-01-01

    It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.

  18. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  19. Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Laurat, Julien; Ourjoumtsev, Alexei

    2007-01-01

    We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors...

  20. Fully-depleted silicon-on-sapphire and its application to advanced VLSI design

    Science.gov (United States)

    Offord, Bruce W.

    1992-01-01

    In addition to the widely recognized advantages of full dielectric isolation, e.g., reduced parasitic capacitance, transient radiation hardness, and processing simplicity, fully-depleted silicon-on-sapphire offers reduced floating body effects and improved thermal characteristics when compared to other silicon-on-insulator technologies. The properties of this technology and its potential impact on advanced VLSI circuitry will be discussed.

  1. Deep-ultraviolet frequency metrology with a narrowband titanium:sapphire laser

    NARCIS (Netherlands)

    Hannemann, S.

    2007-01-01

    Within the framework of this thesis resaerch project a narrow band titanium:sapphire laser was built. It provides nanosecond pulses that are subsequently upconverted to the deep ultraviolet frequency range. Absolute frequency calibration is achieved by linking the injection seeding light to a

  2. Low Temperature Rhombohedral Single Crystal SiGe Epitaxy on c-plane Sapphire

    Science.gov (United States)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Current best practice in epitaxial growth of rhombohedral SiGe onto (0001) sapphire (Al2O3) substrate surfaces requires extreme conditions to grow a single crystal SiGe film. Previous models described the sapphire surface reconstruction as the overriding factor in rhombohedral epitaxy, requiring a high temperature Al-terminated surface for high quality films. Temperatures in the 850-1100 C range were thought to be necessary to get SiGe to form coherent atomic matching between the (111) SiGe plane and the (0001) sapphire surface. Such fabrication conditions are difficult and uneconomical, hindering widespread application. This work proposes an alternative model that considers the bulk sapphire structure and determines how the SiGe film nucleates and grows. Accounting for thermal expansion effects, calculations using this new model show that both pure Ge and SiGe can form single crystal films in the 450-550 C temperature range. Experimental results confirm these predictions, where x-ray diffraction and atomic force microscopy show the films fabricated at low temperature rival the high temperature films in crystallographic and surface quality. Finally, an explanation is provided for why films of comparable high quality can be produced in either temperature range.

  3. Laser-assisted microstructuring for Ti:sapphire channel-waveguide fabrication

    NARCIS (Netherlands)

    Crunteanu, A.; Pollnau, Markus; Jänchen, G.; Hibert, C.; Hoffmann, P.; Salathé, R.P.; Eason, R.W.; Shepherd, D.P.

    We report on the fabrication of Ti:sapphire channel waveguides. Such channel waveguides are of interest, e.g., as low-threshold tunable lasers. We investigated several structuring methods including ion beam implantation followed by wet chemical etching strip loading by polyimide spin coating and

  4. Study on Inclusions in Large Sapphire Optical Crystal Grown by SAPMAC Method

    Institute of Scientific and Technical Information of China (English)

    WANG Gui-gen; ZHANG Ming-fu; ZUO Hong-bo; HE Xiao-dong; HAN Jie-cai

    2006-01-01

    The sapphire (Al2O3) single crystal is a kind of excellent infrared transmission window materials. A large-sized sapphire (Φ225 mm×205 mm, 27.5 kg) was grown by SAPMAC method (sapphire growth technique with micro-pulling and shoulder-expanding at cooled center). Several kinds of inclusion in the large sapphire crystal were investigated by means of an optical microscopy (OM), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The experimental results show that most inclusions are consisted of solid metallic and non-metallic particles as well as gas pores caused by the impurity of alumina as the raw material, the thermal dissociation of aluminum oxide melt and the reaction of the melt to the crucible material (Mo) at high temperatures. It is also found that in different crystal regions the inclusions are of varied sizes, morphology and chemical compositions. Finally, the measures to reduce and eliminate the inclusions are proposed to improve the crystal quality.

  5. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (1120) sapphire.

    Energy Technology Data Exchange (ETDEWEB)

    Oleson, Timothy A. [University of Wisconsin, Madison; Sahai, Nita [University of Akron; Wesolowski, David J [ORNL; Dura, Joseph A [ORNL; Majkrzak, Charles F [ORNL; Giuffre, Anthony J. [University of Wisconsin, Madison

    2012-01-01

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetric membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacjed SPBs retain properties (e.,g. fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined face coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (1120) face of sapphire (a-Al2O3). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (l=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I>210mM, or with addition of 2mM Ca2+. The latter two effects are additive, suggesting that Ca2+ mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on a-Al2O3 particles determined by adsorption isotherms and on single-crystal (1010) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.

  6. Growth and characterisation of epitaxially ordered zinc aluminate domains on c-sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Grabowska, J.; Rajendra Kumar, R.T. [School of Physical Sciences/National Centre for Plasma Science and Technology, Dublin City University (Ireland); McGlynn, E. [School of Physical Sciences/National Centre for Plasma Science and Technology, Dublin City University (Ireland)], E-mail: enda.mcglynn@dcu.ie; Nanda, K.K. [School of Physical Sciences/National Centre for Plasma Science and Technology, Dublin City University (Ireland); Newcomb, S.B. [Glebe Scientific Ltd., Newport, Co. Tipperary (Ireland); McNally, P.J.; O' Reilly, L. [School of Electronic Engineering/Research Institute for Networks and Communications Engineering, Dublin City University (Ireland); Mosnier, J.-P.; Henry, M.O. [School of Physical Sciences/National Centre for Plasma Science and Technology, Dublin City University (Ireland)

    2008-02-29

    Epitaxially ordered zinc aluminate domains with sub-micron dimensions are formed on bare c-sapphire substrates using a vapour phase method (with vapour generated by carbothermal reduction of ZnO) at various temperatures and growth durations. A zinc aluminate (ZnAl{sub 2}O{sub 4}) layer is formed by reaction of the source materials (Zn and O) with the substrate. We observe crystallites with a well-defined epitaxial relationship on the sapphire substrate in addition to polycrystalline material. The epitaxially oriented deposit displays the form of characteristically twinned (singly or multiply) grains of sub-micron dimensions with three variants, consistent with the c-sapphire substrate symmetry. Scanning electron microscopy and transmission electron microscopy studies show that the formation of these grains is associated with the presence of extended defects in the sapphire substrate. Epitaxially ordered grains formed at higher temperatures show a change in the nature of the twin boundaries and epitaxial relations as a function of growth time, attributed to the effects of annealing during growth.

  7. New sapphire and ruby components and their manufacture using diamond abrasives

    Science.gov (United States)

    Sauser, D.

    The properties of synthetic aluminum oxides (sapphire and ruby) and their applications in watchmaking (watch bearings and watchglasses) and as hard-wearing components such as centering devices for optical fibres and water jet nozzles for material cutting are discussed. Examples are given of the use of diamonds tools for machining such components, including sawing, drilling, grinding and polishing operations.

  8. Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: implications for gem color and genesis

    Science.gov (United States)

    Zaw, Khin; Sutherland, Lin; Yui, Tzen-Fu; Meffre, Sebastien; Thu, Kyaw

    2015-01-01

    Rubies and sapphires are of both scientific and commercial interest. These gemstones are corundum colored by transition elements within the alumina crystal lattice: Cr3+ yields red in ruby and Fe2+, Fe3+, and Ti4+ ionic interactions color sapphires. A minor ion, V3+ induces slate to purple colors and color change in some sapphires, but its role in coloring rubies remains enigmatic. Trace element and oxygen isotope composition provide genetic signatures for natural corundum and assist geographic typing. Here, we show that V can dominate chromophore contents in Mogok ruby suites. This raises implications for their color quality, enhancement treatments, geographic origin, exploration and exploitation and their comparison with rubies elsewhere. Precise LA-ICP-MS analysis of ruby and sapphire from Mogok placer and in situ deposits reveal that V can exceed 5,000 ppm, giving V/Cr, V/Fe and V/Ti ratios up to 26, 78, and 97 respectively. Such values significantly exceed those found elsewhere suggesting a localized geological control on V-rich ruby distribution. Our results demonstrate that detailed geochemical studies of ruby suites reveal that V is a potential ruby tracer, encourage comparisons of V/Cr-variation between ruby suites and widen the scope for geographic typing and genesis of ruby. This will allow more precise comparison of Asian and other ruby fields and assist confirmation of Mogok sources for rubies in historical and contemporary gems and jewelry.

  9. "You Hafta Push": Using Sapphire's Novel to Teach Introduction to American Government

    Science.gov (United States)

    Pappas, Christine

    2007-01-01

    Using fiction in the classroom can dramatize public policy issues and political science concepts, therefore, making them more real and relevant to students. Sapphire's 1996 novel "Push" puts a face on welfare, rape, incest, child abuse, educational inequalities, homophobia, and AIDS. I also use this novel to discuss the public policy process,…

  10. Thermal Stresses and Cracks During the Growth of Large-sized Sapphire with SAPMAC Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The finite-element method has been used to study the thermal stress distribution in large-sized sapphire crystals grown with the sapphire growth technique with micro-pulling and shoulder-expanding at cooled center (SAPMAC) method. A critical defect model has been established to explain the growth and propagation of cracks during the sapphire growing process. It is demonstrated that the stress field depends on the growth rate, the ambient temperature and the crystallizing direction. High stresses always exist near the growth interfaces, at the shoulder-expanding locations, the tailing locations and the sites where the diameters undergo sharp changes. The maximum stresses always occur at the interface of seeds and crystals. Cracks often form in the critical defect region and spread in the m-planes and a-planes under applied tensile stresses during crystal growth. The experimental results have verified that with the improved system of crystal growth and well-controlled techniques, the large-sized sapphire crystals of high quality can be grown due to absence of cracks.

  11. A century of sapphire crystal growth: origin of the EFG method

    Science.gov (United States)

    Harris, Daniel C.

    2009-08-01

    A. Verneuil developed flame fusion to grow sapphire and ruby on a commercial scale around 1890. Flame fusion was further perfected by Popov in the Soviet Union in the 1930s and by Linde Air Products Co. in the U.S. during World War II. Union Carbide Corp., the successor to Linde, developed Czochralski crystal growth for sapphire laser materials in the 1960s. Edge-Defined Film-Fed Growth (EFG) was invented by H. Labelle in the 1960s and the Heat Exchanger Method (HEM) was invented by F. Schmid and D. Viechnicki in 1967. Both methods were commercialized in the 1970s. Gradient solidification was invented in Israel in the 1970s by J. Makovsky. The Horizontal Directional Solidification Method (HDSM) was invented by Kh. S. Bagdasorov in the Soviet Union in the 1960s. Kyropoulos growth of sapphire, known as GOI crystal growth in the Soviet Union, was developed by M. Musatov at the State Optical Institute in St. Petersburg in the 1970s. Today, half of the world's sapphire is produced by the GOI method.

  12. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  13. Improvement of luminous intensity of InGaN light emitting diodes grown on hemispherical patterned sapphire

    Science.gov (United States)

    Lee, Jae-Hoon; Oh, Jeong-Tak; Park, Jin-Sub; Kim, Je-Won; Kim, Yong-Chun; Lee, Jeong-Wook; Cho, Hyung-Koun

    2006-06-01

    To improve the external quantum efficiency, high quality GaN film was grown on hemispherical patterned sapphire by controlling the V/III ratio during the initial growth stage. The luminous intensity of white flash light emitting diode (LED) grown on hemispherical patterned sapphire (HPS) was estinated to be 5.8 cd at a forward current of 150 mA, which is improved by 20% more than that of LED grown on conventional sapphire substrate. The improvement of luminous intensity was explained by considering not only an increase of the extraction efficiency via the suppressed total internal reflection at the corrugated interface but also a decrease of dislocation density.

  14. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  15. Self-oscillation

    Science.gov (United States)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  16. Electricity customer classification based on optimized FCM clustering by hybrid CSO%纵横交叉算法优化FCM在电力客户分类中的应用

    Institute of Scientific and Technical Information of China (English)

    孟安波; 卢海明; 李海亮; 谭火超; 郭壮志

    2015-01-01

    电力客户分类是供电企业客户关系管理的基石,为了提高聚类算法的稳定性和精确性,提出了一种纵横交叉算法(CSO)与模糊 C 均值算法(FCM)有机结合的新聚类算法(CSO-FCM),并用新算法进行客户分类.新方法有效弥补了单一算法的不足,拥有模糊理论处理不确定信息的能力以及纵横交叉算法全局收敛性强的特点.利用新算法对电力客户数据进行客观、科学的挖掘分析,实现了对电力大客户较全面和准确的精细化分类,为供电企业制定有针对性的营销策略提供了依据.%Electrical consumers segmentation is the cornerstone of consumers relation management of electrical supply enterprises, in order to improve stability and exactness of clustering algorithm, this paper proposes a novel clustering algorithm to conduct consumers segmentation, which is organic combination by crisscross optimization algorithm and FCM. This method effectively compensates the demerits of single intelligent algorithm, which not only has the ability to dispose unstable information of fuzzy theory, but also has an advantage of global convergence of CSO. The new algorithm is used to objectively and scientifically analyze the electrical consumers data, achieving comprehensive and accurate segmentation, which can offer a pointed marketing strategies for enterprises.

  17. Single-crystal sapphire resonator at millikelvin temperatures: Observation of thermal bistability in high- Q factor whispering gallery modes

    Science.gov (United States)

    Creedon, Daniel L.; Tobar, Michael E.; Le Floch, Jean-Michel; Reshitnyk, Yarema; Duty, Timothy

    2010-09-01

    Resonance modes in single crystal sapphire (α-Al2O3) exhibit extremely high electrical and mechanical Q factors ( ≈109 at 4 K), which are important characteristics for electromechanical experiments at the quantum limit. We report the cool down of a bulk sapphire sample below superfluid liquid-helium temperature (1.6 K) to as low as 25 mK. The electromagnetic properties were characterized at microwave frequencies, and we report the observation of electromagnetically induced thermal bistability in whispering gallery modes due to the material T3 dependence on thermal conductivity and the ultralow dielectric loss tangent. We identify “magic temperatures” between 80 and 2100 mK, the lowest ever measured, at which the onset of bistability is suppressed and the frequency-temperature dependence is annulled. These phenomena at low temperatures make sapphire suitable for quantum metrology and ultrastable clock applications, including the possible realization of the quantum-limited sapphire clock.

  18. Reduction of Residual Stresses in Sapphire Cover Glass Induced by Mechanical Polishing and Laser Chamfering Through Etching

    Directory of Open Access Journals (Sweden)

    Shih-Jeh Wu

    2016-10-01

    Full Text Available Sapphire is a hard and anti-scratch material commonly used as cover glass of mobile devices such as watches and mobile phones. A mechanical polishing using diamond slurry is usually necessary to create mirror surface. Additional chamfering at the edge is sometimes needed by mechanical grinding. These processes induce residual stresses and the mechanical strength of the sapphire work piece is impaired. In this study wet etching by phosphate acid process is applied to relief the induced stress in a 1” diameter sapphire cover glass. The sapphire is polished before the edge is chamfered by a picosecond laser. Residual stresses are measured by laser curvature method at different stages of machining. The results show that the wet etching process effectively relief the stress and the laser machining does not incur serious residual stress.

  19. Hyperchaotic Oscillator with Gyrators

    DEFF Research Database (Denmark)

    Tamasevicius, A; Cenys, A; Mykolaitis, G.

    1997-01-01

    A fourth-order hyperchaotic oscillator is described. It contains a negative impedance converter, two gyratots, two capacitors and a diode. The dynamics of the oscillator is shown to be characterised by two positive Lyapunov exponents. The performance of the circuit is investigated by means...

  20. Convection and oscillations

    CERN Document Server

    Houdek, G

    2010-01-01

    In this short review on stellar convection dynamics I address the following, currently very topical, issues: (1) the surface effects of the Reynolds stresses and nonadiabaticity on solar-like pulsation frequencies, and (2) oscillation mode lifetimes of stochastically excited oscillations in red giants computed with different time-dependent convection formulations.

  1. Oscillations at low energies

    CERN Document Server

    Dwyer, D A

    2015-01-01

    A concise summary of the "Oscillation at low energies" parallel session at the 2014 Neutrino Oscillation Workshop is provided. Plans to use man-made neutrinos and antineutrinos to determine the neutrino mass hierarchy, search for sterile neutrinos, and to observe coherent neutrino-nucleus scattering were discussed. Potential measurements of solar neutrinos, supernova neutrinos, and geoneutrinos are also summarized.

  2. Hyperchaotic Oscillator with Gyrators

    DEFF Research Database (Denmark)

    Tamasevicius, A; Cenys, A; Mykolaitis, G.;

    1997-01-01

    A fourth-order hyperchaotic oscillator is described. It contains a negative impedance converter, two gyratots, two capacitors and a diode. The dynamics of the oscillator is shown to be characterised by two positive Lyapunov exponents. The performance of the circuit is investigated by means...

  3. On the Dirac oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Centro de Tecnologia. Unidade Academica de Educacao]. E-mail: rafael@df.ufcg.edu.br; rafaelr@cbpf.br

    2007-07-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  4. Erbium-doped crystalline YAG planar and ridge waveguides on quartz and sapphire substrates: deposition and material characterisation

    Science.gov (United States)

    Facchini, G.; Zappettini, A.; Canali, A.; Martinelli, M.; Gabetta, G.; Tallarida, G.

    2001-06-01

    Er-doped Yttrium-Aluminium-Garnet (YAG) planar and ridge waveguides have been grown on quartz and sapphire substrates. The waveguides have been structurally, morphologically and stoichiometrically characterised by X-ray diffraction, atomic force microscopy and X-ray photoelectron spectroscopy. Doping concentrations up to 5% have been successfully demonstrated. Deposition of channel waveguide on sapphire substrate results in a correct ridge shape.

  5. Evaluation of the Quality of Sapphire Using X-Ray Rocking Curves and Double-Crystal X-Ray Topography

    Science.gov (United States)

    1994-05-01

    hard, high-strength, chemically resistant optical windows; and sub- srates for the growth of epitaxial films. The quality of a sapphire crystal can... crystal diffractometer. Single- crystal sapphire may be grown by a variety of different methods, of which the more common are Verneuil (flame fusion...Linear features (L), which may represent slight variations in lattice parameter along the crystal growth front, or dislocation networks, ad small

  6. Disentangling neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew G. [Physics Department, Boston University, Boston, MA 02215 (United States)], E-mail: cohen@bu.edu; Glashow, Sheldon L. [Physics Department, Boston University, Boston, MA 02215 (United States)], E-mail: slg@bu.edu; Ligeti, Zoltan [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)], E-mail: ligeti@lbl.gov

    2009-07-13

    The theory underlying neutrino oscillations has been described at length in the literature. The neutrino state produced by a weak decay is usually portrayed as a linear superposition of mass eigenstates with, variously, equal energies or equal momenta. We point out that such a description is incorrect, that in fact, the neutrino is entangled with the other particle or particles emerging from the decay. We offer an analysis of oscillation phenomena involving neutrinos (applying equally well to neutral mesons) that takes entanglement into account. Thereby we present a theoretically sound proof of the universal validity of the oscillation formulae ordinarily used. In so doing, we show that the departures from exponential decay reported by the GSI experiment cannot be attributed to neutrino mixing. Furthermore, we demonstrate that the 'Moessbauer' neutrino oscillation experiment proposed by Raghavan, while technically challenging, is correctly and unambiguously describable by means of the usual oscillation formalae.

  7. Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence

    Science.gov (United States)

    Yerci, S.; Serincan, U.; Dogan, I.; Tokay, S.; Genisel, M.; Aydinli, A.; Turan, R.

    2006-10-01

    Silicon nanocrystals, average sizes ranging between 3 and 7nm, were formed in sapphire matrix by ion implantation and subsequent annealing. Evolution of the nanocrystals was detected by Raman spectroscopy and x-ray diffraction (XRD). Raman spectra display that clusters in the matrix start to form nanocrystalline structures at annealing temperatures as low as 800°C in samples with high dose Si implantation. The onset temperature of crystallization increases with decreasing dose. Raman spectroscopy and XRD reveal gradual transformation of Si clusters into crystalline form. Visible photoluminescence band appears following implantation and its intensity increases with subsequent annealing process. While the center of the peak does not shift, the intensity of the peak decreases with increasing dose. The origin of the observed photoluminescence is discussed in terms of radiation induced defects in the sapphire matrix.

  8. Process for the Φ130 sapphire window element with long distance and high resolution

    Science.gov (United States)

    Xu, Zengqi; Su, Ying; Lei, Jianli; Guo, Rui; Zhang, Feng; Guo, Xinlong; Liu, Xuanmin; Sun, Taohui

    2016-10-01

    With the process test for the choice of materials, the test materials and the molds, the abrasives, the temperature and the different machining process monitoring parameters of the polishing machine, the process method and the quality control technology were figured out for the Φ130 sapphire window element with long distance and high resolution (hereinafter referred to as window element), meantime, the optimum process condition was determined to machine the element. The results were that the high resolution imaging window was processed with the surface roughness Ra of 0.639nm, the transmission distortion of λ/10 (λ=632.8nm), the parallel error of 5″, the resolution of 1.47″ and the focal length of 5 km, which can satisfy the imaging requirements better for the military photoelectric device for sapphire window with long distance and high resolution.

  9. Growth and Characterization of InN Thin Films on Sapphire by MOCVD

    Institute of Scientific and Technical Information of China (English)

    XIE Zi-Li; ZHANG Rong; XIU Xiang-Qian; LIU Bin; LI Liang; HAN Ping; GU Shu-Lin; SHI Yi; ZHENG You-Dou

    2007-01-01

    Indium nitride thin films are grown on sapphire substrates by metal-organic chemical vapour deposition(MOCVD).By employing three-step layer buffers,the mirror-like layers on two-inch sapphire wafers have been obtained.The structural,optical and electrical characteristics of InN are investigated by x-ray diffraction,scanning electron microscopy,atomic force microscopy,photoluminescence and infrared optical absorpton.The photoluminescence and the absorption studies of the materials reveal a marked energy bandgap structure around 0.70 eV at room temperature.The room-temperature Hall mobility and carrier concentration of the film are typically 939 cm2/Vs,and 3.9×1018cm-3,respectively.

  10. Characterization of superconducting magnesium-diboride films on glassy carbon and sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E.; Zavala, E. P. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000 Mexico D. F. (Mexico); Rocha, M. F. [Escuela Superior de Ingenieria Mecanica y Electrica, IPN, Mexico D. F. (Mexico); Jergel, M.; Falcony, C. [Departamento de Fisica, CINVESTAV-IPN, Apartado postal 14-740, 07000 Mexico D. F. (Mexico)

    2008-02-15

    IBA methods were applied to measure elemental depth profiles of precursors and superconducting MgB{sub 2} thin films deposited on glassy carbon (Good Fellows) and sapphire (Al{sub 2}O{sub 3}) substrates. For each type of substrates we obtained a pair of samples i.e. one amorphous precursor and one superconducting film which were then characterized. A 3{sup H}e{sup +} beam was used to bombard both, precursors and superconducting films in order to obtain the samples elemental composition profiles. The zero resistance T{sub co} and the middle of transition T{sub cm} values were 26.0 K and 29.7 K for the MgB{sub 2} film deposited on glassy carbon substrate. In the case of sapphire substrate the T{sub co} and T{sub cm} values were 25.0 K and 27.9 K, respectively. (Author)

  11. Nearly octave-spanning frequency comb generation in AlN-on-sapphire microresonators

    CERN Document Server

    Liu, Xianwen; Xiong, Bing; Wang, Lai; Wang, Jian; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tongbo; Zhang, Yun; Wang, Junxi

    2016-01-01

    We report a nearly octave-spanning optical frequency comb generation with a coverage of $\\sim$1000 nm in continuous-wave pumped aluminum nitride (AlN)-on-sapphire microring resonators. Thanks to optimized device design and fabrication process, high-quality-factor AlN microrings with high cavity finesse and low insertion loss are demonstrated. By tailoring the cavity dimension, a broadband anomalous dispersion is secured to facilitate the frequency comb generation. Blue-shifted dispersive wave emission as well as stimulated Raman scattering is observed, which helps extend the comb spectrum coverage. Our work suggests that AlN-on-sapphire can be an appealing platform for integrated nonlinear optics.

  12. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    Energy Technology Data Exchange (ETDEWEB)

    Predtechensky, MR.; Smal, A.N.; Varlamov, Y.D. [Institute of Thermophysics, Novosibirsk (Russian Federation)] [and others

    1994-12-31

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth and Al atoms do not diffuse from substrate into the film and the films with thickness up to 100nm exhibit the excellent DC properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R{sub S}). The low value of surface resistance R{sub S}(75GHz,77K)=20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  13. Use of Be(p,{alpha}) and Be(p,d) Reactions to Determine Be Content in Sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    Since natural coloured sapphire ({alpha}-Al{sub 2}O{sub 3}) commands a high gem stone market price there is a need for a reliable method of identifying artificially coloured sapphire that has an inherently lower value. Diffusing beryllium into sapphire at high temperatures results in a coloured stone virtually indistinguishable from a natural one. Beryllium can occur naturally in sapphire but at levels of <1 ppma. Beryllium diffused sapphire typically contains >10 ppma, which is difficult to determine in a non destructive way. It is possible to utilize nuclear reaction analysis techniques to determine the beryllium content in a macroscopically non destructive way. Kinematically ideal reactions are Be(p,{alpha}) and Be(p,d) which, for Ep = 0.5 to 0.9 MeV, exhibit distinct reaction product signatures well separated from other proton induced reactions in aluminium or oxygen. Due to the lack of comprehensive cross section data for the Be(p,{alpha}) and Be(p,d) reactions in the energy range of interest, a series of measurements were made at the Van de Graaff accelerator facility at Necsa to create a new data base. A further outcome of these measurements was a deviation in reported values for the non-Rutherfordian proton back-scatter cross section. These new data bases, which extend to Ep = 2.6MeV, can now facilitate a procedure for determining beryllium content in sapphire.

  14. Evaluation of heat extraction through sapphire fibers for the GW observatory KAGRA

    OpenAIRE

    Khalaidovski, Alexander; Hofmann, Gerd; CHEN, DAN; Komma, Julius; Schwarz, Christian; Tokoku, Chihiro; Kimura, Nobuhiro; Suzuki, Toshikazu; Scheie, Allen O.; Majorana, Ettore; Nawrodt, Ronny; Yamamoto, Kazuhiro

    2014-01-01

    Currently, the Japanese gravitational wave laser interferometer KAGRA is under construction in the Kamioka mine. As one main feature, it will employ sapphire mirrors operated at a temperature of 20K to reduce the impact from thermal noise. To reduce seismic noise, the mirrors will also be suspended from multi-stage pendulums. Thus the heat load deposited in the mirrors by absorption of the circulating laser light as well as heat load from thermal radiation will need to be extracted through th...

  15. High energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti:sapphire wavelength

    CERN Document Server

    Monoszlai, B; Jazbinsek, M; Hauri, C P

    2013-01-01

    High energy terahertz pulses are produced by optical rectification (OR) in organic crystals DAST and DSTMS by a Ti:sapphire amplifier system centered at 0.8 microns. The simple scheme provides broadband spectra between 1 and 5 THz, when pumped by collimated 60 fs near-infrared pump pulse and it is scalable in energy. Fluence-dependent conversion efficiency and damage threshold are reported as well as optimized OR at visible wavelength.

  16. Silicon-on-Sapphire Waveguides: Mode-converting Couplers and Four-wave Mixing

    Science.gov (United States)

    2014-09-01

    width of the waveguides was between 1600 and 1900 nm . Figure 1 shows gain bands for a waveguide with 500- nm height and 1700 - nm width, demonstrating...1. Calculated conversion efficiency of four-wave mixing in 1700 - nm wide silicon-on-sapphire waveguide. Color bar indicates conversion efficiency in...dominance. Previous investigations show that this spectral range is of interest for applications that include free-space communications, laser radar

  17. ZnO Nanostructures Grown on AlN/Sapphire Substrates by MOCVD

    Institute of Scientific and Technical Information of China (English)

    WEI Hong-Yuan; HU Wei-Guo; ZHANG Pan-Feng; LIU Xiang-Lin; ZHU Qin-Sheng; WANG Zhan-Guo

    2007-01-01

    ZnO nanorods and nanotubes are successful synthesized on AlN/sapphire substrates by metal-organic chemical vapour deposition (MOCVD). The different morphology and structure properties of ZnO nanorods and nanotubes are found to be affected by the A1N under-layer. The photoluminescence spectra show the optical properties of the ZnO nanorods and nanotubes, in which a blueshift of UV emission is observed and is attributed to the surface effect.

  18. Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate.

    Science.gov (United States)

    Dantan, Aurélien; Laurat, Julien; Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe

    2007-07-09

    We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors as high as 17 and 320 nJ Fourier-limited pulses are obtained at a 800 kHz repetition rate.

  19. Direct pumping of ultrashort Ti:sapphire lasers by a frequency doubled diode laser

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2011-01-01

    electro-optical efficiency of the diode laser. Autocorrelation measurements show that pulse widths of less than 20 fs can be expected with an average power of 52 mW when using our laser. These results indicate the high potential of direct diode laser pumped Ti: sapphire lasers to be used in applications...... like retinal optical coherence tomography (OCT) or pumping of photonic crystal fibers for CARS (coherent anti-stokes Raman spectroscopy) microscopy....

  20. High Power Widely Tunable Narrow Linewidth All-Solid-State Pulsed Titanium-Doped Sapphire Laser

    Institute of Scientific and Technical Information of China (English)

    DING Xin; LI Xue; SHENG Quan; SHI Chun-Peng; YIN Su-Jia; LI Bin; YU Xuan-Yi; WEN Wu-Qi; YAO Jian-Quan

    2011-01-01

    We report a widely tunable, narrow linewidth, pulsed Ti:sapphire laser pumped by an all-solid-state Q-switched intra-cavity frequency-doubled Nd:YAG laser. By using four dense Bint glass prisms as intra-cavity dispersive elements, the output wavelength can be continuously tuned over 675-970 nm and the spectral linewidth is shortened to 0.5nm. The maximum output power of 6.65 W at 780 nm is obtained under 23.4 Wpump power with repetition rate of 5.5 kHz; corresponding to an conversion efficiency of 28.4%. Due to the gain-switching characteristics of the Ti:sapphire laser, the output pulse duration is as short as 17.6ns.%@@ We report a widely tunable,narrow linewidth,pulsed Th:sapphire laser pumped by an all-solid-state Q-switched intra-cavity frequency-doubled Nd:YAG laser.By using four dense flint glass prisms as intra-cavity dispersive elements,the output wavelength can be continuously tuned over 675-970nm and the spectral linewidth is shortened to 0.5 nm.The maximum output power of 6.65 W at 780 run is obtained under 23.4 W pump power with repetition rate of 5.5 kHz,corresponding to an conversion efficiency of 28.4%.Due to the gain-switching characteristics of the Ti:sapphire laser,the output pulse duration is as short as 17.6ns.

  1. Amplified spontaneous emission and its restraint in a terawatt Ti:sapphire amplifier

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Amplified spontaneous emission (ASE) and its restraint in a femtosecond Ti: sapphire chirped_pulse amplifier were investigated. The noises arising from ASE were effectively filtered out in the spatial, temporal and spectral domain. Pulses as short as 38 fs were amplified to peak power of 1.4 TW. The power ratio between the amplified femtosecond pulse and the ASE was higher than 106:1.

  2. Molecular beam epitaxy of InN dots on nitrided sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Romanyuk, Yaroslav E.; Dengel, Radu-Gabriel; Stebounova, LarissaV.; Leone, Stephen R.

    2007-04-20

    A series of self-assembled InN dots are grown by radio frequency (RF) plasma-assisted molecular beam epitaxy (MBE) directly on nitrided sapphire. Initial nitridation of the sapphire substrates at 900 C results in the formation of a rough AlN surface layer, which acts as a very thin buffer layer and facilitates the nucleation of the InN dots according to the Stranski-Krastanow growth mode, with a wetting layer of {approx}0.9 nm. Atomic force microscopy (AFM) reveals that well-confined InN nanoislands with the greatest height/width at half-height ratio of 0.64 can be grown at 460 C. Lower substrate temperatures result in a reduced aspect ratio due to a lower diffusion rate of the In adatoms, whereas the thermal decomposition of InN truncates the growth at T>500 C. The densities of separated dots vary between 1.0 x 10{sup 10} cm{sup -2} and 2.5 x 10{sup 10} cm{sup -2} depending on the growth time. Optical response of the InN dots under laser excitation is studied with apertureless near-field scanning optical microscopy and photoluminescence spectroscopy, although no photoluminescence is observed from these samples. In view of the desirable implementation of InN nanostructures into photonic devices, the results indicate that nitrided sapphire is a suitable substrate for growing self-assembled InN nanodots.

  3. Milli-electronvolt monochromatization of hard X-rays with a sapphire backscattering monochromator

    Science.gov (United States)

    Sergueev, I.; Wille, H.-C.; Hermann, R. P.; Bessas, D.; Shvyd’ko, Yu. V.; Zając, M.; Rüffer, R.

    2011-01-01

    A sapphire backscattering monochromator with 1.1 (1) meV bandwidth for hard X-rays (20–40 keV) is reported. The optical quality of several sapphire crystals has been studied and the best crystal was chosen to work as the monochromator. The small energy bandwidth has been obtained by decreasing the crystal volume impinged upon by the beam and by choosing the crystal part with the best quality. The monochromator was tested at the energies of the nuclear resonances of 121Sb at 37.13 keV, 125Te at 35.49 keV, 119Sn at 23.88 keV, 149Sm at 22.50 keV and 151Eu at 21.54 keV. For each energy, specific reflections with sapphire temperatures in the 150–300 K region were chosen. Applications to nuclear inelastic scattering with these isotopes are demonstrated. PMID:21862862

  4. Growth of p-CdTe thin films on n-GaN/sapphire

    Science.gov (United States)

    Jung, Younghun; Chun, Seunju; Kim, Donghwan; Kim, Jihyun

    2011-07-01

    CdTe thin film was successfully grown on GaN/Sapphire substrate using a close spaced sublimation (CSS) system for the applications in solar cells. CdTe thin film was characterized by SEM, micro-Raman spectroscopy, and X-ray diffraction. The growth rate was 1 μm/min. In addition, we confirmed that CdCl 2 treatment beneficially influenced the structure and composition of the CdTe thin films. CdCl 2 treatment which has been known that it improved the efficiency of the CdS/CdTe solar cells, produced similar positive effects such as increasing the CdTe grain size and reducing the number of pin-holes. The growth of the CdTe thin film by CSS method produced nominal effects on biaxial strain and carrier concentrations in the GaN/Sapphire substrate. The CdTe thin film grown on the GaN/Sapphire substrate holds great promise for use in solar cell applications due to its several advantages.

  5. Molecular beam epitaxy of InN dots on nitrided sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Romanyuk, Yaroslav E.; Dengel, Radu-Gabriel; Stebounova, LarissaV.; Leone, Stephen R.

    2007-04-20

    A series of self-assembled InN dots are grown by radio frequency (RF) plasma-assisted molecular beam epitaxy (MBE) directly on nitrided sapphire. Initial nitridation of the sapphire substrates at 900 C results in the formation of a rough AlN surface layer, which acts as a very thin buffer layer and facilitates the nucleation of the InN dots according to the Stranski-Krastanow growth mode, with a wetting layer of {approx}0.9 nm. Atomic force microscopy (AFM) reveals that well-confined InN nanoislands with the greatest height/width at half-height ratio of 0.64 can be grown at 460 C. Lower substrate temperatures result in a reduced aspect ratio due to a lower diffusion rate of the In adatoms, whereas the thermal decomposition of InN truncates the growth at T>500 C. The densities of separated dots vary between 1.0 x 10{sup 10} cm{sup -2} and 2.5 x 10{sup 10} cm{sup -2} depending on the growth time. Optical response of the InN dots under laser excitation is studied with apertureless near-field scanning optical microscopy and photoluminescence spectroscopy, although no photoluminescence is observed from these samples. In view of the desirable implementation of InN nanostructures into photonic devices, the results indicate that nitrided sapphire is a suitable substrate for growing self-assembled InN nanodots.

  6. Influence of TMAl preflow on AlN epitaxy on sapphire

    KAUST Repository

    Sun, Haiding

    2017-05-12

    The trimethylaluminum (TMAl) preflow process has been widely applied on sapphire substrates prior to growing Al-polar AlN films by metalorganic chemical vapor deposition. However, it has been unclear how the TMAl preflow process really works. In this letter, we reported on carbon\\'s significance in the polarity and growth mode of AlN films due to the TMAl preflow. Without the preflow, no trace of carbon was found at the AlN/sapphire interface and the films possessed mixed Al- and N-polarity. With the 5 s preflow, carbon started to precipitate due to the decomposition of TMAl, forming scattered carbon-rich clusters which were graphitic carbon. It was discovered that the carbon attracted surrounding oxygen impurity atoms and consequently suppressed the formation of AlxOyNz and thus N-polarity. With the 40 s preflow, the significant presence of carbon clusters at the AlN/sapphire interface was observed. While still attracting oxygen and preventing the N-polarity, the carbon clusters served as randomly distributed masks to further induce a 3D growth mode for the AlN growth. The corresponding epitaxial growth mode change is discussed.

  7. Preparation, properties and application of sapphire single-crystal fibers grown by the EFG method

    Directory of Open Access Journals (Sweden)

    Kubát J.

    2013-05-01

    Full Text Available Sapphire – the single crystal of aluminum oxide (Al2O3 – is one of the most important artificially produced materials. The sapphire fibres studied were grown in Crytur using the “edge-defined film-fed growth” (EFG technique. Their unique physical and chemical properties can be employed in various applications. Due to their high refractive index and a broad transmission band spanning the ultraviolet, visible and infrared bands, sapphire fibres are perfect waveguides in harsh environments. The current major applications are Er:YAG laser beam delivery and pyrometric and spectrometric measurements in furnaces, combustion engines, etc. In this paper we summarize an adjustment of the EFG method to grow thin filaments by giving possible molybdenum die designs. We investigated the fibres using an optical microscope and measured their transmission of an Er:YAG laser beam (2.94 μm. The attenuation of the tested samples is approximately 0.1 dB/cm.

  8. Layered MoS{sub 2} grown on c-sapphire by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Yen-Teng; Ma, Chun-Hao; Luong, Tien-Tung; Wei, Lin-Lung; Yen, Tzu-Chun; Chu, Yung-Ching; Tu, Yung-Yi [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu (China); Hsu, Wei-Ting; Chang, Wen-Hao [Department of Electrophysics, National Chiao Tung University, Hsinchu (China); Pande, Krishna Prasad [Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu (China); Chang, Edward Yi [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu (China); Department of Electronics Engineering, National Chiao Tung University, Hsinchu (China)

    2015-03-01

    Layered growth of molybdenum disulphide (MoS{sub 2}) was successfully achieved by pulsed laser deposition (PLD) method on c -plane sapphire substrate. Growth of monolayer to a few monolayer MoS{sub 2}, dependent on the pulsed number of excimer laser in PLD is demonstrated, indicating the promising controllability of layer growth. Among the samples with various pulse number deposition, the frequency difference (A{sub 1g}-E{sup 1}{sub 2g}) in Raman analysis of the 70 pulse sample is estimated as 20.11 cm{sup -1}, suggesting a monolayer MoS{sub 2} was obtained. Two-dimensional (2D) layer growth of MoS{sub 2} is confirmed by the streaky reflection high energy electron diffraction (RHEED) patterns during growth and the cross-sectional view of transmission electron microscopy (TEM). The in-plane relationship, (0006) sapphire//(0002)MoS{sub 2} and [2 anti 1 anti 10] sapphire//[0 anti 1 anti 10]MoS{sub 2} is determined. The results imply that PLD is suitable for layered MoS{sub 2} growth. Additionally, the oxide states of Mo 3d core level spectra of PLD grown MoS{sub 2}, analysed by X-ray photoelectron spectroscopy (XPS), can be effectively reduced by adopting a post sulfurization process. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Defect formation and recrystallization in the silicon on sapphire films under Si{sup +} irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shemukhin, A.A., E-mail: shemuhin@gmail.com [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Nazarov, A.V.; Balakshin, Yu. V. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Chernysh, V.S. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-07-01

    Silicon-on-sapphire (SOS) is one of the most promising silicon-on-insulator (SOI) technologies. SOS structures are widely used in microelectronics, but to meet modern requirements the silicon layer should be 100 nm thick or less. The problem is in amount of damage in the interface layer, which decreases the quality of the produced devices. In order to improve the crystalline structure quality SOS samples with 300 nm silicon layers were implanted with Si{sup +} ions with energies in the range from 180 up to 230 keV with fluences in the range from 10{sup 14} up to 5 × 10{sup 15} cm{sup −2} at 0 °C. The crystalline structure of the samples was studied with RBS and the interface layer was studied with SIMS after subsequent annealing. It has been found out that to obtain silicon films with high lattice quality it is necessary to damage the sapphire lattice near the silicon–sapphire interface. Complete destruction of the strongly defected area and subsequent recrystallization depends on the energy of implanted ions and the substrate temperature. No significant mixing in the interface layer was observed with the SIMS.

  10. Graphene films grown on sapphire substrates via solid source molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Tang Jun; Kang Chao-Yang; Li Li-Min; Liu Zhong-Liang; Yan Wen-Sheng; Wei Shi-Qiang; Xu Peng-Shou

    2012-01-01

    A method for growing graphene on a sapphire substrate by depositing an SiC buffer layer and then annealing at high temperature in solid source molecular beam epitaxy(SSMBE)equipment was presented.The structural and electronic properties of the samples were characterized by reflection high energy diffraction(RHEED),X-ray diffractionφ scans,Raman spectroscopy,and near edge X-ray absorption fine structure(NEXAFS)spectroscopy.The results of the RHEED and φ scan,as well as the Raman spectra,showed that an epitaxial hexagonal α-SiC layer was grown on the sapphire substrate.The results of the Raman and NEXAFS spectra revealed that the graphene films with the AB Bernal stacking structure were formed on the sapphire substrate after annealing.The layer number of the graphene was between four and five,and the thickness of the unreacted SiC layer was about 1-1.5 mm.

  11. Boxing with neutrino oscillations

    Science.gov (United States)

    Wagner, D. J.; Weiler, Thomas J.

    1999-06-01

    We develop a characterization of neutrino oscillations based on the coefficients of the oscillating terms. These coefficients are individually observable; although they are quartic in the elements of the unitary mixing matrix, they are independent of the conventions chosen for the angle and phase parametrization of the mixing matrix. We call these reparametrization-invariant observables ``boxes'' because of their geometric relation to the mixing matrix, and because of their association with the Feynman box diagram that describes oscillations in field theory. The real parts of the boxes are the coefficients for the CP- or T-even oscillation modes, while the imaginary parts are the coefficients for the CP- or T-odd oscillation modes. Oscillation probabilities are linear in the boxes, so measurements can straightforwardly determine values for the boxes (which can then be manipulated to yield magnitudes of mixing matrix elements). We examine the effects of unitarity on the boxes and discuss the reduction of the number of boxes to a minimum basis set. For the three-generation case, we explicitly construct the basis. Using the box algebra, we show that CP violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. The framework presented here will facilitate general analyses of neutrino oscillations among n>=3 flavors.

  12. Quasi-Fibonacci oscillators

    CERN Document Server

    Gavrilik, A M; Rebesh, A P

    2010-01-01

    We study the properties of sequences of the energy eigenvalues for some generalizations of q-deformed oscillators including the p,q-oscillator, the 3-, 4- and 5-parameter deformed oscillators given in the literature. It is shown that most of the considered models belong to the class of so-called Fibonacci oscillators for which any three consequtive energy levels satisfy the relation E_{n+1}=\\lambda E_n+\\rho E_{n-1} with real constants \\lambda, \\rho. On the other hand, for certain \\mu-oscillator known from 1993 we prove the fact of its non-Fibonacci nature. Possible generalizations of the three-term Fibonacci relation are discussed among which for the \\mu$-oscillator we choose, as the most adequate, the so-called quasi-Fibonacci (or local Fibonacci) property of the energy levels. The property is encoded in the three-term quasi-Fibonacci (QF) relation with non-constant, n-dependent coefficients \\lambda and \\rho. Various aspects of the QF relation are elaborated for the \\mu-oscillator and some of its extensions.

  13. Quasi-Fibonacci oscillators

    Science.gov (United States)

    Gavrilik, A. M.; Kachurik, I. I.; Rebesh, A. P.

    2010-06-01

    We study the properties of the sequences of the energy eigenvalues for some generalizations of q-deformed oscillators including the p, q-oscillator, and the three-, four- and five-parameter deformed oscillators given in the literature. It is shown that most of the considered models belong to the class of so-called Fibonacci oscillators for which any three consecutive energy levels satisfy the relation En + 1 = λEn + ρEn - 1 with real constants λ, ρ. On the other hand, for a certain μ-oscillator known since 1993, we prove its non-Fibonacci nature. Possible generalizations of the three-term Fibonacci relation are discussed, among which for the μ-oscillator we choose, as the most adequate, the so-called quasi-Fibonacci (or local Fibonacci) property of the energy levels. The property is encoded in the three-term quasi-Fibonacci (QF) relation with the non-constant, n-dependent coefficients λ and ρ. Various aspects of the QF relation are elaborated for the μ-oscillator and some of its extensions.

  14. Fe-N{sub x}/C assisted chemical–mechanical polishing for improving the removal rate of sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li, E-mail: xl0522@126.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/Nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Zou, Chunli; Shi, Xiaolei [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/Nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Pan, Guoshun, E-mail: pangs@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/Nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Luo, Guihai; Zhou, Yan [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/Nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-07-15

    Highlights: • A novel non-noble metal catalyst (Fe-N{sub x}/C) was prepared. • Fe-N{sub x}/C shows remarkable catalytic activity for improving the removal rate of sapphire in alkaline solution. • The optimum CMP removal by Fe-N{sub x}/C yielded a superior surface finish of 0.078 nm the average roughness. • Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, pyridinic N as well as pyrrolic N group possibly serving as the catalytic sites. • A soft hydration layer (boehmite, AlO(OH)) was generated on the surface of sapphire during CMP process. - Abstract: In this paper, a novel non-noble metal catalyst (Fe-N{sub x}/C) is used to improve the removal mass of sapphire as well as obtain atomically smooth sapphire wafer surfaces. The results indicate that Fe-N{sub x}/C shows good catalytic activity towards sapphire removal rate. And the material removal rates (MRRs) are found to vary with the catalyst content in the polishing fluid. Especially that when the polishing slurry mixes with 16 ppm Fe-N{sub x}/C shows the maximum MRR and its removal mass of sapphire is 38.43 nm/min, more than 15.44% larger than traditional CMP using the colloidal silicon dioxide (SiO{sub 2}) without Fe-N{sub x}/C. Catalyst-assisted chemical–mechanical polishing of sapphire is studied with X-ray photoelectron spectroscopy (XPS). It is found that the formation of a soft hydration layer (boehmite, γ-AlOOH or γ-AlO(OH)) on sapphire surface facilitates the material removal and achieving fine surface finish on basal plane. Abrasives (colloid silica together with magnetite, ingredient of Fe-N{sub x}/C) with a hardness between boehmite and sapphire polish the c-plane of sapphire with good surface finish and efficient removal. Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, pyridinic N as well as pyrrolic N group would be the catalytical active sites and accelerate this process. Surface quality is characterized with atomic force microscopy (AFM). The optimum CMP removal by Fe-N{sub x}/C also yields a superior

  15. Oscillating Filaments: I - Oscillation and Geometrical Fragmentation

    CERN Document Server

    Gritschneder, Matthias; Burkert, Andreas

    2016-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid based AMR-code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, e.g. with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process `geometrical fragmentation'. In our realization the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristical scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. ...

  16. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...

  17. Neutrino anomalies without oscillations

    Indian Academy of Sciences (India)

    Sandip Pakvasa

    2000-01-01

    I review explanations for the three neutrino anomalies (solar, atmospheric and LSND) which go beyond the `conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well.

  18. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  19. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  20. A novel photonic oscillator

    Science.gov (United States)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  1. Atmospheric neutrino oscillations

    CERN Document Server

    Giacomelli, G; Antolini, R; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Cafagna, F; Campana, D; Carboni, M; Cecchini, S; Cei, F; Chiarella, V; Chiarusi, T; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; Derkauoi, J; De Vincenzi, M; Di Credico, A; Esposito, L; Forti, C; Fusco, P; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kumar, A; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Mengucci, A; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R

    2005-01-01

    The latest results from the Soudan 2, MACRO and SuperKamiokande experiments on atmospheric neutrino oscillations are summarised and discussed. In particular a discussion is made on the Monte Carlo simulations used for the atmospheric neutrino flux.

  2. Oscillations in counting statistics

    CERN Document Server

    Wilk, Grzegorz

    2016-01-01

    The very large transverse momenta and large multiplicities available in present LHC experiments on pp collisions allow a much closer look at the corresponding distributions. Some time ago we discussed a possible physical meaning of apparent log-periodic oscillations showing up in p_T distributions (suggesting that the exponent of the observed power-like behavior is complex). In this talk we concentrate on another example of oscillations, this time connected with multiplicity distributions P(N). We argue that some combinations of the experimentally measured values of P(N) (satisfying the recurrence relations used in the description of cascade-stochastic processes in quantum optics) exhibit distinct oscillatory behavior, not observed in the usual Negative Binomial Distributions used to fit data. These oscillations provide yet another example of oscillations seen in counting statistics in many different, apparently very disparate branches of physics further demonstrating the universality of this phenomenon.

  3. Oscillating Filaments. I. Oscillation and Geometrical Fragmentation

    Science.gov (United States)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas

    2017-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  4. Indirect neutrino oscillations

    CERN Document Server

    Babu, K S; Wilczek, Frank; Pati, Jogesh C; Wilczek, Frank

    1995-01-01

    We show how two different scales for oscillations between e and \\mu neutrinos, characterized by different mixing angles and effective mass scales, can arise in a simple and theoretically attractive framework. One scale characterizes direct oscillations, which can accommodate the MSW approach to the solar neutrino problem, whereas the other can be considered as arising indirectly, through virtual transitions involving the \\tau neutrino with a mass \\sim 1 eV. This indirect transition allows the possibility of observable \\bar \

  5. Neutrino Oscillation Physics

    OpenAIRE

    Kayser, Boris

    2012-01-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also prov...

  6. Ultrastable Multigigahertz Photonic Oscillator

    Science.gov (United States)

    Logan, Ronald T., Jr.

    1996-01-01

    Novel photonic oscillator developed to serve as ultrastable source of microwave and millimeter-wave signals. In system, oscillations generated photonically, then converted to electronic form. Includes self-mode-locked semiconductor laser producing stream of pulses, detected and fed back to laser as input. System also includes fiber-optic-delay-line discriminator, which detects fluctuations of self-mode-locking frequency and generates error signal used in negative-feedback loop to stabilize pulse-repetition frequency.

  7. The Liege Oscillation Code

    CERN Document Server

    Scuflaire, R; Théado, S; Bourge, P -O; Miglio, A; Godart, M; Thoul, A; Noels, A

    2007-01-01

    The Liege Oscillation code can be used as a stand-alone program or as a library of subroutines that the user calls from a Fortran main program of his own to compute radial and non-radial adiabatic oscillations of stellar models. We describe the variables and the equations used by the program and the methods used to solve them. A brief account is given of the use and the output of the program.

  8. Self-oscillation

    CERN Document Server

    Jenkins, Alejandro

    2011-01-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain linear systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy from the environment into the vibration: no external rate needs to be tuned to the resonant frequency. A paper from 1830 by G. B. Airy gives us the opening to introduce self-oscillation as a sort of "perpetual motion" responsible for the human voice. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the more recent swaying of the London Millenium Footbridge. Clocks are self-oscillators, as are bowed and wind musical instruments, and the heartbeat. We review the criterion that determines whether an arbitrary line...

  9. Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Gregory J.; Parker, Daniel E.; Nie, Bai; Lozovoy, Vadim [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Dantus, Marcos, E-mail: dantus@msu.edu [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2015-05-01

    A LIBS system is demonstrated using a 100 m cavity Yb fiber oscillator producing ~ 70 ps, 320 nJ clusters of 50–100 fs sub-pulses at 2 MHz. A new empirical model for femtosecond ablation is presented to explain the LIBS signal intensity's non-linear dependence on pulse fluence by accounting for the Gaussian beam's spatial distribution. This model is compared to experimental data and found to be superior to linear threshold fits. This model is then used to measure the ablation threshold of Cu using a typical amplified Ti:sapphire system, and found to reproduce previously reported values to within ~ 20%. The ablation threshold of Cu using the Yb fiber oscillator system was measured to be five times lower than on the amplified Ti:sapphire system. This effect is attributed to the formation of nanostructures on the surface, which have previously been shown to decrease the ablation threshold. The plasma lifetime is found to be ~ 1 ns, much shorter than that of nanosecond ablation, further indicating that the decreased threshold results from surface effects rather than laser–plasma interaction. The low threshold and high pulse energy of the Yb fiber oscillator allows the acquisition of LIBS spectra at megahertz repetition rates. This system could potentially be developed into a compact, fiber-based portable LIBS device taking advantage of the benefits of ultrafast pulses and high repetition rates. - Highlights: • We performed LIBS using a unique ultrafast fiber laser oscillator producing clusters of femtosecond pulses at 2 MHz. • We found the LIBS threshold to be lower than the ablation threshold for single femtosecond laser pulses. • We introduce a model for the LIBS threshold that leads to more accurate determination of threshold values. • We provide results for a number of different solid samples. • The new setup could lead to the design of very compact (portable) and femtosecond-LIBS setups.

  10. Frequency of self-oscillations

    CERN Document Server

    Groszkowski, Janusz

    2013-01-01

    Frequency of Self-Oscillations covers the realm of electric oscillations that plays an important role both in the scientific and technical aspects. This book is composed of nine chapters, and begins with the introduction to the alternating currents and oscillation. The succeeding chapters deal with the free oscillations in linear isolated systems. These topics are followed by discussions on self-oscillations in linear systems. Other chapters describe the self-oscillations in non-linear systems, the influence of linear elements on frequency of oscillations, and the electro mechanical oscillato

  11. The active-bridge oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, K.O.

    1998-07-01

    This paper describes the Active-Bridge Oscillator (ABO), a new concept in high-stability oscillator design. The ABO is ab ridge-type oscillator design that is easly to design and overcomes many of the operational and design difficulties associated with standard bridge oscillator designs. The ABO will oscillate with a very stable output amplitude over a wide range of operating conditions without the use of an automatic-level-control (ALC). A standard bridge oscillator design requires an ALC to maintain the desired amplitude of oscillation. for this and other reasons, bridge oscilaltors are not used in mainstream designs. Bridge oscillators are generally relegated to relatively low-volume, high-performance applications. The Colpitts and Pierce designs are the most popular oscillators but are typically less stable than a bridge-type oscillator.

  12. Coalescence in coupled Duffing oscillators

    Institute of Scientific and Technical Information of China (English)

    YANG Jun-Zhong

    2009-01-01

    The forced Duffing oscillator has a pair of symmetrical attractors in a proper parameter regime. When a lot of Duffing oscillators are coupled linearly, the system tends to form clusters in which the neighboring oscillators fall onto the same attractor. When the coupling strength is strong, all of the oscillators fall onto one attractor. In this work, we investigate coalescence in the coupled forced Duffing oscillators. Some phenomena are found and explanations are presented.

  13. Sapphire: a better material for atomization and in situ collection of silver volatile species for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Musil, Stanislav, E-mail: stanomusil@biomed.cas.cz; Matoušek, Tomáš; Dědina, Jiří

    2015-06-01

    Sapphire is presented as a high temperature and corrosion resistant material of an optical tube of an atomizer for volatile species of Ag generated by the reaction with NaBH{sub 4}. The modular atomizer design was employed which allowed to carry out the measurements in two modes: (i) on-line atomization and (ii) in situ collection (directly in the optical tube) by means of excess of O{sub 2} over H{sub 2} in the carrier gas during the trapping step and vice versa in the volatilization step. In comparison with quartz atomizers, the sapphire tube atomizer provides a significantly increased atomizer lifetime as well as substantially improved repeatability of the Ag in situ collection signals shapes. In situ collection of Ag in the sapphire tube atomizer was highly efficient (> 90%). Limit of detection in the on-line atomization mode and in situ collection mode, respectively, was 1.2 ng ml{sup −1} and 0.15 ng ml{sup −1}. - Highlights: • Sapphire was tested as a new material of an atomizer tube for Ag volatile species. • Two measurement modes were investigated: on-line atomization and in situ collection. • In situ collection of Ag was highly efficient (> 90%) with LOD of 0.15 ng ml{sup −1}. • No devitrification of the sapphire tube observed in the course of several months.

  14. Origin of sapphires from a lamprophyre dike at Yogo Gulch, Montana, USA: Clues from their melt inclusions

    Science.gov (United States)

    Palke, Aaron C.; Renfro, Nathan D.; Berg, Richard B.

    2016-09-01

    Gem corundum (sapphire) has been mined from an ultramafic lamprophyre dike at Yogo Gulch in central Montana for over 100 years. The sapphires bear signs of corrosion showing that they were not in equilibrium with the lamprophyre that transported them; however, their genesis is poorly understood. We report here the observation of minute glassy melt inclusions in Yogo sapphires. These inclusions are Na- and Ca-rich, Fe-, Mg-, and K-poor silicate glasses with compositions unlike that of the host lamprophyre. Larger, recrystallized melt inclusions contain analcime and calcite drawing a striking resemblance to leucocratic ocelli in the lamprophyre. We suggest here that sapphires formed through partial melting of Al-rich rocks, likely as the lamprophyre pooled at the base of the continental crust. This idea is corroborated by MELTS calculations on a kyanite-eclogite protolith which was presumably derived from a troctolite precursor. These calculations suggest that corundum can form through peritectic melting of kyanite. Linking the melt inclusions petrologically to the lamprophyre represents a significant advancement in our understanding of sapphire genesis and sheds light on how mantle-derived magmas may interact with the continental crust on their ascent to the surface.

  15. Growth and characterization of VO{sub 2}/p-GaN/sapphire heterostructure with phase transition properties

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Jiming, E-mail: jmbian@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050. China (China); Wang, Minhuan; Miao, Lihua; Li, Xiaoxuan; Luo, Yingmin [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Zhang, Dong [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); New Energy Source Research Center of Shenyang Institute of Engineering, Shenyang 110136 (China); Zhang, Yuzhi [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050. China (China)

    2015-12-01

    Highlights: • VO{sub 2} films were deposited on p-GaN/sapphire substrates by PLD. • A well-defined VO{sub 2}/p-GaN/sapphire interface was observed. • The valence state of V in VO{sub 2} films was confirmed by XPS analyses. • A distinct reversible SMT phase transition behavior was observed. - Abstract: High quality pure phase VO{sub 2} films were deposited on p-GaN/sapphire substrates by pulsed laser deposition (PLD). A well-defined interface with dense and uniform morphology was observed in the as-grown VO{sub 2}/p-GaN/sapphire heterostructure. The X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO{sub 2} films was principally composed of V{sup 4+} with trace amount of V{sup 5+}, no other valence state of V was detected. Meanwhile, a distinct reversible semiconductor-to-metal (SMT) phase transition with resistance change up to nearly three orders of magnitude was observed in the temperature dependent electrical resistance measurement, which was comparable to the high quality VO{sub 2} film grown directly on sapphire substrates. Our present findings will give a deeper insight into the physical mechanism behind the exotic characteristics of VO{sub 2}/p-GaN heterostructure, and further motivate research in novel devices with combined functional properties of both correlated oxide and wide bandgap nitride semiconductors.

  16. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junsu [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Sin, Young-Gwan [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113 (Korea, Republic of); Kim, Jae-Hyun [Department of Nano-Mechanics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Kim, Jaegu, E-mail: gugu99@kimm.re.kr [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of)

    2016-10-30

    Highlights: • Fundamental relationship between laser irradiation and adhesion strength, between gallium-nitride light emitted diode and sapphire substrate, is proposed during selective laser lift-off. • Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate. • Ga precipitation caused by thermal decomposition and roughened interface caused by thermal damage lead to the considerable difference of adhesion strength at the interface. - Abstract: Selective laser lift-off (SLLO) is an innovative technology used to manufacture and repair micro-light-emitting diode (LED) displays. In SLLO, laser is irradiated to selectively separate micro-LED devices from a transparent sapphire substrate. The light source used is an ultraviolet (UV) laser with a wavelength of 266 nm, pulse duration of 20 ns, and repetition rate of 30 kHz. Controlled adhesion between a LED and the substrate is key for a SLLO process with high yield and reliability. This study examined the fundamental relationship between adhesion and laser irradiation. Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate: Ga precipitation caused by the thermal decomposition of GaN and roughened interface caused by thermal damage on the sapphire. The competition between these two mechanisms leads to a non-trivial SLLO condition that needs optimization. This study helps understand the SLLO process, and accelerate the development of a process for manufacturing micro-LED displays via SLLO for future applications.

  17. Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II

    CERN Document Server

    Karacheban, O; Hempel, M; Henschel, H; Lange, W; Leonard, J L; Levy, I; Lohmann, W; Schuwalow, S

    2015-01-01

    Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitoring systems at the Large Hadron Collider, FLASH or XFEL. Artificial diamond sensors are currently widely used as sensors in these systems. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm^2 size and 525 micrometer thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the dete...

  18. Measurement and thermal modeling of sapphire substrate temperature at III-Nitride MOVPE conditions

    Science.gov (United States)

    Creighton, J. Randall; Coltrin, Michael E.; Figiel, Jeffrey J.

    2017-04-01

    Growth rates and alloy composition of AlGaN grown by MOVPE is often very temperature dependent due to the presence of gas-phase parasitic chemical processes. These processes make wafer temperature measurement highly important, but in fact such measurements are very difficult because of substrate transparency in the near-IR ( 900 nm) where conventional pyrometers detect radiation. The transparency problem can be solved by using a mid-IR pyrometer operating at a wavelength ( 7500 nm) where sapphire is opaque. We employ a mid-IR pyrometer to measure the sapphire wafer temperature and simultaneously a near-IR pyrometer to measure wafer pocket temperature, while varying reactor pressure in both a N2 and H2 ambient. Near 1300 °C, as the reactor pressure is lowered from 300 Torr to 10 Torr the wafer temperature drops dramatically, and the ∆T between the pocket and wafer increases from 20 °C to 250 °C. Without the mid-IR pyrometer the large wafer temperature change with pressure would not have been noted. In order to explain this behavior we have developed a quasi-2D thermal model that includes a proper accounting of the pressure-dependent thermal contact resistance, and also accounts for sapphire optical transmission. The model and experimental results demonstrate that at most growth conditions the majority of the heat is transported from the wafer pocket to the wafer via gas conduction, in the free molecular flow limit. In this limit gas conductivity is independent of gap size but first order in pressure, and can quantitatively explain results from 20 to 300 Torr. Further analysis yields a measure of the thermal accommodation coefficients; α(H2) =0.23, α(N2) =0.50, which are in the range typically measured.

  19. Effect of Ti:Sapphire-femtosecond laser on the surface roughness of ceramics.

    Science.gov (United States)

    Erdur, Emire Aybuke; Basciftci, Faruk Ayhan

    2015-12-01

    Some of these adult patients have ceramic crowns, to which orthodontists have concerns about bonding brackets. The aim of the present study was to evaluate the effect of a Ti:Sapphire femtosecond (fs) laser (Integra-C-3.5, Quantronix, NY) on the surface roughness of two ceramic surfaces (feldspathic and IPS Empress e-Max) and to compare results with those of two other lasers (Er:YAG and Nd:YAG) and conventional techniques, i.e., sandblasting (50 µm) and hydrofluoric (HF) acid. Ceramic discs were fabricated (n = 150) and divided into two groups, each of which was then divided into five subgroups prepared with Ti:Sapphire fs, Nd:YAG, or Er:YAG lasers, sandblasting, or HF acid (n = 15). The surface roughness of the ceramic discs was evaluated using a profilometer (Mitotoyo Surf Test SJ 201 P/M; Mitutoyo Corp, Japan) before and after each surface treatment. Three traces were recorded for each specimen at three different locations in each direction, providing nine measurements per sample, which were then averaged to obtain the surface roughness value. Data were analyzed using the Wilcoxon signed-rank test (P laser was associated with the highest mean roughness value. AFM images of the ceramic surfaces treated confirmed that the fs-laser-treated surfaces had the highest degree of irregularity. Within the limitations of this in vitro study, the Ti:Sapphire fs laser yielded the highest surface roughness and could be an alternative ceramic surface treatment to increase bond strength. © 2015 Wiley Periodicals, Inc.

  20. Microstructure characterization and optical properties of sapphire after helium ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Mian; Yang, Liang [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Shen, Huahai [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Liu, Wei [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Xiang, Xia, E-mail: xiaxiang@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zheng, Wanguo, E-mail: wgzheng_caep@sina.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Guo, Decheng [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Jin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Sun, Kai [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Yuan, Xiaodong, E-mail: yxd66my@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-06-15

    The (0 0 0 1) sapphire samples are irradiated with 60 keV helium ions at the fluences of 5 × 10{sup 16}, 1 × 10{sup 17}and 5 × 10{sup 17} ions/cm{sup 2} at room temperature. After implantation, two broad absorption bands at 320–460 and 480–700 nm are observed and their intensities increase with the increasing ion fluence. The grazing incidence X-ray diffraction results indicate that the {0 0 0 1} diffraction peaks of sapphire decrease and broaden due to the disorientation of the generated crystallites after ion irradiation. The microstructure evolution is examined by the scanning and transmission electron microscopes. The surface becomes rough because of the aggregation of helium bubbles and migration towards the surface. There is a lattice expansion up to ∼4.5% in the implanted area and the lattice distortion measured from dispersion of (1 1 0) diffraction is ∼4.6°. Such strain of crystal lattice is rather large and leads to contrast fluctuation at scale of 1–2 nm (the bubble size). The laser induced damage threshold (LIDT) is investigated to understand the effect of helium ion beam irradiation on the laser damage resistance of sapphire components and the results show that the LIDT decreases from 5.4 to 2.5 J/cm{sup 2} due to the absorptive color centers, helium bubbles and defects induced by helium ion implantation. The laser damage morphologies of samples before and after ion implantation are also presented.

  1. Finite q-oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Atakishiyev, Natig M [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Klimyk, Anatoliy U [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Wolf, Kurt Bernardo [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2004-05-28

    The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra su{sub q}(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor'-points x{sub s} = 1/2 [2s]{sub q}, s element of {l_brace}-j, -j+1, ..., j{r_brace}, and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schroedinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q {yields} 1 we recover the finite oscillator Lie algebra, the N = 2j {yields} {infinity} limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.

  2. Finite q-oscillator

    Science.gov (United States)

    Atakishiyev, Natig M.; Klimyk, Anatoliy U.; Wolf, Kurt Bernardo

    2004-05-01

    The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra suq(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor'-points x_s={\\case12}[2s]_q, s\\in\\{-j,-j+1,\\ldots,j\\} , and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schrödinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q rarr 1 we recover the finite oscillator Lie algebra, the N = 2j rarr infin limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.

  3. Oscillate boiling from microheaters

    Science.gov (United States)

    Li, Fenfang; Gonzalez-Avila, S. Roberto; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2017-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about 10 μ m in diameter onto a 165-nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatedly at several 100 kHz albeit with constant laser power input. The microbubble's oscillations are accompanied with bubble pinch-off, leading to a stream of gaseous bubbles in the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by surface attachment and by the nonspherical collapses. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater, reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may overcome the heat transfer thresholds observed during the nucleate boiling crisis and offers a new pathway for heat transfer under microgravity conditions.

  4. Oscillations following periodic reinforcement.

    Science.gov (United States)

    Monteiro, Tiago; Machado, Armando

    2009-06-01

    Three experiments examined behavior in extinction following periodic reinforcement. During the first phase of Experiment 1, four groups of pigeons were exposed to fixed interval (FI 16s or FI 48s) or variable interval (VI 16s or VI 48s) reinforcement schedules. Next, during the second phase, each session started with reinforcement trials and ended with an extinction segment. Experiment 2 was similar except that the extinction segment was considerably longer. Experiment 3 replaced the FI schedules with a peak procedure, with FI trials interspersed with non-food peak interval (PI) trials that were four times longer. One group of pigeons was exposed to FI 20s PI 80s trials, and another to FI 40s PI 160s trials. Results showed that, during the extinction segment, most pigeons trained with FI schedules, but not with VI schedules, displayed pause-peck oscillations with a period close to, but slightly greater than the FI parameter. These oscillations did not start immediately after the onset of extinction. Comparing the oscillations from Experiments 1 and 2 suggested that the alternation of reconditioning and re-extinction increases the reliability and earlier onset of the oscillations. In Experiment 3 the pigeons exhibited well-defined pause-peck cycles since the onset of extinction. These cycles had periods close to twice the value of the FI and lasted for long intervals of time. We discuss some hypotheses concerning the processes underlying behavioral oscillations following periodic reinforcement.

  5. Oscillations in stellar superflares

    CERN Document Server

    Balona, L A; Kosovichev, A; Nakariakov, V M; Pugh, C E; Van Doorsselaere, T

    2015-01-01

    Two different mechanisms may act to induce quasi-periodic pulsations (QPP) in whole-disk observations of stellar flares. One mechanism may be magneto-hydromagnetic (MHD) forces and other processes acting on flare loops as seen in the Sun. The other mechanism may be forced local acoustic oscillations due to the high-energy particle impulse generated by the flare (known as `sunquakes' in the Sun). We analyze short-cadence Kepler data of 257 flares in 75 stars to search for QPP in the flare decay branch or post-flare oscillations which may be attributed to either of these two mechanisms. About 18 percent of stellar flares show a distinct bump in the flare decay branch of unknown origin. The bump does not seem to be a highly-damped global oscillation because the periods of the bumps derived from wavelet analysis do not correlate with any stellar parameter. We detected damped oscillations covering several cycles (QPP), in seven flares on five stars. The periods of these oscillations also do not correlate with any ...

  6. Long-term optical phase locking between femtosecond Ti:sapphire and Cr:forsterite lasers

    Science.gov (United States)

    Kobayashi, Yohei; Yoshitomi, Dai; Kakehata, Masayuki; Takada, Hideyuki; Torizuka, Kenji

    2005-09-01

    Long-term optical phase-coherent two-color femtosecond pulses were generated by use of passively timing-synchronized Ti:sapphire and Cr:forsterite lasers. The relative carrier-envelope phase relation was fixed by an active feedback loop. The accumulated phase noise from 10 mHz to 1 MHz of the locked beat note was 0.43 rad, showing tight phase locking. The optical frequency fluctuation between two femtosecond combs was submillihertz, with a 1 s averaged counter measurement over 3400 s, leading to a long-term femtosecond frequency-comb connection.

  7. A 10-Hz terawatt class Ti:sapphire laser system: Development and applications

    Indian Academy of Sciences (India)

    A K Sharma; J Smedley; T Tsang; T Rao

    2010-11-01

    We developed a two-stage Ti:sapphire laser system to generate 16 mJ/80 fs laser pulses at a pulse repetition rate of 10 Hz. The key deriver for the present design is implementing a highly efficient symmetric confocal pre-amplifier and employing a simple, inexpensive synchronization scheme relying only on a commercial digital delay generator. We characterized the amplified pulses in spatial, spectral and temporal domains. The laser system was used to investigate various nonlinear optical processes, and to modify the optical properties of metal and semiconductor surfaces. We are currently building a third amplifier to boost the laser power to the multi-terawatt range.

  8. Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths.

    Science.gov (United States)

    Zou, Yi; Subbaraman, Harish; Chakravarty, Swapnajit; Xu, Xiaochuan; Hosseini, Amir; Lai, Wei-Cheng; Wray, Parker; Chen, Ray T

    2014-05-15

    We demonstrate subwavelength bidirectional grating (SWG) coupled slot waveguide fabricated in silicon-on-sapphire for transverse electric polarized wave operation at 3.4 μm wavelength. Coupling efficiency of 29% for SWG coupler is experimentally achieved. Propagation loss of 11  dB/cm has been experimentally obtained for slot waveguides. Two-step taper mode converters with an insertion loss of 0.13 dB are used to gradually convert the strip waveguide mode into slot waveguide mode.

  9. Investigation of a GaN Nucleation Layer on a Patterned Sapphire Substrate

    Institute of Scientific and Technical Information of China (English)

    WU Meng; ZENG Yi-Ping; WANG Jun-Xi; HU Qiang

    2011-01-01

    @@ A low-temperature GaN (LT-GaN) nucleation layer is grown on a patterned sapphire substrate (PSS) using metal- organic chemical vapor deposition (MOCVD).The surface morphology of the LT-GaN is investigated and the selective nucleation phenomenon in the growth process of the LT-GaN nucleation layer is discovered.Meanwhile, effects of thickness of the LT-GaN and the annealing process on the phenomenon are also discussed.A pattern model is also proposed to analyze the possible mechanisms in atomic scale.

  10. Ultrahigh resolution optical coherence tomography with femtosecond Ti:sapphire laser and photonic crystal fiber

    Institute of Scientific and Technical Information of China (English)

    XUE Ping; James G FUJIMOTO

    2008-01-01

    Optical coherence tomography (OCT) with ultrahigh axial resolution was achieved by the super-contin- uum generated by coupling femtosecond pulses from a commercial Ti :sapphire laser into an air-silica microstructure fiber. The visible spectrum of the super-continuum from 450 to 700 nm centered at 540 nm can be generated. A free-space axial OCT resolution of 0.64 IJm was achieved. The sensitivity of OCT system was 108 dB with incident light power 3 mW at sample, only 7dB below the theoretical limit. Subcellular OCT imaging was also demonstrated, showing great potential for biomedical application.

  11. Analysis of tunable picosecond pulse generation from a distributed feedback Ti:sapphire laser

    Institute of Scientific and Technical Information of China (English)

    Hong Zhi; Yao Xiao-Ke

    2004-01-01

    A distributed feedback Ti:sapphire laser (DFTL) pumped by a 532nm Q-switched pulse is proposed for the generation of tunable picosecond pulses. With coupled rate equation model, the temporal characteristics of DFTL are obtained. The numerical solutions show that the DFTL pulse with a 50-ps pulse duration and as much as 3.SmJ pulse energy can be obtained under 40-m J, 5-ns pulse pumping. The dependence of output pulse width on the laser crystal's length, pumping pulse duration, and pumping rate is also discussed in detail.

  12. Sub-surface channels in sapphire made by ultraviolet picosecond laser irradiation and selective etching.

    Science.gov (United States)

    Moser, Rüdiger; Ojha, Nirdesh; Kunzer, Michael; Schwarz, Ulrich T

    2011-11-21

    We demonstrate the realization of sub-surface channels in sapphire prepared by ultraviolet picosecond laser irradiation and subsequent selective wet etching. By optimizing the pulse energy and the separation between individual laser pulses, an optimization of channel length can be achieved with an aspect ratio as high as 3200. Due to strong variation in channel length, further investigation was done to improve the reproducibility. By multiple irradiations the standard deviation of the channel length could be reduced to 2.2%. The achieved channel length together with the high reproducibility and the use of a commercial picosecond laser system makes the process attractive for industrial application.

  13. Containerless laser-induced flourescence study of vaporization and optical properties for sapphire and alumina

    Science.gov (United States)

    Nordine, Paul C.; Schiffman, Robert A.

    1988-01-01

    Evaporation of aluminum oxide was studied from 1800 to 2327 K by laser-induced flourescence (LIF) detection of Al atom vapor over sapphire and alumina spheres that were levitated in an argon gas jet and heated with a continuous wave CO2 laser. Optical properties were determined from apparent specimen temperatures measured with an optical pyrometer and true temperatures deduced from the LIF intensity versus temperature measurements using the known temperature dependence of the Al atom vapor concentration in equilibrium with Al2O3. The effects of impurities and dissolved oxygen on the high-temperature optical properties of aluminum oxide were discussed.

  14. Flashlamp-pumped Ti:Sapphire laser with different rods grown by Czochralski and Verneuil methods

    Science.gov (United States)

    Boquillon, J. P.; Said, J.

    1992-04-01

    The design and the development of a flashlamp-pumped Ti:Sapphire laser is described. Design criteria are discussed and performance improvements using different types of fluorescent UV converters or filters, such as organic dyes or doped glass are presented. We have tested different laser rods at various Ti-concentrations obtained by Verneuil or Czochralski growth techniques. The maximum laser output energy of 540 mJ with a differential efficiency up to 1% was achieved by using only a pyrex filter surrounding the laser rod.

  15. A higher-order-mode fiber delivery for Ti:Sapphire femtosecond lasers

    DEFF Research Database (Denmark)

    Jespersen, Kim Giessmann; Le, Tuan; Grüner-Nielsen, Lars Erik

    2010-01-01

    We report the first higher-order-mode fiber with anomalous dispersion at 800nm and demonstrate its potential in femtosecond pulse delivery for Ti:Sapphire femtosecond lasers. We obtain 125fs pulses after propagating a distance of 3.6 meters in solid-silica fiber. The pulses could be further...... compressed in a quartz rod to nearly chirp-free 110fs pulses. Femtosecond pulse delivery is achieved by launching the laser output directly into the delivery fiber without any pre-chirping of the input pulse. The demonstrated pulse delivery scheme suggests scaling to >20meters for pulse delivery in harsh...

  16. Measurement of Birefringence of Low-Loss, High-Reflectance Coating of M-Axis Sapphire

    OpenAIRE

    2001-01-01

    The birefringence of a low-loss, high-reflectance coating applied to an 8-cm-diameter sapphire crystal grown in the m-axis direction has been mapped. By monitoring the transmission of a high-finesse Fabry-Perot cavity as a function of the polarization of the input light, we find an upper limit for the magnitude of the birefringence of 2.5 x 10^-4 rad and an upper limit in the variation in direction of the birefringence of 10 deg. These values are sufficiently small to allow consideration of m...

  17. Synchronization of an Ultrafast Ti:Sapphire Laser to the S-Band Microwave

    Institute of Scientific and Technical Information of China (English)

    LIU Sheng-Guang; WANG Ming-Kai; SUN Da-Rui; DAI Jian-Ping; LI Yong-Gui

    2004-01-01

    @@ We have synchronized a 102-MHz ultrafast self-mode-locked Ti:sapphire laser to a 2856-MHz rf source with the sample-locking technology. The relative root-mean-square time-jitter is 0.57ps and the maximum time jitter is 2.60ps. This is the first time that synchronization between the ultrafast laser pulse and the s-band microwave has been accomplished in China. Potential applications include synchronization of lasers and rf power sources in particle accelerator experiments and high-resolution pump-probe experiments.

  18. All solid-state, injection-seeded Ti: sapphire ring laser

    Institute of Scientific and Technical Information of China (English)

    Ting Yu; Weibiao Chen; Jun Zhou; Jinzi Bi; Junwen Cui

    2005-01-01

    @@ In this letter, we present an all solid-state, injection-seeded Ti:sapphire laser. The laser is pumped by a laser diode pumped frequency-doubled Nd:YAG laser, and injection-seeded by an external cavity laser diode with the wavelength between 770 and 780 nm. The single longitude mode and the doubling efficiency of the laser are obtained after injection seeding. The experimental setup and relative results are reported.It is a good candidate laser source for mobile differential absorption lidar (DIAL) system.

  19. Homogenous Crack-Free Large Size YBCO/YSZ/Sapphire Films for Application

    Science.gov (United States)

    Almog, B.; Azoulay, M.; Deutscher, G.

    2006-09-01

    YBa2Cu3O7-δ (YBCO) films grown on Sapphire are highly suitable for applications. The production of large size (2-3″) homogeneous, thick (d ⩾ 600nm) films of high quality is of major importance. We report the growth of such films using a buffer layer of Yttrium-stabilized ZrO2(YSZ). The films are highly homogeneous and show excellent mechanical properties. They exhibit no sign of cracking even after many thermal cycles. Their critical thickness exceeds 1000nm. However, because of the large lattice mismatch there is a decrease in the electric properties(increases Rs, decreases jc).

  20. Parametric sensitivity and temporal dynamics of sapphire crystal growth via the micro-pulling-down method

    Science.gov (United States)

    Samanta, Gaurab; Yeckel, Andrew; Bourret-Courchesne, Edith D.; Derby, Jeffrey J.

    2012-11-01

    The micro-pulling-down (μ-PD) crystal growth of sapphire fibers, whose steady-state limits were the focus of our prior study [Samanta et al., Journal of Crystal Growth 335 (2011) 148-159], is further examined using a parametric sensitivity computation derived by linearizing the nonlinear model around a quasi-steady-state (QSS). In addition, transient analyses are performed to assess inherent stability and dynamic responses in this μ-PD system. Information from these two approaches enlarges our understanding of this particular process, and the approaches themselves are put forth as valuable complements to classical QSS analysis.

  1. Arbitrary Spin Galilean Oscillator

    CERN Document Server

    Hagen, C R

    2014-01-01

    The so-called Dirac oscillator was proposed as a modification of the free Dirac equation which reproduces many of the properties of the simple harmonic oscillator but accompanied by a strong spin-orbit coupling term. It has yet to be extended successfully to the arbitrary spin S case primarily because of the unwieldiness of general spin Lorentz invariant wave equations. It is shown here using the formalism of totally symmetric multispinors that the Dirac oscillator can, however, be made to accommodate spin by incorporating it into the framework of Galilean relativity. This is done explicitly for spin zero and spin one as special cases of the arbitrary spin result. For the general case it is shown that the coefficient of the spin-orbit term has a 1/S behavior by techniques which are virtually identical to those employed in the derivation of the g-factor carried out over four decades ago.

  2. Growth of planar semipolar GaN via epitaxial lateral overgrowth on pre-patterned sapphire substrate

    Energy Technology Data Exchange (ETDEWEB)

    Schwaiger, Stephan; Argut, Ilona; Wunderer, Thomas; Lipski, Frank; Roesch, Rudolf; Scholz, Ferdinand [Institute of Optoelectronics, University of Ulm (Germany)

    2010-07-01

    We report on the growth of planar semipolar GaN on pre-patterned sapphire substrates via metalorganic vapor phase epitaxy. The sapphire templates were structured with grooves perpendicular to the c-direction of the crystal. Using appropriate growth parameters semipolar GaN can be grown from the c-plane like sidewall of the patterned sapphire, resulting in a flat and planar semipolar surface. Hence, this method allows the growth of semipolar GaN on large areas. Scanning electron, transmission electron and atomic force microscopy measurements show an atomically flat surface. Photoluminescence spectroscopy spectra show the high quality of the material since the spectra are dominated by the near band edge emission but still exhibit some defect related contributions. Furthermore high resolution X-ray diffraction rocking curve measurements result in small full widths at half maximum of less than 400 arcsec for both, the symmetrical reflection and the asymmetrical (0002) reflection.

  3. Crystal front shape control by use of an additional heater in a Czochralski sapphire single crystal growth system

    Science.gov (United States)

    Hur, Min-Jae; Han, Xue-Feng; Choi, Ho-Gil; Yi, Kyung-Woo

    2017-09-01

    The quality of sapphire single crystals used as substrates for LED production is largely influenced by two defects: dislocation density and bubbles trapped in the crystal. In particular, the dislocation density has a higher value in sapphire grown by the Czochralski (CZ) method than by other methods. In the present study, we predict a decreased value for the convexity and thermal gradient at the crystal front (CF) through the use of an additional heater in an induction-heated CZ system. In addition, we develop a solute concentration model by which the location of bubble formation in CZ growth is calculated, and the results are compared with experimental results. We further calculate the location of bubble entrapment corresponding with the use of an additional heater. We find that sapphire crystal growth with an additional heater yields a decreased thermal gradient at the CF, together with decreased CF convexity, improved energy efficiency, and improvements in terms of bubble formation location.

  4. Multimode interference and a white light scanning Michelson interferometer with a 400-mm sapphire fiber sensing head

    Science.gov (United States)

    Li, Tianchu; May, Russell G.; Wang, Anbo; Claus, Richard O.

    1998-08-01

    In this paper we present the analysis of multimode (MM) interference induced by MM fiber interferometers and report the development of a white light scanning fiber Michelson interferometer with a sapphire fiber sensing head for the measurement of position-distance at high temperatures. The 'mode fading' effect in standard graded 50/125 micrometers fiber and independent 'inter-mode interference' in 100 micrometers step index profile fiber are discussed. By means of the 'mode selecting' technique, proposed and developed in this work, we demonstrated white light fringes with signal to noise ratios of more than 12 with a sensing head composed of a 400 mm long lead sapphire fiber and an uncoated sapphire target fiber.

  5. Antibody-forming cells and serum hemolysin responses of pastel and sapphire mink inoculated with Aleutian disease virus.

    Science.gov (United States)

    Lodmell, D L; Bergman, R K; Hadlow, W J

    1973-11-01

    The effect of Aleutian disease virus (ADV) on serum hemolysin titers and antibody-forming cells in lymph nodes and spleens of sapphire and pastel mink inoculated with goat erythrocytes (G-RBC) was investigated. ADV injected 1 day after primary antigenic stimulation with G-RBC did not depress the immune responses of either color phase for a period of 26 days. However, when G-RBC were injected 47 days after ADV, both the number of antibody-forming cells and hemolysin titers were more markedly depressed in sapphire than in pastel mink. The results are discussed in relation to the greater susceptibility of sapphire mink and the variable susceptibility of pastel mink to the Pullman isolate of ADV.

  6. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  7. Nonlinear harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Calogero, F [Dipartimento di Fisica, Universita di Roma ' La Sapienza' (Italy); Inozemtsev, V I [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2002-12-06

    The existence is noted of assemblies of an arbitrary number of complex oscillators, or equivalently, of an arbitrary even number of real oscillators, characterized by Newtonian equations of motion ('acceleration equal force') with one-body velocity-dependent linear forces and many-body velocity-independent cubic forces, all the nonsingular solutions of which are isochronous (completely periodic with the same period). As for the singular solutions, as usual they emerge, in the context of the initial-value problem, from a closed domain in phase space having lower dimensionality.

  8. Prediction of resonant oscillation

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to methods for prediction of parametric rolling of vessels. The methods are based on frequency domain and time domain information in order do set up a detector able to trigger an alarm when parametric roll is likely to occur. The methods use measurements of e.g. pitch and roll...... oscillations and compare the measured oscillations using FFT analysis of signal correlations, variance analysis of signals and other comparisons. As an example, the presence of a growing peak around a frequency that doubles the roll natural frequency indicates the possibility that parametric roll is going...

  9. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  10. Solar-neutrino oscillations

    Science.gov (United States)

    Krauss, L.; Wilczek, F.

    1985-01-01

    The theory of oscillations of solar neutrinos is developed as it applies to the electron-recoil spectrum in neutrino-electron scattering. The spectral information obtained by such measurements (as opposed to counting total event rates) is crucial for allowing observation of neutrino oscillations for masses down to 500 neV. In this regard, the effects of different masses and mixing angles, as well as such subtleties as thermal and pressure broadening, finite solar-core size, and variable indices of refraction are investigated.

  11. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    Science.gov (United States)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  12. The frequency-dependent AC photoresistance behavior of ZnO thin films grown on different sapphire substrates.

    Science.gov (United States)

    Cholula-Díaz, Jorge L; Barzola-Quiquia, José; Videa, Marcelo; Yin, Chunhai; Esquinazi, Pablo

    2017-09-13

    Zinc oxide (ZnO) thin films were grown by pulsed layer deposition under an N2 atmosphere at low pressures on a- and r-plane sapphire substrates. Structural studies using X-ray diffraction confirmed that all films had a wurtzite phase. ZnO thin films on a- and r-plane sapphire have grown with orientations along the [0002] and [112[combining macron]0] directions, respectively. Room temperature photoluminescence measurements indicate that the presence of native point defects (interstitial zinc, oxygen vacancies, oxygen antisites and zinc vacancies) is more preponderant for ZnO thin films grown on the r-plane sapphire substrate than the sample grown on the a-plane sapphire substrate. Room temperature impedance spectroscopy measurements were performed in an alternating current frequency range from 40 to 10(5) Hz in the dark and under normal light. An unusual positive photoresistance effect is observed at frequencies above 100 kHz, which we suggest to be due to intrinsic defects present in the ZnO thin films. Furthermore, an analysis of the optical time response revealed that the film grown on the r-plane sapphire substrate responds faster (characteristic relaxation times for τ1, τ2 and τ3 of 0.05, 0.26 and 6.00 min, respectively) than the film grown on the a-plane sapphire substrate (characteristic relaxation times for τ1, τ2 and τ3 of 0.10, 0.73 and 4.02 min, respectively).

  13. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  14. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    Science.gov (United States)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  15. An investigation of structural properties of GaN films grown on patterned sapphire substrates by MOVPE

    Science.gov (United States)

    Törmä, P. T.; Ali, M.; Svensk, O.; Sintonen, S.; Kostamo, P.; Suihkonen, S.; Sopanen, M.; Lipsanen, H.; Odnoblyudov, M. A.; Bougrov, V. E.

    2009-12-01

    GaN films were fabricated by metal organic vapor phase epitaxy (MOVPE) on patterned sapphire substrates (PSSs) with either direct or inverse type patterned structures. Both of these two types of PSSs had their own unique GaN growth process which depart from the standard growth on the planar c-plane. GaN films on PSSs showed decreased threading dislocation (TD) density. However, differences between the crystal quality of the GaN films grown on PSSs were observed. It was also found out with one of the pattern type that the TD density varied laterally and followed the periodicity of the pattern on the sapphire surface.

  16. Demonstrating the feasibility of heat extraction through sapphire fibers for the GW observatory KAGRA

    CERN Document Server

    Khalaidovski, Alexander; Chen, Dan; Komma, Julius; Schwarz, Christian; Tokoku, Chihiro; Kimura, Nobuhiro; Suzuki, Toshikazu; Scheie, Alan O; Majorana, Ettore; Nawrodt, Ronny; Yamamoto, Kazuhiro

    2014-01-01

    Currently, the Japanese gravitational wave laser interferometer KAGRA is under construction in the Kamioka observatory. As one main feature, it will employ sapphire mirrors operated at a temperature of 20K to reduce the impact from thermal noise and suspended from multi-stage pendulums to reduce seismic noise. Thus the heat load deposited in the mirrors by absorption of the circulating laser light as well as originating from thermal radiation will need to be extracted through the last suspension stage. This stage will consist of four thin sapphire fibers with larger heads necessary to connect the fibers to both the mirror and the upper stage. In this paper, we discuss heat conductivity measurements on different fiber candidates. While all fibers had a diameter of 1.6mm, different surface treatments and approaches to attach the heads were analyzed. Our measurements show that fibers fulfilling the basic KAGRA heat conductivity requirement of $\\kappa\\geq\\,$5000 W/m/K at 20K are technologically feasible.

  17. Design and construction of a tunable pulsed Ti:sapphire laser

    Science.gov (United States)

    Panahi, Omid; Nazeri, Majid; Tavassoli, Seyed Hassan

    2015-02-01

    In this paper, design and constr uction of a tunable pulsed Ti:sapphire laser and numerical solution of the corresponding rate equations are reported. Rate equations for a four-level system are written and their numerical solution is examined. Furthermore, an optical setup is introduced. In this setup, a Ti:sapphire crystal is longitudinally pumped by the second harmonics of a Q-Switched Nd:YAG laser, and a prism is used as a wavelength-selective element as well. This setup is established for two 10 and 50 % transmission output couplers. In case of using the 10 % coupler, the output energy of the laser, for the pump energy of 36 mJ, is pulses with 3.5 mJ energy and for the 50 % coupler, with 50 mJ of pump energy, pulses with 10 mJ energy are generated. A wavelength tuning range of more than 160 nm is possible. The repetition rate of this laser is 10 Hz and the temporal duration of the pulses is about 30 ns.

  18. A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond

    Science.gov (United States)

    Chen, Hui; Tian, Fei; Kanka, Jiri; Du, Henry

    2015-03-01

    We here report an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an all-alumina nanostructured sapphire optical fiber (NSOF). The strategy entails fiber coating with metal aluminum followed by anodization to form alumina cladding of highly organized pore channel structure. Through experiments and numerical simulation, we demonstrate the utility and benefit of NSOF, analogous to all-silica microstructured optical fiber, for evanescent-field surface-enhanced Raman scattering (SERS) measurements. We experimentally reveal the feasibility of Ag nanoparticles (NPs)-enabled NSOF SERS sensing of 10-6 M Rhodamine 6G (R6G) after thermal treatment at 500 °C for 6 h by taking advantage of porous anodic aluminum oxide (AAO) structure to stabilize the Ag NPs. We show, via numerical simulations, that AAO cladding significantly increases the evanescent-field overlap, lower porosity of AAO results in higher evanescent-field overlap, and optimized AAO nanostructure yields greater SERS enhancement.

  19. Tunable integrated optical filters based on sapphire microspheres and liquid crystals

    Science.gov (United States)

    Gilardi, Giovanni; Yilmaz, Hasan; Sharif Murib, Mohammed; Asquini, Rita; d'Alessandro, Antonio; Serpengüzel, Ali; Beccherelli, Romeo

    2010-05-01

    We present an integrated optical narrowband electrically tunable filter based on the whispering gallery modes of sapphire microspheres and double ion-exchanged channel BK7 glass waveguides. Tuning is provided by a liquid crystal infiltrated between the spheres and the glass substrate. By suitably choosing the radii of the spheres and of the circular apertures, upon which the spheres are positioned, arrays of different filters can be realized on the same substrate with a low cost industrial process. We evaluate the performance in terms of quality factor, mode spacing, and tuning range by comparing the numerical results obtained by the numerical finite element modeling approach and with the analytical approach of the Generalized Lorenz-Mie Theory for various design parameters. By reorienting the LC in an external electrical field, we demonstrate the tuning of the spectral response of the sapphire microsphere based filter. We find that the value of the mode spacing remains nearly unchanged for the different values of the applied electric field. An increase of the applied electric field strength, changes the refractive index of the liquid crystal, so that for a fixed geometry the mode spacing remains unchanged.

  20. The Structure of Sapphire Implanted with Carbon at Room Temperature and 1000° C

    Science.gov (United States)

    Alves, E.; Marques, C.; Safran, G.; McHargue, Carl J.

    2009-03-01

    Carbon was implanted into sapphire at various temperatures as part of a study of the different defect structures produced by a series of light ions. Implantations were made with 150 keV ions to fluences of 1×1016 and 1×1017ions/cm2 at room temperature (RT) and 1000° C. The defect structures were characterized using Rutherford backscattering-channeling (RBS-C) and transmission electron microscopy (TEM). The RBS-C spectra indicated low residual disorder for RT implantation at 1×1016 C+/cm2. The de-channeling approached the random value at 1×1017 C+/cm2 and the TEM examination revealed a buried amorphous layer containing embedded sapphire nanocrystals. Damaged layers containing planar defects generally aligned parallel to the surface surrounded this layer. The RBS-C spectra for the sample implanted at 1000° C with 1×1017C+/cm2 suggested a highly damaged but crystalline surface that was confirmed by TEM micrographs.

  1. Study of the defects in GaN epitaxial films grown on sapphire by HVPE

    Science.gov (United States)

    Liu, Zhanhui; Xiu, Xiangqian; Chen, Lin; Zhang, Rong; Xie, Zili; Han, Ping; Shi, Yi; Gu, Shulin; Zheng, Youdou

    2008-02-01

    In this paper, the defects in hexagonal GaN epitaxial layers grown on (0001) sapphire (Al IIO 3) substrates by HVPE with a horizontal tube reactor had been studied. The GaN epitaxial layers were etched by means of defect-selective etching (Orthodox etching in molten KOH). The samples were characterized by Scanning Electron Microscopy (SEM) and Cathodoluminescence spectra (CL). From surface morphology and cross-sectional images, the defects could be divided into various types: cracks, low angle grain boundary (LAGB), nano-pipes and dislocations. These different defects were discussed. The cracks were proposed as related to the strain. And the strain could not only come from the lattice mismatch and thermal mismatch between sapphire and GaN layer in their interface, but also from the HVPE growth process. It was found that these screw, mixed and edge type dislocations formed small hexagonal pits after etching. Some pits would be observed in the area near LAGB. Additionally, by CL mapping technique, some non-radiative recombination centers without surface terminations could be probed optically.

  2. Gold wetting effects on sapphire irradiated with GeV uranium ions

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, S.M.M. [Universite Claude Bernard, Villeurbanne (France). Dept. de Phys. des Mater.; Canut, B. [Universite Claude Bernard, Villeurbanne (France). Dept. de Phys. des Mater.; Fornazero, J. [Universite Claude Bernard, Villeurbanne (France). Dept. de Phys. des Mater.; Thevenard, P. [Universite Claude Bernard, Villeurbanne (France). Dept. de Phys. des Mater.; Toulemonde, M. [Centre Interdisciplinaire de Recherche avec les Ions Lourds (CIRIL), Boulevard A. Becquerel, 14040 Caen Cedex (France)

    1997-02-01

    Single crystals of {alpha}-Al{sub 2}O{sub 3} were irradiated with {sup 238}U ions using two different energies: 3.4 MeV/u and 1.7 MeV/u. The irradiations were performed at a temperature of {approx}80 K, with fluences ranging from 1.2 x 10{sup 12} to 2.5 x 10{sup 12} ions cm{sup -2}. After irradiation, thin gold films were deposited on the sapphire surfaces by using a sputtering method. Subsequent annealing in air at a temperature of 723 and 923 K were applied to investigate the influence of the pre-damage on the adhesion of the gold layer on the sapphire surface. Rutherford backscattering analysis and scanning electron microscopy performed in both virgin and irradiated areas, show that the pre-irradiation damage inhibits the gold film of breaking up into islands after annealing. A wetting effect, which could depend on the damage morphology, is clearly observed. (orig.).

  3. Materials processing by use of a Ti:Sapphire laser with automatically-adjustable pulse duration

    Science.gov (United States)

    Kamata, M.; Imahoko, T.; Ozono, K.; Obara, M.

    We have developed an automatic pulsewidth-adjustable femtosecond Ti:Sapphire laser system that can generate an output of 50 fs-1 ps in duration, and sub-mJ/pulse at a repetition rate of 1 kpps. The automatic pulse compressor enables one to control the pulsewidth in the range of 50 fs-1 ps by use of a personal computer (PC). The compressor can change the distance in-between and the tilt angle of the grating pairs by use of two stepping motors and two piezo-electric transducer(PZT) driven actuators, respectively. Both are controlled by a PC. Therefore, not only control of the pulsewidth, but also of the optical chirp becomes easy. By use of this femtosecond laser system, we fabricated a waveguide in fused quartz. The numerical aperture is chosen to 0.007 to loosely focus the femtosecond laser. The fabricated waveguides are well controllable by the incident laser pulsewidth. We also demonstrated the ablation processing of hydroxyapatite (Ca10(PO4)6(OH)2), which is a key component of human tooth and human bone for orthopedics and dentistry. With pulsewidth tunable output from 50 fs through 2 ps at 1 kpps, the chemical content of calcium and phosphorus is kept unchanged before and after 50-fs-2-ps laser ablation. We also demonstrated the precise ablation processing of human tooth enamel with 2 ps Ti:Sapphire laser.

  4. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink.

    Science.gov (United States)

    Hadlow, W J; Race, R E; Kennedy, R C

    1983-09-01

    Information was sought on the comparative pathogenicity of four North American strains (isolates) of Aleutian disease virus for royal pastel (a non-Aleutian genotype) and sapphire (an Aleutian genotype) mink. The four strains (Utah-1, Ontario [Canada], Montana, and Pullman [Washington]), all of mink origin, were inoculated intraperitoneally and intranasally in serial 10-fold dilutions. As indicated by the appearance of specific antibody (counterimmunoelectrophoresis test), all strains readily infected both color phases of mink, and all strains were equally pathogenic for sapphire mink. Not all strains, however, regularly caused Aleutian disease in pastel mink. Infection of pastel mink with the Utah-1 strain invariably led to fatal disease. Infection with the Ontario strain caused fatal disease nearly as often. The Pullman strain, by contrast, almost never caused disease in infected pastel mink. The pathogenicity of the Montana strain for this color phase was between these extremes. These findings emphasize the need to distinguish between infection and disease when mink are exposed to Aleutian disease virus. The distinction has important implications for understanding the natural history of Aleutian disease virus infection in ranch mink.

  5. A microfabricated sun sensor using GaN-on-sapphire ultraviolet photodetector arrays

    Science.gov (United States)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; Suria, Ateeq J.; Chapin, Caitlin A.; Senesky, Debbie G.

    2016-09-01

    A miniature sensor for detecting the orientation of incident ultraviolet light was microfabricated using gallium nitride (GaN)-on-sapphire substrates and semi-transparent interdigitated gold electrodes for sun sensing applications. The individual metal-semiconductor-metal photodetector elements were shown to have a stable and repeatable response with a high sensitivity (photocurrent-to-dark current ratio (PDCR) = 2.4 at -1 V bias) and a high responsivity (3200 A/W at -1 V bias) under ultraviolet (365 nm) illumination. The 3 × 3 GaN-on-sapphire ultraviolet photodetector array was integrated with a gold aperture to realize a miniature sun sensor (1.35 mm × 1.35 mm) capable of determining incident light angles with a ±45° field of view. Using a simple comparative figure of merit algorithm, measurement of incident light angles of 0° and 45° was quantitatively and qualitatively (visually) demonstrated by the sun sensor, supporting the use of GaN-based sun sensors for orientation, navigation, and tracking of the sun within the harsh environment of space.

  6. Tunable Single-Frequency Intracavity Frequency-Doubled Ti:Sapphire Laser around 461 nm

    Institute of Scientific and Technical Information of China (English)

    李凤琴; 石柱; 李永民; 彭堃墀

    2011-01-01

    We demonstrate a tunable continuous-wave single frequency intracavity frequency-doubled Ti:sapphire laser.The highest output power of 280mW at 461.62nm is obtained by employing a type-I phase-matched BIBO crystal and the peak-to-peak fluctuation of the power is less than ±1% within three hours.The frequency stability is better than ±2.22 MHz over 10min when the laser is locked to a confocal Fabry-Perot cavity.A three-plate birefringent filter allows for the tunable range from 457nm to 467nm,which covers the absorption line of the strontium atoms(460.86nm).%We demonstrate a tunable continuous-wave single frequency intracavity frequency-doubled Ti:sapphire laser. The highest output power of 280mW at 461.62nm is obtained by employing a type-I phase-matched BIBO crystal and the peak-to-peak fluctuation of the power is less than ±1% within three hours. The frequency stability is better than ±2.22MHz over lOmin when the laser is locked to a confocal Fabry-Perot cavity. A three-plate birefringent filter allows for the tunable range from 457nm to 467 nm, which covers the absorption line of the strontium atoms (460.86 nm).

  7. Oscillators and operational amplifiers

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation...

  8. [Oscillating physiotherapy for secretolysis].

    Science.gov (United States)

    Brückner, U

    2008-03-01

    Assisted coughing and mechanical cough aids compensate for the weak cough flow in patients with neuromuscular diseases (NMD). In cases with preserved respiratory muscles also breathing techniques and special devices, e. g., flutter or acapella can be used for secretion mobilisation during infections of the airways. These means are summarised as oscillating physiotherapy. Their mechanisms are believed to depend on separation of the mucus from the bronchial wall by vibration, thus facilitating mucus transport from the peripheral to the central airways. In mucoviscidosis and chronic obstructive pulmonary disease their application is established, but there is a paucity of data regarding the commitment in patients with neuromuscular diseases. The effective adoption of simple oscillation physiotherapeutic interventions demands usually a sufficient force of the respiratory muscles--exceptions are the application of the percussionaire (intrapulmonary percussive ventilator, IPV) or high frequency chest wall oscillation (HFCWO). In daily practice there is evidence that patients with weak respiratory muscles are overstrained with the use of these physiotherapeutic means, or get exhausted. A general recommendation for the adoption of simple oscillating physiotherapeutic interventions cannot be made in patients with NMDs. Perhaps in the future devices such as IPV or HFCWO will prove to be more effective in NMD patients.

  9. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  10. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef;

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...

  11. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  12. Multiphoton coherent population oscillation

    CERN Document Server

    Sharypov, A V

    2014-01-01

    We study the bichromatic driving of a two-level system which displays long-lived coherent population oscillations (CPO). We show that under certain conditions, multiphoton parametric interaction leads to the appearance of CPO resonances at the subharmonic frequencies. In addition, in the region of the CPO resonances, there is strong parametric interaction between the weak sideband components of the electromagnetic field.

  13. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.;

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...

  14. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.;

    2007-01-01

    to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  15. Neutrino Velocity and Neutrino Oscillations

    CERN Document Server

    Minakata, H

    2012-01-01

    We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $\

  16. Microwave transistor oscillator frequency tripling

    OpenAIRE

    B. A. Kotserzhynskyi

    2010-01-01

    The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  17. Microwave transistor oscillator frequency tripling

    Directory of Open Access Journals (Sweden)

    B. A. Kotserzhynskyi

    2010-01-01

    Full Text Available The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  18. A Cs-Based Optical Frequency Measurement Using Cross-Linked Optical and Microwave Oscillators

    CERN Document Server

    Tamm, Chr; Lipphardt, B; Gerginov, V; Nemitz, N; Kazda, M; Weyers, S; Peik, E

    2013-01-01

    We describe a measurement of the frequency of the 2S1/2(F = 0) - 2D3/2(F' = 2) transition of 171Yb+ at the wavelength 436 nm (frequency 688 THz), using a single Yb+ ion confined in a Paul trap and two caesium fountains as references. In one of the fountains, the frequency of the microwave oscillator that interrogates the caesium atoms is stabilized by the laser that excites the Yb+ reference transition with a linewidth in the hertz range. The stability is transferred to the microwave oscillator with the use of a fiber laser based optical frequency comb generator that also provides the frequency conversion for the absolute frequency measurement. The frequency comb generator is configured as a transfer oscillator so that fluctuations of the pulse repetition rate and of the carrier offset frequency do not degrade the stability of the frequency conversion. The phase noise level of the generated ultrastable microwave signal is comparable to that of a cryogenic sapphire oscillator. For fountain operation with optic...

  19. Neutrino Oscillations with Nil Mass

    Science.gov (United States)

    Floyd, Edward R.

    2016-09-01

    An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton-Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and ν ,bar{ν } oscillations are examined.

  20. Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

    Science.gov (United States)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar

    2017-07-01

    This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.

  1. Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, Markus; Crunteanu, A.; Jelinek, M.

    2003-01-01

    Rib waveguides have been fabricated in pulsed-laser-deposited Ti:sapphire layers using photolithographic patterning and subsequent Ar+-beam milling. Fluorescence output powers up to 300 W have been observed from the ribs following excitation by a 3-W multiline argon laser. Mode intensity profiles sh

  2. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  3. Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate

    Science.gov (United States)

    Sun, Haiding; Wu, Feng; tahtamouni, T. M. Al; Alfaraj, Nasir; Li, Kuang-Hui; Detchprohm, Theeradetch; Dupuis, Russell D.; Li, Xiaohang

    2017-10-01

    The growth of high quality AlN epitaxial films relies on precise control of the initial growth stages. In this work, we examined the influence of the trimethylaluminum (TMAl) pretreatment of sapphire substrates on the structural properties, crystal quality and growth modes of heteroepitaxial AlN films on (0 0 0 1) sapphire substrates. Without the pretreatment, the AlN films nucleated on the smooth surface but exhibited mixed crystallographic Al- (N-) polarity, resulting in rough AlN film surfaces. With increasing the pretreatment time from 1 to 5 s, the N-polarity started to be impeded. However, small islands were formed on sapphire surface due to the decompostion of TMAl. As a result, small voids became noticeable at the nucleation layer (NL) because the growth started as quasi three-dimensional (3D) but transformed to 2D mode as the film grew thicker and got coalesced, leading to smoother and Al-polar films. On the other hand, longer pretreatment time of 40 s formed large 3D islands on sapphire, and thus initiated a 3D-growth mode of the AlN film, generating Al-polar AlN nanocolumns with different facets, which resulted into rougher film surfaces. The epitaxial growth modes and their correlation with the AlN film crystal quality under different TMAl pretreatments are also discussed.

  4. A sapphire tube atomizer for on-line atomization and in situ collection of bismuthine for atomic absorption spectrometry

    OpenAIRE

    Musil, S. (Stanislav); Dědina, J. (Jiří)

    2013-01-01

    Sapphire was tested as a new material for volatile species atomizers and bismuthine was chosen as a convenient model for volatile species. Its performance was compared with a quartz atomizer in both modes of operation - on-line atomization versus in situ collection.

  5. The study on the nanomachining property and cutting model of single-crystal sapphire by atomic force microscopy.

    Science.gov (United States)

    Huang, Jen-Ching; Weng, Yung-Jin

    2014-01-01

    This study focused on the nanomachining property and cutting model of single-crystal sapphire during nanomachining. The coated diamond probe is used to as a tool, and the atomic force microscopy (AFM) is as an experimental platform for nanomachining. To understand the effect of normal force on single-crystal sapphire machining, this study tested nano-line machining and nano-rectangular pattern machining at different normal force. In nano-line machining test, the experimental results showed that the normal force increased, the groove depth from nano-line machining also increased. And the trend is logarithmic type. In nano-rectangular pattern machining test, it is found when the normal force increases, the groove depth also increased, but rather the accumulation of small chips. This paper combined the blew by air blower, the cleaning by ultrasonic cleaning machine and using contact mode probe to scan the surface topology after nanomaching, and proposed the "criterion of nanomachining cutting model," in order to determine the cutting model of single-crystal sapphire in the nanomachining is ductile regime cutting model or brittle regime cutting model. After analysis, the single-crystal sapphire substrate is processed in small normal force during nano-linear machining; its cutting modes are ductile regime cutting model. In the nano-rectangular pattern machining, due to the impact of machined zones overlap, the cutting mode is converted into a brittle regime cutting model.

  6. Intracavity doubling of CW Ti:sapphire laser to 392.5 nm using BiBO-crystal

    DEFF Research Database (Denmark)

    Mortensen, Jesper Liltorp; Thorhauge, Morten; Tidemand-Lichtenberg, Peter

    2005-01-01

    In this work we present results obtained for intra-cavity frequency-doubling of a 785 nm CW Ti:sapphire laser utilising BiBO as the non-linear crystal. Intracavity doubling offers several advantages compared to extra-cavity doubling, such as no need to couple to an external resonance cavity...

  7. Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate

    KAUST Repository

    Sun, Haiding

    2017-08-08

    The growth of high quality AlN epitaxial films relies on precise control of the initial growth stages. In this work, we examined the influence of the trimethylaluminum (TMAl) pretreatment of sapphire substrates on the structural properties, crystal quality and growth modes of heteroepitaxial AlN films on (0001) sapphire substrates. Without the pretreatment, the AlN films nucleated on the smooth surface but exhibited mixed crystallographic Al- (N-) polarity, resulting in rough AlN film surfaces. With increasing the pretreatment time from 1 to 5 s, the N-polarity started to be impeded. However, small islands were formed on sapphire surface due to the decompostion of TMAl. As a result, small voids became noticeable at the nucleation layer (NL) because the growth started as quasi three-dimensional (3D) but transformed to 2D mode as the film grew thicker and got coalesced, leading to smoother and Al-polar films. On the other hand, longer pretreatment time of 40 s formed large 3D islands on sapphire, and thus initiated a 3D-growth mode of the AlN film, generating Al-polar AlN nanocolumns with different facets, which resulted into rougher film surfaces. The epitaxial growth modes and their correlation with the AlN film crystal quality under different TMAl pretreatments are also discussed.

  8. Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse mode broadband fluorescence sources

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, M.; Crunteanu, A.; Jelinek, M.

    2003-01-01

    Rib waveguides have been fabricated in pulsed-laser-deposited Ti:sapphire layers using photolithographic patterning and subsequent Ar+-beam milling. Fluorescence output powers up to 300 W have been observed from the ribs following excitation by a 3-W multiline argon laser. Mode intensity profiles sh

  9. Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti: sapphire waveguides

    NARCIS (Netherlands)

    Grivas, C.; May-Smith, T.C.; Shepherd, D.P.; Eason, R.W.; Pollnau, M.; Jelinek, M.

    2004-01-01

    Active rib waveguides with depths and widths varying from 3 to 5 μm and from 9 to 24 μm, respectively, have been structured by $Ar^{+}$-beam etching in pulsed laser deposited Ti:sapphire layers. Losses in the channel structures were essentially at the same levels as the unstructured planar waveguide

  10. Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; Eason, R.W.; Laversenne, L.; Moretti, P.; Borca, C.N.; Pollnau, M.

    2006-01-01

    Fabrication and laser operation of proton-implanted Ti:sapphire buried channel waveguides is reported for the first time to our knowledge. Without any postimplantation annealing of the structures, continuous laser operation near 780 nm was demonstrated at room temperature at an absorbed pump power t

  11. Ti:sapphire rib waveguides as single-transverse-mode broadband fluorescence sources for optical coherence tomography applications

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, M.; Crunteanu, A.; Jelinek, M.

    2003-01-01

    Ar+-beam-milled rib waveguides in pulsed-laser-deposited Ti:sapphire layers show broadband single transverse mode fluorescence emission at output powers up to 300 μW and propagation losses comparable to those in unstructured planar waveguide counterparts.

  12. Impact of high-temperature annealing of AlN layer on sapphire and its thermodynamic principle

    Science.gov (United States)

    Fukuyama, Hiroyuki; Miyake, Hideto; Nishio, Gou; Suzuki, Shuhei; Hiramatsu, Kazumasa

    2016-05-01

    The N2-CO gas annealing technique was demonstrated to improve the crystalline quality of the AlN layer on sapphire. 300-nm-thick AlN layers were fabricated on sapphire substrates by a metal-organic vapor phase epitaxy method. The AlN layers were annealed in N2 and/or N2-CO gas atmosphere at 1923-1973 K for 0.5-4 h. Many pits and voids were observed on the AlN surface annealed in N2 atmosphere at 1973 K for 2 h. The rough surface was, however, much improved for the AlN annealed in N2-CO gas atmosphere. The thermodynamic principle of the N2-CO gas annealing technique is explained in this paper on the basis of the phase stability diagram of the Al2O3-AlN-C-N2-CO system. Voids and γ-aluminum oxynitride (γ-AlON) at the AlN/sapphire interface formed during the annealing, which is also explained on the basis of the phase stability diagram. The in-plane epitaxial relationships among AlN, γ-AlON, and sapphire are presented, and misfits among them are discussed.

  13. Voltage-controlled photonic oscillator.

    Science.gov (United States)

    Savchenkov, A A; Ilchenko, V S; Liang, W; Eliyahu, D; Matsko, A B; Seidel, D; Maleki, L

    2010-05-15

    We report the development and demonstration of an X-band voltage-controlled photonic oscillator based on a whispering gallery mode resonator made of an electro-optic crystalline material. The oscillator has good spectral purity and wide, agile, linear tunability. We have modified the existing theoretical model of the opto-electronic oscillator to describe the performance of our tunable oscillator and have found a good agreement between the theoretical predictions and the measurement results. We show that the device is promising for higher-frequency applications where high-performance tunable oscillators with wide tunability do not exist.

  14. Evaluating the Type of Light Transmittance in Mono Crystalline, Poly Crystalline and Sapphire Brackets- An Invitro Spectrofluorometer Study.

    Science.gov (United States)

    Mohamed, Jauhar P; Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda

    2016-08-01

    Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. The light absorption values obtained from spectrofluorometeric study were 3300000-3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000-6500000 cps for Group 2 (polycrystalline ceramic brackets) and 2700000 -3000000 cps for

  15. Evaluating the Type of Light Transmittance in Mono Crystalline, Poly Crystalline and Sapphire Brackets- An Invitro Spectrofluorometer Study

    Science.gov (United States)

    Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda

    2016-01-01

    Introduction Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. Aim The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Materials and Methods Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. Results The light absorption values obtained from spectrofluorometeric study were 3300000–3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000–6500000 cps for Group 2

  16. Stable local oscillator module.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2007-11-01

    This report gives a description of the development of a Stable Local Oscillator (StaLO) multi-chip module (MCM). It is a follow-on report to SAND2006-6414, Stable Local Oscillator Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. This report describes the development of an MCM-based version of the complete StaLO, fabricated on an alumina thick film hybrid substrate.

  17. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  18. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  19. Physics of Neutrino Oscillation

    CERN Document Server

    Mondal, Spandan

    2015-01-01

    The Standard Model of particle physics describes neutrinos as massless, chargeless elementary particles that come in three different flavours. However, recent experiments indicate that neutrinos not only have mass, but also have multiple mass eigenstates that are not identical to the flavour states, thereby indicating mixing. As an evidence of mixing, neutrinos have been observed to change from one flavour to another during their propagation, a phenomenon called neutrino oscillation. We have studied the reasons and derived the probabilities of neutrino flavour change, both in vacuum and in matter. We have also studied the parameters affecting this probability. We have discussed the special case of two-neutrino oscillations. Lastly, we have discussed some basic properties of neutrinos that are reflected in the previous derivations and highlighted a few relevant open problems. To begin with, we have also studied the relevant topics in introductory High Energy Physics and Quantum Mechanics to familiarize with th...

  20. Neutrino Masses and Oscillations

    CERN Document Server

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  1. Oscillations in the bispectrum

    CERN Document Server

    Meerburg, P Daniel

    2010-01-01

    There exist several models of inflation that produce primordial bispectra that contain a large number of oscillations. In this paper we discuss these models, and aim at finding a method of detecting such bispectra in the data. We explain how the recently proposed method of mode expansion of bispectra might be able to reconstruct these spectra from separable basis functions. Extracting these basis functions from the data might then lead to observational constraints on these models.

  2. Polychromatic optical Bloch oscillations.

    Science.gov (United States)

    Longhi, Stefano

    2009-07-15

    Bloch oscillations (BOs) of polychromatic beams in circularly curved optical waveguide arrays are smeared out owing to the dependence of the BO spatial period on the wavelength. Here it is shown that restoring of the self-imaging property of the array and approximate BOs over relatively broad spectral ranges can be achieved by the insertion of suitable lumped phase slips uniformly applied across the array.

  3. Nonlinear Oscillators in Space Physics

    Science.gov (United States)

    Lester,Daniel; Thronson, Harley

    2011-01-01

    We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.

  4. Temperature sensitive oscillator

    Science.gov (United States)

    Kleinberg, L. L. (Inventor)

    1986-01-01

    An oscillator circuit for sensing and indicating temperature by changing oscillator frequency with temperature comprises a programmable operational amplifier which is operated on the roll-off portion of its gain versus frequency curve and has its output directly connected to the inverting input to place the amplifier in a follower configuration. Its output is also connected to the non-inverting input by a capacitor with a crystal or other tuned circuit also being connected to the non-inverting input. A resistor is connected to the program input of the amplifier to produce a given set current at a given temperature, the set current varying with temperature. As the set current changes, the gain-bandwidth of the amplifier changes and, in turn, the reflected capacitance across the crystal changes, thereby providing the desired change in oscillator frequency by pulling the crystal. There is no requirement that a crystal employed with this circuit display either a linear frequency change with temperature or a substantial frequency change with temperature.

  5. Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition

    Science.gov (United States)

    Jung, Dae Ho; So, Hyeon Seob; Ko, Kun Hee; Park, Jun Woo; Lee, Hosun; Nguyen, Trang Thi Thu; Yoon, Seokhyun

    2016-12-01

    VO2 thin films were grown on a-, c-, m-, and r-plane sapphire and SiO2/Si substrates under identical conditions by using RF sputtering deposition from a VO2 target. The structural and the morphological properties of all VO2 films were investigated. The grain sizes of the VO2 films varied between 268 nm and 355 nm depending on the substrate's orientation. The electrical and the optical properties of all VO2 thin films were examined in detail. The metal-insulator transition temperature (TMI) varied with the substrate's orientation. The (200)/(bar 211 )-oriented VO2 films on the a-plane sapphire showed the lowest TMI of about 329.3 K (56.3 °C) while the (020)/(002)-VO2 films on the c-plane sapphire displayed the highest TMI of about 339.6 K (66.6 °C). The VO2 films showed reversible changes in the resistivity as large as 1.19 × 105 and a hysteresis of 2 K upon traversing the transition temperature. The variations observed in the TMI with respect to the substrate's orientation were due to changes in the lattice strain and the grain size distribution. Raman spectroscopy showed that metal (rutile) - insulator (monoclinic) transitions occurred via the M2 phase for VO2 films on the c-plane substrate rather than the direct M1 to rutile transition. The shifts in the phonon frequencies of the VO2 film grown on various sapphire substrates were explained in terms of the strain along the V-V atomic bond direction (cR). Our work shows a possible correlation between the transition parameters ( e.g., TMI, sharpness, and hysteresis width) and the width ( σ) of the grain size distribution. It also shows a possible correlation between the TMI and the resistivities at the insulating and the metallic phases for VO2 films grown on various sapphire substrates.

  6. 蓝宝石晶体的双面研磨加工%Dual-lapping process for sapphire crystal

    Institute of Scientific and Technical Information of China (English)

    文东辉; 洪滔; 张克华; 鲁聪达

    2009-01-01

    In order to achieve high efficiency and low damaged layers during a sapphire crystal lapping process,an experimental research on the rougness,lapping uniformity and sub-surface damaged layer were studied in this paper.The sapphire with (0001) orientation was lapped by 280 mesh boron carbide abrasive grits.The effects of lapping time on the material removal rates and surface roughness were investigated,and the processing remainders by the dual-lapping were determined in accordance with the surface states of the sapphire.Then micro-surface uniformity of the sapphire was also presented by using WYKO laser equipment.Finally,a nano-indentation test was carried out to measure the depth of damaged layer according to the hardness or modulus variances.Experimental results show that the sapphire crystal can offer the R,in 0.523 μm,R,<6.0 μm,the depth of heavy damaged layer of 460 nm,and the depth of sub-surface damaged layer no more than 1 μm,after it is lapped by the abrasive with 280 mesh boron carbide grits in 120 min.%为了实现对蓝宝石晶体的高效低损伤研磨加工,对蓝宝石晶体的双面研磨加工表面粗糙度、研磨均匀性和亚表面损伤层的深度进行实验研究.采用280min的双面研磨加工后可以获得Ra为0.523 μm,Rt<6.0 μm的表面;其深度损伤层约为460 nm,亚表面损伤层<1 μm.

  7. Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II

    Science.gov (United States)

    Karacheban, O.; Afanaciev, K.; Hempel, M.; Henschel, H.; Lange, W.; Leonard, J. L.; Levy, I.; Lohmann, W.; Schuwalow, S.

    2015-08-01

    Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial diamond sensors are widely used. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm2 size and 525 μ m thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the detector was studied in a 5 GeV electron beam. The charge collection efficiency measured as a function of the bias voltage rises with the voltage, reaching about 10% at 095 V. The signal size obtained from electrons crossing the stack at this voltage is about 02200 e, where e is the unit charge. The signal size is measured as a function of the hit position, showing variations of up to 20% in the direction perpendicular to the beam and to the electric field. The measurement of the signal size as a function of the coordinate parallel to the electric field confirms the prediction that mainly electrons contribute to the signal. Also evidence for the presence of a polarisation field was observed.

  8. Preparation of Ce-doped colloidal SiO{sub 2} composite abrasives and their chemical mechanical polishing behavior on sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Hong, E-mail: hong_lei2005@aliyun.com [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Tong, Kaiyu; Wang, Zhanyong [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China)

    2016-04-01

    Chemical mechanical polishing (CMP) has become a widely accepted global planarization technology. Abrasive is one of key elements during CMP process. In order to enhance removal rate and improve surface quality of sapphire substrate, a series of novel Ce-doped colloidal SiO{sub 2} composite abrasives were prepared by chemical co-precipitation method. The CMP performances of the Ce-doped colloidal SiO{sub 2} composite abrasives on sapphire substrate were investigated by using UNIPOL-1502 polishing equipment. The analyses on the surface of polished sapphire substrate indicate that slurries containing the Ce-doped colloidal SiO{sub 2} composite abrasives exhibit lower surface roughness, higher material removal rate than that of pure colloidal SiO{sub 2} abrasive under the same testing conditions. Furthermore, the acting mechanism of the Ce-doped colloidal silica in sapphire CMP was investigated. X-ray photoelectron spectroscopy analysis shows that solid-state chemical reactions between Ce-doped silica abrasives and sapphire surface occur during CMP process, which can promote the chemical effect in CMP and lead to the improvement of material removing rate. - Highlights: • Novel Ce-doped colloidal SiO{sub 2} composite abrasives were prepared. • The chemical mechanical polishing (CMP) performances of the composite abrasives on sapphire substrate were investigated. • Novel composite abrasives show excellent polishing characteristics comparison with pure colloidal SiO{sub 2} abrasive. • We explore and report the acting mechanism of composite abrasives to sapphire CMP.

  9. A Peltier cooled single pass amplifier for Titanium:Sapphire laser pulses

    Science.gov (United States)

    Ozawa, A.; Schneider, W.; Najafi, F.; Hänsch, T. W.; Udem, Th.; Hommelhoff, P.

    2010-05-01

    We report on a Peltier cooled single pass amplifier for high repetition rate Titanium:sapphire laser pulses. Pumped with 14 W and seeded with around 400 mW, the output reaches 1.1 W with good beam quality. This amplifier is very user-friendly, easy to maintain and set up and thus represents a device situated between more complicated liquid-nitrogen cooled amplifiers that can operate at higher pump power, and very simple near to room temperature amplifiers that can only be pumped with less power. In addition, we show the results of a finite element simulation on the temperature distribution in a liquid nitrogen cooled amplifier setup designed for highest output powers.

  10. Preparation and structural properties of YBCO films grown on GaN/c-sapphire hexagonal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chromik, S., E-mail: stefan.chromik@savba.sk [Institute of Electrical Engineering, SAS, Dubravska cesta 9, 84104 Bratislava (Slovakia); Gierlowski, P. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Spankova, M.; Dobrocka, E.; Vavra, I.; Strbik, V.; Lalinsky, T.; Sojkova, M. [Institute of Electrical Engineering, SAS, Dubravska cesta 9, 84104 Bratislava (Slovakia); Liday, J.; Vogrincic, P. [Department of Microelectronics, Slovak Technical University, Ilkovicova 3, 81219 Bratislava (Slovakia); Espinos, J.P. [Instituto de Ciencia de Materiales de Sevilla, Avda Americo Vespucio 49, 41092 Sevilla (Spain)

    2010-07-01

    Epitaxial YBCO thin films have been grown on hexagonal GaN/c-sapphire substrates using DC magnetron sputtering and pulsed laser deposition. An MgO buffer layer has been inserted between the substrate and the YBCO film as a diffusion barrier. X-ray diffraction analysis indicates a c-axis oriented growth of the YBCO films. {Phi}-scan shows surprisingly twelve maxima. Transmission electron microscopy analyses confirm an epitaxial growth of the YBCO blocks with a superposition of three a-b YBCO planes rotated by 120 deg. to each other. Auger electron spectroscopy and X-ray photoelectron spectroscopy reveal no surface contamination with Ga even if a maximum substrate temperature of 700 deg. C is applied.

  11. Nanosecond optical transmission studies of laser annealing in ion-implanted silicon-on-sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.C.; Lo, H.W.; Aydinli, A.; Trott, G.J.; Compaan, A. (Kansas State Univ., Manhattan (USA). Dept. of Physics); Hale, E.B. (Missouri Univ., Rolla (USA). Dept. of Physics)

    1983-06-01

    Time-resolved optical transmission has been studied using 633 and 514 nm CW probes on ion-implantation-amorphized silicon-on-sapphire during annealing by a 10 nsec, approximately 1 J/cm/sup 2/ pulse at either 532 nm or 485 nm. As recrystallization sets in the transmitted signal at 514 nm rises by approximately 10/sup 3/ in approximately 60 nsec and provides a measure of regrowth velocity. Beyond 200 nsec the much slower transmission rise is used to provide an estimate of the Si cooling rate. The difference in transmission observed between initially crystalline and initially amorphous Si provide an estimate of the latent heat of recrystallization of the amorphous phase.

  12. Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.

  13. The sapphire backscattering monochromator at the Dynamics beamline P01 of PETRA III

    Science.gov (United States)

    Alexeev, P.; Asadchikov, V.; Bessas, D.; Butashin, A.; Deryabin, A.; Dill, F.-U.; Ehnes, A.; Herlitschke, M.; Hermann, R. P.; Jafari, A.; Prokhorov, I.; Roshchin, B.; Röhlsberger, R.; Schlage, K.; Sergueev, I.; Siemens, A.; Wille, H.-C.

    2016-12-01

    We report on a high resolution sapphire backscattering monochromator installed at the Dynamics beamline P01 of PETRA III. The device enables nuclear resonance scattering experiments on Mössbauer isotopes with transition energies between 20 and 60 keV with sub-meV to meV resolution. In a first performance test with 119Sn nuclear resonance at a X-ray energy of 23.88 keV an energy resolution of 1.34 meV was achieved. The device extends the field of nuclear resonance scattering at the PETRA III synchrotron light source to many further isotopes like 151Eu, 149Sm, 161Dy, 125Te and 121Sb.

  14. Nanostructured sapphire vicinal surfaces as templates for the growth of self-organized oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Thune, E., E-mail: elsa.thune@unilim.fr [Laboratoire Sciences des Procedes Ceramiques et de Traitements de Surface (SPCTS), UMR CNRS 6638, ENSCI, 47-73 Avenue Albert Thomas, F-87065 Limoges Cedex (France); Boulle, A. [Laboratoire Sciences des Procedes Ceramiques et de Traitements de Surface (SPCTS), UMR CNRS 6638, ENSCI, 47-73 Avenue Albert Thomas, F-87065 Limoges Cedex (France); Babonneau, D.; Pailloux, F. [Laboratoire de Physique des Materiaux (PHYMAT), UMR CNRS 6630, Universite de Poitiers, Boulevard Marie et Pierre Curie - Teleport 2, BP 30179, F-86962 Futuroscope - Chasseneuil Cedex (France); Hamd, W.; Guinebretiere, R. [Laboratoire Sciences des Procedes Ceramiques et de Traitements de Surface (SPCTS), UMR CNRS 6638, ENSCI, 47-73 Avenue Albert Thomas, F-87065 Limoges Cedex (France)

    2009-11-15

    Vicinal substrates of sapphire with miscut angle of 10 deg. from the (0 0 1) planes towards the [1 1 0] direction have been annealed in air in the range from 1000 to 1500 deg. C. The behaviour of these surfaces has been characterized as a function of the temperature and the thermal treatment time by Atomic Force Microscopy observations. A thermal treatment at 1250 deg. C allows to stabilize a surface made of periodically spaced nanosized step-bunches. Such stepped surfaces were used as template to grow self-patterned epitaxial oxide nanoparticles by thermal annealing of yttria-stabilized zirconia thin films produced by sol-gel dip-coating. Grazing Incidence Small Angle X-ray Scattering and High-Resolution Transmission Electron Microscopy were used to study the morphology of the nanoparticles and their epitaxial relationships with the substrate.

  15. Stealth dicing of sapphire wafers with near infra-red femtosecond pulses

    Science.gov (United States)

    Yadav, Amit; Kbashi, Hani; Kolpakov, Stanislav; Gordon, Neil; Zhou, Kaiming; Rafailov, Edik U.

    2017-05-01

    The quality of the reflecting faces after dicing is critical for the fabrication of efficient and stable laser diodes emitting in the green-violet region. However, high-quality faces can be difficult to achieve for devices grown on a sapphire substrate as this material is difficult to cleave cleanly. We have therefore investigated a technology known as "stealth dicing". The technology uses a pulsed laser to damage a plane of material inside of the wafer due to multi-photon absorption instead of cutting through the wafer surface. If the damage is induced in a line of stress points, the sample can then be cleaved easily along the damaged plane to leave a high-quality surface. The use of this technique also reduces thermal damage and debris.

  16. All-solid-state narrow-linewidth 455-nm blue laser based on Ti: sapphire crystal

    Institute of Scientific and Technical Information of China (English)

    Shankui Rong; Xiaolei Zhu; Weibiao Chen

    2009-01-01

    A compact, all-solid-state, narrow-linewidth, pulsed 455-nm blue laser based on Ti:sapphire crystal is developed. Pumped by a 10-Hz, frequency-doubled all-solid-state Nd:YAG laser and injection-seeded by an external cavity laser diode, the narrow-linewidth 910-nm laser with pulse width of 20 ns is obtained from a Tirsapphire laser. 3.43-mJ blue laser can be obtained from the laser system by frequency-doubling with BBO crystal. This research is very useful to determine the roadmap of developing the practical, high power blue laser. This kind of laser will have potential application for underwater communication.

  17. Containerless laser-induced fluorescence study of vaporization and optical properties for sapphire and alumina

    Energy Technology Data Exchange (ETDEWEB)

    Nordine, P.C.; Schiffman, R.A. (Midwest Research Institute, Kansas City, MO (USA) Yale Univ., New Haven, CT (USA))

    1988-09-01

    Evaporation of aluminum oxide was studied from 1,800 to 2,327 K by laser-induced fluorescence (LIF) detection of Al atom vapor over sapphire and alumina spheres that were levitated in an argon gas jet and heated with a continuous wave CO{sub 2} laser. Optical properties were determined from apparent specimen temperatures measured with an optical pyrometer and true temperatures deduced from the LIF intensity versus temperature measurements using the known temperature dependence of the Al atom vapor concentration in equilibrium with Al{sub 2}O{sub 3}. The effects of impurities and dissolved oxygen on the high-temperature optical properties of aluminum oxide were discussed.

  18. Threading dislocation annihilation in the GaN layer on cone patterned sapphire substrate

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.R., E-mail: shengruixidian@126.com [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071 (China); Li, P.X. [School of Technical Physics, Xidian University, Xi’an 710071 (China); Zhang, J.C.; Jiang, T. [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071 (China); Ma, J.J. [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071 (China); School of Technical Physics, Xidian University, Xi’an 710071 (China); Lin, Z.Y.; Hao, Y. [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071 (China)

    2014-11-25

    Highlights: • The LED structure on PSS was grown by MOCVD. • The distribution of defects in GaN film grown on PSS was investigated by TEM. • The main mechanism of TDs reducing on PSS was revealed. - Abstract: The microstructure of an epilayer structure for the blue light-emitting diode grown on a cone patterned sapphire substrate was characterized by high-resolution X-ray diffraction, atomic force microscopy and transmission electron microscopy (TEM). Cross-sectional TEM revealed that most of the dislocations, which originated from planar region, propagated laterally toward the cone region during the lateral growth process. This change of the propagation direction prevented the dislocations from penetrate the epitaxy film and thus principally led to a drastic reduction in the threading dislocation density in GaN films. Particularly, we proposed that the six {11"‾01} semipolar facets play a very important role during the bending process.

  19. Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape

    Institute of Scientific and Technical Information of China (English)

    Huang Xiao-Hui; Liu Jian-Ping; Fan Ya-Ming; Kong Jun-Jie; Yang Hui; Wang Huai-Bing

    2012-01-01

    The epitaxial growths of GaN films and GaN-based LEDs on various patterned sapphire substrates (PSSes) with different values of fill factor (f) and slanted angle (θ) are investigated in detail.The threading dislocation (TD) density is lower in the film grown on the PSS with a smaller fill factor,resulting in a higher internal quantum efficiency (IQE).Also the ability of the LED to withstand the electrostatic discharge (ESD) increases as the fill factor decreases.The illumination output power of the LED is affected by both θ and f.It is found that the illumination output power of the LED grown on the PSS with a lower production of tan θ and f is higher than that with a higher production of tan θ and f.

  20. A 10-Hz Terawatt Class Ti:Sapphire Laser System: Development and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.K.; Smedley, J.; Tsang, T.; Rao, T.

    2010-01-12

    We developed a two stage Ti:Sapphire laser system to generate 16 mJ/80fs laser pulses at the pulse repetition rate of 10 Hz. The key deriver for the present design is implementing a highly efficient symmetric confocal pre-amplifier and employing a simple, inexpensive synchronization scheme relying only on a commercial digital delay-generator. We characterized the amplified pulses in spatial-, spectral-, and temporal-domains. The laser system was used to investigate various nonlinear optical processes, and to modify the optical properties of metal- and semiconductor-surfaces. We are currently building a third amplifier to boost the laser power to the multi-terawatt range.

  1. A High Power and High Repetition Rate Modelocked Ti-Sapphire Laser for Photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    J. Hansknecht; M. Poelker

    2001-07-01

    A high power cw mode-locked Ti-sapphire laser has been constructed to drive the Jefferson Lab polarized photoinjector and provide > 500 mW average power with 50 ps pulsewidths at 499 MHz or 1497 MHz pulse repetition rates. This laser allows efficient, high current synchronous photoinjection for extended periods of time before intrusive steps must be taken to restore the quantum efficiency of the strained layer GaAs photocathode. The use of this laser has greatly enhanced the maximum high polarization beam current capability and operating lifetime of the Jefferson Lab photoinjector compared with previous performance using diode laser systems. A novel modelocking technique provides a simple means to phase-lock the optical pulse train of the laser to the accelerator and allows for operation at higher pulse repetition rates to {approx} 3 GHz without modification of the laser cavity. The laser design and characteristics are described below.

  2. Layering of [BMIM]+-based ionic liquids at a charged sapphire interface.

    Science.gov (United States)

    Mezger, Markus; Schramm, Sebastian; Schröder, Heiko; Reichert, Harald; Deutsch, Moshe; De Souza, Emerson J; Okasinski, John S; Ocko, Benjamin M; Honkimäki, Veijo; Dosch, Helmut

    2009-09-07

    The structure of two model room temperature ionic liquids, [BMIM](+)[PF(6)](-) and [BMIM](+)[BF(4)](-), near the solid/liquid interface with charged Al(2)O(3)(0001) (sapphire) was determined with subnanometer resolution by high energy (72.5 keV) x-ray reflectivity. [BMIM](+)[PF(6)](-) exhibits alternately charged, exponentially decaying, near-surface layering. By contrast, the smaller-anion compound, [BMIM](+)[BF(4)](-), shows only a single layer of enhanced electron density at the interface. The different layering behaviors, and their characteristic length scales, correspond well to the different bulk diffraction patterns, also measured in this study. Complementary measurements of the surface and interface energies showed no significant different between the two RTILs. The combined bulk-interface results support the conclusion that the interfacial ordering is dominated by the same electrostatic ion-ion interactions dominating the bulk correlations, with hydrogen bonding and dispersion interactions playing only a minor role.

  3. Narrow linewidth operation of the RILIS titanium: Sapphire laser at ISOLDE/CERN

    CERN Document Server

    Rothe, S; Wendt, K D A; Fedosseev, V N; Kron, T; Marsh, B A

    2013-01-01

    A narrow linewidth operating mode for the Ti:sapphire laser of the CERN ISOLDE Resonance Ionization Laser Ion Source (RILIS) has been developed. This satisfies the laser requirements for the programme of in-source resonance ionization spectroscopy measurements and improves the selectivity for isomer separation using RILIS. A linewidth reduction from typically 10 GHz down to 1 GHz was achieved by the intra-cavity insertion of a second (thick) Fabry-Perot etalon. Reliable operation during a laser scan was achieved through motorized control of the tilt angle of each etalon. A scanning, stabilization and mode cleaning procedure was developed and implemented in LabVIEW. The narrow linewidth operation was confirmed in a high resolution spectroscopy study of francium isotopes by the Collinear Resonance Ionization Spectroscopy experiment. The resulting laser scans demonstrate the suitability of the laser, in terms of linewidth, spectral purity and stability for high resolution in-source spectroscopy and isomer select...

  4. Single-crystal Sapphire Based Optical Polarimetric Sensor for High Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Anbo Wang

    2006-08-01

    Full Text Available Optical sensors have been investigated and widely deployed in industrial andscientific measurement and control processes, mainly due to their accuracy, high sensitivityand immunity to electromagnetic interference and other unique characteristics. They areespecially suited for harsh environments applications, where no commercial electricalsensors are available for long-term stable operations. This paper reports a novel contactoptical high temperature sensor targeting at harsh environments. Utilizing birefringentsingle crystal sapphire as the sensing element and white light interferometric signalprocessing techniques, an optical birefringence based temperature sensor was developed.With a simple mechanically structured sensing probe, and an optical spectrum-codedinterferometric signal processor, it has been tested to measure temperature up to 1600 °Cwith high accuracy, high resolution, and long-term measurement stability.

  5. Anomalous Surface Deformation of Sapphire Clarified by 3D-FEM Simulation of the Nanoindentation

    Science.gov (United States)

    Nowak, Roman; Manninen, Timo; Li, Chunliang; Heiskanen, Kari; Hannula, Simo-Pekka; Lindroos, Veikko; Soga, Tetsuo; Yoshida, Fusahito

    This work clarifies the origin of anomalous surface deformation reflected by peculiar surface patterns around indentation impressions on various crystallographic planes of sapphire. The three-dimensional finite element simulation (3D-FEM) of nanoindentation in Al2O3 crystal allowed the authors to localize the regions in which various kinds of twinning and slip are most prone to be activated. The work provides a novel approach to the “hardness anisotropy”, which was modeled so far using a modified uniaxial-stress approximation of this essentially 3D, non-isotropic contact problem. The calculated results enabled the authors to unravel the asymmetric surface deformation detected on prismatic planes by the high-resolution microscopy, which cannot be explained using simple crystallographic considerations.

  6. LASER LIFT-OFF OF GaN THIN FILMS FROM SAPPHIRE SUBSTRATES

    Institute of Scientific and Technical Information of China (English)

    J. Xu; R. Zhang; Y.P. Wang; X.Q. Xiu; S.L. Gu; B. Shen; Y. Shi; Z.G. Liu; Y.D. Zheng

    2001-01-01

    Gallium Nitride film was successfully separated from sapphire substrate by laser radi-ation. The absorption of the 248nm radiation by the GaN at the interface results inrapid thermal decomposition of the interfacial layer, yielding metallic Ga and N2 gas.The substrate can be easily removed by heating above the Ga melting point (29℃).X-ray diffraction, atomic force microscopy and Photoluminescence of GaN before andafter lift-off process have been performed, which demonstrated that the separation andtransfer process do not alter the structural quality of the GaN films. And further dis-cussions on the threshold energy and crack-free strategies of laser lift-off process havealso been presented.

  7. Acquisition of a Nd-Yag Pumped MOPO (Master Oscillator/Power Oscillator) Optical Parametric Oscillator

    Science.gov (United States)

    1997-09-30

    SEP 1997 2. REPORT TYPE 3. DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Acquisition of a Nd-Yag Pumped MOPO (Master Oscillator...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 ACQUISITION OF A ND-YAG PUMPED MOPO (MASTER OSCILLATOR / POWER OSCILLATOR) OPTICAL...instrument is configured in a master oscillator/power oscillator configuration, hence the designation MOPO . The MOPO will be used in conjunction

  8. Advances in Trace Element “Fingerprinting” of Gem Corundum, Ruby and Sapphire, Mogok Area, Myanmar

    Directory of Open Access Journals (Sweden)

    F. Lin Sutherland

    2014-12-01

    Full Text Available Mogok gem corundum samples from twelve localities were analyzed for trace element signatures (LA-ICP-MS method and oxygen isotope values (δ18O, by laser fluorination. The study augmented earlier findings on Mogok gem suites that suggested the Mogok tract forms a high vanadium gem corundum area and also identified rare alluvial ruby and sapphire grains characterised by unusually high silicon, calcium and gallium, presence of noticeable boron, tin and niobium and very low iron, titanium and magnesium contents. Oxygen isotope values (δ18O for the ruby and high Si-Ca-Ga corundum (20‰–25‰ and for sapphire (10‰–20‰ indicate typical crustal values, with values >20‰ being typical of carbonate genesis. The high Si-Ca-Ga ruby has high chromium (up to 3.2 wt % Cr and gallium (up to 0. 08 wt % Ga compared to most Mogok ruby (<2 wt % Cr; <0.02 wt % Ga. In trace element ratio plots the Si-Ca-Ga-rich corundum falls into separate fields from the typical Mogok metamorphic fields. The high Ga/Mg ratios (46–521 lie well within the magmatic range (>6, and with other features suggest a potential skarn-like, carbonate-related genesis with a high degree of magmatic fluid input The overall trace element results widen the range of different signatures identified within Mogok gem corundum suites and indicate complex genesis. The expanded geochemical platform, related to a variety of metamorphic, metasomatic and magmatic sources, now provides a wider base for geographic typing of Mogok gem corundum suites. It allows more detailed comparisons with suites from other deposits and will assist identification of Mogok gem corundum sources used in jewelry.

  9. Two Wavelength Ti:sapphire Laser for Ozone DIAL Measurements from Aircraft

    Science.gov (United States)

    Situ, Wen; DeYoung, Russel J.

    1998-01-01

    Laser remote sensing of ozone from aircraft has proven to be a valuable technique for understanding the distribution and dynamics of ozone in the atmosphere. Presently the differential absorption lidar (DIAL) technique, using dual ND:YAG lasers that are doubled to pump dye lasers which in turn are doubled into the UV for the "on" and "off' line lasers, is used on either the NASA DC-8 or P-3 aircraft. Typically, the laser output for each line is 40-mJ and this is split into two beams, one looking up and the other downward, each beam having about 20-mJ. The residual ND:YAG (1.06 micron) and dye laser energies are also transmitted to obtain information on the atmospheric aerosols. While this system has operated well, there are several system characteristics that make the system less than ideal for aircraft operations. The system, which uses separate "on" and "off" line lasers, is quite large and massive requiring valuable aircraft volume and weight. The dye slowly degrades with time requiring replacement. The laser complexity requires a number of technical people to maintain the system performance. There is also the future interest in deploying an ozone DIAL system in an Unpiloted Atmospheric Vehicle (UAV) which would require a total payload mass of less than 150 kg and power requirement of less than 1500 W. A laser technology has emerged that could potentially provide significant enhancements over the present ozone DIAL system. The flashlamp pumped Ti:sapphire laser system is an emerging technology that could reduce the mass and volume over the present system and also provide a system with fewer conversion steps, reducing system complexity. This paper will discuss preliminary results from a flashlamp-pumped Ti:sapphire laser constructed as a radiation source for a UV DIAL system to measure ozone.

  10. YBCO High-Temperature Superconducting Filters on M-Plane Sapphire Substrates

    Science.gov (United States)

    Sabataitis, J. C.; Mueller, C. H.; Miranda, F. A.; Warner, J.; Bhasin, K. B.

    1996-01-01

    Since the discovery of High Temperature Superconductors (HTS) in 1986, microwave circuits have been demonstrated using HTS films on various substrates. These HTS-based circuits have proven to operate with less power loss than their metallic film counterparts at 77 K. This translates into smaller and lighter microwave circuits for space communication systems such as multiplexer filter banks. High quality HTS films have conventionally been deposited on lanthanum aluminate (LaAlO3) substrates. However, LaAlO3 has a relative dielectric constant (epsilon(sub r)) of 24. With a epsilon(sub r) approx. 9.4-11.6, sapphire (Al2O3) would be a preferable substrate for the fabrication of HTS-based components since the lower dielectric constant would permit wider microstrip lines to be used in filter design, since the lower dielectric constant would permit wider microstrip lines to be used for a given characteristic impedance (Z(sub 0)), thus lowering the insertion losses and increasing the power handling capabilities of the devices. We report on the fabrication and characterization of YBa2Cu3O(7-delta) (YBCO) on M-plane sapphire bandpass filters at 4.0 GHz. For a YBCO 'hairpin' filter, a minimum insertion loss of 0.5 dB was measured at 77 K as compared with 1.4 dB for its gold counterpart. In an 'edge-coupled' configuration, the insertion loss went down from 0.9 dB for the gold film to 0.8 dB for the YBCO film at the same temperature.

  11. Kravchuk oscillator revisited

    Science.gov (United States)

    Atakishiyeva, Mesuma K.; Atakishiyev, Natig M.; Wolf, Kurt Bernardo

    2014-05-01

    The study of irreducible representations of Lie algebras and groups has traditionally considered their action on functions of a continuous manifold (e.g. the 'rotation' Lie algebra so(3) on functions on the sphere). Here we argue that functions of a discrete variable -Kravchuk functions- are on equal footing for that study in the case of so(3). They lead to a discrete quantum model of the harmonic oscillator, and offer a corresponding set of special function relations. The technique is applicable to other special function families of a discrete variable, which stem from low-dimensional Lie algebras and are stationary solutions for the corresponding discrete quantum models.

  12. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  13. On Oscillating Dark Energy

    CERN Document Server

    Linder, E V

    2006-01-01

    Distance-redshift data can impose strong constraints on dark energy models even when the equation of state is oscillatory. Despite the double integral dependence of the distance on the equation of state, precision measurement of the distance-redshift relation for z=0-2 is more incisive than the linear growth factor, CMB last scattering surface distance, and the age of the universe in distinguishing oscillatory behavior from an average behavior. While oscillating models might help solve the coincidence problem (since acceleration occurs periodically), next generation observations will strongly constrain such possibilities.

  14. On particle oscillations

    CERN Document Server

    Góźdź, Marek

    2013-01-01

    It has been firmly established, that neutrinos change their flavour during propagation. This feature is attributed to the fact, that each flavour eigenstate is a superposition of three mass eigenstates, which propagate with different frequencies. This picture, although widely accepted, is wrong in the simplest approach and requires quite sophisticated treatment based on the wave-packet description within quantum field theory. In this communication we present a novel, much simpler explanation and show, that oscillations among massive particles can be obtained in a natural way. We use the framework of quantum mechanics with time being a physical observable, not just a parameter.

  15. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  16. Olfactory system oscillations across phyla.

    Science.gov (United States)

    Kay, Leslie M

    2015-04-01

    Neural oscillations are ubiquitous in olfactory systems of mammals, insects and molluscs. Neurophysiological and computational investigations point to common mechanisms for gamma or odor associated oscillations across phyla (40-100Hz in mammals, 20-30Hz in insects, 0.5-1.5Hz in molluscs), engaging the reciprocal dendrodendritic synapse between excitatory principle neurons and inhibitory interneurons in the olfactory bulb (OB), antennal lobe (AL), or procerebrum (PrC). Recent studies suggest important mechanisms that may modulate gamma oscillations, including neuromodulators and centrifugal input to the OB and AL. Beta (20Hz) and theta (2-12Hz) oscillations coordinate activity within and across brain regions. Olfactory beta oscillations are associated with odor learning and depend on centrifugal OB input, while theta oscillations are strongly associated with respiration.

  17. Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    J. W. Horng

    2011-09-01

    Full Text Available Two inverting second-generation current conveyors (ICCII based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors.

  18. C P -violating baryon oscillations

    Science.gov (United States)

    McKeen, David; Nelson, Ann E.

    2016-10-01

    We enumerate the conditions necessary for C P violation to be manifest in n -n ¯ oscillations and build a simple model that can give rise to such effects. We discuss a possible connection between neutron oscillations and dark matter, provided the mass of the latter lies between mp-me and mp+me. We apply our results to a possible baryogenesis scenario involving C P violation in the oscillations of the Ξ0.

  19. How pervasive are circadian oscillations?

    OpenAIRE

    2014-01-01

    Circadian oscillations play a critical role in coordinating the physiology, homeostasis, and behavior of biological systems. Once thought to only be controlled by a master clock, recent high-throughput experiments suggest many genes and metabolites in a cell are potentially capable of circadian oscillations. Each cell can reprogram itself and select a relatively small fraction of this broad repertoire for circadian oscillations, as a result of genetic, environmental, and even diet changes.

  20. Linearization of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E; Pascual, I [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-03-11

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for the complete range of oscillation amplitudes. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of the technique.

  1. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  2. Experiments on Deflecting & Oscillating Waterjet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new type jet,the oscillating & deflecting jet ,is put forward and its oscillating and deflecting characteristics are investigated.The nozzle of the self-oscillating & deflecting water jet consists of an upstream nozzle,a downstream nozzle,an oscillating chamber and two switches,It is experimentally shown that the deflective angle may reach 9.53 degeree,the generated pressure fluctuation is very regular and the jet can efficiently increase the ability for bradking and cutting by eliminating the water cushion effect associated with a continuous jet.

  3. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.;

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  4. Nanoscale relaxation oscillator

    Science.gov (United States)

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  5. MULTIPLE OSCILLATION STABILIZING CONTROL.

    Energy Technology Data Exchange (ETDEWEB)

    YUE,M.; SCHLUETER,R.; AZARM,M.; BARI,R.

    2004-07-23

    This paper presents a strategy that may be used to guide stabilizing control design for multiple oscillations, which are difficult to control using conventional control design procedures. A multiple oscillation phenomena is observed in an example power system. A local bifurcation and an interarea bifurcation develop in an example power system due to multiple bifurcation parameter variations. The dynamic behaviors of the bifurcating system are complex due to the overlapping of the two different bifurcation subsystems and are shown to be difficult to control. The double bifurcations are studied in this paper and in order to stabilize them, three kind of {mu}-synthesis robust controls are designed, (a) {mu}-synthesis power system stabilizer (MPSS); (b) {mu}-synthesis SVC control (MSVC); and (c) a mixed MPSS/MSVC control. Based on the bifurcation subsystem analysis, the measurement signals and locations of the controls are selected. The control performances of three kind of controls are evaluated and compared. The conclusions are given according to the analysis and time simulation results.

  6. Scanning for oscillations

    Science.gov (United States)

    de Cheveigné, Alain; Arzounian, Dorothée

    2015-12-01

    Objective. Oscillations are an important aspect of brain activity, but they often have a low signal-to-noise ratio (SNR) due to source-to-electrode mixing with competing brain activity and noise. Filtering can improve the SNR of narrowband signals, but it introduces ringing effects that may masquerade as genuine oscillations, leading to uncertainty as to the true oscillatory nature of the phenomena. Likewise, time-frequency analysis kernels have a temporal extent that blurs the time course of narrowband activity, introducing uncertainty as to timing and causal relations between events and/or frequency bands. Approach. Here, we propose a methodology that reveals narrowband activity within multichannel data such as electroencephalography, magnetoencephalography, electrocorticography or local field potential. The method exploits the between-channel correlation structure of the data to suppress competing sources by joint diagonalization of the covariance matrices of narrowband filtered and unfiltered data. Main results. Applied to synthetic and real data, the method effectively extracts narrowband components at unfavorable SNR. Significance. Oscillatory components of brain activity, including weak sources that are hard or impossible to observe using standard methods, can be detected and their time course plotted accurately. The method avoids the temporal artifacts of standard filtering and time-frequency analysis methods with which it remains complementary.

  7. A Matterwave Transistor Oscillator

    CERN Document Server

    Caliga, Seth C; Zozulya, Alex A; Anderson, Dana Z

    2012-01-01

    A triple-well atomtronic transistor combined with forced RF evaporation is used to realize a driven matterwave oscillator circuit. The transistor is implemented using a metalized compound glass and silicon substrate. On-chip and external currents produce a cigar-shaped magnetic trap, which is divided into transistor source, gate, and drain regions by a pair of blue-detuned optical barriers projected onto the magnetic trap through a chip window. A resonant laser beam illuminating the drain portion of the atomtronic transistor couples atoms emitted by the gate to the vacuum. The circuit operates by loading the source with cold atoms and utilizing forced evaporation as a power supply that produces a positive chemical potential in the source, which subsequently drives oscillation. High-resolution in-trap absorption imagery reveals gate atoms that have tunneled from the source and establishes that the circuit emits a nominally mono-energetic matterwave with a frequency of 23.5(1.0) kHz by tunneling from the gate, ...

  8. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.

    Science.gov (United States)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-06-20

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.

  9. Rayleigh scattering in sapphire test mass for laser interferometric gravitational-wave detectors:. II: Rayleigh scattering induced noise in a laser interferometric-wave detector

    Science.gov (United States)

    Benabid, F.; Notcutt, M.; Ju, L.; Blair, D. G.

    1999-10-01

    We present the level of noise induced by Rayleigh-scattered light from sapphire test mass, the limit of scattering loss on build-up power inside the interferometer and finally the tolerable absorption loss in order to meet the specification of the interferometer sensitivity. The results show that the Rayleigh scattering induced noise remains below h˜10 -25 Hz -1/2 and a higher tolerance on the absorption level in sapphire substrate compared with silica substrate.

  10. Enhancement of near-UV GaN LED light extraction efficiency by GaN/sapphire template patterning

    Science.gov (United States)

    Ali, M.; Svensk, O.; Riuttanen, L.; Kruse, M.; Suihkonen, S.; Romanov, A. E.; Törmä, P. T.; Sopanen, M.; Lipsanen, H.; Odnoblyudov, M. A.; Bougrov, V. E.

    2012-08-01

    We present near-UV GaN light-emitting diodes (LEDs) grown on patterned GaN/sapphire templates with improved material quality and light extraction efficiency. Enhancement of light extraction efficiency is attributed to voids generated at the GaN/sapphire interface. The sidewall inclination angle of the voids can be controlled from nearly vertical (˜ 85°) to fully inclined (˜ 60°) by changing the initial patterning dimensions. Light extraction efficiency and material quality improve with a decreasing void sidewall angle. A 20% increase in the light output is observed at 20 mA of input current for LED structures with ˜60° inclined sidewall voids.

  11. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing

    Science.gov (United States)

    Miyake, Hideto; Lin, Chia-Hung; Tokoro, Kenta; Hiramatsu, Kazumasa

    2016-12-01

    The annealing of sputtered AlN films with different thicknesses grown on sapphire in nitrogen ambient was investigated. In the annealing, two AlN films on sapphire were overlapped "face-to-face" to suppress the thermal decomposition of the AlN films. The sputtered AlN films with small grains consisted of columnar structure were initially aligned with (0002) orientation but became slightly inclined with increasing film thickness resulting in the formation of a two-layer structure. After annealing, films became a single crystalline layer regardless of the film thickness, and their crystallinity markedly improved after annealing at 1600-1700 °C. The full widths at half maximum of the (0002)- and (10 1 bar2)-plane X-ray rocking curves were improved to 49 and 287 arcsec, respectively, owing to the annihilation of domain boundaries in the sputtered AlN films, which concurrently increased the compressive stress in the films.

  12. Spontaneous formation of GaN/AlN core-shell nanowires on sapphire by hydride vapor phase epitaxy

    Science.gov (United States)

    Trassoudaine, Agnès; Roche, Elissa; Bougerol, Catherine; André, Yamina; Avit, Geoffrey; Monier, Guillaume; Ramdani, Mohammed Réda; Gil, Evelyne; Castelluci, Dominique; Dubrovskii, Vladimir G.

    2016-11-01

    Spontaneous GaN/AlN core-shell nanowires with high crystal quality were synthesized on sapphire substrates by vapor-liquid-solid hydride vapor phase epitaxy (VLS-HVPE) without any voluntary aluminum source. Deposition of aluminum is difficult to achieve in this growth technique which uses metal-chloride gaseous precursors: the strong interaction between the AlCl gaseous molecules and the quartz reactor yields a huge parasitic nucleation on the walls of the reactor upstream the substrate. We open up an innovative method to produce GaN/AlN structures by HVPE, thanks to aluminum etching from the sapphire substrate followed by redeposition onto the sidewalls of the GaN core. The paper presents the structural characterization of GaN/AlN core-shell nanowires, speculates on the growth mechanism and discusses a model which describes this unexpected behavior.

  13. Fabrication of volcano-shaped nano-patterned sapphire substrates using colloidal self-assembly and wet chemical etching.

    Science.gov (United States)

    Geng, Chong; Zheng, Lu; Fang, Huajing; Yan, Qingfeng; Wei, Tongbo; Hao, Zhibiao; Wang, Xiaoqing; Shen, Dezhong

    2013-08-23

    Patterned sapphire substrates (PSS) have been widely used to enhance the light output power in GaN-based light emitting diodes. The shape and feature size of the pattern in a PSS affect its enhancement efficiency to a great degree. In this work we demonstrate the nanoscale fabrication of volcano-shaped PSS using a wet chemical etching approach in combination with a colloidal monolayer templating strategy. Detailed analysis by scanning electron microscopy reveals that the unique pattern shape is a result of the different corrosion-resistant abilities of silica masks of different effective heights during wet chemical etching. The formation of silica etching masks of different effective heights has been ascribed to the silica precursor solution in the interstice of the colloidal monolayer template being distributed unevenly after infiltration. In the subsequent wet chemical etching process, the active reaction sites altered as etching duration was prolonged, resulting in the formation of volcano-shaped nano-patterned sapphire substrates.

  14. Studies on Crystal Orientation of ZnO Film on Sapphire Using High-throughout X-ray Diffraction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The orientation of the nano-columnar ZnO films grown on sapphire using the technique of metal-organic chemical vapor deposition (MOCVD) exhibits deviation because of the mismatch between the crystal lattices of the films and the sapphire substrate. A high-throughout X-ray diffraction method was employed to determine the crystal orientation of the ZnO films at a time scale of the order of minutes based on the general area detection diffraction system (GADDS). This rapid, effective, and ready method, adapted for characterizing the orientation of the nano-columnar crystals is used to directly explain the results of observation of the X-ray diffraction images, by the measurements of the orientations of the crystal columns of the ZnO films along c-axis and in parallel to ab plane.

  15. High Q-factor Sapphire Whispering Gallery Mode Microwave Resonator at Single Photon Energies and milli-Kelvin Temperatures

    CERN Document Server

    Creedon, Daniel L; Farr, Warrick; Martinis, John M; Duty, Timothy L; Tobar, Michael E

    2011-01-01

    The microwave properties of a crystalline sapphire dielectric whispering gallery mode resonator have been measured at very low excitation strength (E/hf=1) and low temperatures (T = 30 mK). The measurements were sensitive enough to observe saturation due to a highly detuned electron spin resonance, which limited the loss tangent of the material to about 2e-8 measured at 13.868 and 13.259 GHz. Small power dependent frequency shifts were also measured which correspond to an added magnetic susceptibility of order 1e-9. This work shows that quantum limited microwave resonators with Q-factors > 1e8 are possible with the implementation of a sapphire whispering gallery mode system.

  16. Physics of bubble oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Lauterborn, Werner; Kurz, Thomas [Third Physical Institute, University of Goettingen (Germany)

    2010-10-01

    Bubbles in liquids, soft and squeezy objects made of gas and vapour, yet so strong as to destroy any material and so mysterious as at times turning into tiny light bulbs, are the topic of the present report. Bubbles respond to pressure forces and reveal their full potential when periodically driven by sound waves. The basic equations for nonlinear bubble oscillation in sound fields are given, together with a survey of typical solutions. A bubble in a liquid can be considered as a representative example from nonlinear dynamical systems theory with its resonances, multiple attractors with their basins, bifurcations to chaos and not yet fully describable behaviour due to infinite complexity. Three stability conditions are treated for stable trapping of bubbles in standing sound fields: positional, spherical and diffusional stability. Chemical reactions may become important in that respect, when reacting gases fill the bubble, but the chemistry of bubbles is just touched upon and is beyond the scope of the present report. Bubble collapse, the runaway shrinking of a bubble, is presented in its current state of knowledge. Pressures and temperatures that are reached at this occasion are discussed, as well as the light emission in the form of short flashes. Aspherical bubble collapse, as for instance enforced by boundaries nearby, mitigates most of the phenomena encountered in spherical collapse, but introduces a new effect: jet formation, the self-piercing of a bubble with a high velocity liquid jet. Examples of this phenomenon are given from light induced bubbles. Two oscillating bubbles attract or repel each other, depending on their oscillations and their distance. Upon approaching, attraction may change to repulsion and vice versa. When being close, they also shoot self-piercing jets at each other. Systems of bubbles are treated as they appear after shock wave passage through a liquid and with their branched filaments that they attain in standing sound fields. The N

  17. High Electron Mobility Transistor Structures on Sapphire Substrates Using CMOS Compatible Processing Techniques

    Science.gov (United States)

    Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George

    2004-01-01

    System-on-a-chip (SOC) processes are under intense development for high-speed, high frequency transceiver circuitry. As frequencies, data rates, and circuit complexity increases, the need for substrates that enable high-speed analog operation, low-power digital circuitry, and excellent isolation between devices becomes increasingly critical. SiGe/Si modulation doped field effect transistors (MODFETs) with high carrier mobilities are currently under development to meet the active RF device needs. However, as the substrate normally used is Si, the low-to-modest substrate resistivity causes large losses in the passive elements required for a complete high frequency circuit. These losses are projected to become increasingly troublesome as device frequencies progress to the Ku-band (12 - 18 GHz) and beyond. Sapphire is an excellent substrate for high frequency SOC designs because it supports excellent both active and passive RF device performance, as well as low-power digital operations. We are developing high electron mobility SiGe/Si transistor structures on r-plane sapphire, using either in-situ grown n-MODFET structures or ion-implanted high electron mobility transistor (HEMT) structures. Advantages of the MODFET structures include high electron mobilities at all temperatures (relative to ion-implanted HEMT structures), with mobility continuously improving to cryogenic temperatures. We have measured electron mobilities over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively in MODFET structures. The electron carrier densities were 1.6 and 1.33 x 10(exp 12)/sq cm at room and liquid helium temperature, respectively, denoting excellent carrier confinement. Using this technique, we have observed electron mobilities as high as 900 sq cm/V-sec at room temperature at a carrier density of 1.3 x 10(exp 12)/sq cm. The temperature dependence of mobility for both the MODFET and HEMT structures provides insights into the mechanisms that allow for enhanced

  18. Growth of Few-Layer Graphene on Sapphire Substrates by Directly Depositing Carbon Atoms

    Institute of Scientific and Technical Information of China (English)

    KANG Chao-Yang; TANG Jun; LIU Zhong-Liang; LI Li-Min; YAN Wen-Sheng; WEI Shi-Qiang; XU Peng-Shou

    2011-01-01

    Few-layer graphene (FLG) is successfully grown on sapphire substrates by directly depositing carbon atoms at the substrate temperature of 1300℃ in a molecular beam epitaxy chamber.The reflection high energy diffraction,Raman spectroscopy and near-edge x-ray absorption fine structure are used to characterize the sample,which confirm the formation of graphene layers.The mean domain size of FLG is around 29.2 nm and the layer number is about 2-3.The results demonstrate that the grown FLG displays a turbostratic stacking structure similar to that of the FLG produced by annealing C-terminated a-SiC surface.Graphene,a monolayer of sp2-bonded carbon atoms,is a quasi two-dimensional (2D) material.It has attracted great interest because of its distinctive band structure and physical properties.[1] Graphene can now be obtained by several different approaches including micromechanical[1] and chemical[2] exfoliation of graphite,epitaxial growth on hexagonal SiC substrates by Si sublimation in vacuum,[3] and CVD growth on metal substrates.[4] However,these preparation methods need special substrates,otherwise,in order to design microelectronic devices,the prepared graphene should be transferred to other appropriate substrates.Thus the growth of graphene on the suitable substrates is motivated.%Few-layer graphene (FLG) is successfully grown on sapphire substrates by directly depositing carbon atoms at the substrate temperature of 1300℃ in a molecular beam epitaxy chamber. The reflection high energy diffraction, Raman spectroscopy and near-edge x-ray absorption fine structure are used to characterize the sample, which confirm the formation of graphene layers. The mean domain size of FLG is around 29.2nm and the layer number is about 2-3. The results demonstrate that the grown FLG displays a turbostratic stacking structure similar to that of the FLG produced by annealing C-terminated α-SiC surface.

  19. TER-XSW investigation of CoPt{sub 3} nanoparticle films on Si and sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zargham, Ardalan; Schmidt, Thomas; Hildebrand, Radowan; Falta, Jens [Institute of Solid State Physics, University of Bremen (Germany); Gehl, Bernhard; Baeumer, Marcus [Institute of Physical Chemistry, University of Bremen (Germany)

    2008-07-01

    CoPt{sub 3} bimetallic colloidal nanoparticle films on Si and sapphire substrates are investigated concerning the real space distribution of Co and Pt in specifically defined layers above the substrates as well as the structural dependancy on plasma treatments. TER-XSW is considered to be a suitable method for these types of investigation because of its ability of material specification in vertical resolution. It is simultaneously possible to understand the surface morphology by means of XRR.

  20. Self-starting mode-locked picosecond Ti:sapphire laser by using of a fast SESAM

    Institute of Scientific and Technical Information of China (English)

    Zhu Jiang-Feng; Tian Jin-Rong; Wang Peng; Ling Wei-Jun; Li De-Hua; Wei Zhi-Yi

    2006-01-01

    A stable continuous wave mode-locked picosecond Ti:sapphire laser by using a fast semiconductor saturable absorber mirror (SESAM) is demonstrated. The laser delivers pulse width of 20 ps at a central wavelength of 813 nm and a repetition rate of 100 MHz. The maximum output power is 1.34 W with pump power of 7 W which corresponds to an optical-optical conversion efficiency of 19.1%.

  1. High energy femtosecond mid-infrared generation pumped by a two-color Ti:sapphire multipass amplifier

    Institute of Scientific and Technical Information of China (English)

    XIA JiangFan; SONG Jie; Donna T. Strickland

    2008-01-01

    Intense mid-infrared was generated by direct frequency mixing two pulses from a dual-wavelength Ti:sapphire system. From a multipass amplifier we generated two tunable wavelength femtosecond pulses with a total energy of 15 mJ. Pulse energy of 1.6 μJ and 7.4 μJ of mid-infrared light is achieved with and without its multipass amplifier at 9-11 μm, with pulse duration of 500 fs.

  2. Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Clemson Univ., SC (United States); Tsai, Hai-Lung [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States)

    2014-09-30

    This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologies that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.

  3. Changing of micromorphology of silicon-on-sapphire epitaxial layer surface at irradiation by subthreshold energy X-radiation

    CERN Document Server

    Kiselev, A N; Skupov, V D; Filatov, D O

    2001-01-01

    The morphology of silicon-on-sapphire epitaxial layer surface after pulse irradiation by the X-rays with the energy of <= 140 keV is studied. The study on the irradiated material surface is carried out by the methods of the atomic force microscopy and ellipsometry. The average roughness value after irradiation constitutes 7 nm. The change in the films surface microrelief occurs due to reconstruction of their dislocation structure under the action of elastic waves, originating in the X radiation

  4. On The Harmonic Oscillator Group

    CERN Document Server

    Lopez, Raquel M; Vega-Guzman, Jose M

    2011-01-01

    We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.

  5. Longitudinal oscillation of launch vehicles

    Science.gov (United States)

    Glaser, R. F.

    1973-01-01

    During powered flight a vehicle may develop longitudinal self-excited oscillations, so-called oscillations, of its structure. The energy supplying the vibration is tapped from the thrust by the activity of the system itself; that is, oscillation of the structure causes oscillation of the propellant system, especially of the pumps. In this way an oscillating thrust can be created that, by a feedback loop, may sustain the structural oscillation under certain circumstances. Two special features of the system proved to be essential for creation of instability. One is the effect of the inherent time interval that the thrust oscillation is lagging behind the structural oscillation. The other is the decreased of system mass caused by the exhausting of gas. The latter feature may cause an initially stable system to become unstable. To examine the stability of the system, a single mass-spring model, which is the result of a one-term Galerkin approach to the equation of motion, has been considered. The Nyquist stability criterion leads to a stability graph that shows the stability conditions in terms of the system parameter and also demonstrates the significance of time lag, feedback magnitude, and loss of mass. An important conclusion can be drawn from the analysis: large relative displacements of the pump-engine masses favor instability. This is also confirmed by flight measurements.

  6. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  7. Lorentz violation and neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mewes, Matthew [Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States)

    2011-12-15

    Lorentz violation naturally leads to neutrino oscillations and provides an alternative mechanism that may explain current data. This contribution to the proceedings of The XXII International Conference on Neutrino Physics and Astrophysics provides a brief review of possible signals of Lorentz violation in neutrino-oscillation experiments.

  8. Neutrino Oscillations with Nil Mass

    CERN Document Server

    Floyd, Edward R

    2016-01-01

    An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton-Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and $\\bar{\

  9. Solar Neutrino Oscillation - An Overview

    CERN Document Server

    Roy, D P

    2005-01-01

    After a brief summary of the neutrino oscillation formalism and the solar neutrino sources and experiments I discuss the matter effect on solar neutrino oscillation. Then I discuss how the resulting alternative solutions are experimentally resolved in favour of the LMA solution, with particular exphasis on the SK, SNO and KL data.

  10. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  11. Hyperchaotic system with unstable oscillators

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; Mykolaitis, G.;

    2000-01-01

    A simple electronic system exhibiting hyperchaotic behaviour is described. The system includes two nonlinearly coupled 2nd order unstable oscillators, each composed of an LC resonance loop and an amplifier. The system is investigated by means of numerical integration of appropriate differential e...... equations, PSPICE simulations and hardware experiments. The Lyapunov exponents are presented to confirm hyperchaotic mode of the oscillations....

  12. Oscillator With Low Phase Noise

    Science.gov (United States)

    Kleinberg, Leonard L.

    1987-01-01

    Phase errors cancelled for high frequency stability. Radio-frequency oscillator achieves high stability of frequency through parallel, two-amplifier configuration in which effects cause phase noise tend to cancel each other. Circuit includes two amplifiers with resonating elements, each constitutes part of feedback loop of other. Generate same frequency because each circuit provides other with conditions necessary for oscillation.

  13. Collective supernova neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max Planck Institute for Physics, Munich (Germany)

    2009-07-01

    Neutrinos emitted by core-collapse supernovae (SNe) represent an important laboratory for both particle physics and astrophysics. While propagating in the dense SN environment, they can feel not only the presence of background matter (via ordinary Mikheev-Smirnov-Wolfenstein effects) but also of the gas of neutrinos and antineutrinos (via neutrino-neutrino interaction effects). The neutrino-neutrino interactions appear to modify the flavor evolution of SN neutrinos in a collective way, completely different from the ordinary matter effects. In these conditions, the flavor evolution equations become highly nonlinear, sometimes resulting in surprising phenomena when the entire neutrino system oscillates coherently as a single collective mode. In this talk, I present the recent results on collective supernova neutrino flavor conversions and I discuss about the sensitivity of these effects to the ordering of the neutrino mass spectrum.

  14. Solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    Srubabati Goswami

    2004-02-01

    This article summarises the status of the solar neutrino oscillation phenomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed areas obtained from global solar analysis and demonstrate the preference of the solar data towards the large-mixing-angle (LMA) MSW solution. A clear confirmation in favour of the LMA solution comes from the KamLAND reactor neutrino data. the KamLAND spectral data in conjunction with the global solar data further narrows down the allowed LMA region and splits it into two allowed zones - a low $ m^{2}$ region (low-LMA) and high $ m^{2}$ region (high-LMA). We demonstrate through a projected analysis that with an exposure of 3 kton-year (kTy) KamLAND can remove this ambiguity.

  15. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  16. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  17. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  18. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation

    Science.gov (United States)

    Park, Junsu; Sin, Young-Gwan; Kim, Jae-Hyun; Kim, Jaegu

    2016-10-01

    Selective laser lift-off (SLLO) is an innovative technology used to manufacture and repair micro-light-emitting diode (LED) displays. In SLLO, laser is irradiated to selectively separate micro-LED devices from a transparent sapphire substrate. The light source used is an ultraviolet (UV) laser with a wavelength of 266 nm, pulse duration of 20 ns, and repetition rate of 30 kHz. Controlled adhesion between a LED and the substrate is key for a SLLO process with high yield and reliability. This study examined the fundamental relationship between adhesion and laser irradiation. Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate: Ga precipitation caused by the thermal decomposition of GaN and roughened interface caused by thermal damage on the sapphire. The competition between these two mechanisms leads to a non-trivial SLLO condition that needs optimization. This study helps understand the SLLO process, and accelerate the development of a process for manufacturing micro-LED displays via SLLO for future applications.

  19. The sub-micron hole array in sapphire produced by inductively-coupled plasma reactive ion etching.

    Science.gov (United States)

    Shiao, Ming-Hua; Chang, Chun-Ming; Huang, Su-Wei; Lee, Chao-Te; Wu, Tzung-Chen; Hsueh, Wen-Jeng; Ma, Kung-Jeng; Chiang, Donyau

    2012-02-01

    The sub-micron hole array in a sapphire substrate was fabricated by using nanosphere lithography (NSL) combined with inductively-coupled-plasma reactive ion etching (ICP-RIE) technique. Polystyrene nanospheres of about 600 nm diameter were self-assembled on c-plane sapphire substrates by the spin-coating method. The diameter of polystyrene nanosphere was modified by using oxygen plasma in ICP-RIE system. The size of nanosphere modified by oxygen plasma was varied from 550 to 450 nm with different etching times from 15 to 35 s. The chromium thin film of 100 nm thick was then deposited on the shrunk nanospheres on the substrate by electron-beam evaporation system. The honeycomb type chromium mask can be obtained on the sapphire substrate after the polystyrene nanospheres were removed. The substrate was further etched in two sets of chlorine/Argon and boron trichloride/Argon mixture gases at constant pressure of 50 mTorr in ICP-RIE processes. The 400 nm hole array in diameter can be successfully produced under suitable boron trichloride/Argon gas flow ratio.

  20. Three-dimensional structuring of sapphire by sequential He sup + ion-beam implantation and wet chemical etching

    CERN Document Server

    Crunteanu, A; Hoffmann, P; Pollnau, M; Buchal, C; Petraru, A; Eason, R W; Shepherd, D P

    2003-01-01

    We present a method for the selective two- and three-dimensional patterning of sapphire using light ion-beam implantation to generate severe lattice damage to depths exceeding 1 mu m and subsequent selective wet chemical etching of the damaged regions by hot H sub 3 PO sub 4. C-cut sapphire crystals were implanted through contact masks using ion fluences of 1 x 10 sup 1 sup 6 to 5 x 10 sup 1 sup 7 He sup + /cm sup 2 and energies up to 400 keV. The etching process is characterized by a high selectivity and a rate of approximately 19 nm/min. Whereas an implantation that produces a continuously damaged pathway results in complete etching from the surface, sole in-depth implantation using only high-energy ions leads to under-etching of the crystalline surface layer. By a combination of these processes we have fabricated three-dimensional structures such as channels and bridges in sapphire. (orig.)

  1. Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.

    Science.gov (United States)

    Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T

    2015-11-16

    We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.

  2. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  3. Characterization of local hydrophobicity on sapphire (0001) surfaces in aqueous environment by colloidal probe atomic force microscopy

    Science.gov (United States)

    Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio

    2017-02-01

    Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO2 probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.

  4. The nucleation of HCl and Cl{sub 2}-based HVPE GaN on mis-oriented sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bohnen, Tim; Dreumel, Gerbe W.G. van; Enckevort, Willem J.P. van; Ashraf, Hina; Jong, Aryan E.F. de; Hageman, Paul R.; Vlieg, Elias [IMM, Radboud University, Nijmegen (Netherlands); Weyher, Jan L. [Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw (Poland)

    2010-07-15

    The nucleation of both classic HCl-based and novel Cl{sub 2{sup -}} based HVPE GaN on mis-oriented sapphire substrates was investigated. The use of Cl{sub 2}in HVPE increases the growth rate by a factor of 4-5 and strongly reduces the parasitic deposition, allowing for the growth of much thicker wafers than HCl-based HVPE. Morphological SEM surface studies of the HCl-based HVPE sample surface show that at 600 C a nanocrystalline layer is deposited on the sapphire. During the subsequent annealing phase, the morphology changes to a {mu}m-sized island structure. During overgrowth at 1080 C, the islands coalesce. Small voids or pinholes are then formed in between the coalescing GaN islands. These pinholes lead to numerous pits on the surface of the GaN at thicknesses of 5 {mu}m. The pits disappear during continued overgrowth and can no longer be found on the surface, when the GaN film reaches a thickness of 45 {mu}m. This particular coalescence mechanism also applies to Cl{sub 2}-based HVPE GaN on sapphire (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Study on planarization machining of sapphire wafer with soft-hard mixed abrasive through mechanical chemical polishing

    Science.gov (United States)

    Xu, Yongchao; Lu, Jing; Xu, Xipeng

    2016-12-01

    This study investigated the material removal mechanism of sapphire wafer with soft-hard mixed abrasives through mechanical chemical polishing (MCP). The polishing film, which contains diamond as hard abrasives and high reactivity silica as soft abrasives, is prepared through sol-gel technology. Silica abrasives with regular spherical shape and high reactivity are prepared through hydrolysis-precipitation. Diamond grits with three different particle sizes are used as abrasives. Results show that the rate of material removal of mixed abrasives during MCP is more than 52.6% of that of single hard abrasives and the decrease in surface roughness is more than 21.6% of that of single hard abrasives. These results demonstrate that the ideal planarization of sapphire wafer with high removal rate and good surface quality can be achieved when the effect of mechanical removal of hard abrasives and the chemical corrosion effect of soft abrasives are in dynamic equilibrium. A model that describes the material removal mechanism of sapphire with mixed abrasives during MCP is proposed. The results of thermodynamic calculation and polishing residue analysis are used to demonstrate the rationality of the model.

  6. Coupled oscillators on evolving networks

    Science.gov (United States)

    Singh, R. K.; Bagarti, Trilochan

    2016-12-01

    In this work we study coupled oscillators on evolving networks. We find that the steady state behavior of the system is governed by the relative values of the spread in natural frequencies and the global coupling strength. For coupling strong in comparison to the spread in frequencies, the system of oscillators synchronize and when coupling strength and spread in frequencies are large, a phenomenon similar to amplitude death is observed. The network evolution provides a mechanism to build inter-oscillator connections and once a dynamic equilibrium is achieved, oscillators evolve according to their local interactions. We also find that the steady state properties change by the presence of additional time scales. We demonstrate these results based on numerical calculations studying dynamical evolution of limit-cycle and van der Pol oscillators.

  7. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  8. Photoacoustic elastic oscillation and characterization.

    Science.gov (United States)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin

    2015-08-10

    Photoacoustic imaging and sensing have been studied extensively to probe the optical absorption of biological tissue in multiple scales ranging from large organs to small molecules. However, its elastic oscillation characterization is rarely studied and has been an untapped area to be explored. In literature, photoacoustic signal induced by pulsed laser is commonly modelled as a bipolar "N-shape" pulse from an optical absorber. In this paper, the photoacoustic damped oscillation is predicted and modelled by an equivalent mass-spring system by treating the optical absorber as an elastic oscillator. The photoacoustic simulation incorporating the proposed oscillation model shows better agreement with the measured signal from an elastic phantom, than conventional photoacoustic simulation model. More interestingly, the photoacoustic damping oscillation effect could potentially be a useful characterization approach to evaluate biological tissue's mechanical properties in terms of relaxation time, peak number and ratio beyond optical absorption only, which is experimentally demonstrated in this paper.

  9. Photoacoustic elastic oscillation and characterization

    CERN Document Server

    Gao, Fei; Zheng, Yuanjin

    2014-01-01

    Photoacoustic imaging and sensing have been studied extensively to probe the optical absorption of biological tissue in multiple scales ranging from large organs to small molecules. However, its elastic oscillation characterization is rarely studied and has been an untapped area to be explored. In literature, photoacoustic signal induced by pulsed laser is commonly modelled as a bipolar "N-shape" pulse from an optical absorber. In this paper, the photoacoustic damped oscillation is predicted and modelled by an equivalent mass-spring system by treating the optical absorber as an elastic oscillator. The photoacoustic simulation incorporating the proposed oscillation model shows better agreement with the measured signal from an elastic phantom, than conventional photoacoustic simulation model. More interestingly, the photoacoustic damping oscillation effect could potentially be a useful characterization approach to evaluate biological tissue's mechanical properties in terms of relaxation time, peak number and ra...

  10. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  11. Polynomially deformed oscillators as k-bonacci oscillators

    CERN Document Server

    Gavrilik, A M

    2009-01-01

    A family of multi-parameter, polynomially deformed oscillators (PDOs) given by polynomial structure function \\phi(n) is studied from the viewpoint of being (or not) in the class of Fibonacci oscillators. These obey the Fibonacci relation/property (FR/FP) meaning that the n-th level energy E_n is given linearly, with real coefficients, by the two preceding ones E_{n-1}, E_{n-2}. We first prove that the PDOs do not fall in the Fibonacci class. Then, three different paths of generalizing the usual FP are developed for these oscillators: we prove that the PDOs satisfy respective k-term generalized Fibonacci (or "k-bonacci") relations; for these same oscillators we examine two other generalizations of the FR, the inhomogeneous FR and the "quasi-Fibonacci" relation. Extended families of deformed oscillators are studied too: the (q;\\mu)-oscillator with \\phi(n) quadratic in the basic q-number [n]_q is shown to be Tribonacci one, while the (p,q;\\mu)-oscillators with \\phi(n) quadratic (cubic) in the p,q-number [n]_{p,q...

  12. Development of Sensors Using Evanescent Wave Interactions in Sapphire Optical Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Michael W. Renfro; Eric H. Jordan

    2006-12-31

    The development of tunable diode laser absorption sensors for measurements in industrial boilers, both through direct absorption and evanescent wave absorption have been performed in the work presented here. These sensors use both direct and indirect absorption through the use of evanescent interactions within a coal firing combustion environment. For the direct absorption sensor, wavelength modulation absorption spectroscopy with second-harmonic detection was implemented within a physical probe designed to be placed with the flue stack of a power plant. Measurements were taken of carbon dioxide and water vapor concentration during operation at a local industrial facility. The design of this sensor probe overcomes problems of beam steering and permits a reference gas measurement. Extracted concentration data and design elements from the direct absorption measurements are presented. In addition, development of a sapphire fiber-based sensor using evanescent wave absorption along the outside of the fiber is presented. Evanescent absorption allows for the laser transmission to be maintained in the fiber at all times and may alleviate problems of background emission, beam steering, and especially scattering of the laser beam from solid particles experienced through free path direct absorption measurements in particulated flows. Laboratory measurements using evanescent fiber detection are presented.

  13. Mesoscale Laser Processing using Excimer and Short-Pulse Ti: Sapphire Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Shirk, M D; Rubenchik, A M; Gilmer, G H; Stuart, B C; Armstrong, J P; Oberhelman, S K; Baker, S L; Nikitin, A J; Mariella, R P

    2003-07-28

    Targets to study high-energy density physics and inertial confinement fusion processes have very specific and precise tolerances that are pushing the state-of-the-art in mesoscale microsculpting technology. A significant effort is required in order to advance the capabilities to make these targets with very challenging geometries. Ultrashort pulsed (USP) Ti:Sapphire lasers and excimer lasers are proving to be very effective tools in the fabrication of the very small pieces that make up these targets. A brief description of the dimensional and structural requirements of these pieces will be presented, along with theoretical and experimental results that demonstrate to what extent these lasers are achieving the desired results, which include sub-{mu}m precision and RMS surface values well below 100 nm. This work indicates that excimer lasers are best at sculpting the polymer pieces and that the USP lasers work quite well on metal and aerogel surfaces, especially for those geometries that cannot be produced using diamond machining and where material removal amounts are too great to do with focused ion beam milling in a cost effective manner. In addition, the USP laser may be used as part of the procedure to fill target capsules with fusion fuel, a mixture of deuterium and tritium, without causing large perturbations on the surface of the target by keeping holes drilled through 125 {micro}m of beryllium below 5 {micro}m in diameter.

  14. N-polar InGaN-based LEDs fabricated on sapphire via pulsed sputtering

    Directory of Open Access Journals (Sweden)

    Kohei Ueno

    2017-02-01

    Full Text Available High-quality N-polar GaN epitaxial films with an atomically flat surface were grown on sapphire (0001 via pulsed sputtering deposition, and their structural and electrical properties were investigated. The crystalline quality of N-polar GaN improves with increasing film thickness and the full width at half maximum values of the x-ray rocking curves for 0002 and 101¯2 diffraction were 313 and 394 arcsec, respectively, at the film thickness of 6μm. Repeatable p-type doping in N-polar GaN films was achieved using Mg dopant, and their hole concentration and mobility can be controlled in the range of 8 × 1016–2 × 1018 cm−3 and 2–9 cm2V−1s−1, respectively. The activation energy of Mg in N-polar GaN based on a temperature-dependent Hall measurement was estimated to be 161 meV, which is comparable to that of the Ga-polar GaN. Based on these results, we demonstrated the fabrication of N-polar InGaN-based light emitting diodes with the long wavelength up to 609 nm.

  15. Defects creation in sapphire by swift heavy ions: A fluence depending process

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, A. [LRPCSI, Universite 20 Aout 55, BP 26, Route d' El-Hadaiek, Skikda (Algeria)], E-mail: a.nour_kabir@yahoo.fr; Meftah, A. [LRPCSI, Universite 20 Aout 55, BP 26, Route d' El-Hadaiek, Skikda (Algeria); Stoquert, J.P. [InESS, 23, rue du Loess - BP 20 CR - F-67037 Strasbourg Cedex 02 (France); Toulemonde, M.; Monnet, I. [CIMAP, BP 5133, 14070 Caen Cedex 05 (France)

    2009-03-15

    Single crystals of sapphire ({alpha}-Al{sub 2}O{sub 3}) were irradiated at GANIL with 0.7 MeV/amu xenon ions corresponding to an electronic stopping power of 21 keV/nm. Several fluences were applied between 5 x 10{sup 11} and 2 x 10{sup 14} ions/cm{sup 2}. Irradiated samples were characterized using optical absorption spectroscopy. This technique exhibited the characteristic bands associated with F and F{sup +} centers defects. The F centers density was found to increase with the fluence following two different kinetics: a rapid increase for fluences less than 10{sup 13} ions/cm{sup 2} and then, a slow increase for higher fluences. For fluences less than 10{sup 13} ions/cm{sup 2}, results are in good agreement with those obtained by Canut et al. [B. Canut, A. Benyagoub, G. Marest, A. Meftah, N. Moncoffre, S.M.M. Ramos, F. Studer, P. Thevenard, M. Toulemonde, Phys. Rev. B 51 (1995) 12194]. In the fluences range: 10{sup 13}-10{sup 14} ions/cm{sup 2}, the F centers defects creation process is found to be different from the one evidenced for fluences less than 10{sup 13} ions/cm{sup 2}.

  16. Latent tracks in sapphire induced by 20-MeV fullerene beams

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, S.M.; Bonardi, N.; Canut, B. [Departement de Physique des Materiaux (UMR CNRS 5586), Universite Claude Bernard Lyon I, 69622 Villeurbanne Cedex (France); Della-Negra, S. [Institut de Physique Nucleaire, CNRS-IN2P3, 91406 Orsay (France)

    1998-01-01

    Single crystals of {alpha}-Al{sub 2}O{sub 3} were irradiated with 20-MeV fullerene beams in a fluence range from 1.0{times}10{sup 10} to 2.2{times}10{sup 11} C{sub 60}{sup +}cm{sup {minus}2}. The cluster electronic stopping power (dE/dx){sub e} was approximately 62keVnm{sup {minus}1}. Two complementary techniques were employed to assess the modifications induced by these irradiations: Rutherford-backscattering spectrometry in channeling geometry (RBS-C) and transmission electron microscopy (TEM). The disorder induced by electronic processes is clearly determined by the RBS-C analysis. A damage cross section A{sub e} of about 2.2{times}10{sup {minus}12}cm{sup 2} has been extracted from the disorder kinetics, which corresponds to a track radius of {approx}8.5nm. From lattice-disorder profiling, a maximal decorrelation length of the C{sub 60} clusters in the crystal was estimated to be {approx}150nm. TEM micrographs exhibit cylindrical latent tracks formed around the projectile trajectory, while the high-resolution observations evidence the amorphization of sapphire in the core of these tracks. The present results have been interpretated within a model of high locally deposited energy densities in the cluster irradiation regime. {copyright} {ital 1998} {ital The American Physical Society}

  17. Defects creation in sapphire by swift heavy ions: A fluence depending process

    Science.gov (United States)

    Kabir, A.; Meftah, A.; Stoquert, J. P.; Toulemonde, M.; Monnet, I.

    2009-03-01

    Single crystals of sapphire (α-Al 2O 3) were irradiated at GANIL with 0.7 MeV/amu xenon ions corresponding to an electronic stopping power of 21 keV/nm. Several fluences were applied between 5 × 10 11 and 2 × 10 14 ions/cm 2. Irradiated samples were characterized using optical absorption spectroscopy. This technique exhibited the characteristic bands associated with F and F + centers defects. The F centers density was found to increase with the fluence following two different kinetics: a rapid increase for fluences less than 10 13 ions/cm 2 and then, a slow increase for higher fluences. For fluences less than 10 13 ions/cm 2, results are in good agreement with those obtained by Canut et al. [B. Canut, A. Benyagoub, G. Marest, A. Meftah, N. Moncoffre, S.M.M. Ramos, F. Studer, P. Thévenard, M. Toulemonde, Phys. Rev. B 51 (1995) 12194]. In the fluences range: 10 13-10 14 ions/cm 2, the F centers defects creation process is found to be different from the one evidenced for fluences less than 10 13 ions/cm 2.

  18. Characterization of different-Al-content AlGaN/GaN heterostructures on sapphire

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Al x Ga 1-x N/GaN high-electron-mobility transistor (HEMT) structures with Al composition ranging from x = 0.13 to 0.36 are grown on sapphire substrates by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The effects of Al content on crystal quality, surface morphology, optical and electrical characteristics of the AlGaN/GaN heterostructures have been analyzed. Although high Al-content (36%) heterostructure exhibits a distinguished photoluminescence peak related to recombination between the two-dimensional electron gas and photoexcited holes (2DEG-h), its crystal quality and rough surface morphology are poor. 2DEG mobility increases with the Al content up to 26% and then it apparently decreases for high Al-content (36%) AlGaN/GaN heterostructure. The increase of sheet carrier density with the increase of Al content has been observed. A high mobility at room temperature of 2105 cm 2 /V s with a sheet carrier density of n s = 1.10 × 10 13 cm -2 , for a 26% Al-content AlGaN/GaN heterostructure has been obtained, which is approaching state-of-the-art for HEMT grown on SiC. Sheet resistance as low as 274 Ω/□ has also been achieved.

  19. Grain boundary structure and solute segregation in titanium-doped sapphire bicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Seth T.

    2002-05-17

    Solute segregation to ceramic grain boundaries governs material processing and microstructure evolution, and can strongly influence material properties critical to engineering performance. Understanding the evolution and implications of grain boundary chemistry is a vital component in the greater effort to engineer ceramics with controlled microstructures. This study examines solute segregation to engineered grain boundaries in titanium-doped sapphire (Al2O3) bicrystals, and explores relationships between grain boundary structure and chemistry at the nanometer scale using spectroscopic and imaging techniques in the transmission electron microscope (TEM). Results demonstrate dramatic changes in solute segregation stemming from small fluctuations in grain boundary plane and structure. Titanium and silicon solute species exhibit strong tendencies to segregate to non-basal and basal grain boundary planes, respectively. Evidence suggests that grain boundary faceting occurs in low-angle twis t boundaries to accommodate nonequilibrium solute segregation related to slow specimen cooling rates, while faceting of tilt grain boundaries often occurs to expose special planes of the coincidence site lattice (CSL). Moreover, quantitative analysis of grain boundary chemistry indicates preferential segregation of charged defects to grain boundary dislocations. These results offer direct proof that static dislocations in ionic materials can assume a net charge, and emphasize the importance of interactions between charged point, line, and planar defects in ionic materials. Efforts to understand grain boundary chemistry in terms of space charge theory, elastic misfit and nonequilibrium segregation are discussed for the Al2O3 system.

  20. Ultrathin Films of VO2 on r-Cut Sapphire Achieved by Postdeposition Etching.

    Science.gov (United States)

    Yamin, Tony; Wissberg, Shai; Cohen, Hagai; Cohen-Taguri, Gili; Sharoni, Amos

    2016-06-15

    The metal-insulator transition (MIT) properties of correlated oxides thin films, such as VO2, are dramatically affected by strain induced at the interface with the substrate, which usually changes with deposition thickness. For VO2 grown on r-cut sapphire, there is a minimum deposition thickness required for a significant MIT to appear, around 60 nm. We show that in these thicker films an interface layer develops, which accompanies the relaxation of film strain and enhanced electronic transition. If these interface dislocations are stable at room temperature, we conjectured, a new route opens to control thickness of VO2 films by postdeposition thinning of relaxed films, overcoming the need for thickness-dependent strain-engineered substrates. This is possible only if thinning does not alter the films' electronic properties. We find that wet etching in a dilute NaOH solution can effectively thin the VO2 films, which continue to show a significant MIT, even when etched to 10 nm, for which directly deposited films show nearly no transition. The structural and chemical composition were not modified by the etching, but the grain size and film roughness were, which modified the hysteresis width and magnitude of the MIT resistance change.

  1. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures.

    Science.gov (United States)

    Juodkazis, S; Nishimura, K; Tanaka, S; Misawa, H; Gamaly, E G; Luther-Davies, B; Hallo, L; Nicolai, P; Tikhonchuk, V T

    2006-04-28

    Extremely high pressures (approximately 10 TPa) and temperatures (5 x 10(5) K) have been produced using a single laser pulse (100 nJ, 800 nm, 200 fs) focused inside a sapphire crystal. The laser pulse creates an intensity over 10(14) W/cm2 converting material within the absorbing volume of approximately 0.2 microm3 into plasma in a few fs. A pressure of approximately 10 TPa, far exceeding the strength of any material, is created generating strong shock and rarefaction waves. This results in the formation of a nanovoid surrounded by a shell of shock-affected material inside undamaged crystal. Analysis of the size of the void and the shock-affected zone versus the deposited energy shows that the experimental results can be understood on the basis of conservation laws and be modeled by plasma hydrodynamics. Matter subjected to record heating and cooling rates of 10(18) K/s can, thus, be studied in a well-controlled laboratory environment.

  2. Reduction of batwing effect in white light interferometry for measurement of patterned sapphire substrates (PSS) wafer

    Science.gov (United States)

    Tapilouw, Abraham Mario; Chang, Yi-Wei; Yu, Long-Yo; Wang, Hau-Wei

    2016-08-01

    Patterned sapphire substrates (PSS) wafers are used in LED manufacturing to enhance the luminous conversion of LED chips. The most critical characteristics in PSS wafers are height, width, pitch and shape of the pattern. The common way to measure these characteristics is by using surface electron microscope (SEM). White light interferometry is capable to measure dimension with nanometer accuracy and it is suitable for measuring the characteristics of PSS wafers. One of the difficulties in measuring PSS wafers is the aspect ratio and density of the features. The high aspect ratio combined with dense pattern spacing diffracts incoming lights and reduces the accuracy of the white light interferometry measurement. In this paper, a method to improve the capability of white light interferometry for measuring PSS wafers by choosing the appropriate wavelength and microscope objective with high numerical aperture. The technique is proven to be effective for reducing the batwing effect in edges of the feature and improves measurement accuracy for PSS wafers with circular features of 1.95 um in height and diameters, and 700 nm spacing between the features. Repeatability of the measurement is up to 5 nm for height measurement and 20 nm for pitch measurement.

  3. Growth Front Evolution of GaN Thin Films on Sapphire Substrate During HVPE

    Institute of Scientific and Technical Information of China (English)

    LU Dian-qing; LI Xin-hua; LIU Xue-dong

    2005-01-01

    The growth front evolution of GaN thin films deposited on sapphire substrate by hydride vapor phase epitaxity has been studied with atomic force microscope. The evolution of the surface morphology presents four features of stage with the growth process. In initial growth stage, the surface is granular, and the typical grain diameter is about 250 nm for t =0.1 min. 3D growth plays a key role before the films come up to full coalescence, which causes a rough surface. After 0. 1 min the growth dimension decreases with the increase of lateral over growth, the surface roughness obviously decreases. From 0.4 min to 3 min, the growth front roughness increases gradually, and the evolution of the surface roughness exhibits the characteristics of self-affined fractal. Beyond 3 min, the root-mean-square decreases gradually, which means the deposition behavior from hyper-2D growth gradually turns into layer growth mode with the increase of growth time.

  4. Modeling of dopant segregation in sapphire single crystal fibre growth by Micro-Pulling-Down method

    Science.gov (United States)

    Wenjia, Su; Duffar, Thierry; Nehari, Abdeljelil; Kononets, Valerii; Lebbou, Kheirreddine

    2017-09-01

    Experiments and numerical simulations are conducted in order to study the causes and solutions for the Ti inhomogeneity problem in Ti doped sapphire Micro-Pulling-Down (μ-PD) growth. The measurement and modeling of the thermal and flow fields, electromagnetic field, Ti concentration in the molten zone and along the fibre axis are compared. For the mean Ti concentration along the fibre and temperature along the iridium crucible, the modeling results are consistent with experiments. Results showed that for high pulling rate, the mass transfer in the capillary is dominated by convection. Marangoni convection is strong in the meniscus due to the large temperature gradient, which has great impact on the Ti distribution for different fibre radii. For high pulling rate, Ti concentration increases quickly from the seed along the fibre axis, and reaches a constant value after about 0.5-2 mm. Radial segregation is high for large diameter fibres. The constant Ti concentration along the fibre axis is increasing when increasing the fibre radius from 0.2 to 0.6 mm. For 0.8 mm, it decreases due to the change of the vortex. At low growth rate, the transport in the capillary is diffusive, back to the crucible, which leads to a Scheil-like Ti distribution, in full agreement with the experimental results.

  5. A sapphire fibre thermal probe based on fast Fourier transform and phase-lock loop

    Institute of Scientific and Technical Information of China (English)

    Wang Yu-Tian; Wang Dong-Sheng; Ge Wen-Qian; Cui Li-Chao

    2006-01-01

    A sapphire fibre thermal probe with Cra+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and ability to withstand high temperature in a detection range from room temperature to 450℃. Based on the fast Fourier transform(FFT), the fluorescence lifetime is obtained from the tangent function of phase angle of the non-zeroth terms in the FFT result. This method has advantages such as quick calculation, high accuracy and immunity to the background noise. This FFT method is compared with other traditional fitting methods, indicating that the standard deviation of the FFT method is about half of that of the Prony method and about 1/6 of that of the log-fit method. And the FFT method is immune to the background noise involved in a signal. So, the FFT method is an excellent way of processing signals. In addition, a phase-lock amplifier can effectively suppress the noise.

  6. Dash line glass- and sapphire-cutting with high power USP laser

    Science.gov (United States)

    Mishchik, Konstantin; Chassagne, Bruno; Javaux-Léger, Clémentine; Hönninger, Clemens; Mottay, Eric; Kling, Rainer; Lopez, John

    2016-03-01

    Glass cutting is a subject of high interest for flat panel display and consumer electronics industries. Among laser-based, water jet-based and diamond tool-based existing solutions, ultra-short pulses (USP) appear as a promising technology since this laser technology has the unique capacity to produce highly localized bulk modification owing to non-linear absorption. The cutting using USP lasers could be performed either by full ablation which is slow and generates a lot of dust, by controlled fracture propagation which is slow as well and may lead to path deviation, by stealth dicing which produces rough sidewalls, or by self-breaking induced by in-volume laser irradiation. The laser treatment is often continuous which is not necessary to perform glass cutting and may lead to over-exposure. In this paper we report on single pass glass and sapphire cutting using an USP laser (20W @200kHz or 8W@2MHz) using dash line laser treatment along the cutting trajectory. In-volume energy deposition was done along the glass thickness owing to a Bessel beam. The results will be discussed in terms of sidewall profile and roughness, path deviation, rim sharpness, energy dose and feed rate. Dash line treatment enables to tune the energy deposition and to produce the cutting effect but with a narrower heat affected zone, a better sidewall quality and a more accurate trajectory control of the cutting path.

  7. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  8. A theory of generalized Bloch oscillations.

    Science.gov (United States)

    Duggen, Lars; Lew Yan Voon, L C; Lassen, Benny; Willatzen, Morten

    2016-04-20

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.

  9. 单晶蓝宝石的延性研磨加工%Ductile lapping of single crystal sapphire

    Institute of Scientific and Technical Information of China (English)

    戴欣平; 赵萍; 文东辉

    2012-01-01

    To achieve the ductile lapping of a single crystal sapphire, micro/nano mechanic characteristics of the sapphire (0001) plane were measured by nanoindentation and nanoscratch methods. The indentation model of single cone abrasive grain was proposed and then critical force conditions were deduced during ductile lapping process. Experimental studies were conducted for the single crystal sapphire based on the diamond abrasive grain charging into a synthetic tin plate, and characteristics of ductile lapped surface were measured by a NT9800 white light interferometer, a Scan Emission Microscopy (SEM) and a Transmission Electron Microscopy (TEM). Experimental results show that nanoindentation and nanoscratch methods can provide processing parameters for the ductile lapping of single crystal sapphires, and its critical depth of pile-up is around 100 nm for sapphire nanoindenta-tion. The ductile lapping of the single crystal sapphire can be implemented by charging into diamond abrasive grains and selecting proper loads and the optimal load for ductile lapping is 21 kPa. After ductile lapping, the surface scratch depth of single crystal sapphire shows a smaller dispersion and the dislocation and slip are formed on the lapped surface.%为实现单晶蓝宝石的延性研磨加工,采用纳米压痕和划痕法测试并分析了单晶蓝宝石(0001)面的微纳力学特性,建立了单颗圆锥状磨粒的压入模型并计算了延性研磨加工的受力临界条件,分析了金刚石磨粒嵌入合成锡研磨盘表面的效果.对单晶蓝宝石进行了延性研磨加工试验,采用NT9800白光干涉仪、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等方法分析了单晶蓝宝石的延性研磨表面特征.试验结果表明:采用纳米压痕和划痕法可以为单晶蓝宝石的延性研磨加工提供工艺参数,单晶蓝宝石的延性堆积的极限深度为100 nm,金刚石磨粒的嵌入及在适当载荷下可以实现蓝宝石的延性研磨加

  10. Diverse routes to oscillation death in a coupled oscillator system

    Science.gov (United States)

    Suárez-Vargas, José J.; González, Jorge A.; Stefanovska, Aneta; McClintock, Peter V. E.

    2010-01-01

    We study oscillation death (OD) in a well-known coupled-oscillator system that has been used to model cardiovascular phenomena. We derive exact analytic conditions that allow the prediction of OD through the two known bifurcation routes, in the same model, and for different numbers of coupled oscillators. Our exact analytic results enable us to generalize OD as a multiparameter-sensitive phenomenon. It can be induced, not only by changes in couplings, but also by changes in the oscillator frequencies or amplitudes. We observe synchronization transitions as a function of coupling and confirm the robustness of the phenomena in the presence of noise. Numerical and analogue simulations are in good agreement with the theory. PMID:20823952

  11. Gravitational Wave - Gauge Field Oscillations

    CERN Document Server

    Caldwell, R R; Maksimova, N A

    2016-01-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multi-dimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  12. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    Lin Xiao-Gang; Liu Wen-Jun; Lei Ming

    2016-03-01

    Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  13. Forced synchronization of quasiperiodic oscillations

    Science.gov (United States)

    Stankevich, N. V.; Kurths, J.; Kuznetsov, A. P.

    2015-01-01

    A model of a generator of quasiperiodic oscillations forced by a periodic pulse sequence is studied. We analyze synchronization when the autonomous generator demonstrates periodic, quasiperiodic, respective weakly chaotic oscillations. For the forced quasiperiodic oscillations a picture of synchronization, consisting of small-scale and large-scale structures was uncovered. It even includes the existence of stable the three-frequency tori. For the regime of weak chaos a partial destruction of this features and of the regime of three-frequency tori are found.

  14. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  15. Active optomechanics through relaxation oscillations

    CERN Document Server

    Princepe, Debora; Frateschi, Newton

    2014-01-01

    We propose an optomechanical laser based on III-V compounds which exhibits self-pulsation in the presence of a dissipative optomechanical coupling. In such a laser cavity, radiation pressure drives the mechanical degree of freedom and its back-action is caused by the mechanical modulation of the cavity loss rate. Our numerical analysis shows that even in a wideband gain material, such dissipative coupling couples the mechanical oscillation with the laser relaxation oscillations process. Laser self-pulsation is observed for mechanical frequencies below the laser relaxation oscillation frequency under sufficiently high optomechanical coupling factor.

  16. Chromosome oscillations in mitosis

    Science.gov (United States)

    Campas, Otger

    2008-03-01

    Successful cell division necessitates a tight regulation of chromosome movement via the activity of molecular motors. Many of the key players at the origin of the forces generating the motion have been identified, but their spatial and temporal organization remains elusive. In animal cells, chromosomes periodically switch between phases of movement towards and away from the pole. This characteristic oscillatory behaviour cannot be explained by the current models of chromosome positioning and congression. We perform a self-contained theoretical analysis in which the motion of mono-oriented chromosomes results from the competition between the activity of the kinetochore and chromokinesin motors on the chromosome arms. Our analysis, consistent with the available experimental data, proposes that the interplay between the aster-like morphology of the spindle and the collective kinetics of molecular motors is at the origin of chromosome oscillations, positioning and congression. It provides a natural explanation for the so-called chromosome directional instability and for the mechanism by which chromosomes sense their position in space. In addition, we estimate the in vivo velocity of chromokinesins at vanishing load and propose new experiments to assess the mechanism at the origin of chromosome movement in cell division.

  17. Galactic oscillator symmetry

    Science.gov (United States)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  18. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  19. Fission waves can oscillate

    CERN Document Server

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  20. Gamma Oscillations and Visual Binding

    Science.gov (United States)

    Robinson, Peter A.; Kim, Jong Won

    2006-03-01

    At the root of visual perception is the mechanism the brain uses to analyze features in a scene and bind related ones together. Experiments show this process is linked to oscillations of brain activity in the 30-100 Hz gamma band. Oscillations at different sites have correlation functions (CFs) that often peak at zero lag, implying simultaneous firing, even when conduction delays are large. CFs are strongest between cells stimulated by related features. Gamma oscillations are studied here by modeling mm-scale patchy interconnections in the visual cortex. Resulting predictions for gamma responses to stimuli account for numerous experimental findings, including why oscillations and zero-lag synchrony are associated, observed connections with feature preferences, the shape of the zero-lag peak, and variations of CFs with attention. Gamma waves are found to obey the Schroedinger equation, opening the possibility of cortical analogs of quantum phenomena. Gamma instabilities are tied to observations of gamma activity linked to seizures and hallucinations.