WorldWideScience

Sample records for sapogenins

  1. Radioprotective and In-Vitro Cytotoxic Sapogenin from Euphorbia ...

    African Journals Online (AJOL)

    Purpose: Euphorbia neriifolia Linn. (Euphorbiaceae) plant is traditionally used in the treatment of abdominal troubles, bronchitis, tumours, leucoderma, piles, inflammation, and enlargement of spleen. The objective of this study was to evaluate the antioxidant and anticancer activities of a sapogenin isolate of this plant.

  2. Are saponins and sapogenins precursors of prednisolone? Preliminary results

    Directory of Open Access Journals (Sweden)

    Giuseppe Federico Labella

    2015-11-01

    Full Text Available The transformation of cortisol into prednisolone in cattle faeces was demonstrated and provided by literature, given the structural similarity of prednisolone with cortisol. In this study, we evaluated a possible neo-formation of prednisolone, as results of a faecal or environmental contamination. A saponine, α-solanine, and a sapogenin, diosgenin, were selected as possible precursors. A simple method without extraction was applied. The analyses were performed by HPLC–MSn to evaluate the possible transformations. The results showed that prednisolone was detected in the faecal suspension spiked with diosgenin at t= 8h, while cortisol was also detected at t = 24h in the sample of faeces spiked with α-solanine. In the feed and in the control samples, no transformations were observed.

  3. Sapogenin content variation in Medicago inter-specific hybrid derivatives highlights some aspects of saponin synthesis and control.

    Science.gov (United States)

    Carelli, Maria; Biazzi, Elisa; Tava, Aldo; Losini, Ilaria; Abbruscato, Pamela; Depedro, Claudia; Scotti, Carla

    2015-04-01

    In the Medicago genus, saponins are a complex mixture of triterpene glycosides showing a broad spectrum of biological properties. Here we analyzed the variation in the sapogenin content and composition of inter-specific hybrid Medicago sativa × Medicago arborea derivatives to highlight the pattern of this variation in plant organs (leaves/roots) and the possible mechanisms underlying it. In Sativa Arborea Cross (SAC) leaves and roots, saponins and sapogenins were evaluated using chromatographic methods. Phenotypic correlations between sapogenin content and bio-agronomic traits were examined. Expression studies on β-amyrin synthase and four cytochromes P450 (CYPs) involved in sapogenin biosynthesis and sequence analysis of the key gene of the hemolytic sapogenin pathway (CYP716A12) were performed. Chromatographic analyses revealed a different pattern of among-family variation for hemolytic and nonhemolytic sapogenins and saponins and for the two organs/tissues. Different correlation patterns of gene expression in roots and leaves were found. Diachronic analysis revealed a relationship between sapogenin content and gene transcriptional levels in the early stages of the productive cycle. The results suggest that there are different control mechanisms acting on sapogenin biosynthesis for leaves and roots, which are discussed. A key role for medicagenic acid in the control of sapogenin content in both the tissues is proposed and discussed. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. De novo transcriptome assembly and the putative biosynthetic pathway of steroidal sapogenins of Dioscorea composita.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available The plant Dioscorea composita has important applications in the medical and energy industries, and can be used for the extraction of steroidal sapogenins (important raw materials for the synthesis of steroidal drugs and bioethanol production. However, little is known at the genetic level about how sapogenins are biosynthesized in this plant. Using Illumina deep sequencing, 62,341 unigenes were obtained by assembling its transcriptome, and 27,720 unigenes were annotated. Of these, 8,022 unigenes were mapped to 243 specific pathways, and 531 unigenes were identified to be involved in 24 secondary metabolic pathways. 35 enzymes, which were encoded by 79 unigenes, were related to the biosynthesis of steroidal sapogenins in this transcriptome database, covering almost all the nodes in the steroidal pathway. The results of real-time PCR experiments on ten related transcripts (HMGR, MK, SQLE, FPPS, DXS, CAS, HMED, CYP51, DHCR7, and DHCR24 indicated that sapogenins were mainly biosynthesized by the mevalonate pathway. The expression of these ten transcripts in the tuber and leaves was found to be much higher than in the stem. Also, expression in the shoots was low. The nucleotide and protein sequences and conserved domains of four related genes (HMGR, CAS, SQS, and SMT1 were highly conserved between D. composita and D. zingiberensis; but expression of these four genes is greater in D. composita. However, there is no expression of these key enzymes in potato and no steroidal sapogenins are synthesized.

  5. Protective vaccination against murine visceral leishmaniasis using aldehyde-containing Quillaja saponaria sapogenins.

    Science.gov (United States)

    Palatnik de Sousa, C B; Santos, W R; Casas, C P; Paraguai de Souza, E; Tinoco, L W; da Silva, B P; Palatnik, M; Parente, J P

    2004-06-23

    The presence of aldehyde groups at C-23 and C-24 of the triterpen aglycon moiety was disclosed in 1H NMR spectra of both the Riedel de Haen saponin (R) (delta 9.336) and Quillaja saponaria QuilA saponin (delta 9.348). The sign of the C-28 acylated linked moiety (delta 176) was present in both saponins, while the delta 171 at C-28 (carboxy group) corresponding to the deacylated saponin, was only detected in the QuilA preparation, indicating 50% of hydrolysis of the ester moiety, probably due to the storage in aqueous solution. The normoterpen moiety was present in both saponins (signals at delta 14-18). The chemical removal of saponin glicidic moieties gave rise to their sapogenin fractions. Their 1H NMR spectra showed the presence of two signals (delta 9.226 and 9.236) for sapogenin R and two signals (delta 9.338 and 9.352) for the QuilA sapogenin. The intensity of the signals suggested two conformational isomers of sapogenin R in the ratio 53% of equatorial aldehyde group to 47% of axial aldehyde group, and two conformational isomers of QuilA sapogenin in the ratio 76% of equatorial aldehyde group to 24% of axial aldehyde group. The chemical treatment abolished the saponin slight in vivo toxicity, reduced their hemolytic potential, did not affect their aldehyde contents, but gave rise to an enriched axial aldehyde-containing sapogenin R with enhanced potential on antibody humoral response (anti-IgM, IgG, IgG1, IgG2a, IgG2b and IgG3) and to an enriched equatorial aldehyde-containing QuilA-sapogenin that induced a mainly cellular specific immune response (increased intradermal response to leishmanial antigen and IFNgamma sera levels) and effective protection against murine infection by L. donovani (77% reduction in liver parasitic load). Our results suggest that the Riedel de Haen saponin is probably a Quillaja saponaria saponin.

  6. Synthesis and neuroprotective effects of the complex nanoparticles of iron and sapogenin isolated from the defatted seeds of Camellia oleifera.

    Science.gov (United States)

    Yang, Qian; Zhao, Chuang; Zhao, Jun; Ye, Yong

    2017-12-01

    The defatted seeds of Camellia oleifera var. monosperma Hung T. Chang (Theaceae) are currently discarded without effective utilization. However, sapogenin has been isolated and shows antioxidative, anti-inflammatory and analgesic activities suggestive of its neuroprotective function. In order to improve the activities of sapogenin, the nanoparticles of iron-sapogenin have been synthesized, and the neuroprotective effects are evaluated. Structural characters of the nanoparticles were analyzed, and the antioxidant effect was assessed by DPPH method, and the neuroprotective effect was evaluated by rotenone-induced neurodegeneration in Kunming mice injected subcutaneously into the back of neck with rotenone (50 mg/kg/day) for 6 weeks and then treated by tail intravenous injection with the iron-sapogenin at the dose of 25, 50 and 100 mg/kg for 7 days. Mice behaviour and neurotransmitters were tested. The product had an average size of 162 nm with spherical shape, and scavenged more than 90% DPPH radicals at 0.8 mg/mL concentration. It decreased behavioural disorder and malondialdehyde content in mice brain, and increased superoxide dismutase activity, tyrosine hydroxylase expression, dopamine and acetylcholine levels in brain in dose dependence, and their maximum changes were respectively up to 60.83%, 25.17%, 22.13%, 105.26%, 42.17% and 22.89% as compared to vehicle group. Iron-sapogenin nanoparticle shows significantly better effects than the sapogenin. Iron-sapogenin alleviates neurodegeneration of mice injured by neurotoxicity of rotenone, it is a superior candidate of drugs for neuroprotection.

  7. Porrigenins A and B, novel cytotoxic and antiproliferative sapogenins isolated from Allium porrum.

    Science.gov (United States)

    Carotenuto, A; Fattorusso, E; Lanzotti, V; Magno, S; De Feo, V; Carnuccio, R; D'Acquisto, F

    1997-10-01

    Four new sapogenins, porrigenins A (2a) and B (3a), identified as (25R)-5 alpha-spirostan-2 beta,3 beta,6 beta-triol and (25R)-2-oxo-5 alpha-spirostan-3 beta,6 beta-diol, respectively, and neoporrigenins A (2b) and B (3b) were also isolated from Allium porrum. In addition, the known agigenin (1a) and its 25S epimer, neoagigenin (1b), were also identified. Their structure elucidation was provided by comprehensive spectroscopic analyses. Compounds 1a, 2a, and 3a exhibited cytotoxicity and high antiproliferative activity on four different tumor cell lines in vitro.

  8. Chemical structures, production and enzymatic transformations of sapogenins and saponins from Centella asiatica (L.) Urban.

    Science.gov (United States)

    Azerad, Robert

    2016-10-01

    Centella asiatica (L.) Urban is a medicinal herb traditionally used in Asiatic countries for its multiple therapeutic properties, essentially due to its accumulation of specific pentacylic triterpenoid saponins, mainly asiaticoside and madecassoside and the corresponding sapogenins. This review summarizes the updated knowledge about the chemical structures of about forty centelloids, found as minor metabolites in Centella, and all derived from ursane and oleane ring patterns. Similarly, the most recent genetic and enzymatic features involved in their biosynthesis is reviewed, in relation with their biotechnological production developed, either from in vitro plant cultures or undifferentiated cells, in order to be independent of natural sources and to provide a continuous and reliable source of centelloids. Finally, a short survey of the biotransformations of some centelloids, either in animal, human or microorganisms is reviewed. Copyright © 2016. Published by Elsevier B.V.

  9. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight

    Science.gov (United States)

    Wu, Xiaorui; Li, Dong; Liu, Junlian; Diao, Lihong; Ling, Shukuan; Li, Yuheng; Gao, Jianyi; Fan, Quanchun; Sun, Weijia; Li, Qi; Zhao, Dingsheng; Zhong, Guohui; Cao, Dengchao; Liu, Min; Wang, Jiaping; Zhao, Shuang; Liu, Yu; Bai, Guie; Shi, Hongzhi; Xu, Zi; Wang, Jing; Xue, Chunmei; Jin, Xiaoyan; Yuan, Xinxin; Li, Hongxing; Liu, Caizhi; Sun, Huiyuan; Li, Jianwei; Li, Yongzhi; Li, Yingxian

    2017-01-01

    Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE), which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS), alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions. PMID:28611667

  10. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight

    Directory of Open Access Journals (Sweden)

    Xiaorui Wu

    2017-05-01

    Full Text Available Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE, which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS, alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions.

  11. Anti-elastase and anti-hyaluronidase activities of saponins and sapogenins from Hedera helix, Aesculus hippocastanum, and Ruscus aculeatus: factors contributing to their efficacy in the treatment of venous insufficiency.

    Science.gov (United States)

    Facino, R M; Carini, M; Stefani, R; Aldini, G; Saibene, L

    1995-10-01

    Triterpene and steroid saponins and sapogenins of medicinal plants (Aesculus hippocastanum L., Hedera helix L., Ruscus aculeatus L.) are claimed to be effective for the treatment/prevention of venous insufficiency. In this work we evaluated the inhibitory effects of these plant constituents on the activity of elastase and hyaluronidase, the enzyme systems involved in the turnover of the main components of the perivascular amorphous substance. The results evidence that for Hedera helix L., the sapogenins only non-competitively inhibit hyaluronidase activity in a dose-dependent fashion, showing comparable IC50 values (hederagenin IC50 = 280.4 microM; oleanolic acid IC50 = 300.2 microM); both the saponins hederacoside C and alpha-hederin are very weak inhibitors. The same behaviour is observed for serine protease porcine pancreatic elastase: the glycosides are devoid of inhibitory action, while genins are potent competitive inhibitors (oleanolic acid IC50 = 5.1 microM; hederagenin IC50 = 40.6 microM). Constituents from Aesculus hippocastanum L. show inhibitory effects only on hyaluronidase, and this activity is mainly linked to the saponin escin (IC50 = 149.9 microM), less to its genin escinol (IC50 = 1.65 mM). By contrast, ruscogenins from Ruscus aculeatus L., ineffective on hyaluronidase activity, exhibit remarkable anti-elastase activity (IC50 = 119.9 microM; competitive inhibition). The mechanism of elastase inhibition by triterpene and steroid aglycones, with a nitroanilide derivative as substrate, is discussed.

  12. Evidence for the Involvement of Spinal Cord-Inhibitory and Cytokines-Modulatory Mechanisms in the Anti-Hyperalgesic Effect of Hecogenin Acetate, a Steroidal Sapogenin-Acetylated, in Mice

    Directory of Open Access Journals (Sweden)

    Jullyana S.S. Quintans

    2014-06-01

    Full Text Available Hecogenin is a steroidal sapogenin largely drawn from the plants of the genus Agave, commonly known as ‘sisal’, and is one of the important precursors used by the pharmaceutical industry for the synthesis of steroid hormones. Hecogenin acetate (HA is a steroidal sapogenin-acetylated that produces antinociceptive activity. Thus, we evaluate the antihyperalgesic profile of HA in mice in inflammatory models, as well as its possible involvement with c-fos expression on spinal cord area and cytokines to produces analgesic profile. Acute pretreatment with HA (5, 10, or 20 mg/kg; i.p. inhibited the development of mechanical hyperalgesia induced by carrageenan, TNF-α, dopamine and PGE2. Additionally, the immunofluorescence data demonstrated that acute pretreatment with HA, at all doses tested, significantly inhibited Fos-like expression in the spinal cord dorsal horn normally observed after carrageenan-inflammation. Moreover, HA did not affect the motor performance of the mice as tested in the Rota rod test. This antinociceptive profile seems to be related, at least in part, to a reduction of pro-inflammatory cytokines, as IL-1β. The present results suggest that HA attenuates mechanical hyperalgesia by blocking the neural transmission of pain at the spinal cord levels and by cytokines-inhibitory mechanisms.

  13. Production of Triterpenoid Sapogenins in Hairy Root Cultures of Silene vulgaris.

    Science.gov (United States)

    Kim, Yeon Bok; Reed, Darwin W; Covello, Patrick S

    2015-11-01

    Silene vulgaris (Moench) Garcke (Caryophyllaceae) is widely distributed in North America and contains bioactive oleanane-type saponins. In order to investigate in vitro production of triterpenoid saponins, hairy root cultures of S. vulgaris were established by infecting leaf explants with five strains of Agrobacterium rhizogenes (LBA9402, R1000, A4, 13333, and 15834). The A. rhizogenes strain LBA9402 had an infection of 100% frequency and induced the most hairy roots per plant. Methyl jasmonate (MeJA)-induced changes in triterpenoid saponins in S. vulgaris hairy roots were analyzed. Accumulation of segetalic acid and gypsogenic acid after MeJA treatment was 5-and 2-fold higher, respectively, than that of control root. We suggest that hairy root cultures of S. vulgaris could be an important alternative approach to the production of saponins.

  14. GC-MS Profiling of Triterpenoid Saponins from 28 Quinoa Varieties (Chenopodium quinoa Willd.) Grown in Washington State.

    Science.gov (United States)

    Medina-Meza, Ilce G; Aluwi, Nicole A; Saunders, Steven R; Ganjyal, Girish M

    2016-11-16

    Quinoa (Chenopodium quinoa Willd) contains 2 to 5% saponins in the form of oleanane-type triterpenoid glycosides or sapogenins found in the external layers of the seeds. These saponins confer an undesirable bitter flavor. This study maps the content and profile of glycoside-free sapogenins from 22 quinoa varieties and 6 original breeding lines grown in North America under similar agronomical conditions. Saponins were recovered using a novel extraction protocol and quantified by GC-MS. Oleanolic acid (OA), hederagenin (HD), serjanic acid (SA), and phytolaccagenic acid (PA) were identified by their mass spectra. Total saponin content ranged from 3.81 to 27.1 mg/g among the varieties studied. The most predominant sapogenin was phytolaccagenic acid with 16.72 mg/g followed by hederagenin at 4.22 mg/g representing the ∼70% and 30% of the total sapogenin content. Phytolaccagenic acid and the total sapogenin content had a positive correlation of r 2 = 0.88 (p < 0.05). Results showed that none of the varieties we studied can be classified as "sweet". Nine varieties were classified as "low-sapogenin". We recommend six of the varieties be subjected to saponin removal process before consumption. A multivariate analysis was conducted to evaluate and cluster the different genotypes according their sapogenin profile as a way of predicting the possible utility of separate quinoa in food products. The multivariate analysis showed no correlations between origin of seeds and saponin profile and/or content.

  15. Cuantificación de Sapogeninas del Jugo Fresco y Fermentado de Fique (Furcraea gigantea) mediante Cromatografía Liquida de Alta Resolución (HPLC-PDA) Sapogenins Quantification of Fresh and Fermented Juice of Fique (Furcraea gigantean) by High-Performance Liquid Chromatography (HPLC-PDA)

    OpenAIRE

    Olga L Benavides; Oscar Arango; Andrés M Hurtado; Myriam C Rojas

    2012-01-01

    Se presenta un estudio sobre la cuantificación de sapogeninas del jugo fresco y fermentado de fique (Furcraea gigantea) mediante cromatografía liquida de alta resolución con detector de fotodiodo (HPLC-PDA). El jugo de fique, una planta cultivada ampliamente en Colombia, se fermentó durante 2, 4 y 6 días a 33°C. Mediante hidrólisis ácida se obtovo el extracto de sapogeninas, cuyos componentes identificados por cromatografía gaseosa y espectroscopia másica (GC-MS) fueron hecogenina y tigogenin...

  16. Analgesic and anti-inflammatory effects of Cyphostemma vogelii (Hook

    African Journals Online (AJOL)

    Rita

    2013-04-24

    Apr 24, 2013 ... Choi E, Kwang J (2004). Anti-inflammatory, analgesic and anti-oxidant activities of the fruits of Foeniculum vulgare. Fitoterapia 75:557-565. Choi J, Jung HJ, Lee KT, Park HJ (2005). Antinociceptive and anti- inflammatory effects of saponins and sapogenins obtained from the stem of Akebia quinata. J. Med.

  17. CALLUS INDUCTION AND MORPHOGENESIS IN DIOSCOREA ...

    African Journals Online (AJOL)

    Diosgenin is characteristic of the genus Dioscorea (Dioscoreaceae), which is used in partial synthesis of steroid drugs. It was not detected in the crude sapogenin extract of Dioscorea dumetorum and in the calluses. Callus was induced from the meristem of the two genotypes and maintained successfully on Murashige and ...

  18. Antiproliferative, Cytotoxic, and Apoptotic Activity of Steroidal Oximes in Cervicouterine Cell Lines

    Directory of Open Access Journals (Sweden)

    Luis Sánchez-Sánchez

    2016-11-01

    Full Text Available Steroidal sapogenins have shown antiproliferative effects against several tumor cell lines; and their effects on human cancer cells are currently under study. Changes in the functionality on the steroidal structure make it possible to modify the biological activity of compounds. Herein, we report the synthesis and in vitro antitumor activity of two steroidal oxime compounds on cervical cancer cells. These derivatives were synthesized from the steroidal sapogenin diosgenin in good yields. The in vitro assays show that the steroidal oximes show significant antiproliferative activity compared to the one observed for diosgenin. Cell proliferation, cell death, and the cytotoxic effects were determined in both cervical cancer cells and human lymphocytes. The cancer cells showed apoptotic morphology and an increased presence of active caspase-3, providing the notion of a death pathway in the cell. Significantly, the steroidal oximes did not exert a cytotoxic effect on lymphocytes.

  19. Genomic and Coexpression Analyses Predict Multiple Genes Involved in Triterpene Saponin Biosynthesis in Medicago truncatula[C][W

    Science.gov (United States)

    Naoumkina, Marina A.; Modolo, Luzia V.; Huhman, David V.; Urbanczyk-Wochniak, Ewa; Tang, Yuhong; Sumner, Lloyd W.; Dixon, Richard A.

    2010-01-01

    Saponins, an important group of bioactive plant natural products, are glycosides of triterpenoid or steroidal aglycones (sapogenins). Saponins possess many biological activities, including conferring potential health benefits for humans. However, most of the steps specific for the biosynthesis of triterpene saponins remain uncharacterized at the molecular level. Here, we use comprehensive gene expression clustering analysis to identify candidate genes involved in the elaboration, hydroxylation, and glycosylation of the triterpene skeleton in the model legume Medicago truncatula. Four candidate uridine diphosphate glycosyltransferases were expressed in Escherichia coli, one of which (UGT73F3) showed specificity for multiple sapogenins and was confirmed to glucosylate hederagenin at the C28 position. Genetic loss-of-function studies in M. truncatula confirmed the in vivo function of UGT73F3 in saponin biosynthesis. This report provides a basis for future studies to define genetically the roles of multiple cytochromes P450 and glycosyltransferases in triterpene saponin biosynthesis in Medicago. PMID:20348429

  20. Immunomodulatory Activity of Chlorophytum borivilianum Sant. F

    Directory of Open Access Journals (Sweden)

    Mayank Thakur

    2007-01-01

    Full Text Available Chlorophytum borivilianum Santapau & Fernandes (Liliaceae is a very popular herb in traditional Indian medicine and constitute a group of herbs used as ‘Rasayan’ or adaptogen. Ethanolic extract of the roots and its sapogenin were evaluated for their immunomodulatory activity. Effect of azathioprine-induced myelosuppresion and administration of extracts on hematological and serological parameters was determined. Administration of extracts greatly improved survival against Candida albicans infection. An increase in delayed-type hypersensitivity response (DTH, % neutrophil adhesion and in vivo phagocytosis by carbon clearance method was observed after treatment with extracts. Immunostimulant activity of ethanolic extract was more pronounced as compared to sapogenins. The results, thus justifies the traditional use of C. borivilianum as a rasayana drug.

  1. High-throughput LC/MS/MS analysis of ruscogenin and neoruscogenin in Ruscus aculeatus L.

    Science.gov (United States)

    Vlase, Laurian; Kiss, Béla; Balica, Georgeta; Tămas, Mircea; Crisan, Gianina; Leucuta, Sorin E

    2009-01-01

    A new, sensitive LC/MS/MS method was developed for the quantification of ruscogenin and neoruscogenin in hydrolyzed extracts from Ruscus aculeatus L. (Liliaceae). The two sapogenins were separated on a Zorbax SB-C18 column under isocratic conditions. The detection was performed in the multiple reaction monitoring mode using an ion trap mass spectrometer with an electrospray ionization source operated in positive ionization mode. For the quantification of the ruscogenin and neoruscogenin, calibration curves were constructed over the range of 2-1000 ng/mL. This is the first reported LC/MS/MS method for the simultaneous analysis of ruscogenin and neoruscogenin, and it showed superior sensitivity when compared with other assays described in the literature. The method has been successfully applied to quantify the two sapogenins in aerial (phylloclades) and underground parts (rhizomes, roots) of Ruscus aculeatus L.

  2. Hairy Root Induction in Helicteres isora L. and Production of Diosgenin in Hairy Roots

    OpenAIRE

    Kumar, Vinay; Desai, Dnyanada; Shriram, Varsha

    2014-01-01

    Mature seeds of Helicteres isora L. were collected from seven geographical locations of Maharashtra and Goa (India) and evaluated for diosgenin (a bioactive steroidal sapogenin of prime importance) extraction and quantification. Chemotypic variations were evidenced with diosgenin quantity ranging from 33 μg g−1 seeds (Osmanabad forests) to 138 μg g−1 (Khopoli region). Nodal and leaf explants from in vitro-raised seedlings were used for callus and Agrobacterium-mediated transformation, respect...

  3. Whole-body autoradiographic study on the distribution of tritium in cynomolgus monkeys dosed with a tritiated extract of Ruscus

    Energy Technology Data Exchange (ETDEWEB)

    Benard, P.; Rico, A.G.; Cousse, H.; Fauran, F.

    1985-01-01

    A metabolic study has been performed on macaca monkey treated with a tritiated Ruscus extract. There is a rather good absorption of radioactivity when the preparation is delivered orally. The percutaneous absorption is much lower. A large part of the delivered activity is excreted in feces and urine. Sapogenins are the main urinary metabolites. In the body, tritium is mainly localized in the liver, the kidney, the spleen (white pulp) and the bone marrow.

  4. Ecologically relevant UV-B dose combined with high PAR intensity distinctly affect plant growth and accumulation of secondary metabolites in leaves of Centella asiatica L. Urban.

    Science.gov (United States)

    Müller, Viola; Albert, Andreas; Barbro Winkler, J; Lankes, Christa; Noga, Georg; Hunsche, Mauricio

    2013-10-05

    We investigated the effects of environmentally relevant dose of ultraviolet (UV)-B and photosynthetic active radiation (PAR) on saponin accumulation in leaves on the example of Centella asiatica L. Urban. For this purpose, plants were exposed to one of four light regimes i.e., two PAR intensities with or without UV-B radiation. The experiment was conducted in technically complex sun simulators under almost natural irradiance and climatic conditions. As observed, UV-B radiation increased herb and leaf production as well as the content of epidermal flavonols, which was monitored by non-destructive fluorescence measurements. Specific fluorescence indices also indicate an increase in the content of anthocyanins under high PAR; this increase was likewise observed for the saponin concentrations. In contrast, UV-B radiation had no distinct effects on saponin and sapogenin concentrations. Our findings suggest that besides flavonoids, also saponins were accumulated under high PAR protecting the plant from oxidative damage. Furthermore, glycosylation of sapogenins seems to be important either for the protective function and/or for compartmentalization of the compounds. Moreover, our study revealed that younger leaves contain higher amounts of saponins, while in older leaves the sapogenins were the most abundant constituents. Concluding, our results proof that ambient dose of UV-B and high PAR intensity distinctly affect the accumulation of flavonoids and saponins, enabling the plant tissue to adapt to the light conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Dammarane-type saponins from leaves of Ziziphus spina-christi.

    Science.gov (United States)

    Bozicevic, Alen; De Mieri, Maria; Di Benedetto, Angela; Gafner, Frank; Hamburger, Matthias

    2017-06-01

    Phytochemical profiling of Ziziphus spina-christi leaves led to the characterization of 10 dammarane-type saponins and 12 phenolic compounds. Isolation was achieved by gel chromatography on Sephadex LH20, open column chromatography on silica gel, and semi-preparative HPLC with PDA and ELSD detectors. Structural characterization was performed by extensive 1D and 2D NMR, mass spectrometry, and by GC-MS of sugar derivatives. A biosynthetic pathway leading to three previously undescribed sapogenins is proposed. The saponin profiles in Z. spina-christi leaves of four different origins were compared by means of HPLC-ESIMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Molecular determinants of PPARγ partial agonism and related in silico/in vivo studies of natural saponins as potential type 2 diabetes modulators.

    Science.gov (United States)

    Al Sharif, Merilin; Alov, Petko; Diukendjieva, Antonia; Vitcheva, Vessela; Simeonova, Rumyana; Krasteva, Ilina; Shkondrov, Aleksandar; Tsakovska, Ivanka; Pajeva, Ilza

    2017-12-13

    The metabolic syndrome, which includes hypertension, type 2 diabetes (T2D) and obesity, has reached an epidemic-like scale. Saponins and sapogenins are considered as valuable natural products for ameliorating this pathology, possibly through the nuclear receptor PPARγ activation. The aims of this study were: to look for in vivo antidiabetic effects of a purified saponins' mixture (PSM) from Astragalus corniculatus Bieb; to reveal by in silico methods the molecular determinants of PPARγ partial agonism, and to investigate the potential PPARγ participation in the PSM effects. In the in vivo experiments spontaneously hypertensive rats (SHRs) with induced T2D were treated with PSM or pioglitazone as a referent PPARγ full agonist, and pathology-relevant biochemical markers were analysed. The results provided details on the PSM modulation of the glucose homeostasis and its potential mechanism. The in silico studies focused on analysis of the protein-ligand interactions in crystal structures of human PPARγ-partial agonist complexes, pharmacophore modelling and molecular docking. They outlined key pharmacophoric features, typical for the PPARγ partial agonists, which were used for pharmacophore-based docking of the main PSM sapogenin. The in silico studies, strongly suggest possible involvement of PPARγ-mediated mechanisms in the in vivo antidiabetic and antioxidant effects of PSM from A. corniculatus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Steroidal saponins from the plant Agave brittoniana with activity against the parasite Trichomona vaginalis].

    Science.gov (United States)

    Guerra, José Orestes; Meneses, Alfredo; Simonet, Ana María; Macías, Francisco Antonio; Nogueiras, Clara; Gómez, Alicia; Escario, José A

    2008-12-01

    The genus Agave (Agavaceae), includes more than 300 species; around 16 of them show an homogeneous distribution throughout Cuba. Agave brittoniana (ssp. brachypus), is an endemic subspecies that grows in the central region of the country and its leaves are traditionally used in the treatment of parasitic diseases. The parasite Trichomonas vaginalis causes the disease known as trichomoniasis, that infects the genital tract. To test in vitro the plant against Trichomona vaginalis, the dried and powdered leaves were extracted three times with ethanol-water (7:3) by maceration at room temperature. The solvent was removed under reduced pressure and the extract was suspended in distilled water, defatted with n-hexane, and extracted with water-saturated n-butanol. After solvent removal, a portion of the n-butanol extract was hydrolyzed. After extraction with ethyl acetate the hydrolysis products were compared with authentic sapogenins samples using thin layer chromatography (TLC). Most of the sapogenins (yuccagenin and diosgenin) were isolated and their structures were confirmed. using nuclear magnetic resonance (NMR) experiments. The n-butanol extract was subjected to a separation process through column chromatography to obtain five fractions. After multiple separation processes by reversed phase high performance liquid chromatography (HPLC), the most active one produced one refined fraction that contained two saponins with the same aglycone (diosgenin) and one yuccagenin based saponin. Best results of the activity were obtained with the yuccagenin derived glycoside.

  8. Antiprotozoal compounds from Asparagus africanus

    DEFF Research Database (Denmark)

    Oketch-Rabah, H A; Dossaji, S F; Christensen, S B

    1997-01-01

    Two antiprotozoal compounds have been isolated from the roots of Asparagus africanus Lam. (Liliaceae), a new sapogenin, 2 beta, 12 alpha-dihydroxy-(25R)-spirosta-4,7-dien-3-one (1), which was named muzanzagenin, and the lignan (+)-nyasol (2), (Z)-(+)-4,4'-(3-ethenyl-1-propene-1,3-diyl)-bisphenol.......Two antiprotozoal compounds have been isolated from the roots of Asparagus africanus Lam. (Liliaceae), a new sapogenin, 2 beta, 12 alpha-dihydroxy-(25R)-spirosta-4,7-dien-3-one (1), which was named muzanzagenin, and the lignan (+)-nyasol (2), (Z)-(+)-4,4'-(3-ethenyl-1-propene-1,3-diyl......M. These concentrations only moderately affect the proliferation of human lymphocytes. Muzanzagenin showed a moderate in vitro activity in all three tests, the IC50 against leishmania promastigotes was 70 microM, and against four different malaria schizont strains the IC50 values were 16, 163, 23, and 16 micro...

  9. Direct detection of saponins in crude extracts of soapnuts by FTIR.

    Science.gov (United States)

    Almutairi, Meshari Saad; Ali, Muhammad

    2015-01-01

    Direct detection of saponins in soapnuts (Sapindus mukorossi) using Fourier transform infrared (FTIR) spectroscopy is investigated in this project. Potassium bromide powder was mixed with extracted powder of soapnuts and compressed to a thin pellet for examination process. The outcome of the FTIR spectra of saponin demonstrated characteristic triterpenoid saponin absorptions of OH, C = O, C-H, and C = C, while the glycoside linkages to the sapogenins were indicated by the absorptions of C-O. The significance of this study is that saponin absorption peaks are directly detectable in crude aqueous and 95% ethanol extracts of soapnuts powder using FTIR spectroscopy, thereby eliminating the need of further expensive and exhaustive purification steps. The extracts of soapnuts were screened for saponins along with controls by phytochemical tests, and advanced spectroscopic techniques such as ultra fast liquid chromatography and ultra performance liquid chromatography quadrupole-time of flight-mass spectrometry were also implemented to validate the saponins.

  10. Antimicrobial Activities against Periodontopathic Bacteria of Pittosporum tobira and Its Active Compound

    Directory of Open Access Journals (Sweden)

    Jung-Hyun Oh

    2014-03-01

    Full Text Available The study of medicinal plants for treatment of periodontitis is of great value to establish their efficacy as sources of new antimicrobial drugs. Five hundred and fifty eight Korean local plant extracts were screened for antibacterial activity against representative periodontopathic bacteria such as Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum. Among the various medicinal plants, the alcohol extract of Pittosporum tobira, which significantly exhibited antibacterial effect for all tested strains, showed the highest activity in the antimicrobial assays. NMR analyses revealed that R1-barrigenol, a triterpene sapogenin, was the most effective compound in P. tobira. These results demonstrated that P. tobira possesses antimicrobial properties and would be beneficial for the prevention and treatment of periodontitis.

  11. From Plant Extract to a cDNA Encoding a Glucosyltransferase Candidate: Proteomics and Transcriptomics as Tools to Help Elucidate Saponin Biosynthesis in Centella asiatica.

    Science.gov (United States)

    de Costa, Fernanda; Barber, Carla J S; Reed, Darwin W; Covello, Patrick S

    2016-01-01

    Centella asiatica (L.) Urban (Apiaceae), a small annual plant that grows in India, Sri Lanka, Malaysia, and other parts of Asia, is well-known as a medicinal herb with a long history of therapeutic uses. The bioactive compounds present in C. asiatica leaves include ursane-type triterpene sapogenins and saponins-asiatic acid, madecassic acid, asiaticoside, and madecassoside. Various bioactivities have been shown for these compounds, although most of the steps in the biosynthesis of triterpene saponins, including glycosylation, remain uncharacterized at the molecular level. This chapter describes an approach that integrates partial enzyme purification, proteomics methods, and transcriptomics, with the aim of reducing the number of cDNA candidates encoding for a glucosyltransferase involved in saponin biosynthesis and facilitating the elucidation of the pathway in this medicinal plant.

  12. Steroidal Saponins

    Science.gov (United States)

    Sahu, N. P.; Banerjee, S.; Mondal, N. B.; Mandal, D.

    The medicinal activities of plants are generally due to the secondary metabolites (1) which often occur as glycosides of steroids, terpenoids, phenols etc. Saponins are a group of naturally occurring plant glycosides, characterized by their strong foam-forming properties in aqueous solution. The cardiac glycosides also possess this, property but are classified separately because of their specific biological activity. Unlike the cardiac glycosides, saponins generally do not affect the heart. These are classified as steroid or triterpenoid saponins depending on the nature of the aglycone. Steroidal glycosides are naturally occurring sugar conjugates of C27 steroidal compounds. The aglycone of a steroid saponin is usually a spirostanol or a furostanol. The glycone parts of these compounds are mostly oligosaccharides, arranged either in a linear or branched fashion, attached to hydroxyl groups through an acetal linkage (2, 3). Another class of saponins, the basic steroid saponins, contain nitrogen analogues of steroid sapogenins as aglycones.

  13. Inhibitory Effect of Triterpenoids from Panax ginseng on Coagulation Factor X

    Directory of Open Access Journals (Sweden)

    Lingxin Xiong

    2017-04-01

    Full Text Available Enzymes involved in the coagulation process have received great attention as potential targets for the development of oral anti-coagulants. Among these enzymes, coagulation factor Xa (FXa has remained the center of attention in the last decade. In this study, 16 ginsenosides and two sapogenins were isolated, identified and quantified. To determine the inhibitory potential on FXa, the chromogenic substrates method was used. The assay suggested that compounds 5, 13 and 18 were mainly responsible for the anti-coagulant effect. Furthermore, these three compounds also possessed high thrombin selectivity in the thrombin inhibition assay. Furthermore, Glide XP from Schrödinger was employed for molecular docking to clarify the interaction between the bioactive compounds and FXa. Therefore, the chemical and biological results indicate that compounds 5 (ginsenoside Rg2, 13 (ginsenoside Rg3 and 18 (protopanaxtriol, PPT are potential natural inhibitors against FXa.

  14. Cytotoxic saponins from bulbs of Allium porrum L.

    Science.gov (United States)

    Fattorusso, E; Lanzotti, V; Taglialatela-Scafati, O; Di Rosa, M; Ianaro, A

    2000-08-01

    An extensive phytochemical analysis of the saponin content has been undertaken on leek, Allium porrum L., sown and collected at different seasons. As a result of this investigation, eight saponins (1-8) have been isolated, four of them (5-8) being novel compounds. Compounds 5 and 6, possessing the same tetrasaccharide moiety of compounds 1 and 3, display very unusual spirostane aglycones, 12-ketoporrigenin and 2,12-diketoporrigenin (named porrigenin C), respectively, recently isolated for the first time as free sapogenin in the same plant. Compounds 7 and 8 are rare cholestane bidesmosides possessing a di- and trisaccharide residues linked to a polyhydroxycholesterol aglycone, respectively. The structures of the isolated compounds have been determined by nondegradative spectroscopic analysis, mainly based on NMR. All the eight saponins isolated from leek were tested for their cytotoxic activity against two different cell lines in vitro, and compounds 1, 2, and 6 resulted particularly active.

  15. Medicinal significance, pharmacological activities, and analytical aspects of solasodine: A concise report of current scientific literature

    Directory of Open Access Journals (Sweden)

    Kanika Patel

    2013-01-01

    Full Text Available Alkaloids are well known phytoconstituents for their diverse pharmacological properties. Alkaloids are found in all plant parts like roots, stems, leaves, flowers, fruits and seeds. Solasodine occurs as an aglycone part of glycoalkloids, which is a nitrogen analogue to sapogenins. Solanaceae family comprises of a number of plants with variety of natural products of medicinal significance mainly steroidal lactones, glycosides, alkaloids and flavanoids. It is a steroidal alkaloid based on a C27 cholestane skeleton. Literature survey reveals that solasodine has diuretic, anticancer, antifungal, cardiotonic, antispermatogenetic, antiandrogenic, immunomodulatory, antipyretic and various effects on central nervous system. Isolation and quantitative determination was achieved by several analytical techniques. Present review highlights the pharmacological activity of solasodine, with its analytical and tissue culture techniques, which may be helpful to the researchers to develop new molecules for the treatment of various disorders in the future.

  16. Centelloside accumulation in leaves of Centella asiatica is determined by resource partitioning between primary and secondary metabolism while influenced by supply levels of either nitrogen, phosphorus or potassium.

    Science.gov (United States)

    Müller, Viola; Lankes, Christa; Zimmermann, Benno F; Noga, Georg; Hunsche, Mauricio

    2013-09-01

    In the present study we aimed to investigate the relevance of either N, P or K supply for herb and leaf yield and for centelloside concentrations in Centella asiatica L. Urban leaves. In this regard, we elucidated the causal relationship between assimilation rate, leaf N, P and K concentrations, herb and leaf production, and centelloside accumulation. The experiments were conducted consecutively in a greenhouse where C. asiatica was grown in hydroponic culture and fertigated with nutrient solutions at either 0, 30, 60, 100 or 150% of the N, P or K amount in a standard Hoagland solution. In general, the increase in N, P or K supply enhanced assimilation rate and herb and leaf yield. However, exceeding specific thresholds, the high availability of one single nutrient caused lower leaf N concentrations and a decline in assimilation rate and plant growth. Irrespective of N, P and K supply, the leaf centelloside concentrations were negatively associated with herb and leaf yield, which is in accordance with the assumptions of the carbon/nutrient balance and the growth differentiation balance hypotheses. Moreover, we found strong negative correlations between saponins and leaf N concentrations, while the respective sapogenins were negatively correlated with K concentrations. Using C. asiatica as model system, our experiments reveal for the first time that the accumulation of saponins and sapogenins is affected by resource allocation between primary and secondary metabolism and that besides carbon, also nutrient availability is relevant for the regulation of the centelloside synthesis. Finally, our results highlight the huge potential of optimized and carefully controlled mineral nutrition of medicinal plants for steering the bio-production of high-quality natural products. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Saponin Isolation as Main Ingredients of Insecticide and Collagen Type I From Crown of Thorn–Starfish (Acanthaster planci)

    Science.gov (United States)

    Wijanarko, Anondho; Januardi Ginting, Mikael; Sahlan, Muhamad; Krisanta Endah Savitri, Imelda; Florensia, Yunita; Sudiarta, Maria Regina; Pastika, Satria; Rafiki, Fakhri; Hermansyah, Heri

    2017-10-01

    The outbreaks of crown of thorns starfish (Acanthaster planci) resulted in the severe destruction of coral reefs in a large number of Indonesia’s marine ecosystem, especially in the western part. At the moment, control efforts are proven to be ineffective because of its high cost and labor intensive. Recent research found that A. planci contain saponins that act as cytotoxic compound and can be used as an environment-friendly insecticide to eradicate Kalotermitidae pest. Saponins extracted by maceration using ethanol 96.0% with a total yield of saponins 9.04% and 4.66% for two test. Purification of saponin was achieved by utilization of activated carbon with a mass of carbon:volume sample 1:2 (w/v) and stirred for 20 minutes. Sapogenin can be isolated by hydrolyzing using hydrochloric acid, and thus 168.4 mg sapogenin is obtained. In addition to saponins, A. planci also contains collagen Type I. Collagen isolation by multistage extraction began with extracting the collagen with alkaline solvent, with water, NaOH 0.1 M, and Ca(OH)2 0.2 M as the solvent variations. The second step is acid-enzymatic extraction by pepsin digestion in 0.5 M acetic acid. Collagen extract will be further purified by salting out and dialysis method to obtain pure collagen yield called Pepsin Solubilized Collagens (PSC). Characterization of PSC consists of quantitative and qualitative analysis such as Lowry method, gel electrophoresis, UV spectroscopy, amino acid composition analysis, and Scanning Electron Microscopy (SEM). The result shows Ca(OH)2 0.2 M as the best extraction solvent with 2.26% yield of PSC.

  18. Cell wall integrity, genotoxic injury and PCD dynamics in alfalfa saponin-treated white poplar cells highlight a complex link between molecule structure and activity.

    Science.gov (United States)

    Paparella, Stefania; Tava, Aldo; Avato, Pinarosa; Biazzi, Elisa; Macovei, Anca; Biggiogera, Marco; Carbonera, Daniela; Balestrazzi, Alma

    2015-03-01

    In the present work, eleven saponins and three sapogenins purified from Medicago sativa were tested for their cytotoxicity against highly proliferating white poplar (Populus alba L.) cell suspension cultures. After preliminary screening, four saponins with different structural features in terms of aglycone moieties and sugar chains (saponin 3, a bidesmoside of hederagenin; saponins 4 and 5, monodesmoside and bidesmoside of medicagenic acid respectively, and saponin 10, a bidesmoside of zanhic acid) and different cytotoxicity were selected and used for further investigation on their structure-activity relationship. Transmission Electron Microscopy (TEM) analyses provided for the first time evidence of the effects exerted by saponins on plant cell wall integrity. Exposure to saponin 3 and saponin 10 resulted into disorganization of the outer wall layer and the effect was even more pronounced in white poplar cells treated with the two medicagenic acid derivatives, saponins 4 and 5. Oxidative burst and nitric oxide accumulation were common hallmarks of the response of white poplar cells to saponins. When DNA damage accumulation and DNA repair profiles were evaluated by Single Cell Gel Electrophoresis, induction of single and double strand breaks followed by effective repair was observed within 24h. The reported data are discussed in view of the current issues dealing with saponin structure-activity relationship. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Rationally designed hecogenin thiosemicarbazone analogs as novel MEK inhibitors for the control of breast malignancies.

    Science.gov (United States)

    Elsayed, Heba E; Ebrahim, Hassan Y; Haggag, Eman G; Kamal, Amel M; El Sayed, Khalid A

    2017-12-15

    Natural products have documented oncology success history as valuable scaffolds for selective target modulation. Herein, the sapogenin hecogenin (1) was screened for its anti-breast cancer inhibitory capacity using in vitro assays, including proliferation, cytotoxicity, migration, invasion assays, and Western blotting. The results identified 1 as a propitious hit with modest activities attributed to the concurrent down-regulation of mitogen activated protein kinase kinase/extracellular signal-regulated kinase (MEK) distinctive downstream effectors. Guided by in silico 3D-structural insights of MAPK kinase domain, an extension strategy was adopted at 1's C-3 and C-12 aimed at the design of novel hecogenin-based analogs with improved target binding affinity. Thirty-three analogs were prepared and tested, among which hecogenin 12-(3'-methylphenyl thiosemicarbazone) (30) displayed the most potent selective anticancer effects. Analog 30 demonstrated antiproliferative, antimigratory and anti-invasive activities at low μM level, compared to the negligible effect on the non-tumorigenic MCF-10A mammary epithelial cells. Durable regression of breast tumor xenografts in athymic nude mice was observed after treatments with 30, compared to its parent hecogenin at the same dose regimen, confirmed the hit-to-lead promotion of this analog. Hecogenin-12-thiosemicarbazones, represented by 30, is a novel MEK inhibitory lead class to control breast neoplasms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hairy Root Induction in Helicteres isora L. and Production of Diosgenin in Hairy Roots.

    Science.gov (United States)

    Kumar, Vinay; Desai, Dnyanada; Shriram, Varsha

    2014-04-01

    Mature seeds of Helicteres isora L. were collected from seven geographical locations of Maharashtra and Goa (India) and evaluated for diosgenin (a bioactive steroidal sapogenin of prime importance) extraction and quantification. Chemotypic variations were evidenced with diosgenin quantity ranging from 33 μg g(-1) seeds (Osmanabad forests) to 138 μg g(-1) (Khopoli region). Nodal and leaf explants from in vitro-raised seedlings were used for callus and Agrobacterium-mediated transformation, respectively. Compact, hard, whitish-green callus (2.65 g explant(-1)) was obtained on MS + 13.32 μM BAP + 2.32 μM Kin after 30 days of inoculation. Various parameters including types of explant and Agrobacterium strain, culture density, duration of infection and various medium compositions were optimized for hairy root production. A. rhizogenes strain ATCC-15834 successfully induced hairy roots from leaf explants (1 cm(2)) with 42 % efficiency. Transgenic status of the roots was confirmed by PCR using rolB and VirD specific primers. Hairy roots showed an ability to synthesize diosgenin. Diosgenin yield was increased ~8 times in hairy roots and ~5 times in callus than the seeds of wild plants. Enhanced diosgenin content was associated with proline accumulation in hairy roots. This is the first report on induction of hairy roots in H. isora.

  1. Molecular cloning of an ester-forming triterpenoid: UDP-glucose 28-O-glucosyltransferase involved in saponin biosynthesis from the medicinal plant Centella asiatica.

    Science.gov (United States)

    de Costa, Fernanda; Barber, Carla J S; Kim, Yeon-Bok; Reed, Darwin W; Zhang, Haixia; Fett-Neto, Arthur G; Covello, Patrick S

    2017-09-01

    Triterpene saponins include bioactive compounds with structures consisting of triterpene aglycones (sapogenins) and one or more sugar moieties linked through acetal or ester glycosidic linkages at one or more sites. Centella asiatica (L.) Urban is a medicinal plant that contains bioactive ursane-type saponins, such as madecassoside and asiaticoside. In this work, glucosylation of triterpenoids in C. asiatica was investigated starting with plant extracts. An enzyme capable of glucosylating asiatic and madecassic acids was partially purified. Proteomics methods and cDNA sequence data were employed as tools to obtain a full-length cDNA clone encoding a glucosyltransferase. The recombinant gene product, UGT73AD1, was functionally expressed in Escherichia coli and purified by immobilized metal-affinity chromatography. Purified recombinant UGT73AD1 was found to have a narrow specificity, glucosylating asiatic and madecassic acids at the C28 carboxyl. mRNA accumulated in all tissues tested (leaves, stems, roots and flowers), with highest expression in leaves. Thus, UGT73AD1 was identified as a triterpenoid carboxylic acid: UDP-glucose 28-O-glucosyltransferase that appears to be involved in saponin biosynthesis in C. asiatica. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Effect of Hecogenin on DNA instability

    Directory of Open Access Journals (Sweden)

    Marina Sampaio Cruz

    2016-01-01

    Full Text Available Hecogenin is a sapogenin found in Agave species in high quantities and is responsible for the many therapeutic effects of these medicinal plants. In addition, this compound is also widely used in the pharmaceutical industry as a precursor for the synthesis of steroidal hormones and anti-inflammatory drugs. Despite Hecogenin being widely used, little is known about its toxicological properties. Therefore, the present study aimed to investigate the cytotoxic, genotoxic and mutagenic effects of Hecogenin on HepG2 cells. Cytotoxicity was analyzed using the MTT test. Then, genotoxic and mutagenic potentials were assessed by comet assay and cytokinesis-block micronucleus assay, respectively. Cytotoxic effect was observed only when cells were exposed to concentrations of Hecogenin equal or higher than 100 μM. Although a lower concentration of Hecogenin caused DNA damage, a reduction on nuclear mutagenic markers in HepG2 cells was observed. The results indicated that Hecogenin treatment generated DNA damage, but in fact it would be repaired, avoiding dissemination of the damage throughout the cell division. Further studies need to be performed to confirm the observed protective effect of Hecogenin against genomic instability.

  3. Diosgenin-induced cognitive enhancement in normal mice is mediated by 1,25D3-MARRS

    Science.gov (United States)

    Tohda, Chihiro; Lee, Young-A.; Goto, Yukiori; Nemere, Ilka

    2013-12-01

    We previously reported that diosgenin, a plant-derived steroidal sapogenin, improved memory and reduced axonal degeneration in an Alzheimer's disease mouse model. Diosgenin directly activated the membrane-associated rapid response steroid-binding receptor (1,25D3-MARRS) in neurons. However, 1,25D3-MARRS-mediated diosgenin signaling was only shown in vitro in the previous study. Here, we aimed to obtain in vivo evidence showing that diosgenin signaling is mediated by 1,25D3-MARRS in the mouse brain. Diosgenin treatment in normal mice enhanced object recognition memory and spike firing and cross-correlation in the medial prefrontal cortex and hippocampal CA1. In diosgenin-treated mice, axonal density and c-Fos expression was increased in the medial prefrontal and perirhinal cortices, suggesting that neuronal network activation may be enhanced. The diosgenin-induced memory enhancement and axonal growth were completely inhibited by co-treatment with a neutralizing antibody for 1,25D3-MARRS. Our in vivo data indicate that diosgenin is a memory-enhancing drug and that enhancement by diosgenin is mediated by 1,25D3-MARRS-triggered axonal growth.

  4. Steroidal saponins from two species of Dracaena.

    Science.gov (United States)

    Kougan, Guy Beddos; Miyamoto, Tomofumi; Tanaka, Chiaki; Paululat, Thomas; Mirjolet, Jean-François; Duchamp, Olivier; Sondengam, Beibam Lucas; Lacaille-Dubois, Marie-Aleth

    2010-07-23

    Four new steroidal saponins (1-4) were isolated from the stem and bark of two species of Dracaena: deistelianosides A and B (1 and 2) from D. deisteliana and arboreasaponins A and B (3 and 4) from D. arborea. Six known saponins and one known sapogenin were also isolated. The structures of 1-4 were established as diosgenin 3-O-[3-O-sulfate-alpha-l-rhamnopyranosyl-(1-->4)]-beta-d-glucopyranoside (1), 1-O-beta-d-xylopyranosyl-(1-->2)-[alpha-l-rhamnopyranosyl-(1-->3)]-beta-d-fucopyranosyl(23S,24S)-spirosta-5,25(27)-diene-1beta,3beta,23alpha,24alpha-tetrol 24-O-alpha-l-arabinopyranoside (2), pennogenin-3-O-alpha-l-rhamnopyranosyl-(1-->2)-[alpha-l-rhamnopyranosyl-(1-->3)]-[6-O-acetyl]-beta-d-glucopyranoside (3), and 24alpha-hydroxypennogenin 3-O-alpha-l-rhamnopyranosyl-(1-->2)-[alpha-l-rhamnopyranosyl-(1-->3)]-beta-d-glucopyranoside (4) using extensive 1D and 2D NMR spectroscopic analyses and mass spectrometry. Cytotoxic activity of several of these compounds was evaluated against the HT-29 and HCT 116 human colon cancer cell lines.

  5. Synthesis of diosgenin p-nitrobenzoate by Steglich method, its crystal structure and quantum chemical studies

    Science.gov (United States)

    Sethi, Arun; Bhatia, Akriti; Shukla, Dolly; Kumar, Abhinav; Sonker, Ravi; Prakash, Rohit; Bhatia, Gitika

    2012-11-01

    In the present study, a novel one pot synthetic route for the synthesis of diosgenin p-nitrobenzoate (2) is described from cheap, commercially available naturally occurring sapogenin-diosgenin. The molecular geometry, IR frequencies, Gauge-including atomic orbital (GIAO), 1H and 13C NMR chemical shifts of compound 2 has been calculated in the ground state by using the Hartree-Fock (HF) and density functional method (DFT/B3LYP) using 6-31G(d,p) basis set. The structure of diosgenin p-nitrobenzoate (2) has been confirmed by single crystal X-ray diffraction. The compound crystallizes in monoclinic form having space group P21 with cell parameters a = 7.719(2) Å, b = 8.425(2) Å and c = 22.578(6) Å, α = 90.00, β = 98.46 and γ = 90.00. The oxygen atoms O5 and O4 of the nitro and carbonyl ester, respectively display weak intermolecular N1sbnd O5⋯H7' and C1'dbnd O4⋯H4' interactions having dimensions of 2.61 and 2.59 Å, respectively to form intricate 1D network. The study of the electronic properties such as HOMO and LUMO energy were performed using time dependent DFT (TD-DFT) calculations. The calculated HOMO and LUMO energy values indicate that charge transfer takes place within the molecule. The compound was screened for cytotoxicity and anti-adipogenic activity.

  6. PENGARUH FERMENTASI BAKTERI ASAM LAKTAT LACTOBACILLUS PLANTARUM B307 TERHADAP KADAR PROKSIMAT DAN AMILOGRAFI TEPUNG TAKA MODIFIKASI (TACCA LEONTOPETALOIDES

    Directory of Open Access Journals (Sweden)

    Raden Haryo Bimo Setiarto

    2016-04-01

    Full Text Available Tacca (Tacca leontopetaloides is plant that grows in coastal areas and high salinity, especially in the south coast of West Java. Tacca tubers have high content of carbohydrate, but it also contains some toxic compounds such as: taccaline, β – sitosterol, alcohol cerylic, and steroid sapogenin that are harmful for health. Fermentation on tacca tubers can change amylograph properties and proximate levels of modified tacca flour and reduce it toxic compounds. This study aimed at determining the effects of lactic acid bacteria (LAB Lactobacillus plantarum B307 fermentation on the proximate levels and amylograph characteristics of modified tacca flour. Moisture and ash content of modified tacca flour still meet the requirements of SNI. Fermentation LAB Lactobacillus plantarum B307 led to increased levels of protein and lactic acid in the modified tacca flour, but it decreased pH value and carbohydrate content. Based on the analysis of amylograph, it can be concluded that tacca flour control without fermentation has the best gelatinization profile because it has good ability of setback viscosity.

  7. Mexican plants and human fertility.

    Science.gov (United States)

    Crabbe, P

    1979-07-01

    Synthetic steroids are obtainable cheaply and in abundance from sapogenins, substances originating from plants of the Discorea family. Some 40 years ago, Russell Marker, an American chemist, discovered this source, which grows abundantly in Mexican jungles and is now exploited and cultivated commercially. Today synthetic steroids prepared from extracts from a wide range of vegetable sources are used in the treatment of rheumatoid arthritis, allergies, inflammatory diseases, sterility, and various heart conditions, and form the basis of modern oral contraceptives. Nevertheless, oral contraceptives in current use are still fairly costly, and women have to be educated in their use. What is needed urgently is a cheaper contraceptive pill with a long-term effect, and research is continuing. For example, scientists from the People's Republic of China have reported significant anti-fertility effects associated with 2 substances, anordin and dinordin, prepared with steroids derived from the sisal plants Agave sisilana and Agave americana. These agents, whose anti-fertility properties have been confirmed by scientists in Sweden and the United States, constitute a new family of contraceptives with the great advantage of having to be taken only once or twice instead of 20 times per month necessary with the ordinary pill. Also from China, scientists have reported the effectiveness of gossypol as an orally administered male contraceptive, although gossypol is not a steroid. It may become, however, a leading candidate for a male contraceptive.

  8. A Novel Fluoroimmunoassay for Detecting Ruscogenin with Monoclonal Antibodies Conjugated with CdSe/ZnS Quantum Dots.

    Science.gov (United States)

    Zhang, Hongwei; Xu, Tao; Gao, Lan; Liu, Xiufeng; Liu, Jihua; Yu, Boyang

    2017-07-26

    Ruscogenin (RUS) is a steroidal sapogenin found in Ruscus aculeatus and Ophiopogon japonicus with several pharmacological activities. In the work reported herein, a novel method termed competitive fluorescence-linked immunosorbent assay (cFLISA) based on monoclonal antibodies (mAbs) coupled with quantum dots (QDs) was developed for the quick and sensitive determination of RUS in biological samples. The mAbs against RUS were conjugated with CdSe/ZnS QDs by the crossing-linking reagents and an indirect cFLISA method was developed. There was a good linear relationship between inhibition efficiency and logarithm concentration of RUS which was varied from 0.1 to 1000 ng/mL. The IC 50 and limit of detection (LOD) were 9.59 ng/mL and 0.016 ng/mL respectively, which much lower than the enzyme-linked immunosorbent assay (ELISA) method. The recoveries in plasma and tissues were ranged from 82.3% to 107.0% and the intra- and inter-day precision values were below 15%. The developed cFLISA has been successfully applied to the measurement of the concentrations of RUS in biological samples of rats, and showed great potential for the tissue distribution study of RUS. The cFLISA method may provide a valuable tool for the analysis of small molecules in biological samples and such an approach could be applied to other natural products.

  9. Possible mechanism of the anti-inflammatory activity of ruscogenin: role of intercellular adhesion molecule-1 and nuclear factor-kappaB.

    Science.gov (United States)

    Huang, Ya-Lin; Kou, Jun-Ping; Ma, Li; Song, Jia-Xi; Yu, Bo-Yang

    2008-10-01

    Ruscogenin (RUS), first isolated from Ruscus aculeatus, also a major steroidal sapogenin of traditional Chinese herb Radix Ophiopogon japonicus, has been found to exert significant anti-inflammatory and anti-thrombotic activities. Our previous studies suggested that ruscogenin remarkably inhibited adhesion of leukocytes to a human umbilical vein endothelial cell line (ECV304) injured by tumor necrosis factor-alpha (TNF-alpha) in a concentration-dependent manner. Yet the underlying mechanisms remain unclear. In this study, the in vivo effects of ruscogenin on leukocyte migration and celiac prostaglandin E(2) (PGE(2)) level induced by zymosan A were studied in mice. Furthermore, the effects of ruscogenin on TNF-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression and nuclear factor-kappaB (NF-kappaB) activation were also investigated under consideration of their key roles in leukocyte recruitment. The results showed that ruscogenin significantly suppressed zymosan A-evoked peritoneal total leukocyte migration in mice in a dose-dependent manner, while it had no obvious effect on PGE(2) content in peritoneal exudant. Ruscogenin also inhibited TNF-alpha-induced over expression of ICAM-1 both at the mRNA and protein levels and suppressed NF-kappaB activation considerably by decreasing NF-kappaB p65 translocation and DNA binding activity. These findings provide some new insights that may explain the possible molecular mechanism of ruscogenin and Radix Ophiopogon japonicus for the inhibition of endothelial responses to cytokines during inflammatory and vascular disorders.

  10. PERAN PEPOHONAN DALAM PENINGKATAN PRODUKSI TERNAK RUMINANSIA: PENDEKATAN ILMIAH

    Directory of Open Access Journals (Sweden)

    I.M Mastika

    2014-06-01

    Full Text Available Trees and shrubs plantation are very potential and important in producing sustainable green biomass, and have high protein content and high digestibility.  Some of them are legume which are important in catching nitrogen from the air to enriched the soil nitrogen. Trees are also catching more sun energy radiation which is latter converted into animal feeds. Other roles of this plant is part of them such as leaves, fruits, barks and roots containing saponin/sapogenin or tannin which are useful as defaunating agent. It was well documented that rumen protozoa reduced ruminant productivity. From the reports available either in vitro or in vivo it was proved that saponin could to some extent reduced or depressed protozoa rumen population. Indonesia needs some  experts effort to identify and recording those plants that could play roles as natural defaunating agent, as well as provide green biomass for ruminant. The overall conditions above will provide an ample opportunities for research for students or experties.

  11. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity.

    Science.gov (United States)

    Yang, Wen-Zhi; Hu, Ying; Wu, Wan-Ying; Ye, Min; Guo, De-An

    2014-10-01

    The Panax genus is a crucial source of natural medicines that has benefited human health for a long time. Three valuable medicinal herbs, namely Panax ginseng, Panax quinquefolius, and Panax notoginseng, have received considerable interest due to their extensive application in clinical therapy, healthcare products, and as foods and food additives world-wide. Panax species are known to contain abundant levels of saponins, also dubbed ginsenosides, which refer to a series of dammarane or oleanane type triterpenoid glycosides. These saponins exhibit modulatory effects to the central nervous system and beneficial effects to patients suffering from cardiovascular diseases, and also have anti-diabetic and anti-tumor properties. To the end of 2012, at least 289 saponins were reported from eleven different Panax species. This comprehensive review describes the advances in the phytochemistry of the genus Panax for the period 1963-2012, based on the 134 cited references. The reported saponins can be classified into protopanaxadiol, protopanaxatriol, octillol, oleanolic acid, C17 side-chain varied, and miscellaneous subtypes, according to structural differences in sapogenins. The investigational history of Panax is also reviewed, with special attention being paid to the structural features of the six different subtypes, together with their (1)H and (13)C NMR spectroscopic characteristics which are useful for determining their structures and absolute configuration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Saponinas esteroidales de la planta Agave brittoniana (Agavaceae con actividad contra el parásito Trichomona vaginalis

    Directory of Open Access Journals (Sweden)

    José Orestes Guerra

    2008-12-01

    the genital tract. To test in vitro the plant against Trichomona vaginalis, the dried and powdered leaves were extracted three times with ethanol-water (7 : 3 by maceration at room temperature. The solvent was removed under reduced pressure and the extract was suspended in distilled water, defatted with n-hexane, and extracted with water-saturated n-butanol. After solvent removal, a portion of the n-butanol extract was hydrolyzed. After extraction with ethyl acetate the hydrolysis products were compared with authentic sapogenins samples using thin layer chromatography (TLC. Most of the sapogenins (yuccagenin and diosgenin were isolated and their structures were confirmed. using nuclear magnetic resonance (NMR experiments. The n-butanol extract was subjected to a separation process through column chromatography to obtain five fractions. After multiple separation processes by reversed phase high performance liquid chromatography (HPLC, the most active one produced one refined fraction that contained two saponins with the same aglycone (diosgenin and one yuccagenin based saponin. Best results of the activity were obtained with the yuccagenin derived glycoside. Rev. Biol. Trop. 56 (4: 16451652. Epub 2008 December 12.

  13. Balanites Aegyptiaca (L.: A Multipurpose Fruit Tree in Savanna Zone Of Western Sudan

    Directory of Open Access Journals (Sweden)

    Kamal Eldin Mohammed Fadl

    2015-02-01

    Full Text Available Underutilized fruit trees play a vital role in food security and economy of the rural population in a number of African countries. Beside the significant important of the underutilized fruit trees in food security and livelihood of the local population many applications can be summarized such as using of leaves for fodder, branches for fencing materials, fire wood and charcoal making, timber for furniture and constructing huts, controlling soil erosion and competing desert encroachments . In spite of their great potential little attention has been given to this species. Balanites aegyptiaca “soap berry tree; thorn tree, desert date” is an important multipurpose trees species in dry land Africa. The tree is a potential source of medicines, pesticides, edible oil, animal feed, nuts, soap, and fuel wood. The edible fruits are rich in saturated fatty acids which are used as cooking oil. The fruit also contains Stereoids (Saponins, Sapogenins, and Disogenins which are used as row materials for industrial production of contraceptive pills and other sexual hormones. The excessive uses of the tree for fruit production and for other uses combined with scarcity of natural regeneration lead to drastic depletion of this species. The desert date tree is adapted to dry and hot climatic environment which are characterized by increasing of land and water resources. However, little information is available about propagation and domestication of this valuable tree species; therefore, studies are needed for sustainable use of underutilized fruit trees in general and for Balanites aegyptiaca in particular. This article aims at highlighting and summarizing information on different aspect of B. aegyptiaca to stimulate the scientist interest in this valuable tree species which is of economical importance for rural inhabitants of western Sudan and other African countries.DOI: http://dx.doi.org/10.3126/ije.v4i1.12188International Journal of Environment Volume-4

  14. Screening for feeding deterrent and insect growth regulatory activity of triterpenic saponins from Diploknema butyracea and Sapindus mukorossi.

    Science.gov (United States)

    Saha, Supradip; Walia, Suresh; Kumar, Jitendra; Dhingra, Swaran; Parmar, Balraj S

    2010-01-13

    Antifeeding and insect growth regulatory effects of saponins and its hydrolyzed products from Diploknema butyracea and Sapindus mukorossi on the insect pest Spodoptera litura (F.) were investigated in the laboratory. D. butyracea saponins as well as their hydrolyzed prosapogenins were found to be better biologically active in controlling pests. A concentration of 1200 and 3400 mg L(-1) alkaline and acid hydrolyzed D. butyracea saponins exhibited significant antifeeding and toxic effects to third instar larvae when compared to the emulsified water as control. The n-BuOH extract after prep-HPLC separation provided two saponins from the D. butyracea saponin mixture: 3-O-[beta-D-glucopyarnosyl-beta-d-glucopyranosyl]-16-alpha-hydroxyprotobassic acid-28-O-[ara-glc-xyl]-ara (MI-I) and 3-O-beta-D-glucopyranosyl-glucopyranosyl-glucopyranosyl-16-alpha-hydroxyprotobassic acid-28-O-[ara-xyl-ara]-apiose (MI-III). The single saponin extracted from the S. mukorossi saponin mixture was 3-O-[beta-D-xyl(OAc).beta-D-arabinopyranosyl.beta-D-rhamnopyranosyl] hederagenin-28-O-[beta-D-glc.beta-D-glc.beta-D-rhamnopyranosyl] ester (SM-I). Five days after saponin treatment on larvae, the growth index (GI50) was reduced from 0.92% to 1520 ppm in alkaline hydrolyzed D. butyracea saponins. Upon hydrolysis, growth regulatory activity was improved in S. mukorossi saponin, whereas very little difference was found in antifeedant activity. Hydrophile-lipophile balance is important for the proper functioning of saponin/prosapogenin/sapogenin, which could be achieved by manipulating the sugar molecule in the triterpenic skeleton.

  15. In vivo anthelmintic activity of an aqueous extract from sisal waste (Agave sisalana Perr.) against gastrointestinal nematodes in goats.

    Science.gov (United States)

    Botura, M B; Silva, G D; Lima, H G; Oliveira, J V A; Souza, T S; Santos, J D G; Branco, A; Moreira, E L T; Almeida, M A O; Batatinha, M J M

    2011-04-19

    The resistance of gastrointestinal nematodes (GINs) of small ruminants to anthelmintics has required the investigation of new alternatives. The aim of the present study was to evaluate the in vivo anthelmintic activity of an aqueous extract from sisal waste (Agave sisalana) (AESW) against GINs in goats and to observe the animals for toxic effects. Thirty animals that were naturally infected with GINs were distributed into three groups: group I, was treated with daily doses of AESW (1.7 g/kg) for eight days; Group II, the positive control, was treated with a single dose of levamisole phosphate (6.3mg/kg); and group III, the negative control, was left untreated. Faecal eggs counts (FECs), coprocultures and post-mortem worm counts were performed to assess the efficacy of the treatments. Clinical and laboratory analyses were performed to evaluate any toxic effects associated with the treatment. In the goats in groups I and II, a significant reduction (pcontrol group demonstrated a 74% reduction of the parasites that were recovered from the digestive tract. There were no changes in clinical and haematological parameters. The levels of serum urea and creatinine were higher in group I, but remained within the normal range. At necropsy, pale mucous membranes, abomasitis and enteritis were associated with parasitism. In addition, a histological analysis of the liver and kidney did not reveal any changes suggestive of toxicity. A chemical analysis of the AESW demonstrated the presence of saponins, which after acid-hydrolyses reaction, gave the sapogenins hecogenin and tigogenin. The AESW had a low efficacy for the parasitic stages and was moderately effective against eggs and free-living stages. Furthermore, the treatment was not toxic to the goats. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Synthesis of novel 25-hydroxyprotopanaxadiol derivatives by methylation and methoxycarbonylation using dimethyl carbonate as a environment-friendly reagent and their anti-tumor evaluation.

    Science.gov (United States)

    Guo, Junhui; Xu, Zhe; Liu, Yafei; Wang, Xude; Zhao, Yuqing

    2016-10-01

    A previous study involving 25-hydroxyprotopanaxadiol (25-OH-PPD) illustrated that the anti-cancer activity increased by 1-3 times after C-3/C-12-OH was substituted by short-chain fatty acids. In addition, 25-OCH3-PPD was also one of our research interests; the unique difference in structure between 25-OH-PPD and 25-OCH3-PPD is that in C-25, the latter activity was 2-5 times higher than that of 25-OH-PPD. These data serves as the scientific basis of our continuing research. To further confirm the effect of short chain acylated and methylated products on the activity and to identify more potent, higher selectivity compounds, we modified 25-OH-PPD with a green environment-friendly and non-toxic chemical dimethyl carbonate (DMC), which plays the role of both solvent and reagent. This experiment yielded 14 derivatives. Their in vitro anti-tumor activities were tested on two different human tumor cell lines (HeLa and DU145) and one normal cell line (IOSE144) by standard MTT assay. The results showed that compounds 3, 5, 6, 10, 11, 12, and 13 exhibited higher cytotoxic activity on two cell lines, with IC50 values within the range of 1.1-12μM. Compounds 12 and 13 exhibited the highest potent activity, with IC50 values of 1.1 and 1.2μM, respectively, on HeLa cells. Antitumor activity significantly increased after the hydroxyl groups are substituted by methyl. The results of the present study may provide useful data for evaluating the structure-activity relationships of other dammarane-type sapogenins and developing new antitumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Determination of aglycones of ginsenosides in ginseng preparations sold in Sweden and in urine samples from Swedish athletes consuming ginseng.

    Science.gov (United States)

    Cui, J F; Garle, M; Björkhem, I; Eneroth, P

    1996-04-01

    Recently developed gas chromatographic and gas chromatographic-mass spectrometric methods were used to characterize 17 different commercial ginseng preparations sold in Sweden. The contents of total ginsenosides per capsule or per tablet varied from 2.1 to 13.3 mg. Unlike the other preparations, a red ginseng and three liquid ginseng preparations (after releasing the sugar moieties from ginsenosides) were shown also to contain significant amounts of 20-epimers of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol as well as their corresponding 24,25-hydrated compounds. In addition to the genuine and artificial sapogenins mentioned above, two epimeric pairs of prosapogenines (ginsenoside Rg3 and 20(S)-Rg3, ginsenoside Rh1 and 20(R)-Rh1) were also found in the liquid formulations. These results suggest that hydrolysis, epimerization and hydration in the side-chain of the aglycone moiety of ginsenosides may occur in the liquid formulations under weak acidic conditions (pH 3.0-3.5 with 9-10% of alcohol at room temperature). The new method was also used to determine the aglycones of ginsenosides in urine samples from Swedish athletes stating that they had consumed ginseng preparations within 10 days before urine collection. Out of the 65 samples analysed, 60 were found to contain 20(S)-protopanaxatriol. The concentrations of 20(S)-protopanaxatriol ginsenosides varied from 2 to 35 ng ml-1 urine. This is the first demonstration of uptake of ginsenosides in humans after oral administration of ginseng preparations.

  18. Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting iminosugars or by modification of their chemical structure

    Science.gov (United States)

    de la Fuente, Gabriel; Nash, Robert J.; Braganca, Radek; Duval, Stephane; Bouillon, Marc E.; Lahmann, Martina; Newbold, C. Jamie

    2017-01-01

    The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS). The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (Pstevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39%) and lower butyrate (-32%) and lower ammonia concentration (-64%) than the extracts incubated separately. HBS caused a decrease in butyrate (-45%) and an increase in propionate (+43%) molar proportions. However, the decrease in ammonia concentration (-42%) observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (Pstevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an iminosugar-rich stevia extract and/or HBS should be evaluated to determine their antiprotozoal

  19. Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting iminosugars or by modification of their chemical structure.

    Directory of Open Access Journals (Sweden)

    Eva Ramos-Morales

    Full Text Available The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS. The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (P<0.001. The combination of ivy and stevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39% and lower butyrate (-32% and lower ammonia concentration (-64% than the extracts incubated separately. HBS caused a decrease in butyrate (-45% and an increase in propionate (+43% molar proportions. However, the decrease in ammonia concentration (-42% observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (P<0.05. It was concluded that ivy saponins with stevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an

  20. Isolation and prevention of calcium oxalate-induced apoptotic death and oxidative stress in MDCK cells by diosgenin.

    Science.gov (United States)

    Saha, Sarmistha; Goswami, Gagan; Pandrangi, Anupama

    2014-12-05

    Calcium oxalate monohydrate (COM) has been shown to be the most frequent constituent of kidney stones. The interactions of cells with COM crystals produce a variety of physiological and pathological changes including the development of oxidative stress, cellular injury and apoptosis. On the other hand, diosgenin, a steroidal sapogenin, is well known for its antioxidant activity. Therefore, the aim of this study was to evaluate whether diosgenin protects MDCK renal epithelial cells from COM-induced apoptotic death. Diosgenin was isolated from fruits of Solanum xanthocarpum by silica gel column chromatography. It was obtained in high yields (1.23%) and the purity was ascertained by HPTLC analysis. Characterization of diosgenin was done by mp, UV-visible spectrophotometry, elemental analysis, FT-IR, (1)H NMR and (13)C NMR analysis. Cells were co-incubated with COM (80μg/cm(2)) and diosgenin (2.5, 5, 7.5 and 10μg/mL) for 24h. It was found that diosgenin attenuated the apoptotic death induced by COM as measured in terms of cell viability, caspase -9/3 activities and DNA fragmentation percent. The inhibitory role of diosgenin on caspase -9/3 activities was also analyzed using molecular docking experiments, which showed interactions to their active sites by H-bonds. Diosgenin also attenuated the increase in lipid peroxidation and glutathione depletion induced by COM crystals. In conclusion, the preventive effect of diosgenin is associated to the inhibition of oxidative stress and caspases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Rapid Screening for α-Glucosidase Inhibitors from Gymnema sylvestre by Affinity Ultrafiltration–HPLC-MS

    Directory of Open Access Journals (Sweden)

    Mingquan Guo

    2017-04-01

    Full Text Available Gymnema sylvestre R. Br. (Asclepiadaceae has been known to posses potential anti-diabetic activity, and the gymnemic acids were reported as the main bioactive components in this plant species. However, the specific components responsible for the hypoglycemic effect still remain unknown. In the present study, the in vitro study revealed that the extract of G. sylvestre exhibited significant inhibitory activity against α-glucosidase with IC50 at 68.70 ± 1.22 μg/mL compared to acarbose (positive control at 59.03 ± 2.30 μg/mL, which further indicated the potential anti-diabetic activity. To this end, a method based on affinity ultrafiltration coupled with liquid chromatography mass spectrometry (UF-HPLC-MS was established to rapidly screen and identify the α-glucosidase inhibitors from G. sylvestre. In this way, 9 compounds with higher enrichment factors (EFs were identified according to their MS/MS spectra. Finally, the structure-activity relationships revealed that glycosylation could decrease the potential antisweet activity of sapogenins, and other components except gymnemic acids in G. sylvestre could also be good α-glucosidase inhibitors due to their synergistic effects. Taken together, the proposed method combing α-glucosidase and UF-HPLC-MS presents high efficiency for rapidly screening and identifying potential inhibitors of α-glucosidase from complex natural products, and could be further explored as a valuable high-throughput screening (HTS platform in the early anti-diabetic drug discovery stage.

  2. An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids.

    Science.gov (United States)

    Arendt, Philipp; Miettinen, Karel; Pollier, Jacob; De Rycke, Riet; Callewaert, Nico; Goossens, Alain

    2017-03-01

    Saponins are a structurally diverse family of triterpenes that are widely found as main constituents in many traditional plant-based medicines and often have bioactivities of industrial interest. The heterologous production of triterpene saponins in microbes remains challenging and only limited successful pathway engineering endeavors have been reported. To improve the production capacities of a Saccharomyces cerevisiae saponin production platform, we assessed the effects of several hitherto unexplored gene knockout targets on the heterologous production of triterpenoids. Here, we show that the disruption of the phosphatidic acid phosphatase-encoding PAH1 through CRISPR/Cas9 results in a dramatic expansion of the endoplasmic reticulum (ER), which stimulated the production of recombinant triterpene biosynthesis enzymes and ultimately boosted triterpenoid and triterpene saponin accumulation. Compared to the wild-type starter strain, accumulation of the oleanane-type sapogenin β-amyrin, of its oxidized derivative medicagenic acid, and its glucosylated version medicagenic-28-O-glucoside was respectively increased by eight-, six- and 16-fold in the pah1 strain. A positive effect of pah1 could also be observed for the production of other terpenoids depending on ER-associated enzymes for their biosynthesis, such as the sesquiterpenoid artemisinic acid, which increased by twofold relative to the wild-type strain. Hence, this report demonstrates that pathway engineering in yeast through transforming the subcellular morphology rather than altering metabolic fluxes is a powerful strategy to increase yields of bioactive plant-derived products in heterologous hosts. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat.

    Science.gov (United States)

    Lu, Hung-Jen; Tzeng, Thing-Fong; Liou, Shorong-Shii; Da Lin, Sheng; Wu, Ming-Chang; Liu, I-Min

    2014-03-26

    Ruscogenin is a major steroid sapogenin in the traditional Chinese herb Ophiopogon japonicus that have multiple bioactivities. Recent studies have demonstrated that ruscogenin is involved in down-regulation of intercellular adhesion molecule-1 (ICAM-1) and nuclear factor-κB (NF-κB) activation in anti-inflammatory pathways. We hypothesized that ruscogenin protects against diabetic nephropathy (DN) by inhibiting NF-κB-mediated inflammatory pathway. To test this hypothesis, the present study was to examine the effects of ruscogenin in rats with streptozotocin (STZ)-induced DN. Diabetes was induced with STZ (60 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats in the treatment group were orally dosed with 0.3, 1.0 or 3.0 mg/kg ruscogenin for 8 weeks. The normal rats were chosen as nondiabetic control group. The rats were sacrificed 10 weeks after induction of diabetes. Changes in renal function-related parameters in plasma and urine were analyzed at the end of the study. Kidneys were isolated for pathology histology, immunohistochemistry, and Western blot analyses. Ruscogenin administration did not lower the levels of plasma glucose and glycosylated hemoglobin in STZ-diabetic rats. Diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, blood urea nitrogen and proteinuria, along with marked elevation in the ratio of kidney weight to body weight, that were reversed by ruscogenin. Ruscogenin treatment was found to markedly improve histological architecture in the diabetic kidney. Renal NF-κB activity, as wells as protein expression and infiltration of macrophages were increased in diabetic kidneys, accompanied by an increase in protein content of intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in kidney tissues. All of the above abnormalities were reversed by ruscogenin treatment, which also decreased the expression of transforming growth factor-β1 and fibronectin in the

  4. De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism.

    Science.gov (United States)

    Sangwan, Rajender S; Tripathi, Sandhya; Singh, Jyoti; Narnoliya, Lokesh K; Sangwan, Neelam S

    2013-08-01

    Centella asiatica (L.) Urban is an important medicinal plant and has been used since ancient times in traditional systems of medicine. C. asiatica mainly contains ursane skeleton based triterpenoid sapogenins and saponins predominantly in its leaves. This investigation employed Illumina next generation sequencing (NGS) strategy on a pool of three cDNAs from expanding leaf of C. asiatica and developed an assembled transcriptome sequence resource of the plant. The short transcript reads (STRs) generated and assembled into contigs and singletons, representing majority of the genes expressed in C. asiatica, were termed as 'tentative unique transcripts' (TUTs). The TUT dataset was analyzed with the objectives of (i) development of a transcriptome assembly of C. asiatica, and (ii) classification/characterization of the genes into categories like structural, functional, regulatory etc. based on their function. Overall, 68.49% of the 46,171,131 reads generated in the NGS process could be assembled into a total of 79,041 contigs. Gene ontology and functional annotation of sequences resulted into the identification of genes related to different sets of cellular functions including identification of genes related to primary and secondary metabolism. The wet lab validation of seventeen assembled gene sequences identified to be involved in secondary metabolic pathways and control of reactive oxygen species (ROS) was established by semi-quantitative and real time PCR (qRT-PCR). The validation also included sequencing/size matching of a set of semi-quantitative PCR amplicons with their in silico assembled contig/gene. This confirmed the appropriateness of assembling the reads and contigs. Thus, the present study constitutes the largest report to date on C. asiatica transcriptome based gene resource that may contribute substantially to the understanding of the basal biological functions and biochemical pathways of secondary metabolites as well as the transcriptional regulatory