WorldWideScience

Sample records for saphire scintillator avalanche

  1. GEM scintillation readout with avalanche photodiodes

    CERN Document Server

    Conceição, A S; Fernandes, L M P; Monteiro, C M B; Coelho, L C C; Azevedo, C D R; Veloso, J F C A; Lopesac, J A M; dos Santosa, J M F

    2007-01-01

    The use of the scintillation produced in the charge avalanches in GEM holes as signal amplification and readout is investigated for xenon. A VUV-sensitive avalanche photodiode has been used as photosensor. Detector gains of about 4 × 104 are achieved in scintillation readout mode, for GEM voltages of 490 V and for a photosensor gain of 150. Those gains are more than one order of magnitude larger than what is obtained using charge readout. In addition, the energy resolutions achieved with the scintillation readout are lower than those achieved with charge readout. The GEM scintillation yield in xenon was measured as a function of GEM voltage, presenting values that are about a half of those achieved for the charge yield, and reach about 730 photons per primary electron at GEM voltages of 490 V.

  2. Measurement-based characterization of multipixel avalanche photodiodes for scintillating detectors

    CERN Document Server

    Dziewiecki, M

    2012-01-01

    Multipixel avalanche photodiodes (MAPD) are recently gaining popularity in high energy physics experiments as an attractive replacement for photomultiplier tubes, which have been extensively used for many years as a part of various scintillating detectors. Their low price, small dimensions and another features facilitating their use (like mechanical shock resistance, magnetic field immunity or moderate supply voltage) make the MAPDs a good choice for commercial use as well, what is reflected in growing number of producers as well as MAPD models available on the market. This dissertation presents Author’s experience with MAPD measurements and modelling, gained during his work on the T2K (Tokai-to-Kamioka) long-baseline neutrino experiment, carried out by an international collaboration in Japan. First, operation principle of the MAPD, definitions of various parameters and measurement methods are discussed. Then, a device for large-scale MAPD measurements and related data processing methods are described. Fina...

  3. A new type of thermal-neutron detector based on ZnS(Ag)/LiF scintillator and avalanche photodiodes

    Science.gov (United States)

    Marin, V. N.; Sadykov, R. A.; Trunov, D. N.; Litvin, V. S.; Aksenov, S. N.; Stolyarov, A. A.

    2015-09-01

    A high-efficiency thermal-neutron detector based on ZnS(Ag)/LiF scintillator is described, which employs a new technique of signal pick-up with the aid of a light guide and avalanche photodiodes instead of optical fibers and photomultipliers. Results of tests on the RADEX pulsed neutron source are presented, in which neutron diffraction patterns of test objects have been obtained.

  4. Readout of scintillator light with avalanche photodiodes for positron emission tomography

    CERN Document Server

    Chen, R; Tavernier, Stefaan; Bruyndonckx, P; Clément, D; Loude, J F; Morel, Christian

    1999-01-01

    The noise properties and other relevant characteristics of avalanche photodiodes have been investigated with the perspective of replacing photomultiplier tubes in positron emission tomography. It is clearly demonstrated that they are a valid alternative to photomultiplier tubes in this application.

  5. SAPHIRE 8 New Features and Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith

    2008-08-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) software performs probabilistic risk assessment (PRA) calculations. SAPHIRE is used in support of NRC’s risk-informed programs such as the Accident Sequence Precursor (ASP) program, Management Directive 8.3, “NRC Incident Investigation Program,” or the Significance Determination Process (SDP). It is also used to develop and run the Standardized Plant Analysis Risk (SPAR) models. SAPHIRE Version 8 is a new version of the software with an improved interface and capabilities to support risk-informed programs. SAPHIRE Version 8 is designed to easily handle larger and more complex models. Applications of previous SAPHIRE versions indicated the need to build and solve models with a large number of sequences. Risk assessments that include endstate evaluations for core damage frequency and large, early release frequency evaluations have greatly increased the number of sequences required. In addition, the complexity of the models has increased since risk assessments evaluate both potential internal and external events, as well as different plant operational states. Special features of SAPHIRE 8 help create and run integrated models which may be composed of different model types. SAPHIRE 8 includes features and capabilities that are new or improved over the current Version 7 to address the new requirements for risk-informed programs and SPAR models. These include: • Improved User Interfaces • Model development • Methods • General Support Features

  6. SAPHIRE 8 Volume 1 - Overview and Summary

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; S. T. Wood

    2011-03-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer (PC) running the Microsoft Windows operating system. SAPHIRE Version 8 is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). INL's primary role in this project is that of software developer and tester. However, INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users, who constitute a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system’s response to initiating events and quantify associated consequential outcome frequencies. Specifically, for nuclear power plant applications, SAPHIRE 8 can identify important contributors to core damage (Level 1 PRA) and containment failure during a severe accident which leads to releases (Level 2 PRA). It can be used for a PRA where the reactor is at full power, low power, or at shutdown conditions. Furthermore, it can be used to analyze both internal and external initiating events and has special features for managing models such as flooding and fire. It can also be used in a limited manner to quantify risk in terms of release consequences to the public and environment (Level 3 PRA). In SAPHIRE 8, the act of creating a model has been separated from the analysis of that model in order to improve the quality of both the model (e.g., by avoiding inadvertent changes) and the analysis. Consequently, in SAPHIRE 8, the analysis of models is performed by using what are called Workspaces. Currently, there are Workspaces for three types of analyses: (1) the NRC’s Accident Sequence Precursor program, where the workspace is called “Events and Condition Assessment (ECA);” (2) the NRC’s Significance Determination

  7. SAPHIRE 8 Volume 7 - Data Loading

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Kvarfordt; S. T. Wood; C. L. Smith; S. R. Prescott

    2011-03-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE Version 8 is funded by the U.S. Nuclear Regulatory Commission and developed by the Idaho National Laboratory. This report is intended to assist the user to enter PRA data into the SAPHIRE program using the built-in MAR-D ASCII-text file data transfer process. Towards this end, a small sample database is constructed and utilized for demonstration. Where applicable, the discussion includes how the data processes for loading the sample database relate to the actual processes used to load a larger PRA models. The procedures described herein were developed for use with SAPHIRE Version 8. The guidance specified in this document will allow a user to have sufficient knowledge to both understand the data format used by SAPHIRE and to carry out the transfer of data between different PRA projects.

  8. SAPHIRE 8 Volume 6 - Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; R. Nims; K. J. Kvarfordt

    2011-03-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Version 8 is a software application developed for performing a complete probabilistic risk assessment using a personal computer running the Microsoft Windows™ operating system. SAPHIRE 8 is funded by the U.S. Nuclear Regulatory Commission (NRC). The role of the INL in this project is that of software developer and tester. This development takes place using formal software development procedures and is subject to quality assurance (QA) processes. The purpose of this document is to describe how the SAPHIRE software QA is performed for Version 8, what constitutes its parts, and limitations of those processes. In addition, this document describes the Independent Verification and Validation that was conducted for Version 8 as part of an overall QA process.

  9. Studies of the LHC detection systems: scintillating fibers projective electromagnetic calorimeter prototype and light reading by avalanche photodiodes; Etudes de systemes de detection pour LHC: prototype d`un calorimetre electromagnetique projectif a fibres scintillantes et lecture de la lumiere par des photodiodes a avalanches

    Energy Technology Data Exchange (ETDEWEB)

    Bouhemaid, N.

    1995-09-22

    In this thesis a study concerning the hardware detection system of ATLAS experiment in preparation for L.H.C. is presented. The study is divided in two parts. After a general introduction of the L.H.C. and the ATLAS detector, the first part concerning the electromagnetic calorimeter, and the second part concerning the readout with avalanche photodiodes, are discussed. For both subjects the basic principles are presented before various test results are described. Within the RD1 program three different electromagnetic calorimeter prototypes, which all use the lead scintillating fibres technique, have been built. The first is a non-projective, compensating calorimeter called ``500{mu}m``, the second is a pseudo projective, non-compensating, called ``1 mm``, and the third is fully projective, called ``Radial``. The last prototype is discussed in more detail. Avalanches photodiodes which are used as readout of the ``1 mm`` calorimeter, have been exposed to both, a dedicated test bench in the laboratory as well as to test beams. The results of these tests are also presented. (author). 35 refs., 96 figs., 30 tabs.

  10. New developments in the Saphire computer codes

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.D.; Wood, S.T.; Kvarfordt, K.J. [Idaho Engineering Lab., Idaho Falls, ID (United States)] [and others

    1996-03-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a suite of computer programs that were developed to create and analyze a probabilistic risk assessment (PRA) of a nuclear power plant. Many recent enhancements to this suite of codes have been made. This presentation will provide an overview of these features and capabilities. The presentation will include a discussion of the new GEM module. This module greatly reduces and simplifies the work necessary to use the SAPHIRE code in event assessment applications. An overview of the features provided in the new Windows version will also be provided. This version is a full Windows 32-bit implementation and offers many new and exciting features. [A separate computer demonstration was held to allow interested participants to get a preview of these features.] The new capabilities that have been added since version 5.0 will be covered. Some of these major new features include the ability to store an unlimited number of basic events, gates, systems, sequences, etc.; the addition of improved reporting capabilities to allow the user to generate and {open_quotes}scroll{close_quotes} through custom reports; the addition of multi-variable importance measures; and the simplification of the user interface. Although originally designed as a PRA Level 1 suite of codes, capabilities have recently been added to SAPHIRE to allow the user to apply the code in Level 2 analyses. These features will be discussed in detail during the presentation. The modifications and capabilities added to this version of SAPHIRE significantly extend the code in many important areas. Together, these extensions represent a major step forward in PC-based risk analysis tools. This presentation provides a current up-to-date status of these important PRA analysis tools.

  11. SAPHIRE 8 Volume 2 - Technical Reference

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; S. T. Wood; W. J. Galyean; J. A. Schroeder; M. B. Sattison

    2011-03-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of computer programs that were developed to create and analyze probabilistic risk assessment (PRAs). Herein information is provided on the principles used in the construction and operation of Version 8.0 of the SAPHIRE system. This report summarizes the fundamental mathematical concepts of sets and logic, fault trees, and probability. This volume then describes the algorithms used to construct a fault tree and to obtain the minimal cut sets. It gives the formulas used to obtain the probability of the top event from the minimal cut sets, and the formulas for probabilities that apply for various assumptions concerning reparability and mission time. It defines the measures of basic event importance that SAPHIRE can calculate. This volume gives an overview of uncertainty analysis using simple Monte Carlo sampling or Latin Hypercube sampling, and states the algorithms used by this program to generate random basic event probabilities from various distributions. Also covered are enhance capabilities such as seismic analysis, Workspace algorithms, cut set "recovery," end state manipulation, and use of "compound events."

  12. Saphire models and software for ASP evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Sattison, M.B. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-02-01

    The Idaho National Engineering Laboratory (INEL) over the three years has created 75 plant-specific Accident Sequence Precursor (ASP) models using the SAPHIRE suite of PRA codes. Along with the new models, the INEL has also developed a new module for SAPHIRE which is tailored specifically to the unique needs of ASP evaluations. These models and software will be the next generation of risk tools for the evaluation of accident precursors by both the U.S. Nuclear Regulatory Commission`s (NRC`s) Office of Nuclear Reactor Regulation (NRR) and the Office for Analysis and Evaluation of Operational Data (AEOD). This paper presents an overview of the models and software. Key characteristics include: (1) classification of the plant models according to plant response with a unique set of event trees for each plant class, (2) plant-specific fault trees using supercomponents, (3) generation and retention of all system and sequence cutsets, (4) full flexibility in modifying logic, regenerating cutsets, and requantifying results, and (5) user interface for streamlined evaluation of ASP events. Future plans for the ASP models is also presented.

  13. OVERVIEW OF THE SAPHIRE PROBABILISTIC RISK ANALYSIS SOFTWARE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L.; Wood, Ted; Knudsen, James; Ma, Zhegang

    2016-10-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer (PC) running the Microsoft Windows operating system. SAPHIRE Version 8 is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). INL's primary role in this project is that of software developer and tester. However, INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users, who constitute a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. In this paper, we provide an overview of the current technical capabilities found in SAPHIRE Version 8, including the user interface and enhanced solving algorithms.

  14. Advances in Yield Calibration of Scintillators

    NARCIS (Netherlands)

    De Haas, J.T.M.; Dorenbos, P.

    2008-01-01

    By means of a photomultiplier tube, a Si-photodiode, and a Si-avalanche photodiode, the absolute scintillation yield of recently developed LaBr3:Ce, LaCl3:Ce, and (Lu Y)2SiO5:Ce scintillators and traditional Lu2SiO5:Ce, Bi4Ge3O12, NaI:Tl CsI:Tl, and CsI:Na scintillators were determined. These are

  15. Can SAPHIR Instrument Onboard MEGHATROPIQUES Retrieve Hydrometeors and Rainfall Characteristics ?

    Science.gov (United States)

    Goyal, J. M.; Srinivasan, J.; Satheesh, S. K.

    2014-12-01

    MEGHATROPIQUES (MT) is an Indo-French satellite launched in 2011 with the main intention of understanding the water cycle in the tropical region and is a part of GPM constellation. MADRAS was the primary instrument on-board MT to estimate rainfall characteristics, but unfortunately it's scanning mechanism failed obscuring the primary goal of the mission.So an attempt has been made to retrieve rainfall and different hydrometeors using other instrument SAPHIR onboard MT. The most important advantage of using MT is its orbitography which is specifically designed for tropical regions and can reach up to 6 passes per day more than any other satellite currently in orbit. Although SAPHIR is an humidity sounder with six channels centred around 183 GHz channel, it still operates in the microwave region which directly interacts with rainfall, especially wing channels and thus can pick up rainfall signatures. Initial analysis using radiative transfer models also establish this fact .To get more conclusive results using observations, SAPHIR level 1 brightness temperature (BT) data was compared with different rainfall products utilizing the benefits of each product. SAPHIR BT comparison with TRMM 3B42 for one pass clearly showed that channel 5 and 6 have a considerable sensitivity towards rainfall. Following this a huge database of more than 300000 raining pixels of spatially and temporally collocated 3B42 rainfall and corresponding SAPHIR BT for an entire month was created to include all kinds of rainfall events, to attain higher temporal resolution collocated database was also created for SAPHIR BT and rainfall from infrared sensor on geostationary satellite Kalpana 1.These databases were used to understand response of various channels of SAPHIR to different rainfall regimes . TRMM 2A12 rainfall product was also used to identify capabilities of SAPHIR to retrieve cloud and ice water path which also gave significant correlation. Conclusively,we have shown that SAPHIR has

  16. Non-linear behaviour of large-area avalanche photodiodes

    CERN Document Server

    Fernandes, L M P; Monteiro, C M B; Santos, J M; Morgado, R E

    2002-01-01

    The characterisation of photodiodes used as photosensors requires a determination of the number of electron-hole pairs produced by scintillation light. One method involves comparing signals produced by X-ray absorptions occurring directly in the avalanche photodiode with the light signals. When the light is derived from light-emitting diodes in the 400-600 nm range, significant non-linear behaviour is reported. In the present work, we extend the study of the linear behaviour to large-area avalanche photodiodes, of Advanced Photonix, used as photosensors of the vacuum ultraviolet (VUV) scintillation light produced by argon (128 nm) and xenon (173 nm). We observed greater non-linearities in the avalanche photodiodes for the VUV scintillation light than reported previously for visible light, but considerably less than the non-linearities observed in other commercially available avalanche photodiodes.

  17. SAPHIRE 8 Volume 3 - Users' Guide

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; K. Vedros; K. J. Kvarfordt

    2011-03-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). The INL's primary role in this project is that of software developer. However, the INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users comprised of a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system’s response to initiating events, quantify associated damage outcome frequencies, and identify important contributors to this damage (Level 1 PRA) and to analyze containment performance during a severe accident and quantify radioactive releases (Level 2 PRA). It can be used for a PRA evaluating a variety of operating conditions, for example, for a nuclear reactor at full power, low power, or at shutdown conditions. Furthermore, SAPHIRE can be used to analyze both internal and external initiating events and has special features for transforming models built for internal event analysis to models for external event analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to both the public and the environment (Level 3 PRA). This reference guide will introduce the SAPHIRE Version 8.0 software. A brief discussion of the purpose and history of the software is included along with general information such as installation instructions, starting and stopping the program, and some pointers on how to get around inside the program. Next, database concepts and structure are discussed. Following that discussion are nine sections, one for each of the menu options on the SAPHIRE main menu, wherein the purpose and general capabilities for each option are

  18. Arctic avalanche dynamics

    Science.gov (United States)

    Prokop, Alexander; Eiken, Mari; Ganaus, Kerstin; Rubensdotter, Lena

    2017-04-01

    Since the avalanche disaster December 19th, 2015 in Longyearbyen (Svalbard) happened, where two people were killed within settlements, the dynamic of avalanches in arctic regions is of increasing interest for hazard mapping in such areas. To investigate the flow behavior of arctic avalanches we focused on avalanches that occurred in Central Svalbard. In this regions historic avalanche events can be analyzed due to their deposition behavior visible on geomorphological maps in the run-out area of the avalanches. To get an idea about possible snow mass that was involved in the avalanches we measured the snow volume balance of recent avalanches (winters 2015/16) via terrestrial laser scanning. In this way we gained reasonable data to set calibration and input parameters for dynamic avalanche modeling. Using state of the art dynamic avalanche models allowed us to back calculate how much snow was involved in the historic avalanches that we identified on the geomorphological maps and what the return period of those events are. In our presentation we first explain our methodology; we discuss arctic avalanche behavior of the avalanches measured via terrestrial laser scanning and how the dynamic avalanche models performed for those case examples. Finally we conclude how our results can improve avalanche hazard mapping for arctic regions.

  19. SAPHIRE 8 Software Independent Verification and Validation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rae J. Nims

    2009-04-01

    SAPHIRE 8 is being developed with a phased or cyclic iterative rapid application development methodology. Due to this approach, a similar approach is being taken for the IV&V activities on each vital software object. The IV&V plan is structured around NUREG/BR-0167, “Software Quality Assurance Program and Guidelines,” February 1993. The Nuclear Regulatory Research Office Instruction No.: PRM-12, “Software Quality Assurance for RES Sponsored Codes,” March 26, 2007 specifies that RES-sponsored software is to be evaluated against NUREG/BR-0167. Per the guidance in NUREG/BR-0167, SAPHIRE is classified as “Level 1.” Level 1 software corresponds to technical application software used in a safety decision.

  20. SAPHIRE 8 Software Independent Verification and Validation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rae J. Nims; Kent M. Norris

    2010-02-01

    SAPHIRE 8 is being developed with a phased or cyclic iterative rapid application development methodology. Due to this approach, a similar approach is being taken for the IV&V activities on each vital software object. The IV&V plan is structured around NUREG/BR-0167, “Software Quality Assurance Program and Guidelines,” February 1993. The Nuclear Regulatory Research Office Instruction No.: PRM-12, “Software Quality Assurance for RES Sponsored Codes,” March 26, 2007 specifies that RES-sponsored software is to be evaluated against NUREG/BR-0167. Per the guidance in NUREG/BR-0167, SAPHIRE is classified as “Level 1.” Level 1 software corresponds to technical application software used in a safety decision.

  1. Negative feedback avalanche diode

    Science.gov (United States)

    Itzler, Mark Allen (Inventor)

    2010-01-01

    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  2. Scintillation Counters

    Science.gov (United States)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  3. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Quality Assurance Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; R. Nims; K. J. Kvarfordt; C. Wharton

    2008-08-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment using a personal computer running the Microsoft Windows operating system. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC). The role of the INL in this project is that of software developer and tester. This development takes place using formal software development procedures and is subject to quality assurance (QA) processes. The purpose of this document is to describe how the SAPHIRE software QA is performed for Version 6 and 7, what constitutes its parts, and limitations of those processes.

  4. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Code Reference Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; K. J. Kvarfordt; S. T. Wood

    2006-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). The INL's primary role in this project is that of software developer. However, the INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users comprised of a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system’s response to initiating events, quantify associated damage outcome frequencies, and identify important contributors to this damage (Level 1 PRA) and to analyze containment performance during a severe accident and quantify radioactive releases (Level 2 PRA). It can be used for a PRA evaluating a variety of operating conditions, for example, for a nuclear reactor at full power, low power, or at shutdown conditions. Furthermore, SAPHIRE can be used to analyze both internal and external initiating events and has special features for ansforming models built for internal event analysis to models for external event analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to both the public and the environment (Level 3 PRA). SAPHIRE includes a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with SAPHIRE that automates SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events in a very efficient and expeditious manner. This reference guide will introduce the SAPHIRE Version 7.0 software. A brief discussion of the purpose and history of the software is included along with

  5. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Code Reference Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; K. J. Kvarfordt; S. T. Wood

    2008-08-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). The INL's primary role in this project is that of software developer. However, the INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users comprised of a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system’s response to initiating events, quantify associated damage outcome frequencies, and identify important contributors to this damage (Level 1 PRA) and to analyze containment performance during a severe accident and quantify radioactive releases (Level 2 PRA). It can be used for a PRA evaluating a variety of operating conditions, for example, for a nuclear reactor at full power, low power, or at shutdown conditions. Furthermore, SAPHIRE can be used to analyze both internal and external initiating events and has special features for transforming models built for internal event analysis to models for external event analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to both the public and the environment (Level 3 PRA). SAPHIRE includes a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with SAPHIRE that automates SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events in a very efficient and expeditious manner. This reference guide will introduce the SAPHIRE Version 7.0 software. A brief discussion of the purpose and history of the software is included along with

  6. Halide Scintillators

    NARCIS (Netherlands)

    Van Loef, E.V.D.

    2003-01-01

    Scintillators have been used for decades to make ionising radiation visible. Either by direct observation of the light flash produced by the material when it is exposed to radiation, or indirect by use of a photomultiplier tube or photodiode. Despite the enormous amount of commercially available

  7. Avalanche modeling in forested terrain

    Science.gov (United States)

    Teich, M.; Bartelt, P. A.; Bebi, P.; Grêt-Regamey, A.

    2010-12-01

    Mountain forests are a valuable defense against snow avalanches. Currently, however, little quantitative information is available to estimate the effect of forest structure on the motion of avalanches. Avalanche flow is strongly influenced by the condition and composition of vegetation in the avalanche path. This potential decelerating effect has, however, not yet been quantified. We apply the numerical avalanche dynamics program RAMMS to simulate several well documented small avalanche events in forests. The two-dimensional model RAMMS predicts avalanche run-out distances, flow velocities and impact pressures in complex three-dimensional terrain by numerically solving a system of partial differential equations governing avalanche flow. Based on detailed data on forest conditions and avalanche characteristics such as release areas, fracture heights and length collected in forested areas, where avalanches were observed, we modify the input parameters of the RAMMS model to match the observations. We compare the model output with observed run-out distances in order to quantify the decelerating effects of different forest structures. Implementing avalanche forest interactions into numerical avalanche simulations will open new fields of application for avalanche models, e.g. for managing mountain forests and by better accounting for mountain forests as an effective biological protection measure against snow avalanches in natural hazard mapping and landscape planning.

  8. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Data Loading Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; K. J. Kvarfordt; S. T. Wood

    2006-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory. This report is intended to assist the user to enter PRA data into the SAPHIRE program using the built-in MAR-D ASCII-text file data transfer process. Towards this end, a small sample database is constructed and utilized for demonstration. Where applicable, the discussion includes how the data processes for loading the sample database relate to the actual processes used to load a larger PRA models. The procedures described herein were developed for use with SAPHIRE Version 6.0 and Version 7.0. In general, the data transfer procedures for version 6 and 7 are the same, but where deviations exist, the differences are noted. The guidance specified in this document will allow a user to have sufficient knowledge to both understand the data format used by SAPHIRE and to carry out the transfer of data between different PRA projects.

  9. Solid-state flat panel imager with avalanche amorphous selenium

    Science.gov (United States)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  10. Systems Analysis Programs for Hands-on Intergrated Reliability Evaluations (SAPHIRE) Summary Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith

    2008-08-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer (PC) running the Microsoft Windows operating system. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). INL's primary role in this project is that of software developer and tester. However, INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users, who constitute a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system’s response to initiating events and quantify associated consequential outcome frequencies. Specifically, for nuclear power plant applications, SAPHIRE can identify important contributors to core damage (Level 1 PRA) and containment failure during a severe accident which lead to releases (Level 2 PRA). It can be used for a PRA where the reactor is at full power, low power, or at shutdown conditions. Furthermore, it can be used to analyze both internal and external initiating events and has special features for transforming an internal events model to a model for external events, such as flooding and fire analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to the public and environment (Level 3 PRA). SAPHIRE also includes a separate module called the Graphical Evaluation Module (GEM). GEM is a special user interface linked to SAPHIRE that automates the SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events (for example, to calculate a conditional core damage probability) very efficiently and expeditiously. This report provides an overview of the functions

  11. Inter-calibration and validation of observations from SAPHIR and ATMS instruments

    Science.gov (United States)

    Moradi, I.; Ferraro, R. R.

    2015-12-01

    We present the results of evaluating observations from microwave instruments aboard the Suomi National Polar-orbiting Partnership (NPP, ATMS instrument) and Megha-Tropiques (SAPHIR instrument) satellites. The study includes inter-comparison and inter-calibration of observations of similar channels from the two instruments, evaluation of the satellite data using high-quality radiosonde data from Atmospheric Radiation Measurement Program and GPS Radio Occultaion Observations from COSMIC mission, as well as geolocation error correction. The results of this study are valuable for generating climate data records from these instruments as well as for extending current climate data records from similar instruments such as AMSU-B and MHS to the ATMS and SAPHIR instruments. Reference: Moradi et al., Intercalibration and Validation of Observations From ATMS and SAPHIR Microwave Sounders. IEEE Transactions on Geoscience and Remote Sensing. 01/2015; DOI: 10.1109/TGRS.2015.2427165

  12. Independent Verification and Validation SAPHIRE Version 8 Final Report Project Number: N6423 U.S. Nuclear Regulatory Commission

    Energy Technology Data Exchange (ETDEWEB)

    Kent Norris

    2010-04-01

    This report provides an evaluation of the SAPHIRE version 8 software product. SAPHIRE version 8 is being developed with a phased or cyclic iterative rapid application development methodology. Due to this approach, a similar approach has been taken for the IV&V activities on each vital software object. IV&V and Software Quality Assurance (SQA) activities occur throughout the entire development life cycle and therefore, will be required through the full development of SAPHIRE version 8. Later phases of the software life cycle, the operation and maintenance phases, are not applicable in this effort since the IV&V is being done prior to releasing Version 8.

  13. Avalanche Photodiode Statistics in Triggered-avalanche Detection Mode

    Science.gov (United States)

    Tan, H. H.

    1984-01-01

    The output of a triggered avalanche mode avalanche photodiode is modeled as Poisson distributed primary avalanche events plus conditionally Poisson distributed trapped carrier induced secondary events. The moment generating function as well as the mean and variance of the diode output statistics are derived. The dispersion of the output statistics is shown to always exceed that of the Poisson distribution. Several examples are considered in detail.

  14. Laboratory singing sand avalanches.

    Science.gov (United States)

    Dagois-Bohy, Simon; Ngo, Sandrine; du Pont, Sylvain Courrech; Douady, Stéphane

    2010-02-01

    Some desert sand dunes have the peculiar ability to emit a loud sound up to 110 dB, with a well-defined frequency: this phenomenon, known since early travelers (Darwin, Marco Polo, etc.), has been called the song of dunes. But only in late 19th century scientific observations were made, showing three important characteristics of singing dunes: first, not all dunes sing, but all the singing dunes are composed of dry and well-sorted sand; second, this sound occurs spontaneously during avalanches on a slip face; third this is not the only way to produce sound with this sand. More recent field observations have shown that during avalanches, the sound frequency does not depend on the dune size or shape, but on the grain diameter only, and scales as the square root of g/d--with g the gravity and d the diameter of the grains--explaining why all the singing dunes in the same vicinity sing at the same frequency. We have been able to reproduce these singing avalanches in laboratory on a hard plate, which made possible to study them more accurately than on the field. Signals of accelerometers at the flowing surface of the avalanche are compared to signals of microphones placed above, and it evidences a very strong vibration of the flowing layer at the same frequency as on the field, responsible for the emission of sound. Moreover, other characteristics of the booming dunes are reproduced and analyzed, such as a threshold under which no sound is produced, or beats in the sound that appears when the flow is too large. Finally, the size of the coherence zones emitting sound has been measured and discussed.

  15. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, N J; Kuntz, J D; Roberts, J J; Hurst, T A; Drury, O B; Sanner, R D; Tillotson, T M; Payne, S A

    2008-08-24

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed.

  16. Low dose digital X-ray imaging with avalanche amorphous selenium

    Science.gov (United States)

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-03-01

    Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.

  17. Characteristics of avalanche accidents and a overview of avalanche equipment

    Directory of Open Access Journals (Sweden)

    Mateusz Biela

    2015-12-01

    Full Text Available Avalanches are one of the most spectacular phenomena which may occur in the mountains. Unfortunately they are often caused by humans and pose for him a big danger. In the Polish Tatras alone they represent 18% of all causes of death among 1996-2013. One fourth of the people caught by an avalanche dies, and their chances of survival depends on the depth of burial, burial time, the presence of an air pocket and the degree of injuries. The most common cause of death is asphyxiation, the next is injuries and hypothermia is the rarest cause of death. The fate of the buried people depends on their equipment such as avalanche transceiver, ABS backpack and AvaLung, and also from the equipment of the people who are seeking (avalanche probes, avalanche transceiver and shovels, which has been proven in practice and research.

  18. Integrated Avalanche Photodiode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Eric S.

    2017-04-18

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  19. Integrated avalanche photodiode arrays

    Science.gov (United States)

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  20. Scintillation response of organic and inorganic scintillators

    CERN Document Server

    Papadopoulos, L M

    1999-01-01

    A method to evaluate the scintillation response of organic and inorganic scintillators to different heavy ionizing particles is suggested. A function describing the rate of the energy consumed as fluorescence emission is derived, i.e., the differential response with respect to time. This function is then integrated for each ion and scintillator (anthracene, stilbene and CsI(Tl)) to determine scintillation response. The resulting scintillation responses are compared to the previously reported measured responses. Agreement to within 2.5% is observed when these data are normalized to each other. In addition, conclusions regarding the quenching parameter kB dependence on the type of the particle and the computed values of kB for certain ions are included. (author)

  1. Systems Analysis Programs for Hands-On Integrated Reliability Evaluations (SAPHIRE) Technical Reference

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; W. J. Galyean; S. T. Beck

    2008-08-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer (PC) running the Microsoft Windows? operating system. Herein information is provided on the principles used in the construction and operation of Version 6.0 and 7.0 of the SAPHIRE system. This report summarizes the fundamental mathematical concepts of sets and logic, fault trees, and probability. This volume then describes the algorithms used to construct a fault tree and to obtain the minimal cut sets. It gives the formulas used to obtain the probability of the top event from the minimal cut sets, and the formulas for probabilities that apply for various assumptions concerning reparability and mission time. It defines the measures of basic event importance that SAPHIRE can calculate. This volume gives an overview of uncertainty analysis using simple Monte Carlo sampling or Latin Hypercube sampling, and states the algorithms used by this program to generate random basic event probabilities from various distributions. Also covered are enhance capabilities such as seismic analysis, cut set "recovery," end state manipulation, and use of "compound events."

  2. Systems Analysis Programs for Hands-On Integrated Reliability Evaluations (SAPHIRE) Technical Reference Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; W. J. Galyean; S. T. Beck

    2006-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer (PC) running the Microsoft Windows? operating system. Herein information is provided on the principles used in the construction and operation of Version 6.0 and 7.0 of the SAPHIRE system. This report summarizes the fundamental mathematical concepts of sets and logic, fault trees, and probability. This volume then describes the algorithms used to construct a fault tree and to obtain the minimal cut sets. It gives the formulas used to obtain the probability of the top event from the minimal cut sets, and the formulas for probabilities that apply for various assumptions concerning reparability and mission time. It defines the measures of basic event importance that SAPHIRE can calculate. This volume gives an overview of uncertainty analysis using simple Monte Carlo sampling or Latin Hypercube sampling, and states the algorithms used by this program to generate random basic event probabilities from various distributions. Also covered are enhance capabilities such as seismic analysis, cut set "recovery," end state manipulation, and use of "compound events."

  3. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  4. Development of Pixelated Linear Avalanche Integration Detector Using Silicon on Insulator Technology

    Science.gov (United States)

    Koyama, Akihiro; Shimazoe, Kenji; Takahashi, Hiroyuki; Hamasaki, Ryutaro; Orita, Tadashi; Onuki, Yoshiyuki; Otani, Wataru; Takeshita, Tohru; Kurachi, Ikuo; Miyoshi, Toshinobu; Nakamura, Isamu; Arai, Yasuo

    In various X-ray imaging applications such as single photon counting X-ray CT, micrometer scale spatial resolution and high detection efficiency possibility using structured porous scintillator took great interests. In order to achieve precise energy- and timing information measurements, high sensitive separately readable photo detector needs to be coupled to porous crystal. Therefore, we fabricated test element group (TEG) of micro sized linear avalanche integration detector (Plaid) on a silicon on insulator (SOI) wafer and inspected performance of each device. Measurements results showed guard ring structure achieved avalanche gain of magnitude from 10 to 1000 with lower gain saturation effect than non-guard ring structure. We concluded guard ring structure is desirable to achieve stable gain performance toward various optical powers and efficient to use for scintillation light read out.

  5. Scintillation counter with MRS APD light readout

    CERN Document Server

    INSPIRE-00061314; Malkevich, D.; Martemyanov, A.; Ryabinin, M.; Smirnitsky, A.; Voloshin, K.; Bondarenko, G.; Golovin, V.; Grigoriev, E.

    2005-01-01

    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor structure), operated in the Geiger mode, which have 1 mm^2 sensitive areas. START is assembled from a 15 x 15 x 1 cm^3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10^{-2} Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3 kUSD/m^2.

  6. Electron avalanches in inhomogeneous media

    CERN Document Server

    Byrne, J

    2002-01-01

    We derive a general expression for the cumulant generating function describing the propagation of electron avalanches in inhomogeneous media. The results have applications in the theory of particle counting devices which rely on signal amplification by electron multiplication.

  7. Imaging findings of avalanche victims

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Alexandra B.; Grosse, Claudia A.; Anderson, Suzanne [University Hospital of Berne, Inselspital, Department of Diagnostic, Pediatric and Interventional Radiology, Berne (Switzerland); Steinbach, Lynne S. [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Zimmermann, Heinz [University Hospital of Berne, Inselspital, Department of Trauma and Emergency Medicine, Berne (Switzerland)

    2007-06-15

    Skiing and hiking outside the boundaries remains an attractive wilderness activity despite the danger of avalanches. Avalanches occur on a relatively frequent basis and may be devastating. Musculoskeletal radiologists should be acquainted with these injuries. Fourteen avalanche victims (11 men and 3 women; age range 17-59 years, mean age 37.4 years) were air transported to a high-grade trauma centre over a period of 2 years. Radiographs, CT and MR images were prospectively evaluated by two observers in consensus. Musculoskeletal findings (61%) were more frequent than extraskeletal findings (39%). Fractures were most commonly seen (36.6%), involving the spine (14.6%) more frequently than the extremities (9.8%). Blunt abdominal and thoracic trauma were the most frequent extraskeletal findings. A wide spectrum of injuries can be found in avalanche victims, ranging from extremity fractures to massive polytrauma. Asphyxia remains the main cause of death along with hypoxic brain injury and hypothermia. (orig.)

  8. Neuronal avalanches and coherence potentials

    Science.gov (United States)

    Plenz, D.

    2012-05-01

    The mammalian cortex consists of a vast network of weakly interacting excitable cells called neurons. Neurons must synchronize their activities in order to trigger activity in neighboring neurons. Moreover, interactions must be carefully regulated to remain weak (but not too weak) such that cascades of active neuronal groups avoid explosive growth yet allow for activity propagation over long-distances. Such a balance is robustly realized for neuronal avalanches, which are defined as cortical activity cascades that follow precise power laws. In experiments, scale-invariant neuronal avalanche dynamics have been observed during spontaneous cortical activity in isolated preparations in vitro as well as in the ongoing cortical activity of awake animals and in humans. Theory, models, and experiments suggest that neuronal avalanches are the signature of brain function near criticality at which the cortex optimally responds to inputs and maximizes its information capacity. Importantly, avalanche dynamics allow for the emergence of a subset of avalanches, the coherence potentials. They emerge when the synchronization of a local neuronal group exceeds a local threshold, at which the system spawns replicas of the local group activity at distant network sites. The functional importance of coherence potentials will be discussed in the context of propagating structures, such as gliders in balanced cellular automata. Gliders constitute local population dynamics that replicate in space after a finite number of generations and are thought to provide cellular automata with universal computation. Avalanches and coherence potentials are proposed to constitute a modern framework of cortical synchronization dynamics that underlies brain function.

  9. Ultraviolet avalanche photodiodes

    Science.gov (United States)

    McClintock, Ryan; Razeghi, Manijeh

    2015-08-01

    The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields - typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts. In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE.

  10. Avalanche effects near nanojunctions

    Science.gov (United States)

    Nandigana, Vishal V. R.; Aluru, N. R.

    2016-07-01

    In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1 /f "-type dynamics for the voltage chaos and "1 /f2 "-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps.

  11. Independent Verification and Validation Of SAPHIRE 8 Software Requirements Project Number: N6423 U.S. Nuclear Regulatory Commission

    Energy Technology Data Exchange (ETDEWEB)

    Kent Norris

    2009-09-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE requirements definition is to assess the activities that results in the specification, documentation, and review of the requirements that the software product must satisfy, including functionality, performance, design constraints, attributes and external interfaces. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production. IV&V reviewed the requirements specified in the NRC Form 189s to verify these requirements were included in SAPHIRE’s Software Verification and Validation Plan (SVVP).

  12. Nonproportionality of inorganic scintillators

    NARCIS (Netherlands)

    Khodyuk, I.V.

    2013-01-01

    A scintillator is a transparent material that emits a flash of light when it absorbs a ?-ray photon or an energetic particle. Scintillation crystals are widely used as spectroscopic detectors of ionizing radiation in nuclear science, space exploration, medical imaging, homeland security, etc. This

  13. Actinometric measurements of NO2 photolysis frequencies in the atmosphere simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    B. Bohn

    2005-01-01

    Full Text Available The simulation chamber SAPHIR at Forschungszentrum Jülich has UV permeable teflon walls facilitating atmospheric photochemistry studies under the influence of natural sunlight. Because the internal radiation field is strongly affected by construction elements, we use external, radiometric measurements of spectral actinic flux and a model to calculate mean photolysis frequencies for the chamber volume Bohn04B. In this work we determine NO2 photolysis frequencies j(NO2 within SAPHIR using chemical actinometry by injecting NO2 and observing the chemical composition during illumination under various external conditions. In addition to a photo-stationary approach, a time-dependent method was developed to analyse the data. These measurements had two purposes. Firstly, to check the model predictions with respect to diurnal and seasonal variations in the presence of direct sunlight and secondly to obtain an absolute calibration factor for the combined radiometry-model approach. We obtain a linear correlation between calculated and actinometric j(NO2. A calibration factor of 1.34±0.10 is determined, independent of conditions in good approximation. This factor is in line with expectations and can be rationalised by internal reflections within the chamber. Taking into account the uncertainty of the actinometric j(NO2, an accuracy of 13% is estimated for the determination of j(NO2 in SAPHIR. In separate dark experiments a rate constant of (1.93±0.12x10-14 cm3 s-1 was determined for the NO+O3 reaction at 298K using analytical and numerical methods of data analysis.

  14. Avalanche risk assessment in Russia

    Science.gov (United States)

    Komarov, Anton; Seliverstov, Yury; Sokratov, Sergey; Glazovskaya, Tatiana; Turchaniniva, Alla

    2017-04-01

    The avalanche prone area covers about 3 million square kilometers or 18% of total area of Russia and pose a significant problem in most mountain regions of the country. The constant growth of economic activity, especially in the North Caucasus region and therefore the increased avalanche hazard lead to the demand of the large-scale avalanche risk assessment methods development. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments during all stages of spatial planning of the territory. The requirement of natural hazard risk assessments is determined by the Federal Law of Russian Federation. However, Russian Guidelines (SP 11-103-97; SP 47.13330.2012) are not clearly presented concerning avalanche risk assessment calculations. A great size of Russia territory, vast diversity of natural conditions and large variations in type and level of economic development of different regions cause significant variations in avalanche risk values. At the first stage of research the small scale avalanche risk assessment was performed in order to identify the most common patterns of risk situations and to calculate full social risk and individual risk. The full social avalanche risk for the territory of country was estimated at 91 victims. The area of territory with individual risk values lesser then 1×10(-6) covers more than 92 % of mountain areas of the country. Within these territories the safety of population can be achieved mainly by organizational activities. Approximately 7% of mountain areas have 1×10(-6) - 1×10(-4) individual risk values and require specific mitigation measures to protect people and infrastructure. Territories with individual risk values 1×10(-4) and above covers about 0,1 % of the territory and include the most severe and hazardous mountain areas. The whole specter of mitigation measures is required in order to minimize risk. The future development of such areas is not recommended

  15. Secondary avalanches in gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Özkan, E-mail: osahin@uludag.edu.tr [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Tapan, İlhan [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Veenhof, Rob [RD51 Collaboration, CERN, Genève (Switzerland)

    2013-08-01

    Avalanche development in gas-based detectors relies not only on direct ionisation but also on excitation of noble gas atoms. Some quencher molecules can be ionised when they collide with excited atoms, a process on which we reported earlier [1]. Alternatively, excited atoms can decay by photon emission. If these photons are insufficiently absorbed by the quencher, yet capable of ionising, then they may escape from the avalanche region and start secondary avalanches. This process, called photon feedback, leads to an over-exponential increase of the gas gain which limits the working range. In this paper, we derive photon feedback parameters from published gain measurements for several gas mixtures and fit these parameters in a model which describes their dependence on the quencher concentration and the pressure.

  16. Polarized scintillator targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2000-05-01

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as "live" polarized targets in nuclear physics experiments.

  17. Polarized scintillator targets

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den E-mail: vandenbrandt@psi.ch; Bunyatova, E.I.; Hautle, P.; Konter, J.A.; Mango, S

    2000-05-21

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as 'live' polarized targets in nuclear physics experiments.

  18. Lumped transmission line avalanche pulser

    Science.gov (United States)

    Booth, Rex

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  19. Avalanche dynamics on a barchan dune

    Science.gov (United States)

    Nield, Joanna; Baddock, Matthew; Wiggs, Giles

    2017-04-01

    Avalanching (or grainflow) on the lee side of barchan dunes, is the main mechanism by which these aeolian bedforms migrate. However, we know very little about how the size, shape and location of these sediment deposits change under variable wind and grainfall conditions. Avalanches are initiated when sediment deposited close to the dune brink as a 'bulge', exceeds an angle of repose and is transported down the lee slope. The placement of the bulge depends on the distribution of grainfall on the lee slope, which in turn, is related to wind speed. Here we use terrestrial laser scanning (TLS) to measure avalanche dynamics on a 5 m high barchan dune under variable wind speeds, on the Skeleton Coast, Namibia. We find that as the wind speed and grainfall zone increase, avalanches are initiated further downslope. Under wind speeds above 6 m/s, we also observe secondary avalanches which are initiated partway down the lee slope. This increase in sand transport conditions produces wider, longer and thicker avalanche lobe deposits. It also erodes more sediment within the erosion scarp that propagates upslope from the point of avalanche initiation. Along with the increased avalanche size, stronger winds produce steeper slopes, greater avalanche initiation angles and an increase in avalanche frequency. This study provides a valuable dataset of avalanche morphodynamics which offers insight into the influence of wind speed and grainfall on barchan dune mobility.

  20. Experimental Avalanches in a Rotating Drum

    Science.gov (United States)

    Hubard, Aline; O'Hern, Corey; Shattuck, Mark

    We address the question of universality in granular avalanches and the system size effects on it. We set up an experiment made from a quasi-two-dimensional rotating drum half-filled with a monolayer of stainless-steel spheres. We measure the size of the avalanches created by the increased gravitational stress on the pile as we quasi-statically rotate the drum. We find two kinds of avalanches determined by the drum size. The size and duration distributions of the avalanches that do not span the whole system follow a power law and the avalanche shapes are self-similar and nearly parabolic. The distributions of the avalanches that span the whole system are limited by the maximal amount of potential energy stored in the system at the moment of the avalanche. NSF CMMI-1462439, CMMI-1463455.

  1. Lead tungstate scintillation material

    CERN Document Server

    Annenkov, A N; Lecoq, P

    2002-01-01

    In this paper we summarize the results of a research programme on lead-tungstate (PWO) crystals performed by the CMS Collaboration at CERN, as well as by other groups who promoted the progress of the PWO scintillation crystal technology. Crystal properties, mass production technology, scintillation mechanism, origin of colouring, defects in crystal and radiation induced phenomena, light yield improvement and results of beam tests are described. (96 refs).

  2. Computational snow avalanche simulation in forested terrain

    Science.gov (United States)

    Teich, M.; Fischer, J.-T.; Feistl, T.; Bebi, P.; Christen, M.; Grêt-Regamey, A.

    2014-08-01

    Two-dimensional avalanche simulation software operating in three-dimensional terrain is widely used for hazard zoning and engineering to predict runout distances and impact pressures of snow avalanche events. Mountain forests are an effective biological protection measure against avalanches; however, the protective capacity of forests to decelerate or even to stop avalanches that start within forested areas or directly above the treeline is seldom considered in this context. In particular, runout distances of small- to medium-scale avalanches are strongly influenced by the structural conditions of forests in the avalanche path. We present an evaluation and operationalization of a novel detrainment function implemented in the avalanche simulation software RAMMS for avalanche simulation in forested terrain. The new approach accounts for the effect of forests in the avalanche path by detraining mass, which leads to a deceleration and runout shortening of avalanches. The relationship is parameterized by the detrainment coefficient K [kg m-1 s-2] accounting for differing forest characteristics. We varied K when simulating 40 well-documented small- to medium-scale avalanches, which were released in and ran through forests of the Swiss Alps. Analyzing and comparing observed and simulated runout distances statistically revealed values for K suitable to simulate the combined influence of four forest characteristics on avalanche runout: forest type, crown closure, vertical structure and surface cover, for example, values for K were higher for dense spruce and mixed spruce-beech forests compared to open larch forests at the upper treeline. Considering forest structural conditions within avalanche simulations will improve current applications for avalanche simulation tools in mountain forest and natural hazard management.

  3. Investigation of aromatic compound degradation under atmospheric conditions in the outdoor simulation chamber SAPHIR

    Science.gov (United States)

    Nehr, Sascha; Bohn, Birger; Rohrer, Franz; Tillmann, Ralf; Wegener, Robert; Dorn, Hans-Peter; Häseler, Rolf; Brauers, Theo; Wahner, Andreas

    2010-05-01

    Ozone is produced in the lower troposphere by the OH-initiated photooxidation of volatile organic compounds in the presence of NOx. Aromatic hydrocarbons from anthropogenic sources are a major contributor to the OH-reactivity and thus to ozone formation in urban areas [1]. Moreover, their degradation leads to formation of secondary organic aerosol. Aromatic compounds are therefore important trace constituents with regard to air quality. We will present the results of photooxidation experiments which were conducted in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich. The experiments were designed to investigate the degradation mechanisms of benzene and p-xylene, which are among the most abundant aromatics in urban air samples. Benzene and p-xylene were selected because they have high structural symmetry which limits the number of potential isomers of secondary products. The experiments were performed under low-NOx-conditions (≤ 2 ppb). SAPHIR was equipped with instruments for the measurement of the parent aromatics and their major oxidation products, OH radicals, important radical precursors (O3, HONO, HCHO), photolysis frequencies and particulate matter. As shown in previous studies, simulation chamber data from the photooxidation of aromatics cannot be explained satisfactorily with current photochemistry mechanisms. For example the MCMv3.1 tends to overestimate the ozone-concentration and to underestimate the OH-concentration [2]. In this study, we will contrast model calculations with experimental results to check if similar discrepancies can be observed in SAPHIR and how they can be resolved. Based on the results of this preparatory study, further simulation chamber experiments with special emphasis on the radical budget are scheduled in 2010. References: [1] J. G. Calvert, R. Atkinson, K.H. Becker, R.M. Kamens, J.H. Seinfeld, T.J. Wallington, G. Yarwood: The mechanisms of atmospheric oxidation of aromatic hydrocarbons, Oxford University

  4. Avalanche hazard and control in Kazakhstan

    Directory of Open Access Journals (Sweden)

    V. P. Blagoveshchensky

    2014-01-01

    Full Text Available In Kazakhstan, area of 124 thousand km2 is prone to the avalanche hazard. Avalanches are released down in mountain regions situated along the eastern boundary of Kazakhstan. Systematic studies of avalanches here were started in 1958 by explorer I.S. Sosedov; later on, I.V. Seversky continued these investigations in Institute of Geography of the Kazakh Soviet Republic. Actually, he founded the Kazakh school of the avalanche studies. In 1970–1980s, five snow-avalanche stations operated in Kazakhstan: two in Il’ Alatau, two in Zhetysu Alatau, and one in the Altai. At the present time, only two stations and two snow-avalanche posts operate, and all of them are located in Il’ Alatau.Since 1951 to 2013, 75 avalanches took place in Kazakhstan, releases of them caused significant damages. For this period 172 people happened to be under avalanches, among them 86 perished. Large avalanche catastrophes causing human victims and destructions took place in Altai in 1977 and in Karatau in 1990. In spring of 1966, only in Il’ Alatau avalanches destroyed more 600 ha of mature fir (coniferous forest, and the total area of forest destroyed here by avalanches amounts to 2677 ha or 7% of the total forest area.For 48 years of the avalanche observations, there were 15 winters with increased avalanche activity in the river Almatinka basin when total volume of released snow exceeded annual mean value of 147 thousand m3. During this period, number of days with winter avalanches changed from three (in season of 1973/1974 to 28 (1986/1987, the average for a year is 16 days for a season. Winter with the total volume of snow 1300 thousand m3 occur once in 150 years. Individual avalanches with maximal volume of 350 thousand m3 happen once in 80 years.Preventive avalanche releases aimed at protection of roads and settlements are used in Kazakhstan since 1974. These precautions are taken in Il’ Alatau, Altai, and on Kalbinsky Range. Avalanches are released with the

  5. Advances in gas avalanche photomultipliers

    CERN Document Server

    Breskin, Amos; Buzulutskov, A F; Chechik, R; Garty, E; Shefer, G; Singh, B K

    2000-01-01

    Gas avalanche detectors, combining solid photocathodes with fast electron multipliers, provide an attractive solution for photon localization over very large sensitive areas and under high illumination flux. They offer single-photon sensitivity and the possibility of operation under very intense magnetic fields. We discuss the principal factors governing the operation of gas avalanche photomultipliers. We summarize the recent progress made in alkali-halide and CVD-diamond UV-photocathodes, capable of operation under gas multiplication, and novel thin-film protected alkali-antimonide photocathodes, providing, for the first time, the possibility of operating gas photomultipliers in the visible range. Electron multipliers, adequate for these photon detectors, are proposed and some applications are briefly discussed.

  6. Scintillator Measurements for SNO+

    Science.gov (United States)

    Kaptanoglu, Tanner; SNO+ Collaboration

    2016-03-01

    SNO+ is a neutrino detector located 2km underground in the SNOLAB facility with the primary goal of searching for neutrinoless double beta decay. The detector will be filled with a liquid scintillator target primarily composed of linear alkyl benzene (LAB). As charged particles travel through the detector the LAB produces scintillation light which is detected by almost ten thousand PMTs. The LAB is loaded with Te130, an isotope known to undergo double beta decay. Additionally, the LAB is mixed with an additional fluor and wavelength shifter to improve the light output and shift the light to a wavelength regime in which the PMTs are maximally efficient. The precise scintillator optics drastically affect the ultimate sensitivity of SNO+. I will present work being done to measure the optical properties of the SNO+ scintillator cocktail. The measured properties are used as input to a scintillation model that allows us to extrapolate to the SNO+ scale and ultimately predict the sensitivity of the experiment. Additionally, I will present measurements done to characterize the R5912 PMT, a candidate PMT for the second phase of SNO+ that provides better light collection, improved charge resolution, and a narrower spread in timing.

  7. Investigation of MVK oxidation by OH in the atmosphere simulation chamber SAPHIR

    Science.gov (United States)

    Fuchs, Hendrik; Andres, Stefanie; Bohn, Birger; Häseler, Rolf; Hofzumahaus, Andreas; Holland, Frank; Li, Xin; Kaminski, Martin; Novelli, Anna; Rohrer, Franz; Tillmann, Ralf; Wegener, Robert; Wahner, Andreas

    2017-04-01

    Recent field campaigns showed concentrations of hydroxyl radical (OH) up to a factor of ten larger than predicted by current chemical models for high OH reactivity and low concentrations of nitric oxide (NO). These discrepancies were observed in forests, where isoprene oxidation turnover rates were large. Methyl-vinyl-ketone (MVK) is one of the major first generation products of isoprene oxidation. Here, we present the investigation of the MVK oxidation mechanism at different nitric oxide concentrations in the atmosphere simulation chamber SAPHIR in Juelich, Germany. Measurements of trace gases included a full set of accurate and precise radical measurements. Results of the experiments are compared to model predictions using the Master Chemical Mechanism and recently suggested new reaction pathways.

  8. GIS-aided avalanche warning in Norway

    Science.gov (United States)

    Jaedicke, Christian; Syre, Egil; Sverdrup-Thygeson, Kjetil

    2014-05-01

    Avalanche warning for large areas requires the processing of an extensive amount of data. Information relating to the three basic requirements for avalanche warning - knowledge of terrain, the snow conditions, and the weather - needs to be available for the forecaster. The information is highly variable in time. The form and visualization of the data is often decisive for the use by the avalanche forecasters and therefore also for the quality of the produced forecasts. Avalanche warnings can be issued at different scales from national to regional and down to object specific. Often the same warning service is working at different scales and for different clients requiring a flexible and scalable approach. The workflow for producing avalanche forecasts must be extremely efficient - all the way from acquiring observation data, evaluating the situation, down to publishing the new forecast. In this study it has been an aim to include the entire workflow in a single web application. A Geographic Information Systems (GIS) solution was chosen to include all data needed by the forecaster for the avalanche danger evaluation. This interactive system of maps features background information for the entire country, such as topographic maps, slope steepness, aspect, hill shades and satellite images. In each avalanche warning area, all active avalanche paths are plotted including information on wind exposure. Each avalanche path is linked to a webpage with more details, such as fall height, release area elevation and pictures. The avalanche path webpage also includes information on the object at risk e.g. buildings, roads, or other objects. Thus, the forecaster can easily get an overview on the overall situation and focus on single avalanche paths to generate detailed avalanche warnings for the client.

  9. The Photon-Assisted Cascaded Electron Multiplier: a concept for potential avalanche-ion blocking

    Science.gov (United States)

    Veloso, J. F. C. A.; Amaro, F. D.; dos Santos, J. M. F.; Breskin, A.; Lyashenko, A.; Chechik, R.

    2006-08-01

    We present a Photon-Assisted Cascaded Electron Multipliers (PACEM) which has a potential for ion back-flow blocking in gaseous radiation detectors: the avalanche from a first multiplication stage propagates to the successive one via its photons, which in turn induce photoelectron emission from a photocathode deposited on the second multiplier stage; the multiplication process may further continue via electron-avalanche propagation. The photonmediated stage allows, by a proper choice of geometry and fields, complete blocking of the ion back-flow into the first element; thus, only ions from the latter will flow back to the drift region. The PACEM concept was validated in a double-MHSP (Micro-Hole & Strip Plate) cascaded multiplier operated in xenon, where the intermediate scintillation stage provided optical gain of ~60. The double-MHSP detector had a total gain above 104 and energy resolution of 18% FWHM for 5.9 keV x-rays.

  10. The Photon-Assisted Cascaded Electron Multiplier: a concept for potential avalanche-ion blocking

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, J F C A [Physics Dept., University of Aveiro, 3810-193 Aveiro (Portugal); Amaro, F D [Physics Dept., University of Coimbra, 3004-516 Coimbra (Portugal); Santos, J M F dos [Physics Dept., University of Coimbra, 3004-516 Coimbra (Portugal); Breskin, A [Dept. of Particle Physics, Weizmann Institute of Science, 76100 Rehovot (Israel); Lyashenko, A [Dept. of Particle Physics, Weizmann Institute of Science, 76100 Rehovot (Israel); Chechik, R [Dept. of Particle Physics, The Weizmann Institute of Science, 76100 Rehovot (Israel)

    2006-08-15

    We present a Photon-Assisted Cascaded Electron Multipliers (PACEM) which has a potential for ion back-flow blocking in gaseous radiation detectors: the avalanche from a first multiplication stage propagates to the successive one via its photons, which in turn induce photoelectron emission from a photocathode deposited on the second multiplier stage; the multiplication process may further continue via electron-avalanche propagation. The photonmediated stage allows, by a proper choice of geometry and fields, complete blocking of the ion back-flow into the first element; thus, only ions from the latter will flow back to the drift region. The PACEM concept was validated in a double-MHSP (Micro-Hole and Strip Plate) cascaded multiplier operated in xenon, where the intermediate scintillation stage provided optical gain of {approx}60. The double-MHSP detector had a total gain above 10{sup 4} and energy resolution of 18% FWHM for 5.9 keV x-rays.

  11. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  12. Polarized Scintillating Targets at Psi

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2001-02-01

    Scintillating polarized targets are now routinely available: blocks of 18×18×5 mm scintillating organic polymer, doped with TEMPO, polarized dynamically in a field of 2.5 T in a vertical 3He-4He dilution refrigerator. A 19 mm diameter plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat.

  13. Scintillation properties of acrylate based plastic scintillator by photoploymerization method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan [Dept. of Radiological Science, Cheongju University, Cheongju (Korea, Republic of); Lee, Joo Il [Dept. of of Radiology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    In this study, we prepared and characterized a acrylate based UV-curable plastic scintillator. It was used co-polymers TMPTA, DHPA and Ultima GoldTM LLT organic scintillator. The emission spectrum of the plastic scintillator was located in the range of 380⁓520 nm, peaking at 423 nm. And the scintillator is more than 50% transparent in the range of 400⁓ 800 nm. The emission spectrum is well match to the quantum efficiency of photo-multiplier tube and the fast decay time of the scintillation is 12 ns, approximately. This scintillation material provides the possibility of combining 3D printing technology, and then the applications of the plastic scintillator may be expected in human dosimetry etc.

  14. Scintillator requirements for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  15. Caractérisation du seuil de dommage dans les cristaux de saphir dopé au titane avec des impulsions de durée nanoseconde, picoseconde et femtoseconde

    Science.gov (United States)

    Canova, F.; Chambaret, J.-P.; Mourou, G.; Sentis, M.; Uteza, O.; Delaporte, P.

    2006-12-01

    Le verrou principal pour le développement des systèmes femtoseconde robustes et rentables est l'incertitude du seuil de dommages du cristal de Ti: Saphir. Nous avons d'abord caractérisé le seuil diélectrique de dommages du Ti : Saphir.

  16. Terrain Classification of Norwegian Slab Avalanche Accidents

    Science.gov (United States)

    Hallandvik, Linda; Aadland, Eivind; Vikene, Odd Lennart

    2016-01-01

    It is difficult to rely on snow conditions, weather, and human factors when making judgments about avalanche risk because these variables are dynamic and complex; terrain, however, is more easily observed and interpreted. Therefore, this study aimed to investigate (1) the type of terrain in which historical fatal snow avalanche accidents in Norway…

  17. Limits on the spatial resolution of monolithic scintillators read out by APD arrays.

    Science.gov (United States)

    van der Laan, D J Jan; Maas, Marnix C; Bruyndonckx, Peter; Schaart, Dennis R

    2012-10-21

    Cramér-Rao theory can be used to derive the lower bound on the spatial resolution achievable with position-sensitive scintillation detectors as a function of the detector geometry and the pertinent physical properties of the scintillator, the photosensor and the readout electronics. Knowledge of the Cramér-Rao lower bound (CRLB) can for example be used to optimize the detector design and to test the performance of the method used to derive position information from the detector signals. Here, this approach is demonstrated for monolithic scintillator detectors for positron emission tomography. Two detector geometries are investigated: a 20 × 10 × 10 mm(3) and a 20 × 10 × 20 mm(3) monolithic LYSO:Ce(3+) crystal read out by one or two Hamamatsu S8550SPL avalanche photodiode (APD) arrays, respectively. The results indicate that in these detectors the CRLB is primarily determined by the APD excess noise factor and the number of scintillation photons detected. Furthermore, it is shown that the use of a k-nearest neighbor (k-NN) algorithm for position estimation allows the experimentally obtained spatial resolution to closely approach the CRLB. The approach outlined in this work can in principle be applied to any scintillation detector in which position information is encoded in the distribution of the scintillation light over multiple photosensor elements.

  18. Frontal Dynamics of Powder Snow Avalanches

    Science.gov (United States)

    Louge, M. Y.; Carroll, C. S.; Turnbull, B.

    2012-04-01

    We model the dynamics of the head of dilute powder snow avalanches sustained by a massive frontal blow-out, arising as a weakly cohesive snow cover is fluidized by the very pore pressure gradients that the avalanche induces within the snow pack. Such material eruption just behind the front acts as a source of denser fluid thrust into a uniform ambient air flow at high Reynolds number. In such "eruption current", fluidization depth is inversely proportional to a bulk Richardson number representing avalanche height. By excluding situations in which the snow cover is not fluidized up to its free surface, we derive a criterion combining snow pack friction and density indicating which avalanches can produce a sustainable powder cloud. A mass balance involving snow cover and powder cloud sets avalanche height and mean density. By determining which solution of the mass balance is stable, we find that avalanches reach constant growth and acceleration rates for fixed slope and avalanche width. Under these conditions, we calculate the fraction of the fluidized cover that is actually scoured and blown-out into the cloud, and deduce from a momentum balance on the head that the avalanche accelerates at a rate only 14% of the gravitational component along the flow. We also calculate how far a powder cloud travels until its mean density becomes constant. Finally, we show that the dynamics of powder snow avalanches are crucially affected by the rate of change of their width, for example by reaching an apparent steady speed as their channel widens. If such widening is rapid, or if slope inclination vanishes, we calculate where and how powder clouds collapse. Predictions agree well with observations of powder snow avalanches carried out at the Vallee de la Sionne (Switzerland).

  19. Investigation of the β-pinene photooxidation by OH in the atmosphere simulation chamber SAPHIR

    Science.gov (United States)

    Kaminski, Martin; Fuchs, Hendrik; Acir, Ismail-Hakki; Bohn, Birger; Brauers, Theo; Dorn, Hans-Peter; Häseler, Rolf; Hofzumahaus, Andreas; Li, Xin; Lutz, Anna; Nehr, Sascha; Rohrer, Franz; Tillmann, Ralf; Vereecken, Luc; Wegener, Robert; Wahner, Andreas

    2017-06-01

    Besides isoprene, monoterpenes are the non-methane volatile organic compounds (VOCs) with the highest global emission rates. Due to their high reactivity towards OH, monoterpenes can dominate the radical chemistry of the atmosphere in forested areas. In the present study the photochemical degradation mechanism of β-pinene was investigated in the Jülich atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber). One focus of this study is on the OH budget in the degradation process. Therefore, the SAPHIR chamber was equipped with instrumentation to measure radicals (OH, HO2, RO2), the total OH reactivity, important OH precursors (O3, HONO, HCHO), the parent VOC β-pinene, its main oxidation products, acetone and nopinone and photolysis frequencies. All experiments were carried out under low-NO conditions ( ≤ 300 ppt) and at atmospheric β-pinene concentrations ( ≤ 5 ppb) with and without addition of ozone. For the investigation of the OH budget, the OH production and destruction rates were calculated from measured quantities. Within the limits of accuracy of the instruments, the OH budget was balanced in all β-pinene oxidation experiments. However, even though the OH budget was closed, simulation results from the Master Chemical Mechanism (MCM) 3.2 showed that the OH production and destruction rates were underestimated by the model. The measured OH and HO2 concentrations were underestimated by up to a factor of 2, whereas the total OH reactivity was slightly overestimated because the model predicted a nopinone mixing ratio which was 3 times higher than measured. A new, theory-derived, first-generation product distribution by Vereecken and Peeters (2012) was able to reproduce the measured nopinone time series and the total OH reactivity. Nevertheless, the measured OH and HO2 concentrations remained underestimated by the numerical simulations. These observations together with the fact that the measured OH budget

  20. Technical Note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    A. Wisthaler

    2008-04-01

    Full Text Available The atmosphere simulation chamber SAPHIR at the Research Centre Jülich was used to test the suitability of state-of-the-art analytical instruments for the measurement of gas-phase formaldehyde (HCHO in air. Five analyzers based on four different sensing principles were deployed: a differential optical absorption spectrometer (DOAS, cartridges for 2,4-dinitro-phenyl-hydrazine (DNPH derivatization followed by off-line high pressure liquid chromatography (HPLC analysis, two different types of commercially available wet chemical sensors based on Hantzsch fluorimetry, and a proton-transfer-reaction mass spectrometer (PTR-MS. A new optimized mode of operation was used for the PTR-MS instrument which significantly enhanced its performance for online HCHO detection at low absolute humidities.

    The instruments were challenged with typical ambient levels of HCHO ranging from zero to several ppb. Synthetic air of high purity and particulate-filtered ambient air were used as sample matrices in the atmosphere simulation chamber onto which HCHO was spiked under varying levels of humidity and ozone. Measurements were compared to mixing ratios calculated from the chamber volume and the known amount of HCHO injected into the chamber; measurements were also compared between the different instruments. The formal and blind intercomparison exercise was conducted under the control of an independent referee. A number of analytical problems associated with the experimental set-up and with individual instruments were identified, the overall agreement between the methods was fair.

  1. Slip avalanche in nanoscratching of metallic glasses

    Science.gov (United States)

    Han, D. X.; Wang, G.; Ren, J. L.; Song, S. X.; Li, J.; Yi, J.; Jia, Y. D.; Xu, H.; Chan, K. C.; Liaw, P. K.

    2017-09-01

    Slip avalanches, similar to discrete earthquake events, of Zr-, Co-, and Ce-based metallic glasses during nanoscratching were investigated. Differing from the conventional continuum approach, mean-field theory, which is an inherently-discrete model, was applied to analytically compute intermittent slip avalanches. Mean-field theory was first connected with the potential energy barrier and concentration of free volume in order to study the stick-slip behavior. The results suggest that the motion behavior of free volume affects the critical slip avalanche size.

  2. Continuum description of avalanches in granular media.

    Energy Technology Data Exchange (ETDEWEB)

    Aranson, I. S.; Tsimring, L. S.

    2000-12-05

    A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

  3. Independent Verification and Validation Of SAPHIRE 8 Software Design and Interface Design Project Number: N6423 U.S. Nuclear Regulatory Commission

    Energy Technology Data Exchange (ETDEWEB)

    Kent Norris

    2009-10-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE software design and interface design is to assess the activities that results in the development, documentation, and review of a software design that meets the requirements defined in the software requirements documentation. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production. IV&V reviewed the requirements specified in the NRC Form 189s to verify these requirements were included in SAPHIRE’s Software Verification and Validation Plan (SVVP) design specification.

  4. Intercomparison of OH Radical Measurements by Long-Path Absorption and Laser Induced Fluorescence in the Atmosphere Simulation Chamber SAPHIR

    Science.gov (United States)

    Dorn, H.-P.; Brauers, T.; Greif, J.; Häseler, R.; Hofzumahaus, A.; Holland, F.; Rupp, L.

    2003-04-01

    A striking advantage of the SAPHIR chamber is the availability of two spectroscopic detection instruments for OH radicals: Laser-Induced Fluorescence Spectroscopy (LIF) and Long-Path Differential Optical Laser Absorption Spectroscopy (DOAS). Both instruments have already been compared in 1994 during the field measurement campaign POPCORN. They agreed well with a correlation coefficient of r=0.90 and a weighted linear fit with a slope of 1.09 +- 0.12. However, OH measurements in the simulation chamber differ significantly from measurements in ambient air. While DOAS measures OH as an integral value along the central longitudinal axis of SAPHIR, LIF samples the air locally and close (2 cm) to the floor of the chamber. Thus, the LIF measurements might be possibly affected by local concentration gradients caused by insufficient mixing of the chamber air or by deposition to the wall. On the other hand, if turbulent mixing of the chamber air is weak and high concentrations of ozone are used in experiments, the DOAS instrument might be subject to artificial formation of OH radicals in the air volume which is illuminated by the detection laser. This interference results from laser induced photolysis of ozone and the subsequent reaction of water vapor with the excited oxygen atoms formed. Thus it is of decisive importance to compare OH measurements from both instruments in order to investigate potential disturbing effects due to the specific sampling properties of both instruments within SAPHIR. We report on OH measurements accomplished simultaneously with both instruments using different trace gas compositions and experimental conditions.

  5. Statistical Distributions of Electron Avalanches and Streamers

    Directory of Open Access Journals (Sweden)

    T. Ficker

    2010-01-01

    Full Text Available A new theoretical concept of fractal multiplication of electron avalanches has resulted in forming a generalized distribution function whose multiparameter character has been subjected to detailed discussion. 

  6. Electromagnetic radiation field of an electron avalanche

    Science.gov (United States)

    Cooray, Vernon; Cooray, Gerald

    2012-11-01

    Electron avalanches are the main constituent of electrical discharges in the atmosphere. However, the electromagnetic radiation field generated by a single electron avalanche growing in different field configurations has not yet been evaluated in the literature. In this paper, the electromagnetic radiation fields created by electron avalanches were evaluated for electric fields in pointed, co-axial and spherical geometries. The results show that the radiation field has a duration of approximately 1-2 ns, with a rise time in the range of 0.25 ns. The wave-shape takes the form of an initial peak followed by an overshoot in the opposite direction. The electromagnetic spectrum generated by the avalanches has a peak around 109 Hz.

  7. Catastrophic avalanches and methods of their control

    Directory of Open Access Journals (Sweden)

    N. A. Volodicheva

    2014-01-01

    Full Text Available Definition of such phenomenon as “catastrophic avalanche” is presented in this arti-cle. Several situations with releases of catastrophic avalanches in mountains of Caucasus, Alps, and Central Asia are investigated. Materials of snow-avalanche ob-servations performed since 1960s at the Elbrus station of the Lomonosov Moscow State University (Central Caucasus were used for this work. Complex-valued measures of engineering protection demonstrating different efficiencies are consid-ered.

  8. Statistics of Electron Avalanches and Streamers

    Directory of Open Access Journals (Sweden)

    T. Ficker

    2007-01-01

    Full Text Available We have studied the severe systematic deviations of populations of electron avalanches from the Furry distribution, which has been held to be the statistical law corresponding to them, and a possible explanation has been sought. A  new theoretical concept based on fractal avalanche multiplication has been proposed and is shown to be a convenient candidate for explaining these deviations from Furry statistics. 

  9. Parameters of a runaway electron avalanche

    Science.gov (United States)

    Oreshkin, E. V.; Barengolts, S. A.; Oreshkin, V. I.; Mesyats, G. A.

    2017-10-01

    The features of runaway electron avalanches developing in air at different pressures are investigated using a three-dimensional numerical simulation. The simulation results indicate that an avalanche of this type can be characterized, besides the time and length of its exponential growth, by the propagation velocity and by the average kinetic energy of the runaway electrons. It is shown that these parameters obey the similarity laws applied to gas discharges.

  10. Scintillating fiber detector

    CERN Document Server

    Vozak, Matous

    2016-01-01

    NA61 is one of the physics experiments at CERN dedicated to study hadron states coming from interactions of SPS beams with various targets. To determine the position of a secondary beam, three proportional chambers are placed along the beamline. However, these chambers tend to have slow response. In order to obtain more precise time information, use of another detector is being considered. Fast response and compact size is making scintillation fiber (SciFi) with silicon photomultiplier (Si-PM) read out a good candidate. This report is focused on analysing data from SciFi collected in a test beam at the beginning of July 2016.

  11. Laser Beam Scintillation with Applications

    CERN Document Server

    Andrews, Larry C; Young, Cynthia

    2001-01-01

    Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.

  12. Participation to the study of the electromagnetic calorimeter calibration for the CMS experiment and to the study of avalanche photodiodes; Participation a l'etude de la calibration du calorimetre electromagnetique de l'experience CMS et a l'etude de photodiodes a avalanche

    Energy Technology Data Exchange (ETDEWEB)

    Da Ponte Puill, V

    1999-12-13

    The electromagnetic calorimeter CMS (Compact Muon Solenoid) has been chosen to study the Higgs boson production. This calorimeter will be constituted of more than 80000 lead tungstate scintillating crystals radiation resistant. Photodiodes have been especially optimized to detect the scintillating light of these crystals: avalanche photodiodes (APD). This thesis includes two separate parts. A first part deals with the APD submitted to high rate of radiations and tested in the Ulysse reactor of the Cea. The second part deals with the calorimeter calibration. (A.L.B.)

  13. Erosion dynamics of powder snow avalanches - Observations

    Science.gov (United States)

    Sovilla, Betty; Louge, Michel

    2013-04-01

    Powder snow avalanches (PSA) entrain massive amounts of material from the underlying snow cover by erosion mechanisms that are not fully understood. Despite their inherent diversity, PSAs have recognizable flow features: they are fast, reaching velocity up to 80 m/s, they develop a tall, low density powder cloud and, at the same time, they can exert impact pressure with similar magnitudes of high density flow. In this talk, we report observations that underscore the interplay between entrainment and flow dynamics qualitatively shared by several PSAs at the Vallée de la Sionne test site in Switzerland. Measurements include time-histories of snow pack thickness with buried FMCW radar and time-histories of particle velocity using optical sensors, cloud density and cluster size using capacitance probes, and impact pressure measured at several elevations on a pylon. Measurements show that, at the avalanche front, a layer of light, cold and cohesionless snow is rapidly entrained, creating a turbulent and stratified head region with intermittent snow clusters. Fast and localized entrainment of deeper and warmer snow layers may also occur well behind the front, up to a distance of hundreds of meters, where pronounced stratification appears and snow clusters grow larger. In the avalanche head, impact pressure strongly fluctuates and is larger near the ground. Velocity profiles change throughout the avalanche head, with more abrupt changes localized where rapid entrainment occurs. A basal, continuous dense layer forms as deeper, warmer and denser snow cover is entrained and as suspended material starts to deposit. The thickness of the basal layer progressively increases toward the avalanche tail where, finally, deposition occurs en masse. Toward the avalanche tail, velocity profiles tend to become uniform, impact pressures are lower and nearly constant, while entrainment processes are negligible. These observations underscore the relevance of entrainment location and the

  14. Radiation Detection Measurements with a New 'Buried Junction' Silicon Avalanche Photodiode

    CERN Document Server

    Lecomte, R; Rouleau, D; Dautet, H; McIntyre, R J; McSween, D; Webb, P

    1999-01-01

    An improved version of a recently developed 'Buried Junction' avalanche photodiode (APD), designed for use with scintillators, is described and characterized. This device, also called the 'Reverse APD', is designed to have a wide depletion layer and thus low capacitance, but to have high gain only for e-h pairs generated within the first few microns of the depletion layer. Thus it has high gain for light from scintillators emitting in the 400-600 nm range, with relatively low dark current noise and it is relatively insensitive to minimum ionizing particles (MIPs). An additional feature is that the metallurgical junction is at the back of the wafer, leaving the front surface free to be coupled to a scintillator without fear of junction contamination. The modifications made in this device, as compared with the earlier diode, have resulted in a lower excess noise factor, lower dark current, and much-reduced trapping. The electrical and optical characteristics of this device are described and measurements of ener...

  15. Technical Note: Formal blind intercomparison of HO2 measurements in the atmosphere simulation chamber SAPHIR during the HOxComp campaign

    Directory of Open Access Journals (Sweden)

    E. Schlosser

    2010-12-01

    Full Text Available Hydroperoxy radical (HO2 concentrations were measured during the formal blind intercomparison campaign HOxComp carried out in Jülich, Germany, in 2005. Three instruments detected HO2 via chemical conversion to hydroxyl radicals (OH and subsequent detection of the sum of OH and HO2 by laser induced fluorescence (LIF. All instruments were based on the same detection and calibration scheme. Because measurements by a MIESR instrument failed during the campaign, no absolute reference measurement was available, so that the accuracy of individual instruments could not be addressed. Instruments sampled ambient air for three days and were attached to the atmosphere simulation chamber SAPHIR during the second part of the campaign. Six experiments of one day each were conducted in SAPHIR, where air masses are homogeneously mixed, in order to investigate the performance of instruments and to determine potential interferences of measurements under well-controlled conditions. Linear correlation coefficients (R2 between measurements of the LIF instruments are generally high and range from 0.82 to 0.98. However, the agreement between measurements is variable. The regression analysis of the entire data set of measurements in SAPHIR yields slopes between 0.69 to 1.26 and intercepts are smaller than typical atmospheric daytime concentrations (less than 1 pptv. The quality of fit parameters improves significantly, when data are grouped into data subsets of similar water vapor concentrations. Because measurements of LIF instruments were corrected for a well-characterized water dependence of their sensitivities, this indicates that an unknown factor related to water vapor affected measurements in SAPHIR. Measurements in ambient air are also well-correlated, but regression parameters differ from results obtained from SAPHIR experiments. This could have been caused by differences in HO2 concentrations in the sampled air at the slightly different locations of

  16. Properties of scintillator solutes

    Energy Technology Data Exchange (ETDEWEB)

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, {lambda}{sub avg}, at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, {lambda}{sub max}, and emission {lambda}{sub avg} values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs.

  17. Simultaneous reconstruction of scintillation light and ionization charge produced by 511 keV photons in liquid xenon: Potential application to PET

    Energy Technology Data Exchange (ETDEWEB)

    Amaudruz, P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: amaudruz@triumf.ca; Bryman, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada)], E-mail: bryman@phas.ubc.ca; Kurchaninov, L. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: kurchan@triumf.ca; Lu, P. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada)], E-mail: philipfl@phas.ubc.ca; Marshall, C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: cammarsh@triumf.ca; Martin, J.P. [University of Montreal, CP 6128 Succursale Centre-Ville, Montreal, Quebec, H3C 3J7 (Canada)], E-mail: jpmartin@lps.umontreal.ca; Muennich, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: muennich@triumf.ca; Retiere, F. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: fretiere@triumf.ca; Sher, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: sher@triumf.ca

    2009-08-21

    In order to assess the performance of liquid xenon detectors for use in positron emission tomography we studied the scintillation light and ionization charge produced by 511 keV photons in a small prototype detector. Scintillation light was detected with large area avalanche photodiodes while ionization electrons were collected on an anode instrumented with low noise electronics after drifting up to 3 cm. Operational conditions were studied as a function of the electric field. Energy resolutions of <10% (FWHM) were achieved by combining the scintillation light and ionization charge signals. The relationship between scintillation light and ionization signals was investigated. An analysis of the sources of fluctuations was performed in order to optimize future detector designs.

  18. Simultaneous reconstruction of scintillation light and ionization charge produced by 511 keV photons in liquid xenon: Potential application to PET

    Science.gov (United States)

    Amaudruz, P.; Bryman, D.; Kurchaninov, L.; Lu, P.; Marshall, C.; Martin, J. P.; Muennich, A.; Retiere, F.; Sher, A.

    2009-08-01

    In order to assess the performance of liquid xenon detectors for use in positron emission tomography we studied the scintillation light and ionization charge produced by 511 keV photons in a small prototype detector. Scintillation light was detected with large area avalanche photodiodes while ionization electrons were collected on an anode instrumented with low noise electronics after drifting up to 3 cm. Operational conditions were studied as a function of the electric field. Energy resolutions of <10% (FWHM) were achieved by combining the scintillation light and ionization charge signals. The relationship between scintillation light and ionization signals was investigated. An analysis of the sources of fluctuations was performed in order to optimize future detector designs.

  19. Practical operational implementation of Teton Pass avalanche monitoring infrasound system.

    Science.gov (United States)

    2008-12-01

    Highway snow avalanche forecasting programs typically rely on weather and field observations to make road closure and hazard : evaluations. Recently, infrasonic avalanche monitoring technology has been developed for practical use near Teton Pass, WY ...

  20. Vulnerability assessment in avalanche hazardous areas

    Science.gov (United States)

    Frigo, B.; De Biagi, V.; Chiaia, B.

    2012-04-01

    Until a few decades ago, damages and human losses related to the avalanche risk represented only a small part of the destructive effects produced each year by natural events. Nowadays, on the contrary, the situation has considerably changed due to growing of the built-up areas and human presence in the mountain environment: this fact increases the current avalanche risk and puts snow avalanches and hydro-geological risks (floods, landslides, rock falls, etc…) at the same importance level. To mitigate the effects, Authorities provide both specific policies for urban development and mountain land use and simple but reliable methodologies to define the avalanche risk. As is well known, risk can be defined as the product of three factors: the environmental danger P (probability that a given phenomenon with its catastrophic intensity occurs in a specific area and time), the vulnerability V (degree of loss of one or more elements by a natural phenomenon of a known magnitude) and the exposure E (measure of the exposed value for each vulnerable element). A novel approach for the evaluation of the "Vulnerability factor" of a new or existing building under avalanche hazard by considering its structural (materials, strength and robustness, etc…) and architectural (shape, exposure, etc…) peculiarities is presented. A real avalanche event occurred in December, 2008 in Aosta Valley, which caused the total collapse of a building is taken as an example for tesing the effectiveness of the proposed risk assessment. By means of photographical analysis on undamaged parts, local surveys and debris arrangement, the impact pressure and the collapse dynamics are back-analyzed. The results are commented and comparisons between the damages and Vulnerability factor are made.

  1. Comparison of N2O5 mixing ratios during NO3Comp 2007 in SAPHIR

    Directory of Open Access Journals (Sweden)

    A. W. Rollins

    2012-11-01

    Full Text Available N2O5 detection in the atmosphere has been accomplished using techniques which have been developed during the last decade. Most techniques use a heated inlet to thermally decompose N2O5 to NO3, which can be detected by either cavity based absorption at 662 nm or by laser-induced fluorescence. In summer 2007, a large set of instruments, which were capable of measuring NO3 mixing ratios, were simultaneously deployed in the atmosphere simulation chamber SAPHIR in Jülich, Germany. Some of these instruments measured N2O5 mixing ratios either simultaneously or alternatively. Experiments focused on the investigation of potential interferences from, e.g., water vapour or aerosol and on the investigation of the oxidation of biogenic volatile organic compounds by NO3. The comparison of N2O5 mixing ratios shows an excellent agreement between measurements of instruments applying different techniques (3 cavity ring-down (CRDS instruments, 2 laser-induced fluorescence (LIF instruments. Datasets are highly correlated as indicated by the square of the linear correlation coefficients, R2, which values were larger than 0.96 for the entire datasets. N2O5 mixing ratios well agree within the combined accuracy of measurements. Slopes of the linear regression range between 0.87 and 1.26 and intercepts are negligible. The most critical aspect of N2O5 measurements by cavity ring-down instruments is the determination of the inlet and filter transmission efficiency. Measurements here show that the N2O5 inlet transmission efficiency can decrease in the presence of high aerosol loads, and that frequent filter/inlet changing is necessary to quantitatively sample N2O5 in some environments. The analysis of data also demonstrates that a general correction for degrading filter transmission is not applicable for all conditions encountered during this campaign. Besides the effect of a gradual degradation of the inlet transmission efficiency aerosol exposure, no other interference

  2. Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR

    Science.gov (United States)

    Fuchs, Hendrik; Novelli, Anna; Rolletter, Michael; Hofzumahaus, Andreas; Pfannerstill, Eva Y.; Kessel, Stephan; Edtbauer, Achim; Williams, Jonathan; Michoud, Vincent; Dusanter, Sebastien; Locoge, Nadine; Zannoni, Nora; Gros, Valerie; Truong, Francois; Sarda-Esteve, Roland; Cryer, Danny R.; Brumby, Charlotte A.; Whalley, Lisa K.; Stone, Daniel; Seakins, Paul W.; Heard, Dwayne E.; Schoemaecker, Coralie; Blocquet, Marion; Coudert, Sebastien; Batut, Sebastien; Fittschen, Christa; Thames, Alexander B.; Brune, William H.; Ernest, Cheryl; Harder, Hartwig; Muller, Jennifer B. A.; Elste, Thomas; Kubistin, Dagmar; Andres, Stefanie; Bohn, Birger; Hohaus, Thorsten; Holland, Frank; Li, Xin; Rohrer, Franz; Kiendler-Scharr, Astrid; Tillmann, Ralf; Wegener, Robert; Yu, Zhujun; Zou, Qi; Wahner, Andreas

    2017-10-01

    Hydroxyl (OH) radical reactivity (kOH) has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements were used in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapour, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements (limit of detection hydroxyl radicals, whereas the indirect comparative reactivity method (CRM) has a higher limit of detection of 2 s-1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapour or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected into the chamber to simulate urban and forested environments. Overall, the results show that the instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds (mixing ratio of OH reactants were up to 10 ppbv). In some of these experiments

  3. Maximal avalanches in the Bak-Sneppen model

    NARCIS (Netherlands)

    Gillett, A.J.; Meester, R.W.J.; van der Wal, P.

    2006-01-01

    We study the durations of the avalanches in the maximal avalanche decomposition of the Bak-Sneppen evolution model. We show that all the avalanches in this maximal decomposition have infinite expectation, but only 'barely', in the sense that if we made the appropriate threshold a tiny amount smaller

  4. A Hidden Markov Model for avalanche forecasting on Chowkibal ...

    Indian Academy of Sciences (India)

    for operational avalanche forecasting in the ski area of the Parsenn region and found quite useful for operational purpose. Following the suggestions of. Obled and Good (1980) and Buser et al. (1987),. McClung and Tweedy (1994) derived a numerical avalanche prediction scheme for avalanche forecast- ing on Kootenay ...

  5. Real time avalanche detection for high risk areas.

    Science.gov (United States)

    2014-12-01

    Avalanches routinely occur on State Highway 21 (SH21) between Lowman and Stanley, Idaho each winter. The avalanches pose : a threat to the safety of maintenance workers and the traveling public. A real-time avalanche detection system will allow the :...

  6. Characterization of the Zymoetz river rock avalanche

    OpenAIRE

    Boultbee, Nichole Leanne

    2005-01-01

    On June 8, 2002, the Pacific Northern Gas pipeline in the Zymoetz River valley was severed over a distance of tens of meters by a large debris flow. The event initiated as a rock avalanche in Glen Falls Creek, a tributary of the 6 3 Zymoetz River. The rock avalanche involved I XI 0 m of volcaniclastic bedrock, and travelled through a complex flow path, to finally deposit a large fan in the main Zymoetz River. Approximately half of the debris volume was deposited in the cirque basin at the hea...

  7. Relating rock avalanche morphology to emplacement processes

    Science.gov (United States)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  8. Simulation tool for optical design of PET detector modules including scintillator material and sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Jatekos, B.; Erdei, G.; Lorincz, E. [Budapest Univ. of Technology and Economics, Dept. of Atomic Physics, Budafoki ut 8, H-1111 Budapest (Hungary)

    2011-07-01

    The appearance of single photon avalanche diodes (SPADs) in the field of PET detector modules made it necessary to apply more complex optical design methods to refine the performance of such assemblies. We developed a combined simulation tool that is capable to model complex detector structures including scintillation material, light guide, light collection optics and sensor, correctly taking into account the statistical behavior of emission of scintillation light and its absorbance in SPADs. As a validation we compared simulation results obtained by our software and another optical design program. Calculations were performed for a simple PET detector arrangement used for testing purposes. According to the results, deviation of center of gravity coordinates between the two simulations is 0.0195 mm, the average ratio of total counts 1.0052. We investigated the error resulting from finite sampling in wavelength space and we found that 20 nm pitch is sufficient for the simulation in case of the given spectral dependencies. (authors)

  9. Performance of a scintillating strip detector with G-APD readout

    Science.gov (United States)

    Tarkovsky, Evgueny

    2011-02-01

    The upgraded KLM detector end cap of Belle II experiment will consist of more than 16 000 scintillating detectors of 0.5-2.8 m long strips. One of possible solutions is presented: a detector of 2800×40×10 mm 3 with light readout via WLS fiber and new solid state photo-detector multi-pixel avalanche photo-diode working in Geiger mode. Concept of the mechanical structure of upgraded KLM detector is given. Properties demonstrating the operation capabilities of such a scintillating detector: MIP registration efficiency, noise pulse rate with respect to expected background rate are demonstrated as well as response distributions in longitudinal and transverse directions. Study of radiation damage of photo-detectors shows that Hamamatsu MPPC can be used in Belle II environment during at least 10 years.

  10. Assessing the importance of terrain parameters on glide avalanche release

    Science.gov (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  11. Systematic evaluation of photodetector performance for plastic scintillation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, Jonathan, E-mail: jonathan.boivin.1@ulaval.ca; Beaulieu, Luc [Département de Physique, de Génie physique et d’Optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada and Département de Radio-Oncologie et Axe oncologie du Centre de recherche du CHU de Québec, CHU de Québec, Québec, Québec G1R 2J6 (Canada); Beddar, Sam [Department of Radiation Physics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030 (United States); Guillemette, Maxime [Département de Physique, de Génie physique et d’Optique, Université Laval, Québec, Québec G1V 0A6, Canada and Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec G1V 4G5 (Canada)

    2015-11-15

    Purpose: The authors’ objective was to systematically assess the performance of seven photodetectors used in plastic scintillation dosimetry. The authors also propose some guidelines for selecting an appropriate detector for a specific application. Methods: The plastic scintillation detector (PSD) consisted of a 1-mm diameter, 10-mm long plastic scintillation fiber (BCF-60), which was optically coupled to a clear 10-m long optical fiber of the same diameter. A light-tight plastic sheath covered both fibers and the scintillator end was sealed. The clear fiber end was connected to one of the following photodetectors: two polychromatic cameras (one with an optical lens and one with a fiber optic taper replacing the lens), a monochromatic camera with an optical lens, a PIN photodiode, an avalanche photodiode (APD), or a photomultiplier tube (PMT). A commercially available W1 PSD was also included in the study, but it relied on its own fiber and scintillator. Each PSD was exposed to both low-energy beams (120, 180, and 220 kVp) from an orthovoltage unit and high-energy beams (6 and 23 MV) from a linear accelerator. Various dose rates were tested to identify the operating range and accuracy of each photodetector. Results: For all photodetectors, the relative uncertainty was less than 5% for dose rates higher than 3 mGy/s. The cameras allowed multiple probes to be used simultaneously, but they are less sensitive to low-light signals. The PIN, APD, and PMT had higher sensitivity, making them more suitable for low dose rate and out-of-field dose monitoring. The relative uncertainty of the PMT was less than 1% at the lowest dose rate achieved (0.10 mGy/s), suggesting that it was optimal for use in live dosimetry. Conclusions: For dose rates higher than 3 mGy/s, the PIN diode is the most effective photodetector in terms of performance/cost ratio. For lower dose rates, such as those seen in interventional radiology or high-gradient radiotherapy, PMTs are the optimal choice.

  12. Systematic evaluation of photodetector performance for plastic scintillation dosimetry.

    Science.gov (United States)

    Boivin, Jonathan; Beddar, Sam; Guillemette, Maxime; Beaulieu, Luc

    2015-11-01

    The authors' objective was to systematically assess the performance of seven photodetectors used in plastic scintillation dosimetry. The authors also propose some guidelines for selecting an appropriate detector for a specific application. The plastic scintillation detector (PSD) consisted of a 1-mm diameter, 10-mm long plastic scintillation fiber (BCF-60), which was optically coupled to a clear 10-m long optical fiber of the same diameter. A light-tight plastic sheath covered both fibers and the scintillator end was sealed. The clear fiber end was connected to one of the following photodetectors: two polychromatic cameras (one with an optical lens and one with a fiber optic taper replacing the lens), a monochromatic camera with an optical lens, a PIN photodiode, an avalanche photodiode (APD), or a photomultiplier tube (PMT). A commercially available W1 PSD was also included in the study, but it relied on its own fiber and scintillator. Each PSD was exposed to both low-energy beams (120, 180, and 220 kVp) from an orthovoltage unit and high-energy beams (6 and 23 MV) from a linear accelerator. Various dose rates were tested to identify the operating range and accuracy of each photodetector. For all photodetectors, the relative uncertainty was less than 5% for dose rates higher than 3 mGy/s. The cameras allowed multiple probes to be used simultaneously, but they are less sensitive to low-light signals. The PIN, APD, and PMT had higher sensitivity, making them more suitable for low dose rate and out-of-field dose monitoring. The relative uncertainty of the PMT was less than 1% at the lowest dose rate achieved (0.10 mGy/s), suggesting that it was optimal for use in live dosimetry. For dose rates higher than 3 mGy/s, the PIN diode is the most effective photodetector in terms of performance/cost ratio. For lower dose rates, such as those seen in interventional radiology or high-gradient radiotherapy, PMTs are the optimal choice.

  13. Geochemical insights into the internal dynamics of debris avalanches. A case study: The Socompa avalanche, Chile

    National Research Council Canada - National Science Library

    Doucelance, Régis; Kelfoun, Karim; Labazuy, Philippe; Bosq, Chantal

    2014-01-01

    .... Here we present high‐precision Sr‐Nd isotope compositions, plus major and trace element concentrations, of matrix samples and rock fragments from the Socompa debris‐avalanche deposit (Chile...

  14. Nano-multiplication region avalanche photodiodes and arrays

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  15. A probabilistic model for martensitic avalanches

    Directory of Open Access Journals (Sweden)

    Ball John M.

    2015-01-01

    Full Text Available We present a probabilistic model for the description of martensitic avalanches. Our approach to the analysis of the model is based on an associated general branching random walk process. Comparisons are reported for numerical and analytical solutions and experimental observations.

  16. Measuring acoustic emissions in an avalanche slope

    Science.gov (United States)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  17. Extended kinetic theory applied to snow avalanches

    Science.gov (United States)

    Rauter, Matthias; Fischer, Jan-Thomas; Fellin, Wolfgang; Kofler, Andreas

    2016-04-01

    In this work we apply the extended kinetic theory, a three-dimensional rheological model for rapid granular flows, to the two-dimensional, depth-averaged shallow water framework, used in snow avalanche simulations. Usually, empirical relations are used to determine the basal friction, which represents the material behavior in the avalanche. Here we present an energy equivalent basal friction relation which accounts for energy dissipating processes in the avalanche body as predicted by the extended kinetic theory. The obtained relation is compared to traditional basal friction relations, e.g. the Voellmy model by conducting numerical simulations with both approaches. As reference, field measurements of runout, affected area and velocity are compared to the simulation results. Two avalanche events, that occurred at the Vallée de la Sionne and Ryggfonn test sites, are evaluated with this method. It is shown that the kinetic theory delivers a physically based explanation for the structure of phenomenological friction relations. However, the new form of the frictional terms explicitly takes the flow depth into account. As consequence, improvements in finding unified parameter sets for various observation variables and events of different sizes could be achieved.

  18. Fractal avalanche ruptures in biological membranes

    Science.gov (United States)

    Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe

    2010-11-01

    Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.

  19. Cherenkov and scintillation light separation in organic liquid scintillators

    Science.gov (United States)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Yeh, M.; Orebi Gann, G. D.

    2017-12-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3 % and 63± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36± 5% and 38± 4%. LAB/PPO data is consistent with a rise time of τ _r=0.72± 0.33 ns.

  20. Molecular origins of scintillation in organic scintillators (Conference Presentation)

    Science.gov (United States)

    Feng, Patrick; Mengesha, Wondwosen; Myllenbeck, Nicholas

    2016-09-01

    Organic-based scintillators are indispensable materials for radiation detection owing to their high sensitivity to fast neutrons, low cost, and tailorable properties. There has been a recent resurgence of interest in organic scintillators due to exciting discoveries related to neutron discrimination and gamma-ray spectroscopy, which represent capabilities previously thought not possible in these materials. I will discuss our development of crystalline and polymer-based scintillators for these applications. Structure-property relationships related to intermolecular interactions and host-guest electronic exchange will be discussed in the context of energy-transfer pathways relevant to scintillation. An emphasis will be placed on the rational design of these materials, as guided by first principles and DFT calculations. Two related topics will be discussed: 1) Incorporation of organometallic triplet-harvesting additives to plastic scintillator matrices to confer a 'two-state' (singlet and triplet) luminescence signature to different types of ionizing radiation. This approach relies upon energetic and spatial overlap between the donor and acceptor excited states for efficient electronic exchange. Key considerations also include synthetic modification of the luminescence spectra and kinetics, as well as the addition of secondary additives to increase the recombination efficiency. 2) Design of organotin-containing plastic scintillators as a route towards gamma-ray spectroscopy. Organometallic compounds were selected on the basis of distance-dependent quenching relationships, phase compatibility with the polymer matrix, and the gamma-ray cross sections. This approach is guided by molecular modeling and radiation transport modeling to achieve the highest possible detection sensitivity luminescence intensity.

  1. Relief and snow avalanches in the Tatra Mts.

    Science.gov (United States)

    Rączkowska, Zofia; Długosz, Michał; Rojan, Elżbieta

    2015-04-01

    Snow avalanches are among the main factors influencing the high-mountain environment of the Tatra Mts. and their denudation system in the three uppermost geoecological belts. Dirty avalanches are assumed to be an important morphogenetic factor but also relief affects spatial differentiation of snow avalanche activity. The research aims to recognize the geomorphological conditions for avalanches and assessment of the morphogenetic role of avalanches in the whole Tatra Mts. For recognition of geomorphological conditions of snow avalanches activity was made map of avalanches paths, based on maps of snow avalanches occurred in the recent past, air- photos and digital terrain model. Starting zone and transition zone were specified within each path. For each type of designated zones the morphometric analysis was made, taking in account slope aspect and inclination. The map presents more than 3700 avalanche paths. The number of avalanche paths is more than double in the High Tatras than in the Western Tatras. Morphometric features and altitudinal range of avalanche paths also differ in individual parts of the Tatras what correspond with the relief differences. Length of avalanche paths reach up to 3138 m and in average is the biggest avalanche in the Bielanske Tatra. The paths are located about 200 m higher in the High Tatras than in other parts of the massif. There is no clear relationship between exposure of the slopes and the distribution of the avalanche path, while relationship with slope inclination is distinct. Over 70% of the avalanche paths occur on slopes 26-55o. Similar patterns were found in the distribution of avalanche accumulation zones. Detailed studies of morphogenetic role of avalanches are conducted in four chosen avalanche paths located both in the Western and the High Tatras. Measuring points of erosion, transport and accumulation installed there in the autumn 2012 are checked two times a year. It was found that effects of snow avalanches on the

  2. New halide scintillators for gamma ray detection

    NARCIS (Netherlands)

    Alekhin, M.S.

    2013-01-01

    Scintillators are used for the detection of ionizing radiation. Despite decades of intensive search and numerous compounds discovered, there is still a need for materials with improved properties. Recently, several new scintillators with excellent light yield, energy resolution, and proportionality

  3. Radiopure Metal-Loaded Liquid Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, Richard [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Yeh, Minfang [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  4. Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    H.-P. Dorn

    2013-05-01

    Full Text Available The detection of atmospheric NO3 radicals is still challenging owing to its low mixing ratios (≈ 1 to 300 pptv in the troposphere. While long-path differential optical absorption spectroscopy (DOAS has been a well-established NO3 detection approach for over 25 yr, newly sensitive techniques have been developed in the past decade. This publication outlines the results of the first comprehensive intercomparison of seven instruments developed for the spectroscopic detection of tropospheric NO3. Four instruments were based on cavity ring-down spectroscopy (CRDS, two utilised open-path cavity-enhanced absorption spectroscopy (CEAS, and one applied "classical" long-path DOAS. The intercomparison campaign "NO3Comp" was held at the atmosphere simulation chamber SAPHIR in Jülich (Germany in June 2007. Twelve experiments were performed in the well-mixed chamber for variable concentrations of NO3, N2O5, NO2, hydrocarbons, and water vapour, in the absence and in the presence of inorganic or organic aerosol. The overall precision of the cavity instruments varied between 0.5 and 5 pptv for integration times of 1 s to 5 min; that of the DOAS instrument was 9 pptv for an acquisition time of 1 min. The NO3 data of all instruments correlated excellently with the NOAA-CRDS instrument, which was selected as the common reference because of its superb sensitivity, high time resolution, and most comprehensive data coverage. The median of the coefficient of determination (r2 over all experiments of the campaign (60 correlations is r2 = 0.981 (quartile 1 (Q1: 0.949; quartile 3 (Q3: 0.994; min/max: 0.540/0.999. The linear regression analysis of the campaign data set yielded very small intercepts (median: 1.1 pptv; Q1/Q3: −1.1/2.6 pptv; min/max: −14.1/28.0 pptv, and the slopes of the regression lines were close to unity (median: 1.01; Q1/Q3: 0.92/1.10; min/max: 0.72/1.36. The deviation of individual regression slopes from unity was always within the combined

  5. Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    H. Fuchs

    2017-10-01

    Full Text Available Hydroxyl (OH radical reactivity (kOH has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements were used in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapour, nitrogen oxides, various organic compounds by all instruments. The precision of the measurements (limit of detection  < 1 s−1 at a time resolution of 30 s to a few minutes is higher for instruments directly detecting hydroxyl radicals, whereas the indirect comparative reactivity method (CRM has a higher limit of detection of 2 s−1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO, water vapour or nitric oxide (NO. In further experiments, mixtures of organic reactants were injected into the chamber to simulate urban and forested environments. Overall, the results show that the instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in

  6. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  7. Fracture-resistant lanthanide scintillators

    Science.gov (United States)

    Doty, F Patrick [Livermore, CA

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  8. Ionospheric precursors to scintillation activity

    Directory of Open Access Journals (Sweden)

    Paul S.J. Spencer

    2014-03-01

    Full Text Available Ionospheric scintillation is the rapid fluctuation of both phase and amplitude of trans-ionospheric radio waves due to small scale electron density irregularities in the ionosphere. Prediction of the occurrence of scintillation at L band frequencies is needed to mitigate the disruption of space-based communication and navigation systems. The purpose of this paper is to present a method of using tomographic inversions of the ionospheric electron density obtained from ground-based GPS data to infer the location and strength of the post-sunset plasma drift vortex. This vortex is related to the pre-reversal enhancement in the eastwards electric field which has been correlated to the subsequent occurrence of scintillation.

  9. Studies on scintillating fiber response

    Energy Technology Data Exchange (ETDEWEB)

    Albers, D. [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik; Bisplinghoff, J.; Bollmann, R.; Buesser, K.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drueke, V.; Engelhardt, H.P.; Ernst, J.; Eversheim, P.D.; Filges, D.; Gasthuber, M.; Gebel, R.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Heine, A.; Heider, S.; Hinterberger, F.; Igelbrink, M.; Jahn, R.; Jeske, M.; Langkau, R.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Mueller, M.; Muenstermann, M.; Paetz genannt Schieck, H.; Petry, H.R.; Prasuhn, D.; Rohdjess, H.; Rosendaal, D.; Ross, U.; Rossen, P. von; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Steeg, B.; Sterzenbach, G.; Trelle, H.J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R. [Institut fuer Strahlen- und Kernphysik, Universitaet Bonn, Bonn (Germany)]|[1. Institut fuer Experimentalphysik, Universitaet Hamburg, Hamburg (Germany)]|[Institut fuer Kernphysik, KFA, Juelich (Germany)]|[Institut fuer Theor. Kernphysik, Universitaet Bonn, Bonn (Germany)]|[Institut fuer Kernphysik, Universitaet Koeln, Koeln (Germany)

    1995-03-11

    Scintillating fibers of type Bicron BCF-12 with 2 x 2 mm{sup 2} cross section, up to 600 mm length, and PMMA cladding have been tested, in conjunction with the multi-channel photomultiplier Hamamatsu R 4760, with minimum ionizing electrons. The impact of cladding, extramural absorbers and/or wrapping on the light attenuation and photoelectron yield is studied in detail. Fibers have been circularly bent with radii of 171 mm and arranged in two layers to bundles forming granulated scintillator rings. Their performance in the EDDA experiment at COSY for detection of high energy protons revealed typically more than 9 (6) photoelectrons per fiber from bundles with (without) mirror on the rear side, guaranteeing detection efficiencies >99% and full compatibility with corresponding solid scintillator rings. The time resolution of 3.4 ns FWHM per fiber read out is essentially due to the R 4760. (orig.).

  10. Studies on scintillating fiber response

    Science.gov (United States)

    Albers, D.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Heine, A.; Heider, S.; Hinterberger, F.; Igelbrink, M.; Jahn, R.; Jeske, M.; Langkau, R.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Müller, M.; Münstermann, M.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Steeg, B.; Sterzenbach, G.; Trelle, H. J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.

    1996-02-01

    Scintillating fibers of type Bicron BCF-12 with 2 × 2 mm 2 cross section, up to 600 mm length, and PMMA cladding have been tested, in conjunction with the multi-channel photomultiplier Hamamatsu R 4760, with minimum ionizing electrons. The impact of cladding, extramural absorbers and/or wrapping on the light attenuation and photoelectron yield is studied in detail. Fibers have been circularly bent with radii of 171 mm and arranged in two layers to bundles forming granulated scintillator rings. Their performance in the EDDA experiment at COSY for detection of high energy protons revealed typically more than 9 (6) photoelectrons per fiber from bundles with (without) mirror on the rear side, guaranteeing detection efficiencies >99% and full compatibility with corresponding solid scintillator rings. The time resolution of 3.4 ns FWHM per fiber read out is essentially due to the R 4760.

  11. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  12. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  13. Thin Scintillating Polarized Targets for Spin Physics

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.

    2003-07-01

    At PSI polarized scintillating targets are available since 1996. Proton polarizations of more than 80%, and deuteron polarizations of 25% in polystyrene-based scintillators can be reached under optimum conditions in a vertical dilution refrigerator with optical access, suited for nuclear and particle physics experiments. New preparation procedures allow to provide very thin polarizable scintillating targets and widen the spectrum of conceivable experiments.

  14. The Marocche rock avalanches (Trentino, Italy)

    Science.gov (United States)

    Ivy-Ochs, Susan; Martin, Silvana; Campedel, Paolo; Viganò, Alfio; Alberti, Silvio; Rigo, Manuel; Vockenhuber, Christof

    2015-04-01

    The floors of the Adige and Sarca River valleys are punctuated by numerous rock avalanche deposits of undetermined age. With a view to understanding predisposition and triggering factors, thus ultimately paleoseismicity in the region, we are studying the geomorphology and timing of the largest rock avalanches of the River Sarca-Lake Garda area (e.g., Marocche, Monte Spinale, Lago di Tovel, Lago di Molveno, San Giovanni and Torbole). Among the most extensive of these deposits, with an area of 13 km2 and a volume of about 109 m3, are the Marocche. Marocche deposits cover the lower Sarca valley north of Lake Garda for a length of more than 8 km with 200 m of debris. Both collapse and bedding parallel sliding are a consequence of dip slopes and the extreme relief on the right side of the valley of nearly 2000 m from the bedrock below the valley floor to the peaks combined with the zones of structural weakness. The rock avalanches developed within carbonate rocks of Mesozoic age, mainly limestones of the Jurassic Calcari Grigi Group. The main scarps are located on the western side of the lower Sarca Valley, along the steep faces of Mt. Brento and Mt. Casale. The presence of these scarps is strictly related to the Southern Giudicarie and the Ballino fault systems. The former is here constituted by regular NNE-directed ESE-vergent thrust faults. The latter has been reactivated as normal faults. These complicated structural relationships favored complex failure mechanisms, including rock slide and massive collapse. At the Marocche itself, based on field relationships and analysis of lidar imagery, we differentiated two large rock avalanches: the Marocca di Kas in the south which overlies and in part buries the Marocche (s.s.) in the northern sector. Previous mapping had suggested up to five rock avalanches in the area where we differentiate two. In spite of hypotheses suggesting failure of the rock avalanches onto stagnating late Pleistocene glaciers, preliminary 36Cl

  15. Teaching Natural Hazards: The Use of Snow Avalanches in Demonstrating and Addressing Geographic Topics and Principles.

    Science.gov (United States)

    Butler, David R.

    1988-01-01

    Illustrates the importance of studying the snow avalanche as a natural hazard. Describes the various kinds of snow avalanches, the types of triggering mechanisms that produce them, the typical avalanche terrain, and the geomorphic and the vegetative evidence for snow avalanching. Depicts methods of human adjustment to the avalanche hazard.…

  16. Stochastic simulation of electron avalanches on supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Rogasinsky, S. V.; Marchenko, M. A. [Institute of Computational Mathematics and Mathematical Geophysics of the SB RAS, Novosibirsk State University, Prospekt Akademika Lavrentieva 6, 6300090, Novosibirsk (Russian Federation)

    2014-12-09

    In the paper, we present a three-dimensional parallel Monte Carlo algorithm named ELSHOW which is developed for simulation of electron avalanches in gases. Parallel implementation of the ELSHOW was made on supercomputers with different architectures (massive parallel and hybrid ones). Using the ELSHOW, calculations of such integral characteristics as the number of particles in an avalanche, the coefficient of impact ionization, the drift velocity, and the others were made. Also, special precise computations were made to select an appropriate size of the time step using the technique of dependent statistical tests. Particularly, the algorithm consists of special methods of distribution modeling, a lexicographic implementation scheme for “branching” of trajectories, justified estimation of functionals. A comparison of the obtained results for nitrogen with previously published theoretical and experimental data was made.

  17. Communicators' perspective on snow avalanche risk communication

    Science.gov (United States)

    Charriere, M. K. M.; Bogaard, T.; Mostert, E.

    2014-12-01

    Among all the natural hazards, snow avalanches are the only ones for which a public danger scale is globally used. It consists of 5 levels of danger displayed with a given number and colour and for each of them, behavioural advices are provided. Even though this is standardized in most of the countries affected by this natural hazard, the tools (usually websites or smartphone applications) with which the information is disseminated to the general pubic differs, particularly in terms of target audience and level of details. This study aims at gathering the perspectives of several communicators that are responsible for these communication practices. The survey was created to assess how and why choices were made in the design process of the communication tools and to determine how their effectiveness is evaluated. Along with a review of existing avalanche risk communication tools, this study provides guidelines for communication and the evaluation of its effectiveness.

  18. Fractal properties of LED avalanche breakdown

    Directory of Open Access Journals (Sweden)

    Antonina S. Shashkina

    2016-12-01

    Full Text Available The conventional model of the processes occurring in the course of a p–n-junction's partial avalanche breakdown has been analyzed in this paper. Microplasma noise spectra of industrially produced LEDs were compared with those predicted by the model. It was established that the data obtained experimentally on reverse-biased LEDs could not be described in terms of this model. The degree to which the fractal properties were pronounced was shown to be variable by changing the reverse voltage. The discovered fractal properties of microplasma noise can serve as the basis for further studies which are bound to explain the breakdown characteristics of real LEDs and to correct the conventional model of p–n-junction's avalanche breakdown.

  19. Avalanches in functional materials and geophysics

    CERN Document Server

    Saxena, Avadh; Planes, Antoni

    2017-01-01

    This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.

  20. Scintillating Lustre Induced by Radial Fins

    Directory of Open Access Journals (Sweden)

    Kohske Takahashi

    2012-02-01

    Full Text Available Radial lines of Ehrenstein patterns induce illusory scintillating lustre in gray disks inserted into the central gaps (scintillating-lustre effect. We report a novel variant of this illusion by replacing the radial lines with white and black radial fins. Both white and gray disks inserted into the central gaps were perceived as scintillating, if the ratio of the black/white fin width were balanced (ie, close to 1.0. Thus, the grayness of the central disk is not a prerequisite for the scintillation. However, the scintillation was drastically reduced when the ratio was imbalanced. Furthermore, the optimal ratio depended on the color of the center disks.

  1. Characterization of avalanche photodiode arrays for the ClearPEM and ClearPEM-Sonic scanners

    Science.gov (United States)

    Bugalho, R.; Carriço, B.; Ferreira, C. S.; Frade, M.; Ferreira, M.; Moura, R.; Neves, J.; Ortigão, C.; Pinheiro, J. F.; Rodrigues, P.; Rolo, I.; Silva, J. C.; Silva, R.; Trindade, A.; Varela, J.

    2009-09-01

    The ClearPEM scanner is a high-resolution Positron Emission Mammography prototype, developed by the Portuguese PET Consortium in the framework of the Crystal Clear Collaboration at the European Organization for Nuclear Research (CERN). The scanner is based on a novel readout scheme which uses fine-pitch scintillator crystals, avalanche photodiodes, low-noise high-gain integrated electronics and a fast reconfigurable digital data acquisition system. The scanner uses two planar detector heads each composed of 96 detector modules. The detector module is composed of a matrix of 32 identical 2 × 2 × 20 mm3 LYSO:Ce scintillator crystals, coupled at both ends to Hamamatsu S8550 APD arrays for Depth-of-Interaction (DOI) measurements. More recently, a new scanner named ClearPEM-Sonic which combines the ClearPEM technology with an Ultrasound apparatus, is being produced. A set of 984 APD arrays used in both scanner assemblies followed a quality control protocol and a characterization procedure. This paper describes the methods used in these measurements and the results obtained with the full APD production batch.

  2. SNO+ Scintillator Purification and Assay

    Science.gov (United States)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  3. Complex Dynamics of Equatorial Scintillation

    Science.gov (United States)

    Piersanti, Mirko; Materassi, Massimo; Forte, Biagio; Cicone, Antonio

    2017-04-01

    Radio power scintillation, namely highly irregular fluctuations of the power of trans-ionospheric GNSS signals, is the effect of ionospheric plasma turbulence. The scintillation patterns on radio signals crossing the medium inherit the ionospheric turbulence characteristics of inter-scale coupling, local randomness and large time variability. On this basis, the remote sensing of local features of the turbulent plasma is feasible by studying radio scintillation induced by the ionosphere. The distinctive character of intermittent turbulent media depends on the fluctuations on the space- and time-scale statistical properties of the medium. Hence, assessing how the signal fluctuation properties vary under different Helio-Geophysical conditions will help to understand the corresponding dynamics of the turbulent medium crossed by the signal. Data analysis tools, provided by complex system science, appear to be best fitting to study the response of a turbulent medium, as the Earth's equatorial ionosphere, to the non-linear forcing exerted by the Solar Wind (SW). In particular we used the Adaptive Local Iterative Filtering, the Wavelet analysis and the Information theory data analysis tool. We have analysed the radio scintillation and ionospheric fluctuation data at low latitude focusing on the time and space multi-scale variability and on the causal relationship between forcing factors from the SW environment and the ionospheric response.

  4. Synoptic atmospheric circulation patterns controlling avalanche activity in central Svalbard

    Science.gov (United States)

    Hancock, Holt; Prokop, Alexander; Eckerstorfer, Markus; Hendrikx, Jordy

    2017-04-01

    Central Svalbard's avalanche activity is primarily controlled by the local and synoptic scale meteorological conditions characterizing the region's winter storms. Previous work has described Svalbard's direct-action snow climate as High-Arctic maritime based on the unique meteorological conditions and resulting snowpack stratigraphy observed in the region. To gain a better understanding of the broad-scale spatial controls on regional avalanche activity in Svalbard, this work investigates synoptic atmospheric circulation patterns associated with observed avalanche cycles during the 2007/2008 to 2015/2016 winter seasons. We use avalanche observations systematically recorded as part of the Cryoslope Svalbard project from 2007-2010 in combination with additional observations from notable avalanche events from 2010-2016 to develop a regional avalanche cycle history. We then compare the timing of these avalanche cycles to an existing daily calendar of synoptic types and NCEP/NCAR Reanalysis datasets to characterize the synoptic atmospheric circulation patterns influencing this avalanche activity. Our results indicate regional avalanche cycles are driven by cyclonic activity in the seas surrounding Svalbard under synoptic circulation patterns associated with warm air advection and moisture transport from lower latitudes to Svalbard. The character and spatial distribution of observed avalanche activity can be differentiated by atmospheric circulation type: mid-winter slushflow and wet slab avalanche cycles, for example, are typically associated with meridional southerly flow over the North Atlantic bringing warm air and heavy precipitation to Svalbard. Such analyses can provide a foundation upon which to improve the understanding of central Svalbard's snow climate to facilitate regional avalanche forecasting efforts.

  5. Determining avalanche modelling input parameters using terrestrial laser scanning technology

    OpenAIRE

    Prokop, A.; Schön, P.; Singer, F.; Pulfer, G.; Naaim, M.; Thibert, E.

    2013-01-01

    International audience; In dynamic avalanche modelling, data about the volumes and areas of the snow released, mobilized and deposited are key input parameters, as well as the fracture height. The fracture height can sometimes be measured in the field, but it is often difficult to access the starting zone due to difficult or dangerous terrain and avalanche hazards. More complex is determining the areas and volumes of snow involved in an avalanche. Such calculations require high-resolution spa...

  6. GeSn/Si Avalanche Photodetectors on Si substrates

    Science.gov (United States)

    2016-09-16

    whole device structure will be grown by a unique home-built Ultra-high vacuum Chemical Vapor Deposition (UHV- CVD) machine. The detailed problems... avalanche photodiode (APD): The GeSn APD with separate absorption-charge-multiplication (SACM) structure was grown and characterized. The design took... Avalanche photo diode Avalanche photo diode (APD) based on Separate Absorption-Charge-Multiplication (SACM) structure has been fabicated. The

  7. Long-term operation of a multi-channel cosmic muon system based on scintillation counters with MRS APD light readout

    CERN Document Server

    Akindinov, A.; Grigoriev, E.; Grishuk, Yu.; Kuleshov, S.; Mal'kevich, D.; Martemiyanov, A.; Nedosekin, A.; Ryabinin, M.; Voloshin, K.

    2009-01-01

    A Cosmic Ray Test Facility (CRTF) is the first large-scale implementation of a scintillation triggering system based on a new scintillation technique known as START. In START, the scintillation light is collected and transported by WLS optical fibers, while light detection is performed by pairs of avalanche photodiodes with the Metal-Resistor-Semiconductor structure operated in the Geiger mode (MRS APD). START delivers 100% efficiency of cosmic muon detection, while its intrinsic noise level is less than 10^{-2} Hz. CRTF, consisting of 160 START channels, has been continuously operated by the ALICE TOF collaboration for more than 25 000 hours, and has demonstrated a high level of stability. Fewer than 10% of MRS APDs had to be replaced during this period.

  8. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery

    National Research Council Canada - National Science Library

    Lato, M. J; Frauenfelder, R; Bühler, Y

    2012-01-01

    .... Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge...

  9. Assessment and mapping of snow avalanche risk in Russia

    Science.gov (United States)

    Seliverstov, Yuri; Glazovskaya, Tatiana; Shnyparkov, Alexander; Vilchek, Yana; Sergeeva, Ksenia; Martynov, Alexei

    The term 'risk' can be defined as the probability of unfavourable consequences or negative effects. Risk can be expressed by means of various indices, such as collective or social risk (possible number of dead), individual risk (probability of a person's death within a certain territory during 1 year), probability of losses, etc. This paper is a case study of the small-scale assessment and mapping of individual avalanche risk focused on the two regions of Russia with the highest levels of avalanche activity: the northern Caucasus and the mountainous parts of Sakhalin island. The basic indices applied for individual avalanche risk estimation are: recurrence interval of avalanches (avalanche frequency), percentage of the whole investigated territory that is occupied by avalanche-prone areas, duration of avalanche danger period, probability of a person's stay in an avalanche-prone area during 1 day (24 hours) and during 1 year, total population of the area and its density. The results of individual avalanche risk assessment, undertaken for the territory of Russia as a whole, show that its values generally do not exceed the admissible level (from 1 × 10-6 to 1 × 10-4). However, some areas of the northern Caucasus, including famous alpine skiing resorts (Krasnaya Poliana, Dombai, the Mount Elbrus region, etc.), and of Sakhalin, including the environs of towns (Kholmsk, Nevel'sk) and other smaller human settlements, are characterized by an unacceptable level of risk. In the aggregate, areas with an unacceptable (>1 × 10-4) level of individual avalanche risk comprise about 7% of the whole avalanche-prone territory of the northern Caucasus, those with an admissible level comprise 52% and those with an acceptable level (<1 × 10-6) 41%. The corresponding values for Sakhalin are 0.1%, 14.8% and 85.1%.

  10. A helical scintillating fiber hodoscope

    Energy Technology Data Exchange (ETDEWEB)

    Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bissel, T.; Bollmann, R.; Busch, M.; Buesser, K.; Colberg, T.; Demiroers, L.; Diehl, O.; Dohrmann, F.; Engelhardt, H.P.; Eversheim, P.D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Jeske, M.; Jonas, E.; Krause, H.; Lahr, U.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuck, T.; Meinerzhagen, A.; Naehle, O.; Pfuff, M.; Prasuhn, D.; Rohdjess, H.; Rosendaal, D.; Rossen, P. von; Sanz, B.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Thomas, S.; Trelle, H.J.; Weise, E.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R

    1999-07-21

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. {<=}{theta}{<=}72 deg. and 0 deg. {<=}phi (cursive,open) Greek{<=}360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  11. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  12. A helical scintillating fiber hodoscope

    Science.gov (United States)

    Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bissel, T.; Bollmann, R.; Busch, M.; Büßer, K.; Colberg, T.; Demirörs, L.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Eversheim, P. D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Jeske, M.; Jonas, E.; Krause, H.; Lahr, U.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuck, T.; Meinerzhagen, A.; Nähle, O.; Pfuff, M.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Sanz, B.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Thomas, S.; Trelle, H. J.; Weise, E.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration

    1999-07-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9°⩽ Θ⩽72° and 0°⩽ ϕ⩽360° in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes.

  13. Performance study of Philips digital silicon photomultiplier coupled to scintillating crystals

    CERN Document Server

    Liu, Z.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-01-01

    Silicon photomultipliers (SiPMs) and scintillators are often arranged in the shape of arrays in Positron Emission Tomography (PET) systems. Digital SiPMs provide signal readout in single photon avalanche diode (SPAD) level. From the photon count rate measurement of each SPAD cell of digital SiPM, we found that the output scintillating photons distribute in an area larger than the scintillator physical coupling area. Taking advantage of the possibility to enable/disable individual cells of the digital SiPM, a group of Lutetium-yttrium oxyorthosilicate (LYSO) crystals with different dimensions coupled to a digital SiPM was used to study the influence of using different SiPM active area on the number of photons detected, energy resolution and coincidence time resolution (CTR). For the same crystal coupled to the digital SiPM, the larger the active area of digital SiPM, the higher the number of photons detected. The larger active area of the digital SiPM also results in a better energy resolution after saturation...

  14. Intercomparison of measurements of NO2 concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign

    Directory of Open Access Journals (Sweden)

    H. Fuchs

    2010-01-01

    Full Text Available NO2 concentrations were measured by various instruments during the NO3Comp campaign at the atmosphere simulation chamber SAPHIR at Forschungszentrum Jülich, Germany, in June 2007. Analytical methods included photolytic conversion with chemiluminescence (PC-CLD, broadband cavity ring-down spectroscopy (BBCRDS, pulsed cavity ring-down spectroscopy (CRDS, incoherent broadband cavity-enhanced absorption spectroscopy (IBB\\-CEAS, and laser-induced fluorescence (LIF. All broadband absorption spectrometers were optimized for the detection of the main target species of the campaign, NO3, but were also capable of detecting NO2 simultaneously with reduced sensitivity. NO2 mixing ratios in the chamber were within a range characteristic of polluted, urban conditions, with a maximum mixing ratio of approximately 75 ppbv. The overall agreement between measurements of all instruments was excellent. Linear fits of the combined data sets resulted in slopes that differ from unity only within the stated uncertainty of each instrument. Possible interferences from species such as water vapor and ozone were negligible under the experimental conditions.

  15. Type-II Superlattice Avalanche Photodiodes

    Science.gov (United States)

    Huang, Jun

    Type-II superlattice avalanche photodiodes have shown advantages compared to conventional mercury cadmium telluride photodiodes for infrared wavelength detection. However, surface or interface leakage current has been a major issue for superlattice avalanche photodiodes, especially in infrared wavelength region. First, passivation of the superlattice device with ammonium sulfide and thioacetamide was carried out, and its surface quality was studied by X-ray Photoelectron Spectroscopy. The study showed that both ammonium sulfide and thiacetamide passivation can actively remove the native oxide at the surface. Thiacetamide passivation combine more sulfur bonds with III-V elements than that of ammonium sulfide. Another X-ray photoelectron spectra of thiacetamide-treated atomic layer deposited zinc sulfide capped InAs/GaSb superlattice was performed to investigate the interface sulfur bond conditions. Sb--S and As--S bonds disappear while In-S bond gets enhanced, indicating that Indium Sulfide should be the major components at the interface after ZnS deposition. Second, the simulation of electrical characteristics for zinc sulfide, silicon nitride and silicon dioxide passivated superlattice devices was performed by SILVACO software to fit the experimental results and to discover the surface current mechanism. Different surface current mechanism strengths were found. Third, several novel dual-carrier avalanche photodiode structures were designed and simulated. The structures had alternate carrier multiplication regions, placed next to a wider electron multiplication region, creating dual-carrier multiplication feedback systems. Gain and excess noise factor of these structures were simulated and compared based on the dead space multiplication theory under uniform electric field. From the simulation, the applied bias can be greatly lowered or the thickness can be shrunk to achieve the same gain from the conventional device. The width of the thin region was the most

  16. Buried plastic scintillator muon telescope

    Science.gov (United States)

    Sanchez, F.; Medina-Tanco, G.A.; D'Olivo, J.C.; Paic, G.; Patino Salazar, M.E.; Nahmad-Achar, E.; Valdes Galicia, J.F.; Sandoval, A.; Alfaro Molina, R.; Salazar Ibarguen, H.; Diozcora Vargas Trevino, M.A.; Vergara Limon, S.; Villasenor, L.M.

    Muon telescopes can have several applications, ranging from astrophysical to solar-terrestrial interaction studies, and fundamental particle physics. We show the design parameters, characterization and end-to-end simulations of a detector composed by a set of three parallel dual-layer scintillator planes, buried at fix depths ranging from 0.30 m to 3 m. Each layer is 4 m2 and is composed by 50 rectangular pixels of 4cm x 2 m, oriented at a 90 deg angle with respect to its companion layer. The scintillators are MINOS extruded polystyrene strips with two Bicron wavelength shifting fibers mounted on machined grooves. Scintillation light is collected by multi-anode PMTs of 64 pixels, accommodating two fibers per pixel. The front-end electronics has a time resolution of 7.5 nsec. Any strip signal above threshold opens a GPS-tagged 2 micro-seconds data collection window. All data, including signal and background, are saved to hard disk. Separation of extensive air shower signals from secondary cosmic-ray background muons and electrons is done offline using the GPS-tagged threefold coincidence signal from surface water cerenkov detectors located nearby in a triangular array. Cosmic-ray showers above 6 PeV are selected. The data acquisition system is designed to keep both, background and signals from extensive air showers for a detailed offline data.

  17. TCAD simulation of Low Gain Avalanche Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh, E-mail: ashutosh.bhardwaj@cern.ch; Ranjan, Kirti

    2016-11-11

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  18. Avalanche Photodiode Arrays for Optical Communications Receivers

    Science.gov (United States)

    Srinivasan, M.; Vilnrotter, V.

    2001-01-01

    An avalanche photodiode (APD) array for ground-based optical communications receivers is investigated for the reception of optical signals through the turbulent atmosphere. Kolmogorov phase screen simulations are used to generate realistic spatial distributions of the received optical field. It is shown that use of an APD array for pulse-position modulation detection can improve performance by up to 4 dB over single APD detection in the presence of turbulence, but that photon-counting detector arrays yield even greater gains.

  19. TCAD simulation of Low Gain Avalanche Detectors

    Science.gov (United States)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh; Ranjan, Kirti

    2016-11-01

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  20. Bilayer avalanche spin-diode logic

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien [Institut d’Electronique Fondamentale, Univ. Paris-Sud, CNRS, 91405 Orsay (France); Fadel, Eric R. [Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wessels, Bruce W. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208 (United States); Sahakian, Alan V. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 (United States)

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  1. A Review of Ionospheric Scintillation Models.

    Science.gov (United States)

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  2. Electric field distribution and simulation of avalanche formation due ...

    Indian Academy of Sciences (India)

    Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed ...

  3. Radiation and Temperature Hard Multi-Pixel Avalanche Photodiodes

    Science.gov (United States)

    Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)

    2017-01-01

    The structure and method of fabricating a radiation and temperature hard avalanche photodiode with integrated radiation and temperature hard readout circuit, comprising a substrate, an avalanche region, an absorption region, and a plurality of Ohmic contacts are presented. The present disclosure provides for tuning of spectral sensitivity and high device efficiency, resulting in photon counting capability with decreased crosstalk and reduced dark current.

  4. Avalanche transmission and critical behaviour in load-bearing ...

    Indian Academy of Sciences (India)

    The strength and stability properties of hierarchical load-bearing networks and their strengthened variants have been discussed in a recent work. Here, we study the avalanche time distributions on these load-bearing networks. The avalanche time distributions of the V-lattice, a unique realization of the networks, show ...

  5. Holes: Ionospheric Scintillation, GPS and Imputation

    Science.gov (United States)

    2007-03-01

    by Klobuchar [Parkinson et al., 1996]. 2.3.2 Definition, Characteristics and Models. The situation for scintillation, sadly, is not so simple.Groves...and J. A. Klobuchar (2003), Ionospheric scintillation effects on single and dual frequency gps positioning, in Proceedings of ION GPS/GNSS 2003... Klobuchar (1996), Commercial ionospheric scintillation monitoring receiver development and test results, in Proceedings of the 52nd Annual Meeting of the

  6. Age of Palos Verdes submarine debris avalanche, southern California

    Science.gov (United States)

    Normark, W.R.; McGann, M.; Sliter, R.

    2004-01-01

    The Palos Verdes debris avalanche is the largest, by volume, late Quaternary mass-wasted deposit recognized from the inner California Borderland basins. Early workers speculated that the sediment failure giving rise to the deposit is young, taking place well after sea level reached its present position. A newly acquired, closely-spaced grid of high-resolution, deep-tow boomer profiles of the debris avalanche shows that the Palos Verdes debris avalanche fills a turbidite leveed channel that extends seaward from San Pedro Sea Valley, with the bulk of the avalanche deposit appearing to result from a single failure on the adjacent slope. Radiocarbon dates from piston-cored sediment samples acquired near the distal edge of the avalanche deposit indicate that the main failure took place about 7500 yr BP. ?? 2003 Elsevier B.V. All rights reserved.

  7. Designing an optimally proportional inorganic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai, E-mail: jai.singh@cdu.edu.au [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia); Koblov, Alexander [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia)

    2012-09-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  8. Random wave fields and scintillated beams

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available fields . Artificial vortex fields CSIR National Laser Centre – p.2/29 Scintillated optical beams When an optical beam propagates through a turbulent atmosphere, the index variations cause random phase modulations that lead to distortions of the optical... beam. CSIR National Laser Centre – p.3/29 Weak scintillation If the scintillation is weak the resulting phase function of the optical beam is still continuous. Such a weakly scintillated beam can be corrected by an adaptive optical system. CSIR National...

  9. High-symmetry organic scintillator systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L.

    2017-09-05

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  10. High-symmetry organic scintillator systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  11. Structural Analysis of PTM Hotspots (SAPH-ire) – A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families*

    Science.gov (United States)

    Dewhurst, Henry M.; Choudhury, Shilpa; Torres, Matthew P.

    2015-01-01

    Predicting the biological function potential of post-translational modifications (PTMs) is becoming increasingly important in light of the exponential increase in available PTM data from high-throughput proteomics. We developed structural analysis of PTM hotspots (SAPH-ire)—a quantitative PTM ranking method that integrates experimental PTM observations, sequence conservation, protein structure, and interaction data to allow rank order comparisons within or between protein families. Here, we applied SAPH-ire to the study of PTMs in diverse G protein families, a conserved and ubiquitous class of proteins essential for maintenance of intracellular structure (tubulins) and signal transduction (large and small Ras-like G proteins). A total of 1728 experimentally verified PTMs from eight unique G protein families were clustered into 451 unique hotspots, 51 of which have a known and cited biological function or response. Using customized software, the hotspots were analyzed in the context of 598 unique protein structures. By comparing distributions of hotspots with known versus unknown function, we show that SAPH-ire analysis is predictive for PTM biological function. Notably, SAPH-ire revealed high-ranking hotspots for which a functional impact has not yet been determined, including phosphorylation hotspots in the N-terminal tails of G protein gamma subunits—conserved protein structures never before reported as regulators of G protein coupled receptor signaling. To validate this prediction we used the yeast model system for G protein coupled receptor signaling, revealing that gamma subunit–N-terminal tail phosphorylation is activated in response to G protein coupled receptor stimulation and regulates protein stability in vivo. These results demonstrate the utility of integrating protein structural and sequence features into PTM prioritization schemes that can improve the analysis and functional power of modification-specific proteomics data. PMID:26070665

  12. Avalanches of Singing Sand in the Laboratory

    Science.gov (United States)

    Dagois-Bohy, Simon; Courrech Du Pont, Sylvain; Douady, Stéphane

    2011-03-01

    The song of dunes is a natural phenomenon that has arisen travellers' curiosity for a long time, from Marco Polo to R.A. Bagnold. Scientific observations in the XXth century have shown that the sound is emitted during a shear flow of these particular grains, the free surface of the flow having coherent vibrations like a loud speaker. The sound emission is also submitted to a threshold effect with many parameters like humidity, flow speed, surface of the grains. The sound has been reproduced in laboratory avalanche experiments close to the natural phenomenon on field, but set in a channel with a hard bottom and a few centimeters of sand flowing, which contradicts explanations of the sound that involve a sand dune under the avalanche flow. Flow rates measurements also show the presence of a plug region in the flow above the sheared band, with the same characteristic length as the coherence zones of the sound. Finally we show experimentally that the Froude number, once modified to take into account the height of this plug band, is the parameter that sets the amplitude of the sound, and produces a threshold that depends on the grain type.

  13. Single electron multiplication distribution in GEM avalanches

    Science.gov (United States)

    László, András; Hamar, Gergő; Kiss, Gábor; Varga, Dezső

    2016-10-01

    In this paper, measurement results and experimental methodology are presented on the determination of multiplication distributions of avalanches initiated by single electron in GEM foils. The measurement relies on the amplification of photoelectrons by the GEM under study, which is subsequently amplified in an MWPC for signal enhancement and readout. The intrinsic detector resolution, namely the sigma-over-mean ratio of the multiplication distribution is also elaborated. Small gain dependence of the shape of the avalanche response distribution is observed in the range of net effective gain of 15 to 100. The distribution has an exponentially decaying tail at large amplitudes. At small amplitudes, the applied working gas is seen to have a well visible effect on the shape of the multiplication distribution. Equivalently, the working gas has an influence on the intrinsic detector resolution of GEMs via suppression of the low amplitude responses. A sigma-over-mean ratio of 0.75 was reached using a neon based mixture, whereas other gases provided an intrinsic detector resolution closer to 1, meaning a multiplication distribution closer to the low-field limit exponential case.

  14. Reducing financial avalanches by random investments

    Science.gov (United States)

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  15. New insights into the degradation of terpenoids with OH: a study of the OH budget in the atmosphere simulation chamber SAPHIR

    Science.gov (United States)

    Kaminski, Martin; Fuchs, Hendrik; Acir, Ismail-Hakki; Bohn, Birger; Brauers, Theo; Dorn, Hans-Peter; Häseler, Rolf; Hofzumahaus, Andreas; Li, Xin; Lutz, Anna; Nehr, Sascha; Rohrer, Franz; Tillmann, Ralf; Wegener, Robert; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    The hydroxyl radical (OH) is the main oxidation agent in the atmosphere during daytime. Recent field campaigns studying the radical chemistry in forested areas showed large discrepancies between measured and modeled OH concentration at low NOx conditions and when OH reactivity was dominated by VOC. These observations were only partially explained by the evidence for new efficient hydroxyl radical regeneration pathways in the isoprene oxidation mechanism. The question arises if other reactive VOCs with high global emission rates are also capable of additional OH recycling. Beside isoprene, monoterpenes and 2-methyl-3-buten-2-ol (MBO) are the volatile organic compounds (VOC) with the highest global emission rates. Due to their high reactivity towards OH monoterpenes and MBO can dominate the radical chemistry of the atmosphere in forested areas under certain conditions. In the present study the photochemical degradation mechanism of α-pinene, β-pinene, limonene, myrcene and MBO was investigated in the Jülich atmosphere simulation chamber SAPHIR. The focus of this study was in particular on the investigation of the OH budget in the degradation process. The photochemical degradation of these terpenoids was studied in a dedicated series of experiments in the years 2012 and 2013. The SAPHIR chamber was equipped with instrumentation to measure radicals (OH, HO2, RO2), the total OH reactivity, all important OH precursors (O3, HONO, HCHO), the parent VOC, its main oxidation products and photolysis frequencies to investigate the radical budget in the SAPHIR chamber. All experiments were carried out under low NOx conditions (≤ 2ppb) and atmospheric terpenoid concentrations (≤ 5ppb) with and without addition of ozone into the SAPHIR chamber. For the investigation of the OH budget all measured OH production terms were compared to the measured OH destruction. Within the limits of accuracy of the instruments the OH budget was balanced in all cases. Consequently unaccounted

  16. Fabrication and scintillation characteristics of CsI:Tl scintillator for X-ray imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Kim, Kyong Woo [NanoFocusRay, Jeonju (Korea, Republic of); Kim, Hyun Duk; Cho, Gyu Seong; Kim, Jong Yul [Korea Advanced Tnstitute of Science Technology, Daejeon (Korea, Republic of)

    2011-05-15

    The scintillator absorb X-ray and emit visible light. Thallium-doped cesium iodide(CsI:Tl) scintillator have been widely used in X-ray imaging system for medical and industrial because of high scintillation efficiency and proper emission wavelength (550nm) highly matching silicon-based photo-sensor. In this study, Scintillation film was fabricated by using a thermal evaporation method. CsI:Tl films according to fabrication condition such as different doped Tl concentrations, heat treatment temperature, chamber vacuum pressure, deposition thickness and substrate structure onto a glass. Fabricated CsI:Tl scintillators were observed using scanning electron microscopy(SEM), and scintillation characteristics were evaluated such as wavelength, light output of CsI:Tl scintillators were obtained by an X-ray measurement system.

  17. Photodetectors for scintillator proportionality measurement

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W. [Lawrence Berkeley National Laboratory (United States)], E-mail: wwmoses@lbl.gov; Choong, Woon-Seng [Lawrence Berkeley National Laboratory (United States); Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, John D. [Lawrence Livermore National Laboratory (United States)

    2009-10-21

    We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high ({approx}50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable.

  18. Pulsar scintillation patterns and strangelets

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-García, M. Ángeles, E-mail: mperezga@usal.es [Department of Fundamental Physics and IUFFyM, University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Silk, Joseph, E-mail: silk@iap.fr [Institut d' Astrophysique, UMR 7095, CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, 75014 Paris (France); Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore MD 21218 (United States); Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Pen, Ue-Li, E-mail: pen@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, 0N M5S 3H8 (Canada)

    2013-12-18

    We propose that interstellar extreme scattering events, usually observed as pulsar scintillations, may be caused by a coherent agent rather than the usually assumed turbulence of H{sub 2} clouds. We find that the penetration of a flux of ionizing, positively charged strangelets or quark nuggets into a dense interstellar hydrogen cloud may produce ionization trails. Depending on the specific nature and energy of the incoming droplets, diffusive propagation or even capture in the cloud are possible. As a result, enhanced electron densities may form and constitute a lens-like scattering screen for radio pulsars and possibly for quasars.

  19. Avalanche situation in Turkey and back calculation of selected events

    Science.gov (United States)

    Aydin, A.; Bühler, Y.; Christen, M.; Gürer, I.

    2014-05-01

    In Turkey, an average of 24 people die in snow avalanches every year, mainly in the eastern part of Anatolia and in the eastern Black Sea region, where high-mountain ranges are close to the sea. The proportion of people killed in buildings is very high (87%), especially in comparison to other European countries and North America. In this paper we discuss avalanche occurrence, the climatic situation and historical avalanche events in Turkey; in addition, we identify bottlenecks and suggest solutions to tackle avalanche problems. Furthermore, we have applied the numerical avalanche simulation software RAMMS (rapid mass movements simulation) combined with a (digital elevation model) DEM-based potential release zone identification algorithm to analyze the catastrophic avalanche events in the villages of Üzengili (Bayburt province) in 1993 and Yaylaönü (Trabzon province) in 1981. The results demonstrate the value of such an approach for regions with poor avalanche databases, enabling the calculation of different scenarios and the estimation of run-out distances, impact pressure and flow height.

  20. Disordered artificial spin ices: Avalanches and criticality (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Libál, Andras [Faculty of Mathematics and Computer Science, Babes-Bolyai University, RO-400591 Cluj-Napoca (Romania)

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  1. Patterns of death among avalanche fatalities: a 21-year review

    Science.gov (United States)

    Boyd, Jeff; Haegeli, Pascal; Abu-Laban, Riyad B.; Shuster, Michael; Butt, John C.

    2009-01-01

    Background Avalanches are a significant cause of winter recreational fatalities in mountain regions. The purpose of this study was to determine the relative contributions of trauma and asphyxia to avalanche deaths. Methods We reviewed all avalanche fatalities between 1984 and 2005 that had been investigated by the offices of the British Columbia Coroners Service and the Chief Medical Examiner of Alberta. In addition, we searched the database of the Canadian Avalanche Centre for fatal avalanche details. We calculated injury severity scores for all victims who underwent autopsy. Results There were 204 avalanche fatalities with mortality information over the 21-year study period. Of these, 117 victims underwent autopsy, and 87 underwent forensic external examination. Asphyxia caused 154 (75%) deaths. Trauma caused 48 (24%) deaths, with the rate of death from trauma ranging from 9% (4/44) for snowmobilers to 42% (5/12) for ice climbers. In addition, 13% (12/92) of the asphyxia victims who underwent autopsy had major trauma, defined as an injury severity score of greater than 15. Only 48% (23/48) of victims for whom trauma was the primary cause of death had been completely buried. Interpretation Asphyxia and severe trauma caused most avalanche fatalities in western Canada. The relative rates differed between snowmobilers and those engaged in other mountain activities. Our findings should guide recommendations for safety devices, safety measures and resuscitation. PMID:19213801

  2. Supernova Neutrino Detection With Liquid Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ianni, Aldo, E-mail: aldo.ianni@lngs.infn.it [I.N.F.N. Gran Sasso Laboratory, S.S. 17bis, 67100, Assergi (Italy)

    2011-08-10

    Core collapse supernovae are a remarkable source of neutrinos. These neutrinos can also be detected by means of massive liquid scintillators located underground. Observations of supernova neutrinos can shed light on the explosion mechanism and on neutrino properties. In this paper we review the detection channels for neutrinos in liquid scintillators. We consider present and future experiments for supernova neutrino searches.

  3. Neutron scintillators with high detection efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Katagiri, M. E-mail: kata@stsp2a0.tokai.jaeri.go.jp; Tsutsui, N.; Imai, K.; Matsubayashi, M.; Sakasai, K

    2004-08-21

    We have developed three kinds of phosphor/neutron-converter scintillators aiming to increase the detection efficiency of the neutron imaging detectors. One is the ZnS:Ag/{sup 6}LiF (powder) scintillator, which contained {sup 6}LiF about twice in amount comparing to the commercial product (Bicron, BC-704) and painted in a sheet, and the 0.4-mm-thick scintillator sheet exhibited the detection efficiency of 43.5% for thermal neutrons. This value was improved {approx}1.5 times than that of BC-704. Another developed scintillator was a ZnS:Ag/{sup 10}B{sub 2}O{sub 3} (powder), which contained {sup 10}B as a neutron converter. The scintillator was fabricated by sintering up to the temperature of 500 or 600 deg. C, and it exhibited the detection efficiency of 30% for thermal neutrons. Moreover, we developed ZnS:Ag/{sup 10}B{sub 2}O{sub 3} glass-scintillator, which was fabricated by increasing the amount of {sup 10}B{sub 2}O{sub 3} up to 70-90% of the constituents and by sintering the scintillator materials up to the temperature of 650 deg. C. The fabricated glass scintillators, which had a thickness of 0.9-1 mm, exhibited the detection efficiency of 20-40% for thermal neutrons.

  4. Epoxy resins produce improved plastic scintillators

    Science.gov (United States)

    Markley, F. W.

    1967-01-01

    Plastic scintillator produced by the substitution of epoxy resins for the commonly used polystyrene is easy to cast, stable at room temperature, and has the desirable properties of a thermoset or cross-linked system. Such scintillators can be immersed directly in strong solvents, an advantage in many chemical and biological experiments.

  5. Statistical analyses support power law distributions found in neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Andreas Klaus

    Full Text Available The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii model parameter estimation to determine the specific exponent of the power law, and (iii comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect. This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  6. Supraglacial rock avalanches and their effect on glacial deposition

    Science.gov (United States)

    Reznichenko, N.; Davies, T. R. H.; Shulmeister, J.; Winkler, S.

    2012-04-01

    Although rock avalanches occur commonly in glaciated valleys, it is only recently that their effects on the regime and final deposits of debris-covered glaciers have been recognized. The supraglacially-emplaced rock avalanche deposits are distinct features on glacial surfaces due to their different sedimentology and greater depth than other debris covers. The metre-scale thickness and large areal extent of these deposits significantly impact the glacier mass balance by preventing ice-surface ablation (Reznichenko et al., 2011). These effects are often neglected in estimating the total change of glacial mass balance and its response to the catastrophic event. A supraglacial rock avalanche deposit can cause a glacier to form a moraine that will not reflect any current climate forcing. It is likely that only larger rock avalanche events (with respect to the size of the glacier) will result in a significant glacial response (e.g. advance or cessation of retreat). However, all supraglacially transported rock avalanche sediment will be recycled into moraines. The climatic signals extracted from the moraine chronologies of such glaciers may consequently have significant errors. The specific sedimentary characteristics of rock avalanche sediment such as agglomerates produced under high stress conditions (Reznichenko et al., in press) can be used to identify moraines that may have been formed from rock avalanche effect. Reznichenko, N.V., Davies, T.R.H. and Alexander, D.J., 2011. Effects of rock avalanches on glacier behaviour and moraine formation. Geomorphology, v. 132, is.3-4, p. 327-338 Reznichenko, N.V., Davies, T.R.H., Shulmeister, J. and Larsen S.H. Accepted. A new technique for identifying rock-avalanche-sourced sediment in moraines and some paleoclimatic implications. Geology.

  7. Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    T. Brauers

    2007-07-01

    Full Text Available The results from a simulation chamber study on the formaldehyde (HCHO absorption cross section in the UV spectral region are presented. We performed 4 experiments at ambient HCHO concentrations with simultaneous measurements of two DOAS instruments in the atmosphere simulation chamber SAPHIR in Jülich. The two instruments differ in their spectral resolution, one working at 0.2 nm (broad-band, BB-DOAS, the other at 2.7 pm (high-resolution, HR-DOAS. Both instruments use dedicated multi reflection cells to achieve long light path lengths of 960 m and 2240 m, respectively, inside the chamber. During two experiments HCHO was injected into the clean chamber by thermolysis of well defined amounts of para-formaldehyde reaching mixing rations of 30 ppbV at maximum. The HCHO concentration calculated from the injection and the chamber volume agrees with the BB-DOAS measured value when the absorption cross section of Meller and Moortgat (2000 and the temperature coefficient of Cantrell (1990 were used for data evaluation. In two further experiments we produced HCHO in-situ from the ozone + ethene reaction which was intended to provide an independent way of HCHO calibration through the measurements of ozone and ethene. However, we found an unexpected deviation from the current understanding of the ozone + ethene reaction when CO was added to suppress possible oxidation of ethene by OH radicals. The reaction of the Criegee intermediate with CO could be 240 times slower than currently assumed. Based on the BB-DOAS measurements we could deduce a high-resolution cross section for HCHO which was not measured directly so far.

  8. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  9. ELECTRON AVALANCHE MODEL OF DIELECTRIC-VACUUM SURFACE BREAKDOWN

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, E J

    2007-02-21

    The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.

  10. Inorganic-organic rubbery scintillators

    CERN Document Server

    Gektin, A V; Pogorelova, N; Neicheva, S; Sysoeva, E; Gavrilyuk, V

    2002-01-01

    Spectral-kinetic luminescence properties of films, containing homogeneously dispersed scintillation particles of CsI, CsI:Tl, CsI:Na, and NaI:Tl in optically transparent organosiloxane matrix, are presented. Material is flexible and rubbery and in consequence the detectors of convenient shapes can be produced. It is found that luminescence spectra of the received films are identical whereas decay times are much shorter compared to the same ones of the corresponding single crystals. Layers with pure CsI demonstrate only the fast UV emission (307 nm, 10 ns) without blue microsecond afterglow typical for crystals. The films containing NaI:Tl are non-hygroscopic and preserve scintillation properties for a long time in humid atmosphere unlike single crystals. Organosiloxane layers with CsI:Tl particles provide high light output with good energy resolution for sup 5 sup 5 Fe, sup 1 sup 0 sup 9 Cd, sup 2 sup 4 sup 1 Am sources, and are capable of detecting both X-rays and alpha-, beta-particles.

  11. The improved scintillation crystal lead tungstate scintillation for PET

    Science.gov (United States)

    Wan, Youbao; WU, Rurong; Xiao, Linrong; Zhang, Jianxin; Yang, Peizhi; Yan, Hui

    2009-07-01

    As a valuable material for the detecting of γ-ray, PbWO4 and BaF2:PbWO4 crystals were grown by a novel multi-crucible temperature gradient system developed by ourselves. Utilizing a topical partial heating method, this system can form a topical partial high temperature in its hearth. Thus this system could melt raw materials in step by step as requirement. The advantage of this method is that there would be solid obstruct left on the melt in the procedure of the crystal growing up. The left obstruct could prevent the volatilization of the component in the melt. Hence it is helpful for the composition homogenization in the crystal. The system also offers a sustaining device for multi-crucibles and thus it can grow many crystals simultaneity. The optical properties and scintillation properties of the crystals were studied. The results reveal that the ions doping improves the scintillation properties of the crystal. The transmittance spectra show that the transmittance of BaF2:PbWO4 crystals are better than that of PbWO4 crystals. For the PbWO4 crystals, their absorption edge is at 325nm, and their maximum transmittance is 68%. For the BaF2:PbWO4 crystals, their absorption edge is at 325nm and their maximum transmittance is upto76%. The X-ray excited luminescence spectra shows that the luminescence peak is at 420nm for the samples of PbWO4 crystal while the peak is at 430nm for the samples of BaF2:PbWO4 crystal respectively. The luminescence intensity of the samples of BaF2:PbWO4 crystal is about two times than that of PbWO4 crystal. And their peak shape is different for the two kind of crystal. The light yield of BaF2:PbWO4 crystals is about 2.9 times than that of PbWO4 crystal Analyzing these scintillation properties, we find that the VPb 3+ and VO- defects do harm for the optical properties of the crystal. Ions doping method could reduce the defect concentration and improving its illumination performance of the crystal. Specially, the doped F- ions in O2- site can

  12. Calibration of snow avalanche mathematical models using the data of real avalanches in the Ile (Zailiyskiy Alatau Range

    Directory of Open Access Journals (Sweden)

    V. P. Blagoveshchensky

    2017-01-01

    Full Text Available The calibration of the dry friction and turbulent friction coefficients is necessary for computer simulation of avalanches. The method of back calculation based on data on actual avalanches is used for this purpose. The article presents the results of the calibration of the Eglit’s and RAMMS models for Ile Alatau range condi‑ tions. The range is located in Kazakhstan. The data on six avalanches in the same avalanche site were used. Five avalanches were dry, and one avalanche was wet. Avalanches volume varied from 2000 to 12000  m3. Maximum speed avalanches were between 15 and 30  m/s, the flow height  – from 3 to 10  m. Series of back calculations with different values of the friction coefficients was made to obtain the calibrated coeffi‑ cients. The calibrated coefficients were chosen under condition of the best fit with real avalanches. The cal‑ ibrated coefficients were following. For the Eglit’s model for dry avalanches of the volume 2000–5000  m3 μ = 0.46÷0.48, k = 0.005–0.006, and the volume 8000–12000 m3 μ = 0.38÷0.42, k = 0.002÷0.003. For RAMMS model for dry avalanches of the volume of 2000–5000 m3 μ (dry friction coefficient = 0.35÷0.4, ξ (viscous friction coefficient = 1500÷2000 m/s2, and the volume 8,000–12,000 m3 μ = 0.3÷0.35, ξ = 2000÷3000 m/s2. For wet avalanches of the volume 12,000 m3 μ = 0.35, ξ = 1500 m/s2. The work on the calibration will be con‑ tinued to obtain the friction coefficients for the Eglit’s and RAMMS models. The additional data on real ava‑ lanches will be needed for this purpose.

  13. DUE AvalRS: Remote Sensing Derive Avalanche Inventory Data for Decision Support and Hind-Cast After Avalanche Events

    Science.gov (United States)

    Frauenfelder, Regula; Kronholm, Kalle; Solberg, Rune; Larsen, Siri Oyen; Salberg, Arnt-Borre; Larsen, Jan Otto; Bjordal, Heidi

    2010-12-01

    Each year, snow avalanches hit populated areas and parts of the transport network in the Norwegian mountain regions, leading to loss of lives and the damaging of buildings and infrastructure. We present the results of a feasibility study on the operation of a service providing the National Public Roads Administration (NPRA) with hind-cast avalanche inventory data on a local-to-regional scale during the course of the winter season, and as soon as possible after major avalanche events. We have explored the use of imagery from high-resolution and very-high-resolution space-borne satellites applying manual mapping and automated image segmentation.

  14. Avalanche statistics from data with low time resolution

    Science.gov (United States)

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.; Gu, Xiaojun; Uhl, J. T.; Dahmen, Karin A.

    2016-11-01

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

  15. SiC Avalanche Photodiodes and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aymont Technology, Inc. (Aymont) will demonstrate the feasibility of SiC p-i-n avalanche photodiodes (APD) arrays. Aymont will demonstrate 4 x 4 arrays of 2 mm2 APDs...

  16. Relation of the runaway avalanche threshold to momentum space topology

    Science.gov (United States)

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian-Zhu

    2018-02-01

    The underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accurately described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.

  17. Forecasting scintillation activity and equatorial spread F

    Science.gov (United States)

    Anderson, David N.; Redmon, Robert J.

    2017-03-01

    When transionospheric radio waves propagate through an irregular ionosphere with plasma depletions or "bubbles," they are subject to sporadic enhancement and fading, which is referred to as scintillation. Communication and navigation systems may be subject to these detrimental effects if the scintillation is strong enough. It is critical to have knowledge of the current ionospheric conditions so that system operators can distinguish between the natural radio environment and system-induced failures. In this paper we briefly describe the Forecasting Ionospheric Real-time Scintillation Tool UHF scintillation forecasting technique, which utilizes the observed characteristic parameter h'F from a ground-based, ionospheric sounder near the magnetic equator. The prereversal enhancement in vertical E × B drift velocity after sunset is the prime driver for creating plasma depletions and bubbles. In addition, there exists a "threshold" in the h'F value at 1930 LT, h'Fthr, such that, on any given evening, if h'F is significantly above h'Fthr, then scintillation activity is likely to occur, and if it is below h'Fthr, scintillation activity is unlikely to occur. We use this technique to explain the lack of scintillation activity prior to the Halloween storm in October 2003 in the Peruvian longitude sector. In addition, we have carried out a study which forecasts the occurrence or nonoccurrence of equatorial spread F (ESF), on a night-to-night basis, in five longitude sectors. The overall forecasting success is greater than 80% for each of the five longitude sectors.

  18. Influence of snow-cover properties on avalanche dynamics

    Science.gov (United States)

    Steinkogler, W.; Sovilla, B.; Lehning, M.

    2012-04-01

    Snow avalanches with the potential of reaching traffic routes and settlements are a permanent winter threat for many mountain communities. Snow safety officers have to take the decision whether to close a road, a railway line or a ski slope. Those decisions are often very difficult as they demand the ability to interpret weather forecasts, to establish their implication for the stability and the structure of the snow cover and to evaluate the influence of the snow cover on avalanche run-out distances. In the operational programme 'Italy-Switzerland, project STRADA' we focus on the effects of snow cover on avalanche dynamics, and thus run-out distance, with the aim to provide a better understanding of this influence and to ultimately develop tools to support snow safety officers in their decision process. We selected five avalanches, measured at the Vallée de la Sionne field site, with similar initial mass and topography but different flow dynamics and run-out distances. Significant differences amongst the individual avalanches could be observed for front and internal velocities, impact pressures, flow regimes, deposition volumes and run-out distances. For each of these avalanches, the prevailing snow conditions at release were reconstructed using field data from local snowpits or were modeled with SNOWPACK. Combining flow dynamical data with snow cover properties shows that erodible snow depth, snow density and snow temperature in the snow pack along the avalanche track are among the decisive variables that appear to explain the observed differences. It is further discussed, how these influencing factors can be quantified and used for improved predictions of site and time specific avalanche hazard.

  19. Wavelength dependence of silicon avalanche photodiode fabricated by CMOS process

    Science.gov (United States)

    Mohammed Napiah, Zul Atfyi Fauzan; Hishiki, Takuya; Iiyama, Koichi

    2017-07-01

    Avalanche photodiodes fabricated by CMOS process (CMOS-APDs) have features of high avalanche gain below 10 V, wide bandwidth over 5 GHz, and easy integration with electronic circuits. In CMOS-APDs, guard ring structure is introduced for high-speed operation by canceling photo-generated carriers in the substrate at the sacrifice of the responsivity. We describe here wavelength dependence of the responsivity and the bandwidth of the CMOS-APDs with shorted and opened guard ring structure.

  20. Physical vulnerability of reinforced concrete buildings impacted by snow avalanches

    Directory of Open Access Journals (Sweden)

    D. Bertrand

    2010-07-01

    Full Text Available This paper deals with the assessment of physical vulnerability of civil engineering structures to snow avalanche loadings. In this case, the vulnerability of the element at risk is defined by its damage level expressed on a scale from 0 (no damage to 1 (total destruction. The vulnerability of a building depends on its structure and flow features (geometry, mechanical properties, type of avalanche, topography, etc.. This makes it difficult to obtain vulnerability relations. Most existing vulnerability relations have been built from field observations. This approach suffers from the scarcity of well documented events. Moreover, the back analysis is based on both rough descriptions of the avalanche and the structure. To overcome this problem, numerical simulations of reinforced concrete structures loaded by snow avalanches are carried out. Numerical simulations allow to study, in controlled conditions, the structure behavior under snow avalanche loading. The structure is modeled in 3-D by the finite element method (FEM. The elasto-plasticity framework is used to represent the mechanical behavior of both materials (concrete and steel bars and the transient feature of the avalanche loading is taken into account in the simulation. Considering a reference structure, several simulation campaigns are conducted in order to assess its snow avalanches vulnerability. Thus, a damage index is defined and is based on global and local parameters of the structure. The influence of the geometrical features of the structure, the compressive strength of the concrete, the density of steel inside the composite material and the maximum impact pressure on the damage index are studied and analyzed. These simulations allow establishing the vulnerability as a function of the impact pressure and the structure features. The derived vulnerability functions could be used for risk analysis in a snow avalanche context.

  1. Slab avalanche release area estimation: a new GIS tool

    OpenAIRE

    Veitinger, Jochen; Sovilla, Betty; Purves, Ross S.

    2014-01-01

    Location and extent of avalanche starting zones are of crucial importance to correctly estimate the potential danger that avalanches pose to roads, railways or other infrastructure. Presently, release area assessment is based on terrain analysis combined with expert judgment. Tools for the automatic definition of release areas are scarce and exclusively based on parameters derived from summer topography, such as slope and curvature. This leads to several limitations concerning the performance...

  2. Avalanche risk assessment for the link Osh - Bishkek, Kyrgyzstan

    Science.gov (United States)

    Nazarkulova, Kydyr

    2015-04-01

    The Bishkek-Osh road is main North-South ground transportation connection between the two major cities of Kyrgyzstan. One of the causes for frequent interruptions and closures between November and May is the avalanche risk due to local terrain characteristics and orographically induced precipitation maxima during winter. As a first step towards more effective prediction and implementation of mitigating measures the development of a digital avalanche inventory ('avalanche cadastre') has been initiated. This is aiming at modeling regional risk, and prioritizes the implementation of protective infrastructures in the most avalanche-prone zones. In addition, this helps with continuous monitoring of avalanche behaviour and the assessment of potential influence of climate change. For the parameterisation of models and support of decisions, details about avalanche incidences need to be collected. Historical data collected during Soviet time serve as an important baseline, complemented by more recent data. Overall, developing such a geo database shall be useful and effective for future planning at the Ministry of Emergency Services. This paper demonstrates important parameters to be collected and critical role of historical data as a baseline. Geodatabases are being developed on ArcGIS and used locally for planning preventive measures.

  3. Avalanches driven by pressure gradients in a magnetized plasma

    Science.gov (United States)

    Van Compernolle, B.; Morales, G. J.

    2017-11-01

    The results are presented for a basic heat transport experiment involving an off-axis heat source in which avalanche events occur. The configuration consists of a long, hollow, cylindrical region of elevated electron temperature embedded in a colder plasma, and far from the device walls [Van Compernolle et al. Phys. Rev. E 91, 031102(R) (2015)]. The avalanche events are identified as sudden rearrangements of the pressure profile following the growth of fluctuations from ambient noise. The intermittent collapses of the plasma pressure profile are associated with unstable drift-Alfvén waves and exhibit both radial and poloidal dynamics. After each collapse, the plasma enters a quiescent phase in which the pressure profile slowly recovers and steepens until a threshold is exceeded, and the process repeats. The use of reference probes as time markers allows for the visualization of the 2D spatio-temporal evolution of the avalanche events. Avalanches are observed only for a limited combination of heating powers and magnetic fields. At higher heating powers, the system transits from the avalanche regime into a regime dominated by sustained drift-Alfvén wave activity. This manuscript focuses on new results that illustrate the individual contributions to the avalanche process from density and temperature gradients in the presence of zero-order, sheared flows.

  4. A revision of the Haiming rock avalanche (Eastern Alps)

    Science.gov (United States)

    Dufresne, Anja; Ostermann, Marc; Kelfoun, Karim; Ring, Max; Asam, Dario; Prager, Christoph

    2016-04-01

    The carbonate Haiming rock avalanche is directly neighbouring the larger Tschirgant rock avalanche deposit, both located in the upper Inn valley (Tyrol, Austria). Based on detailed morpho-lithologic mapping of the deposit, which has not been done at Haiming before, the sedimentology of the Holocene landslide debris is characterised. Structural-tectonic elements of the bedrock units at the scarp area are supplemented with borehole data from drillings at the source area giving valuable insights into the complex geological bedrock composition and structure. New source and runout reconstructions allow updated volumetric calculations, which are subsequently integrated into numerical runout modelling. Haiming is one of few topographically unobstructed rock avalanches, yet its morphology was greatly influenced by fluvial terraces, which are still discernible through the deposit on LiDAR hillshade images. We also address the influence of the rock avalanche on the valley floor and local river system as a short-lived dam and its interaction with fluvial incision. Finally, we discuss the Haiming rock avalanche in view of the other massive rock slope failures in the area ("Fernpass cluster"), their spatio-temporal distribution, and point out further highlights of this simple(?) rock avalanche deposit.

  5. Spatio-temporal avalanche forecasting with Support Vector Machines

    Directory of Open Access Journals (Sweden)

    A. Pozdnoukhov

    2011-02-01

    Full Text Available This paper explores the use of the Support Vector Machine (SVM as a data exploration tool and a predictive engine for spatio-temporal forecasting of snow avalanches. Based on the historical observations of avalanche activity, meteorological conditions and snowpack observations in the field, an SVM is used to build a data-driven spatio-temporal forecast for the local mountain region. It incorporates the outputs of simple physics-based and statistical approaches used to interpolate meteorological and snowpack-related data over a digital elevation model of the region. The interpretation of the produced forecast is discussed, and the quality of the model is validated using observations and avalanche bulletins of the recent years. The insight into the model behaviour is presented to highlight the interpretability of the model, its abilities to produce reliable forecasts for individual avalanche paths and sensitivity to input data. Estimates of prediction uncertainty are obtained with ensemble forecasting. The case study was carried out using data from the avalanche forecasting service in the Locaber region of Scotland, where avalanches are forecast on a daily basis during the winter months.

  6. POLARIS: Portable Liquid Argon Imaging Scintillator

    Science.gov (United States)

    Jia, Yanyu; Kovacs, Benjamin; Kamp, Nicholas; Aidala, Christine; Polaris Team

    2017-09-01

    Liquefied noble gas detectors have become widely used in nuclear and particle physics, in particular for detecting neutrinos and in dark matter searches. However, their potential for neutron detection in low-energy nuclear physics has not yet been realized. The University of Michigan has been constructing a hybrid scintillating time projection chamber for detection of neutrons in the 200 keV 10 MeV range. The scintillation material is argon, and various dopants to improve detector efficiency are being explored. With collection of both scintillation light and ionization charge, improved energy resolution for neutrons is expected compared to existing measurement techniques.

  7. Scintillation particle detection based on microfluidics

    CERN Document Server

    Mapelli, A; Renaud, P; Gorini, B; Trivino, N Vico; Jiguet, S; Vandelli, W; Haguenauer, M

    2010-01-01

    A novel type of particle detector based on scintillation, with precise spatial resolution and high radiation hardness, is being studied. It consists of a single microfluidic channel filled with a liquid scintillator and is designed to define an array of scintillating waveguides each independently coupled to a photodetector. Prototype detectors built using an SU-8 epoxy resin have been tested with electrons from a radioactive source. The experimental results show a light yield compatible with the theoretical expectations and confirm the validity of the approach. (C) 2010 Elsevier B.V. All rights reserved.

  8. Advanced plastic scintillators for fast neutron discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Anstey, Mitchell [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Doty, F. Patrick [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mengesha, Wondwosen [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.

  9. Modeling of snow avalanches for protection measures designing

    Science.gov (United States)

    Turchaninova, Alla; Lazarev, Anton; Loginova, Ekaterina; Seliverstov, Yuri; Glazovskaya, Tatiana; Komarov, Anton

    2017-04-01

    Avalanche protection structures such as dams have to be designed using well known standard engineering procedures that differ in different countries. Our intent is to conduct a research on structural avalanche protection measures designing and their reliability assessment during the operation using numerical modeling. In the Khibini Mountains, Russia, several avalanche dams have been constructed at different times to protect settlements and mining. Compared with other mitigation structures dams are often less expensive to construct in mining regions. The main goal of our investigation was to test the capabilities of Swiss avalanche dynamics model RAMMS and Russian methods to simulate the interaction of avalanches with mitigation structures such as catching and reflecting dams as well as to reach the observed runout distances after the transition through a dam. We present the RAMMS back-calculation results of an artificially triggered and well-documented catastrophic avalanche occurred in the town of Kirovsk, Khibini Mountains in February 2016 that has unexpectedly passed through a system of two catching dams and took the lives of 3 victims. The estimated volume of an avalanche was approximately 120,000 m3. For the calculation we used a 5 m DEM including catching dams generated from field measurements in summer 2015. We simulated this avalanche (occurred below 1000 m.a.s.l.) in RAMMS having taken the friction parameters (µ and ζ) from the upper altitude limit (above 1500 m.a.s.l.) from the table recommended for Switzerland (implemented into RAMMS) according to the results of our previous research. RAMMS reproduced the observed avalanche behavior and runout distance. No information is available concerning the flow velocity; however, calculated values correspond in general to the values measured in this avalanche track before. We applied RAMMS using an option of adding structures to DEM (including a dam in GIS) in other to test other operating catching dams in

  10. On the complementariness of infrasound and seismic sensors for monitoring snow avalanches

    Directory of Open Access Journals (Sweden)

    A. Kogelnig

    2011-08-01

    Full Text Available The paper analyses and compares infrasonic and seismic data from snow avalanches monitored at the Vallée de la Sionne test site in Switzerland from 2009 to 2010. Using a combination of seismic and infrasound sensors, it is possible not only to detect a snow avalanche but also to distinguish between the different flow regimes and to analyse duration, average speed (for sections of the avalanche path and avalanche size. Different sensitiveness of the seismic and infrasound sensors to the avalanche regimes is shown. Furthermore, the high amplitudes observed in the infrasound signal for one avalanche were modelled assuming that the suspension layer of the avalanche acts as a moving turbulent sound source. Our results show reproducibility for similar avalanches on the same avalanche path.

  11. Measurement of Radiation Damage of Water-based Liquid Scintillator and Liquid Scintillator

    CERN Document Server

    Bignell, Lindsey J; Hans, Sunej; Jaffe, David E; Rosero, Richard; Vigdor, Steven; Viren, Brett; Worcester, Elizabeth; Yeh, Minfang; Zhang, Chao

    2015-01-01

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of $5\\%$ scintillating phase) exhibit light yield reductions of $1.74 \\pm 0.55 \\%$ and $1.31 \\pm 0.59 \\%$ after $\\approx$ 800 Gy of proton dose, respectively. Whilst some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical conte...

  12. Skier triggering of backcountry avalanches with skilled route selection

    Science.gov (United States)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce

    2015-04-01

    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for

  13. High-efficiency organic glass scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  14. CALICE scintillator hadron calorimeter prototype commissioning and ...

    Indian Academy of Sciences (India)

    . J CVACH. Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2,. 182 21 Prague, Czech Republic. E-mail: cvach@fzu.cz. Abstract. First experience with construction and positron beam tests of a scintillator.

  15. First approximations in avalanche model validations using seismic information

    Science.gov (United States)

    Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty

    2017-04-01

    Avalanche dynamics modelling is an essential tool for snow hazard management. Scenario based numerical modelling provides quantitative arguments for decision-making. The software tool RAMMS (WSL Institute for Snow and Avalanche Research SLF) is one such tool, often used by government authorities and geotechnical offices. As avalanche models improve, the quality of the numerical results will depend increasingly on user experience on the specification of input (e.g. release and entrainment volumes, secondary releases, snow temperature and quality). New model developments must continue to be validated using real phenomena data, for improving performance and reliability. The avalanches group form University of Barcelona (RISKNAT - UB), has studied the seismic signals generated from avalanches since 1994. Presently, the group manages the seismic installation at SLF's Vallée de la Sionne experimental site (VDLS). At VDLS the recorded seismic signals can be correlated to other avalanche measurement techniques, including both advanced remote sensing methods (radars, videogrammetry) and obstacle based sensors (pressure, capacitance, optical sender-reflector barriers). This comparison between different measurement techniques allows the group to address the question if seismic analysis can be used alone, on more additional avalanche tracks, to gain insight and validate numerical avalanche dynamics models in different terrain conditions. In this study, we aim to add the seismic data as an external record of the phenomena, able to validate RAMMS models. The seismic sensors are considerable easy and cheaper to install than other physical measuring tools, and are able to record data from the phenomena in every atmospheric conditions (e.g. bad weather, low light, freezing make photography, and other kind of sensors not usable). With seismic signals, we record the temporal evolution of the inner and denser parts of the avalanche. We are able to recognize the approximate position

  16. Guiding thermomagnetic avalanches with soft magnetic stripes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; Rosenmann, D.; Kwok, W. -K.

    2017-12-01

    We demonstrate the potential for manipulating the ultrafast dynamics of thermomagnetic flux avalanches (TMA) in superconducting films with soft magnetic stripes deposited on the film. By tuning the in-plane magnetization of the stripes, we induce lines of strong magnetic potentials for Abrikosov vortices, resulting in guided slow motion of vortices along the stripe edges and preferential bursts of TMA along the stripes. Furthermore, we show that transversely polarized stripes can reduce the TMA size by diverting magnetic flux away from the major trunk of the TMA into interstripe gaps. Our data indicate that TMAs are launched from locations with enhanced vortex entry barrier, where flux accumulation followed by accelerated vortex discharge significantly reduces the threshold of the applied field ramping speed required for the creation of TMAs. Finally, vortex-antivortex annihilation at the moving front of an expanding TMA can account for the enhanced TMA activity in the receding branches of the sample's magnetization cycle and the preferred propagation of TMAs into maximum trapped flux regions.

  17. OPTIMIZING THROUGH CO-EVOLUTIONARY AVALANCHES

    Energy Technology Data Exchange (ETDEWEB)

    S. BOETTCHER; A. PERCUS

    2000-08-01

    We explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problems. The method, called extremal optimization, is inspired by ''self-organized critically,'' a concept introduced to describe emergent complexity in many physical systems. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, extremal optimization successively replaces extremely undesirable elements of a sub-optimal solution with new, random ones. Large fluctuations, called ''avalanches,'' ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such as simulated annealing. With only one adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Those phase transitions are found in the parameter space of most optimization problems, and have recently been conjectured to be the origin of some of the hardest instances in computational complexity. We will demonstrate how extremal optimization can be implemented for a variety of combinatorial optimization problems. We believe that extremal optimization will be a useful tool in the investigation of phase transitions in combinatorial optimization problems, hence valuable in elucidating the origin of computational complexity.

  18. Guiding thermomagnetic avalanches with soft magnetic stripes

    Science.gov (United States)

    Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; Rosenmann, D.; Kwok, W.-K.

    2017-12-01

    We demonstrate the potential for manipulating the ultrafast dynamics of thermomagnetic flux avalanches (TMA) in superconducting films with soft magnetic stripes deposited on the film. By tuning the in-plane magnetization of the stripes, we induce lines of strong magnetic potentials for Abrikosov vortices, resulting in guided slow motion of vortices along the stripe edges and preferential bursts of TMA along the stripes. Furthermore, we show that transversely polarized stripes can reduce the TMA size by diverting magnetic flux away from the major trunk of the TMA into interstripe gaps. Our data indicate that TMAs are launched from locations with enhanced vortex entry barrier, where flux accumulation followed by accelerated vortex discharge significantly reduces the threshold of the applied field ramping speed required for the creation of TMAs. Finally, vortex-antivortex annihilation at the moving front of an expanding TMA can account for the enhanced TMA activity in the receding branches of the sample's magnetization cycle and the preferred propagation of TMAs into maximum trapped flux regions.

  19. The structure of powder snow avalanches

    Science.gov (United States)

    Sovilla, Betty; McElwaine, Jim N.; Louge, Michel Y.

    2015-01-01

    Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried RADAR and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

  20. Dead Time of Single Photon Avalanche Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: lorenzo.neri@ct.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, I-95125, Catania (Italy); Universita degli Studi di Catania, via S.Sofia 64, I-95123, Catania (Italy); Tudisco, S. [INFN Laboratori Nazionali del Sud, via S.Sofia 62, I-95125, Catania (Italy); Musumeci, F.; Scordino, A. [Universita degli Studi di Catania, via S.Sofia 64, I-95123, Catania (Italy); Fallica, G.; Mazzillo, M. [ST-Microelectronics, stradale Primosole 50, I-95100, Catania (Italy); Zimbone, M. [Universita degli Studi di Catania, via S.Sofia 64, I-95123, Catania (Italy)

    2011-06-15

    Single Photon Avalanche Diode (SPAD) is the new generation of Geiger-Muller counter device developed in semiconductor technology [S. Privitera et al. Sensors Journal, vol 8 Iss. 8 (2008) 4636; S. Tudisco et al. IEEE Sensors Journal vol 8 ISS 7-8 (2008) 1324; S. Cova et al. Applied Optics 35 (1996) 1956]. Physical dead time model and noise production process has been analyzed and their corrections have been performed [S.H. Lee, R.P. Gardner, M. Jae, Nucl. Instr. and Meth. in Phys. Res. B 263 (2007) 46]. We have been able to extract the real amount of incident photon rate up to 10{sup 7}cps using a device with 0.97{mu}s total deadtime. We also developed the equation of the noise count rate vs incoming photon rate, supported by Montecarlo simulation and experimental data. We marked the difference between dark rate and noise count rate, and introduced the noise rate inside the hybrid deadtime equation used for SPAD device.

  1. High data volume seismology: Surviving the avalanche

    Science.gov (United States)

    Crotwell, Henry Philip

    Seismic data volumes have increased in the past twenty years with the Incorporated Research Institutes for Seismology's Data Management Center currently archiving upwards of 14 terabytes per year and this trend will continue (Ahern, 2006). Data volumes are quickly reaching the point at which the individual seismologist can be overwhelmed with the avalanche of data. We present three studies at the intersection of seismology and software development that aim to enable more efficient use of data by practicing seismologists. The first is the TauP Toolkit which calculates the travel times of seismic waves through custom one dimensional earth models. TauP also allows almost arbitrary phases to be used and is incorporated into a wide variety of seismology software. TauP is available at http://www.seis.sc.edu/TauP. The second is a study of the compression of seismic data, allowing more efficient storage and transmission. We find that the predictive operator used can have a significant effect on the compression used, and in many cases second differencing can be noticeably better than first differencing. The last is the EarthScope Automated Receiver Survey, which aims to calculate bulk crustal properties for all three component broadband seismic stations available in the US in a highly automated manner. Because of the high degree of automation, the project has been extended to calculated crustal thickness and Vp/V s for global stations as well. Results are available at http://www.seis.sc.edu/ears.

  2. Avalanche outbreaks emerging in cooperative contagions

    Science.gov (United States)

    Cai, Weiran; Chen, Li; Ghanbarnejad, Fakhteh; Grassberger, Peter

    2015-11-01

    The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs , ), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions.

  3. Avalanches in a granular stick-slip experiment: detection using wavelets

    Directory of Open Access Journals (Sweden)

    Abed Zadeh Aghil

    2017-01-01

    Full Text Available Avalanches have been experimentally investigated in a wide range of physical systems from granular physics to friction. Here, we measure and detect avalanches in a 2D granular stick-slip experiment. We discuss the conventional way of signal processing for avalanche extraction and how statistics depend on several parameters that are chosen in the analysis process. Then, we introduce another way of detecting avalanches using wavelet transformations that can be applied in many other systems. We show that by using this method and measuring Lipschitz exponents, we can intelligently detect noise in a signal, which leads to a better avalanche extraction and more reliable avalanche statistics.

  4. Spectrometric characteristics of polystyrene scintillation films

    CERN Document Server

    Astvatsaturov, A R; Gavalyan, V B; Gavalyan, V G

    1999-01-01

    The spectrometric characteristics of five types of polystyrene scintillation films with thicknesses of 10, 30, 50 and 80 mu m and of analogous 250 mu m thick plates irradiated with sup 2 sup 3 sup 9 Pu, sup 2 sup 3 sup 8 Pu and sup 2 sup 2 sup 6 Ra sources of alpha-particles have been studied. The prospects of utilization of scintillation films as radiators for detection of heavy charged particles and measurement of their energy was experimentally shown.

  5. A new technique for infrared scintillation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chiossi, F., E-mail: federico.chiossi@studenti.unipd.it [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Brylew, K. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Borghesani, A.F. [CNISM Unit and Dip. di Fisica e Astronomia, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Braggio, C.; Carugno, G. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Drozdowski, W. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Guarise, M. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy)

    2017-05-21

    We propose a new technique to measure the infrared scintillation light yield of rare earth doped crystals by comparing it to near UV–visible scintillation of a calibrated Pr:(Lu{sub 0.75}Y{sub 0.25}){sub 3}Al{sub 5}O{sub 12} sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to 1700 nm of this crystal.

  6. Physically-sound scaling laws for snow avalanche impact pressure

    Science.gov (United States)

    Faug, T.; Chanut, B.; Caccamo, P.; Naaim, M.

    2012-04-01

    Estimating the force on obstacles stemming from snow avalanches is a non trivial task in avalanche-flow regimes at low velocity for which inertia does not prevail. In addition to the gravity force -proportional to the weight of the undisturbed incoming flow- that takes place at low velocity, extra forces induced by friction for granular snow avalanches, or by some possible viscosity effects for more fluid-like snow avalanches, should be considered. We discuss here the case of a wall-like obstacle overflowed by a granular snow avalanche. Recent small-scale discrete numerical simulations and laboratory tests with granular flows have allowed developing and validating an analytical model to predict the force on the wall. This model shows that the force is the sum of the inertial force, the gravity force of the undisturbed flow and an additional contribution caused by the presence of a stagnant zone formed upstream of the wall and co-existing with an inertial zone above. The model is used to derive a physically-sound scaling law giving the pressure relative to the typical inertial force of the undisturbed flow as a function of the Froude number. Rheological properties of the granular flowing material such as the typical friction angles of the granular material as well as the restitution coefficient of granules are included in the proposed scaling law. With appropriate values of those rheological properties for flowing granular snow, the scaling law can be used to interpret existing pressure data from full-scale snow avalanches and can be cross-compared to classical approaches used in snow avalanche engineering.

  7. Avalanches in a stochastic model of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Marc Benayoun

    Full Text Available Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons. When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  8. Velocity-dependent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility?

    Science.gov (United States)

    Wang, Y. F.; Dong, J. J.; Cheng, Q. G.

    2017-03-01

    To characterize the hypermobility mechanism of rock avalanches, a series of rotary shear tests at different shearing velocities (Veq) ranging from 0.07 m/s to 1.31 m/s and at a normal stress of 1.47 MPa were carried out on soil sampled from the basal facies of the Yigong rock avalanche that occurred in the Tibetan plateau in China. Through conducting these tests, the macroscale and microscale features of the deformed samples were analyzed in detail with the following valuable conclusions being reached: (1) soil subjected to rotary shear exhibits a clear velocity-dependent weakening characteristic with an apparent steady state friction of 0.13 being reached at Veq ≥ 0.61 m/s, (2) high-temperature rises and layers with high porosity were observed in the samples sheared at Veq ≥ 0.61 m/s, and (3) the cooperation of thermal pressurization and moisture fluidization induced by friction heating plays an important role in explaining the marked frictional weakening of the soil. In addition, the appearance of nanoparticles due to particle fragmentation should facilitate the weakening of the soil but is not the key reason for the marked frictional weakening.

  9. TH-C-19A-10: Systematic Evaluation of Photodetectors Performances for Plastic Scintillation Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, J; Beaulieu, L [University Laval, Quebec, QC (Canada); Centre Hospitalier University de Quebec, Quebec, QC (Canada); Beddar, S [University of Texas MD Anderson Cancer Center, Houston, TX (United States); Guillemette, M [Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Quebec, QC (Canada)

    2014-06-15

    Purpose: To assess and compare the performance of different photodetectors likely to be used in a plastic scintillation detector (PSD). Methods: The PSD consists of a 1 mm diameter, 10 mm long plastic scintillation fiber (BCF-60) which is optically coupled to a clear 10 m long optical fiber of the same diameter. A light-tight plastic sheath covers both fibers and the scintillator end is sealed. The clear fiber end is connected to one of the following six studied photodetectors: two polychromatic cameras (one with an optical lens and one with a fiber optic taper replacing the lens); a monochromatic camera with the same optical lens; a PIN photodiode; an avalanche photodiode (APD); and a photomultiplier tube (PMT). Each PSD is exposed to both low energy beams (120, 180, and 220 kVp) from an orthovoltage unit, and high energy beams (6 MV and 23 MV) from a linear accelerator. Various dose rates are explored to identify the photodetectors operating ranges and accuracy. Results: For all photodetectors, the relative uncertainty remains under 5 % for dose rates over 3 mGy/s. The taper camera collects four times more signal than the optical lens camera, although its standard deviation is higher since it could not be cooled. The PIN, APD and PMT have higher sensitivity, suitable for low dose rate and out-of-field dose monitoring. PMT's relative uncertainty remains under 1 % at the lowest dose rate achievable (50 μGy/s), suggesting optimal use for live dosimetry. Conclusion: A set of 6 photodetectors have been studied over a broad dose rate range at various energies. For dose rate above 3 mGy/s, the PIN diode is the most effective photodetector in term of performance/cost ratio. For lower dose rate, such as those seen in interventional radiology, PMTs are the optimal choice. FQRNT Doctoral Research Scholarship.

  10. Sediment Transport by Spring Avalanches in the Southern Swiss Alps

    Science.gov (United States)

    Egloff, J. M.; Hunziker, M.; Moore, J. R.; Christen, M.

    2010-12-01

    Dense wet-snow avalanches breaking through to the base of the snow pack or overriding snow-free surfaces can entrain basal material and act as important agents of sediment transport in steep Alpine catchments. As part of an ongoing study, we investigated two debris fans in the Matter Valley of southern Switzerland during spring 2009 and 2010, with emphasis on quantifying avalanche sediment transport. Deposited debris ranged from soil parcels and plant material to cobbles and boulders greater than 1 m3. Large boulders were generally angular and fresh with clear signs of recent impacts. The seasonal sediment load transported by avalanches was estimated at one fan by sampling the debris content within a number of representative areas, and then extrapolating the cumulative volume. Results reveal a total transported sediment volume of ~150 m3 in 2009 and ~15 m3 in 2010, which likely reflects varying snowfall and avalanche frequency between years. When distributed over the deposition area on the fan, these results imply an average accumulated sediment thickness of 12 mm in 2009 and 3 mm in 2010. Calculated catchment-wide erosion rates are ~0.1 mm/yr for 2009 and ~0.01 mm/yr for 2010. Cross-sections through avalanche debris revealed that transported sediment generally resides on top of the snow surface. As the avalanches melt, entrained sediment is set down gently, often resulting in precariously balanced boulders and rows of blocks perched on the walls of the fan’s channels. In flat lying areas, snowmelt resulted in sparse sediment deposits with no clear structure or sorting. Observations show that the fan surface is usually protected from erosion by snow and older avalanche deposits, which provide a smooth gliding plane for new events. Within the bedrock gulley adjacent to the fan, and in the avalanche source region above, signs of abrasive wear were evident on exposed bedrock surfaces. These include rounded and scoured bedrock, fresh signs of boulder impacts, and

  11. Prediction reliability and return times of natural snow avalanche occurrence

    Science.gov (United States)

    Perona, P.; Daly, E.; Porporato, A.

    2012-04-01

    The process of snow avalanche formation is inherently complex and different type of avalanches may occur as a result of the interactions of different factors, resulting in some degree of both space and time unpredictability. We model the occurrence of natural snow avalanches by means of the state-dependent stochastic point process in continuous time formerly presented by Perona et al. (2009), the full analytical solution of which has now been obtained. The time dynamics of snow depth h is mathematically described as marked Poisson snowfall events, after which h decreases deterministically because of snowmelt and compaction. Avalanches are also treated as a stochastic Poisson process, whose frequency depends on the state of the variable h, and acts as a renewal event for the entire process, i.e resetting the variable h to zero for the sake of mathematical tractability. In this paper, we show the statistical distributions for the snow depth, the avalanche size and intertime of occurrence, as a function of snowfall, slope aspect and compaction rate parameters. By using classic Peak over Threshold theory we also compute the Return Time (RT) of both snowfalls and avalanche sizes. We then use such results in order to inquire the origin of the different RT that are often observed between avalanches and preceding intense snowfalls. We find that a gradual decorrelation occurs between size and RT of avalanche events from that of intense snowfalls as the terrain slope decreases within the range of instability (i.e., slopes > 25°). This is due to the important role played by the snow compaction dynamics, which is on the contrary less influent on high slopes where the load increase due to new snow alone drives the detachment. Hence, we discuss how the spatial variability of hydroclimatic conditions (i.e., precipitation and compaction rate), and topographic characteristics (i.e., slope) influence our ability of predicting the statistics of detachment catchmentwise. Although

  12. Implications of Grainfall for Avalanches and Barchan Dune Morphodynamics

    Science.gov (United States)

    Nield, J. M.; Wiggs, G.; Baddock, M. C.; Hipondoka, M.

    2016-12-01

    Sediment accumulation on aeolian dunes is predominately though avalanching (or grainflow). This grainflow is initiated by the accumulation of grainfall deposits, close to the dune brink. When the accumulation, or `bulge', exceeds an angle of repose, avalanches are initiated and sediment is transported down the lee of the dune. The location of sediment accumulation, or avalanche initiation point, is determined by the distance that grainfall can travel from the dune brink. While previous studies have focused on determining angles at which avalanches occur, along with depositional flux rates, technical constraints have limited the testing of models to predict grainfall zone dynamics under varying wind conditions. Here we use terrestrial laser scanning (TLS) to measure both grainfall distance and associated lee slope surface change of a 5 m high barchan dune under variable wind speeds, on the Skeleton Coast, Namibia. We find that under stronger winds, the distance that grainfall can travel from the brink expands (by up to 0.45 m for a 3 m/s increase in wind speed). Along with this expansion of the grainfall distance there is an increase in saltation flux over the brink. The increased grainfall distance shifts sand further from the brink resulting in dominant avalanche initiation point locations expanding from 0.3 m to 0.4 m for wind speeds above 6 m/s. This shift also corresponds to the appearance of secondary avalanches, which are initiated by primary avalanche lobe deposits extending outside of the main grainfall zone. Ultimately, under stronger winds the expansion of the grainfall distance contributes to the destabilisation and movement of increased sediment volumes down the lee slope. Avalanches under stronger wind speeds, therefore, increase in thickness, width and length, while during weaker wind speeds, most of the grainfall and grainflow is limited to the upper section of the lee slope. The implication of this dual avalanche behaviour under variable wind

  13. Intermittent flow under constant forcing: Acoustic emission from creep avalanches

    Science.gov (United States)

    Salje, Ekhard K. H.; Liu, Hanlong; Jin, Linsen; Jiang, Deyi; Xiao, Yang; Jiang, Xiang

    2018-01-01

    While avalanches in field driven ferroic systems (e.g., Barkhausen noise), domain switching of martensitic nanostructures, and the collapse of porous materials are well documented, creep avalanches (avalanches under constant forcing) were never observed. Collapse avalanches generate particularly large acoustic emission (AE) signals and were hence chosen to investigate crackling noise under creep conditions. Piezoelectric SiO2 has a strong piezoelectric response even at the nanoscale so that we chose weakly bound SiO2 spheres in natural sandstone as a representative for the study of avalanches under time-independent, constant force. We found highly non-stationary crackling noise with four activity periods, each with power law distributed AE emission. Only the period before the final collapse shows the mean field behavior (ɛ near 1.39), in agreement with previous dynamic measurements at a constant stress rate. All earlier event periods show collapse with larger exponents (ɛ = 1.65). The waiting time exponents are classic with τ near 2.2 and 1.32. Creep data generate power law mixing with "effective" exponents for the full dataset with combinations of mean field and non-mean field regimes. We find close agreement with the predicted time-dependent fiber bound simulations, including events and waiting time distributions. Båth's law holds under creep conditions.

  14. Snow avalanche friction relation based on extended kinetic theory

    Directory of Open Access Journals (Sweden)

    M. Rauter

    2016-11-01

    Full Text Available Rheological models for granular materials play an important role in the numerical simulation of dry dense snow avalanches. This article describes the application of a physically based model from the field of kinetic theory to snow avalanche simulations. The fundamental structure of the so-called extended kinetic theory is outlined and the decisive model behavior for avalanches is identified. A simplified relation, covering the basic features of the extended kinetic theory, is developed and implemented into an operational avalanche simulation software. To test the obtained friction relation, simulation results are compared to velocity and runout observations of avalanches, recorded from different field tests. As reference we utilize a classic phenomenological friction relation, which is commonly applied for hazard estimation. The quantitative comparison is based on the combination of normalized residuals of different observation variables in order to take into account the quality of the simulations in various regards. It is demonstrated that the extended kinetic theory provides a physically based explanation for the structure of phenomenological friction relations. The friction relation derived with the help of the extended kinetic theory shows advantages to the classic phenomenological friction, in particular when different events and various observation variables are investigated.

  15. Segregation induced fingering instabilities in granular avalanches

    Science.gov (United States)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico

    2013-04-01

    It is important to be able to predict the distance to which a hazardous natural granular flows (e.g. snow slab avalanches, debris-flows and pyroclastic flows) might travel, as this information is vital for accurate assessment of the risks posed by such events. In the high solids fraction regions of these flows the large particles commonly segregate to the surface, where they are transported to the margins to form bouldery flow fronts. In many natural flows these bouldery margins experience a much greater frictional force, leading to frontal instabilities. These instabilities create levees that channelize the flow vastly increasing the run-out distance. A similar effect can be observed in dry granular experiments, which use a combination of small round and large rough particles. When this mixture is poured down an inclined plane, particle size segregation causes the large particles to accumulate near the margins. Being rougher, the large particles experience a greater friction force and this configuration (rougher material in front of smoother) can be unstable. The instability causes the uniform flow front to break up into a series of fingers. A recent model for particle size-segregation has been coupled to existing avalanche models through a particle concentration dependent friction law. In this talk numerical solutions of this coupled system are presented and compared to both large scale experiments carried out at the USGS flume and more controlled small scale laboratory experiments. The coupled depth-averaged model captures the accumulation of large particles at the flow front. We show this large particle accumulation at the head of the flow can lead to the break-up of the initially uniform front into a series of fingers. However, we are unable to obtain a fully grid-resolved numerical solution; the width of the fingers decreases as the grid is refined. By considering the linear stability of a steady, fully-developed, bidisperse granular layer it is shown that

  16. Conference on Engineering of Scintillation Materials and Radiation Technologies

    CERN Document Server

    Gektin, Alexander

    2017-01-01

    This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of  garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.

  17. Role of hot electron transport in scintillators: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huihui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Univ. (China); Li, Qi [Physical Sciences Division, IBM TJ Watson Research Center, Yorktown Heights, NY (United States); Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Lu, Xinfu; Williams, R.T. [Department of Physics, Wake Forest University, Winston Salem, NC (United States); Qian, Yiyang [College of Engineering and Applied Science, Nanjing University (China); Wu, Yuntao [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States)

    2016-10-15

    Despite recent intensive study on scintillators, several fundamental questions on scintillator properties are still unknown. In this work, we use ab-initio calculations to determine the energy dependent group velocity of the hot electrons from the electronic structures of several typical scintillators. Based on the calculated group velocities and optical phonon frequencies, a Monte-Carlo simulation of hot electron transport in scintillators is carried out to calculate the thermalization time and diffusion range in selected scintillators. Our simulations provide physical insights on a recent trend of improved proportionality and light yield from mixed halide scintillators. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. EXPERIENCE WITH THE ANTI-AVALANCHE STRUCTURES IN THE ELBRUS REGION

    Directory of Open Access Journals (Sweden)

    N. N. Volodicheva

    2012-01-01

    Full Text Available Elbrus region is characterized by the highest degree of avalanche danger, and now the intensive development of winter tourism is coming there. The plan of building protection against avalanches was created here. The snowkeeping shields were built on southern slopes. In winter of 2009, after intensive snowfalls, the shields were partial covered with avalanche snow, but they did not let the bigger avalanches to form. The builders did not consider the complexity of avalanche structure and made some mistakes in the sequence of shields building. The distribution of snow cover on slopes, the dominant avalanche genetic types that define the volume, speed, and the power of blow and the range of emission must be considered during the designing and building of avalanche protection systems. The experience of MSU works must be used during the building of avalanche protection systems in others places of Elbrus region.

  19. The diversity of flux avalanche patterns in superconducting films

    Science.gov (United States)

    Vestgården, J. I.; Shantsev, D. V.; Galperin, Y. M.; Johansen, T. H.

    2013-05-01

    The variety of morphologies in flux patterns created by thermomagnetic dendritic avalanches in type-II superconducting films is investigated using numerical simulations. The avalanches are triggered by introducing a hot spot at the edge of a strip-shaped sample, which is initially prepared in a partially penetrated Bean critical state by slowly ramping the transversely applied magnetic field. The simulation scheme is based on a model accounting for the nonlinear and nonlocal electrodynamics of superconductors in the transverse geometry. By systematically varying the parameters representing the Joule heating, heat conduction in the film, and heat transfer to the substrate, a wide variety of avalanche patterns are formed, and quantitative characterizations of the areal extension, branch width etc are made. The results show that branching is suppressed by the lateral heat diffusion, while large Joule heating gives many branches, and heat removal into the substrate limits the areal size. The morphology shows significant dependence also on the initial flux penetration depth.

  20. Communicators' perspective on snow avalanche risk communication using smartphone applications

    Science.gov (United States)

    Charrière, Marie; Bogaard, Thom; Junier, Sandra; Mostert, Erik

    2015-04-01

    Among all the natural hazards, snow avalanches are the only ones for which a public danger scale is used globally. It consists of 5 levels of danger displayed with a given number and colour, and for each of them behavioural advices are provided. Even though this is standardized in most of the countries affected by this natural hazard, the smartphone applications with which the information is disseminated to the general public differ, particularly in terms of target audience and level of details. This study aims to gather the perspectives of several persons that are responsible for these avalanche risk communication practices. The survey was created to assess how and why choices were made in the design process of the applications and to determine how their effectiveness is evaluated. Along with a review of existing avalanche risk communication smartphone applications, this study provides guidelines for communication and the evaluation of its effectiveness.

  1. Dynamic rock fragmentation: thresholds for long runout rock avalanches

    Directory of Open Access Journals (Sweden)

    E.T. Bowman

    2014-10-01

    Full Text Available The dynamic fragmentation of rock within rock avalanches is examined using the fragmentation concepts introduced by Grady and co-workers. The analyses use typical material values for weak chalk and limestone in order to determine theoretical strain rate thresholds for dynamic fragmentation and resulting fragment sizes. These are found to compare favourably with data obtained from field observations of long runout rock avalanches and chalk cliff collapses in spite of the simplicity of the approach used. The results provide insight as to the energy requirements to develop long runout behaviour and hence may help to explain the observed similarities between large rock avalanches and much smaller scale chalk cliff collapses as seen in Europe.

  2. Avalanches and plastic flow in crystal plasticity: an overview

    Science.gov (United States)

    Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr

    2018-01-01

    Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.

  3. Towards an automated detection of avalanche deposits using their directional properties

    OpenAIRE

    Bühler, Y; Hüni, A; Kellenberger, T W; Itten, K I

    2009-01-01

    Snow avalanches killed more people in the Swiss alpine area during the past decades than any other natural hazard. To further improve the avalanche prediction and the protection of people and infrastructure, information about the occurrence and the distribution of avalanche activity is crucial. Nevertheless this information is missing for large parts of the Alpine area. The surface roughness of avalanche deposits differs considerably from the adjacent undisturbed snow cover and is an impor...

  4. Experimental method to predict avalanches based on neural networks

    Directory of Open Access Journals (Sweden)

    V. V. Zhdanov

    2016-01-01

    Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.

  5. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  6. SNOW AVALANCHE ACTIVITY IN PARÂNG SKI AREA REVEALED BY TREE-RINGS

    Directory of Open Access Journals (Sweden)

    F. MESEȘAN

    2014-11-01

    Full Text Available Snow Avalanche Activity in Parâng Ski Area Revealed by Tree-Rings. Snow avalanches hold favorable conditions to manifest in Parâng Mountains but only one event is historically known, without destructive impact upon infrastructure or fatalities and this region wasn’t yet the object of avalanche research. The existing ski infrastructure of Parâng resort located in the west of Parâng Mountains is proposed to be extended in the steep slopes of subalpine area. Field evidence pinpoints that these steep slopes were affected by snow avalanches in the past. In this study we analyzed 11 stem discs and 31 increment cores extracted from 22 spruces (Picea abies (L. Karst impacted by avalanches, in order to obtain more information about past avalanches activity. Using the dendrogeomorphological approach we found 13 avalanche events that occurred along Scărița avalanche path, since 1935 until 2012, nine of them produced in the last 20 years. The tree-rings data inferred an intense snow avalanche activity along this avalanche path. This study not only calls for more research in the study area but also proves that snow avalanches could constitute an important restrictive factor for the tourism infrastructure and related activities in the area. It must be taken into consideration by the future extension of tourism infrastructure. Keywords: snow avalanche, Parâng Mountains, dendrogeomorphology, ski area.

  7. Meteorological variables associated with deep slab avalanches on persistent weak layers

    Science.gov (United States)

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2014-01-01

    Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.

  8. Sixteen-year follow-up of childhood avalanche survivors

    DEFF Research Database (Denmark)

    Thordardottir, E.B.; Valdimarsdóttir, Unnur A; Hansdottir, Ingunn

    2016-01-01

    stress disorder (PTSD) can provide a gateway to recovery as well as enhancement of preventive measures. Objective: Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES) and PTSD symptoms in adulthood. Methods......: Childhood survivors (aged 2-19 at the time of exposure) of two avalanches were identified through nationwide registers 16 years later. The PosttraumaticDiagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors...

  9. Progress in simulations of micropattern gas avalanche detectors

    CERN Document Server

    Cwetanski, Peter

    2000-01-01

    Helpful for a better understanding of the intrinsic processes in the various gas avalanche detectors are simulations, involving three- dimensional Finite Element Method (FEM) field map computations in order to describe the more and more complex geometries. Drift, multiplication and attachment procedures are simulated using Monte Carlo techniques. Recent results show a remarkable agreement with gain and energy resolution measurements thanks to the refined computations of gas transport properties and improved avalanching models. As examples the influence of wire eccentricity on gas gain and energy resolution in the ATLAS TRT straws is shown as well as performed studies of the Micromegas detector. 8 Refs.

  10. Isotopic response with small scintillator based gamma-ray spectrometers

    Science.gov (United States)

    Madden, Norman W [Sparks, NV; Goulding, Frederick S [Lafayette, CA; Asztalos, Stephen J [Oakland, CA

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  11. Hybrid scintillators for x-ray imaging

    Science.gov (United States)

    Bueno, Clifford; Rairden, Richard L.; Betz, Robert A.

    1996-04-01

    The objective of this effort is to improve x-ray absorption and light production while maintaining high spatial resolution in x-ray imaging phosphor screens. Our current target is to improve screen absorption efficiency and screen brightness by factors of 2 or greater over existing screens that have 10-1p/mm resolution. In this program, commercial phosphor screens are combined with highly absorbing, high-resolution scintillating fiber-optic (SFO) face plates to provide a hybrid sensor that exhibits superior spatial resolution, x-ray absorption, and brightness values over the phosphor material alone. These characteristics of hybrid scintillators can be adjusted to meet specific x-ray imaging requirements over a wide range of x-ray energy. This paper discusses the design, fabrication, and testing of a new series of hybrid scintillators.

  12. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  13. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  14. Upconverting nanoparticles for optimizing scintillator based detection systems

    Science.gov (United States)

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  15. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scintillation (gamma) camera. 892.1100 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera. (a) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in...

  16. Features of the Electron Avalanche in the Great Gas Amplification Mode

    CERN Document Server

    Zalikhanov, B Zh

    2005-01-01

    The results of studying the electron avalanche in narrow-gap wire chambers in the avalanche-to-streamer transition region are presented. Characteristics of the chambers in the great gas amplification mode ($\\geqslant 10^7$) are given. Specific features of the electric field distribution in narrow-gap chambers made it possible to reveal earlier unknown processes which proceed in a high-current avalanche and elucidate the avalanche development dynamics. Qualitative explanation is offered for these processes, and on its basis consideration is given to the possibility of the avalanche-to-streamer transition and the streamer growth mechanism.

  17. Dendritic flux avalanches in superconducting Nb3Sn films

    NARCIS (Netherlands)

    Rudnev, IA; Antonenko, SV; Shantsev, DV; Johansen, TH; Primenko, AE

    2003-01-01

    The penetration of magnetic flux into a thin superconducting film of Nb3Sn with critical temperature 17.8 K and critical current density 6 MA/cm(2) was visualized using magneto-optical imaging. Below 8 K an avalanche-like flux penetration in form of big and branching dendritic structures was

  18. Snow avalanche hazard of the Krkonose National Park, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Blahůt, Jan; Klimeš, Jan; Balek, Jan; Hájek, P.; Červená, L.; Lysák, J.

    2016-01-01

    Roč. 13, č. 2 (2016), s. 86-90 ISSN 1744-5647 R&D Projects: GA MV VG20132015115 Institutional support: RVO:67985891 Keywords : snow avalanches * hazard * inventory * hazard mitigation * Krkonoše Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.174, year: 2016

  19. AVALANCHE BREAKDOWN OF p-n-JUNCTION IN RADIOTECHNICS

    Directory of Open Access Journals (Sweden)

    A. S. Shashkina

    2016-09-01

    Full Text Available The paper presents research results of fractal properties of microplasma noise at LED avalanche breakdown in the visible spectrum (λ= 660; 700 nm. The breakdown type of p-n-junctionwas determined as a result of measured current-voltage characteristics at room temperature, at the temperature of 100-105 °C and after cooling down to room temperature. It was shown that the breakdown of avalanche type is realized in the majority of LEDs. It was established that the partial avalanche breakdown mode may be realized in LEDs, when a small current flows in pulses through the device. By increasing the voltage, pulse amplitude increases, closely spaced pulses merge, and time intervals between them are reduced. To interpret experimental results we applied model of processes occurring in microplasma, and noise model of partial and advanced avalanche breakdown (by A.S. Tager. The study revealed previously non-described features of microplasma noise – the fractal nature of microplasma noise. The algorithm for fractal dimension calculating was implemented in MATLAB. The dependence of fractal dimension on the reverse voltage applied to the LEDs was found out. Obtained fractal signal can be applied in optical communication systems for noise free and confidential information transmission.

  20. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile

    Science.gov (United States)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.

    1985-01-01

    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  1. Impurity impact ionization avalanche in p-type diamond

    Science.gov (United States)

    Mortet, V.; Soltani, A.

    2011-11-01

    Electrical conductivity of a highly boron doped chemical vapor deposited diamond thin film has been studied at different temperatures under high electric field conditions. Current-voltage characteristics have been measured using pulsed technique to reduce thermal effects. Experimental results evidence deep impurity impact ionization avalanche in p-type diamond up to room temperature.

  2. Group Dynamics and Decision Making: Backcountry Recreationists in Avalanche Terrain

    Science.gov (United States)

    Bright, Leslie Shay

    2010-01-01

    The purpose of this study was to describe and determine the prevalence of decision-making characteristics of recreational backcountry groups when making a decision of where to travel and ride in avalanche terrain from the perspective of individuals. Decision-making characteristics encompassed communication, decision-making processes, leadership,…

  3. Electron avalanche structure determined by random walk theory

    Science.gov (United States)

    Englert, G. W.

    1973-01-01

    A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.

  4. Development of new Polysiloxane Based Liquid Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M.; Quaranta, A. [Department of Industrial Engineering, University of Trento,Via Sommarive, 9, 38123 Trento (Italy); INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Gramegna, F.; Marchi, T.; Cinausero, M. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Carturan, S.; Collazuol, G.; Checchia, C. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Department of Physics and Astronomy, University of Padova, Via Marzolo, 8, 35131 Padova (Italy); Degerlier, M. [Department of Physics, Nevsehir Haci Bektas Veli University, Science and Art Faculty, 50300 Nevsehir (Turkey)

    2015-07-01

    In the last decade, attention toward neutron detection has been growing in the scientific community, driven by new requirements in different fields of application ranging from homeland security to medical and material analysis, from research physics, to nuclear energy production. So far neutron detection, with particular attention to fast neutrons, has been mainly based on organic liquid scintillators, owing to their good efficiency and pulse shape discrimination (PSD) capability. Most of these liquids have however some main drawbacks given by toxicity, flammability, volatility and sensitivity to dissolved oxygen that limits the duration and the quality of their performances with worse handiness and increased costs. Phenyl-substituted polysiloxanes could address most of these issues, being characterized by low toxicity, low volatility and low flammability. Their optical properties can be tailored by changing the phenyl distribution and concentration thus allowing to increase the solubility of organic dyes, to modify the fluorescence spectra and to vary the refractive index of the medium. Furthermore, polysiloxanes have been recently exploited for the production of plastic scintillators with very good chemical and thermal stability and very good radiation hardness and the development of polysiloxane liquid scintillators could allow to combine these interesting properties with the supremacy of liquid scintillators as regarding PSD over plastics. For these reasons, the properties of several phenyl-substituted polysiloxane with different phenyl amounts and different viscosities have been investigated, with particular attention to the scintillation response and the pulse shape discrimination capability, and the results of the investigation are reported in this work. More in details, the scintillation light yield towards gamma rays ({sup 60}Co and {sup 137}Cs) of several polysiloxane liquids has been analyzed and compared with the light yield of a commercial non

  5. Robust GPS carrier tracking under ionospheric scintillation

    Science.gov (United States)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance

  6. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances rock-slide source area) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These

  7. Rock avalanches clusters along the northern Chile coastal scarp

    Science.gov (United States)

    Crosta, G. B.; Hermanns, R. L.; Dehls, J.; Lari, S.; Sepulveda, S.

    2017-07-01

    Rock avalanche clusters can be relevant indicators of the evolution of specific regions. They can be used to define: the type and intensity of triggering events, their recurrence and potential probability of occurrence, the progressive damage of the rock mass, the mechanisms of transport and deposition, as well as the environmental conditions at the time of occurrence. This paper tackles these subjects by analyzing two main clusters of rock avalanches (each event between 0.6 and 30 Mm3), separated by few kilometers and located along the coastal scarp of Northern Chile, south of Iquique. It lies, hence, within a seismic area characterized by a long seismic gap that ended on April 1st, 2014 with a Mw 8.2 earthquake. The scar position, high along the coastal cliff, supports seismic triggering for these clusters. The deposits' relative positions are used to obtain the sequence of rock avalanching events for each cluster. The progressive decrease of volume in the sequence of rock avalanches forming each cluster fits well the theoretical models for successive slope failures. These sequences seem to agree with those derived by dating the deposits with ages spanning between 4 kyr and 60 kyr. An average uplift rate of 0.2 mm/yr in the last 40 kyr is estimated for the coastal plain giving a further constraint to the rock avalanche deposition considering the absence of reworking of the deposits. Volume estimates and datings allow the estimation of an erosion rate contribution of about 0.098-0.112 mm km- 2 yr- 1 which is well comparable to values presented in the literature for earthquake induced landslides. We have carried out numerical modeling in order to analyze the mobility of the rock avalanches and examine the environmental conditions that controlled the runout. In doing so, we have considered the sequence of individual rock avalanches within the specific clusters, thus including in the models the confining effect caused by the presence of previous deposits. Bingham

  8. Dealing with the white death: avalanche risk management for traffic routes.

    Science.gov (United States)

    Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob

    2009-01-01

    This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation.

  9. Avalanche Accidents Causing Fatalities: Are They Any Different in the Summer?

    Science.gov (United States)

    Pasquier, Mathieu; Hugli, Olivier; Kottmann, Alexandre; Techel, Frank

    2017-03-01

    Pasquier, Mathieu, Olivier Hugli, Alexandre Kottmann, and Frank Techel. Avalanche accidents causing fatalities: are they any different in the summer? High Alt Med Biol. 18:67-72, 2017. This retrospective study investigated the epidemiology of summer avalanche accidents that occurred in Switzerland and caused at least one fatality between 1984 and 2014. Summer avalanche accidents were defined as those that occurred between June 1st and October 31st. Summer avalanches caused 21 (4%) of the 482 avalanches with at least one fatality occurring during the study period, and 40 (6%) of the 655 fatalities. The number of completely buried victims per avalanche and the proportion of complete burials among trapped people were lower in summer than in winter. Nevertheless, the mean number of fatalities per avalanche was higher in summer than in winter: 1.9 ± 1.2 (standard deviation; range 1-6) versus 1.3 ± 0.9 (range 1-7; p accidents. Sixty-five percent of fully buried were found due to visual clues at the snow surface. Fatal summer avalanche accidents caused a higher mean number of fatalities per avalanche than winter avalanches, and those deaths resulted mostly from trauma. Rescue teams should anticipate managing polytrauma for victims in summer avalanche accidents rather than hypothermia or asphyxia; they should be trained in prehospital trauma life support and equipped accordingly to ensure efficient patient care.

  10. Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers

    Science.gov (United States)

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2015-01-01

    Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.

  11. Snow avalanche detection and identification for near real-time application

    Science.gov (United States)

    Havens, S.; Johnson, J. B.; Marshall, H.; Nicholson, B.; Trisca, G. O.

    2013-12-01

    A near real-time avalanche detection system will provide highway avalanche forecasters with a tool to remotely monitor major avalanche paths and provide information about regional avalanche activity and timing. For the last three winters, a network of infrasound arrays has been remotely monitoring both avalanche and non-avalanche events along a 10 mile section of Highway 21 in Idaho. To provide the best results to avalanche forecasters, the system must be robust and detect all major avalanche events of interest that affect the highway. Over the last three winters, the infrasound arrays recorded multiple avalanche cycles and we explore different methods of event detection for both large dry avalanches (strong infrasound signal) and small wet avalanches (weak infrasound signal). We compare the F-statistic and cross-correlation techniques (i.e. PMCC) to determine the most robust method and develop computationally efficient algorithms to implement in near-real time using parallel processing and GPU computing. Once an event has been detected, we use the artificial intelligence method of recursive neural networks to classify based on similar characteristics to past known signals.

  12. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy.

    Science.gov (United States)

    Ingram, W Scott; Robertson, Daniel; Beddar, Sam

    2015-03-11

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator's stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent.

  13. The SNO+ Scintillator Purification Plant and Projected Sensitivity to Solar Neutrinos in the Pure Scintillator Phase

    Science.gov (United States)

    Pershing, Teal; SNO+ Collaboration

    2016-03-01

    The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.

  14. Avalanche Debris Detection Using Satellite- and Drone Based Radar and Optical Remote Sensing

    Science.gov (United States)

    Eckerstorfer, M.; Malnes, E.; Vickers, H.; Solbø, S. A.; Tøllefsen, A.

    2014-12-01

    The mountainous fjord landscape in the county of Troms, around its capital Tromsø in Northern Norway is prone to high avalanche activity during the snow season. Large avalanches pose a hazard to infrastructure, such as buildings and roads, located between the steep mountainsides and the fjords. A prolonged cold spell during January and February 2014 was followed by rapid new-snow loading during March 2014, inducing a significant avalanche cycle with many spontaneous, size D4 avalanches that affected major transport veins. During and shortly after the avalanche cycle of March 2014, we obtained 11 Radarsat-2 Ultrafine mode scenes, chosen according to reported avalanche activity. We further collected four Radarsat-2 ScanSAR mode scenes and two Landsat-8 scenes covering the entire county of Troms. For one particular avalanche, we obtained a drone-based orthophoto, from which a DEM of the avalanche debris surface was derived, using structure-from-motion photogrammetry. This enabled us to calculate the debris volume accurately. We detected avalanche debris in the radar images visually, by applying two detection algorithms that make use of the increased backscatter in avalanche debris. This backscatter increase is a product of increased snow water equivalent and surface roughness, roughly of the order of 3 dB. In addition, we applied a multi-temporal approach by repeatedly detecting avalanche debris at different acquisition times, as well as a multi-sensor approach, covering similar areas with different sensors. This multi-temporal and multi-sensor approach enabled us to map the spatial extent and magnitude of the March 2014 avalanche cycle in the county Troms. With ESA's Sentinel-1 satellite, providing high-resolution, large swath radar images with a short repeat cycle, a complete avalanche record for a forecasting region could become feasible. In this first test season, we detected more than 550 avalanches that were released during a one-month period over an area of

  15. SU-8 microfluidic device for scintillating particle detection

    CERN Document Server

    Mapelli, A; Haguenauer, M; Jiguet, S; Vico Triviño, N; Renaud, P

    2009-01-01

    This paper presents the study of a novel scintillation detector based on standard microfabrication techniques. It consists of a fine pitch array of hollow waveguides filled with a liquid scintillator and optically coupled to photodetectors. The detector has been fabricated by patterning the SU-8 photoresist on silicon wafers. Experimental studies have been performed by exciting the liquid scintillator contained in the SU-8 waveguides with electrons. The scintillation light produced was read out by an external photodetector. The results obtained with this set-up demonstrate the concept of microfluidic scintillation detection and are very encouraging for future developments.

  16. Infrared scintillation in gases, liquids and crystals

    NARCIS (Netherlands)

    Belogurov, S.; Bressi, G; Carugno, G.; Conti, E; Iannuzzi, D; Meneguzzo, AT

    2000-01-01

    We report about experimental evidences of infrared scintillation in gaseous, liquid and crystal samples. We firstly studied noble gases at room temperature and near atmospheric pressure in the wavelength range between 0.7 and 1.81 mum. Ar gas emits infrared photons when irradiated by a proton beam.

  17. Scintillating fibre (SciFi) tracker

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    128 modules – containing 11 000 km of scintillating fibres – will make up the new SciFi tracker, which will replace the outer and inner trackers of the LHCb detector as part of the experiment’s major upgrade during Long Shutdown 2 (LS2)

  18. Progress in studying scintillator proportionality: Phenomenological model

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard

    2009-04-30

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  19. The E835 scintillating fiber tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrogiani, M.; Baldini, W.; Bettoni, D.; Bonora, G.; Bonsi, D.; Calabrese, R.; Carassiti, V.; Chiozzi, S.; Frabetti, S.; Luppi, E.; Milano, L.; Rossetto, L.; Stancari, G. [Ferrara Univ. (Italy). Dipt. di Fisica; Bombonati, M.; Mussa, R. [Ferrara Univ. (Italy). Dipt. di Fisica]|[Fermi National Accelerator Laboratory, 60510, Batavia (United States); Gasteyer, T.; Rivetta, C.; Wheelwright, P. [Fermi National Accelerator Laboratory, 60510, Batavia (United States)

    1998-02-01

    This paper describes the scintillating fiber tracking detector designed and built for the Fermilab experiment E835. This detector uses visible light photon counters (VLPC) readout system and is in use at the anti p accumulator ring at Fermilab. A description of the components of the detector and preliminary results of its performances are given. (orig.). 7 refs.

  20. Experimental evidence of infrared scintillation in crystals

    CERN Document Server

    Belogurov, S; Carugno, Giovanni; Conti, E; Iannuzzi, D; Meneguzzo, Anna Teresa

    2000-01-01

    We present experimental results on infrared emission induced by protons in some solid-state samples. Infrared scintillation occurs in many crystals, with different yield values and time-response behaviours. A rough measurement of the emission wavelength of CsI(Tl) is also reported.

  1. Fluorescent compounds for plastic scintillation applications

    Energy Technology Data Exchange (ETDEWEB)

    Pla-Dalmau, A.; Bross, A.D.

    1994-04-01

    Several 2-(2{prime}-hydroxyphenyl)benzothiazole, -benzoxazole, and -benzimidazole derivatives have been prepared. Transmittance, fluorescence, light yield, and decay time characteristics of these compounds have been studied in a polystyrene matrix and evaluated for use in plastic scintillation detectors. Radiation damage studies utilizing a {sup 60}C source have also been performed.

  2. Non-Carbon Dyes For Platic Scintillators- Report

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sexton, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Scintillation based detectors are desirable for many radiation detection applications (portal and border monitoring, safeguards verification, contamination detection and monitoring). The development of next generation scintillators will require improved detection sensitivity for weak gamma ray sources, and fast and thermal neutron quantification. Radiation detection of gamma and neutron sources can be accomplished with organic scintillators, however, the single crystals are difficult to grow for large area detectors and subject to cracking. Alternatives to single crystal organic scintillators are plastic scintillators (PS) which offer the ability to be shaped and scaled up to produce large sized detectors. PS is also more robust than the typical organic scintillator and are ideally suited for deployment in harsh real-world environments. PS contain a mixture of dyes to down-convert incident radiation into visible light that can be detected by a PMT. This project will evaluate the potential use of nano-carbon dyes in plastic scintillators.

  3. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration

    Science.gov (United States)

    Fuchs, H.; Dorn, H.-P.; Bachner, M.; Bohn, B.; Brauers, T.; Gomm, S.; Hofzumahaus, A.; Holland, F.; Nehr, S.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2012-07-01

    During recent field campaigns, hydroxyl radical (OH) concentrations that were measured by laser-induced fluorescence (LIF) were up to a factor of ten larger than predicted by current chemical models for conditions of high OH reactivity and low NO concentration. These discrepancies, which were observed in forests and urban-influenced rural environments, are so far not entirely understood. In summer 2011, a series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, in order to investigate the photochemical degradation of isoprene, methyl-vinyl ketone (MVK), methacrolein (MACR) and aromatic compounds by OH. Conditions were similar to those experienced during the PRIDE-PRD2006 campaign in the Pearl River Delta (PRD), China, in 2006, where a large difference between OH measurements and model predictions was found. During experiments in SAPHIR, OH was simultaneously detected by two independent instruments: LIF and differential optical absorption spectroscopy (DOAS). Because DOAS is an inherently calibration-free technique, DOAS measurements are regarded as a reference standard. The comparison of the two techniques was used to investigate potential artifacts in the LIF measurements for PRD-like conditions of OH reactivities of 10 to 30 s-1 and NO mixing ratios of 0.1 to 0.3 ppbv. The analysis of twenty experiment days shows good agreement. The linear regression of the combined data set (averaged to the DOAS time resolution, 2495 data points) yields a slope of 1.02 ± 0.01 with an intercept of (0.10 ± 0.03) × 106 cm-3 and a linear correlation coefficient of R2 = 0.86. This indicates that the sensitivity of the LIF instrument is well-defined by its calibration procedure. No hints for artifacts are observed for isoprene, MACR, and different aromatic compounds. LIF measurements were approximately 30-40% (median) larger than those by DOAS after MVK (20 ppbv) and toluene (90 ppbv) had been added. However, this discrepancy has a

  4. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration

    Directory of Open Access Journals (Sweden)

    H. Fuchs

    2012-07-01

    Full Text Available During recent field campaigns, hydroxyl radical (OH concentrations that were measured by laser-induced fluorescence (LIF were up to a factor of ten larger than predicted by current chemical models for conditions of high OH reactivity and low NO concentration. These discrepancies, which were observed in forests and urban-influenced rural environments, are so far not entirely understood. In summer 2011, a series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, in order to investigate the photochemical degradation of isoprene, methyl-vinyl ketone (MVK, methacrolein (MACR and aromatic compounds by OH. Conditions were similar to those experienced during the PRIDE-PRD2006 campaign in the Pearl River Delta (PRD, China, in 2006, where a large difference between OH measurements and model predictions was found. During experiments in SAPHIR, OH was simultaneously detected by two independent instruments: LIF and differential optical absorption spectroscopy (DOAS. Because DOAS is an inherently calibration-free technique, DOAS measurements are regarded as a reference standard. The comparison of the two techniques was used to investigate potential artifacts in the LIF measurements for PRD-like conditions of OH reactivities of 10 to 30 s−1 and NO mixing ratios of 0.1 to 0.3 ppbv. The analysis of twenty experiment days shows good agreement. The linear regression of the combined data set (averaged to the DOAS time resolution, 2495 data points yields a slope of 1.02 ± 0.01 with an intercept of (0.10 ± 0.03 × 106 cm−3 and a linear correlation coefficient of R2 = 0.86. This indicates that the sensitivity of the LIF instrument is well-defined by its calibration procedure. No hints for artifacts are observed for isoprene, MACR, and different aromatic compounds. LIF measurements were approximately 30–40% (median larger than those by DOAS after MVK (20 ppbv and

  5. Silicon photomultipliers for the detection of VUV scintillation light in LXe for the nEXO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Tobias; Jamil, Ako; Bayerlein, Reimund; Hoessl, Juergen; Hufschmidt, Patrick; Schneider, Judith; Wagenpfeil, Michael; Wrede, Gerrit; Anton, Gisela; Michel, Thilo [Erlangen Centre for Astroparticle Physics, Erlangen 91058 (Germany)

    2016-07-01

    The future nEXO (next Enriched Xenon Observatory) experiment with a single phase TPC design will use about 4 m{sup 2} of SiPMs for the detection of the VUV (vacuum ultraviolet) scintillation light (λ=175 nm) from LXe to search for the neutrinoless double beta (0νββ) decay of {sup 136}Xe. Commercially available SiPMs are not sensitive to ultraviolet light, because of an antireflective coating on top of the sensitive area. In addition, they suffer from relatively high dark count rate at room temperature and correlated avalanches, such as crosstalk and afterpulsing. The core criteria, for having an energy resolution of about 1% (σ) at the Q-value of the 0νββ decay of {sup 136}Xe (2457.8 keV), are a photon detection efficiency (PDE) of at least 15% at 175 nm and a correlated avalanche probability (CAP) of less than 20% at -100 C. We considered different approaches for optimizing both PDE and CAP. These improved SiPMs from several vendors were tested in different test setups at temperatures of about -100 C with respect to the criteria required in the nEXO experiment.

  6. Maximum speeds and alpha angles of flowing avalanches

    Science.gov (United States)

    McClung, David; Gauer, Peter

    2016-04-01

    A flowing avalanche is one which initiates as a slab and, if consisting of dry snow, will be enveloped in a turbulent snow dust cloud once the speed reaches about 10 m/s. A flowing avalanche has a dense core of flowing material which dominates the dynamics by serving as the driving force for downslope motion. The flow thickness typically on the order of 1 -10 m which is on the order of about 1% of the length of the flowing mass. We have collected estimates of maximum frontal speed um (m/s) from 118 avalanche events. The analysis is given here with the aim of using the maximum speed scaled with some measure of the terrain scale over which the avalanches ran. We have chosen two measures for scaling, from McClung (1990), McClung and Schaerer (2006) and Gauer (2012). The two measures are the √H0-;√S0-- (total vertical drop; total path length traversed). Our data consist of 118 avalanches with H0 (m)estimated and 106 with S0 (m)estimated. Of these, we have 29 values with H0 (m),S0 (m)and um (m/s)estimated accurately with the avalanche speeds measured all or nearly all along the path. The remainder of the data set includes approximate estimates of um (m/s)from timing the avalanche motion over a known section of the path where approximate maximum speed is expected and with either H0or S0or both estimated. Our analysis consists of fitting the values of um/√H0--; um/√S0- to probability density functions (pdf) to estimate the exceedance probability for the scaled ratios. In general, we found the best fits for the larger data sets to fit a beta pdf and for the subset of 29, we found a shifted log-logistic (s l-l) pdf was best. Our determinations were as a result of fitting the values to 60 different pdfs considering five goodness-of-fit criteria: three goodness-of-fit statistics :K-S (Kolmogorov-Smirnov); A-D (Anderson-Darling) and C-S (Chi-squared) plus probability plots (P-P) and quantile plots (Q-Q). For less than 10% probability of exceedance the results show that

  7. Evaluation and operationalization of a novel forest detrainment modeling approach for computational snow avalanche simulation

    Science.gov (United States)

    Teich, M.; Feistl, T.; Fischer, J.; Bartelt, P.; Bebi, P.; Christen, M.; Grêt-Regamey, A.

    2013-12-01

    Two-dimensional avalanche simulation software operating in three-dimensional terrain are widely used for hazard zoning and engineering to predict runout distances and impact pressures of snow avalanche events. Mountain forests are an effective biological protection measure; however, the protective capacity of forests to decelerate or even to stop avalanches that start within forested areas or directly above the treeline is seldom considered in this context. In particular, runout distances of small- to medium-scale avalanches are strongly influenced by the structural conditions of forests in the avalanche path. This varying decelerating effect has rarely been addressed or implemented in avalanche simulation. We present an evaluation and operationalization of a novel forest detrainment modeling approach implemented in the avalanche simulation software RAMMS. The new approach accounts for the effect of forests in the avalanche path by detraining mass, which leads to a deceleration and runout shortening of avalanches. The extracted avalanche mass caught behind trees stops immediately and, therefore, is instantly subtracted from the flow and the momentum of the stopped mass is removed from the total momentum of the avalanche flow. This relationship is parameterized by the empirical detrainment coefficient K [Pa] which accounts for the braking power of different forest types per unit area. To define K dependent on specific forest characteristics, we simulated 40 well-documented small- to medium-scale avalanches which released in and ran through forests with varying K-values. Comparing two-dimensional simulation results with one-dimensional field observations for a high number of avalanche events and simulations manually is however time consuming and rather subjective. In order to process simulation results in a comprehensive and standardized way, we used a recently developed automatic evaluation and comparison method defining runout distances based on a pressure

  8. Hummocks: how they form and evolve in debris avalanches (Invited)

    Science.gov (United States)

    Paguican, E. R.; van Wyk de Vries, B.; Lagmay, A.

    2013-12-01

    Hummocks are topographic features of large landslides and rockslide-debris avalanches common in volcanic settings. We use scaled analog models to study hummock formation and explore their importance in understanding landslide kinematics and dynamics. The models are designed to replicate large-scale volcanic collapses but are relevant also to non-volcanic settings. We characterize hummocks in terms of their evolution, spatial distribution, and internal structure from slide initiation to final arrest. Hummocks initially form by extensional faulting as a landslide begins to move. During motion, individual large blocks develop and spread, creating an initial distribution, with small hummocks at the landslide front and larger ones at the back. As the mass spreads, hummocks remain as discrete entities. They can get wider but may decrease in height, break up, or merge to form bigger and long anticlinal hummocks when confined. In areas of transverse movement within a landslide, elongate hummocks develop between strike-slip flower structures. Absence of hummocks and fault-like features in the deposit may imply a more fluidal flow of emplacement or very low cohesion of lithologies. Hummock size depends on their position in the initial mass, modified by subsequent breakup or coalescence. Hummock size, shape and spatial distribution vary between and within deposits. Such a universal structure with clear connection to the deformation process should provide a framework with which to study avalanche emplacement dynamics and conditions. We study well-preserved and well-sectioned hummocks in the Mt Iriga rockslide-debris avalanches (Philippines), to characterise the internal structure and relate hummocks to the landslide-avalanche behaviour. All the model structures are consistent with field observations and suggest a general brittle-slide emplacement for most landslide avalanches. The upper and outer hummock surface is destabilised by minor slumps and scree formation forming a

  9. A new web-based system to improve the monitoring of snow avalanche hazard in France

    Science.gov (United States)

    Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael

    2016-05-01

    Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.

  10. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    Science.gov (United States)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  11. Assessment of scintillation proxy maps for a scintillation study during geomagnetically quiet and disturbed conditions over Uganda

    Science.gov (United States)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2017-02-01

    The objective of this paper is demonstrate the validity and usefulness of scintillation proxies derived from IGS data, through its comparison with data from dedicated scintillation monitors and its application to GNSS scintillation patterns. The paper presents scintillation patterns developed by using data from the dedicated scintillation monitors of the scintillation network decision aid (SCINDA) network, and proxy maps derived from IGS GPS data for 2011 and 2012 over low latitude stations in Uganda. The amplitude and phase scintillation indicies (S4 and σΦ) were obtained from the Novatel GSV4004B ionospheric scintillation and total electron content (TEC) monitor managed by SCINDA at Makerere (0.340N, 32.570E). The corresponding IGS GPS proxy data were obtained from the receivers at Entebbe (0.040N, 32.440E) and Mbarara (0.600S, 30.740E). The derived amplitude (S4p) and phase (sDPR) scintillation proxy maps were compared with maps of S4 and σΦ during geomagnetic storms (moderate and strong) and geomagnetically quiet conditions. The scintillation patterns using S4 and σΦ and their respective proxies revealed similar diurnal and seasonal patterns of strong scintillation occurrence. The peaks of scintillation occurrence with mean values in the range 0.3 irregularities over Uganda irrespective of the geomagnetic conditions. Therefore, the amplitude and phase scintillation proxies presented here can be used to fill gaps in low-latitude data where there are no data available from dedicated scintillation receivers, irrespective of the geomagnetic conditions.

  12. Nonproportionality of Scintillator Detectors: Theory and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Stephen; Cherepy, Nerine; Hull, Giulia; Valentine, John; Moses, William; Choong, Woon-Seng

    2009-08-17

    On the basis of nonproportionality data obtained for several scintillators, we have developed a theory to describe the carrier dynamics to fit the light yield versus electron energy. The theory of Onsager was adapted to explain how the carriers form excitons or sequentially arrive at the activators to promote the ion to an excited state, and the theory of Birks was employed to allow for exciton-exciton annihilation. We then developed a second theory to deduce the degradation in resolution that results from nonproportionality by evoking Landau fluctuations, which are essentially variations in the deposited energy density that occur as the high energy electron travels along its trajectory. In general there is good agreement with the data, in terms of fitting the nonproportionality curves and reproducing the literature values of nonproportionality's contribution to the scintillator resolution. With the resurgence of interest in developing scintillator detectors that have good energy resolution, an improved understanding of nonproportionality has become a crucial matter since it presents the fundamental limit to the achievable resolution. In order to hasten an improved understanding of scintillator nonproportionality, we have constructed an instrument referred to as SLYNCI (Scintillator Light Yield Nonproportionality Compton Instrument). This is a second-generation instrument to the original device developed by Valentine and coworkers, wherein several new principles of operation have served to increase the data rate by an order of magnitude as discussed in detail in References. In the present article, the focus is on a theory to describe the measured electron response, which is the light yield as a function of the electron energy. To do this, we account for transport of carriers and excitons, in terms of how they transfer their energy to the activators with competition from nonradiative decay pathways. This work builds on the original work of Murray and coworkers

  13. Neutron spectroscopy with scintillation detectors using wavelets

    Science.gov (United States)

    Hartman, Jessica

    The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the

  14. A compact gas-filled avalanche counter for DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y., E-mail: wu24@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Chyzh, A.; Kwan, E.; Henderson, R.A.; Gostic, J.M.; Carter, D. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Bredeweg, T.A.; Couture, A.; Jandel, M.; Ullmann, J.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-12-01

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4{pi} {gamma}-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with {sup 235}U, {sup 238}Pu, {sup 239}Pu, and {sup 241}Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. It was also used to study the spontaneous fission in {sup 252}Cf. The design and performance of this avalanche counter for targets with extreme {alpha}-decay rate up to {approx}2.4 Multiplication-Sign 10{sup 8}/s are described.

  15. Erosion dynamics of powder snow avalanches - model of frontal entrainment

    Science.gov (United States)

    Louge, Michel; Sovilla, Betty

    2013-04-01

    We analyze entrainment at the head of powder snow avalanches (PSA) behaving as an eruption current. Instead of invoking an erosion model or other fitted parameters, the analysis assumes that erosion is sustained by a massive blow-out arising as the snow cover is fluidized by the very pore pressure gradients that the avalanche induces within the snow pack. The stability of a mass balance involving snow cover and flow in the PSA's head region then sets frontal speed, height, mixed-mean density, snowpack fluidization depth, frontal impact pressure and static pressure. We show that acceleration of the front is insensitive to local slope, but effectively depends on the rate of change in cloud width. We compare predictions with data collected at the Vallee de la Sionne.

  16. Avalanche size scaling in sheared three-dimensional amorphous solid

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Lemaître, A.

    2007-01-01

    We study the statistics of plastic rearrangement events in a simulated amorphous solid at T=0. Events are characterized by the energy release and the "slip volume", the product of plastic strain and system volume. Their distributions for a given system size L appear to be exponential, but a chara......We study the statistics of plastic rearrangement events in a simulated amorphous solid at T=0. Events are characterized by the energy release and the "slip volume", the product of plastic strain and system volume. Their distributions for a given system size L appear to be exponential......, but a characteristic event size cannot be inferred, because the mean values of these quantities increase as L-alpha with alpha similar to 3/2. In contrast with results obtained in 2D models, we do not see simply connected avalanches. The exponent suggests a fractal shape of the avalanches, which is also evidenced...

  17. A micropixel avalanche phototransistor for time of flight measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sadigov, A., E-mail: saazik@yandex.ru [National Nuclear Research Center, Baku (Azerbaijan); Institute of Radiation Problems, Baku (Azerbaijan); Suleymanov, S. [National Nuclear Research Center, Baku (Azerbaijan); Institute of Radiation Problems, Baku (Azerbaijan); Ahmadov, F. [National Nuclear Research Center, Baku (Azerbaijan); Ahmadov, G. [National Nuclear Research Center, Baku (Azerbaijan); Joint Institute for Nuclear Research, Dubna (Russian Federation); Abdullayev, K. [National Aviation Academy, Baku (Azerbaijan); Akberov, R. [National Nuclear Research Center, Baku (Azerbaijan); Institute of Radiation Problems, Baku (Azerbaijan); Heydarov, N. [National Nuclear Research Center, Baku (Azerbaijan); Madatov, R. [Institute of Radiation Problems, Baku (Azerbaijan); Mukhtarov, R. [National Aviation Academy, Baku (Azerbaijan); Nazarov, M.; Valiyev, R. [National Nuclear Research Center, Baku (Azerbaijan)

    2017-02-11

    This paper presents results of studies of the silicon based new micropixel avalanche phototransistor (MAPT). MAPT is a modification of well-known silicon photomultipliers (SiPMs) and differs since each photosensitive pixel of the MAPT operates in Geiger mode and comprises an individual micro-transistor operating in binary mode. This provides a high amplitude single photoelectron signal with significantly shorter rise time. The obtained results are compared with appropriate parameters of known SiPMs. - Highlights: • A new photo detector – micropixel avalanche phototransistor was developed. • MAPT has a matrix of microtransistors with fast output. • In these modules the duration of the leading edge of the signal from the photodetectors are not worse than 50–100 ps.

  18. Athermal avalanche in bilayer superconducting nanowire single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V. B., E-mail: verma@nist.gov; Lita, A. E.; Stevens, M. J.; Mirin, R. P.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

    2016-03-28

    We demonstrate that two superconducting nanowires separated by a thin insulating barrier can undergo an avalanche process. In this process, Joule heating caused by a photodetection event in one nanowire and the associated production of athermal phonons which are transmitted through the barrier cause the transition of the adjacent nanowire from the superconducting to the normal state. We show that this process can be utilized in the fabrication of superconducting nanowire single photon detectors to improve the signal-to-noise ratio, reduce system jitter, maximize device area, and increase the external efficiency over a very broad range of wavelengths. Furthermore, the avalanche mechanism may provide a path towards a superconducting logic element based on athermal gating.

  19. Stability of the discretization of the electron avalanche phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Andrea, E-mail: andrea.villa@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Barbieri, Luca, E-mail: luca.barbieri@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Gondola, Marco, E-mail: marco.gondola@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Leon-Garzon, Andres R., E-mail: andresricardo.leon@polimi.it [CMIC Department “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano (Italy); Malgesini, Roberto, E-mail: roberto.malgesini@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy)

    2015-09-01

    The numerical simulation of the discharge inception is an active field of applied physics with many industrial applications. In this work we focus on the drift-reaction equation that describes the electron avalanche. This phenomenon is one of the basic building blocks of the streamer model. The main difficulty of the electron avalanche equation lies in the fact that the reaction term is positive when a high electric field is applied. It leads to exponentially growing solutions and this has a major impact on the behavior of numerical schemes. We analyze the stability of a reference finite volume scheme applied to this latter problem. The stability of the method may impose a strict mesh spacing, therefore a proper stabilized scheme, which is stable whatever spacing is used, has been developed. The convergence of the scheme is treated as well as some numerical experiments.

  20. Avalanche effect and gain saturation in high harmonic generation

    CERN Document Server

    Serrat, Carles; Budesca, Josep M; Seres, Jozsef; Seres, Enikoe; Aurand, Bastian; Hoffmann, Andreas; Namba, Shinichi; Kuehl, Thomas; Spielmann, Christian

    2015-01-01

    Optical amplifiers in all ranges of the electromagnetic spectrum exhibit two essential characteristics: i) the input signal during the propagation in the medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth and ii) the amplification saturates at increasing input signal. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of both the avalanche and saturation effects in the amplification of extreme ultraviolet attosecond pulse trains. We confirm that the amplification takes place only if the seed pulses are perfectly synchronized with the driving strong field in the amplifier. We performed an experimental study and subsequent model calculation on He gas driven by intense 30-fs-long laser pulses, which was seeded with an attosecond pulse train at 110 eV generated in a separated Ne gas jet. The comparison of the performed calculations with the measurements clearly demonstrates that the pumped He gas med...

  1. Large Format Geiger Mode Avalanche Photodiode Arrays and Readout Circuits

    Science.gov (United States)

    2017-06-01

    pixel circuit . The photocharge is sensed by an analog amplifier and digitized at the periphery of the array, a process that adds readout noise .1 2...arrays of custom-fabricated silicon and InP Geiger-mode avalanche photodiode arrays, CMOS readout circuits to digitally count or time stamp single...the readout noise . Airborne flash lidar systems, for example, can achieve high area coverage rates by using large arrays of detectors, each of which

  2. Anterior capsulotomy with a pulsed-electron avalanche knife.

    Science.gov (United States)

    Palanker, Daniel; Nomoto, Hiroyuki; Huie, Philip; Vankov, Alexander; Chang, David F

    2010-01-01

    To evaluate a new pulsed-electron avalanche knife design for creating a continuous curvilinear capsulotomy (CCC) and compare the CCC with a mechanical capsulorhexis. Department of Ophthalmology, Stanford University, Stanford, California, USA. In this study, CCCs were created in freshly enucleated bovine eyes and in rabbit eyes in vivo. The cutting velocity was adjusted by controlling the burst repetition rate, voltage amplitude, and burst duration. Tissue samples were fixed and processed for histology and scanning electron microscopy (SEM) immediately after surgery. The study included 50 bovine eyes and 10 rabbit eyes. By adjusting the electrosurgical waveforms, gas-bubble formation was minimized to permit good surgical visualization. The optimum voltage level was determined to be +/-410 V with a burst duration of 20 mus. Burst repetition rate, continuously adjustable from 20 to 200 Hz with footpedal control, allowed the surgeon to vary linear cutting velocity up to 2.0 mm/s. Histology and SEM showed that the pulsed-electron avalanche knife produced sharp-edged capsule cutting without radial nicks or tears. The probe of the pulsed-electron avalanche knife duplicated the surgical feel of a 25-gauge cystotome and created a histologically smooth capsule cut. It may improve precision and reproducibility of creating a CCC, as well as improve its proper sizing and centration, especially in the face of surgical risk factors, such as weak zonules or poor visibility. Drs. Palanker and Vankov hold patents to the pulsed electron avalanche knife technology, which are licensed to PEAK Surgical by Stanford University. Drs. Palanker and Chang are consultants to PEAK Surgical. Dr. Vankov is an employee of PEAK Surgical. Neither of the other authors has a financial or proprietary interest in any material or method mentioned. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. Particle-based Powder-snow Avalanche Simulation Using GPU

    OpenAIRE

    Yndestad, Leif Kåre Hornnes

    2011-01-01

    The main focus of this thesis was the simulation of a powder-snow avalanche flow. The simulation were implemented using the particle-based simulation solution SPH, from a mathematical model describing powder-snow flow dynamics. The simulation was accelerated by applying the computational power of the GPU, in order to provide a faster simulation time than would have been achieved on the CPU.

  4. Influence of upstream catching dam slope on powder avalanche

    OpenAIRE

    Caccamo, P.; Naaim Bouvet, F.; Faug, T.

    2013-01-01

    International audience; The influence of an obstacle on the dynamics of a finite-volume density current modelling a powder-snow avalanche was investigated. A constant volume of a dyed salt solution reproduced the small-scale aerosol flowing down an inclined channel immersed in a water tank. Reference tests in the absence of the obstacle characterized the dynamics parameters of the flow and then the influence of two types of obstacles on these parameters was studied. Both of the obstacles repr...

  5. Impurity impact ionization avalanche in p-type diamond

    OpenAIRE

    Mortet, Vincent; Soltani, A.

    2012-01-01

    Electrical conductivity of a highly boron doped chemical vapor deposited diamond thin film has been studied at different temperatures under high electric field conditions. Current-voltage characteristics have been measured using pulsed technique to reduce thermal effects. Experimental results evidence deep impurity impact ionization avalanche in p-type diamond up to room temperature. (C) 2011 American Institute of Physics. Physics; Applied; electrical conduction; low temperatures; germaniu...

  6. Initial performance studies of a wearable brain positron emission tomography camera based on autonomous thin-film digital Geiger avalanche photodiode arrays.

    Science.gov (United States)

    Schmidtlein, Charles R; Turner, James N; Thompson, Michael O; Mandal, Krishna C; Häggström, Ida; Zhang, Jiahan; Humm, John L; Feiglin, David H; Krol, Andrzej

    2017-01-01

    Using analytical and Monte Carlo modeling, we explored performance of a lightweight wearable helmet-shaped brain positron emission tomography (PET), or BET camera, based on thin-film digital Geiger avalanche photodiode arrays with Lutetium-yttrium oxyorthosilicate (LYSO) or [Formula: see text] scintillators for imaging in vivo human brain function of freely moving and acting subjects. We investigated a spherical cap BET and cylindrical brain PET (CYL) geometries with 250-mm diameter. We also considered a clinical whole-body (WB) LYSO PET/CT scanner. The simulated energy resolutions were 10.8% (LYSO) and 3.3% ([Formula: see text]), and the coincidence window was set at 2 ns. The brain was simulated as a water sphere of uniform F-18 activity with a radius of 100 mm. We found that BET achieved [Formula: see text] better noise equivalent count (NEC) performance relative to the CYL and [Formula: see text] than WB. For 10-mm-thick [Formula: see text] equivalent mass systems, LYSO (7-mm thick) had [Formula: see text] higher NEC than [Formula: see text]. We found that [Formula: see text] scintillator crystals achieved [Formula: see text] full-width-half-maximum spatial resolution without parallax errors. Additionally, our simulations showed that LYSO generally outperformed [Formula: see text] for NEC unless the timing resolution for [Formula: see text] was considerably smaller than that presently used for LYSO, i.e., well below 300 ps.

  7. Avalanches and power-law behaviour in lung inflation

    Science.gov (United States)

    Suki, Béla; Barabási, Albert-László; Hantos, Zoltán; Peták, Ferenc; Stanley, H. Eugene

    1994-04-01

    WHEN lungs are emptied during exhalation, peripheral airways close up1. For people with lung disease, they may not reopen for a significant portion of inhalation, impairing gas exchange2,3. A knowledge of the mechanisms that govern reinflation of collapsed regions of lungs is therefore central to the development of ventilation strategies for combating respiratory problems. Here we report measurements of the terminal airway resistance, Rt , during the opening of isolated dog lungs. When inflated by a constant flow, Rt decreases in discrete jumps. We find that the probability distribution of the sizes of the jumps and of the time intervals between them exhibit power-law behaviour over two decades. We develop a model of the inflation process in which 'avalanches' of airway openings are seen-with power-law distributions of both the size of avalanches and the time intervals between them-which agree quantitatively with those seen experimentally, and are reminiscent of the power-law behaviour observed for self-organized critical systems4. Thus power-law distributions, arising from avalanches associated with threshold phenomena propagating down a branching tree structure, appear to govern the recruitment of terminal airspaces.

  8. Meshfree simulation of avalanches with the Finite Pointset Method (FPM)

    Science.gov (United States)

    Michel, Isabel; Kuhnert, Jörg; Kolymbas, Dimitrios

    2017-04-01

    Meshfree methods are the numerical method of choice in case of applications which are characterized by strong deformations in conjunction with free surfaces or phase boundaries. In the past the meshfree Finite Pointset Method (FPM) developed by Fraunhofer ITWM (Kaiserslautern, Germany) has been successfully applied to problems in computational fluid dynamics such as water crossing of cars, water turbines, and hydraulic valves. Most recently the simulation of granular flows, e.g. soil interaction with cars (rollover), has also been tackled. This advancement is the basis for the simulation of avalanches. Due to the generalized finite difference formulation in FPM, the implementation of different material models is quite simple. We will demonstrate 3D simulations of avalanches based on the Drucker-Prager yield criterion as well as the nonlinear barodesy model. The barodesy model (Division of Geotechnical and Tunnel Engineering, University of Innsbruck, Austria) describes the mechanical behavior of soil by an evolution equation for the stress tensor. The key feature of successful and realistic simulations of avalanches - apart from the numerical approximation of the occurring differential operators - is the choice of the boundary conditions (slip, no-slip, friction) between the different phases of the flow as well as the geometry. We will discuss their influences for simplified one- and two-phase flow examples. This research is funded by the German Research Foundation (DFG) and the FWF Austrian Science Fund.

  9. Avalanches in the Bean critical-state model

    Science.gov (United States)

    Barford, W.

    1997-07-01

    A macroscopic equation of motion for the flux density in dirty type-II superconductors is introduced. The flux density is subject to various types of spatially varying pinning force. When there is no stick-slip dynamics, i.e., when the static pinning force equals the dynamic pinning force, it is shown that in both one and two dimensions an increase in the surface magnetic field leads to an overall height change and hence to a change in magnetization equal to the change in the surface magnetic field. More interesting behavior occurs on introducing stick-slip dynamics, i.e., when the static pinning force exceeds the dynamic pinning force. In this limit a distribution of avalanche sizes over four orders of magnitude is found for a 100×100 lattice. Apart from the anomalous behavior at large sizes, this is shown to fit a distribution of the form P(s)~s-ν exp(-s/α), where s is the avalanche size. The anomalous behavior for large sizes corresponds to avalanches which involve most of the lattice and, hence, cause the flux to ``slide over the edge,'' as detected by a change in the edge magnetization.

  10. Automated Characterization of Single-Photon Avalanche Photodiode

    Directory of Open Access Journals (Sweden)

    Aina Mardhiyah M. Ghazali

    2012-01-01

    Full Text Available We report an automated characterization of a single-photon detector based on commercial silicon avalanche photodiode (PerkinElmer C30902SH. The photodiode is characterized by I-V curves at different illumination levels (darkness, 10 pW and 10 µW, dark count rate and photon detection efficiency at different bias voltages. The automated characterization routine is implemented in C++ running on a Linux computer. ABSTRAK: Kami melaporkan pencirian pengesan foton tunggal secara automatik berdasarkan kepada diod foto runtuhan silikon (silicon avalanche photodiode (PerkinElmer C30902SH komersial. Pencirian  diod foto adalah berdasarkan kepada plot arus-voltan (I-V pada tahap pencahayaan yang berbeza (kelam - tanpa cahaya, 10pW, dan 10µW, kadar bacaan latar belakang, kecekapan pengesanan foton pada voltan picuan yang berbeza. Pengaturcaraan C++ digunakan di dalam rutin pencirian automatik melalui komputer dengan sistem pengendalian LINUX.KEYWORDS: avalanche photodiode (APD; single photon detector; photon counting; experiment automation

  11. Self-organization without conservation: are neuronal avalanches generically critical?

    Science.gov (United States)

    Bonachela, Juan A.; de Franciscis, Sebastiano; Torres, Joaquín J.; Muñoz, Miguel A.

    2010-02-01

    Recent experiments on cortical neural networks have revealed the existence of well-defined avalanches of electrical activity. Such avalanches have been claimed to be generically scale invariant—i.e. power law distributed—with many exciting implications in neuroscience. Recently, a self-organized model has been proposed by Levina, Herrmann and Geisel to explain this empirical finding. Given that (i) neural dynamics is dissipative and (ii) there is a loading mechanism progressively 'charging' the background synaptic strength, this model/dynamics is very similar in spirit to forest-fire and earthquake models, archetypical examples of non-conserving self-organization, which have recently been shown to lack true criticality. Here we show that cortical neural networks obeying (i) and (ii) are not generically critical; unless parameters are fine-tuned, their dynamics is either subcritical or supercritical, even if the pseudo-critical region is relatively broad. This conclusion seems to be in agreement with the most recent experimental observations. The main implication of our work is that, if future experimental research on cortical networks were to support the observation that truly critical avalanches are the norm and not the exception, then one should look for more elaborate (adaptive/evolutionary) explanations, beyond simple self-organization, to account for this.

  12. Towards an understanding of flows in avalanche transport phenomena

    Science.gov (United States)

    Jin, Suying; Ramadan, Nikolas; van Compernolle, Bart; Poulos, Matt J.; Morales, George J.

    2017-10-01

    Recent heat transport experiments conducted in the Large Plasma Device (LAPD) at UCLA, studying avalanche phenomena at steep cross-magnetic field pressure gradients, suggest that flows play a critical role in the evolution of transport phenomena, motivating further characterization. A ring shaped electron beam source injects sub-ionization energy electrons along the strong background magnetic field within a larger quiescent plasma, creating a hollow, high pressure filament. Two distinct regimes are observed as the density decays; the first characterized by multiple small avalanches producing sudden relaxations of the pressure profile which then recovers under continued heating, and the second signaled by a permanent collapse of the density profile after a global avalanche event, then dominated by drift-Alfven waves. The source is modified from previous experiments to gain active control of the flows by controlling the bias between the emitting ring and surrounding carbon masks. The results of flow measurements obtained using a Mach probe and Langmuir/emissive probe are here presented and compared. An analytical model for the behavior of the electron beam source is also in development. Sponsored by NSF Grant 1619505 and by DOE/NSF at BaPSF.

  13. The study of inorganic scintillating materials

    Science.gov (United States)

    Dudkin, G. N.; Kuznetsov, S. I.; Padalko, V. N.; Syrtanov, M. S.

    2017-05-01

    The procedure for measuring the temporal characteristics and light output of inorganic scintillating materials excited by β-, γ-, and α-particles from radioactive sources is described. Results of measurements of characteristics are presented for ∼30 scintillating compounds including cerium-doped yttrium silicate and scandium borate; europium-doped strontium phosphate; cerium-doped strontium silicate, calcium silicate and magnesium calcium silicate, etc. Upon β- and γ-excitation, cerium-doped scandium borate gives the highest light output with a fluorescent lifetime of 40 ± 4 ns. The highest light output for α-excitation was from cerium-doped yttrium aluminum perovskite, with a fluorescent lifetime of 29 ± 3 ns.

  14. Neutron detection with single crystal organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  15. Ultra-fast timing with plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Hoischen, Robert [Department of Physics, Lund University, S-22100 Lund (Sweden); Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Pietri, Stephane; Prokopowicz, Wawrzyniec; Schaffner, Henning; Gerl, Juergen; Wollersheim, Hans Juergen; Kurz, Nikolaus [Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Rudolph, Dirk [Department of Physics, Lund University, S-22100 Lund (Sweden)

    2009-07-01

    Fast timing detectors for time-of-flight measurements are essential identification tools for isotopes studied at fragment separators at major heavy-ion research facilities. While today's standard technique of utilizing a plastic scintillator read out by few photomultiplier tubes proofs to be efficient, it does not provide the required time resolution for future key experiments at, for example, the Super-FRS at FAIR. A common present-day approach is to use diamond detectors instead. While they do provide a better time resolution compared to scintillators, they are more difficult to use and far more expensive. Results from tests using a new design approach with standard materials will be presented. This leads to a much improved performance, but remains both cost-efficient, compact, and reliable. The design goals and how to accomplish them will be exemplified by the LYCCA (Lund-York-Cologne CAlorimeter) detector aiming for fast-beam experiments at HISPEC within NUSTAR.

  16. Central Tracking Detector Based on Scintillating Fibres

    CERN Multimedia

    2002-01-01

    Scintillating fibres form a reasonable compromise for central tracking detectors in terms of price, resolution, response time, occupancy and heat production. \\\\ \\\\ New fluorescents with large Stokes shifts have been produced, capable of working without wavelength shifters. Coherent multibundles have been developed to achieve high packing fractions. Small segments of tracker shell have been assembled and beam tests have confirmed expectations on spatial resolution. An opto-electronic delay line has been designed to delay the track patterns and enable coincidences with a first level trigger. Replacement of the conventional phosphor screen anode with a Si pixel chip is achieved. This tube is called ISPA-tube and has already been operated in beam tests with a scintillating fibres tracker. \\\\ \\\\ The aim of the proposal is to improve hit densities for small diameter fibres by increasing the fraction of trapped light, by reducing absorption and reflection losses, by reflecting light at the free fibre end, and by inc...

  17. Plastic scintillator detector for pulsed flux measurements

    Science.gov (United States)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  18. Improvement of Energy Thresholds for Scintillation Detectors Using a Monolithic 2 × 2 Multi-Pixel Photon Counter Array with a Coincidence Technique

    Science.gov (United States)

    Miura, Takamasa; Nakamori, Takeshi; Kataoka, Jun; Kato, Takuya; Sato, Kenichi; Ishikawa, Yoshitaka; Yamamura, Kazuhisa; Kawabata, Nobuyuki

    2011-09-01

    The performance of a large-area, monolithic Hamamatsu multi-pixel photon counter (MPPC) was tested consisting of a 2 × 2 array of 3 × 3 mm2 pixels. MPPC is a novel type of semiconductor photodetector comprising multiple avalanche photodiode (APD) pixels operated in Geiger mode. Despite its great advantage of signal multiplication comparable to that achieved with the photomultiplier tube (PMT), the detection of weak scintillation light signals is quite difficult due to the severe contamination of dark counts, which typically amounts to ≃1 Mcps/3 × 3 mm2 at room temperature. In this study, a coincidence technique was applied for scintillation detectors to improve the detection efficiency for low energy gamma-rays. The detector consisted of a 10 × 10 × 10 mm3 crystals of GSO, BGO, and Pr:LuAG optically coupled with the 2 × 2 MPPC-array. With this technique, we demonstrated that the contamination of dark counts was reduced with a rejection efficiency of more than 99.8%. As a result, 22.2 keV gamma-rays were successfully detected with a GSO scintillator as measured at +20 °C.

  19. Local and global avalanches in a two-dimensional sheared granular medium

    Science.gov (United States)

    Barés, Jonathan; Wang, Dengming; Wang, Dong; Bertrand, Thibault; O'Hern, Corey S.; Behringer, Robert P.

    2017-11-01

    We present the experimental and numerical studies of a two-dimensional sheared amorphous material composed of bidisperse photoelastic disks. We analyze the statistics of avalanches during shear including the local and global fluctuations in energy and changes in particle positions and orientations. We find scale-free distributions for these global and local avalanches denoted by power laws whose cutoffs vary with interparticle friction and packing fraction. Different exponents are found for these power laws depending on the quantity from which variations are extracted. An asymmetry in time of the avalanche shapes is evidenced along with the fact that avalanches are mainly triggered by the shear bands. A simple relation independent of the intensity is found between the number of local avalanches and the global avalanches they form. We also compare these experimental and numerical results for both local and global fluctuations to predictions from mean-field and depinning theories.

  20. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  1. Simulation of Scintillating Fibres in Geant4

    CERN Document Server

    Deckenhoff, Mirco

    2014-01-01

    This technical note describes a scintillating fibre (SciFi) simulation using the GEANT4 toolkit. The simulation is designed to enable comprehensive studies accounting for many different aspects, $e.g$ geometry, emission spectra and radiation damages of the SciFi and matrices build from it in the context of the LHCb tracking detector upgrade. It is a further development of the simulation presented in 1.

  2. A novel segmented-scintillator antineutrino detector

    OpenAIRE

    Abreu, Y.; Amhis, Y.; Arnold, L; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Buhour, J. M.; Castle, B.C.; Clark, K.; Coupé, B; Cucoanes, A.S.; Cussans, D; De Roeck, A.; D'Hondt, J.

    2017-01-01

    The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. The detector target uses cubes of polyvinyltoluene interleaved with 6LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise localisa...

  3. A novel segmented-scintillator antineutrino detector

    OpenAIRE

    Abreu, Y.; Amhis, Y.; Arnold, L; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Buhour, J. M.; Castle, B.C.; Clark, K.; Coupé, B; Cucoanes, A.S.; Cussans, D; De Roeck, A.; D'Hondt, J.

    2017-01-01

    The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. The detector target uses cubes of polyvinyltoluene interleaved with (6)LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise locali...

  4. Improved Neutron Scintillators Based on Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Friesel, PhD

    2008-06-30

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd{sub 2}O{sub 3} foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved {sup 6}LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  5. Low current charge normalization with scintillators

    Science.gov (United States)

    Plompen, A. J. M.; Munnik, F.; Wätjen, U.

    1996-04-01

    The use of ZnS(Ag) and YAG(Ce) scintillators for charge normalization at low currents (> 15 pA) was demonstrated with current gains of 2 × 10 3 using a photomultiplier tube (PMT) and up to 10 with a photodiode (PD). An accuracy of a few percent, sufficient for ion beam applications, was obtained. The potential of the method and its use for microprobe applications is discussed.

  6. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, M., E-mail: ohno@hep01.hepl.hiroshima-u.ac.jp [Department of Physical Sciences, Hiroshima University, Hiroshima 739-8526 (Japan); Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y. [Department of Physical Sciences, Hiroshima University, Hiroshima 739-8526 (Japan); Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); and others

    2016-09-21

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5–80 keV) and soft gamma-rays (60–600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector. - Highlights: • A detail of development of signal processing system for ASTRO-H is presented. • Digital filer with FPGA instead of discrete analog circuit is applied. • Expected performance is verified after integration of the satellite.

  7. Temperature quenching in LAB based liquid scintillator

    Science.gov (United States)

    Sörensen, A.; Hans, S.; Junghans, A. R.; Krosigk, B. v.; Kögler, T.; Lozza, V.; Wagner, A.; Yeh, M.; Zuber, K.

    2018-01-01

    The effect of temperature changes on the light output of LAB based liquid scintillator is investigated in a range from -5 to 30°C with α -particles and electrons in a small scale setup. Two PMTs observe the scintillator liquid inside a cylindrically shaped aluminum cuvette that is heated or cooled and the temperature dependent PMT sensitivity is monitored and corrected. The α -emitting isotopes in dissolved radon gas and in natural Samarium (bound to a LAB solution) excite the liquid scintillator mixtures and changes in light output with temperature variation are observed by fitting light output spectra. Furthermore, also changes in light output by compton electrons, which are generated from external calibration γ -ray sources, is analysed with varying temperature. Assuming a linear behaviour, a combined negative temperature coefficient of {(-0.29 ± 0.01)}{ %/°}C is found. Considering hints for a particle type dependency, electrons show {(-0.17 ± 0.02)}{ %/°}C, whereas the temperature dependency seems stronger for α -particles, with {(-0.35 ± 0.03)}{ %/°}C. Due to a high sampling rate, a pulse shape analysis can be performed and shows an enhanced slow decay component at lower temperatures, pointing to reduced non-radiative triplet state de-excitations.

  8. New scintillating crystals for PET scanners

    CERN Document Server

    Lecoq, P

    2002-01-01

    Systematic R&D on basic mechanism in inorganic scintillators, initiated by the Crystal Clear Collaboration at CERN 10 years ago, has contributed not to a small amount, to the development of new materials for a new generation of medical imaging devices with increased resolution and sensitivity. The first important requirement for a scintillator to be used in medical imaging devices is the stopping power for the given energy range of X and gamma rays to be considered, and more precisely the conversion efficiency. A high light yield is also mandatory to improve the energy resolution, which is essentially limited by the photostatistics and the electronic noise at these energies. A short scintillation decay time allows to reduce the dead time and therefore to increase the limiting counting rate. When all these requirements are fulfilled the sensitivity and image contrast are increased for a given patient dose, or the dose can be reduced. Examples of new materials under development by the Crystal Clear Collabor...

  9. Chloride, bromide and iodide scintillators with europium

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  10. Boron-Loaded Silicone Rubber Scintillators

    CERN Document Server

    Bell, Z W; Maya, L; Sloop, F V J

    2003-01-01

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon respons...

  11. Forecasting scintillations, the CNOFS satellite challenge

    Science.gov (United States)

    de La Beaujardiere, O.; Retterer, J.; Groves, K.; Burke, W.; Rich, F.; Basu, B.; Decker, D.; Jeong, L.

    2003-04-01

    This paper describes the science issues associated with the Communication / Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory. The primary purpose of C/NOFS is to forecast ionospheric irregularities that adversely impact communication and navigation systems. A satellite, scheduled for launch in January 2004 into a low inclination (13^o), elliptical (˜400 × 700 km) orbit, is the main component of the C/NOFS Mission. Complementary ground-based measurements are also part of the Mission. Difficulties in predicting the presence of scintillation-producing irregularities may be organized into three categories: (1) understand physical processes active in the background ionosphere and thermosphere, in order to nowcast and forecast the equatorial ionosphere; (2) identify mechanisms that trigger or quench the plasma irregularities; and (3) determine how irregularity spectra evolve. C/NOFS is the first satellite solely dedicated to forecasting ionospheric irregularities and radio wave scintillations. Its sensors will measure the following parameters: ambient and fluctuating electron densities; ion and electron temperatures; AC and DC electric fields; magnetic fields; neutral winds; ionospheric scintillations; and electron content along the lines of sight between the C/NOFS and GPS satellites. Forecasting will be based on both ground and space data. Significant international participation in pursuing C/NOFS science goals is desired and anticipated.

  12. The Safran-Crocus-Mepra results and avalanches in Iceland 2001-2002

    Science.gov (United States)

    Haraldsdóttir, S.; Ólafsson, H.; Durand, Y.; Giraud, G.; Mérindol, L.

    2003-04-01

    Numerical models, Safran, Crocus and Mepra (SCM) have been developed by Météo-France to predict the evolution of the snow pack and its stability with respect to avalanches. The Safran-Crocus models have been adapted to Icelandic weather conditions, where most avalanches are caused by heavy snow precipitation in strong winds. The adapted SCM-models were run operationally during the winter 2001-2002 for testing the avalanche danger prediction, knowing that the models did not take into account the transport of snow by wind. The performance of the models was analysed during 19 avalanche cycles, each consisting of 2-21 recorded avalanches. First indicators of avalanche danger in the models are weak snow layers, leading to moderate, or in most of the 19 cases, high danger of avalanches triggered by human activities. In 5 of these 19 avalanche cycles, the models predicted moderate or high natural avalanche danger. Besides the detection of weak layers the models provide an estimation of the amount of snow available for transport by wind. This together with the fact that the recorded mean wind speed exceeded 15 m/s in all cases make it possible to construct natural avalanche prediction criteria, where the key parameters from the models are the stability of the snow pack and an indication of the availability of snow for transport by wind. Used with the wind speed from observations or numerical weather prediction models the effect of blowing snow can be estimated. As a result the models turn out to be a very useful tool for predicting avalanche danger when considering simultaneously the blowing snow and its potential accumulation in the avalanche starting zones.

  13. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery

    Directory of Open Access Journals (Sweden)

    M. J. Lato

    2012-09-01

    Full Text Available Snow avalanches in mountainous areas pose a significant threat to infrastructure (roads, railways, energy transmission corridors, personal property (homes and recreational areas as well as for lives of people living and moving in alpine terrain. The impacts of snow avalanches range from delays and financial loss through road and railway closures, destruction of property and infrastructure, to loss of life. Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge. The ability to automatically identify snow avalanches using Very High Resolution (VHR optical remote sensing imagery has the potential to assist in the development of accurate, spatially widespread, detailed maps of zones prone to avalanches as well as to build up data bases of past avalanche events in poorly accessible regions. This would provide decision makers with improved knowledge of the frequency and size distributions of avalanches in such areas. We used an object–oriented image interpretation approach, which employs segmentation and classification methodologies, to detect recent snow avalanche deposits within VHR panchromatic optical remote sensing imagery. This produces avalanche deposit maps, which can be integrated with other spatial mapping and terrain data. The object-oriented approach has been tested and validated against manually generated maps in which avalanches are visually recognized and digitized. The accuracy (both users and producers are over 0.9 with errors of commission less than 0.05. Future research is directed to widespread testing of the algorithm on data generated by various sensors and improvement of the algorithm in high noise regions as well as the mapping of avalanche paths alongside their deposits.

  14. Phase and coherence analysis of VHF scintillation over Christmas Island

    Directory of Open Access Journals (Sweden)

    E. B. Shume

    2014-03-01

    Full Text Available This short paper presents phase and coherence data from the cross-wavelet transform applied on longitudinally separated very high frequency (VHF equatorial ionospheric scintillation observations over Christmas Island. The phase and coherence analyses were employed on a pair of scintillation observations, namely, the east-looking and west-looking VHF scintillation monitors at Christmas Island. Our analysis includes 3 years of peak season scintillation data from 2008, 2009 (low solar activity, and 2011 (moderate solar activity. In statistically significant and high spectral coherence regions of the cross-wavelet transform, scintillation observations from the east-looking monitor lead those from the west-looking monitor by about 20 to 60 (40 ± 20 min (most frequent lead times. Using several years (seasons and solar cycle of lead (or lag and coherence information of the cross-wavelet transform, we envisage construction of a probability model for forecasting scintillation in the nighttime equatorial ionosphere.

  15. Characteristics of plastic scintillators fabricated by a polymerization reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Kim, Tae Hoon; Kim, Yong Kyun [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    Three plastic scintillators of 4.5 cm diameter and 2.5-cm length were fabricated for comparison with commercial plastic scintillators using polymerization of the styrene monomer 2.5-diphenyloxazole (PPO) and 1,4-bis benzene (POPOP). Their maximum emission wavelengths were determined at 426.06 nm, 426.06 nm, and 425.00 nm with a standard error of 0.2% using a Varian spectrophotometer (Agilent, Santa Clara, CA, USA). Compton edge spectra were measured using three gamma ray sources [i.e., cesium 137 ({sup 137}Cs), sodium 22 ({sup 22}Na), and cobalt 60 ({sup 60}Co)]. Energy was calibrated by analyzing the Compton edge spectra. The fabricated scintillators possessed more than 99.7% energy linearity. Light output was comparable to that of the BC-408 scintillator (Saint-Gobain, Paris, France). The fabricated scintillators showed a light output of approximately 59–64% of that of the BC-408 scintillator.

  16. B-Loaded Plastic Scintillator on the Base of Polystyrene

    CERN Document Server

    Brudanin, V B; Nemchenok, I B; Smolnikov, A A

    2000-01-01

    A method to produce polystyrene-based plastic scintillators with boron concentration from 0.38 to 5.0% of boron have been developed. o-Carborane was used as B-containing additive. The results of investigations of the optical, spectral and scintillation characteristics are presented and discussed. It is shown that 5% B-loaded scintillator has a light output as much as 70% relative to the unloaded one. High efficiency for thermal neutron registration achieved for produced samples makes it possible to use such scintillators in complex neutron high sensitive spectrometers. Measured level of radioactive contamination in this scintillation materials is good enough for using the B-loaded scintillators in the proposed large scale neutrino experiments.

  17. IFKIS - a basis for managing avalanche risk in settlements and on roads in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Bründl

    2004-01-01

    Full Text Available After the avalanche winter of 1999 in Switzerland, which caused 17 deaths and damage of over CHF 600 mill. in buildings and on roads, the project IFKIS, aimed at improving the basics of organizational measures (closure of roads, evacuation etc. in avalanche risk management, was initiated. The three main parts of the project were the development of a compulsory checklist for avalanche safety services, a modular education and training course program and an information system for safety services. The information system was developed in order to improve both the information flux between the national centre for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local safety services on the one hand and the communication between avalanche safety services in the communities on the other hand. The results of this project make a valuable contribution to strengthening organizational measures in avalanche risk management and to closing the gaps, which became apparent during the avalanche winter of 1999. They are not restricted to snow avalanches but can also be adapted for dealing with other natural hazard processes and catastrophes.

  18. Ionospheric scintillation in Brazil: Analyses and Effects on GNSS Positioning

    Science.gov (United States)

    Alves, D. B.; Souza, J. S.; Silva, H. D.

    2013-05-01

    Ionosphere has a great influence on GNSS (Global Navigation Satellite System) signals and its behavior depends on several variables: local time, geographic location, seasons and solar activity. Besides, there are ionospheric irregularities that also affect the GNSS signal propagation, as the ionospheric scintillation. The ionospheric scintillation can be described as a fast change in phase and amplitude of GNSS signal, caused by irregularities of electron density. Scintillation can degrade or cause the GNSS signal lost. Due to these described factors, one can say that the ionosphere can cause important effects on GNSS positioning. It can degrade the coordinate accuracy obtained by GNSS positioning methods. In this paper the goal is to evaluate the ionospheric effect, in special the ionospheric scintillation in different regions of Brazil, and its effects on GNSS Point Positioning. In order to evaluate the days where the scintillation was more significant it is used a database (http://200.145.185.118/cigala/index.php) from CIGALA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America) project (http://cigala.galileoic.org/). Using these data it is possible to obtain information about ionospheric scintillation in different GNSS stations in Brazil. It is possible to correlate the data according to time, season and other factors that can contribute to scintillation analysis. In 2013 must occur an intense solar activity, which can intensify the ionospheric effects, and consequently ionospheric scintillation, mainly in Brazil region, where the scintillation index is already intense. Preliminary evaluations, showed larger values of S4 (scintillation index) in Brazil. For example, in October 2012, it was obtained S4 values larger than 1 in several epochs. This causes severe effects in GNSS Positioning. In this paper, the results of GNSS positioning under ionosphere scintillation effects in different regions of Brazil will be presented.

  19. Determination of the scintillator decay time by the autocorrelation method

    Science.gov (United States)

    Morozov, V. A.; Morozova, N. V.

    2017-09-01

    An autocorrelation method is developed for determining the composition and decay time of scintillators. This method also allows studying the spatial distribution of nuclear radiation and controlling the amount of the dopants introduced in the scintillator. The decay time is measured from a few nanoseconds to microseconds. It is found out that the decay time increases in plastic scintillators with a wavelength shifter and a Gd doped.

  20. Progress in Scintillating Polarized Targets for Spin Physics

    Science.gov (United States)

    van den Brandt, B.; Hautle, P.; Konter, J. A.; Bunyatova, E. I.

    2003-06-01

    At PSI polarized scintillating targets have been operated in several particle physics experiments over extended periods of time. They proved to be very robust and reliable. Proton polarizations of more than 80%, and deuteron polarizations of 25% in fully deuterated polystyrene based scintillator have been reached in a vertical dilution refrigerator with optical access. New choices of materials and preparation procedures show potential for an improvement of the scintillation and polarization properties.

  1. Optimization of ultra-cold neutron scintillation detectors

    Science.gov (United States)

    Novopoltsev, M. I.; Pokotilovskii, Yu. N.

    1980-05-01

    The results are presented of the optimization of scintillation detectors of ultra-cold neutrons relative to the thickness of scintillator ZnS(Ag) and radiator LiOH. The method is stated and results are reported of measurements of the energy dependence of the efficiency of UCN detectors. The detector with a rotating scintillator is described. It has a high and constant efficiency over the whole UCN energy range.

  2. Optics general-purpose scintillator light response simulation code

    CERN Document Server

    Frlez, E; Pocanic, D

    2001-01-01

    We present the program optics that simulates the light response of an arbitrarily shaped scintillation particle detector. Predicted light responses of pure CsI polygonal detectors, plastic scintillator staves, cylindrical plastic target scintillators and a Plexiglas light-distribution plate are illustrated. We demonstrate how different bulk and surface optical properties of a scintillator lead to specific volume and temporal light collection probability distributions. High-statistics optics simulations are calibrated against the detector responses measured in a custom-made cosmic muon tomography apparatus. The presented code can also be used to track particles intersecting complex geometrical objects.

  3. Development of Plastic Scintillation Detector of Low Energy Protons

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, J. K.; Lee, K. H.; Hwang, S. H.; Ko, S. K.; Park, S. H.; Kim, B. T. [Busan National Univ., Busan (Korea, Republic of)

    2007-04-15

    Development of Plastic Scintillator with thickness of 200 {mu}m. Development of the HV supply and Divider with the maximum voltage of -1200V. Development of Control Program using BASIC Computer Language. Development of Changed Mode Program for Start, Stop, Data Display and Data Transfer using Button Switch. Development of Monitoring Program for Data Transfer and Display Spectra. Development of high-efficiency plastic scintillator. Development of the 12-bit Resolution circuit. Development of main control program. Data Transmission via TCP/IP. Measurement of Beta Spectrum using Plastic Scintillator Detector. Identification of Electrons, Protons and Deuterons using Plastic Scintillator Detectors. Design and Fabrication of the Mock-up mode.

  4. Ionospheric scintilations over the polish LOFAR station PL610

    Science.gov (United States)

    Pożoga, Mariusz; Rothkaehl, Hanna; Matyjasiak, Barbara; Grzesiak, Marcin; Przepiórka, Dorota

    2017-04-01

    Using polish station PL610 of international LOFAR interferometer we present here observations of ionospheric scintillation over station. Scintillation phenomenon occurs as a result of variations in the refractive index of the medium through which waves are traveling. In particular Earth's ionosphere is strongly variable medium where high density gradients occure. Scintillation measurements may be successfully used to study the irregular structure of the ionosphere. The LOFAR telescope operates at frequencies from 10 to 240 MHz thus provides good opportunity to broad-band study of ionospheric irregularities. During the local mode periods four strong radio sources (LOFAR bright A-team sources) were observed in order to measure ionospheric scintillations.

  5. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  6. Investigation of organic liquid-scintillator optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Wurm, Michael [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Marrodan Undagoitia, Teresa [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland)

    2009-07-01

    The characterization of different organic liquid-scintillator mixtures is an important step towards the design of a large-scale detector such as LENA (Low Energy Neutrino Astronomy). Its physics goals, extending from particle and geological to astrophysical issues, set high demands on the optical properties of the liquid scintillator. Therefore, small-scale experiments are carried out in order to optimize the final scintillator mixture. PXE, LAB, and dodecane are under consideration as solvents. Setups for the determination of scintillator properties are presented, such as attenuation length, light yield, emission spectra, fluorescence decay times, and quenching factors. Furthermore, results are discussed.

  7. Separation of Interplanetary and Ionospheric Scintillations of Cosmic Sources at Decameter Wavelengths

    Science.gov (United States)

    Kalinichenko, N. N.; Falkovich, I. S.; Konovalenko, O. O.; Brazhenko, A. I.

    2013-09-01

    The influence of Earth's ionosphere on statistic characteristics, of compact space sources scintillations (cross-correlation, function of scintillations at two frequencies, cross-correlation, function of scintillations at two radio telescopes, power spectrum, of scintillations, probability density function of scintillations), has been experimentally estimated at decameter wavelength. A new method for selection of interplanetary scintillations, from experimental data obtained with the URAN system, radio telescopes has been developed.

  8. Automatic detection of snow avalanches in continuous seismic data using hidden Markov models

    Science.gov (United States)

    Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat

    2018-01-01

    Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitoring is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We analyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos, Switzerland. We re-evaluated a reference catalogue containing 385 events by grouping the events in seven probability classes. Since most of the data consist of noise, we first applied a simple amplitude threshold to reduce the amount of data. As first classification results were unsatisfying, we analyzed the temporal behavior of the seismic signals for the whole data set and found that there is a high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms by defining a minimal duration for the detected event, implementing a voting-based approach and analyzing the coherence of the detected events. We obtained the best classification results for events detected by at least five sensors and with a minimal duration of 12 s. These processing steps allowed identifying two periods of high avalanche activity, suggesting that HMMs are suitable for the automatic detection of avalanches in seismic data. However, our results also showed that more sensitive sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and

  9. Synthesis and characterization of nanocomposite scintillators for radiation detection

    Science.gov (United States)

    Sahi, Sunil Kumar

    Inorganic single crystal and organic (plastic and liquid) scintillators are commonly used for radiation detection. Inorganic single crystals are efficient and have better energy resolution compared to organic scintillators. However, inorganic single crystals are difficult to grow in large size and hence expensive. On the other hand, fast decay time and ease of fabrication makes organic scintillators attractive for many applications. However, poor energy resolution of organic scintillators limits its applications in gamma ray spectroscopy. The poor energy resolution is due to the low Z-value and low density of organic scintillator. The Z-value of organic plastic scintillator can be increase by loading nanoparticles in plastic matrix. It is expected that the increase in Z-value would result in improve energy resolution of nanocomposite scintillator. However, the loss of optical transparency due to nanoparticles loading is one of the major concerns of nanocomposite scintillators. In this dissertation, we used different methods to synthesize La xCe1-xF3 nanoparticles with high dispersion in polymer matrix. High nanoparticle dispersion is important to load high concentration of nanoparticles into polymer matrix without losing the transparency of the polymer matrix. The as synthesized nanoparticles are dispersed into monomers and polymerized using heat initiated bulk polymerization method. Nanoparticles are characterized using TEM, XRD, FTIR and TGA. The optical and scintillation properties of nanoparticles and nanocomposites are studied using spectroscopic techniques. The pulse height spectra obtained using nanocomposite fabricated by loading up to 30 wt% nanoparticles clearly show a photopeak for the 122 keV line of the Co-57 isotope. The generation of the photopeak is due to the enhanced photoelectric effect as a result of increased effective atomic number (Zeff) and density of nanocomposite scintillator. The pulse height spectra of Cs-137 gamma source show a full

  10. Numerical run-out modelling used for reassessment of existing permanent avalanche paths in the Krkonose Mts., Czechia

    Science.gov (United States)

    Blahut, Jan; Klimes, Jan; Balek, Jan; Taborik, Petr; Juras, Roman; Pavlasek, Jiri

    2015-04-01

    Run-out modelling of snow avalanches is being widely applied in high mountain areas worldwide. This study presents application of snow avalanche run-out calculation applied to mid-mountain ranges - the Krkonose, Jeseniky and Kralicky Sneznik Mountains. All mentioned mountain ranges lie in the northern part of Czechia, close to the border with Poland. Its highest peak reaches only 1602 m a.s.l. However, climatic conditions and regular snowpack presence are the reason why these mountain ranges experience considerable snow avalanche activity every year, sometimes resulting in injuries or even fatalities. Within the aim of an applied project dealing with snow avalanche hazard prediction a re-assessment of permanent snow avalanche paths has been performed based on extensive statistics covering period from 1961/62 till present. On each avalanche path different avalanches with different return periods were modelled using the RAMMS code. As a result, an up-to-date snow avalanche hazard map was prepared.

  11. Subsampling effects in neuronal avalanche distributions recorded in vivo

    Directory of Open Access Journals (Sweden)

    Munk Matthias HJ

    2009-04-01

    Full Text Available Abstract Background Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s, and sigma = 1, are hallmark features of self-organized critical (SOC systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s and sigma by imposing subsampling on three different SOC models. We then compared f(s and sigma of the subsampled models with those of multielectrode local field potential (LFP activity recorded in three macaque monkeys performing a short term memory task. Results Neither the LFP nor the subsampled SOC models showed a power law for f(s. Both, f(s and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s and sigma similar to those calculated from LFP activity. Conclusion Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s and sigma calculated from the physiological

  12. High density scintillating glass proton imaging detector

    Science.gov (United States)

    Wilkinson, C. J.; Goranson, K.; Turney, A.; Xie, Q.; Tillman, I. J.; Thune, Z. L.; Dong, A.; Pritchett, D.; McInally, W.; Potter, A.; Wang, D.; Akgun, U.

    2017-03-01

    In recent years, proton therapy has achieved remarkable precision in delivering doses to cancerous cells while avoiding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in patient positioning is needed. An accepted approximate uncertainty of +/-3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. The use of protons in imaging would eliminate this source of error and lessen the radiation exposure of the patient. To this end, this study focuses on developing a novel proton-imaging detector built with high-density glass scintillator. The model described herein contains a compact homogeneous proton calorimeter composed of scintillating, high density glass as the active medium. The unique geometry of this detector allows for the measurement of both the position and residual energy of protons, eliminating the need for a separate set of position trackers in the system. Average position and energy of a pencil beam of 106 protons is used to reconstruct the image rather than by analyzing individual proton data. Simplicity and efficiency were major objectives in this model in order to present an imaging technique that is compact, cost-effective, and precise, as well as practical for a clinical setting with pencil-beam scanning proton therapy equipment. In this work, the development of novel high-density glass scintillator and the unique conceptual design of the imager are discussed; a proof-of-principle Monte Carlo simulation study is performed; preliminary two-dimensional images reconstructed from the Geant4 simulation are presented.

  13. GEM operation in pure noble gases and the avalanche confinement

    CERN Document Server

    Buzulutskov, A F; Bressan, A; Mauro, A D; Ropelewski, Leszek; Sauli, Fabio; Biagi, S F

    1999-01-01

    We study the operation of the Gas Electron Multiplier (GEM) in pure Ar and almost pure Xe. Rather high gas gains obtained in pure Ar, of the order of 1000, are explained by the effect of the avalanche confinement to a GEM micro-hole. Applications to the development of non-ageing sealed photon detector filled with pure noble gases are discussed. In particular, it is shown that the photoelectron collection efficiency deteriorated in pure Ar due to electron backscattering, can be recovered by operation at a higher electric field.

  14. Energy pumping in electrical circuits under avalanche noise.

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  15. Simulation of displacement damage for silicon avalanche photo-diodes

    Energy Technology Data Exchange (ETDEWEB)

    K Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I c, Adnan, E-mail: adnank@uludag.edu.tr [Uludag University, Department of Physics, 16059 Bursa (Turkey); Pilicer, Ercan; Tapan, Ilhan; Oezmutlu, Emin N. [Uludag University, Department of Physics, 16059 Bursa (Turkey)

    2011-12-01

    The silicon avalanche photo-diodes (APDs) in the CMS barrel electromagnetic calorimeter will be exposed to an integrated neutron fluence of about 2 Multiplication-Sign 10{sup 13}n/cm{sup 2} over 10 years of operation. High neutron fluences change the electrical properties of silicon detectors. The changes are proportional to the non-ionising energy loss in the APDs. Using the Geant4 toolkit, we have calculated the non-ionising energy loss as well as the rate of generation of primary defects in the APDs, for the expected neutron fluence.

  16. Double Screening Tests of the CMS ECAL Avalanche Photodiodes

    CERN Document Server

    Deiters, Konrad; Renker, Dieter; Sakhelashvili, Tariel; Britvitch, Ilia; Kuznetsov, Andrey; Musienko, Yuri; Singovsky, Alexander

    2005-01-01

    Specially developed avalanche photo-diodes (APDs) will be used to measure the light from the 61,200 lead tungstate crystals in the barrel part of the CMS electromagnetic calorimeter. To ensure the reliability over the lifetime of the detector, every APD is screened by irradiation and burn-in before it is accepted for CMS. As part of the establishment of the screening procedure and to determine its effectiveness, a large number of APDs were screened twice. The results of these tests suggest that the required reliability will be achieved.

  17. The Vaigat Rock Avalanche Laboratory, west-central Greenland

    Science.gov (United States)

    Dunning, S.; Rosser, N. J.; Szczucinski, W.; Norman, E. C.; Benjamin, J.; Strzelecki, M.; Long, A. J.; Drewniak, M.

    2013-12-01

    Rock avalanches have unusually high mobility and pose both an immediate hazard, but also produce far-field impacts associated with dam breach, glacier collapse and where they run-out into water, tsunami. Such secondary hazards can often pose higher risks than the original landslide. The prediction of future threats posed by potential rock avalanches is heavily reliant upon understanding of the physics derived from an interpretation of deposits left by previous events, yet drawing comparisons between multiple events is normally challenging as interactions with complex mountainous terrain makes deposits from each event unique. As such numerical models and the interpretation of the underlying physics which govern landslide mobility is commonly case-specific and poorly suited to extrapolation beyond the single events the model is tuned to. Here we present a high-resolution LiDAR and hyperspectral dataset captured across a unique cluster of large rock avalanche source areas and deposits in the Vaigat straight, west central Greenland. Vaigat offers the unprecedented opportunity to model a sample of > 15 rock avalanches of various age sourced from an 80 km coastal escarpment. At Vaigat many of the key variables (topography, geology, post-glacial history) are held constant across all landslides providing the chance to investigate the variations in dynamics and emplacement style related to variable landslide volume, drop-heights, and thinning/spreading over relatively simple, unrestricted run-out zones both onto land and into water. Our data suggest that this region represents excellent preservation of landslide deposits, and hence is well suited to calibrate numerical models of run out dynamics. We use this data to aid the interpretation of deposit morphology, structure lithology and run-out characteristics in more complex settings. Uniquely, we are also able to calibrate our models using a far-field dataset of well-preserved tsunami run-up deposits, resulting from the 21

  18. Scintillating Fibre Calorimetry at the LHC

    CERN Multimedia

    2002-01-01

    Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. The lead/scintillating fibre calorimeter technique provides a fast signal response well matched to the LHC rate requirements. It can be made to give equal response for electrons and hadrons (compensation) with good electromagnetic and hadronic energy resolutions.\\\\ \\\\ The aim of this R&D proposal is to study in detail the aspects that are relevant for application of this type of calorimeter in an LHC environment, including its integration in a larger system of detectors, e.g.~projective geometry, radiation hardness, light detection, calibration and stability monitoring, electron/hadron separation.....

  19. AA, beam stopper with scintillator screen

    CERN Document Server

    CERN PhotoLab

    1980-01-01

    An insertable steel-plate beam stopper was located after nearly a full turn downstream of the injection point. It was fitted with a scintillator screen, a thin plate of Cr-doped alumina, imprinted with a grid and reference points. The screen was illuminated through a window and observed with a highly sensitive TV camera plus image intensifier. This allowed observation of beam position and size of a proton test beam and of the beam from the target, which consisted not only of antiprotons but contained as well electrons, pions and muons of the same momentum.

  20. Scintillation {gamma} spectrography. Physical principles. Apparatus. Operation; Spectrographie {gamma} a scintillations. Principes physiques. Appareillage. Utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Julliot, C. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The scintillation detector forms the main part of the instrument used, the electronic unit presenting the results produced. After a brief description of the process of {gamma} photon absorption in the material, the particular case of NaI (T1), the scintillator used, is examined. The intensity of the scintillation caused by {gamma} ray absorption and the characteristics of the photomultiplier play a determining part in the energy resolution of the instrument. For the {gamma} recording spectrograph, we show to what extent the technique for using the electronic unit can modify the results. A detailed description is given of the activity measurement of a {gamma}-emitting radioelement by the spectrographic method. (author) [French] Dans l'appareillage utilise, le detecteur a scintillations constitue la piece maitresse, l'ensemble electronique presente les resultats issus du detecteur. Apres avoir brievement decrit le processus d'absorption des photons {gamma} dans la matiere, nous examinons le cas particulier du NaI(T1), le scintillateur utilise. L'intensite de la scintillation provoque par l'absorption des rayons {gamma} et les caracteristiques du photomultiplicateur jouent un role determinant dans la resolution en energie de l'appareil. Pour le spectrographe {gamma} enregistreur, nous indiquons dans quelle mesure la technique d'utilisation de l'ensemble electronique peut modifier les resultats. La-mesure de l'activite d'un radioelement emetteur {gamma} par spectrographie fait l'objet d'une description detaillee. (auteur)

  1. Low power wide spectrum optical transmitter using avalanche mode LEDs in SOI CMOS technology

    NARCIS (Netherlands)

    Agarwal, Vishal Vishal; Dutta, Satadal; Annema, Anne J.; Hueting, Raymond Josephus Engelbart; Steeneken, P.G.; Nauta, Bram

    2017-01-01

    This paper presents a low power monolithically integrated optical transmitter with avalanche mode light emitting diodes in a 140 nm silicon-on-insulator CMOS technology. Avalanche mode LEDs in silicon exhibit wide-spectrum electroluminescence (400 nm < λ < 850 nm), which has a significant overlap

  2. Hole-Initiated-Avalanche, Linear-Mode, Single-Photon-Sensitive Avalanche Photodetector with Reduced Excess Noise and Low Dark Count Rate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation hard, single photon sensitive InGaAs avalanche photodiode (APD) receiver technology will be demonstrated useful for long range space based optical...

  3. Systematic studies of small scintillators for new sampling calorimeter

    Indian Academy of Sciences (India)

    mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an ...

  4. Systematic studies of small scintillators for new sampling calorimeter

    Indian Academy of Sciences (India)

    The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 × 40 × 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of ...

  5. Wavelet-based analogous phase scintillation index for high latitudes

    Science.gov (United States)

    Ahmed, A.; Tiwari, R.; Strangeways, H. J.; Dlay, S.; Johnsen, M. G.

    2015-08-01

    The Global Positioning System (GPS) performance at high latitudes can be severely affected by the ionospheric scintillation due to the presence of small-scale time-varying electron density irregularities. In this paper, an improved analogous phase scintillation index derived using the wavelet-transform-based filtering technique is presented to represent the effects of scintillation regionally at European high latitudes. The improved analogous phase index is then compared with the original analogous phase index and the phase scintillation index for performance comparison using 1 year of data from Trondheim, Norway (63.41°N, 10.4°E). This index provides samples at a 1 min rate using raw total electron content (TEC) data at 1 Hz for the prediction of phase scintillation compared to the scintillation monitoring receivers (such as NovAtel Global Navigation Satellite Systems Ionospheric Scintillation and TEC Monitor receivers) which operate at 50 Hz rate and are thus rather computationally intensive. The estimation of phase scintillation effects using high sample rate data makes the improved analogous phase index a suitable candidate which can be used in regional geodetic dual-frequency-based GPS receivers to efficiently update the tracking loop parameters based on tracking jitter variance.

  6. Temperature dependent scintillation properties of pure LaCl3

    NARCIS (Netherlands)

    Bizarri, G.; Dorenbos, P.

    2009-01-01

    The scintillation yield, scintillation decay, and x-ray excited emission of pure LaCl3 was studied as a function of temperature between 80 and 600 K. Two broad band emissions centered around 325 nm and 400 nm were identified and correlated to emissions from two localized exciton states named STE1

  7. Performance evaluation of GPS receiver under equatorial scintillation

    Directory of Open Access Journals (Sweden)

    Alison de Oliveira Moraes

    2009-06-01

    Full Text Available Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS. This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received.

  8. Performance comparison of scintillators for alpha particle detectors

    Science.gov (United States)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio

    2014-11-01

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd2Si2O7 (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM

  9. Performance comparison of scintillators for alpha particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Yuki [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Yamamoto, Seiichi [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Izaki, Kenji [Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2014-11-11

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd{sub 2}Si{sub 2}O{sub 7} (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM.

  10. Extraction of Doppler Scintillation from Deep Space Probe Tracking Data

    OpenAIRE

    Yamamoto, Zenichi; Toriyama, Gaku; Hirosawa, Haruto; 山本, 善一; 鳥山, 学; 廣澤, 春任

    1990-01-01

    Doppler frequencies of deep space probe tracking signalsfluctuate randomly when solar wind passes across ray-pathes of the radio waves. In this paper we present a method to extract Doppler scintillations from deep space probe tracking signals by applying filterings. We discuss the Doppler scintillations extracted from the tracking data of "SAKIGAKE" and "SUISEI".

  11. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    Science.gov (United States)

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years

  12. The geomorphological effect of cornice fall avalanches in the Longyeardalen valley, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Eckerstorfer

    2013-09-01

    Full Text Available The study of snow avalanches and their geomorphological effect in the periglacial parts of the cryosphere is important for enhanced geomorphological process understanding as well as hazard-related studies. Only a few field studies, and particularly few in the High Arctic, have quantified avalanche sedimentation. Snow avalanches are traditionally ranked behind rockfall in terms of their significance for mass-wasting processes of rockslopes. Cornice fall avalanches are at present the most dominant snow avalanche type at two slope systems, called Nybyen and Larsbreen, in the valley Longyeardalen in central Svalbard. Both slope systems are on northwest-facing lee slopes underneath a large summit plateau, with annual cornices forming on the top. High-frequency and magnitude cornice fall avalanching is observed by daily automatic time-lapse photography. In addition, rock debris sedimentation by cornice fall avalanches was measured directly in permanent sediment traps or by snow inventories. The results from a maximum of seven years of measurements in a total of 13 catchments show maximum mean rock debris sedimentation rates ranging from 8.2 to 38.7 kg m−2 at Nybyen, and from 0.8 to 55.4 kg m−2 at Larsbreen. Correspondingly, avalanche fan surfaces accreted from 2.6 to 8.8 mm yr−1 at Nybyen, and from 0.2 to 13.9 mm yr−1 at Larsbreen. This comparably efficient rockslope mass wasting is due to collapsing cornices producing cornice fall avalanches containing large amounts of rock debris throughout the entire winter. The rock debris of different origin stems from the plateau crests, the adjacent free rock face and the transport pathway, accumulating distinct avalanche fans at both slope systems. Cornice fall avalanche sedimentation also contributed to the development of a rock glacier at the Larsbreen site during the Holocene. We have recorded present maximum rockwall retreat rates of 0.9 mm yr−1 at Nybyen, but as much as 6.7 mm yr−1 at

  13. Analysis of Ionospheric Scintillation Characteristics in Sub-Antarctica Region with GNSS Data at Macquarie Island.

    Science.gov (United States)

    Guo, Kai; Liu, Yang; Zhao, Yan; Wang, Jinling

    2017-01-12

    Ionospheric scintillation has a great impact on radio propagation and electronic system performance, thus is extensively studied currently. The influence of scintillation on Global Navigation Satellite System (GNSS) is particularly evident, making GNSS an effective medium to study characteristics of scintillation. Ionospheric scintillation varies greatly in relation with temporal and spatial distribution. In this paper, both temporal and spatial characteristics of scintillation are investigated based on Macquarie Island's GNSS scintillation data collected from 2011 to 2015. Experiments demonstrate that occurrence rates of amplitude scintillation have a close relationship with solar activity, while phase scintillation is more likely to be generated by geomagnetic activity. In addition, scintillation distribution behaviors related to elevation and azimuth angles are statistically analyzed for both amplitude and phase scintillation. The proposed work is valuable for a deeper understanding of theoretical mechanisms of ionospheric scintillation in this region, and provides a reference for GNSS applications in certain regions around sub-Antarctica.

  14. Optimization of light collection from crystal scintillators for cryogenic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Danevich, F.A., E-mail: danevich@kinr.kiev.ua [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine); Kobychev, R.V. [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine); National Technical University of Ukraine “Kyiv Polytechnic Institute”, 03056 Kyiv (Ukraine); Kobychev, V.V. [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine); Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kraus, H. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Mikhailik, V.B. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Diamond Light Source, Harwell Science Campus, Didcot, OX11 0DE (United Kingdom); Mokina, V.M. [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine)

    2014-04-21

    High light collection efficiency is an important requirement in any application of scintillation detectors. The purpose of this study is to investigate the possibility for improving this parameter in cryogenic scintillation bolometers, which can be considered as promising detectors in experiments investigating neutrinoless double beta decay and dark matter. Energy resolutions and relative pulse amplitudes of scintillation detectors using ZnWO{sub 4} scintillation crystals of different shapes (cylinder ∅ 20×20 mm and hexagonal prism with diagonal 20 mm and height 20 mm), reflector materials and shapes, optical contact and surface properties (polished and diffused) were measured at room temperature. Propagation of optical photons in these experimental conditions was simulated using Geant4 and ZEMAX codes. The results of the simulations are found to be in good agreement with each other and with direct measurements of the crystals. This could be applied to optimize the geometry of scintillation detectors used in the cryogenic experiments.

  15. Ionospheric irregularities causing scintillation of GHz frequency radio signals

    Science.gov (United States)

    Wernik, A. W.; Liu, C. H.

    1974-01-01

    Consideration of the recently observed phenomenon of scintillation of satellite signals at GHz frequency range. Based on the scintillation data and results from in situ measurements, several ionospheric irregularity models with different power spectra are studied. Scintillation index is computed for the various models and compared with observed results. Both magnitude and frequency dependence of the scintillation index are investigated. It is found that a thick irregularity slab of the order of 200 km with an electron density fluctuation of about 20 per cent of its background value and with a nonmonotonic power spectrum may account for the maximum observed values of the scintillation index as well as its frequency dependence. Some future observations and measurements are suggested.

  16. Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia, Argentina

    Science.gov (United States)

    Casteller, A.; Christen, M.; Villalba, R.; Martínez, H.; Stöckli, V.; Leiva, J. C.; Bartelt, P.

    2008-05-01

    The damage caused by snow avalanches to property and human lives is underestimated in many regions around the world, especially where this natural hazard remains poorly documented. One such region is the Argentinean Andes, where numerous settlements are threatened almost every winter by large snow avalanches. On 1 September 2002, the largest tragedy in the history of Argentinean mountaineering took place at Cerro Ventana, Northern Patagonia: nine persons were killed and seven others injured by a snow avalanche. In this paper, we combine both numerical modeling and dendrochronological investigations to reconstruct this event. Using information released by local governmental authorities and compiled in the field, the avalanche event was numerically simulated using the avalanche dynamics programs AVAL-1D and RAMMS. Avalanche characteristics, such as extent and date were determined using dendrochronological techniques. Model simulation results were compared with documentary and tree-ring evidences for the 2002 event. Our results show a good agreement between the simulated projection of the avalanche and its reconstructed extent using tree-ring records. Differences between the observed and the simulated avalanche, principally related to the snow height deposition in the run-out zone, are mostly attributed to the low resolution of the digital elevation model used to represent the valley topography. The main contributions of this study are (1) to provide the first calibration of numerical avalanche models for the Patagonian Andes and (2) to highlight the potential of textit{Nothofagus pumilio} tree-ring records to reconstruct past snow-avalanche events in time and space. Future research should focus on testing this combined approach in other forested regions of the Andes.

  17. Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    A. Casteller

    2008-05-01

    Full Text Available The damage caused by snow avalanches to property and human lives is underestimated in many regions around the world, especially where this natural hazard remains poorly documented. One such region is the Argentinean Andes, where numerous settlements are threatened almost every winter by large snow avalanches. On 1 September 2002, the largest tragedy in the history of Argentinean mountaineering took place at Cerro Ventana, Northern Patagonia: nine persons were killed and seven others injured by a snow avalanche. In this paper, we combine both numerical modeling and dendrochronological investigations to reconstruct this event. Using information released by local governmental authorities and compiled in the field, the avalanche event was numerically simulated using the avalanche dynamics programs AVAL-1D and RAMMS. Avalanche characteristics, such as extent and date were determined using dendrochronological techniques. Model simulation results were compared with documentary and tree-ring evidences for the 2002 event. Our results show a good agreement between the simulated projection of the avalanche and its reconstructed extent using tree-ring records. Differences between the observed and the simulated avalanche, principally related to the snow height deposition in the run-out zone, are mostly attributed to the low resolution of the digital elevation model used to represent the valley topography. The main contributions of this study are (1 to provide the first calibration of numerical avalanche models for the Patagonian Andes and (2 to highlight the potential of Nothofagus pumilio tree-ring records to reconstruct past snow-avalanche events in time and space. Future research should focus on testing this combined approach in other forested regions of the Andes.

  18. Effects of hadron irradiation on scintillating fibers

    Energy Technology Data Exchange (ETDEWEB)

    Atac, M. (Univ. of California, Los Angeles, CA (United States) Fermi National Accelerator Lab., Batavia, IL (United States)); Buchanan, C.; Chrisman, D.; Cline, D.; Kolonko, J.; Kubic, J.; Park, J. (Univ. of California, Los Angeles, CA (United States)); Baumbaugh, A.; Binkley, M.; Bross, A.D.; Finley, D.; Elias, J.; Foster, G.W.; Kephart, R.; Kephart, R.; Kim, C.; Park, H.; Pla-Dalmau, A.; Rivetta, C.; Tkaczyk, S.; Wagner, R. (Fermi National Accelerator Lab., Batavia, IL (United States)); Chung, M.; Goldberg, H.; Jeskik, R.; Margulies, S.; Mendez, H.; Solomon, J.; Vaca, F. (Univ. of Illinois, Chicago, IL (United States)); Kelley, C. (Massachusetts College of Pharmacy and Allied Health Sciences, Boston, MA (United States)); Baumbaugh, B.; Bishop, J.; Biswas, N.; Cason, N.; Jacques, J.; Kehoe, R.; Kelly, M.; Kenney, V.; LoSecco, J.; Ruchti, R.; Shephard, W.; Warchol, J.; Wayne, M.; Marchant, J.; Mountain, R.J. (Univ. of Notre Dame, IN (United States)); Davis, D.; Vandergriff, D. (O

    1993-08-01

    Trackers based on scintillating-fiber technology are being considered by the Solenoidal Detector Collaboration at SSC and the D[phi] collaboration at Fermilab. An important issue is the effect of the radiation existing in the detector cores on fiber properties. Most studies of radiation damage in scintillators have irradiated small bulk samples rather than fibers, and have used X-rays, [sup 60]Co gammas, or electron beams, often at accelerated rates. The authors have irradiated some 600 fibers in the Fermilab Tevatron C[phi] area, thereby obtaining a hadronic irradiation at realistic rates. Four-meter-long samples of ten Bicron polystyrene-based fiber types, maintained in air, dry nitrogen, argon, and vacuum atmospheres within stainless-steel tubes, were irradiated for seven weeks at various distances from the accelerator beam pipes. Maximum doses, measured by thermoluminescence detectors, were about 80 Krad. Fiber properties, particularly light yield and attenuation length, have been measured over a one-year period. A description of the work together with the results is presented. At the doses achieved, corresponding to a few years of actual fiber-tracking detector operation, little degradation is observed. In addition, recovery after several days' exposure to air has been noted. Properties of unirradiated samples kept in darkness show no changes after one year.

  19. A novel segmented-scintillator antineutrino detector

    Science.gov (United States)

    Abreu, Y.; Amhis, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Buhour, J. M.; Castle, B. C.; Clark, K.; Coupé, B.; Cucoanes, A. S.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Fresneau, S.; Ghys, L.; Giot, L.; Guillon, B.; Guilloux, G.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L. N.; Koonen, E.; Labare, M.; Lehaut, G.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Reynolds, A.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Shitov, Yu. A.; Schune, M.-H.; Scovell, P. R.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Waldron, A.; Weber, A.; Yermia, F.

    2017-04-01

    The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. The detector target uses cubes of polyvinyltoluene interleaved with 6LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise localisation of scintillation signals, making efficient use of the detector volume. Monte Carlo simulations indicate that a neutron capture efficiency of over 70 % is achievable with a sufficient number of 6LiF:ZnS(Ag) screens per cube and that an appropriate segmentation enables a measurement of the positron energy which is not limited by γ-ray leakage. First measurements of a single cell indicate that a very good neutron-gamma discrimination and high neutron detection efficiency can be obtained with adequate triggering techniques. The light yield from positron signals has been measured, showing that an energy resolution of 14%/√E(MeV) is achievable with high uniformity. A preliminary neutrino signal analysis has been developed, using selection criteria for pulse shape, energy, time structure and energy spatial distribution and showing that an antineutrino efficiency of 40% can be achieved. It also shows that the fine segmentation of the detector can be used to significantly decrease both correlated and accidental backgrounds.

  20. Characterization of cerium fluoride nanocomposite scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Laboratory; Esch, Ernst I [Los Alamos National Laboratory; Brown, Leif O [Los Alamos National Laboratory; Couture, Aaron J [Los Alamos National Laboratory; Mckigney, Edward A [Los Alamos National Laboratory; Muenchausen, Ross E [Los Alamos National Laboratory; Del Sesto, Rico E [Los Alamos National Laboratory; Gilbertson, Robert D [Los Alamos National Laboratory; Mccleskey, T Mark [Los Alamos National Laboratory; Reifarth, Rene [Los Alamos National Laboratory

    2009-01-01

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF{sub 3}) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  1. A scintillating fiber dosimeter for radiotherapy

    Science.gov (United States)

    Bartesaghi, G.; Conti, V.; Bolognini, D.; Grigioni, S.; Mascagna, V.; Prest, M.; Scazzi, S.; Mozzanica, A.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Giannini, G.; Vallazza, E.

    2007-10-01

    Radiotherapy, together with chemotherapy and surgery, is one of the main methods applied in the fight against cancer; in order to increase the chances of a successful radiotherapy treatment the dose delivery to the tumor and the surrounding normal tissues has to be computed with high accuracy. Traditional dosimeters are accurate but single channel (ionization chambers and diodes) or non real-time (radiographic films) devices. At present there is no device water equivalent that can perform real-time and bidimensional measurements of a dose distribution. This article describes the development of a real-time dosimeter based on scintillating fibers for photon and electron beams; the fibers are made of polystyrene, that is water equivalent and thus tissue equivalent, allowing a direct dose calculation. Three prototypes (single and multichannel) have been assembled, consisting in small scintillators coupled to white fibers that carry the light to photomultiplier tubes. In this article the prototypes and the readout electronics are described, together with the results of the measurements with electron and photon beams with energy up to 20 MeV (produced by linear accelerators Varian Clinac 1800 and 2100CD).

  2. Avalanche photo-detection for high data rate applications

    Science.gov (United States)

    Coldenstrodt-Ronge, H. B.; Silberhorn, C.

    2007-10-01

    Avalanche photo-detection is commonly used in applications which require single-photon sensitivity. We examine the limits of using avalanche photo-diodes (APD) for characterizing photon statistics at high data rates. To identify the regime of linear APD operation, we employ a ps-pulsed diode laser with variable repetition rates between 0.5 MHz and 80 MHz. We modify the mean optical power of the coherent pulses by applying different levels of well-calibrated attenuation. The linearity at high repetition rates is limited by the APD dead time and a nonlinear response arises at higher photon-numbers due to multiphoton events. Assuming Poissonian input-light statistics we ascertain the effective mean photon-number of the incident light with high accuracy. Time multiplexed detectors (TMD) allow us to accomplish photon-number resolution by 'photon chopping'. This detection setup extends the linear response function to higher photon-numbers and statistical methods may be used to compensate for nonlinearity. We investigate this effect, compare it to the single APD case and show the validity of the convolution treatment in the TMD data analysis.

  3. First-principles derivation of static avalanche-size distributions.

    Science.gov (United States)

    Le Doussal, Pierre; Wiese, Kay Jörg

    2012-06-01

    We study the energy minimization problem for an elastic interface in a random potential plus a quadratic well. As the position of the well is varied, the ground state undergoes jumps, called shocks or static avalanches. We introduce an efficient and systematic method to compute the statistics of avalanche sizes and manifold displacements. The tree-level calculation, i.e., mean-field limit, is obtained by solving a saddle-point equation. Graphically, it can be interpreted as the sum of all tree graphs. The 1-loop corrections are computed using results from the functional renormalization group. At the upper critical dimension the shock statistics is described by the Brownian force model (BFM), the static version of the so-called Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model in the nonequilibrium context of depinning. This model can itself be treated exactly in any dimension and its shock statistics is that of a Lévy process. Contact is made with classical results in probability theory on the Burgers equation with Brownian initial conditions. In particular we obtain a functional extension of an evolution equation introduced by Carraro and Duchon, which recursively constructs the tree diagrams in the field theory.

  4. From an electron avalanche to the lightning discharge

    Science.gov (United States)

    Zalikhanov, B. Zh.

    2016-01-01

    The goal of this work is to describe qualitatively the physics of processes which begin with an electron avalanche and finish in a lightning discharge. A streamer model is considered that is based on studies of the recently discovered processes occurring in the prestreamer region. The investigation and analysis of these processes enabled making the conclusion that they are, in essence, the attendant processes, which ensure the electron avalanche-to-streamer transition, and may be interpreted as a manifestation of properties of a double charge layer exposed to the external electric field. The pressing problems of physical processes which form a lightning discharge are considered from the standpoint of new ideas about the mechanism of the streamer formation and growth. Causes of the emergence of coherent super-high-frequency radiation of a leader and the neutron production in a lightning discharge are revealed that have not been explained so far in the theory of gas discharge. Based also on new ideas about the lightning discharge, a simple ball-lightning model, providing answers to almost allquestions formulated from numerous observations on the behavior of ball lightning, is offered, and the need of a new design of lightning protection instead of the traditional rod is discussed.

  5. Does Avalanche Shovel Shape Affect Excavation Time: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kurt Schindelwig

    2017-05-01

    Full Text Available In Europe and North America, approximately 150 fatalities occur as a result of avalanches every year. However, it is unclear whether certain shovel shapes are more effective than others in snow removal during avalanche victim recovery. The objective was to determine the performance parameters with a developed standardized test using different shovel shapes and to determine sex-specific differences. Hence, several parameters were determined for clearing the snow from a snow filled box (15 men, 14 women. A flat (F and a deep (D shovel blade with the shaft connected straight (S or in clearing mode (C were used for the investigation of the shovel shapes FS, DC and the subsequent use of DC&DS. Mean snow mass shifted per unit time increased significantly from 1.50 kg/s with FS to 1.71 kg/s (14% with DS and further to 1.79 kg/s (4% with DC&DS for all participants. Snow mass shifted per unit time was 44% higher (p < 0.05 for men than for women. In excavation operations, the sex-specific physical performance should be taken into account. The results were limited to barely binding snow, because only with this snow did the tests show a high reliability.

  6. Characterization of midwave infrared InSb avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Abautret, J., E-mail: johan.abautret@ies.univ-montp2.fr; Evirgen, A. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); SOFRADIR, BP 21, 38113 Veurey-Voroize (France); Perez, J. P.; Christol, P. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); Rothman, J. [CEA-LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Cordat, A. [SOFRADIR, BP 21, 38113 Veurey-Voroize (France)

    2015-06-28

    This paper focuses on the InSb material potential for the elaboration of Avalanche Photodiodes (APD) for high performance infrared imaging applications, both in passive or active mode. The first InSb electron-APD structure was grown by molecular beam epitaxy, processed and electrically characterized. The device performances are at the state of the art for the InSb epi-diode technology, with a dark current density J(−50 mV) = 32 nA/cm{sup 2} at 77 K. Then, a pure electron injection was performed, and an avalanche gain, increasing exponentially, was observed with a gain value near 3 at −4 V at 77 K. The Okuto–Crowell model was used to determine the electron ionization coefficient α(E) in InSb, and the InSb gain behavior is compared with the one of InAs and MCT APDs.

  7. Supershort avalanche electron beam in SF_{6} and krypton

    Directory of Open Access Journals (Sweden)

    Cheng Zhang (章程

    2016-03-01

    Full Text Available Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF_{6} in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ∼130  kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ∼1.6  ns. SAEB parameters in SF_{6} are compared with those obtained in krypton (Kr, nitrogen (N_{2}, air, and mixtures of SF_{6} with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF_{6} and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N_{2} and air (ranging from hundreds of milliamps to several amperes. Furthermore, the concentration of SF_{6} additive could significantly reduce the SAEB current in N_{2}-SF_{6} mixture, but it slightly affected the SAEB current in Kr-SF_{6} mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.

  8. Sixteen-year follow-up of childhood avalanche survivors.

    Science.gov (United States)

    Thordardottir, Edda Bjork; Valdimarsdottir, Unnur Anna; Hansdottir, Ingunn; Hauksdóttir, Arna; Dyregrov, Atle; Shipherd, Jillian C; Elklit, Ask; Resnick, Heidi; Gudmundsdottir, Berglind

    2016-01-01

    Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD) can provide a gateway to recovery as well as enhancement of preventive measures. Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES) and PTSD symptoms in adulthood. Childhood survivors (aged 2-19 at the time of exposure) of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Response rate was 66% (108/163). Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, pexposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms.

  9. Supershort avalanche electron beam in SF6 and krypton

    Science.gov (United States)

    Zhang, Cheng; Tarasenko, Victor F.; Gu, Jianwei; Baksht, Evgeni Kh.; Beloplotov, Dmitry V.; Burachenko, Alexander G.; Yan, Ping; Lomaev, Mikhail I.; Shao, Tao

    2016-03-01

    Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB) generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF6 ) in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ˜130 kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ˜1.6 ns . SAEB parameters in SF6 are compared with those obtained in krypton (Kr), nitrogen (N2 ), air, and mixtures of SF6 with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF6 and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N2 and air (ranging from hundreds of milliamps to several amperes). Furthermore, the concentration of SF6 additive could significantly reduce the SAEB current in N2-SF6 mixture, but it slightly affected the SAEB current in Kr -SF6 mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.

  10. Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator

    Science.gov (United States)

    Woolf, Richard S.; Hutcheson, Anthony L.; Gwon, Chul; Phlips, Bernard F.; Wulf, Eric A.

    2015-06-01

    This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or γ rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm×10 cm×10 cm cube and a 10-cm diameter×10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the 7Li(p,n)7Be reaction (Q-value: -1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5-3.2 MeV neutrons in 200-300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted γ background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (Ee.e.) vs. proton equivalent energy (Ep.e.), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for environment affected the detector response. We find relatively good agreement between our results and the modeling; however, the observed response could not be fully accounted for due to

  11. Wet-snow avalanche interaction with a deflecting dam: field observations and numerical simulations in a case study

    Directory of Open Access Journals (Sweden)

    B. Sovilla

    2012-05-01

    Full Text Available In avalanche-prone areas, deflecting dams are widely used to divert avalanches away from endangered objects. In recent years, their effectiveness has been questioned when several large and multiple avalanches have overrun such dams.

    In 2008, we were able to observe a large wet-snow avalanche, characterized by an high water content, that interacted with a deflecting dam and overflowed it at its lower end. To evaluate the dam's performance, we carried out an airborne laser scanning campaign immediately after the avalanche. This data, together with a video sequence made during the avalanche descent, provided a unique data set to study the dynamics of a wet dense snow avalanche and its flow behavior along a deflecting dam.

    To evaluate the effect of the complex flow field of the avalanche along the dam and to provide a basis for discussion of the residual risk, we performed numerical simulations using a two-dimensional dense snow avalanche dynamics model with entrainment.

    In comparison to dry dense snow avalanches, we found that wet-snow avalanches, with high water content, seem to be differently influenced by the local small-scale topography roughness. Rough terrain close to the dam deflected the flow to produce abrupt impacts with the dam. At the impact sites, instability waves were generated and increased the already large flow depths. The complex flow dynamics around the dam may produce large, local snow deposits. Furthermore, the high water content in the snow may decrease the avalanche internal friction angle, inducing wet-snow avalanches to spread further laterally than dry-snow avalanches.

    Based on our analysis, we made recommendations for designing deflecting dams and for residual risk analysis to take into account the effects of wet-snow avalanche flow.

  12. The role of spatially variable terrain slope and compaction processes on snow avalanche occurrence statistics

    Science.gov (United States)

    Perona, P.; Daly, E.; Porporato, A. M.

    2011-12-01

    Avalanche hazard forecasting is an important issue in relation to the protection of people and the built environment in mountain regions. Moreover, avalanche events contribute to the snow redistribution from high to low gradient slopes, thus affecting the mechanisms of glacier recharge and freshwater availability during the melting season. The process of snow avalanche formation is inherently complex and different type of avalanches may occur as a result of the interactions of different factors, resulting in some degree of both space and time unpredictability. Regression analysis and physically based models show that avalanche occurrence is influenced by the amount of snow fallen in consecutive three snowing days and the state of the settled snow at the ground. However, these methods hardly explain the different return period statistics that are often observed between avalanche size and related occurrence frequency from that of intense snowfall. In this work, we explore how compaction processes and terrain slope influence the statistics of a prototypical minimalist state-dependent stochastic process mimicking the probabilistic occurrence of natural snow avalanches at a point. We propose a model to describe the time dynamics of snow depth, h. After snow events, mathematically described as a marked Poisson, h decreases deterministically because of snowmelt and compaction. Avalanches cause sudden drops of snow depths, considered here resetting the variable to zero for the sake of mathematical tractability. In particular, avalanches are again treated as a stochastic Poisson process, whose frequency depends on the state of the variable h, and acts as a renewal event for the entire process. The model allows for the exact derivation of the probability distributions of the snowdepth, and the time between avalanches and their size. This simplified modeling framework explains the gradual decorrelation occurring between size and return time of avalanche events from that of

  13. Risk analysis for dry snow slab avalanche release by skier triggering

    Science.gov (United States)

    McClung, David

    2013-04-01

    Risk analysis is of primary importance for skier triggering of avalanches since human triggering is responsible for about 90% of deaths from slab avalanches in Europe and North America. Two key measureable quantities about dry slab avalanche release prior to initiation are the depth to the weak layer and the slope angle. Both are important in risk analysis. As the slope angle increases, the probability of avalanche release increases dramatically. As the slab depth increases, the consequences increase if an avalanche releases. Among the simplest risk definitions is (Vick, 2002): Risk = (Probability of failure) x (Consequences of failure). Here, these two components of risk are the probability or chance of avalanche release and the consequences given avalanche release. In this paper, for the first time, skier triggered avalanches were analyzed from probability theory and its relation to risk for both the D and . The data consisted of two quantities : (,D) taken from avalanche fracture line profiles after an avalanche has taken place. Two data sets from accidentally skier triggered avalanches were considered: (1) 718 for and (2) a set of 1242 values of D which represent average values along the fracture line. The values of D were both estimated (about 2/3) and measured (about 1/3) by ski guides from Canadian Mountain Holidays CMH). I also analyzed 1231 accidentally skier triggered avalanches reported by CMH ski guides for avalanche size (representing destructive potential) on the Canadian scale. The size analysis provided a second analysis of consequences to verify that using D. The results showed that there is an intermediate range of both D and with highest risk. ForD, the risk (product of consequences and probability of occurrence) is highest for D in the approximate range 0.6 m - 1.0 m. The consequences are low for lower values of D and the chance of release is low for higher values of D. Thus, the highest product is in the intermediate range. For slope angles

  14. Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Crow, Lowell [ORNL; Funk, Loren L [ORNL; Hannan, Bruce W [ORNL; Hodges, Jason P [ORNL; Riedel, Richard A [ORNL; Wang, Cai-Lin [ORNL

    2016-01-01

    In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52% higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.

  15. Avalanche situation in Turkey and back-calculation of selected events

    Science.gov (United States)

    Aydın, A.; Bühler, Y.; Christen, M.; Gürer, I.

    2014-01-01

    In Turkey, an average of 24 people dies in snow avalanches every year, mainly in the eastern part of Anatolia and in the eastern Black Sea Region where high mountain ranges are close to the sea. The proportion of people killed in buildings is very high (87%), especially in comparison to other European and American countries. In this paper we discuss avalanche occurrence, the climatic situation and historical avalanche events in Turkey; in addition, we identify bottlenecks and suggest solutions to tackle avalanche problems. Furthermore, we have applied the numerical avalanche simulation software RAMMS combined with a Digital Elevation Model (DEM)-based potential release zone identification algorithm to analyze the catastrophic avalanche events in the villages of Üzengili (Bayburt province) in 1993 and Yaylaönü (Trabzon province) in 1981. The results demonstrate the value of such an approach for regions with poor avalanche databases, enabling the calculation of different scenarios and the estimation of run-out distances, flow velocities, impact pressure and flow height.

  16. THEORY AND PRACTICE OF INDIVIDUAL SNOW AVALANCHE RISK ASSESSMENT IN THE RUSSIAN ARCTIC

    Directory of Open Access Journals (Sweden)

    Aleksandr Shnyparkov

    2012-01-01

    Full Text Available In recent years, the Government of the Russian Federation considerably increased attention to the exploitation of the Russian Arctic territories. Simultaneously, the evaluation of snow avalanches danger was enhanced with the aim to decrease fatalities and reduce economic losses. However, it turned out that solely reporting the degree of avalanche danger is not sufficient. Instead, quantitative information on probabilistic parameters of natural hazards, the characteristics of their effects on the environment and possibly resulting losses is increasingly needed. Such information allows for the estimation of risk, including risk related to snow avalanches. Here, snow avalanche risk is quantified for the Khibiny Mountains, one of the most industrialized parts of the Russian Arctic: Major parts of the territory have an acceptable degree of individual snow avalanche risk (<1×10-6. The territories with an admissible (10-4–10-6 or unacceptable (>1×10-4 degree of individual snow avalanche risk (0.5 and 2% of the total area correspond to the Southeast of the Khibiny Mountains where settlements and mining industries are situated. Moreover, due to an increase in winter tourism, some traffic infrastructure is located in valleys with an admissible or unacceptable degree of individual snow avalanches risk.

  17. Formation of levees, troughs and elevated channels by avalanches on erodible slopes

    Science.gov (United States)

    Edwards, Andrew; Viroulet, Sylvain; Kokelaar, Peter; Gray, Nico

    Snow avalanches are typically initiated on marginally stable slopes with a layer of fresh snow that may easily be incorporated into the avalanche. The net balance of erosion and deposition of snow determines whether an avalanche grows, starves away or propagates steadily. We present the results of small scale experiments in which particles are released on a rough inclined plane coated with a static erodible layer of the same grains. For thick static layers on steep slopes the initial avalanche grows rapidly in size by entraining grains. On shallower slopes an elevated channel forms and material is eventually brought to rest due to a greater rate of deposition than erosion. On steep slopes with thinner erodible layers it is possible to generate avalanches that have a perfect balance between erosion and deposition, leaving a constant width trough with levees. We then show, by combining Pouliquen & Forterre (2002)'s friction law with Gray & Edwards (2014)'s depth-averaged μ (I) -rheology, that it is possible to develop a simple 2D shallow water-like avalanche model that qualitatively captures all of the experimental behaviours. Hence this model may have important practical implications for modeling the initiation, growth and decay of snow avalanches for hazard risk assessment. NERC Grants NE/E003206/1 and NE/K003011/1 and EPSRC Grants EP/I019189/1 and EP/K00428X/1.

  18. Avalanche risk in backcountry terrain based on usage frequency and accident data

    Science.gov (United States)

    Techel, F.; Zweifel, B.; Winkler, K.

    2014-08-01

    In Switzerland, the vast majority of avalanche accidents occurs during recreational activities. Risk analysis studies mostly rely on accident statistics without considering exposure (or the elements at risk), i.e. how many and where people are recreating. We compared the accident data (backcountry touring) with reports from two social media mountaineering networks - bergportal.ch and camptocamp.org. On these websites, users reported more than 15 000 backcountry tours during the five winters 2009/2010 to 2013/2014. We noted similar patterns in avalanche accident data and user data like demographics of recreationists, distribution of the day of the week (weekday vs. weekend) or weather conditions (fine vs. poor weather). However, we also found differences such as the avalanche danger conditions on days with activities and accidents, but also the geographic distribution. While backcountry activities are concentrated in proximity to the main population centres in the West and North of the Swiss Alps, a large proportion of the severe avalanche accidents occurred in the inner-alpine, more continental regions with frequently unfavorably snowpack structure. This suggests that even greater emphasis should be put on the type of avalanche problem in avalanche education and avalanche forecasting to increase the safety of backcountry recreationists.

  19. Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product.

    Science.gov (United States)

    Hayat, Majeed M; Ramirez, David A

    2012-03-26

    Novel theory is developed for the avalanche multiplication process in avalanche photodiodes (APDs) under time-varying reverse-biasing conditions. Integral equations are derived characterizing the statistics of the multiplication factor and the impulse-response function of APDs, as well as their breakdown probability, all under the assumption that the electric field driving the avalanche process is time varying and spatially nonuniform. Numerical calculations generated by the model predict that by using a bit-synchronous sinusoidal biasing scheme to operate the APD in an optical receiver, the pulse-integrated gain-bandwidth product can be improved by a factor of 5 compared to the same APD operating under the conventional static biasing. The bit-synchronized periodic modulation of the electric field in the multiplication region serves to (1) produce large avalanche multiplication factors with suppressed avalanche durations for photons arriving in the early phase of each optical pulse; and (2) generate low avalanche gains and very short avalanche durations for photons arriving in the latter part of each optical pulse. These two factors can work together to reduce intersymbol interference in optical receivers without sacrificing sensitivity.

  20. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    Science.gov (United States)

    Prange, Micah P.; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien

    2017-12-01

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of the model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. The details of the Monte Carlo model are presented along with the results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.

  1. Fiber Optic Distributed Temperature Sensing in Avalanche Research

    Science.gov (United States)

    Woerndl, Michaela; Tyler, S. W.; Hatch, C. E.; Dozier, J.; Prokop, A.

    2010-05-01

    Being a major driving force for snow metamorphism, thermal properties and temperature gradients in an alpine snow pack influence both, spatial distribution and temporal evolution of its stability throughout a winter season. In avalanche research and forecasting mainly weather station networks and models are employed for temperature-data collection and prediction. Standard temperature measurement devices used in weather stations and for model calibration typically provide point data over time. With fiber-optic Distributed Temperature Sensing (DTS) a laser is pulsed through standard telecommunications optical fibers of up to 30km in length, and uses the cables themselves as a thermometer. DTS allows for continuous observations of temperatures over large spatial scales and with high temporal resolution. Depending on the type of instrument, temperature readings can be provided every 0.25 to 2 meters along the cable and up to six times a minute. Measurement accuracies depend on integration times and can reach +/- 0.1 degrees C or better. Already well established in other environmental applications such as surface water - groundwater hydrology and soil moisture studies, this study assesses applicability and performance of DTS in snow environments and its potential benefits for avalanche research and forecasting. At the CRREL/UCSB research site on Mammoth Mountain, California, 40m fiber-optic cable loops were deployed at different depths in the snow pack to measure temperature and thermal gradient evolution over time and space. Four discrete measurement sessions of 4 to 20 days were conducted during the winter season 2008/2009. Strong horizontal spatial variability of temperatures of up to 3 degrees C within the snow pack over the 40m-sections were resolved. As expected, vertical thermal gradients were influenced by spatial location. Evolution of temperatures and gradients over time could be continuously monitored along the 40m transects during each measurement session

  2. The theory of scintillation with applications in remote sensing

    CERN Document Server

    Rino, Charles

    2011-01-01

    "In order to truly understand data signals transmitted by satellite, one must understand scintillation theory in addition to well established theories of EM wave propagation and scattering. Scintillation is a nuisance in satellite EM communications, but it has stimulated numerous theoretical developments with science applications. This book not only presents a thorough theoretical explanation of scintillation, but it also offers a complete library of MATLAB codes that will reproduce the book examples. The library includes GPS coordinate manipulations, satellite orbit prediction, and earth mean magnetic field computations. The subect matter is for EM researchers; however, also theory is relevant to geophysics, acoustics, optics and astoronomy"--Provided by publisher.

  3. Neutron detector using lithiated glass-scintillating particle composite

    Science.gov (United States)

    Wallace, Steven [Knoxville, TN; Stephan, Andrew C [Knoxville, TX; Dai, Sheng [Knoxville, TN; Im, Hee-Jung [Knoxville, TN

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  4. Scattering of light from the liquid scintillator used in SNO+

    Science.gov (United States)

    Major, Timothy

    2012-10-01

    SNO+ is a double-beta decay experiment currently under construction in Sudbury, Ontario. It will contain approximately a kiloton of liquid scintillator loaded with a neodymium isotope that it is thought may undergo neutrinoless double-beta decay. To simulate events and to interpret data, it is important to understand how light scatters in the liquid scintillator, including the angular distribution of scattered photons. This talk will highlight the status of SNO+ and discuss a measurement of the distribution of scattered light from a sample of liquid scintillator.

  5. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  6. Alpha counting and spectrometry using liquid scintillation methods

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, W J

    1986-01-01

    The material in this report is intended to be a practical introduction and guide to the use of liquid scintillation for alpha counting and spectrometry. Other works devoted to the development of the theory of liquid scintillation exist and a minimum of such material is repeated here. Much remains to be learned and many improvements remain to be made in the use of liquid scintillation for alpha counting and spectrometry. It is hoped that this modest work will encourage others to continue development in the field.

  7. Organic scintillators with long luminescent lifetimes for radiotherapy dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Lindvold, Lars René; Andersen, Claus Erik

    2011-01-01

    of experiments performed using two organic scintillators, one commercially available and one custom made. The luminescent lifetimes of the scintillators have been measured using i) optical excitation by pulsed UV light, and ii) irradiative excitation using high-energy X-rays from a linac. A luminescent lifetime......Organic scintillators with long luminescent lifetimes can theoretically be used to temporally filter out radiation-induced luminescence and Cerenkov light (the so-called stem signal) when used as fibre-coupled radiotherapy dosimeters. Since the medical linear accelerators (linacs1) used...

  8. A coincidental timing model for the scintillating fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zugec, Petar, E-mail: pzugec@phy.hr [Department of Physics, Faculty of Science, University of Zagreb, Bijenicka cesta 32, Zagreb (Croatia)

    2011-12-11

    A model describing the coincidental timing of scintillating fibers is developed. Fiber geometry, the rate of scintillation decay together with the mean number, spatial dispersion and attenuation of emitted photons are considered. For a specific selection of probability distributions and parameters involved, the entire coincidental timing distributions, corresponding FWHM values and the photon detection efficiencies are extracted. The significance of the number of photons from the scintillation process is specially emphasized. Additionally, the model is extended to include a triggering feature, experimentally realized by coupling fibers to any photon resolving device. Finally, the measurements of a coincidental timing distribution were performed, with an excellent agreement found between the experimental and predicted theoretical results.

  9. Slab entrainment and surge dynamics of the 2015 Valleé de la Sionne avalanches

    Science.gov (United States)

    Köhler, Anselm; McElwaine, Jim; Sovilla, Betty

    2016-04-01

    On 3 February 2015 five avalanches were artificially released at the Valleé de la Sionne test site in the west of Switzerland. The dense parts of the avalanches were tracked by the GEODAR Mark 2 radar system at 111 Hz framerate with 0.75 m down slope resolution. The data show that these avalanche contain several internal surges and that the avalanche front is repeatedly overtaken by some of these surges. We show that these surges exist on different scale. While the major surges originates from secondary triggered slab releases and occur all over the avalanche. The minor surges are only found in the energetic part of a well developed powder snow avalanche. The mass of the major surges can be as huge as the initial released mass, this has a dramatic effect on the mass distribution inside the avalanche and effects the front velocity and run out. Furthermore, the secondary released snow slabs are an important entrainment mechanism and up to 50 percent of the mass entered the avalanche via slab entrainment. We analyse the dynamics of the leading edge and the minor surges in more detail using a simple one dimensional model with frictional resistance and quadratic velocity dependent drag. These models fit the data well for the start and middle of avalanche but cannot capture the slowing and overtaking of the minor surge. We find much higher friction coefficients to describe the surging. We propose that this data can only be explained by changes in the snow surface. These effects are not included in current models yet, but the data presented here will enable the development and verification of such models.

  10. A debris avalanche at Forest Falls, San Bernardino County, California, July 11, 1999

    Science.gov (United States)

    Morton, Douglas M.; Hauser, Rachel M.

    2001-01-01

    This publication consists of the online version of a CD-ROM publication, U.S. Geological Survey Open-File Report 01-146. The data for this publication total 557 MB on the CD-ROM. For speed of transfer, the main PDF document has been compressed (with a subsequent loss of image quality) from 145 to 18.1 MB. The community of Forest Falls, California, is frequently subject to relatively slow moving debris flows. Some 11 debris flow events that were destructive to property have been recorded between 1955 and 1998. On July 11 and 13, 1999, debris flows again occurred, produced by high-intensity, short-duration monsoon rains. Unlike previous debris flow events, the July 11 rainfall generated a high-velocity debris avalanche in Snow Creek, one of the several creeks crossing the composite, debris flow dominated, alluvial fan on which Forest Falls is located. This debris avalanche overshot the bank of the active debris flow channel of Snow Creek, destroying property in the near vicinity and taking a life. The minimum velocity of this avalanche is calculated to have been in the range of 40 to 55 miles per hour. Impact from high-velocity boulders removed trees where the avalanche overshot the channel bank. Further down the fan, the rapidly moving debris fragmented the outer parts of the upslope side of large pine trees and embedded rock fragments into the tree trunks. Unlike the characteristic deposits formed by debris flows, the avalanche spread out down-slope and left no deposit suggestive of a debris avalanche. This summer monsoon-generated debris avalanche is apparently the first recorded for Forest Falls. The best indications of past debris avalanches may be the degree of permanent scars produced by extensive abrasion and splintering of the outer parts of pine trees that were in the path of an avalanche.

  11. Spreading and Deposit Characteristics of a Rapid Dry Granular Avalanche Across 3D Topography: Experimental Study

    Science.gov (United States)

    Wang, Yu-Feng; Xu, Qiang; Cheng, Qian-Gong; Li, Yan; Luo, Zhong-Xu

    2016-11-01

    Aiming to understand the propagation and deposit behaviours of a granular avalanche along a 3D complex basal terrain, a new 3D experimental platform in 1/400 scale was developed according to the natural terrain of the Xiejiadianzi rock avalanche, with a series of laboratory experiments being conducted. Through the conduction of these tests, parameters, including the morphological evolution of sliding mass, run-outs and velocities of surficial particles, thickness contour and centre of final deposit, equivalent frictional coefficient, and energy dissipation, are documented and analysed, with the geomorphic control effect, material grain size effect, drop angle effect, and drop distance effect on rock avalanche mobility being discussed primarily. From the study, some interesting conclusions for a better understanding of rock avalanche along a 3D complex basal topography are reached. (1) For the granular avalanche tested in this study, great differences between the evolutions of the debris along the right and left branch valleys were observed, with an obvious geomorphic control effect on avalanche mobility presented. In addition, some other interesting features, including groove-like trough and superelevation, were also observed under the control of the topographic interferences. (2) The equivalent frictional coefficients of the granular avalanches tested here range from 0.48 to 0.57, which is lower than that reached with a set-up composed of an inclined chute and horizontal plate and higher than that reached using a set-up composed of only an inclined chute. And the higher the drop angle and fine particle content, the higher the equivalent frictional coefficient. The effect of drop distance on avalanche mobility is minor. (3) For a granular avalanche, momentum transfer plays an important role in the motion of mass, which can accelerate the mobility of the front part greatly through delivering the kinetic energy of the rear part to the front.

  12. The rock avalanche sediment in moraines and its implication for palaeoclimate reconstruction

    Science.gov (United States)

    Reznichenko, N.; Davies, T. R. H.; Shulmeister, J.; Winkler, S.

    2012-04-01

    Rock avalanches mobilise a large quantity of sediment that after deposition on a glacier may cause its regime to alter. The glacier response includes change of mass balance after the rock avalanche emplacement followed by re-deposition of the rock avalanche sediment as moraine (Reznichenko et al., 2010; Reznichenko et al., 2011). Such aclimatic glacier response to a supraglacial rock avalanche deposit can confound apparent climatic signals extracted from moraine chronologies, which are widely used to infer regional climate change and are often correlated globally. Therefore, the origin of any particular dated moraine must be clarified before that date can be used for paleoclimatic interpretation. We present a new method that identifies the presence of rock avalanche sediment in moraines, based on the characteristics of the finest sediment fraction which contrast with those of non-rock-avalanche-derived glacial sediment. Under the dry, high-stress conditions during rock avalanche emplacement, fragmenting grains form agglomerates, which are absent in the wet, lower-stress processes of sub- and en-glacial environments. We show that these agglomerates are present in some moraines in the Southern Alps of New Zealand that have been attributed to climate fluctuation. This technique has the potential to resolve long-standing arguments about the role of rock avalanches in moraine formation and to enhance the use of moraines in palaeoclimatological studies. Reznichenko, N.V., Davies, T.R.H., Shulmeister, J. and McSaveney, M.J., 2010. Effects of debris on ice-surface melting rates: an experimental study. Journal of Glaciology, Vol. 56, No. 197, 384-394 Reznichenko, N.V., Davies, T.R.H. and Alexander, D.J., 2011. Effects of rock avalanches on glacier behaviour and moraine formation. Geomorphology, v. 132, is.3-4, p. 327-338

  13. Entraining avalanches on slopes: results from experiments using PIV on viscoplastic gravity currents

    Science.gov (United States)

    Bates, Belinda; Ancey, Christophe

    2014-05-01

    In order to conduct experiments simulating entrainment by avalanches on slopes, it was necessary to select a material which could act as both a stationary entrainable layer, mimicking undisturbed mud or snow, and a flowing mass, representing the flowing avalanche. Carbopol Ultrez 10, a viscoplastic "micro-gel" exhibiting a yield stress does just that: it remains plastic on a slope until an avalanche arrives and increases the shear within, reducing the viscosity in some or all of the material which may begin to flow as a fluid. Carbopol is transparent and easily seeded with fluorescent tracking micro-particles, without significantly changing the material rheology. We take advantage of its properties to perform Particle Imaging Velocimetry (PIV) on an idealized avalanche, which flows into an entrainment zone where it interacts with a layer of stationary bed material. The internal velocity field is obtained for the flow as it passes over the loose material, showing the entrainment mechanisms active at different slope angles. At the shallowest slope the avalanche is slower and mobilizes the bed almost entirely, causing it to slip along the base and buckle downstream of the front. At steeper slopes the avalanche shears the bed, yet appears to glide over it more easily with a smaller effect downstream. Increasing the concentration of the Carbopol and thus increasing the apparent yield stress leads to more destruction of the bed layer by the avalanche. Three flow phases are identified, beginning with a "rolling phase" where the avalanche has minimal effect on the bed and seems to roll onto it as the front moves forward, then a "gliding phase" where the deposited fluid is pushed downwards and glides downstream, shearing the bed material. Finally, on the shallower slopes and at higher Carbopol concentration, the avalanche digs down to the rigid base, and completely displaces the bed material downstream, with its front riding atop an entirely mobilized plug-flow layer.

  14. Are dragon-king neuronal avalanches dungeons for self-organized brain activity?

    Science.gov (United States)

    de Arcangelis, L.

    2012-05-01

    Recent experiments have detected a novel form of spontaneous neuronal activity both in vitro and in vivo: neuronal avalanches. The statistical properties of this activity are typical of critical phenomena, with power laws characterizing the distributions of avalanche size and duration. A critical behaviour for the spontaneous brain activity has important consequences on stimulated activity and learning. Very interestingly, these statistical properties can be altered in significant ways in epilepsy and by pharmacological manipulations. In particular, there can be an increase in the number of large events anticipated by the power law, referred to herein as dragon-king avalanches. This behaviour, as verified by numerical models, can originate from a number of different mechanisms. For instance, it is observed experimentally that the emergence of a critical behaviour depends on the subtle balance between excitatory and inhibitory mechanisms acting in the system. Perturbing this balance, by increasing either synaptic excitation or the incidence of depolarized neuronal up-states causes frequent dragon-king avalanches. Conversely, an unbalanced GABAergic inhibition or long periods of low activity in the network give rise to sub-critical behaviour. Moreover, the existence of power laws, common to other stochastic processes, like earthquakes or solar flares, suggests that correlations are relevant in these phenomena. The dragon-king avalanches may then also be the expression of pathological correlations leading to frequent avalanches encompassing all neurons. We will review the statistics of neuronal avalanches in experimental systems. We then present numerical simulations of a neuronal network model introducing within the self-organized criticality framework ingredients from the physiology of real neurons, as the refractory period, synaptic plasticity and inhibitory synapses. The avalanche critical behaviour and the role of dragon-king avalanches will be discussed in

  15. Natural avalanches and transportation: A case study from Glacier National Park, Montana, USA

    Science.gov (United States)

    Reardon, B.A.; Fagre, Daniel B.; Steiner, R.W.

    2004-01-01

    In January 2004, two natural avalanches (destructive class 3) derailed a freight train in John F. Stevens Canyon, on the southern boundary of Glacier National Park. The railroad tracks were closed for 29 hours due to cleanup and lingering avalanche hazard, backing up 112km of trains and shutting down Amtrak’s passenger service. The incident marked the fourth time in three winters that natural avalanches have disrupted transportation in the canyon, which is also the route of U.S. Highway 2. It was the latest in a 94-year history of accidents that includes three fatalities and the destruction of a major highway bridge. Despite that history and the presence of over 40 avalanche paths in the 16km canyon, mitigation is limited to nine railroad snow sheds and occasional highway closures. This case study examines natural avalanche cycles of the past 28 winters using data from field observations, a Natural Resources Conservation Service (NRCS) SNOTEL station, and data collected since 2001 at a high-elevation weather station. The avalanches occurred when storms with sustained snowfall buried a persistent near-surface faceted layer and/or were followed by rain-on-snow or dramatic warming (as much as 21oC in 30 minutes). Natural avalanche activity peaked when temperatures clustered near freezing (mean of -1.5oC at 1800m elev.). Avalanches initiated through rapid loading, rain falling on new snow, and/ or temperature-related changes in the mechanical properties of slabs. Lastly, the case study describes how recent incidents have prompted a unique partnership of land management agencies, private corporations and non-profit organizations to develop an avalanche mitigation program for the transportation corridor.

  16. Forecasting of wet snow avalanche activity: Proof of concept and operational implementation

    Science.gov (United States)

    Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph

    2017-04-01

    State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.

  17. Automatic detection of avalanches in seismic data using Hidden Markov Models

    Science.gov (United States)

    Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat

    2017-04-01

    Seismic monitoring systems are well suited for the remote detection of mass movements, such as landslides, rockfalls and debris flows. For snow avalanches, this has been known since the 1970s and seismic monitoring could potentially provide valuable information for avalanche forecasting. We thus explored continuous seismic data from a string of vertical component geophones in an avalanche starting zone above Davos, Switzerland. The overall goal is to automatically detect avalanches with a Hidden Markov Model (HMM), a statistical pattern recognition tool widely used for speech recognition. A HMM uses a classifier to determine the likelihood that input objects belong to a finite number of classes. These classes are obtained by learning a multidimensional Gaussian mixture model representation of the overall observable feature space. This model is then used to derive the HMM parameters for avalanche waveforms using a single training sample to build the final classifier. We classified data from the winter seasons of 2010 and compared the results to several hundred avalanches manually identified in the seismic data. First results of a classification of a single day have shown, that the model is good in terms of probability of detection while having a relatively low false alarm rate. We further implemented a voting based classification approach to neglect events detected only by one sensor to further improve the model performance. For instance, on 22 March 2010, a day with particular high avalanche activity, 17 avalanches were positively identified by at least three sensors with no false alarms. These results show, that the automatic detection of avalanches in seismic data is feasible, bringing us one step closer to implementing seismic monitoring system in operational forecasting.

  18. Optical readout for imaging neutron scintillation detectors

    Science.gov (United States)

    Hutchinson, Donald P.; Richards, Roger K.; Maxey, L. Curt; Cooper, Ronald G.; Holcomb, David E.

    2002-11-01

    The Spallation Neutron Source (SNS) under construction at the Oak Ridge National Laboratory (ORNL) will be the most important new neutron scattering facility in the United States. Neutron scattering instruments for the SNS will require large area detectors with fast response (LiF/ZnS(Ag) scintillator screen coupled to a wavelength-shifting fiber optic readout array. A 25 x 25 cm prototype detector is currently under development. Initial tests at the Intense Pulsed Neutron Source at the Argonne National Laboratory have demonstrated good imaging properties coupled with very low gamma ray sensitivity. The response time of this detector is approximately 1 microsecond. Details of the design and test results of the detector will be presented.

  19. Modelling of an IR scintillation counter

    CERN Document Server

    Fraga, M M F; Policarpo, Armando

    2000-01-01

    A systematic study of the excitation and de-excitation mechanisms in ternary gas mixtures Ar+CO sub 2 +N sub 2 is presented regarding the possibility of developing a proportional scintillation counter based on the detection of the infrared molecular emissions associated with the lowest vibrational states of molecules. The use of visible or near-infrared photons (lambda<1 mu m) for applications like imaging and quality control of microstructure detectors has been reported. In view of these applications we analyse the processes leading to near-infrared emissions in pure argon and give an estimation of the number of photons emitted per electron, at several pressures, as a function of the charge gain.

  20. Spectroscopic neutron detection using composite scintillators

    Science.gov (United States)

    Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.

    2016-09-01

    Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.

  1. Design of electronics charts of defence with the use of power avalanche diodes

    Directory of Open Access Journals (Sweden)

    Kravchina V. V.

    2010-08-01

    Full Text Available Features of switching parameters of frequency avalanche diodes and modeling of their application in the electric schemes of protection are considered. Efficiency of protection against of the overvaulting are formed at switching in the course of transients, by means of electric schemes with application of avalanche diodes and there are using clearing of the impulses of overvaulting by initiation of the avalanche discharge. Modeling of work of the electronic power devices was spent in the system MATLAB+Simulink with simultaneous there is application of the package SimPowerSystems.

  2. XeCl Avalanche discharge laser employing Ar as a diluent

    Science.gov (United States)

    Sze, Robert C.

    1981-01-01

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  3. Avalanche proton-boron fusion based on elastic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Eliezer, Shalom; Martinez Val, Josè Maria [Institute of Nuclear Fusion, Polytechnic University of Madrid, Madrid (Spain); Hora, Heinrich [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Korn, Georg [Institute of Physics, ASCR, ELI-Beamlines Project, Prague (Czech Republic); Nissim, Noaz [Applied Physics Department, Soreq NRC, Yavne 81800 (Israel)

    2016-05-15

    Recent experiments done at Prague with the 600 J/0.2 ns PALS laser interacting with a layer of boron dopants in a hydrogen enriched target have produced around 10{sup 9} alphas. We suggest that these unexpected very high fusion reactions of proton with {sup 11}B indicate an avalanche multiplication for the measured anomalously high nuclear reaction yields. This can be explained by elastic nuclear collisions in the broad 600 keV energy band, which is coincident with the high nuclear p-{sup 11}B fusion cross section, by the way of multiplication through generation of three secondary alpha particles from a single primarily produced alpha particle.

  4. Comprehensive analysis of new near-infrared avalanche photodiode structure

    Science.gov (United States)

    Czuba, Krzysztof; Jurenczyk, Jaroslaw; Kaniewski, Janusz

    2014-01-01

    The essential steps in simulations of modern separate absorption, grading, charge, and multiplication avalanche photodiode and their results are discussed. All simulations were performed using two commercial technology computer-aided design type software packages, namely Silvaco ATLAS and Crosslight APSYS. Comparison between those two frameworks was made and differences between them were pointed out. Several examples of the influence of changes made in individual layers on overall device characteristics have been shown. Proper selection of models and their parameters as well as its significance on results has been illustrated. Additionally, default values of material parameters were revised and adequate values from the literature were entered. Simulated characteristics of optimized structure were compared with ones obtained from measurements of real devices (e.g., current-voltage curves). Finally, properties of crucial layers in the structure were discussed.

  5. Design, fabrication, and characterization of InSb avalanche photodiode

    Science.gov (United States)

    Abautret, J.; Evirgen, A.; Perez, J. P.; Christol, P.; Rouvié, A.; Cluzel, R.; Cordat, A.; Rothman, J.

    2013-12-01

    In this communication, the potentiality of InSb material as an avalanche photodiode (APD) device is investigated. Current density-voltage (J-V) characteristics at 77K of InSb pin photodiodes were simulated by using ATLAS software from SILVACO, in dark conditions and under illumination. In order to validate parameter values used for the modeling, theoretical J-V results were compared with experimental measurements performed on InSb diodes fabricated by molecular beam epitaxy. Next, assuming a multiplication process only induced by the electrons (e-APD), different designs of separate absorption and multiplication (SAM) APD structure were theoretically investigated and the first InSb SAM APD structure with 1μm thick multiplication layer was then fabricated and characterized.

  6. Trough models: Universality classes, distribution of avalanches, and cluster sizes

    Science.gov (United States)

    Leung, Kwan-Tai

    1992-11-01

    Extensions of the one-dimensional two-state trough model introduced by Carlson, Chayes, Grannan, and Swindle (CCGS) [Phys. Rev. A 42, 2467 (1990)] are considered. In particular, I investigate what kinds of physical processes are relevant to its scaling behavior. Short-range rearrangements of trough positions (slide events), which were neglected by CCGS, are shown to be irrelevant. By a simple modification of the dynamics, however, I obtain universality classes characterized by a single parameter. For trough models in general, including the two-state and the ``limited local'' sandpile models, asymptotically exact relations between the distribution of trough-trough distances and that of the mass of avalanches are derived. They yield moment relations in agreement with Krug's [J. Stat. Phys. 66, 1635 (1992)]. All results are verified by simulations.

  7. Snow drift: acoustic sensors for avalanche warning and research

    Directory of Open Access Journals (Sweden)

    M. Lehning

    2002-01-01

    Full Text Available Based on wind tunnel measurements at the CSTB (Jules Verne facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b, or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a. On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966 are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations

  8. Snow drift: acoustic sensors for avalanche warning and research

    Science.gov (United States)

    Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.

    Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long

  9. Application of Ultraviolet Light in Dental Identification of Avalanche Victims.

    Science.gov (United States)

    Agrawal, Nitin Kumar; Dahal, Samarika; Wasti, Harihar; Soon, Alistair

    2017-09-08

    In any disaster, it becomes important to identify the deceased for ethical, social and legal causes.Out of the numerous methods of identification, dental comparison is considered to be one of the scientific methods in a Disaster Victim Identification process. The two victims of avalanche in Nepal were identified using dental comparison. The two bodies brought for examination were unidentifiable visually. To aid identification of tooth coloured restorations, ultraviolet light was used. The ultraviolet light made the tooth coloured restorations appear distinct from the adjacent tooth structure in one of the cases. This helped in post-mortem charting of dental examination with greater accuracy. When the ante-mortem dental records and the post-mortem dental findings were compared, positive identification was made for both the cases. The bodies were then handed over to their respective kin. These cases highlighted the importance of ultraviolet light in post-mortem dental examination and the significance of forensic dentistry in identification process.

  10. Avalanches and waves in the Abelian sandpile model

    Energy Technology Data Exchange (ETDEWEB)

    Paczuski, M. [Department of Physics, University of Houston, Houston, Texas 77204-5506 (United States); Boettcher, S. [Center for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1997-10-01

    We numerically study avalanches in the two-dimensional Abelian sandpile model in terms of a sequence of waves of toppling events. Priezzhev {ital et al.} [Phys. Rev. Lett. {bold 76}, 2093 (1996)] have recently proposed exact results for the critical exponents in this model based on the existence of a proposed scaling relation for the difference in sizes of subsequent waves, {Delta}s=s{sub k}{minus}s{sub k+1}, where the size of the previous wave s{sub k} was considered to be almost always an upper bound for the size of the next wave s{sub k+1}. Here we show that the significant contribution to {Delta}s comes from waves that violate the bound; the average {l_angle}{Delta}s(s{sub k}){r_angle} is actually negative and diverges with the system size, contradicting the proposed solution. {copyright} {ital 1997} {ital The American Physical Society}

  11. Rapid sequestration of rock avalanche deposits within glaciers.

    Science.gov (United States)

    Dunning, Stuart A; Rosser, Nicholas J; McColl, Samuel T; Reznichenko, Natalya V

    2015-08-19

    Topographic development in mountainous landscapes is a complex interplay between tectonics, climate and denudation. Glaciers erode valleys to generate headwall relief, and hillslope processes control the height and retreat of the peaks. The magnitude-frequency of these landslides and their long-term ability to lower mountains above glaciers is poorly understood; however, small, frequent rockfalls are currently thought to dominate. The preservation of rarer, larger, landslide deposits is exceptionally short-lived, as they are rapidly reworked. The 2013 Mount Haast rock avalanche that failed from the slopes of Aoraki/Mount Cook, New Zealand, onto the glacier accumulation zone below was invisible to conventional remote sensing after just 3 months. Here we use sub-surface data to reveal the now-buried landslide deposit, and suggest that large landslides are the primary hillslope erosion mechanism here. These data show how past large landslides can be identified in accumulation zones, providing an untapped archive of erosive events in mountainous landscapes.

  12. Submicron Plasticity: Yield Stress, Dislocation Avalanches, and Velocity Distribution

    Science.gov (United States)

    Ispánovity, Péter Dusán; Groma, István; Györgyi, Géza; Csikor, Ferenc F.; Weygand, Daniel

    2010-08-01

    The existence of a well-defined yield stress, where a macroscopic crystal begins to plastically flow, has been a basic observation in materials science. In contrast with macroscopic samples, in microcrystals the strain accumulates in random bursts, which makes controlled plastic formation difficult. Here we study by 2D and 3D simulations the plastic deformation of submicron objects under increasing stress. We show that, while the stress-strain relation of individual samples exhibits jumps, its average and mean deviation still specify a well-defined critical stress. The statistical background of this phenomenon is analyzed through the velocity distribution of dislocations, revealing a universal cubic decay and the appearance of a shoulder due to dislocation avalanches.

  13. TCAD simulations for a novel single-photon avalanche diode

    Science.gov (United States)

    Jin, Xiangliang; Yang, Jia; Yang, Hongjiao; Tang, Lizhen; Liu, Weihui

    2015-03-01

    A single-photon avalanche diode (SPAD) device with P+-SEN junction, and a low concentration of N-type doping circular virtual guard-ring was presented in this paper. SEN layer of the proposed SPAD has high concentration of N-type doping, causing the SPAD low breakdown voltage (~14.26 V). What's more, an efficient and narrow (about 2μm) guard-ring of the proposed SPAD not only can withstand considerably higher electric fields for preventing edge breakdown, but also offers a little increment in fill factor compared with existing SPADs due to its small area. In addition, some Silvaco TCAD simulations have been done and verify characteristics and performance of the design in this work.

  14. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    Directory of Open Access Journals (Sweden)

    Emilio Sciacca

    2008-08-01

    Full Text Available Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs. Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated.

  15. Avalanche photodiodes for the CATSAT gamma-ray burst mission

    CERN Document Server

    Fletcher Holmes, D W

    2000-01-01

    five-sigma significance level. In approximately half of these cases, it should be possible to discriminate between the hypothesis that there is an absorbing hydrogen column of density 1 x 10 sup 2 sup 2 cm sup - sup 2 and the hypothesis that there is no column. This thesis firstly describes efforts to characterise large-area, high-gain, Avalanche Photodiodes (APDs), manufactured by Radiation Monitoring Devices (RMD) Inc. of Massachusetts. These are relatively new devices in the field of X-ray spectroscopy and the research presented here attempts to increase our understanding of their behaviour as X-ray detectors and their underlying internal physical processes. Models are suggested for Quantum Detection Efficiency and for Photopeak Fraction in these devices. Measurements of these properties as a function of energy constrain the models, revealing new information about the internal structure of APDs and providing powerful predictive tools for detector response. The intrinsic silicon dead layer of a typical devi...

  16. Mechanics of debris flows and rock avalanches: Chapter 43

    Science.gov (United States)

    Iverson, Richard M.; Fernando, Harindra Joseph

    2012-01-01

    Debris flows are geophysical phenomena intermediate in character between rock avalanches and flash floods. They commonly originate as water-laden landslides on steep slopes and transform into liquefied masses of fragmented rock, muddy water, and entrained organic matter that disgorge from canyons onto valley floors. Typically including 50%–70% solid grains by volume, attaining speeds >10 m/s, and ranging in size up to ∼109 m3, debris flows can denude mountainsides, inundate floodplains, and devastate people and property (Figure 43.1). Notable recent debris-flow disasters resulted in more than 20,000 fatalities in Armero, Colombia, in 1985 and in Vargas state, Venezuela, in 1999.

  17. Advanced active quenching circuits for single-photon avalanche photodiodes

    Science.gov (United States)

    Stipčević, M.; Christensen, B. G.; Kwiat, P. G.; Gauthier, D. J.

    2016-05-01

    Commercial photon-counting modules, often based on actively quenched solid-state avalanche photodiode sensors, are used in wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single photon arrival time resolution (jitter), however they usually do not specify the conditions under which these parameters are constant or present a sufficient description. In this work, we present an in-depth analysis of the active quenching process and identify intrinsic limitations and engineering challenges. Based on that, we investigate the range of validity of the typical parameters used by two commercial detectors. We identify an additional set of imperfections that must be specified in order to sufficiently characterize the behavior of single-photon counting detectors in realistic applications. The additional imperfections include rate-dependence of the dead time, jitter, detection delay shift, and "twilighting." Also, the temporal distribution of afterpulsing and various artifacts of the electronics are important. We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the system's performance. Specifically, we discuss implications of these new findings in a few applications in which single-photon detectors play a major role: the security of a quantum cryptographic protocol, the quality of single-photon-based random number generators and a few other applications. Finally, we describe an example of an optimized avalanche quenching circuit for a high-rate quantum key distribution system based on time-bin entangled photons.

  18. Sixteen-year follow-up of childhood avalanche survivors

    Directory of Open Access Journals (Sweden)

    Edda Bjork Thordardottir

    2016-08-01

    Full Text Available Background: Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD can provide a gateway to recovery as well as enhancement of preventive measures. Objective: Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES and PTSD symptoms in adulthood. Methods: Childhood survivors (aged 2–19 at the time of exposure of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Results: Response rate was 66% (108/163. Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, p<0.05. When adjusted for age and sex, PTSD symptoms were associated with lower education (F=7.62, p<0.001, poor financial status (F=12.21, p<0.001, and unemployment and/or disability (F=3.04, p<0.05. In a multivariable regression model, when adjusting for age and sex, lack of social support (t=4.22, p<0.001 and traumatic reactions of caregivers (t=2.49, p<0.05 in the aftermath of the disaster independently predicted PTSD 16 years post-trauma. Conclusions: Lingering PTSD symptoms after childhood exposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms.

  19. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT.

  20. Improved Scintillator Materials For Compact Electron Antineutrino Detectors

    NARCIS (Netherlands)

    Dijkstra, Peter; Wortche, Heinrich J.; Browne, Wesley R.

    2012-01-01

    Recent developments provide new components holding the potential to improve the performance of liquid scintillation electron antineutrino detectors used as nuclear reactors monitors. Current systems raise issues regarding size, quantum efficiency, stability, and spatial resolution of the vertex

  1. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  2. Large liquid-scintillator trackers for neutrino experiments

    CERN Document Server

    Benussi, L; D'Ambrosio, N; Déclais, Y; Dupraz, J P; Fabre, Jean-Paul; Fanti, V; Forton, E; Frekers, D; Frenkel, A; Girerd, C; Golovkin, S V; Grégoire, G; Harrison, K; Jonkmans, G; Jonsson, P; Katsanevas, S; Kreslo, I; Marteau, J; Martellotti, G; Martínez, S; Medvedkov, A M; Moret, G; Niwa, K; Novikov, V; Van Beek, G; Penso, G; Vasilchenko, V G; Vuilleumier, J L; Wilquet, G; Zucchelli, P; Kreslo, I E

    2002-01-01

    Results are given on tests of large particle trackers for the detection of neutrino interactions in long-baseline experiments. Module prototypes have been assembled using TiO$_2$-doped polycarbonate panels. These were subdivided into cells of $\\sim 1$~cm$^2$ cross section and 6~m length, filled with liquid scintillator. A wavelength-shifting fibre inserted in each cell captured a part of the scintillation light emitted when a cell was traversed by an ionizing particle. Two different fibre-readout systems have been tested: an optoelectronic chain comprising an image intensifier and an Electron Bombarded CCD (EBCCD); and a hybrid photodiode~(HPD). New, low-cost liquid scintillators have been investigated for applications in large underground detectors. Testbeam studies have been performed using a commercially available liquid scintillator. The number of detected photoelectrons for minimum-ionizing particles crossing a module at different distances from the fibre readout end was 6 to 12 with the EBCCD chain and ...

  3. A scintillator purification plant and fluid handling system for SNO+

    Science.gov (United States)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  4. High-density scintillating glasses for a proton imaging detector

    Science.gov (United States)

    Tillman, I. J.; Dettmann, M. A.; Herrig, V.; Thune, Z. L.; Zieser, A. J.; Michalek, S. F.; Been, M. O.; Martinez-Szewczyk, M. M.; Koster, H. J.; Wilkinson, C. J.; Kielty, M. W.; Jacobsohn, L. G.; Akgun, U.

    2017-06-01

    High-density scintillating glasses are proposed for a novel proton-imaging device that can improve the accuracy of the hadron therapy. High-density scintillating glasses are needed to build a cost effective, compact calorimeter that can be attached to a gantry. This report summarizes the study on Europium, Terbium, and Cerium-doped scintillating glasses that were developed containing heavy elements such as Lanthanum, Gadolinium, and Tungsten. The density of the samples reach up to 5.9 g/cm3, and their 300-600 nm emission overlaps perfectly with the peak cathode sensitivity of the commercial photo detectors. The developed glasses do not require any special quenching and can be poured easily, which makes them a good candidate for production in various geometries. Here, the glass making conditions, preliminary tests on optical and physical properties of these scintillating, high-density, oxide glasses developed for a novel medical imaging application are reported.

  5. Comparison of the methods for determination of scintillation light yield

    CERN Document Server

    Sysoeva, E; Zelenskaya, O

    2002-01-01

    One of the most important characteristics of scintillators is the light yield. It depends not only on the properties of scintillators, but also on the conditions of measurements. Even for widely used crystals, such as alkali halide scintillators NaI(Tl) and CsI(Tl), light yield data, obtained by various authors, are different. Therefore, it is very important to choose the convenient method of the light yield measurements. In the present work, methods for the determination of the physical light yield, based on measurements of pulse amplitude, single-electron pulses and intrinsic photomultiplier resolution are discussed. These methods have been used for the measurements of light yield of alkali halide crystals and oxide scintillators. Repeatability and reproducibility of results were determined. All these methods are rather complicated in use, not for measurements, but for further data processing. Besides that, they demand a precise determination of photoreceiver's parameters, as well as determination of light ...

  6. Subnanosecond scintillation detector for high energy cosmic rays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The task objective is to develop a gamma ray scintillator technology with subnanosecond temporal resolution and the capability to withstand unprecedented rates and...

  7. Scintillation Particle Detectors Based on Plastic Optical Fibres and Microfluidics

    CERN Document Server

    Mapelli, Alessandro; Renaud, Philippe

    2011-01-01

    This thesis presents the design, development, and experimental validation of two types of scintillation particle detectors with high spatial resolution. The first one is based on the well established scintillating fibre technology. It will complement the ATLAS (A Toroidal Large ApparatuS) detector at the CERN Large Hadron Collider (LHC). The second detector consists in a microfabricated device used to demonstrate the principle of operation of a novel type of scintillation detector based on microfluidics. The first part of the thesis presents the work performed on a scintillating fibre tracking system for the ATLAS experiment. It will measure the trajectory of protons elastically scattered at very small angles to determine the absolute luminosity of the CERN LHC collider at the ATLAS interaction point. The luminosity of an accelerator characterizes its performance. It is a process-independent parameter that is completely determined by the properties of the colliding beams and it relates the cross section of a ...

  8. Photonic Crystals: Enhancing the Light Output of Scintillation Based Detectors

    CERN Document Server

    Knapitsch, Arno Richard

    A scintillator is a material which emits light when excited by ionizing radiation. Such materials are used in a diverse range of applications; From high energy particle physics experiments, X-ray security, to nuclear cameras or positron emission tomography. Future high-energy physics (HEP) experiments as well as next generation medical imaging applications are more and more pushing towards better scintillation characteristics. One of the problems in heavy scintillating materials is related to their high index of refraction. As a consequence, most of the scintillation light produced in the bulk material is trapped inside the crystal due to total internal reflection. The same problem also occurs with light emitting diodes (LEDs) and has for a long time been considered as a limiting factor for their overall efficiency. Recent developments in the area of nanophotonics were showing now that those limitations can be overcome by introducing a photonic crystal (PhC) slab at the outcoupling surface of the substrate. P...

  9. Inorganic scintillators for detector systems physical principles and crystal engineering

    CERN Document Server

    Lecoq, Paul; Korzhik, Mikhail

    2017-01-01

    This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating...

  10. A scintillator purification plant and fluid handling system for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Richard J., E-mail: ford@snolab.ca [SNOLAB, Creighton Mine #9, 1039 R.R.24, Lively, Ontario, Canada. (Canada)

    2015-08-17

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  11. Inorganic Scintillators for Detector Systems Physical Principles and Crystal Engineering

    CERN Document Server

    AUTHOR|(CDS)2068219; Gektin, Alexander; Korzhik, Mikhail; Pédrini, Christian

    2006-01-01

    The development of new scintillators as components of modern detector systems is increasingly defined by the end user's needs. This book provides an introduction to this emerging topic at the interface of physics and materials sciences, with emphasis on bulk inorganic scintillators. After surveying the end user's needs in a vast range of applications, ranging from astrophysics to industrial R & D, the authors move on to review scintillating mechanisms and the properties of the most important materials used. A chapter on crystal engineering and examples of recent developments in the field of high-energy physics and medical imaging introduce the reader to the practical aspects. This book will benefit researchers and scientists working in academic and industrial R & D related to the development of scintillators.

  12. A ruggedized ZnS(Ag)/epoxy alpha scintillation detector

    Science.gov (United States)

    McElhaney, S. A.; Ramsey, J. A.; Bauer, M. L.; Chiles, M. M.

    1990-12-01

    An alpha scintillation survey instrument has been developed which is more rugged and efficient than conventional alpha scintillation detectors that use aluminized Mylar radiation entrance windows. This new detector consists of a mixture of ZnS(Ag) phosphor and optically transparent epoxy. The scintillator mixture is poured into a preformed mold to provide a thin layer of phosphor after the particles settle to the clear epoxy surface. After partial curing, an optically transparent light pipe is coupled to the ZnS(Ag)/epoxy film by using an additional thin epoxy layer, forming a monolithic scintillator assembly. Experimental results indicate that the new probe is 44% efficient (2π) for a large-area 239Pu alpha source; resistant to scratches, tears, and corrosives; watertight; and temperature independent between -20°C and 54°C. Mylar is a trademark of E.I. du Pont de Nemours & Co., Inc., Wilmington, DE, USA.

  13. Alpha pulse height distributions with ZnS(Ag) scintillator.

    Science.gov (United States)

    Gadd, M S; Borak, T B

    1995-03-01

    A flask coated with ZnS(Ag) scintillator is one of the most accurate detectors available for measuring 222Rn. To maintain this accuracy, the counting system consisting of a photomultiplier tube and associated electronics must be checked on a regular basis. A combination of an alpha source and a ZnS(Ag) scintillator is commonly used for these purposes. This paper compares the pulse height distributions of 4 alpha sources with the pulse height distribution from a 100 cm3 scintillation flask containing 222Rn. The source that most closely reproduced the distribution from an actual 222Rn sample in a 100 cm3 scintillation flask consisted of a sealed flask, of the same type, which contains a small piece of uranium-ore.

  14. Rational design of binary halide scintillators via data mining

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chang Sun [Department of Materials Science and Engineering, Iowa State University, 2220 Hoover Hall, Ames, Iowa 50011-2300 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering, Iowa State University, 2220 Hoover Hall, Ames, Iowa 50011-2300 (United States)

    2012-07-11

    We introduce a new search strategy for the development of novel inorganic scintillators. For designing new scintillation host media having the improved properties, the potential candidate materials were chosen by using a chemical selection scheme based on a multi-dimensional similarity metric. For the quantitative assessment of the chosen materials, predictive models based on informatics were built by correlating a set of key parameters which reflect the features of the host materials with the performance of inorganic scintillators. The resulting design rules generated from the relationships serve as a guide to identify HfI{sub 4} and TaI{sub 5} as two new host lattices with high light yield. The method we have outlined here serves as a new computational template based statistical learning method to search for new inorganic scintillators with targeted properties.

  15. Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD) of the T2K experiment

    Energy Technology Data Exchange (ETDEWEB)

    Izmaylov, A., E-mail: izmaylov@inr.r [Institute for Nuclear Research RAS, Moscow 117312 (Russian Federation); Aoki, S. [Kobe University, Kobe, Hyogo 657-8501 (Japan); Blocki, J. [H. Niewodniczanski Institute of Nuclear Physics PAN, Krakow 31-342 (Poland); Brinson, J. [Louisiana State University, Baton Rouge, LA 70803 (United States); Dabrowska, A. [H. Niewodniczanski Institute of Nuclear Physics PAN, Krakow 31-342 (Poland); Danko, I. [University of Pittsburgh, Pittsburgh, PA 15260 (United States); Dziewiecki, M. [Institute of Radioelectronics, Warsaw University of Technology, Warsaw 00-665 (Poland); Ellison, B. [Louisiana State University, Baton Rouge, LA 70803 (United States); Golyshkin, L. [Institute for Nuclear Research RAS, Moscow 117312 (Russian Federation); Gould, R. [Louisiana State University, Baton Rouge, LA 70803 (United States); Hara, T. [Kobe University, Kobe, Hyogo 657-8501 (Japan); Hartfiel, B. [Louisiana State University, Baton Rouge, LA 70803 (United States); Holeczek, J. [Institute of Physics, University of Silesia, Katowice 40-007 (Poland); Khabibullin, M.; Khotjantsev, A. [Institute for Nuclear Research RAS, Moscow 117312 (Russian Federation); Kielczewska, D. [Institute of Experimental Physics, University of Warsaw, Warsaw 00-681 (Poland); Kisiel, J. [Institute of Physics, University of Silesia, Katowice 40-007 (Poland); Kozlowski, T. [A. Soltan Institute of Nuclear Studies, Warsaw 00-681 (Poland); Kudenko, Yu. [Institute for Nuclear Research RAS, Moscow 117312 (Russian Federation); Kurjata, R. [Institute of Radioelectronics, Warsaw University of Technology, Warsaw 00-665 (Poland)

    2010-11-01

    The T2K neutrino experiment at J-PARC uses a set of near detectors to measure the properties of an unoscillated neutrino beam and neutrino interaction cross-sections. One of the sub-detectors of the near-detector complex, the side muon range detector (SMRD), is described in the paper. The detector is designed to help measure the neutrino energy spectrum, to identify background and to calibrate the other detectors. The active elements of the SMRD consist of 0.7 cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet yokes. The readout of each scintillator slab is provided through a single WLS fiber embedded into a serpentine-shaped groove. Two Hamamatsu multi-pixel avalanche photodiodes (MPPC's) are coupled to both ends of the WLS fiber. This design allows us to achieve a high MIP detection efficiency of greater than 99%. A light yield of 25-50 p.e./MIP, a time resolution of about 1 ns and a spatial resolution along the slab better than 10 cm were obtained for the SMRD counters.

  16. Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD) of the T2K experiment

    Science.gov (United States)

    Izmaylov, A.; Aoki, S.; Blocki, J.; Brinson, J.; Dabrowska, A.; Danko, I.; Dziewiecki, M.; Ellison, B.; Golyshkin, L.; Gould, R.; Hara, T.; Hartfiel, B.; Holeczek, J.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kisiel, J.; Kozlowski, T.; Kudenko, Yu.; Kurjata, R.; Kutter, T.; Lagoda, J.; Liu, J.; Marzec, J.; Metcalf, W.; Mijakowski, P.; Mineev, O.; Musienko, Yu.; Naples, D.; Nauman, M.; Northacker, D.; Nowak, J.; Paolone, V.; Posiadala, M.; Przewlocki, P.; Reid, J.; Rondio, E.; Shaykhiev, A.; Sienkiewicz, M.; Smith, D.; Sobczyk, J.; Stodulski, M.; Straczek, A.; Sulej, R.; Suzuki, A.; Swierblewski, J.; Szeglowski, T.; Szeptycka, M.; Wachala, T.; Warner, D.; Yershov, N.; Yano, T.; Zalewska, A.; Zaremba, K.; Ziembicki, M.

    2010-11-01

    The T2K neutrino experiment at J-PARC uses a set of near detectors to measure the properties of an unoscillated neutrino beam and neutrino interaction cross-sections. One of the sub-detectors of the near-detector complex, the side muon range detector (SMRD), is described in the paper. The detector is designed to help measure the neutrino energy spectrum, to identify background and to calibrate the other detectors. The active elements of the SMRD consist of 0.7 cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet yokes. The readout of each scintillator slab is provided through a single WLS fiber embedded into a serpentine-shaped groove. Two Hamamatsu multi-pixel avalanche photodiodes (MPPC's) are coupled to both ends of the WLS fiber. This design allows us to achieve a high MIP detection efficiency of greater than 99%. A light yield of 25-50 p.e./MIP, a time resolution of about 1 ns and a spatial resolution along the slab better than 10 cm were obtained for the SMRD counters.

  17. FDTD Modeling and Counteraction to Scintillation Effects in the lonosphere

    Science.gov (United States)

    2014-04-05

    AFRL-RV-PS- TR-2014-0101 AFRL-RV-PS- TR-2014-0101 FDTD MODELING AND COUNTERACTION TO SCINTILLATION EFFECTS IN THE IONOSPHERE Christos...DATE (DD-MM-YYYY) 05-04-2014 2. REPORT TYPE Final Report 3. DATES COVERED (From - To) 24 Feb 2012 – 23 Feb 2014 4. TITLE AND SUBTITLE FDTD ...SUPPLEMENTARY NOTES 14. ABSTRACT This study investigated the Finite Difference Time Domain ( FDTD ) modeling of ionospheric scintillation

  18. Secondary scintillation in Ar-CF$_4$ mixtures

    CERN Document Server

    Beschi, Andrea

    2015-01-01

    In order to build a optical time projection chamber that can be used as a tracking detector, it is necessary to study the scintillation proprieties of gases in order to optimize the light emission. A detailed study of the scintillation of Ar-CF$_4$ mixtures at different concentrations has been performed to study the light emission of the gas in a triple GEM detector.

  19. Detection of {sup 8}B solar neutrinos in liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ianni, A [Laboratori Nazionali del Gran Sasso and INFN, I-67010 Assergi (Italy); Montanino, D [Dipartimento di Fisica, Universita' di Lecce and INFN, I-73100 Lecce (Italy); Villante, F L [Dipartimento di Fisica, Universita di Ferrara and INFN, I-44100 Ferrara (Italy)

    2006-05-15

    We show that liquid organic scintillator detectors (e. g., KamLAND and Borexino) can measure the {sup 8}B solar neutrino flux by means of the {nu}{sub e} charged current interaction with the {sup 13}C nuclei naturally contained in the scintillators. The neutrino events can be identified by exploiting the time and space coincidence with the subsequent decay of the produced {sup 13}N nuclei.

  20. Li-containing scintillating bolometers for low background physics

    Directory of Open Access Journals (Sweden)

    Pattavina L.

    2014-01-01

    Full Text Available We present the performances of Li-based compounds used as scintillating bolometer for rare decay studies such as double-beta decay and direct dark matter investigations. The compounds are tested in a dilution refrigerator installed in the underground laboratory of Laboratori Nazionali del Gran Sasso (Italy. Low temperature scintillating properties are investigated by means of different radioactive sources, and the radio-purity level for internal contaminations are estimated for possible employment for next generation experiments.

  1. Ternary liquid scintillator for optical-fiber applications

    Energy Technology Data Exchange (ETDEWEB)

    Franks, L.A.; Lutz, S.S.

    1981-06-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  2. Extended Wavelength InP Based Avalanche Diodes for MWIR Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For this NASA STTR program, we propose to develop a novel superlattice-based near infrared to midwave infrared avalanche photodetector (APD) grown on InP substrates...

  3. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study

    Science.gov (United States)

    Wang, XiaoLiang; Li, JiaChun

    2017-12-01

    A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.

  4. GaN-Based, Low-Voltage Avalanche Photodiodes for Robust and Compact UV Imagers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR program is directed toward the development of a novel low-voltage (~10V) AlGaN-based multi-quantum well (MQW) avalanche photodiode (APD) on...

  5. Analysis of the dynamic avalanche of punch through insulated gate bipolar transistor (PT-IGBT)

    Science.gov (United States)

    Lefranc, P.; Planson, D.; Morel, H.; Bergogne, D.

    2009-09-01

    In the paper proposed here, we are studying the dynamic avalanche from experimental results first, dynamic avalanche is identified on a punch through insulated gate bipolar transistor (PT-IGBT) module 1200 V-300 A from Mitsubishi. Secondly, the phenomenon is analysed thanks to simple solid state devices equations. Numerical simulations are used to confirm experimental results. Simulation results allows us locating the active area of the dynamic avalanche during turn-off under over-current conditions. A PT-IGBT cell is described with MEDICI™, a finite element simulator. A mixed-mode simulation is performed thanks to MEDICI™ and SPICE™. The circuit simulated here is a buck topology with an inductive load. Finally, a thermal analysis is performed to estimate temperature increase due to dynamic avalanche.

  6. Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes

    Science.gov (United States)

    Francis, P. W.; Wells, G. L.

    1988-01-01

    Remote sensing with the Landsat Thematic Mapper of debris avalanche deposits in the Central Andes between 18 and 27 deg S revealed, for the first time, the presence of 28 breached volcanic cones and 11 major volcanic debris avalanche deposits, several of which cover areas in excess of 100 sq km. It is concluded that such avalanche deposits are normal products of the evolution of large composite volcanoes, comparable with lava and pyroclastic flow deposits. A statistical survey of 578 composite volcanoes in the same area indicated that a majority of cones which achieve edifice heights between 2000 and 3000 m may undergo sector collapse. The paper describes morphological criteria for identifying breached composite cones and volcanic debris avalanches using orbital images.

  7. Rock avalanche deposits store quantitative evidence on internal shear during runout

    Science.gov (United States)

    Zhang, M.; McSaveney, M. J.

    2017-09-01

    We investigated the quantitative effect of internal shear on grain breakage during rock avalanche runout, by means of 38 ring-shear experiments on identical sand samples at different normal stresses, shear strains and shear strain rates. We compared sample grain-size characteristics before and after shearing. We found that grain size decreased with increase in normal stress and shear strain. Reduction in grain size was inferred to occur through grain breakage associated with grain interactions in strong force chains during strain. The results were consistent with observations of both inverse-grading structure in deep rock avalanche exposures, and fining and grading of particles with increasing rock avalanche travel distance. Our study suggested that with appropriate calibration, variations in grain-size distributions within a rock avalanche deposit would provide quantitative information on the distribution of internal shear during its runout.

  8. Single Photon Sensitive HgCdTe Avalanche Photodiode Detector (APD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A linear mode HgCdT electron-initiated avalanche photodiode (EAPD) capable of 1570nm photon detection efficiency (PDE) at >10 MHz will be developed. The Phase I...

  9. Avalanche diode having reduced dark current and method for its manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Davids, Paul; Starbuck, Andrew Lee; Pomerene, Andrew T. S.

    2017-08-29

    An avalanche diode includes an absorption region in a germanium body epitaxially grown on a silicon body including a multiplication region. Aspect-ratio trapping is used to suppress dislocation growth in the vicinity of the absorption region.

  10. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    Science.gov (United States)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  11. Scintillation index of Gaussian waves in weak turbulent ocean

    Science.gov (United States)

    Wang, Zhiqiang; Zhang, Pengfei; Qiao, Chunhong; Lu, Lu; Fan, Chengyu; Ji, Xiaoling

    2016-12-01

    The analytical expressions of radial and the longitudinal components of scintillation index are derived in weak oceanic turbulence. The effects of off-axis distance, propagation distance, and three oceanic parameters (i.e., the ratio of temperature to salinity contribution to the refractive index spectrum w, the rate of dissipation of the mean squared temperature χT and the rate of dissipation of the turbulent kinetic energy ε) on radial component of scintillation index are examined. The influences of propagation distance and three oceanic parameters on the longitudinal component of scintillation index are investigated. It is shown that the radial component of scintillation increases as off-axis distance increases. Both radial and longitudinal components of scintillation increase as propagation distance, w and χT increase while decreases as ε increases. Besides, the longitudinal component of scintillation increases more drastically for plane wave than others, which indicates the plane wave is affected the most at the fixed turbulent strength. The longest weak turbulence distance for a plane wave is shorter than that for a Gaussian or spherical wave.

  12. Effects of atmospheric scintillation in Ka-band satellite communications

    Science.gov (United States)

    Borgsmiller, Scott A.

    This research is motivated by the need to characterize the effects of atmospheric scintillation on Ka-band satellite communications. The builders of satellite communications systems are planning to utilize Ka-band in more than a dozen systems that have been proposed for launch in the next decade. The NASA ACTS (Advanced Communication Technology Satellite) program has provided a means to investigate the problems associated with Ka-band satellite transmissions. Experimental measurements have been conducted using a very small aperture terminal (VSAT) to evaluate the effects of scintillation on narrowband and wideband signals. The theoretical background of scintillation theory is presented, noting especially the additional performance degradation predicted for wideband Ka-band systems using VSATs. Experimental measurements of the amplitude and phase variations in received narrowband carrier signals were performed, using beacon signals transmitted by ACTS and carrier signals which are relayed through the satellite. Measured amplitude and phase spectra have been compared with theoretical models to establish the presence of scintillation. Measurements have also been performed on wideband spread spectrum signals which are relayed through ACTS to determine the bit-error rate degradation of the digital signal resulting from scintillation effects. The theory and measurements presented for the geostationary ACTS have then been applied to a low-earth orbiting satellite system, by extrapolating the effects of the moving propagation path on scintillation.

  13. Experiment to demonstrate separation of Cherenkov and scintillation signals

    Science.gov (United States)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Wallig, J.; Yeh, M.; Orebi Gann, G. D.

    2017-05-01

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 ±12 ps FWHM is achieved. Monte Carlo-based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ±1 % and 81 ±1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ±1 % and 26 ±1 % .

  14. Robust snow avalanche detection using machine learning on infrasonic array data

    Science.gov (United States)

    Thüring, Thomas; Schoch, Marcel; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    Snow avalanches may threaten people and infrastructure in mountain areas. Automated detection of avalanche activity would be highly desirable, in particular during times of poor visibility, to improve hazard assessment, but also to monitor the effectiveness of avalanche control by explosives. In the past, a variety of remote sensing techniques and instruments for the automated detection of avalanche activity have been reported, which are based on radio waves (radar), seismic signals (geophone), optical signals (imaging sensor) or infrasonic signals (microphone). Optical imagery enables to assess avalanche activity with very high spatial resolution, however it is strongly weather dependent. Radar and geophone-based detection typically provide robust avalanche detection for all weather conditions, but are very limited in the size of the monitoring area. On the other hand, due to the long propagation distance of infrasound through air, the monitoring area of infrasonic sensors can cover a large territory using a single sensor (or an array). In addition, they are by far more cost effective than radars or optical imaging systems. Unfortunately, the reliability of infrasonic sensor systems has so far been rather low due to the strong variation of ambient noise (e.g. wind) causing a high false alarm rate. We analyzed the data collected by a low-cost infrasonic array system consisting of four sensors for the automated detection of avalanche activity at Lavin in the eastern Swiss Alps. A comparably large array aperture (~350m) allows highly accurate time delay estimations of signals which arrive at different times at the sensors, enabling precise source localization. An array of four sensors is sufficient for the time resolved source localization of signals in full 3D space, which is an excellent method to anticipate true avalanche activity. Robust avalanche detection is then achieved by using machine learning methods such as support vector machines. The system is initially

  15. Statistical analysis and trends of wet snow avalanches in the French Alps over the period 1959-2010

    Science.gov (United States)

    Naaim, Mohamed

    2017-04-01

    Since an avalanche contains a significant proportion of wet snow, its characteristics and its behavior change significantly (heterogeneous and polydisperse). Even if on a steep given slope, wet snow avalanches are slow. They can flow over gentle slopes and reach the same extensions as dry avalanches. To highlight the link between climate warming and the proliferation of wet snow avlanches, we crossed two well-documented avalanche databases: the permanent avalanche chronicle (EPA) and the meteorological re-analyzes. For each avalanche referenced in EPA, a moisture index I is buit. It represents the ratio of the thickness of the wet snow layer to the total snow thickness, at the date of the avalanche on the concerned massif at 2400 m.a.s.l. The daily and annual proportion of avalanches exceeding a given threshold of I are calculated for each massif of the French alps. The statistical distribution of wet avalanches per massif is calculated over the period 1959-2009. The statistical quantities are also calculated over two successive periods of the same duration 1959-1984 and 1984-2009, and the annual evolution of the proportion of wet avalanches is studied using time-series tools to detect potential rupture or trends. This study showed that about 77% of avalanches on the French alpine massif mobilize dry snow. The probability of having an avalanche of a moisture index greater than 10 % in a given year is 0.2. This value varies from one massif to another. The analysis between the two successive periods showed a significant growth of wet avalanches on 20 massifs and a decrease on 3 massifs. The study of time-series confirmed these trends, which are of the inter-annual variability level.

  16. Time lapse photography as an approach to understanding glide avalanche activity

    Science.gov (United States)

    Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.

    2012-01-01

    Avalanches resulting from glide cracks are notoriously difficult to forecast, but are a recurring problem for numerous avalanche forecasting programs. In some cases glide cracks are observed to open and then melt away in situ. In other cases, they open and then fail catastrophically as large, full-depth avalanches. Our understanding and management of these phenomena are currently limited. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity so frequent observation of glide crack movement can provide an index of instability. During spring 2011 in Glacier National Park, Montana, USA, we began an approach to track glide crack avalanche activity using a time-lapse camera focused on a southwest facing glide crack. This crack melted in-situ without failing as a glide avalanche, while other nearby glide cracks on north through southeast aspects failed. In spring 2012, a camera was aimed at a large and productive glide crack adjacent to the Going to the Sun Road. We captured three unique glide events in the field of view. Unfortunately, all of them either failed very quickly, or during periods of obscured view, so measurements of glide rate could not be obtained. However, we compared the hourly meteorological variables during the period of glide activity to the same variables prior to glide activity. The variables air temperature, relative humidity, air pressure, incoming and reflected long wave radiation, SWE, total precipitation, and snow depth were found to be statistically different for our cases examined. We propose that these are some of the potential precursors for glide avalanche activity, but do urge caution in their use, due to the simple approach and small data set size. It is hoped that by introducing a workable method to easily record glide crack movement, combined with ongoing analysis of the associated meteorological data, we will improve our understanding of when, or if, glide avalanche activity will ensue.

  17. Noise Performance of Millimeter-wave Silicon Based Mixed Tunneling Avalanche Transit Time(MITATT) Diode

    OpenAIRE

    Aritra Acharyya; Moumita Mukherjee; J. P. Banerjee

    2010-01-01

    A generalized method for small-signal simulation of avalanche noise in Mixed Tunneling Avalanche Transit Time (MITATT) device is presented in this paper where the effect of series resistance is taken into account. The method is applied to a millimeter-wave Double Drift Region (DDR) MITATT device based on Silicon to obtain noise spectral density and noise measure as a function of frequency for different values of series resistance. It is found that noise measure of the dev...

  18. Snow avalanche activity in the High Tatras Mountains: new data achieved by means of dendrogeomorphic methods

    Science.gov (United States)

    Tichavsky, R.

    2016-12-01

    The High Tatras Mountains are permanently affected by the occurrence of hazardous geomorphic processes. Snow avalanches represent a common hazard that threatens the infrastructure and humans living and visiting the mountains. So far, the spatio-temporal reconstruction of snow avalanche histories was based only on existing archival records, orthophoto interpretation and lichenometric dating in the High Tatras Mountains. Dendrogeomorphic methods allow for the intra-seasonal dating of scars on tree stems and branches and have been broadly used for the dating of snow avalanche events all over the world. We extracted the increment cores and cross sections from 189 individuals of Pinus mugo var. mugo growing on four tali in the Great Cold Valley and dated all the past scars that could correspond with the winter to early spring occurrence of snow avalanches. The dating was supported by the visual analysis of three orthophoto images from 2004, 2009 and 2014. In total, nineteen event years of snow avalanches (10 certain events, and 9 probable events) were identified since 1959. Historical archives provided evidence only for nine event years since 1987, and three of them were confirmed dendrogeomorphically. Geomorphic effect of recent snow avalanches identified by the spatial distribution of scarred trees in individual years corresponds with the extent of events visible from the orthophotos. We can confirm higher frequency of snow avalanche events since 1980s (17 out of 19 events) and significant increase during the last ten years. The future expected climatic changes associated with the changes in temperature and precipitation regime could significantly influence on the frequency of snow avalanches. Therefore, our results can become the starting line for more extensive dendrogeomorphic survey in the High Tatras Mountains in order to create a catalogue of all natural hazards for the future prediction and modelling of these phenomena in context of environmental changes.

  19. Experimental study of the influence of protection structures on avalanches and impact pressures

    OpenAIRE

    Caccamo, P.

    2012-01-01

    In the frame of snow avalanche protection, the optimisation of defence structure design depends on the understanding of the flow dynamics and on a exhaustive knowledge of the flow-obstacle interaction. The study presented here utilises a mainly experimental approach. Small-scale laboratory tests were combined with field measurements and observations. Dense snow avalanches are modelled by granular materials. Dry cohesionless and mono-dispersed glass beads are released down an inclined...

  20. Subaqueous rock-avalanche deposits exposed by post-glacial isostatic rebound, Innfjorddalen, Western Norway

    Science.gov (United States)

    Schleier, Markus; Hermanns, Reginald L.; Gosse, John C.; Oppikofer, Thierry; Rohn, Joachim; Tønnesen, Jan F.

    2017-07-01

    This paper presents a detailed description of deposits and landforms of multiple rock avalanches in Western Norway, one of which fell onto water-saturated sediments in Innfjorddalen below the former water level. Deposits of the latter are now exposed on the valley floor due to post-glacial isostatic rebound. At least three rock avalanches from the same source at Gråfonnfjellet Mountain have occurred during late glacial and post-glacial time, and their deposits are distributed over an area of 1.44 km2 in the valley. These rock avalanches have volumes of 15.1 × 106 m3, 5.4 × 106 m3 and 0.3 × 106 m3 and yielded cosmogenic radionuclide 10Be ages of 14.3 ± 1.4 ka, 8.79 ± 0.94 ka and 1.028 ± 0.380 ka, respectively. The youngest event dates, within uncertainty limits to a historic rock avalanche in the year 1611-12 CE. The rock avalanches formed a stratified succession of deposits. The rock-avalanche deposits (1.38 m2) have lobate forms, have frontal rims and parallel ridges, extend across the valley floor and up the opposite slope, and form dams on the valley floor. Isolated hills comprised of rock boulders (0.61 km2), interpreted to be 'toma hills', are disconnected from the main rock-avalanche deposits by a 520-m-wide zone of deformed, valley-fill sediments. Trenches and a ground penetrating radar survey of these deposits indicate large-scale deformation or liquefaction. Numerical runout modeling of the rock avalanches with the code DAN3D supports the interpretation of their landforms and sources, and highlights their runout behavior.

  1. Two early Holocene rock avalanches in the Bernese Alps (Rinderhorn, Switzerland)

    Science.gov (United States)

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Vockenhuber, Christof; Aaron, Jordan; Hajdas, Irka; Ivy-Ochs, Susan

    2016-09-01

    Large rock avalanches constitute a critical process modulating the evolution of alpine landscapes; however, the relatively infrequent occurrence of these high-magnitude events makes identifying underlying process controls challenging. Here we describe two rock avalanches in the Rinderhorn area of the Bernese Alps, Switzerland, providing new mapping of rock avalanche source areas and deposits, refined volume estimates for each event, runout modeling back-analyses, and absolute age constraint from cosmogenic 36Cl surface exposure dating. Results reveal that the Daubensee rock avalanche released 4 million m3 of limestone sliding from the western crest of the Rinderhorn. Debris ran out across a Lateglacial moraine before reaching the valley bottom and spreading, leaving thin (on average 7 m) deposits across a broad area. The runout resulted in a Fahrböschung angle of 21°. Part of the deposit now lies beneath Lake Daubensee. The Klein Rinderhorn rock avalanche released 37 million m3 of limestone along a dip-slope sliding plane, with a maximum runout distance of 4.3 km and estimated Fahrböschung angle of 14°. Deposits bulked to 47 million m3 running up the opposing slope, with distinct hummocky morphology in the proximal area and a distal longitudinal flow ridge. These deposits were later modified and partly obscured by ice avalanches from the nearby Altels peak. Cosmogenic 36Cl surface exposure dating revealed nearly coincident ages for both rock avalanches of 9.8 ± 0.5 ka. The large lag time between local deglaciation and failure suggests that the events were not directly triggered by deglaciation. Rather, the concurrent exposure ages, also coinciding with the nearby Kander valley rock avalanche as well as paleoseismic records from nearby lakes, strongly suggest seismic triggering.

  2. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    Science.gov (United States)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  3. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Orrell, John L.; Panisko, Mark E.; Warren, Glen A.; Wright, Michael E.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processing to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.

  4. Rockfall and snow avalanche impacts leave different anatomical signatures in tree rings of juvenile Larix decidua.

    Science.gov (United States)

    Stoffel, Markus; Hitz, Oliver M

    2008-11-01

    Rockfall and snow avalanche events often cause injury to European larch (Larix decidua Mill.) trees, giving rise to the formation of callus tissue and tangential rows of traumatic resin ducts (TRDs). We analyzed and quantified anatomical reactions of juvenile trees injured before the start of the growing season by snow avalanches (15 trees, 324 cross sections) or rockfalls (18 trees, 270 cross sections). Traumatic resin ducts were observed in the growth ring formed following injury in 94.3% of the rockfall samples and 87.3% of the snow avalanche samples. Traumatic resin ducts were formed at the beginning of the new annual ring around wounds caused by rockfalls. In contrast, in trees injured by snow avalanches, TRDs were not formed until after the formation of several rows of early earlywood (EE) tracheids (mean +/- SD = 4.19 +/- 2.56 rows). The dimensions of the EE tracheids observed in the snow avalanche samples were greatly reduced in the tissues bordering the wound, with radial width reaching an average of only 50% and lumen cross-sectional area an average of only 46% of pre-event values. It is therefore possible to differentiate injuries due to past snow avalanches from injuries due to rockfall based on anatomical growth reactions in the tissues bordering scars.

  5. Segregation in a quasi-stationary avalanche on an inclined conveyor-belt

    Science.gov (United States)

    van der Vaart, Kasper; Gray, Nico; Ancey, Christophe

    2013-04-01

    We have carried out laboratory experiments to determine the internal structure of segregating dense granular avalanches and test the recent theoretical predictions of the existence of breaking size-segregation waves [Thornton & Gray, 2008]. Measurements were performed on a quasi-stationary avalanche that flows down an inclined upward-moving conveyor-belt. In this configuration the bottom layers of the flow are dragged upslope while upper layers are avalanching downslope due to gravity; effectively, as if the observer were moving along with an avalanche. We show that a breaking size-segregation wave is located in the flow, recirculating the particles, and causing large particles to accumulate downslope and fines upslope. The large particles at the downslope end, after being deposited and overrun, are carried upslope through the lower layers, segregate to the free-surface, and avalanche down again. Small particles segregate downwards and are dragged upslope when reaching the lower layers. Imaging of a cross-section of the bulk flow, far from the side-wall, is made possible by combining a laser light sheet and an interstitial liquid that has a matched refractive index with the particles. Thornton, A. R. & Gray, J. M. N. T. 2008 Breaking size-segregation waves and particle recirculation in granular avalanches. J. Fluid Mech. 596, 261-284.

  6. The LHCb Upgrade Scintillating Fibre Tracker

    CERN Document Server

    Leverington, Blake D

    2014-01-01

    The Scintillating Fibre (SciFi) Tracker is designed to replace the current downstream tracking detectors in the LHCb Upgrade during 2018 (CERN/LHCC 2014-001; LHCb TDR 15). The operation and the results obtained from the data collected 2011 and 2012 demonstrate that the current detector is robust and functioning very well. However, the limit of O ( 1 fb-1) of data per year cannot be overcome without improving the detector. This will be achieved using 25 ns bunch spacing with the average number of proton-proton interactions per bunch crossing n = 7 : 6. Collecting data at this luminosity will only be possible if the detector is improved by increasing the readout of the front-end electronics to 40MHz and implementing a more flexible software-based triggering system that will increase the data rate as well as the efficiency. The increase in interactions per bunch crossing will result in an increased occupancy in the tracking detectors and will exceed the operational occupancy for the Outer Tracker. Here we presen...

  7. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  8. PACEM: a new concept for high avalanche-ion blocking

    Science.gov (United States)

    Veloso, J. F. C. A.; Amaro, F. D.; Azevedo, C. D. R.; dos Santos, J. M. F.; Breskin, A.; Lyashenko, A.; Chechik, R.

    2007-10-01

    We present the Photon-Assisted Cascaded Electron Multiplier (PACEM) as a potential alternative for ion back-flow suppression in gaseous cascade electron multipliers. Using a Micro Hole and Strip Plate-Gas Electron Multiplier (MHSP-GEM) configuration, the number of ions flowing back to the scintillation region is about 1.5 ions per primary electron at an optical gain of 6.5 and a drift field of 0.1 kV/cm, and about 10 ions per primary electron at an optical gain of 10 and a drift field of 0.5 kV/cm. These allow reaching ion back-flow values close to 10 -4 and 10 -5 at typical operation conditions of TPCs and GPMs, respectively.

  9. PACEM: a new concept for high avalanche-ion blocking

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, J.F.C.A. [Departmento de Fisica, Universidade de Aveiro, P-3810-193 Aveiro (Portugal)], E-mail: joao.veloso@ua.pt; Amaro, F.D. [Departmento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Azevedo, C.D.R. [Departmento de Fisica, Universidade de Aveiro, P-3810-193 Aveiro (Portugal); Santos, J.M.F. dos [Departmento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Breskin, A.; Lyashenko, A.; Chechik, R. [Department of Particle Physics, The Weizmann Institute of Science, 76100 Rehovot (Israel)

    2007-10-21

    We present the Photon-Assisted Cascaded Electron Multiplier (PACEM) as a potential alternative for ion back-flow suppression in gaseous cascade electron multipliers. Using a Micro Hole and Strip Plate-Gas Electron Multiplier (MHSP-GEM) configuration, the number of ions flowing back to the scintillation region is about 1.5 ions per primary electron at an optical gain of 6.5 and a drift field of 0.1 kV/cm, and about 10 ions per primary electron at an optical gain of 10 and a drift field of 0.5 kV/cm. These allow reaching ion back-flow values close to 10{sup -4} and 10{sup -5} at typical operation conditions of TPCs and GPMs, respectively.

  10. A detector insert based on continuous scintillators for hybrid MR–PET imaging of the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Rato Mendes, P., E-mail: pedro.rato@ciemat.es [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J.C.; Cela, J.M. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Núñez, L.; Pastrana, M. [Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222 Majadahonda (Spain); Romero, L.; Willmott, C. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain)

    2013-02-21

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR–PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital.

  11. A detector insert based on continuous scintillators for hybrid MR-PET imaging of the human brain

    Science.gov (United States)

    Rato Mendes, P.; Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J. C.; Cela, J. M.; Núñez, L.; Pastrana, M.; Romero, L.; Willmott, C.

    2013-02-01

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR-PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital.

  12. Comparison of SensL and Hamamatsu 4×4 channel SiPM arrays in gamma spectrometry with scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Grodzicka-Kobylka, M., E-mail: m.grodzicka@ncbj.gov.pl; Szczesniak, T.; Moszyński, M.

    2017-06-01

    The market of Silicon Photomultipliers (SiPMs) consists of many manufacturers that produce their detectors in different technology. Hamamatsu (Japan) and SensL (Ireland) seems to be the most popular companies that produce large SiPM arrays. The aim of this work is characterization and comparison of 4×4 channel SiPM arrays produced by these two producers. Both of the tested SiPMs are made in through-silicon via (TSV) technology, consist of 16, 3×3 mm avalanche photodiode (APD) cells and have fill factor slightly above 60%. The largest difference is a single APD cell size and hence total number of APD cells (55,424 for Hamamatsu, 76,640 for SensL). In the case of SensL SiPM, its spectral response characteristics is shifted slightly toward shorter wavelengths with maximum at 420 nm (450 nm for Hamamatsu). The presented measurements cover selection of the SiPM optimum operating voltage (in respect to energy resolution), verification of the excess noise factor and check of the linearity characteristics. Moreover, the gamma spectrometry with LSO, BGO and CsI:Tl scintillators together with pulse characteristics for these crystals (rise time and fall time) is reported, as well as temperature dependence. The presented measurements show better performance of the SensL array comparing to the Hamamatsu detector.

  13. Four-layer depth-of-interaction PET detector for high resolution PET using a multi-pixel S8550 avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko, E-mail: funis@nirs.go.j [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Inadama, Naoko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Oda, Ichiro [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Shibuya, Kengo; Yoshida, Eiji; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-09-21

    Avalanche photodiodes (APDs) are being used as photodetectors in positron emission tomography (PET) because they have many advantages over photomultipliers (PMTs) typically used in PET detectors. We have developed a PET detector that consists of a multi-pixel APD and a 6x6x4 array of 1.46x1.46 mm{sup 2}x4.5 m LYSO crystals for a small animal PET scanner. The detector can identify four-layer depth of interaction (DOI) with a position-sensitive APD coupled to the backside of a crystal array by just an optimized reflector arrangement. Since scintillation lights are shared among many pixels by the method, weaker signals in APD pixels far from the interacting crystals are affected by noise. To evaluate the performance of the four-layer DOI detector with the APD and the influence of electrical noise on our method, we constructed a prototype DOI detector and tested its performance. We found, except for crystal elements on the edge of the crystal array, all crystal elements could be identified from the 2D position histogram. An energy resolution of 16.9% was obtained for the whole crystal array of the APD detector. The results of noise dependence of detector performances indicated that the DOI detector using the APD could achieve sufficient performance even when using application-specific integrated circuits.

  14. Monitoring snow avalanches in the medium range by a network of infrasonic arrays: first results

    Science.gov (United States)

    ulivieri, giacomo; marchetti, emanuele; ripepe, maurizio; durand, nathalie; frigo, barbara; chiambretti, igor; segor, valerio

    2013-04-01

    Monitoring of small-to-medium sized avalanches activity represents a crucial parameter to compare predictions and real effects. However, at present natural avalanche activity is mainly based on field observations, which have a limited range and are possible only during the daylight. Since 2009, the Department of Earth Sciences of University of Florence in collaboration with the Regione Valle d'Aosta is using the infrasonic array technology for near real-time monitoring of natural and artificial avalanche activity in the Alpine area. The results obtained during the last 3 years indicate that small-to-medium sized snow avalanches can be detected in the short-to-medium range distance (2-6 km). However, despite single array analysis allows to recognise many natural (microbarom, earthquakes, avalanches) and artificial (airplane, explosions) infrasound sources by using apparent velocity criterion, any unique identification and precise location of infrasonic sources is not possible without any additional information. In order to solve this problem, the monitoring system is upgraded by installing two additional arrays. In fact, a network of 3 arrays is operating since December 2012 around the MonteRosa and Cervino international ski resorts on the related massifs. Each infrasonic array consists of 4 infrasonic sensors deployed in triangular geometry and ~150 m of aperture. Data are sampled at 100 Hz and transmitted in real-time to Department of Earth Sciences in Florence for near real-time (<2 minutes) processing. The network has improved the capability in locating avalanches sources in a medium range distance (from 6 km to more than 10 km). In fact, the 3 arrays are covering an area of ~ 250 km2. Efficiency of source location and sensitivity of this infrasonic array network are tested by using artificial triggered avalanches: avalanches can now be located with a precision of ~ 1 km. Information on geographical position, origin time and infrasonic energy will be supplied to

  15. Enhanced Red and Near Infrared Detection in Flow Cytometry Using Avalanche Photodiodes

    Science.gov (United States)

    Lawrence, William G.; Varadi, Gyula; Entine, Gerald; Podniesinski, Edward; Wallace, Paul K.

    2008-01-01

    Background Polychromatic flow cytometry enables detailed identification of cell phenotype using multiple fluorescent parameters. The photomultiplier tubes used to detect fluorescence in current instruments limit the sensitivity in the long wavelength spectral range. We demonstrate the flow cytometric applications of silicon avalanche photodiodes, which have improved red sensitivity and a working fluorescence detection range beyond 1000 nm. Methods A comparison of the wavelength dependent performance of the avalanche photodiode and photomultiplier tube was carried out using pulsed light emitting diode sources, calibrated test beads and biological samples. A breadboard flow cytometer test bench was constructed to compare the performance of photomultiplier tubes and avalanche photodiode detectors. The avalanche photodiode used an additional amplifier stage to match the internal gain of the photomultiplier tube. Results The resolution of the avalanche photodiode and photomultiplier tube was compared for flow cytometry applications using a pulsed light emitting diode source over the 500 nm to 1060 nm spectral range. These measurements showed the relative changes in the signal to noise performance of the APD and PMT over a broad spectral range. Both the avalanche photodiode and photomultiplier tubes were used to measure the signal to noise response for a set of 6 peak calibration beads over the 530 to 800 nm wavelength range. CD4 positive cells labeled with antibody conjugated phycoerythrin or 800 nm quantum dots were identified by simultaneous detection using the avalanche photodiode and the photomultiplier tube. The ratios of the intensities of the CD4− and CD4+ populations were found to be similar for both detectors in the visible wavelengths, but only the avalanche photodiode was able to separate these populations at wavelengths above 800 nm. Conclusions These measurements illustrate the differences in APD and PMT performance at different wavelengths and signal

  16. The September 1988 intracaldera avalanche and eruption at Fernandina volcano, Galapagos Islands

    Science.gov (United States)

    Chadwick, W.W.; De Roy, T.; Carrasco, A.

    1991-01-01

    During 14-16 September 1988, a large intracaldera avalanche and an eruption of basaltic tephra and lava at Fernandina volcano, Galapagos, produced the most profound changes within the caldera since its collapse in 1968. A swarm of eight earthquakes (mb 4.7-5.5) occurred in a 14 h period on 24 February 1988 at Fernandina, and two more earthquakes of this size followed on 15 April and 20 May, respectively. On 14 September 1988, another earthquake (mb 4.6) preceded a complex series of events. A debris avalanche was generated by the failure of a fault-bounded segment of the east caldera wall, approximately 2 km long and 300 m wide. The avalanche deposit is up to 250 m thick and has an approximate volume of 0.9 km3. The avalanche rapidly displaced a preexisting lake from the southeast end of the caldera floor to the northwest end, where the water washed up against the lower part of the caldera wall, then gradually seeped into the avalanche deposit and was completely gone by mid-January 1989. An eruption began in the caldera within about 1-2 h of the earthquake, producing a vigorous tephra plume for about 12 h, then lava flows during the next two days. The eruption ended late on 16 September. Most of the eruptive activity was from vents on the caldera floor near the base of the new avalanche scar. Unequivocal relative timing of events is difficult to determine, but seismic records suggest that the avalanche may have occurred 1.6 h after the earthquake, and field relations show that lava was clearly erupted after the avalanche was emplaced. The most likely sequence of events seems to be that the 1988 feeder dike intruded upward into the east caldera wall, dislocated the unstable wall block, and triggered the avalanche. The avalanche immediately exposed the newly emplaced dike and initiated the eruption. The exact cause of the earthquakes is unknown. ?? 1991 Springer-Verlag.

  17. A protein biosensor using Geiger mode avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F; Sweeney, M Mac; Sheehan, M M; Mathewson, A [National Microelectronics Research Centre, University College Cork (Ireland)

    2005-01-01

    A compact optical sensor specifically designed for protein detection is introduced in this work. The sensor takes advantage of avalanche photodiode's ultra-high sensitivity when operated in Geiger mode and is capable of detecting and quantifying very low light levels down to the single photons. The sensor has been tested with a luciferase gene reporter molecule detection system in Escherichia coli samples. The luciferase production is monitored via the APD and the luminescence amount detected is directly proportional to the amount of protein being produced. This reporter system will allow us to elucidate specific sources of proteins and to monitor the dynamics of protein activity within the cell in a real-time setting. The significant increase of photodiode breakdowns after the samples are applied to the sensor is the mechanism of detecting the bioluminescence. The degree of increase can be used to estimate the quantity of protein molecules. The sensor is packaged in a Teflon lightproof container to form a compact detection system.

  18. Laser annealing heals radiation damage in avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jin Gyu [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)

    2017-12-15

    Avalanche photodiodes (APDs) are a practical option for space-based quantum communications requiring single-photon detection. However, radiation damage to APDs significantly increases their dark count rates and thus reduces their useful lifetimes in orbit. We show that high-power laser annealing of irradiated APDs of three different models (Excelitas C30902SH, Excelitas SLiK, and Laser Components SAP500S2) heals the radiation damage and several APDs are restored to typical pre-radiation dark count rates. Of nine samples we test, six APDs were thermally annealed in a previous experiment as another solution to mitigate the radiation damage. Laser annealing reduces the dark count rates further in all samples with the maximum dark count rate reduction factor varying between 5.3 and 758 when operating at -80 C. This indicates that laser annealing is a more effective method than thermal annealing. The illumination power to reach these reduction factors ranges from 0.8 to 1.6 W. Other photon detection characteristics, such as photon detection efficiency, timing jitter, and afterpulsing probability, fluctuate but the overall performance of quantum communications should be largely unaffected by these variations. These results herald a promising method to extend the lifetime of a quantum satellite equipped with APDs. (orig.)

  19. Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics.

    Science.gov (United States)

    Milton, John G

    2012-07-01

    Power-law behaviors in brain activity in healthy animals, in the form of neuronal avalanches, potentially benefit the computational activities of the brain, including information storage, transmission and processing. In contrast, power-law behaviors associated with seizures, in the form of epileptic quakes, potentially interfere with the brain's computational activities. This review draws attention to the potential roles played by homeostatic mechanisms and multistable time-delayed recurrent inhibitory loops in the generation of power-law phenomena. Moreover, it is suggested that distinctions between health and disease are scale-dependent. In other words, what is abnormal and defines disease it is not the propagation of neural activity but the propagation of activity in a neural population that is large enough to interfere with the normal activities of the brain. From this point of view, epilepsy is a disease that results from a failure of mechanisms, possibly located in part in the cortex itself or in the deep brain nuclei and brainstem, which truncate or otherwise confine the spatiotemporal scales of these power-law phenomena. © 2012 The Author. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Avalanche of entanglement and correlations at quantum phase transitions.

    Science.gov (United States)

    Krutitsky, Konstantin V; Osterloh, Andreas; Schützhold, Ralf

    2017-06-16

    We study the ground-state entanglement in the quantum Ising model with nearest neighbor ferromagnetic coupling J and find a sequential increase of entanglement depth d with growing J. This entanglement avalanche starts with two-point entanglement, as measured by the concurrence, and continues via the three-tangle and four-tangle, until finally, deep in the ferromagnetic phase for J = ∞, arriving at a pure L-partite (GHZ type) entanglement of all L spins. Comparison with the two, three, and four-point correlations reveals a similar sequence and shows strong ties to the above entanglement measures for small J. However, we also find a partial inversion of the hierarchy, where the four-point correlation exceeds the three- and two-point correlations, well before the critical point is reached. Qualitatively similar behavior is also found for the Bose-Hubbard model, suggesting that this is a general feature of a quantum phase transition. This should be taken into account in the approximations starting from a mean-field limit.