WorldWideScience

Sample records for sap osmotic potential

  1. SAP

    DEFF Research Database (Denmark)

    Petersen, Bent; Nikerle-Uhthoff, Dominique; Schwaerzler, Helen

    2014-01-01

    In late 2011, SAP, the German leader in the enterprise software industry, announced a major investment plan for expanding in China and also acquired a leading American firm in cloud-based human capital management software. At first glance, these investments seemed rather unconnected. A closer look...... at SAP’s strategy, however, revealed a closely connected and coordinated network of strategic decisions and investments for which alignment and finding the right balance were key challenges. Hence, it was crucial to ask: What were the principal challenges for SAP in aligning its innovation and sourcing...

  2. Potential of Jatropha multifida sap against traumatic ulcer

    Directory of Open Access Journals (Sweden)

    Basri A. Gani

    2015-09-01

    Full Text Available Background: Traumatic ulcer is a lesion in oral mucosa as a result of physical and mechanical trauma, as well as changes in salivary pH. Jatropha multifida sap can act as antimicrobial, anti-inflammatory and re-epithelialization, and can also trigger the healing process of ulcers. Purpose: Research was aimed to determine the potential of Jatropha multifida sap against traumatic ulcer base on clinical and histopathological healing process. Method: This research was conducted laboratory experimental model, with rats (Rattus norvegicus as the subject as well as Jatropha multifida sap for ulcer healing. Those subjects were divided into four groups: two treatment groups administrated with pellet and Jatropha multifida sap, one group as the positive control group administrated with 0.1% triamcinolone acetonide, and one group as the negative control group administrated with 0.9% NaCl. Ulcer manipulation was used 30% H2O2, and evaluation of ulcer healing was used clinical and histopathological approach. Result: Clinically, the healing process of ulcers in the treatment group with Jatropha multifida sap was faster than that in the positive control group with 0.1% triamcinolone acetonide, indicated with the reduction of the ulcer size until the missing of the ulcers started from the third day to the seventh one (p≤0.05. Histopathologically inflammatory cells (lymphocytes, and plasma cells declined started from the third day, and the formation of collagen and re-epithelialization then occurred. On the seventh day, the epithelial cells thickened, and the inflammatory cells infiltrated. Statistically, those groups were significant (p≤0.05. Conclusion: Jatropha multifida sap has a significant potential to cure traumatic ulcers on oral mucosa clinically and histopathologically.

  3. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings

    Directory of Open Access Journals (Sweden)

    Maria Stolarz

    2017-10-01

    Full Text Available Action potentials (APs, i.e., long-distance electrical signals, and circumnutations (CN, i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0–500 mOsm were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs propagating basipetally and acropetally with a velocity of 12–20 cm min−1 were observed. The number of SAPs increased 2–3 times (7–10 SAPs 24 h−1plant−1 in the mild salt stress (160 mOsm NaCl and KCl, compared to the control and strong salt stress (3–4 SAPs 24 h−1 plant−1 in the control and 300 mOsm KCl and NaCl. Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3–24 APs transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.

  4. Recycling of osmotic solutions in microwave-osmotic dehydration: product quality and potential for creation of a novel product.

    Science.gov (United States)

    Wray, Derek; Ramaswamy, Hosahalli S

    2016-08-01

    Despite osmotic dehydration being a cost effective process for moisture removal, the cost implications of making, regenerating, and properly disposing of the spent osmotic solutions contributes greatly to the economic feasibility of the drying operation. The potential for recycling of osmotic solutions and their use for creation of a novel product was explored using microwave-osmotic dehydration under continuous flow spray (MWODS) conditions. Identical runs were repeated 10 times to determine the progressive physical and compositional effects of the thermal treatment and leaching from the cranberry samples. The microbiological stability and constant drying performance indicated that MWODS would be well suited for employing recycled solutions. While the anthocyanin content of the solution never approached that of cranberry juice concentrate, it is demonstrated that the spent syrup can infuse these health positive components into another product (apple). This study found that re-using osmotic solutions is a viable option to reduce cost in future MWODS applications, with no detriment to product quality and potential to use the spent solution for novel products. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Characterization and vaccine potential of Fasciola gigantica saposin-like protein 1 (SAP-1).

    Science.gov (United States)

    Kueakhai, Pornanan; Changklungmoa, Narin; Waseewiwat, Pinkamon; Thanasinpaiboon, Thanaporn; Cheukamud, Werachon; Chaichanasak, Pannigan; Sobhon, Prasert

    2017-01-15

    The recombinant Fasciola gigantica Saposin-like protien-1 (rFgSAP-1) was cloned by polymerase chain reaction (PCR) from NEJ cDNA, expressed in Escherichia coli BL21 (DE3) and used for production of a polyclonal antibody in rabbits (anti-rFgSAP-1). By immunoblotting and immunohistochemistry, rabbit IgG anti-rFgSAP-1 reacted with rFgSAP-1 at a molecular weight 12kDa, but not with rFgSAP-2. The rFgSAP-1 reacted with antisera from mouse infected with F. gigantica metacercariae collected at 2, 4, and 6 weeks after infection. The FgSAP-1 protein was expressed at a high level in the caecal epithelium of metacercariae and NEJs. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rFgSAP-1 combined with Alum adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae per mouse by the oral route. The percents protection of rFgSAP-1 vaccine were estimated to be 73.2% and 74.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The levels of IgG1 and IgG2a specific to rFgSAP-1 in the immune sera, which are indicative of Th2 and Th1 immune responses, were inversely and significantly correlated with the numbers of worm recoveries. The rFgSAP-1-vaccinated mice showed significantly reduced levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and liver damage. These indicated that rFgSAP-1 has strong potential as a vaccine candidate against F. gigantica, whose efficacy will be studied further in large economic animals including cattle, sheep, and goat. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects on functional groups and zeta potential of SAP1pulsed electric field technology.

    Science.gov (United States)

    Liang, Rong; Li, Xuenan; Lin, Songyi; Wang, Jia

    2017-01-01

    SAP 1 pulsed electric field (PEF) technology. The effects of electric field intensity and pulse frequency on SAP 1 electric field intensity 15 kV cm -1 , pulse frequency 1600 Hz and flow velocity 2.93 mL min -1 ). Furthermore, the PEF-treated SAP 1 < MW < 3kDa under optimal conditions lacked the characteristic absorbance of N-H, C = C and the amide band and the zeta potential was reduced to -18.0 mV. Overall, the results of the present study suggest that the improvement of antioxidant activity of SAP 1 < MW < 3kDa is a result of the contribution of the functional groups and the change in zeta potential when treated with PEF. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco.

    Science.gov (United States)

    Charrier, Aurélie; Planchet, Elisabeth; Cerveau, Delphine; Gimeno-Gilles, Christine; Verdu, Isabelle; Limami, Anis M; Lelièvre, Eric

    2012-08-01

    The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses.

  8. Modelling reveals endogenous osmotic adaptation of storage tissue water potential as an important driver determining different stem diameter variation patterns in the mangrove species Avicennia marina and Rhizophora stylosa.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Guyot, Adrien; Hubeau, Michiel; De Swaef, Tom; Lockington, David A; Steppe, Kathy

    2014-09-01

    Stem diameter variations are mainly determined by the radial water transport between xylem and storage tissues. This radial transport results from the water potential difference between these tissues, which is influenced by both hydraulic and carbon related processes. Measurements have shown that when subjected to the same environmental conditions, the co-occurring mangrove species Avicennia marina and Rhizophora stylosa unexpectedly show a totally different pattern in daily stem diameter variation. Using in situ measurements of stem diameter variation, stem water potential and sap flow, a mechanistic flow and storage model based on the cohesion-tension theory was applied to assess the differences in osmotic storage water potential between Avicennia marina and Rhizophora stylosa. Both species, subjected to the same environmental conditions, showed a resembling daily pattern in simulated osmotic storage water potential. However, the osmotic storage water potential of R. stylosa started to decrease slightly after that of A. marina in the morning and increased again slightly later in the evening. This small shift in osmotic storage water potential likely underlaid the marked differences in daily stem diameter variation pattern between the two species. The results show that in addition to environmental dynamics, endogenous changes in the osmotic storage water potential must be taken into account in order to accurately predict stem diameter variations, and hence growth.

  9. Exploring the Potential of Banana SAP as Dye for the Adinkra ...

    African Journals Online (AJOL)

    A study was carried out to explore the potential of banana sap as a dye for the Adinkra industry in Ghana. Pseudostem extract of banana and stem bark extract of Bridelia micratha were compared as dyeing stuff. A consumer preference study was also conducted to assess the acceptability of the products developed.

  10. Characterization of Macrophomina phaseolina isolates by their response to different osmotic potentials and AFLP

    Directory of Open Access Journals (Sweden)

    Bárbara J. Gutiérrez Cedeño

    2014-01-01

    Full Text Available Charcoal rot of Phaseolus vulgaris is caused by the fungus Macrophomina phaseolina, the disease is associated with high temperature and water stress. The objective of this study was to characterize isolates of M. phaseolina by their response to different osmotic potentials and AFLP. The growth of 11 isolates was determined on potato dextrose agar at 48 and 72 h in a gradient of osmotic potential induced using NaCl as well as their effects on germination of sclerotia. Three water groups were statistically different indicating differential response to osmotic potential and all sclerotia grown under these conditions, germinated between 24 and 48h. There were groups of isolates that were tolerant to water stress induced. The AFLP genotyping allowed the formation of five genetic groups, showing a wide genetic variability. Of the nine starters CTA-AT showed a high degree of confidence in the identification of genotypes of M. phaseolina and CAA-AC had the lowest discriminatory power. These results show that M. phaseolina isolates responded differently to osmotic potential and are genetically different between them. Although there was a clear correspondence of genetic groups to water groups; these responses are important features in the search for alternative management in black bean pathosystem. Keywords: molecular marker, M. phaseolina, water deficit

  11. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, T. T., E-mail: agteca@hotmail.com [AGTECA S.A., 230 Oceanbeach Road, Mount Maunganui, Tauranga 3116 (New Zealand); Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz [Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f

  12. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    International Nuclear Information System (INIS)

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-01

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N f ,” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N f was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N f , the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N f using recorded

  13. Theoretical and experimental investigations of the potential of osmotic energy for power production.

    Science.gov (United States)

    Sharif, Adel O; Merdaw, Ali A; Aryafar, Maryam; Nicoll, Peter

    2014-08-08

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%-80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved.

  14. Theoretical and Experimental Investigations of the Potential of Osmotic Energy for Power Production †

    Science.gov (United States)

    Sharif, Adel O.; Merdaw, Ali A.; Aryafar, Maryam; Nicoll, Peter

    2014-01-01

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved. PMID:25110959

  15. Theoretical and Experimental Investigations of the Potential of Osmotic Energy for Power Production

    Directory of Open Access Journals (Sweden)

    Adel O. Sharif

    2014-08-01

    Full Text Available This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved.

  16. Chloroplast osmotic adjustment allows for acclimation of photosynthesis to low water potentials

    International Nuclear Information System (INIS)

    Gupta, A.S.; Berkowitz, G.

    1987-01-01

    Previously in this laboratory, studies indicated that photosynthesis (PS) of chloroplasts isolated from spinach plants which underwent osmotic adjustment during in situ water deficits was inhibited less at low osmotic potentials (Psi/sub s/) in vitro than PS of plastids isolated from well watered plants. In this study, an attempt was made to determine if chloroplast acclimation to low Psi/sub s/ was associated with in situ stromal solute accumulation. During a 14d stress cycle, in situ stromal volume was estimated by measuring (using the 3 H 2 O, 14 C-sorbitol silicon oil centrifugation technique) the stromal space of plastids in solutions which had the Psi/sub s/ adjusted to the leaf Psi/sub s/. During the first lid of the cycle, stromal volume did not decline, despite a decrease of over 20% in the leaf RWC. After this time, stromal volume dropped rapidly. In situ stromal Psi/sub s/ was also estimated during a stress cycle. These studies indicated that stromal Psi/sub s/ was lowered by net solute accumulation. The data presented in this report suggest that chloroplast acclimation to low Psi/sub s/ may involve stromal solute accumulation and volume maintenance during cell water loss

  17. Saltstone Osmotic Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Ralph L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRN

    2013-09-23

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR- 2013-0004.

  18. Osmotic Pressure of Aqueous Electrolyte Solutions via Molecular Simulations of Chemical Potentials: Application to NaCl.

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Moučka, F.; Nezbeda, Ivo

    2016-01-01

    Roč. 407, Sl (2016), s. 76-83 ISSN 0378-3812 Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : osmotic pressure * chemical potential * molecular simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.473, year: 2016

  19. Effect of hydrodynamic slippage on electro-osmotic flow in zeta potential patterned nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S; Choudhary, J N, E-mail: subhra-datta@iitd.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2013-10-01

    The effect of hydrodynamic slippage on the electro-osmotic flow in a nanochannel with thick electrical double layers whose wall surface potential has a periodic axial variation is studied. The equations of Stokes flow are solved exactly with the help of the Navier slip boundary condition and the Debye-Huckel linearization of the equation governing the potential of the electrical double layer. Each periodic cell of the flow field consists of four counter-rotating vortices. The cross-channel profile of the axial velocity at the center of the cell exhibits three extrema and a reversed velocity zone near the channel axis of symmetry. The size of the extrema and that of the reversed velocity zone increases with increase in the degree of slippage. In the limit when the wavelength of axial variation in surface potential is much larger than the channel width, the flow characteristics are interpreted in terms of the lubrication approximation. In the limit when the electrical double layer is much thinner than the channel height, the effect of slip is modeled by a Helmholtz-Smoluchowski apparent slip boundary condition that depends on the pattern wavelength. (paper)

  20. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    Science.gov (United States)

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  1. Saltstone Osmotic Pressure

    International Nuclear Information System (INIS)

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-01-01

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR-2013-0004. Simulated saltstone typically has very low permeability (Dixon et al. 2008) and pore water that contains a large concentration of dissolved salts (Flach and Smith 2013). Pore water in simulated saltstone has a high salt concentration relative to pore water in concrete and groundwater. This contrast in salt concentration can generate high osmotic pressures if simulated saltstone has the properties of a semipermeable membrane. Estimates of osmotic pressure using results from the analysis of pore water collected from simulated saltstone show that an osmotic pressure up to 2790 psig could be generated within the saltstone. Most semi-permeable materials are non-ideal and have an osmotic efficiency 3 , KNO 3 , Na 3 PO 4 x12H 2 O, and K 3 PO 4 when exposed to a dilute solution. Typically hydraulic head is considered the only driving force for groundwater in groundwater models. If a low permeability material containing a concentrated salt solution is present in the hydrogeologic sequence large osmotic pressures may develop and lead to misinterpretation of groundwater flow and solute transport. The osmotic pressure in the semi-permeable material can significantly impact groundwater flow in the vicinity of the semi-permeable material. One possible outcome is that

  2. Laboratory investigation of steam transmission in unsaturated clayey soil under osmotic potential

    Directory of Open Access Journals (Sweden)

    Mehdi Jalili

    2017-01-01

    Full Text Available Liquids coming from different sources like wastewaters, agricultural and industrial activities and leakages of chemical substances often have high concentration of chemical compositions and the osmotic gradient generated around such sources causes a considerable transmission of the Contamination. The steam transmitted by non-polluted soils moves to polluted masses, causing an increase in the volume of pollution zone and movement of pollutants. Therefore, such physical and chemical processes should be taken into account in pollution transmission models. Using Crumb method, laboratory investigations were conducted on non-dispersive and dispersive clayey soil samples obtained from three areas in Zanjan Province of Iran. A simple experimental setup has been used and hereby introduced. The impact of osmotic force from salinities of 0.5, 1, and 1.5% on steam transmission in clayey soil was examined. Results indicate that for all samples between 5 to 15 days, the moisture content increased in the pollutant zone and decreased in the non-pollutant area. Also it was observed that for dispersive clayey soil, movement of steam among layers was observed to be orderly and its amount was higher than that of non-dispersive clayey soil.

  3. Comparative study of the energy potential of cyanide waters using two osmotic membrane modules under dead-end flow

    Science.gov (United States)

    García-Díaz, Y.; Quiñones-Bolaños, E.; Bustos-Blanco, C.; Vives-Pérez, L.; Bustillo-Lecompte, C.; Saba, M.

    2017-12-01

    The energy potential of the osmotic pressure gradient of cyanide waters is evaluated using two membrane modules, horizontal and vertical, operated under dead-end flow. The membrane was characterized using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The membrane is mainly composed of carbon, oxygen, and sulphur. The properties of the membrane were unchanged and had no pore clogging after exposure to the cyanide waters. Potentials of 1.78×10-4 and 6.36×10-5Wm-2 were found for the horizontal and vertical modules, respectively, using the Van’t Hoff equation. Likewise, the permeability coefficient of the membrane was higher in the vertical module. Although the energy potential is low under the studied conditions the vertical configuration has a greater potential due to the action of gravity and the homogenous contact of the fluid with the membrane.

  4. The Response Strategy of Maize, Pea and Broad Bean Plants to Different Osmotic Potential Stress

    Directory of Open Access Journals (Sweden)

    Hamdia M. Abd El-Samad

    2013-08-01

    Full Text Available This investigation was conducted to study the tolerance strategy of maize, broad bean and pea plants to salinity stress with exogenous applications of proline or phenylalanine on seed germination and seedlings growth. From the results obtained, it can be observed that osmotic stress affected adversely the rate of germination in maize, broad bean and pea plants. The excessive inhibition was more prominent at higher concentration of NaCl. The seeds and grains tested were exhibited some differential responses to salinity, in a manner that the inhibitory effect of salinity on seed germination ran in the order, maize higher than broad bean and the later was higher than pea plant. Treatment with proline or phenylalanine (100 ppm significantly increased these seed germination and seedlings growth characteristics even at lowest salinity level tested.

  5. SAP crm integration testing

    OpenAIRE

    Černiavskaitė, Marija

    2017-01-01

    This Bachelor's thesis presents SAP CRM and integration systems testing analysis: investigation in SAP CRM and SAP PO systems, presentation of relationship between systems, introduction to third-party system (non-SAP) – Network Informational System (NIS) which has integration with SAP, presentation of best CRM testing practises, analysis and recommendation of integration testing. Practical integration testing is done in accordance to recommendations.

  6. Role of Osmotic Adjustment in Plant Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Gebre, G.M.

    2001-01-11

    Successful implementation of short rotation woody crops requires that the selected species and clones be productive, drought tolerant, and pest resistant. Since water is one of the major limiting factors in poplar (Populus sp.) growth, there is little debate for the need of drought tolerant clones, except on the wettest of sites (e.g., lower Columbia River delta). Whether drought tolerance is compatible with productivity remains a debatable issue. Among the many mechanisms of drought tolerance, dehydration postponement involves the maintenance of high leaf water potential due to, for example, an adequate root system. This trait is compatible with productivity, but requires available soil moisture. When the plant leaf water potential and soil water content decline, the plant must be able to survive drought through dehydration tolerance mechanisms, such as low osmotic potential or osmotic adjustment. Osmotic adjustment and low osmotic potential are considered compatible with growth and yield because they aid in the maintenance of leaf turgor. However, it has been shown that turgor alone does not regulate cell expansion or stomatal conductance and, therefore, the role of osmotic adjustment is debated. Despite this finding, osmotic adjustment has been correlated with grain yield in agronomic crop species, and gene markers responsible for osmotic adjustment are being investigated to improve drought tolerance in productive progenies. Although osmotic adjustment and low osmotic potentials have been investigated in several forest tree species, few studies have investigated the relationship between osmotic adjustment and growth. Most of these studies have been limited to greenhouse or container-grown plants. Osmotic adjustment and rapid growth have been specifically associated in Populus and black spruce (Picea mariuna (Mill.) B.S.P.) progenies. We tested whether these relationships held under field conditions using several poplar clones. In a study of two hybrid poplar

  7. The Exogenous Amelioration Roles of Growth Regulators on Crop Plants Grow under Different Osmotic Potential

    Directory of Open Access Journals (Sweden)

    Hamdia M. Abd El-Samad

    2014-03-01

    Full Text Available The production of fresh and dry matter of maize, wheat, cotton, broad and parsley plants show a variable response to the elevation of salinity stress. The production of fresh and dry matter of shoots and roots in wheat and broad bean plants tended to decrease with increasing NaCl concentration, salt stress progressively decrease in fresh and dry matter yield of maize plants. The increase in salinization levels induced a general insignificant change in production of fresh and dry matter of both organs of parsley plants. However, salinity induced a marked increase in the values of fresh and dry matter yields of cotton plants grown at the lowest level (-0.3 MPa NaCl and a reduction at higher salinization levels. Leaf area of unsprayed plants was excesivly decreased with the rise of osmotic stress levels especially at higher salinity levels of maize, wheat, cotton, and broad bean and parsley plants. the total pigments concentration decreased with rise of salinization levels in maize and cotton, these contents remained more or less un affected up to the level of 0.6 MPa NaCl in wheat and up to 0.9 MPa in parsley plants, there above, they were significantly reduced with increasing salinity levels. In broad bean plants the total pigments contents showed a non-significant alterations at all salinity stress. Spraying the vegetative parts of the five tested plants with 200 ppm of either GA3 or kinetin completely ameliorated the deleterious effect of salinity in fresh, dry matter, leaf area and pigment contents.

  8. Water relations in silver birch during springtime: How is sap pressurised?

    Science.gov (United States)

    Hölttä, T; Dominguez Carrasco, M D R; Salmon, Y; Aalto, J; Vanhatalo, A; Bäck, J; Lintunen, A

    2018-05-06

    Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known. We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non-structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period. The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations. Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  9. Gamma radiation and osmotic potential of the nutrient solution differentially affect macronutrient concentrations, pH and EC in chilhuacle pepper fruits

    International Nuclear Information System (INIS)

    Victor Garcia-Gaytan, Libia Iris Trejo-Tellez; Olga Tejeda-Sartorius; Maribel Ramirez-Martinez; Julian Delgadillo-Martinez; Fernando Carlos Gomez-Merino; Soledad Garcia-Morales

    2018-01-01

    Chilhuacle pepper (Capsicum annuum L.) seeds were exposed to gamma radiation (GR) doses (0, 10, 80 and 120 Gy), and plants were grown in hydroponics with different osmotic potentials (OP) (- 0.036, - 0.072, - 0.092, and - 0.108 MPa) in the nutrient solution. We measured the nutrient concentrations, pH and electrical conductivity (EC) in fruits at different time points after transplanting (70, 90 and 130 dat), and found the GR, nutrient solution OP and their interactions differentially affected N, P, K, Ca, and Mg concentrations, as well as pH and EC in chilhuacle peppers. (author)

  10. RNA Interference Based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly

    Science.gov (United States)

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) could offer potential for insect pest management. Insects feeding exclusively on plant sap depend on osmotic pressure...

  11. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels.

    Science.gov (United States)

    Hariadi, Yuda; Marandon, Karl; Tian, Yu; Jacobsen, Sven-Erik; Shabala, Sergey

    2011-01-01

    Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) were studied by exposing plants to six salinity levels (0-500 mM NaCl range) for 70 d. Salt stress was administered either by pre-mixing of the calculated amount of NaCl with the potting mix before seeds were planted or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment in old leaves and between 80% and 85% of osmotic adjustment in young leaves was achieved by means of accumulation of inorganic ions (Na(+), K(+), and Cl(-)) at these NaCl levels, whilst the contribution of organic osmolytes was very limited. Consistently higher K(+) and lower Na(+) levels were found in young, as compared with old leaves, for all salinity treatments. The shoot sap K(+) progressively increased with increased salinity in old leaves; this is interpreted as evidence for the important role of free K(+) in leaf osmotic adjustment under saline conditions. A 5-fold increase in salinity level (from 100 mM to 500 mM) resulted in only a 50% increase in the sap Na(+) content, suggesting either a very strict control of xylem Na(+) loading or an efficient Na(+) removal from leaves. A very strong correlation between NaCl-induced K(+) and H(+) fluxes was observed in quinoa root, suggesting that a rapid NaCl-induced activation of H(+)-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K(+) leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na(+) sequestration, control of Na(+) and K(+) xylem loading, and their transport to the shoot.

  12. Low temperature caused modifications in the arrangement of cell wall pectins due to changes of osmotic potential of cells of maize leaves (Zea mays L.).

    Science.gov (United States)

    Bilska-Kos, Anna; Solecka, Danuta; Dziewulska, Aleksandra; Ochodzki, Piotr; Jończyk, Maciej; Bilski, Henryk; Sowiński, Paweł

    2017-03-01

    The cell wall emerged as one of the important structures in plant stress responses. To investigate the effect of cold on the cell wall properties, the content and localization of pectins and pectin methylesterase (PME) activity, were studied in two maize inbred lines characterized by different sensitivity to cold. Low temperature (14/12 °C) caused a reduction of pectin content and PME activity in leaves of chilling-sensitive maize line, especially after prolonged treatment (28 h and 7 days). Furthermore, immunocytohistological studies, using JIM5 and JIM7 antibodies, revealed a decrease of labeling of both low- and high-methylesterified pectins in this maize line. The osmotic potential, quantified by means of incipient plasmolysis was lower in several types of cells of chilling-sensitive maize line which was correlated with the accumulation of sucrose. These studies present new finding on the effect of cold stress on the cell wall properties in conjunction with changes in the osmotic potential of maize leaf cells.

  13. SAPS, Crime statistics

    African Journals Online (AJOL)

    incidents' refer to 'incidents such as labour disputes and dissatisfaction with service delivery in which violence erupted and SAPS action was required to restore peace and order'.26. It is apparent from both the SAPS statistics and those provided by the Municipal IQ Hotspots. Monitor, that public protests and gatherings are.

  14. Xylem sap proteomics.

    Science.gov (United States)

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  15. Comportamento de sementes de feijão sob diferentes potenciais osmóticos Bean seed performance under different osmotic potentials

    Directory of Open Access Journals (Sweden)

    Gilberto Antonio Freitas de Moraes

    2005-08-01

    Full Text Available A hidratação é o fator externo mais importante na germinação de sementes. Para simular as condições complexas do solo, soluções com diferentes potenciais osmóticos têm sido usadas para umedecer os substratos. O objetivo deste trabalho foi avaliar os efeitos do estresse hídrico e salino sobre a germinação e o vigor de sementes de feijão. Sementes da cultivar IAPAR 44 foram colocadas a germinar em papel-toalha embebido em soluções de polietileno glicol (PEG 6000 e cloreto de sódio (NaCl nos potenciais osmóticos zero; -0,05; -0,10; -0,15; -0,20; -0,25 e -0,30 MPa. O desempenho das sementes foi avaliado por meio do teste de germinação, primeira contagem da germinação, comprimento e matéria seca de plântulas. Concluiu-se que a redução do potencial osmótico, induzido por PEG 6000 ou NaCl, reduz o vigor e, a partir de -0,20 MPa, reduz a germinação de sementes de feijão. O PEG 6000 produz efeitos adversos mais drásticos do que o NaCl na qualidade fisiológica das sementes.Hydration is the most important external factor for seed germination. To simulate the complex soil conditions solutions with different osmotic potentials have been used to soak substrata. The objective of this paper was to evaluate the effects of hydric and saline stress to germination and strength of bean seeds. Seeds of the cultivar IAPAR were germinated in towel-paper soaked in PEG 6000 and NaCl solutions in the zero osmotic potentials; -0.05; -0.10; -0.15; -0.20; -0.25 and 0.30 MPa. Seed performance was evaluated through the germination test, first count of germination, length, and dry seedling weight. In conclusion, osmotic potential reduction, induced by Polyethylene glicol (PEG 6000 or Sodium chlorine (NaCl, reduces the strength and, from -0.20 to -0.30 MPa, the germination of bean seeds. The PEG 6000 produces more severe and adverse effects than the NaCl in the physiologic quality of been seeds.

  16. Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress.

    Science.gov (United States)

    Masondo, Nqobile A; Kulkarni, Manoj G; Finnie, Jeffrey F; Van Staden, Johannes

    2018-01-01

    Extreme temperatures, drought and salinity stress adversely affect seed germination and seedling growth in crop species. Seed priming has been recognized as an indispensable technique in the production of stress-tolerant plants. Seed priming increases seed water content, improves protein synthesis using mRNA and DNA and repair mitochondria in seeds prior to germination. The current study aimed to determine the role of biostimulants-seed-priming during germination and seedling growth of Ceratotheca triloba (Bernh.) Hook.f. (an indigenous African leafy vegetable) under low temperature, low osmotic potential and salinity stress conditions. Ceratotheca triloba seeds were primed with biostimulants [smoke-water (SW), synthesized smoke-compound karrikinolide (KAR 1 ), Kelpak ® (commercial seaweed extract), phloroglucinol (PG) and distilled water (control)] for 48h at 25°C. Thereafter, primed seeds were germinated at low temperatures, low osmotic potential and high NaCl concentrations. Low temperature (10°C) completely inhibited seed germination. However, temperature shift to 15°C improved germination. Smoke-water and KAR 1 enhanced seed germination with SW improving seedling growth under different stress conditions. Furthermore, priming seeds with Kelpak ® stimulated percentage germination, while PG and the control treatment improved seedling growth at different PEG and NaCl concentrations. Generally, high concentrations of PEG and NaCl brought about detrimental effects on seed germination and seedling growth. Findings from this study show the potential role of seed priming with biostimulants in the alleviation of abiotic stress conditions during seed germination and seedling growth in C. triloba plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. SAP HANA cookbook

    CERN Document Server

    Chandrasekhar

    2013-01-01

    An easy-to-understand guide, covering topics using practical scenarios and live examples, and answering all possible questions.If you are a solution architect, developer, modeler, sales leader, business transformation managers, directors, COO, or CIO; this book is perfect for you.If you are interested in other technologies and want to jump-start into SAP, this book gives you the chance to learn SAP HANA. Basic knowledge of RDBMS concepts enough is to get you started.

  18. Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia

    Science.gov (United States)

    Wang, Hailong; Guan, Huade; Deng, Zijuan; Simmons, Craig T.

    2014-07-01

    Canopy conductance (gc) is a critical component in hydrological modeling for transpiration estimate. It is often formulated as functions of environmental variables. These functions are climate and vegetation specific. Thus, it is important to determine the appropriate functions in gc models and corresponding parameter values for a specific environment. In this study, sap flow, stem water potential, and microclimatic variables were measured for three Drooping Sheoak (Allocasuarina verticillata) trees in year 2011, 2012, and 2014. Canopy conductance was calculated from the inversed Penman-Monteith (PM) equation, which was then used to examine 36 gc models that comprise different response functions. Parameters were optimized using the DiffeRential Evolution Adaptive Metropolis (DREAM) model based on a training data set in 2012. Use of proper predawn stem water potential function, vapor pressure deficit function, and temperature function improves model performance significantly, while no pronounced difference is observed between models that differ in solar radiation functions. The best model gives a correlation coefficient of 0.97, and root-mean-square error of 0.0006 m/s in comparison to the PM-calculated gc. The optimized temperature function shows different characteristics from its counterparts in other similar studies. This is likely due to strong interdependence between air temperature and vapor pressure deficit in the study area or Sheoak tree physiology. Supported by the measurements and optimization results, we suggest that the effects of air temperature and vapor pressure deficit on canopy conductance should be represented together.

  19. Software development on the SAP HANA platform

    CERN Document Server

    Walker, Mark

    2013-01-01

    Software Development on the SAP HANA Platform is a general tutorial guide to SAP HANA.This book is written for beginners to the SAP HANA platform. No knowledge of SAP HANA is necessary to start using this book.

  20. SAP Nuclear Competence Centre

    International Nuclear Information System (INIS)

    Andrlova, Z.

    2009-01-01

    In this issue we continue and introduce the SAP Nuclear Competence Centre and its head Mr. Igor Dzama. SAP Nuclear Competence Centrum is one of the fi rst competence centres outside ENEL headquarters. It should operate in Slovakia and should have competencies within the whole Enel group. We are currently dealing with the issues of organisation and funding. We are trying to balance the accountability to the NPP directors and to the management of the competence centres at Enel headquarters; we are looking at the relations between the competence centres within the group and defining the services that we will provide for the NPPs. author)

  1. 7 CFR 1437.107 - Maple sap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Maple sap. 1437.107 Section 1437.107 Agriculture... Yield Coverage Using Actual Production History § 1437.107 Maple sap. (a) NAP assistance for maple sap is limited to maple sap produced on private property for sale as sap or syrup. Eligible maple sap must be...

  2. From Sap to Syrup

    Science.gov (United States)

    Bjork, Janna

    2005-01-01

    Warm days, cold nights, melting snow-signs winter is waning and spring is nearing. Though winter may just be getting started in some areas, it's always fun to appreciate the good things about winter, including the special time at the end of winter in New England known as "sugaring time." The sap starts flowing in the sugar maples, and…

  3. Recovery of leaf elongation during short term osmotic stress correlates with osmotic adjustment and cell turgor restoration in different durum wheat cultivars

    International Nuclear Information System (INIS)

    Mahdid, M.

    2014-01-01

    In order to investigate the responses of leaf elongation rate (LER), turgor and osmotic adjustment (OA) during a short-term stress (7 hours) imposed by PEG6000 and a recovery phase, three durum wheat (Triticum durum L.) varieties (Inrat; MBB; and OZ ) were grown in aerated nutrient solutions. Leaf elongation kinetics of leaf 3 was estimated using LVDT. Turgor was estimated using a cell pressure probe; osmotic potential as well as total sugars and potassium (K+) concentrations were estimated from expressed sap of elongation zone. Growth recovered rapidly and then stabilised at a lower value. A significant difference was found in % recovery of LER between the varieties. The cessation of growth after stress coincided with a decrease in turgor followed by a recovery period reaching control values in MBB and Inrat. A strong correlation (R2 = 0.83) between the reduction in turgor (turgor) and % recovery of LER was found at 7 hours after stress. The difference in the partial recovery of LER between varieties was thus related to the capacity of partial turgor recovery. Partial turgor recovery is associated with sugar or K+ based OA which indicates its importance in maintaining high LER values under water deficit. (author)

  4. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.

    Science.gov (United States)

    Ji, Xiaoyu; Nie, Xianguang; Liu, Yujia; Zheng, Lei; Zhao, Huimin; Zhang, Bing; Huo, Lin; Wang, Yucheng

    2016-02-01

    Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Osmocapsules for direct measurement of osmotic strength.

    Science.gov (United States)

    Kim, Shin-Hyun; Lee, Tae Yong; Lee, Sang Seok

    2014-03-26

    Monodisperse microcapsules with ultra-thin membranes are microfluidically designed to be highly sensitive to osmotic pressure, thereby providing a tool for the direct measurement of the osmotic strength. To make such osmocapsules, water-in-oil-in-water double-emulsion drops with ultra-thin shells are prepared as templates through emulsification of core-sheath biphasic flow in a capillary microfluidic device. When photocurable monomers are used as the oil phase, the osmocapsules are prepared by in-situ photopolymerization of the monomers, resulting in semipermeable membranes with a relatively large ratio of membrane thickness to capsule radius, approximately 0.02. These osmocapsules are buckled by the outward flux of water when they are subjected to a positive osmotic pressure difference above 125 kPa. By contrast, evaporation-induced consolidation of middle-phase containing polymers enables the production of osmocapsules with a small ratio of membrane thickness to capsule radius of approximately 0.002. Such an ultra-thin membrane with semi-permeability makes the osmocapsules highly sensitive to osmotic pressure; a positive pressure as small as 12.5 kPa induces buckling of the capsules. By employing a set of distinct osmocapsules confining aqueous solutions with different osmotic strengths, the osmotic strength of unknown solutions can be estimated through observation of the capsules that are selectively buckled. This approach provides the efficient measurement of the osmotic strength using only a very small volume of liquid, thereby providing a useful alternative to other measurement methods which use complex setups. In addition, in-vivo measurement of the osmotic strength can be potentially accomplished by implanting these biocompatible osmocapsules into tissue, which is difficult to achieve using conventional methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Studies on osmotic concentration of radioactive effluents

    International Nuclear Information System (INIS)

    Thomas, K.C.; Ramachandhran, V.; Misra, B.M.

    1986-01-01

    The potential of direct osmosis for concentrating radioactive effluents is examined on the laboratory scale. Studies were carried out using asymmetric cellulose acetate membranes of a range of porosities under varying salinity gradients. A suitable bench scale osmotic concentrator employing tubular membrane systems has been fabricated and tested. An attempt to understand the mechanism of water permeation under osmotic and hydrostatic gradients has been made based on the irreversible thermodynamic approach. The solute separation of sodium chloride and radionuclides under osmosis is in the range of 85 to 95% for various osmotic sink solutions. The osmotic water flux is observed to be lower than the hydraulic water flux under reverse osmosis conditions. While the solute separation increases with an increase in annealing temperature, water flux decreases for both osmosis and reverse osmosis systems for various feed salinities. The effect of concentration polarization is analysed, and the effect of feed and osmotic sink velocity on the performance of the osmotic concentrator has also been studied. (orig.)

  7. A Simple Membrane Osmometer System & Experiments that Quantitatively Measure Osmotic Pressure

    Science.gov (United States)

    Marvel, Stephen C.; Kepler, Megan V.

    2009-01-01

    It is important for students to be exposed to the concept of osmotic pressure. Understanding this concept lays the foundation for deeper discussions that lead to more theoretical aspects of water movement associated with the concepts of free energy, water potential, osmotic potential, pressure potential, and osmotic adjustment. The concept of…

  8. Modeling osmotic salinity effects on yield characteristics of substrate-grown greenhouse crops

    NARCIS (Netherlands)

    Sonneveld, C.; Bos, van den A.L.; Voogt, W.

    2004-01-01

    In a series of experiments with different osmotic potentials in the root environment, various vegetables, and ornamentals were grown in a substrate system. The osmotic potential was varied by addition of nutrients. Yield characteristics of the crop were related to the osmotic potential of the

  9. Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula.

    Science.gov (United States)

    Lintunen, Anna; Lindfors, Lauri; Nikinmaa, Eero; Hölttä, Teemu

    2017-04-01

    Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the

  10. Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds.

    Science.gov (United States)

    Pramsohler, Manuel; Neuner, Gilbert

    2013-08-01

    In deciduous trees, measurement of stem water potential can be difficult during the leafless period in winter. By using thermocouple psychrometry, osmotic water potentials (Ψo; actual Ψo: Ψo(act); Ψo at full saturation: Ψo(sat)) of expressed sap of bark and bud tissue were measured in order to test if the severity of winter desiccation in apple stems could be sufficiently assessed with Ψo. Water potentials were related to frost resistance and freezing behaviour of buds. The determination of Ψo reliably allowed winter desiccation and osmotic adjustments in apple stem tissue to be assessed. In winter in bark tissue, a pronounced decrease in Ψo(act) and Ψo(sat) was found. Decreased Ψo(sat) indicates active osmotic adjustment in the bark as observed earlier in the leaves of evergreen woody plants. In terminal bud meristems, no significant osmotic adjustments occurred and dehydration during winter was much less. Osmotic water potentials, Ψo(act) and Ψo(sat), of bud tissue were always less negative than in the bark. To prevent water movement and dehydration of the bud tissue via this osmotic gradient, it must be compensated for either by a sufficiently high turgor pressure (Ψp) in bark tissue or by the isolation of the bud tissue from the bark during midwinter. During freezing of apple buds, freeze dehydration and extra-organ freezing could be demonstrated by significantly reduced Ψo(act) values of bud meristems that had been excised in the frozen state. Infrared video thermography was used to monitor freezing patterns in apple twigs. During extracellular freezing of intact and longitudinally dissected stems, infrared differential thermal analysis (IDTA) images showed that the bud meristem remains ice free. Even if cooled to temperatures below the frost-killing temperature, no freezing event could be detected in bud meristems during winter. In contrast, after bud break, terminal buds showed a second freezing at the frost-killing temperature that indicates

  11. Measuring Complexity of SAP Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-10-01

    Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.

  12. SAP SE: Autism at Work

    DEFF Research Database (Denmark)

    Pisano, Gary P.; Austin, Robert D.

    2016-01-01

    This case describes SAP's 'Autism at Work' program, which integrates people with autism into the company's workforce. The company has a stated objective of making 1% o its workforce people with autism by 2020. SAP's rationale for the program is based on the belief that 'neurodiversity' contributes...

  13. SAP modulates B cell functions in a genetic background-dependent manner.

    Science.gov (United States)

    Detre, Cynthia; Yigit, Burcu; Keszei, Marton; Castro, Wilson; Magelky, Erica M; Terhorst, Cox

    2013-06-01

    Mutations affecting the SLAM-associated protein (SAP) are responsible for the X-linked lympho-proliferative syndrome (XLP), a severe primary immunodeficiency syndrome with disease manifestations that include fatal mononucleosis, B cell lymphoma and dysgammaglobulinemia. It is well accepted that insufficient help by SAP-/- CD4+ T cells, in particular during the germinal center reaction, is a component of dysgammaglobulinemia in XLP patients and SAP-/- animals. It is however not well understood whether in XLP patients and SAP-/- mice B cell functions are affected, even though B cells themselves do not express SAP. Here we report that B cell intrinsic responses to haptenated protein antigens are impaired in SAP-/- mice and in Rag-/- mice into which B cells derived from SAP-/- mice together with wt CD4+ T cells had been transferred. This impaired B cells functions are in part depending on the genetic background of the SAP-/- mouse, which affects B cell homeostasis. Surprisingly, stimulation with an agonistic anti-CD40 causes strong in vivo and in vitro B cell responses in SAP-/- mice. Taken together, the data demonstrate that genetic factors play an important role in the SAP-related B cell functions. The finding that anti-CD40 can in part restore impaired B cell responses in SAP-/- mice, suggests potentially novel therapeutic interventions in subsets of XLP patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Osmotic stress on nitrification in an airlift bioreactor

    International Nuclear Information System (INIS)

    Jin Rencun; Zheng Ping; Mahmood, Qaisar; Hu Baolan

    2007-01-01

    The effect of osmotic pressure on nitrification was studied in a lab-scale internal-loop airlift-nitrifying reactor. The reactor slowly adapted to the escalating osmotic pressure during 270 days operation. The conditions were reversed to the initial stage upon full inhibition of the process. Keeping influent ammonium concentration constant at 420 mg N L -1 and hydraulic retention time at 20.7 h, with gradual increase in osmotic pressure from 4.3 to 18.8 x 10 5 Pa by adding sodium sulphate, the ammonium removal efficiencies of the nitrifying bioreactor were maintained at 93-100%. Further increase in osmotic pressure up to 19.2 x 10 5 Pa resulted in drop of the ammonium conversion to 69.2%. The osmotic pressure caused abrupt inhibition of nitrification without any alarm and the critical osmotic pressure value causing inhibition remained between 18.8 and 19.2 x 10 5 Pa. Nitrite oxidizers were found more sensitive to osmotic stress as compared with ammonia oxidizers, leading to nitrite accumulation up to 61.7% in the reactor. The performance of bioreactor recovered gradually upon lowering the osmotic pressure. Scanning and transmission electron microscopy indicated that osmotic stress resulted in simplification of the nitrifying bacterial populations in the activated sludge as the cellular size reduced; the inner membrane became thinner and some unknown inclusions appeared within the cells. The microbial morphology and cellular structure restored upon relieving the osmotic pressure. Addition of potassium relieved the effect of osmotic pressure upon nitrification. Results demonstrate that the nitrifying reactor possesses the potential to treat ammonium-rich brines after acclimatization

  15. Osmotic stress alters chromatin condensation and nucleocytoplasmic transport

    Energy Technology Data Exchange (ETDEWEB)

    Finan, John D.; Leddy, Holly A. [Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC (United States); Department of Biomedical Engineering, Duke University, Durham, NC (United States); Guilak, Farshid, E-mail: guilak@duke.edu [Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC (United States); Department of Biomedical Engineering, Duke University, Durham, NC (United States)

    2011-05-06

    Highlights: {yields} The rate of nucleocytoplasmic transport increases under hyper-osmotic stress. {yields} The mechanism is a change in nuclear geometry, not a change in permeability of the nuclear envelope. {yields} Intracytoplasmic but not intranuclear diffusion is sensitive to osmotic stress. {yields} Pores in the chromatin of the nucleus enlarge under hyper-osmotic stress. -- Abstract: Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.

  16. Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in eucalyptus globulus

    International Nuclear Information System (INIS)

    Cernusak, L.A.; Farquhar, G.D.; Arthur, D.J; Pate, J.S.

    2002-01-01

    Full text: The carbon isotope ratio of phloem sap sugars has been previously observed to correlate strongly with the phloem sap sugar concentration in Eucalyptus globulus. We hypothesized that the correspondence between these two parameters results from co-linearity in their responses to variation in plant water potential. Carbon isotope discrimination is expected to decrease with decreasing plant water potential due to the influence of stomatal conductance on the ratio of intercellular to ambient CO 2 , concentrations (c 1 /c a ). Conversely, we expected the phloem sap sugar concentration to increase with decreasing plant water potential, thereby maintaining positive turgor pressure within the sieve tubes. The study comprised 40 individual Eucalyptus globulus trees growing in three plantations situated on opposing ends of a rainfall gradient in southwestern Australia. A strong correlation was observed between the carbon isotope ratio in phloem sap sugars and phloem sap sugar concentration. Carbon isotope discrimination correlated positively with shoot water potential, whereas phloem sap sugar concentration correlated negatively with shoot water potential. The relationship between carbon isotope discrimination measured in phloem sap sugars collected from the stem and c 1 /c a measured instantaneously on subtending leaves was close to that theoretically predicted. Accordingly, a strong, negative relationship was observed between instantaneous c 1 /c a and the phloem sap sugar concentration. Oxygen isotope discrimination in phloem sap sugars also correlated strongly with phloem sap sugar concentration. A theoretical model suggested that the observed variation in stomatal conductance was sufficient to account for the variation observed in oxygen isotope discrimination across the study. Results strongly support the contention that water relations form a mechanistic link between phloem sap sugar concentration and both instantaneous and integrated measures of the

  17. American specialists and SAP project

    International Nuclear Information System (INIS)

    Andrlova, Z.

    2008-01-01

    Within the past days of November the project teams of SAP Nuclear in Slovenske elektrarne, a. s. incorporated the specialists from PSEG from New Jersey, U.S.A. The goal of their stay here was to pass on the professional experience and good practice from the implementation of quite demanding project in the nuclear power plants. We have learned more about the company and the objectives from an interview with Clay Warren, SAP Nuclear Project Manager in SE. (author)

  18. The relationship between sap-flow rate and sap volume in dormant sugar maples

    Science.gov (United States)

    William J. Gabriel; Russell S. Walters; Donald W. Seegrist

    1972-01-01

    Sap-flow rate is closely correlated with the sap volume produced by dormant sugar maple trees (Acer saccharum Marsh.) and could be used in making phenotypic selections of trees for superior sap production.

  19. Variability of sap flow on forest hillslopes: patterns and controls

    Science.gov (United States)

    Hassler, Sibylle; Blume, Theresa

    2013-04-01

    Sap flow in trees is an essential variable in integrated studies of hydrologic fluxes. It gives indication of transpiration rates for single trees and, with a suitable method of upscaling, for whole stands. This information is relevant for hydrologic and climate models, especially for the prediction of change in water fluxes in the soil-plant-atmosphere continuum under climate change. To this end, we do not only need knowledge concerning the response of sapflow to atmospheric forcing but also an understanding of the main controls on its spatial variability. Our study site consists of several subcatchments of the Attert basin in Luxembourg underlain by schists of the Ardennes massif. Within these subcatchments we measure sap flow in more than 20 trees on a range of forested hillslopes covered by a variety of temperate deciduous tree species such as beech, oak, hornbeam and maple as well as conifers such as firs. Our sap flow sensors are based on the heat pulse velocity method and consist of three needles, one needle acting as the heating device and the other two holding three thermistors each, enabling us to simultaneously measure sap flow velocity at three different depths within the tree. In close proximity to the trees we collect additional data on soil moisture, matric potential and groundwater levels. First results show that the sensor design seems promising for an upscaling of the measured sap flow velocities to sap flow at the tree level. The maximum depth of actively used sapwood as well as the decrease in sap flow velocity with increasing depth in the tree can be determined by way of the three thermistors. Marked differences in sap flow velocity profiles are visible between the different species, resulting in differences in sap flow for trees of similar diameter. We examine the range of tree sap flow values and variation due to species, size class, slope position and exposition and finally relate them to the dynamics of soil moisture conditions with the

  20. Hydrothermal Carbonization of Spent Osmotic Solution (SOS Generated from Osmotic Dehydration of Blueberries

    Directory of Open Access Journals (Sweden)

    Kaushlendra Singh

    2014-09-01

    Full Text Available Hydrothermal carbonization of spent osmotic solution (SOS, a waste generated from osmotic dehydration of fruits, has the potential of transformation into hydrochars, a value-added product, while reducing cost and overall greenhouse gas emissions associated with waste disposal. Osmotic solution (OS and spent osmotic solution (SOS generated from the osmotic dehydration of blueberries were compared for their thermo-chemical decomposition behavior and hydrothermal carbonization. OS and SOS samples were characterized for total solids, elemental composition, and thermo-gravimetric analysis (TGA. In addition, hydrothermal carbonization was performed at 250 °C and for 30 min to produce hydrochars. The hydrochars were characterized for elemental composition, Brunauer-Emmett-Teller (BET surface area, particle shape and surface morphology. TGA results show that the SOS sample loses more weight in the lower temperature range than the OS sample. Both samples produced, approximately, 40%–42% (wet-feed basis hydrochar during hydrothermal carbonization but with different properties. The OS sample produced hydrochar, which had spherical particles of 1.79 ± 1.30 μm diameter with a very smooth surface. In contrast, the SOS sample produced hydrochar with no definite particle shape but with a raspberry-like surface.

  1. Comparative analysis of the ternary complex factors Elk-1, SAP-1a and SAP-2 (ERP/NET).

    Science.gov (United States)

    Price, M A; Rogers, A E; Treisman, R

    1995-06-01

    A transcription factor ternary complex composed of Serum Response Factor (SRF) and Ternary Complex Factor (TCF) mediates the response of the c-fos Serum Response Element (SRE) to growth factors and mitogens. Three Ets domain proteins, Elk-1, SAP-1 and ERP/NET, have been reported to have the properties of TCF. Here we compare Elk-1 and SAP-1a with the human ERP/NET homologue SAP-2. All three TCF RNAs are ubiquitously expressed at similar relative levels. All three proteins contain conserved regions that interact with SRF and the c-fos SRE with comparable efficiency, but in vitro complex formation by SAP-2 is strongly inhibited by its C-terminal sequences. Similarly, only Elk-1 and SAP-1a efficiently bind the c-fos SRE in vivo; ternary complex formation by SAP-2 is weak and is substantially unaffected by serum stimulation or v-ras co-expression. All three TCFs contain C-terminal transcriptional activation domains that are phosphorylated following growth factor stimulation. Activation requires conserved S/T-P motifs found in all the TCF family members. Each TCF activation domain can be phosphorylated in vitro by partially purified ERK2, and ERK activation in vivo is sufficient to potentiate transcriptional activation.

  2. [Extrapontine osmotic myelinolysis].

    Science.gov (United States)

    Silva, Federico A; Rueda-Clausen, Christian F; Ramírez, Fabián

    2005-06-01

    Extrapontine osmotic myelinolysis is a rare nervous system complication. Symptoms of this malady were presented during the clinical examination of a 49-year-old alcoholic male, who arrived at the hospital emergency room in a state of cardiorespiratory arrest. After resuscitation methods were applied, the patient was found in metabolic acidosis (pH 7.014) and was treated with sodium bicarbonate. Forty-eight hours later, sodium levels in the patient had risen from 142 to 174 mEq/l. During the period of clinical observation, the patient showed signs of cognitive impairment, disartria, bilateral amaurosis, hyporeflexia and right-half body hemiparesias. After 72 hours, computer tomography was applied; this showed a bilateral lenticular hypodensity with internal and external capsule compromise. One month later, when the patient was referred to another institution for rehabilitation, the patient showed cognitive impairment, bilateral optic atrophy, residual disartria, bradikynesia and double hemiparesia.

  3. Auditing and GRC automation in SAP

    CERN Document Server

    Chuprunov, Maxim

    2013-01-01

    Going beyond current literature, this book extends internal controls to efficiency and profitability. Offers an audit guide for an SAP ERP system, covers risks and control descriptions, and shows how to automate compliance management based on SAP GRC.

  4. Physicochemical changes of raffia sap (Raphia mambillensis ...

    African Journals Online (AJOL)

    galax-07

    2013-10-09

    Oct 9, 2013 ... on fermentation on the raffia sap property, its physico-chemical and .... transformed organic nitrogen of the dried sap into mineral nitrogen ..... International Congress on Engineering and Food. March ... uses in vignification.

  5. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species.

    Science.gov (United States)

    López-Portillo, Jorge; Ewers, Frank W; Méndez-Alonzo, Rodrigo; Paredes López, Claudia L; Angeles, Guillermo; Alarcón Jiménez, Ana Luisa; Lara-Domínguez, Ana Laura; Torres Barrera, María Del Carmen

    2014-06-01

    • Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na + , K + , and Cl - ), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution. © 2014 Botanical Society of America, Inc.

  6. Errors in the SAP reference model

    NARCIS (Netherlands)

    Mendling, J.; Aalst, van der W.M.P.; Dongen, van B.F.; Verbeek, H.M.W.

    2006-01-01

    The SAP Reference Model is a set of information models that is utilized to guide the configuration of SAP systems. A big part of these models are business process models represented in the Eventdriven Process Chains (EPC) notation. These EPC models provide a easy to comprehend overview of SAP

  7. Osmotic water transport in aquaporins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric

    2013-01-01

    Abstract  We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute...... molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, P(S), is proportional to 1 - σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel...... sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mM of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured...

  8. Osmotic consolidation of suspensions and gels

    International Nuclear Information System (INIS)

    Miller, K.T.; Zukoski, C.F.

    1994-01-01

    An osmotic method for the consolidation of suspensions of ceramic particles is demonstrated. Concentrated solutions of poly(ethylene oxide) are separated from a suspension of ceramic particles by a semipermeable membrane, creating a gradient in solvent chemical potential. Solvent passes from the suspension into the polymer solution, lowering its free energy and consolidating the suspension. Dispersions of stable 8-nm hydrous zirconia particles were consolidated to over 47% by volume. Suspensions of α-alumina in three states of aggregation (dispersed, weakly flocculated, and strongly flocculated) were consolidated to densities greater than or equal to those produced in conventional pressure filtration. Moreover, the as-consolidated alumina bodies were partially drained of fluid during the osmotic consolidation process, producing cohesive partially dried bodies with improved handling characteristics

  9. Verification of SAP reference models

    NARCIS (Netherlands)

    Dongen, van B.F.; Jansen-Vullers, M.H.; Aalst, van der W.M.P.; Benatallah, B.; Casati, F.

    2005-01-01

    To configure a process-aware information system (e.g., a workflow system, an ERP system), a business model needs to be transformed into an executable process model. Due to similarities in these transformations for different companies, databases with reference models, such as ARIS for MySAP, have

  10. Tree Hydraulics: How Sap Rises

    Science.gov (United States)

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  11. Cyprinid herpesvirus-3 (CyHV-3) disturbs osmotic balance in carp (Cyprinus carpio L.)--A potential cause of mortality.

    Science.gov (United States)

    Negenborn, J; van der Marel, M C; Ganter, M; Steinhagen, D

    2015-06-12

    Cyprinid herpesvirus-3 (CyHV-3) causes a fatal disease in carp (Cyprinus carpio) and its ornamental koi varieties which seriously affects production and trade of this fish species globally. Up to now, the pathophysiology of this disease remains unclear. Affected individuals develop most prominent lesions in gills, skin and kidney, in tissues which are involved in the osmotic regulation of freshwater teleosts. Therefore, here serum and urine electrolyte levels were examined during the course of an experimental infection of carp with CyHV-3. In infected carp an interstitial nephritis with a progressive deterioration of nephric tubules developed, which was paralleled by elevated electrolyte losses, mainly Na(+) in the urine. The urine/plasma ratio for Na(+) increased from 0.03 in uninfected carp to 0.43-0.83 in carp under CyHV-3 infection, while concentration of divalent ions were not significantly changed. These electrolyte losses could not be compensated since plasma osmolality and Na(+) concentration dropped significantly in CyHV-3 infected carp. This was most probably caused by the progressive deterioration of the branchial epithelium, which in teleosts plays a prominent role in osmoregulation, and which was seen concomitantly with decreasing electrolyte levels in the serum of carp under CyHV-3 infection. Immediately after infection with CyHV-3, by day 2 post exposure, affected carp showed severe anaemia and prominent leucocytosis indicating the development of an acute inflammation, which could intensify the observed hydro-mineral imbalances. The data presented here show that an infection with CyHV-3 induces an acute inflammation and a severe dysfunction of osmoregulation in affected carp or koi, which may lead to death in particular in the case of acute disease progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Detection of Candida albicans Sap2 in cancer patient serum samples by an indirect competitive enzyme-linked immunosorbent assay for the diagnosis of candidiasis

    OpenAIRE

    Yicun Wang; Xiang Gao; J U Zhi gang; Jingyuan Liu; Shuai Dong; Li Wang

    2013-01-01

    Background: The secreted aspartyl proteinases 2 (Sap2) of Candida albicans (C. albicans) is a potential marker of candididasis. It is a virulence factor associated with adherence and tissue invasion. Aim: In order to detect Sap2 in clinical sera, we developed an indirect competitive enzyme-linked immunosorbent assay (ELISA). Materials and Methods: Polyclonal antibodies were produced for Sap2 by injecting Sap2 into a New Zealand White inbred rabbit. They could be used at a dilution exceeding 1...

  13. Electro-osmotic flows inside triangular microchannels

    International Nuclear Information System (INIS)

    Vocale, P; Spiga, M; Geri, M; Morini, G L

    2014-01-01

    This work presents a numerical investigation of both pure electro-osmotic and combined electro-osmotic/pressure-driven flows inside triangular microchannels. A finite element analysis has been adopted to solve the governing equations for the electric potential and the velocity field, accounting for a finite thickness of the electric double layer. The influence of non-dimensional parameters such as the aspect ratio of the cross-section, the electrokinetic diameter and the ratio of the pressure force to the electric force on the flow behavior has been investigated. Numerical results point out that the velocity field is significantly influenced by the aspect ratio of the cross section and the electrokinetic diameter. More specifically, the aspect ratio plays an important role in determining the maximum volumetric flow rate, while the electrokinetic diameter is crucial to establishing the range of pressures that may be sustained by the electro-osmotic flow. Numerical results are also compared with two correlations available in the literature which enable to assess the volumetric flow rate and the pressure head for microchannels featuring a rectangular, a trapezoidal or an elliptical cross-section.

  14. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis

    DEFF Research Database (Denmark)

    Pagter, Majken; Bragato, Claudia; Malagoli, Mario

    2009-01-01

    Osmotic and ion-specific effects of NaCl and Na2SO4 on Phragmites australis (Cav.) Trin ex. Steud. were investigated in a laboratory experiment by examining effects of iso-osmotic solutions of NaCl and Na2SO4 on growth, osmolality of cell sap, proline content, elemental composition and gas exchange....... Plants were supplied with a control standard nutrient solution (Ψ = -0.09 MPa) or solutions of NaCl or Na2SO4 at water potentials of -0.50, -1.09 or -1.74 MPa. Salt treatments increased root concentrations of Na and S or Cl, whereas P. australis had efficient mechanisms for exclusion of Na and S...... and partly Cl ions from the leaves. Incomplete exclusion of Cl from the leaves may affect aboveground biomass production, which was significantly more reduced by NaCl than Na2SO4. Stomatal conductance was negatively influenced by decreasing water potentials caused by NaCl or Na2SO4, implying that a non...

  15. Projecte d'integració entre SAP GH - SAP MM - Kàrdex

    OpenAIRE

    Perea Núñez, Yolanda

    2012-01-01

    Projecte d'integració entre dos sistemes SAP (gestió hospitalària i gestió de materials) amb un altre sistema aliè a SAP, el sistema de magatzem de medicaments Kàrdex, mitjançant comunicacions via SAP Process Integration. Proyecto de integración entre dos sistemas SAP (gestión hospitalaria y gestión de materiales) con otro sistema ajeno a SAP, el sistema de almacén de medicamentos Kardex, mediante comunicaciones vía SAP Process Integration.

  16. Recent experimental data may point to a greater role for osmotic pressures in the subsurface

    Science.gov (United States)

    Neuzil, C.E.; Provost, A.M.

    2009-01-01

    Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility

  17. Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid.

    Science.gov (United States)

    Kunasundari, Balakrishnan; Arai, Takamitsu; Sudesh, Kumar; Hashim, Rokiah; Sulaiman, Othman; Stalin, Natra Joseph; Kosugi, Akihiko

    2017-09-01

    The availability of fermentable sugars in high concentrations in the sap of felled oil palm trunks and the thermophilic nature of the recently isolated Bacillus coagulans strain 191 were exploited for lactic acid production under non-sterile conditions. Screening indicated that strain 191 was active toward most sugars including sucrose, which is a major component of sap. Strain 191 catalyzed a moderate conversion of sap sugars to lactic acid (53%) with a productivity of 1.56 g/L/h. Pretreatment of oil palm sap (OPS) using alkaline precipitation improved the sugar fermentability, providing a lactic acid yield of 92% and productivity of 2.64 g/L/h. To better characterize potential inhibitors in the sap, phenolic, organic, and mineral compounds were analyzed using non-treated sap and saps treated with activated charcoal and alkaline precipitation. Phthalic acid, 3,4-dimethoxybenzoic acid, aconitic acid, syringic acid, and ferulic acid were reduced in the sap after treatment. High concentrations of Mg, P, K, and Ca were also precipitated by the alkaline treatment. These results suggest that elimination of excess phenolic and mineral compounds in OPS can improve the fermentation yield. OPS, a non-food resource that is readily available in bulk quantities from plantation sites, is a promising source for lactic acid production.

  18. SAP: structure, function, and its roles in immune-related diseases.

    Science.gov (United States)

    Xi, Dan; Luo, TianTian; Xiong, Haowei; Liu, Jichen; Lu, Hao; Li, Menghao; Hou, Yuqing; Guo, Zhigang

    2015-01-01

    Serum amyloid P component (SAP), also known as pentraxin-2, is a member of the pentraxin protein family with an established relationship to the immune response. In the last century, SAP has been used as a diagnostic marker in amyloidosis diagnosis and patient follow-up. SAP has been thought to have potential for treating and curing amyloidosis and fibrosis diseases. More recently, it has been shown that SAP may serve as both a diagnostic marker and a therapeutic target for many immune-related diseases, such as cardiovascular, pulmonary, nephritic, neurological and autoimmune diseases. In the cardiovascular system, SAP has been defined as the culprit in amyloidosis in the heart. SAP may also exert a protective role during the early stage of atherosclerosis and myocardial fibrosis. In noncardiovascular system diseases, SAP is being developed for the treatment of pulmonary fibrosis. In this review, we summarize SAP history, structure, and its roles in immune-related diseases in different systems with emphasis on the cardiovascular system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    International Nuclear Information System (INIS)

    Hu, Dong; Wu, Jing; Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan; Xiao, Jian; Hu, Fengyu; Yang, Yabo; Zhang, Rongbo

    2015-01-01

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy

  20. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dong, E-mail: austhudong@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wu, Jing, E-mail: wujing8008@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Xiao, Jian [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Hu, Fengyu; Yang, Yabo [Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Zhang, Rongbo, E-mail: lory456@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China)

    2015-05-29

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.

  1. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence.

    OpenAIRE

    Hube, B; Sanglard, D; Odds, F C; Hess, D; Monod, M; Schäfer, W; Brown, A J; Gow, N A

    1997-01-01

    Secreted aspartyl proteinases (Saps), encoded by a gene family with at least nine members (SAP1 to SAP9), are one of the most discussed virulence factors produced by the human pathogen Candida albicans. In order to study the role of each Sap isoenzyme in pathogenicity, we have constructed strains which harbor mutations at selected SAP genes. SAP1, SAP2, and SAP3, which are regulated differentially in vitro, were mutated by targeted gene disruption. The growth rates of all homozygous null muta...

  2. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    Science.gov (United States)

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Osmotic effects of polyethylene glycol.

    Science.gov (United States)

    Schiller, L R; Emmett, M; Santa Ana, C A; Fordtran, J S

    1988-04-01

    Polyethylene glycol (PEG) has been used to increase the osmotic pressure of fluids used to cleanse the gastrointestinal tract. However, little is known about its osmotic activity. To investigate this activity systematically, solutions of PEG of differing molecular weights were made and subjected to measurement of osmolality by both freezing point depression and vapor pressure osmometry. Measured osmolality was increasingly greater than predicted from average molecular weight as PEG concentration increased. Measurement of sodium activity in NaCl/PEG solutions by means of an ion-selective electrode suggested that the higher than expected osmolality could be due in part to interactions that, in effect, sequestered water from the solution. Osmolality was consistently greater by freezing point osmometry than by vapor pressure osmometry. To determine which osmometry method reflected biologically relevant osmolality, normal subjects underwent steady-state total gut perfusion with an electrolyte solution containing 105 g/L of PEG 3350. This produced rectal effluent that was hypertonic by freezing point osmometry but isotonic by vapor pressure osmometry. Assuming that luminal fluid reaches osmotic equilibrium with plasma during total gut perfusion, this result suggests that the vapor pressure osmometer accurately reflects the biologically relevant osmolality of intestinal contents. We conclude that PEG exerts more of an osmotic effect than would be predicted from its molecular weight. This phenomenon may reflect interactions between PEG and water molecules that alter the physical chemistry of the solution and sequester water from the solution.

  4. Osmotic Effects in Sludge Dewatering

    DEFF Research Database (Denmark)

    Keiding, Kristian; Rasmussen, Michael R.

    2003-01-01

    A model of filtration dewatering is presented. The model is based on the d’Arcy flow equation in which the resistance to filtration is described by the Corzeny–Carman equation and the driving force is the difference between the external pressure and the osmotic pressure of the filter cake. It has...

  5. Architecture of SAP ERP understand how successful software works

    CERN Document Server

    Boeder, Jochen

    2014-01-01

    This book - compiled by software architects from SAP - is a must for consultants, developers, IT managers, and students working with SAP ERP, but also users who want to know the world behind their SAP user interface.

  6. Drying and osmotic conditioning in Hancornia speciosa Gomes seeds

    Directory of Open Access Journals (Sweden)

    Tathiana Elisa Masetto

    Full Text Available Hancornia speciosa is a native tree species of the Brazilian Cerrado whose seeds are desiccation sensitive. In this study, we aimed to evaluate drying and osmotic conditioning in H. speciosa seeds. We used fresh seeds with 48% moisture content, which were slowly dried until they attained contents of 20%, 15%, 10% and 5%. To evaluate osmotic conditioning, the seeds were imbibed in 12 mL osmotic solutions at 0.0; -0.2; -0.4 and -0.6 MPa for two days. After that, they were dehydrated until their original moisture content. The experiments were carried out in a completely randomized design with four repetitions with 50 seeds each. Reduction in moisture content from 20% to 5% decreased the physiological potential of seeds. H. speciosa seeds do not require osmotic priming with PEG solutions, because imbibition of seeds in osmotic solutions of up to -0.6 MPa results in reduction of germination rate and seedling length.

  7. The safety of osmotically acting cathartics in colonic cleansing

    DEFF Research Database (Denmark)

    Nyberg, Caroline; Hendel, J.; Nielsen, O.H.

    2010-01-01

    Efficient cleansing of the colon before a colonoscopy or a radiological examination is essential. The osmotically acting cathartics (those given the Anatomical Therapeutic Chemical code A06AD) currently used for this purpose comprise products based on three main substances: sodium phosphate...... hyperphosphatemia and irreversible kidney damage owing to acute phosphate nephropathy, have been reported after use of sodium-phosphate-based products. The aim of this Review is to provide an update on the potential safety issues related to the use of osmotically acting cathartics, especially disturbances of renal...

  8. Mass Spectrometry-Based Metabolomics of Agave Sap (Agave salmiana after Its Inoculation with Microorganisms Isolated from Agave Sap Concentrate Selected to Enhance Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Luis M. Figueroa

    2017-11-01

    Full Text Available Saponins have been correlated with the reduction of cancer cell growth and the apoptotic effect of agave sap concentrate. Empirical observations of this artisanal Mexican food have shown that fermentation occurs after agave sap is concentrated, but little is known about the microorganisms that survive after cooking, or their effects on saponins and other metabolites. The aim of this study was to evaluate the changes in metabolites found in agave (A. salmiana sap after its fermentation with microorganisms isolated from agave sap concentrate, and demonstrate its potential use to enhance anticancer activity. Microorganisms were isolated by dilution plating and identified by 16S rRNA analysis. Isolates were used to ferment agave sap, and their corresponding butanolic extracts were compared with those that enhanced the cytotoxic activity on colon (Caco-2 and liver (Hep-G2 cancer cells. Metabolite changes were investigated by mass spectrometry-based metabolomics. Among 69 isolated microorganisms, the actinomycetes Arthrobacter globiformis and Gordonia sp. were used to analyze the metabolites, along with bioactivity changes. From the 939 ions that were mainly responsible for variation among fermented samples at 48 h, 96 h, and 192 h, four were correlated to anticancer activity. It was shown that magueyoside B, a kammogenin glycoside, was found at higher intensities in the samples fermented with Gordonia sp. that reduced Hep-G2 viability better than controls. These findings showed that microorganisms from agave sap concentrate change agave sap metabolites such as saponins. Butanolic extracts obtained after agave sap fermentation with Arthrobacter globiformis or Gordonia sp. increased the cancer cell growth inhibitory effect on colon or liver cancer cells, respectively.

  9. Sap Flux Scaled Transpiration in Ring-porous Tree Species: Assumptions, Pitfalls and Calibration

    Science.gov (United States)

    Bush, S. E.; Hultine, K. R.; Ehleringer, J. R.

    2008-12-01

    Thermal dissipation probes for measuring sap flow (Granier-type) at the whole tree and stand level are routinely used in forest ecology and site water balance studies. While the original empirical relationship used to calculate sap flow was reported as independent of wood anatomy (ring-porous, diffuse-porous, tracheid), it has been suggested that potentially large errors in sap flow calculations may occur when using the original calibration for ring-porous species, due to large radial trends in sap velocity and/or shallow sapwood depth. Despite these concerns, sap flux measurements have rarely been calibrated in ring-porous taxa. We used a simple technique to calibrate thermal dissipation sap flux measurements on ring-porous trees in the lab. Calibration measurements were conducted on five ring-porous species in the Salt Lake City, USA metropolitan area including Quercus gambelii (Gambel oak), Gleditsia triacanthos (Honey locust), Elaeagnus angustifolia (Russian olive), Sophora japonica (Japanese pagoda), and Celtis occidentalis (Common hackberry). Six stems per species of approximately 1 m in length were instrumented with heat dissipation probes to measure sap flux concurrently with gravimetric measurements of water flow through each stem. Safranin dye was pulled through the stems following flow rate measurements to determine sapwood area. As expected, nearly all the conducting sapwood area was limited to regions within the current year growth rings. Consequently, we found that the original Granier equation underestimated sap flux density for all species considered. Our results indicate that the use of thermal dissipation probes for measuring sap flow in ring-porous species should be independently calibrated, particularly when species- specific calibration data are not available. Ring-porous taxa are widely distributed and represent an important component of the regional water budgets of many temperate regions. Our results are important for evaluating plant water

  10. Optimum condition of producing crisp osmotic banana using superheated steam puffing.

    Science.gov (United States)

    Tabtiang, Surapit; Prachayawarakorn, Somkiat; Soponronnarit, Somchart

    2017-03-01

    Puffing can improve textural property of snacks. Nevertheless, high temperature puffing accelerates non-enzymatic browning reactions. The osmotic treatment using sucrose solution potentially retards the browning, but the high amount of sucrose gain causes hard texture. The objective of this work was therefore to study the effects of osmotic time, puffing time and puffing temperature on banana qualities such as colour, shrinkage and textural property. The experimental results showed that puffing temperature, puffing time and osmotic time significantly affected colour, shrinkage and textual properties. The optimisation using response surface methodology was used for a trade-off between colour and textural properties. To obtain a good quality product, the puffed osmotic banana should be operated at the osmotic time of 43 min and puffing temperature of 220 °C and puffing time of 2 min. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Helium implantation effects in SAP and aluminum

    International Nuclear Information System (INIS)

    Bauer, W.; Thomas, G.J.

    1976-02-01

    A series of 300 keV He implantations of Al and SAP 930 have been conducted at temperatures between 150 and 773K. The He re-emission was monitored during implantation and the samples were examined with a scanning electron microscope after implantation. Both Al and SAP 930 were found to blister after a critical He dose was reached at temperatures above 473K, both underwent flaking below that temperature, with blistering re-appearing in SAP 930 at an implantation temperature of 150K. The surface deformation and He re-emission are strongly dependent on microstructural effects in the intermediate temperature regime

  12. 46 CFR 16.203 - Employer, MRO, and SAP responsibilities.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Employer, MRO, and SAP responsibilities. 16.203 Section... CHEMICAL TESTING Required Chemical Testing § 16.203 Employer, MRO, and SAP responsibilities. (a) Employers...) Substance Abuse Professional (SAP). Individuals performing SAP functions must meet the training requirements...

  13. Use of the heat dissipation method for sap flow measurement in citrus nursery trees1

    Directory of Open Access Journals (Sweden)

    Eduardo Augusto Girardi

    2010-12-01

    Full Text Available Sap flow could be used as physiological parameter to assist irrigation of screen house citrus nursery trees by continuous water consumption estimation. Herein we report a first set of results indicating the potential use of the heat dissipation method for sap flow measurement in containerized citrus nursery trees. 'Valencia' sweet orange [Citrus sinensis (L. Osbeck] budded on 'Rangpur' lime (Citrus limonia Osbeck was evaluated for 30 days during summer. Heat dissipation probes and thermocouple sensors were constructed with low-cost and easily available materials in order to improve accessibility of the method. Sap flow showed high correlation to air temperature inside the screen house. However, errors due to natural thermal gradient and plant tissue injuries affected measurement precision. Transpiration estimated by sap flow measurement was four times higher than gravimetric measurement. Improved micro-probes, adequate method calibration, and non-toxic insulating materials should be further investigated.

  14. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  15. The physics of osmotic pressure

    Science.gov (United States)

    Bowler, M. G.

    2017-09-01

    Osmosis drives the development of a pressure difference of many atmospheres between a dilute solution and pure solvent with which it is in contact through a semi-permeable membrane. The educational importance of this paper is that it presents a novel treatment in terms of fluid mechanics that is quantitative and exact. It is also simple and intuitive, showing vividly how osmotic pressures are generated and maintained in equilibrium, driven by differential solvent pressures. The present rigorous analysis using the virial theorem seems unknown and can be easily understood—and taught—at various different levels. It should be valuable to undergraduates, graduate students and indeed to the general physicist.

  16. Efficiency of osmotic pipe flows

    DEFF Research Database (Denmark)

    Haaning, Louise Sejling; Jensen, Kaare Hartvig; Helix Nielsen, Claus

    2013-01-01

    efficiency of these flows is limited by the presence of “unstirred” concentration boundary layers near the tube walls, and our primary aim is to understand and quantify these layers and their effect on the flow. We measure the outlet flow rate Qout while varying the inlet flow rate Q*, concentration c......We present experiments and theory for flows of sugar or salt solutions in cylindrical tubes with semipermeable walls (hollow fiber membranes) immersed in water, quantifying the strength of the osmotic driving force in relation to the dimensionless parameters that specify the system. The pumping...

  17. CT measurements of SAP voids in concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Bentz, Dale P.; Hasholt, Marianne Tange

    2010-01-01

    X-ray computed tomography (CT) scanning is used to determine the SAP void distribution in hardened concrete. Three different approaches are used to analyse a binary data set created from CT measurement. One approach classifies a cluster of connected, empty voxels (volumetric pixel of a 3D image......) as one void, whereas the other two approaches are able to classify a cluster of connected, empty voxels as a number of individual voids. Superabsorbent polymers (SAP) have been used to incorporate air into concrete. An advantage of using SAP is that it enables control of the amount and size...... of the created air voids. The results indicate the presence of void clusters. To identify the individual voids, special computational approaches are needed. The addition of SAP results in a dominant peak in two of the three air void distributions. Based on the position (void diameter) of the peak, it is possible...

  18. Nye integrerede ledelsesinformationssystemer SAP/R3

    DEFF Research Database (Denmark)

    Nielsen, Steen

    1998-01-01

    Artiklen beskriver og analyserer hovedindholdet i SAP/R3's controlling modul, speciel med sigte på hvilke forudsætninger systemet bygger på, dels med reference til den danske lønsomheds- og kapacitetsmodel.......Artiklen beskriver og analyserer hovedindholdet i SAP/R3's controlling modul, speciel med sigte på hvilke forudsætninger systemet bygger på, dels med reference til den danske lønsomheds- og kapacitetsmodel....

  19. Effects of Acer okamotoanum sap on the function of polymorphonuclear neutrophilic leukocytes in vitro and in vivo.

    Science.gov (United States)

    An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Yang, Mhan-Pyo; Jeung, Eui-Bae

    2013-02-01

    Sap is a plant fluid that primarily consists of water and small amounts of mineral elements, sugars, hormones and other nutrients. Acer mono (A. mono) is an endemic Korean mono maple which was recently suggested to have health benefits due to its abundant calcium and magnesium ion content. In the present study, we examined the effects of sap from Acer okamotoanum (A. okamotoanum) on the phagocytic response of mouse neutrophils in vivo and rat and canine neutrophils in vitro. We tested the regulation of phagocytic activity, oxidative burst activity (OBA) and the levels of filamentous polymeric actin (F-actin) in the absence and presence of dexamethasone (DEX) in vitro and in vivo. Our results showed that DEX primarily reduced OBA in the mouse neutrophils, and that this was reversed in the presence of the sap. By contrast, the phagocytic activity of the mouse cells was not regulated by either DEX or the sap. Rat and canine polymorphonuclear neutrophilic leukocytes (PMNs) responded in vitro to the sap in a similar manner by increasing OBA. However, regulation of phagocytic activity by the sap was different between the species. In canine PMNs, phagocytic activity was enhanced by the sap at a high dose, while it did not significantly modulate this activity in rat PMNs. These findings suggest that the sap of A. okamotoanum stimulates neutrophil activity in the mouse, rat and canine by increasing OBA in vivo and in vitro, and thus may have a potential antimicrobial effect in the PMNs of patients with infections.

  20. Osmotic dehydration of fruit and berry raw materials in the food industry

    Directory of Open Access Journals (Sweden)

    N. A. Gribova

    2017-01-01

    Full Text Available Osmotic dehydration has recently received more attention as an effective method of preserving fruits and berries. Osmosis is a simple process that facilitates the processing of fruits and berries in order to preserve the original characteristics, namely nutritional value and organoleptic properties: color, aroma and texture. Osmotic dehydration has found wide application in the preservation of food products, as the activity of water in fruits and berries decreases, in some of them up to 90% of water is contained. The process of osmotic dehydration with the help of various agents is less energy-intensive than the process of drying or freezing, since it can be processed at ambient temperature. Osmotic dehydration has potential advantages in preserving the quality of food and in maintaining healthy food for the food industry. Treatment includes dehydration of fruits and berries by an osmotic agent followed by dehydration in dry or frozen apparatus where the moisture content decreases and the product becomes more stable. This process is a partial dewatering process to provide improved product quality compared to conventional drying processes or freezing. The purpose of studying osmotic dehydration is to identify the advantages and disadvantages in the treatment of osmotic agents. Various aspects of osmotic dehydration technology are considered, namely the solutions used, the characteristics of solutions, the effect of variable processes and the qualitative characteristics of osmo-dehydrated products. Factors of osmotic dehydration that depend on the osmotic agent, concentration of solute, temperature, time, size, shape and compactness of the material, mixing and the ratio of the solution to the samples.

  1. Osmotic generation of 'anomalous' fluid pressures in geological environments

    Science.gov (United States)

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  2. An analysis of electro-osmotic and magnetohydrodynamic heat pipes

    International Nuclear Information System (INIS)

    Harrison, M.A.

    1988-01-01

    Mechanically simple methods of improving heat transport in heat pipes are investigated. These methods are electro-osmotic and magnetohydrodynamic augmentation. For the electro-osmotic case, a detailed electrokinetic model is used. The electrokinetic model used includes the effects of pore surface curvature and multiple ion diffusivities. The electrokinetic model is extended to approximate the effects of elevated temperature. When the electro-osmotic model is combined with a suitable heat-pipe model, it is found that the electro-osmotic pump should be a thin membrane. Arguments are provided that support the use of a volatile electrolyte. For the magnetohydrodynamic case, a brief investigation is provided. A quasi-one-dimensional hydromagnetic duct flow model is used. This hydromagnetic model is extended to approximate flow effects unique to heat pipes. When combined with a suitable heat pipe model, it is found that there is no performance gain for the case considered. In fact, there are serious pressure-distribution problems that have not been previously recognized. Potential solutions to these pressure-distribution problems are suggested

  3. Circadian patterns of xylem sap properties and their covariation with plant hydraulic traits in hybrid aspen.

    Science.gov (United States)

    Meitern, Annika; Õunapuu-Pikas, Eele; Sellin, Arne

    2017-06-01

    Physiological processes taking place in plants are subject to diverse circadian patterns but some of them are poorly documented in natural conditions. The daily dynamics of physico-chemical properties of xylem sap and their covariation with tree hydraulic traits were investigated in hybrid aspen (Populus tremula L.×P. tremuloides Michx) in field conditions in order to clarify which environmental drivers govern the daily variation in these parameters. K + concentration ([K + ]), electrical conductivity (σ sap ), osmolality (Osm) and pH of the xylem sap, as well as branch hydraulic traits, were measured in the field over 24-h cycles. All studied xylem sap properties and hydraulic characteristics including whole-branch (K wb ), leaf blade (K lb ) and petiole hydraulic conductances (K P ) showed clear daily dynamics. Air temperature (T A ) and photosynthetic photon flux density (PPFD), but also water vapour pressure deficit (VPD) and relative humidity (RH), had significant impacts on K wb K lb , K P , [K + ] and σ sap . Osm varied only with light intensity, while K B varied depending on atmospheric evaporative demand expressed as T A , VPD or RH. Xylem sap pH depended inversely on soil water potential (Ψ S ) and during daylight also on VPD. Although soil water content was close to saturation during the study period, Ψ S influenced also [K + ] and σ sap . The present study presents evidence of coupling between circadian patterns of xylem sap properties and plant hydraulic conductance providing adequate water supply to foliage under environmental conditions characterised by diurnal variation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Affinity purification mass spectrometry analysis of PD-1 uncovers SAP as a new checkpoint inhibitor.

    Science.gov (United States)

    Peled, Michael; Tocheva, Anna S; Sandigursky, Sabina; Nayak, Shruti; Philips, Elliot A; Nichols, Kim E; Strazza, Marianne; Azoulay-Alfaguter, Inbar; Askenazi, Manor; Neel, Benjamin G; Pelzek, Adam J; Ueberheide, Beatrix; Mor, Adam

    2018-01-16

    Programmed cell death-1 (PD-1) is an essential inhibitory receptor in T cells. Antibodies targeting PD-1 elicit durable clinical responses in patients with multiple tumor indications. Nevertheless, a significant proportion of patients do not respond to anti-PD-1 treatment, and a better understanding of the signaling pathways downstream of PD-1 could provide biomarkers for those whose tumors respond and new therapeutic approaches for those whose tumors do not. We used affinity purification mass spectrometry to uncover multiple proteins associated with PD-1. Among these proteins, signaling lymphocytic activation molecule-associated protein (SAP) was functionally and mechanistically analyzed for its contribution to PD-1 inhibitory responses. Silencing of SAP augmented and overexpression blocked PD-1 function. T cells from patients with X-linked lymphoproliferative disease (XLP), who lack functional SAP, were hyperresponsive to PD-1 signaling, confirming its inhibitory role downstream of PD-1. Strikingly, signaling downstream of PD-1 in purified T cell subsets did not correlate with PD-1 surface expression but was inversely correlated with intracellular SAP levels. Mechanistically, SAP opposed PD-1 function by acting as a molecular shield of key tyrosine residues that are targets for the tyrosine phosphatase SHP2, which mediates PD-1 inhibitory properties. Our results identify SAP as an inhibitor of PD-1 function and SHP2 as a potential therapeutic target in patients with XLP.

  5. Osmotic homeostasis and NKLy lymphoma cells radiosensitivity

    International Nuclear Information System (INIS)

    Tishchenko, V.V.; Magda, I.N.

    1992-01-01

    In experiments with cells of ascites NKLy lymphoma differing in ploidy and position in the cell cycle, a study was made of the radiosensitivity, osmotic homeostasis peculiarities and thermoradiation changes in potassium content. It was shown that the resistance of osmotic homeostasis of NKLy cells to thermoradiation correlated with their radioresistance

  6. Toward an injectable continuous osmotic glucose sensor.

    Science.gov (United States)

    Johannessen, Erik; Krushinitskaya, Olga; Sokolov, Andrey; Philipp, Häfliger; Hoogerwerf, Arno; Hinderling, Christian; Kautio, Kari; Lenkkeri, Jaakko; Strömmer, Esko; Kondratyev, Vasily; Tønnessen, Tor Inge; Mollnes, Tom Eirik; Jakobsen, Henrik; Zimmer, Even; Akselsen, Bengt

    2010-07-01

    The growing pandemic of diabetes mellitus places a stringent social and economic burden on the society. A tight glycemic control circumvents the detrimental effects, but the prerogative is the development of new more effective tools capable of longterm tracking of blood glucose (BG) in vivo. Such discontinuous sensor technologies will benefit from an unprecedented marked potential as well as reducing the current life expectancy gap of eight years as part of a therapeutic regime. A sensor technology based on osmotic pressure incorporates a reversible competitive affinity assay performing glucose-specific recognition. An absolute change in particles generates a pressure that is proportional to the glucose concentration. An integrated pressure transducer and components developed from the silicon micro- and nanofabrication industry translate this pressure into BG data. An in vitro model based on a 3.6 x 8.7 mm large pill-shaped implant is equipped with a nanoporous membrane holding 4-6 nm large pores. The affinity assay offers a dynamic range of 36-720 mg/dl with a resolution of +/-16 mg/dl. An integrated 1 x 1 mm(2) large control chip samples the sensor signals for data processing and transmission back to the reader at a total power consumption of 76 microW. Current studies have demonstrated the design, layout, and performance of a prototype osmotic sensor in vitro using an affinity assay solution for up to four weeks. The small physical size conforms to an injectable device, forming the basis of a conceptual monitor that offers a tight glycemic control of BG. 2010 Diabetes Technology Society.

  7. The efficiency of mechanisms driving Subauroral Polarization Streams (SAPS

    Directory of Open Access Journals (Sweden)

    H. Wang

    2011-07-01

    Full Text Available We have investigated the seasonal and diurnal variation of SAPS (Subauroral Polarization Streams occurrence based on 3663 SAPS events identified in DMSP ion drift observations in the Northern Hemisphere during July 2001 and June 2003. Their relationships with high latitude convection electric field, substorm, and ionospheric conductivity have been addressed. SAPS occurrences show a clear seasonal and diurnal variation with the occurrence rates varying by a factor of 5. It is found that the convection electric field might play a dominant role in association with SAPS occurrence. Peak convection electric fields mark the occurrence maximum of SAPS. Substorm might play a secondary role related to SAPS occurrence. It account for the secondary maximum in SAPS occurrence rate during December solstice. Our work demonstrates that the substorm induced electric field can develop SAPS during relatively low global convection. Somewhat low fluxtube-integrated conductivity is favorable for SAPS to develop. Another topic is the temporal relationship between SAPS and substorm phases. SAPS can occur at substorm onset, substorm expansion and recovery phases. Most probably SAPS tend to occur 60 min/45 min after substorm onset during quiet/more disturbed geomagnetic activity, respectively. This indicates that enhanced global convection helps SAPS to develop quicker during substorms. The peak plasma velocity of SAPS is increased on average only by 5–10 % by the substorm process.

  8. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  9. Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.

    Science.gov (United States)

    Salomón, Roberto; Valbuena-Carabaña, María; Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug; González-Doncel, Inés; Gil, Luis; Rodríguez-Calcerrada, Jesús

    2016-04-01

    Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*]. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Analysis list: SAP30 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SAP30 Blood,Pluripotent stem cell + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/SAP...30.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/SAP30.5.tsv http://dbarchive....biosciencedbc.jp/kyushu-u/hg19/target/SAP30.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/SAP...30.Blood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/SAP30.Pluripote

  11. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  12. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu; Gehring, Christoph A; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2014-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  13. DC-SIGN activation mediates the differential effects of SAP and CRP on the innate immune system and inhibits fibrosis in mice.

    Science.gov (United States)

    Cox, Nehemiah; Pilling, Darrell; Gomer, Richard H

    2015-07-07

    Fibrosis is caused by scar tissue formation in internal organs and is associated with 45% of deaths in the United States. Two closely related human serum proteins, serum amyloid P (SAP) and C-reactive protein (CRP), strongly affect fibrosis. In multiple animal models, and in Phase 1 and Phase 2 clinical trials, SAP affects several aspects of the innate immune system to reduce fibrosis, whereas CRP appears to potentiate fibrosis. However, SAP and CRP bind the same Fcγ receptors (FcγR) with similar affinities, and why SAP and CRP have opposing effects is unknown. Here, we report that SAP but not CRP binds the receptor DC-SIGN (SIGN-R1) to affect the innate immune system, and that FcγR are not necessary for SAP function. A polycyclic aminothiazole DC-SIGN ligand and anti-DC-SIGN antibodies mimic SAP effects in vitro. In mice, the aminothiazole reduces neutrophil accumulation in a model of acute lung inflammation and, at 0.001 mg/kg, alleviates pulmonary fibrosis by increasing levels of the immunosuppressant IL-10. DC-SIGN (SIGN-R1) is present on mouse lung epithelial cells, and SAP and the aminothiazole potentiate IL-10 production from these cells. Our data suggest that SAP activates DC-SIGN to regulate the innate immune system differently from CRP, and that DC-SIGN is a target for antifibrotics.

  14. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition

    OpenAIRE

    Simon Swapna; Korukkanvilakath Samban Shylaraj

    2017-01-01

    Drought is the major abiotic stress factor that limits rice production worldwide. To evaluate the osmotic stress responses in rice varieties under drought condition, a total of 42 high-yielding rice varieties were collected from various research stations of Kerala Agricultural University in India. The experimental setup comprises of initial hydroponic treatments at different osmotic potentials, artificially induced by desired strengths of polyethylene glycol (PEG6000), and followed by the pot...

  15. SAP ERP financial accounting and controlling configuration and use management

    CERN Document Server

    Okungbowa, Andrew

    2015-01-01

    SAP ERP modules are notoriously hard to configure and use effectively without a lot of practice and experience. But as SAP ERP Financial Accounting and Controlling: Configuration and Use Management shows, it doesn't have to be so difficult. The book takes a systematic approach that leads SAP Financial Accounting and Controlling (FICO) users step by step through configuring and using all the program's facets. This approach makes configuration complexities manageable. The book's author-SAP expert, trainer, and accountant Andrew Okun

  16. 21 CFR 133.186 - Sap sago cheese.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sap sago cheese. 133.186 Section 133.186 Food and... Products § 133.186 Sap sago cheese. (a) Description. (1) Sap sago cheese is the food prepared by the... method described in § 133.5. Sap sago cheese is not less than 5 months old. (2) One or more of the dairy...

  17. The Influence of the Osmotic Dehydration Process on Physicochemical Properties of Osmotic Solution.

    Science.gov (United States)

    Lech, Krzysztof; Michalska, Anna; Wojdyło, Aneta; Nowicka, Paulina; Figiel, Adam

    2017-12-16

    The osmotic dehydration (OD) process consists of the removal of water from a material during which the solids from the osmotic solution are transported to the material by osmosis. This process is commonly performed in sucrose and salt solutions. Taking into account that a relatively high consumption of those substances might have a negative effect on human health, attempts have been made to search for alternatives that can be used for osmotic dehydration. One of these is an application of chokeberry juice with proven beneficial properties to human health. This study aimed to evaluate the physicochemical properties of the OD solution (chokeberry juice concentrate) before and after the osmotic dehydration of carrot and zucchini. The total polyphenolics content, antioxidant capacity (ABTS, FRAP), dynamic viscosity, density, and water activity were examined in relation to the juice concentration used for the osmotic solution before and after the OD process. During the osmotic dehydration process, the concentration of the chokeberry juice decreased. Compounds with lower molecular weight and lower antioxidant capacity present in concentrated chokeberry juice had a stronger influence on the exchange of compounds during the OD process in carrot and zucchini. The water activity of the osmotic solution increased after the osmotic dehydration process. It was concluded that the osmotic solution after the OD process might be successfully re-used as a product with high quality for i.e. juice production.

  18. Optimization of the Energy Output of Osmotic Power Plants

    Directory of Open Access Journals (Sweden)

    Florian Dinger

    2013-01-01

    Full Text Available On the way to a completely renewable energy supply, additional alternatives to hydroelectric, wind, and solar power have to be investigated. Osmotic power is such an alternative with a theoretical global annual potential of up to 14400 TWh (70% of the global electricity consumption of 2008 per year. It utilizes the phenomenon that upon the mixing of fresh water and oceanic salt water (e.g., at a river mouth, around 2.88 MJ of energy per 1 m3 of fresh water is released. Here, we describe a new approach to derive operational parameter settings for osmotic power plants using a pressure exchanger for optimal performance, either with respect to maximum generated power or maximum extracted energy. Up to now, only power optimization is discussed in the literature, but when considering the fresh water supply as a limiting factor, the energy optimization appears as the challenging task.

  19. 49 CFR 655.52 - Substance abuse professional (SAP).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Substance abuse professional (SAP). 655.52 Section 655.52 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL TRANSIT... OPERATIONS Drug and Alcohol Testing Procedures § 655.52 Substance abuse professional (SAP). The SAP must...

  20. [Rainfall effects on the sap flow of Hedysarum scoparium.

    Science.gov (United States)

    Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng

    2016-03-01

    In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.

  1. Conservation of element concentration in xylem sap of red spruce

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle

    2001-01-01

    We investigated the chemistry of xylem sap as a marker of red spruce metabolism and soil chemistry at three locations in northern New England. A Scholander pressure chamber was used to extract xylem sap from roots and branches cut from mature trees in early June and September. Root sap contained significantly greater concentrations of K, Ca, Mg, Mn, and A1 than branch...

  2. Extra pontine osmotic demyelination syndrome.

    Science.gov (United States)

    Zunga, Pervaiz M; Farooq, Omar; Dar, Mohd I; Dar, Ishrat H; Rashid, Samia; Rather, Abdul Q; Basu, Javid A; Ashraf, Mohammed; Bhat, Jahangeer A

    2015-01-01

    The osmotic demyelination syndrome (ODS) has been identified as a complication of the rapid correction of hyponatremia for decades. However, in recent years, a variety of other medical conditions have been associated with the development of ODS, independent of changes in serum sodium which cause a rapid changes in osmolality of the interstitial (extracellular) compartment of the brain leading to dehydration of energy-depleted cells with subsequent axonal damage that occurs in characteristic areas. Slow correction of the serum sodium concentration and additional administration of corticosteroids seems to be a major prevention step in ODS patients. In the current report we aimed to share a rare case which we observed in our hospital. A 65 year old female admitted as altered sensorium with history of vomiting, diarrhea was managed with intravenous fluids for 2 days at a peripheral health centre. Patient was referred to our centre with encephalopathy, evaluated and found to have hyponatremia and hypokalemia rest of biochemical parameters and septic profile were normal. Patient's electrolyte disturbances were managed as per guidelines but encephalopathy persisted. Supportive treatment was continued and patient was discharged after 2 wks of stay in hospital after gaining full sensorium and neurological functions.

  3. In vitro screening of potato genotypes for osmotic stress tolerance

    Directory of Open Access Journals (Sweden)

    Gelmesa Dandena

    2017-02-01

    genotypes. Most of the genotypes collected from Ethiopia were found to be susceptible to osmotic stress, except one farmers’ cultivar (Dadafa and two improved varieties (Zemen and Belete. Field evaluation of the tested materials under drought conditions would confirm the capacity of osmotic stress tolerant genotypes to perform well under drought-prone conditions and the potential interest of in vitro evaluation as a pre-screening component in potato breeding programs.

  4. A new insight into membrane fouling mechanism in submerged membrane bioreactor: osmotic pressure during cake layer filtration.

    Science.gov (United States)

    Zhang, Meijia; Peng, Wei; Chen, Jianrong; He, Yiming; Ding, Linxian; Wang, Aijun; Lin, Hongjun; Hong, Huachang; Zhang, Ye; Yu, Haiying

    2013-05-15

    Big gap between experimental filtration resistance of cake layer formed on membrane surface and the hydraulic resistance calculated through the Carman-Kozeny equation, suggested the existence of a new membrane fouling mechanism: osmotic pressure during cake layer filtration in SMBR system. An osmotic pressure model based on chemical potential difference was then proposed. Simulation of the model showed that osmotic pressure accounted for the major fraction of total operation pressure, and pH, applied pressure and ionic strength were the key determining factors for osmosis effect. It was found that, variations of osmotic pressure with pH, applied pressure and added ionic strength were well coincident with perditions of model's simulation, providing the first direct evidences of the real occurrence of osmosis mechanism and the feasibility of the proposed model. These findings illustrate the essential role of osmotic pressure in filtration resistance, and improve fundamental understanding on membrane fouling in SMBR systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Osmotic heat engine using thermally responsive ionic liquids

    KAUST Repository

    Zhong, Yujiang

    2017-07-11

    The osmotic heat engine (OHE) is a promising technology for converting low grade heat to electricity. Most of the existing studies have focused on thermolytic salt systems. Herein, for the first time, we proposed to use thermally responsive ionic liquids (TRIL) that have either an upper critical solution temperature (UCST) or lower critical solution temperature (LCST) type of phase behavior as novel thermolytic osmotic agents. Closed-loop TRIL-OHEs were designed based on these unique phase behaviors to convert low grade heat to work or electricity. Experimental studies using two UCST-type TRILs, protonated betaine bis(trifluoromethyl sulfonyl)imide ([Hbet][Tf2N]) and choline bis(trifluoromethylsulfonyl)imide ([Choline][Tf2N]) showed that (1) the specific energy of the TRIL-OHE system could reach as high as 4.0 times that of the seawater and river water system, (2) the power density measured from a commercial FO membrane reached up to 2.3 W/m2, and (3) the overall energy efficiency reached up to 2.6% or 18% of the Carnot efficiency at no heat recovery and up to 10.5% or 71% of the Carnet efficiency at 70% heat recovery. All of these results clearly demonstrated the great potential of using TRILs as novel osmotic agents to design high efficient OHEs for recovery of low grade thermal energy to work or electricity.

  6. Can Sap Flow Help Us to Better Understand Transpiration Patterns in Landscapes?

    Science.gov (United States)

    Hassler, S. K.; Weiler, M.; Blume, T.

    2017-12-01

    Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions and for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. At the tree scale, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status, stand-specific characteristics such as basal area or stand density and site-specific characteristics such as geology, slope position or aspect control sap flow of individual trees. However, little is known about the relative importance or the dynamic interplay of these controls. We studied these influences with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km²-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we applied linear models to the daily spatial pattern of sap velocity and determined the importance of the different predictors. By upscaling sap velocities to the tree level with the help of species-dependent empirical estimates for sapwood area we also examined patterns of sap flow as a more direct representation of transpiration. Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in this landscape, namely tree species, tree diameter, geology and aspect. For sap flow, the site-specific predictors provided the largest contribution to the explained variance, however, in contrast to the sap velocity analysis, geology was more important than aspect. Spatial variability of atmospheric demand and soil moisture explained only a small fraction of the variance. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, were

  7. Recovery of tritium from lithium-sintered aluminium product (SAP) and lithium-aluminium alloys

    International Nuclear Information System (INIS)

    Talbot, J.B.; Wiffen, F.W.

    1979-01-01

    The tritium release rates of irradiated samples of lithium-containing aluminium (Li-Al) and sintered aluminium product (Li-SAP) were investigated to evaluate the potential application of both materials in fusion reactors. The observed release rates followed the pattern expected for bulk diffusion of tritium in a solid. Therefore, diffusion coefficients for tritium in Li-SAP were determined over a temperature range of 383 and 500 0 C and tritium in Li-Al at 450 0 C. At 450 0 C, the diffusion coefficients of tritium in Li-SAP and Li-Al are 2.988 x 10 -10 cm 2 sec -1 and 1.462 x 10 -6 cm 2 sec -1 , respectively. (author)

  8. The effects of osmotic stress on the structure and function of the cell nucleus.

    Science.gov (United States)

    Finan, John D; Guilak, Farshid

    2010-02-15

    Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis. (c) 2009 Wiley-Liss, Inc.

  9. Release and Decay Kinetics of Copeptin vs AVP in Response to Osmotic Alterations in Healthy Volunteers.

    Science.gov (United States)

    Fenske, Wiebke K; Schnyder, Ingeborg; Koch, Gilbert; Walti, Carla; Pfister, Marc; Kopp, Peter; Fassnacht, Martin; Strauss, Konrad; Christ-Crain, Mirjam

    2018-02-01

    Copeptin is the C-terminal fragment of the arginine vasopressin (AVP) prohormone whose measurement is more robust than that of AVP. Similar release and clearance characteristics have been suggested promoting copeptin as a surrogate marker. To characterize the physiology of osmotically regulated copeptin release and its half-life in direct comparison with plasma AVP. Ninety-one healthy volunteers underwent a standardized three-phase test protocol including (1) osmotic stimulation into the hypertonic range by hypertonic-saline infusion followed by osmotic suppression via (2) oral water load and (3) subsequent glucose infusion. Plasma copeptin, AVP, serum sodium, and osmolality levels were measured in regular intervals. In phase 1, an increase in median osmotic pressure [289 (286; 291) to 311 (309; 314) mOsm/kg H2O] caused similar release kinetics of plasma copeptin [4 (3.1; 6) to 29.3 (18.6; 48.2) pmol/L] and AVP [1 (0.7; 1.6) to 10.3 (6.8; 18.8) pg/mL]. Subsequent osmotic suppression to 298 (295; 301) mOsm/kg at the end of phase 3 revealed markedly different decay kinetics between both peptides-an estimated initial half-life of copeptin being approximately 2 times longer than that of AVP (26 vs 12 minutes). Copeptin is released in equimolar amounts with AVP in response to osmotic stimulation, suggesting its high potential as an AVP surrogate for differentiation of osmotic disorders. Furthermore, we here describe the decay kinetics of copeptin in response to osmotic depression enabling to identify a half-life for copeptin in direct comparison with AVP. Copyright © 2017 Endocrine Society

  10. Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control.

    Science.gov (United States)

    Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan

    2014-03-21

    Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.

  11. Controlled release of glaucocalyxin - a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability.

    Science.gov (United States)

    Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang

    2017-03-01

    The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged T max and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.

  12. Sap flow measurements to determine the transpiration of facade greenings

    Science.gov (United States)

    Hölscher, Marie-Therese; Nehls, Thomas; Wessolek, Gerd

    2014-05-01

    Facade greening is expected to make a major contribution to the mitigation of the urban heat-island effect through transpiration cooling, thermal insulation and shading of vertical built structures. However, no studies are available on water demand and the transpiration of urban vertical green. Such knowledge is needed as the plants must be sufficiently watered, otherwise the posited positive effects of vertical green can turn into disadvantages when compared to a white wall. Within the framework of the German Research Group DFG FOR 1736 "Urban Climate and Heat Stress" this study aims to test the practicability of the sap flow technique for transpiration measurements of climbing plants and to obtain potential transpiration rates for the most commonly used species. Using sap flow measurements we determined the transpiration of Fallopia baldschuanica, Parthenocissus tricuspidata and Hedera helix in pot experiments (about 1 m high) during the hot summer period from August 17th to August 30th 2012 under indoor conditions. Sap flow measurements corresponded well to simultaneous weight measurement on a daily base (factor 1.19). Fallopia baldschuanica has the highest daily transpiration rate based on leaf area (1.6 mm d-1) and per base area (5.0 mm d-1). Parthenocissus tricuspidata and Hedera helix show transpiration rates of 3.5 and 0.4 mm d-1 (per base area). Through water shortage, transpiration strongly decreased and leaf temperature measured by infrared thermography increased by 1 K compared to a well watered plant. We transferred the technique to outdoor conditions and will present first results for facade greenings in the inner-city of Berlin for the hottest period in summer 2013.

  13. Casein Micelle Dispersions under Osmotic Stress

    Science.gov (United States)

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314

  14. [Validity of APACHE II, APACHE III, SAPS 2, SAPS 3 and SOFA scales in obstetric patients with sepsis].

    Science.gov (United States)

    Zabolotskikh, I B; Musaeva, T S; Denisova, E A

    2012-01-01

    to estimate efficiency of APACHE II, APACHE III, SAPS II, SAPS III, SOFA scales for obstetric patients with heavy sepsis. 186 medical cards retrospective analysis of pregnant women with pulmonary sepsis, 40 women with urosepsis and puerperas with abdominal sepsis--66 was performed. Middle age of women was 26.7 (22.4-34.5). In population of puerperas with abdominal sepsis APACHE II, APACHE III, SAPS 2, SAPS 3, SOFA scales showed to good calibration, however, high resolution was observed only in APACHE III, SAPS 3 and SOFA (AUROC 0.95; 0.93; 0.92 respectively). APACHE III and SOFA scales provided qualitative prognosis in pregnant women with urosepsis; resolution ratio of these scales considerably exceeds APACHE II, SAPS 2 and SAPS 3 (AUROC 0.73; 0.74; 0.79 respectively). APACHE II scale is inapplicable because of a lack of calibration (X2 = 13.1; p < 0.01), and at other scales (APACHE III, SAPS 2, SAPS 3, SOFA) was observed the insufficient resolution (AUROC < 0.9) in pregnant women with pulmonary sepsis. Prognostic possibilities assessment of score scales showed that APACHE III, SAPS 3 and SOFA scales can be used for a lethality prognosis for puerperas with abdominal sepsis, in population of pregnant women with urosepsis--only APACHE III and SOFA, and with pulmonary sepsis--SAPS 3 and APACHE III only in case of additional clinical information.

  15. Effect of Osmotic Stress on Seed Germination Indices of Nigella sativa and Silybum marianum

    Directory of Open Access Journals (Sweden)

    H Balouchi

    2012-04-01

    Full Text Available Evaluation of medicinal plants to drought and salt stress tolerance, in an attempt to plant them under drought and saline regions, is of utmost importance. Environmental stresses, especially drought and salt, reduce the global crop yields more than other factors. Selection of drought tolerant crops at germination stage, usually is, the fast and low cost method. In order to study the effect of osmotic stress on germination indices of black cumin and milk thistle, an experiment carried out in a completely randomized design with four replications at the Seed Technology Laboratoary of Yasouj University in 2008. Treatments were 0 (as control, -2.4, -4.8, -7.2 and -9.4 bar osmotic potentials created by using PEG 6000. Results showed that, decreasing of osmotic potential reduced speed of germination and its percentage, root and shoot lengths and dry matter in these two plants. Black cumin showed higher tolerance, to -4.8 bar osmotic potential, as compared to milk thistle. However, milk thistle showed higher tolerance to drought stress, up to this osmotic potential (-4.8 bar, compared to black cumin. Milk thistle had lower germination speed and percentage at higher drought stress as compared to black cumin. Generally, milk thistle showed better growth and survival than black cumin due to its higher root and shoot length and dry matter.

  16. Inverse osmotic process for radioactive laundry waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, K; Takahashi, S; Sugimoto, Y; Yusa, H; Hyakutake, H

    1977-01-07

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount.

  17. Inverse osmotic process for radioactive laundry waste

    International Nuclear Information System (INIS)

    Ebara, Katsuya; Takahashi, Sankichi; Sugimoto, Yoshikazu; Yusa, Hideo; Hyakutake, Hiroshi.

    1977-01-01

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount. (Furukawa, Y.)

  18. Study on enhanced lymphatic tracing of isosulfan blue injection by influence of osmotic pressure on lymphatic exposure.

    Science.gov (United States)

    Ye, Tiantian; He, Rui; Wu, Yue; Shang, Lei; Wang, Shujun

    2018-04-01

    Isosulfan blue (IB) is being used as a lymphatic tracer has been approved by the FDA in 1981. This study aimed at improving lymphatic exposure of IB injection by osmotic pressure regulation to achieve step-by step lymphatic tracing. First, IB injection with appropriate osmotic pressure, stability, and suitable pH was prepared. Next, the lymphatic tracing ability of different osmotic pressure was studied to determine the blue-stained state of IB in three-level lymph nodes after subcutaneous administration. Furthermore, pharmacokinetics of lymphatic drainage, lymph node uptake, and plasma concentration was investigate to explore the improving law of the lymphatic tracing by osmotic pressure, and combined with tissue irritation to determine the optimal osmotic pressure. At last, the tissue distribution in mice of IB injection which had the property of optimal osmotic pressure was investigated. The results showed that increasing osmotic pressure could significantly reduce injection site retention and increase IB concentration of lymph node. The lymph nodes could be obviously blue-stained by IB injection which had 938 mmol/kg osmotic pressure and would not cause inflammatory reaction and blood exposure. The tissue distribution study suggested that IB injection which had 938 mmol/kg osmotic pressure was mainly distributed into gallbladder and duodenum that verified the reports that 90% IB was excreted through the feces through biliary excretion. In conclusion, this study provides the basic study to improve lymphatic exposure of IB injection by regulate the osmotic pressure and have the potential to be the helpful guidance for the elective lymph node dissection.

  19. Detection of Candida albicans Sap2 in cancer patient serum samples by an indirect competitive enzyme-linked immunosorbent assay for the diagnosis of candidiasis

    Directory of Open Access Journals (Sweden)

    Yicun Wang

    2013-01-01

    Full Text Available Background: The secreted aspartyl proteinases 2 (Sap2 of Candida albicans (C. albicans is a potential marker of candididasis. It is a virulence factor associated with adherence and tissue invasion. Aim: In order to detect Sap2 in clinical sera, we developed an indirect competitive enzyme-linked immunosorbent assay (ELISA. Materials and Methods: Polyclonal antibodies were produced for Sap2 by injecting Sap2 into a New Zealand White inbred rabbit. They could be used at a dilution exceeding 1:1200 in an indirect ELISA, and detected Sap2 concentration up to 1 ng/mL. Results: Of the 286 cancer serum samples tested, 16.8% were found as candidiasis. The test was simple and economical to perform and had a level of sensitivity for detection of low-titer positive sera; thus, it may be proven to be of value in epidemiological studies on candidiasis.

  20. Detection of Candida albicans Sap2 in cancer patient serum samples by an indirect competitive enzyme-linked immunosorbent assay for the diagnosis of candidiasis.

    Science.gov (United States)

    Wang, Yicun; Gao, Xiang; Zhi Gang, J U; Liu, Jingyuan; Dong, Shuai; Wang, Li

    2013-01-01

    The secreted aspartyl proteinases 2 (Sap2) of Candida albicans (C. albicans) is a potential marker of candididasis. It is a virulence factor associated with adherence and tissue invasion. In order to detect Sap2 in clinical sera, we developed an indirect competitive enzyme-linked immunosorbent assay (ELISA). Polyclonal antibodies were produced for Sap2 by injecting Sap2 into a New Zealand White inbred rabbit. They could be used at a dilution exceeding 1:1200 in an indirect ELISA, and detected Sap2 concentration up to 1 ng/mL. Of the 286 cancer serum samples tested, 16.8% were found as candidiasis. The test was simple and economical to perform and had a level of sensitivity for detection of low-titer positive sera; thus, it may be proven to be of value in epidemiological studies on candidiasis.

  1. AI User Support System for SAP ERP

    Science.gov (United States)

    Vlasov, Vladimir; Chebotareva, Victoria; Rakhimov, Marat; Kruglikov, Sergey

    2017-10-01

    An intelligent system for SAP ERP user support is proposed in this paper. It enables automatic replies on users’ requests for support, saving time for problem analysis and resolution and improving responsiveness for end users. The system is based on an ensemble of machine learning algorithms of multiclass text classification, providing efficient question understanding, and a special framework for evidence retrieval, providing the best answer derivation.

  2. SAXS investigations on lipid membranes under osmotic stress

    Energy Technology Data Exchange (ETDEWEB)

    Rubim, R.L.; Vieira, V.; Gerbelli, B.B.; Teixeira da Silva, E.R.; Oliveira, C.L.P.; Oliveira, E.A. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)

    2012-07-01

    Full text: In this work we, experimentally, investigate the interactions between lipid bilayers. A structural characterization is performed by small angle x-ray scattering (SAXS) on multilamellar systems under known osmotic pressure. Changes in the composition of membranes can modify their mechanical properties and structural parameters, like the flexibility of these membranes, which plays a key role on the determination of the tridimensional organization of bilayers. The membranes are composed of soya lecithin, where the major component is DPPC (Dipalmitoylphosphatidylcholine), and fatty acids are incorporated to the membrane in different concentrations, in order to turn the membrane more fluid. The membranes are inserted in a solution of PVP [poly(vinyl-pyrrolidone) - 40000] and the polymer will apply an osmotic pressure on them. The osmotic pressure is controlled by preparing PVP solutions of desired composition and, as we know the concentration of polymer in solution, we can obtain the intensity of the osmotic pressure. SAXS experiments were done in order to determine the distance between the bilayer. From the position of the Bragg peaks, the lamellar periodicity (the thickness of the membranes plus their distance of separation) was determined. Using theoretical model for the form and structure factors we fitted those experimental data and determined the thickness of the membranes. The distance between the membranes was controlled by the osmotic pressure (P) applied to the membranes and, for a given pressure, we determine the distance between the bilayers (a) on equilibrium. The experimental curve P(a) is theoretically described by the different contributions from van der Waals, hydration and fluctuation forces. From the fitting of experimental curves, relevant parameters characterizing the strength of the different interactions are obtained, such as Hamaker and rigidity constant [2, 3]. We observe that the separation between the bilayers on equilibrium is

  3. New Osmosis Law and Theory: the New Formula that Replaces van't Hoff Osmotic Pressure Equation

    OpenAIRE

    Huang, Hung-Chung; Xie, Rongqing

    2012-01-01

    This article derived a new abstract concept from the osmotic process and concluded it via "osmotic force" with a new law -- "osmotic law". The "osmotic law" describes that, in an osmotic system, osmolyte moves osmotically from the side with higher "osmotic force" to the side with lower "osmotic force". In addition, it was proved mathematically that the osmotic process could be explained perfectly via "osmotic force" and "osmotic laws", which can prevent the difficulties in using current "osmo...

  4. Osmotic dehydration of fish: principal component analysis

    Directory of Open Access Journals (Sweden)

    Lončar Biljana Lj.

    2014-01-01

    Full Text Available Osmotic treatment of the fish Carassius gibelio was studied in two osmotic solutions: ternary aqueous solution - S1, and sugar beet molasses - S2, at three solution temperatures of 10, 20 and 30oC, at atmospheric pressure. The aim was to examine the influence of type and concentration of the used hypertonic agent, temperature and immersion time on the water loss, solid gain, dry mater content, aw and content of minerals (Na, K, Ca and Mg. S2 solution has proven to be the best option according to all output variables.[ Projekat Ministarstva nauke Republike Srbije, br. TR 31055

  5. Dependence of osmotic pressure on solution properties

    International Nuclear Information System (INIS)

    Fritz, S.J.

    1978-01-01

    Hydrostatic pressure, temperature, salt concentration, and the chemical composition of the salt are parameters affecting solution properties. Pressure and temperature have little effect on osmosis, but osmotic pressure variations due to type of dissolved salt may be significant, especially at high concentrations. For a given salt solution, concentration variations cause large differences in osmotic pressure. A representative difference in concentration across a clay layer in a relatively shallow groundwater system might be 100 to 1,000 ppm. When expressed as ppm NaCl, this difference could cause a head difference of 0.8 to 8 meters of water if one of the rock bodies were closed to fluid escape

  6. Fast susceptibility-weighted imaging with three-dimensional short-axis propeller (SAP)-echo-planar imaging.

    Science.gov (United States)

    Holdsworth, Samantha J; Yeom, Kristen W; Moseley, Michael E; Skare, S

    2015-05-01

    Susceptibility-weighted imaging (SWI) in neuroimaging can be challenging due to long scan times of three-dimensional (3D) gradient recalled echo (GRE), while faster techniques such as 3D interleaved echo-planar imaging (iEPI) are prone to motion artifacts. Here we outline and implement a 3D short-axis propeller echo-planar imaging (SAP-EPI) trajectory as a faster, motion-correctable approach for SWI. Experiments were conducted on a 3T MRI system. The 3D SAP-EPI, 3D iEPI, and 3D GRE SWI scans were acquired on two volunteers. Controlled motion experiments were conducted to test the motion-correction capability of 3D SAP-EPI. The 3D SAP-EPI SWI data were acquired on two pediatric patients as a potential alternative to 2D GRE used clinically. The 3D GRE images had a better target resolution (0.47 × 0.94 × 2 mm, scan time = 5 min), iEPI and SAP-EPI images (resolution = 0.94 × 0.94 × 2 mm) were acquired in a faster scan time (1:52 min) with twice the brain coverage. SAP-EPI showed motion-correction capability and some immunity to undersampling from rejected data. While 3D SAP-EPI suffers from some geometric distortion, its short scan time and motion-correction capability suggest that SAP-EPI may be a useful alternative to GRE and iEPI for use in SWI, particularly in uncooperative patients. © 2014 Wiley Periodicals, Inc.

  7. Impact of Laurel Wilt, Caused by Raffaelea lauricola, on Leaf Gas Exchange and Xylem Sap Flow in Avocado, Persea americana.

    Science.gov (United States)

    Ploetz, Randy C; Schaffer, Bruce; Vargas, Ana I; Konkol, Joshua L; Salvatierra, Juanpablo; Wideman, Ronney

    2015-04-01

    Laurel wilt, caused by Raffaelea lauricola, is a destructive disease of avocado (Persea americana). The susceptibility of different cultivars and races was examined previously but more information is needed on how this host responds to the disease. In the present study, net CO2 assimilation (A), stomatal conductance of H2O (gs), transpiration (E), water use efficiency (WUE), and xylem sap flow rates were assessed in cultivars that differed in susceptibility. After artificial inoculation with R. lauricola, there was a close relationship between symptom development and reductions in A, gs, E, WUE, and mean daily sap flow in the most susceptible cultivar, 'Russell', and significantly greater disease and lower A, gs, E, WUE, and sap flow rates were usually detected after 15 days compared with the more tolerant 'Brogdon' and 'Marcus Pumpkin'. Significant differences in preinoculation A, gs, E, and WUE were generally not detected among the cultivars but preinoculation sap flow rates were greater in Russell than in Brogdon and Marcus Pumpkin. Preinoculation sap flow rates and symptom severity for individual trees were correlated at the end of an experiment (r=0.46), indicating that a plant's susceptibility to laurel wilt was related to its ability to conduct water. The potential management of this disease with clonal rootstocks that reduce sap flow rates is discussed.

  8. Quantified Effects of Late Pregnancy and Lactation on the Osmotic ...

    African Journals Online (AJOL)

    Quantified Effects of Late Pregnancy and Lactation on the Osmotic Stability of ... in the composition of erythrocyte membranes associated with the physiologic states. Keywords: Erythrocyteosmotic stability, osmotic fragility, late pregnancy, ...

  9. Increased Resistance to osmotic lysis of sickled erythrocytes ...

    African Journals Online (AJOL)

    treated with CNw had significantly reduced osmotic lysis when compared with the untreated set (P<0.05, respectively) at various hypotonic NaCl concentrations. Various Hb genotypes exhibited a graded increase in osmotic pressure lysis in ...

  10. Osmotic stress upregulates the transcription of thiamine (vitamin B1 ...

    African Journals Online (AJOL)

    Osmotic stress upregulates the transcription of thiamine (vitamin B1) ... Oil palm's responses in terms of the expression profiles of these two thiamine biosynthesis genes to an osmotic stress inducer, polyethylene glycol ... from 32 Countries:.

  11. Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways

    Directory of Open Access Journals (Sweden)

    Dewey Ralph E

    2007-11-01

    Full Text Available Abstract Background Despite the potential of the endoplasmic reticulum (ER stress response to accommodate adaptive pathways, its integration with other environmental-induced responses is poorly understood in plants. We have previously demonstrated that the ER-stress sensor binding protein (BiP from soybean exhibits an unusual response to drought. The members of the soybean BiP gene family are differentially regulated by osmotic stress and soybean BiP confers tolerance to drought. While these results may reflect crosstalk between the osmotic and ER-stress signaling pathways, the lack of mutants, transcriptional response profiles to stresses and genome sequence information of this relevant crop has limited our attempts to identify integrated networks between osmotic and ER stress-induced adaptive responses. As a fundamental step towards this goal, we performed global expression profiling on soybean leaves exposed to polyethylene glycol treatment (osmotic stress or to ER stress inducers. Results The up-regulated stress-specific changes unmasked the major branches of the ER-stress response, which include enhancing protein folding and degradation in the ER, as well as specific osmotically regulated changes linked to cellular responses induced by dehydration. However, a small proportion (5.5% of total up-regulated genes represented a shared response that seemed to integrate the two signaling pathways. These co-regulated genes were considered downstream targets based on similar induction kinetics and a synergistic response to the combination of osmotic- and ER-stress-inducing treatments. Genes in this integrated pathway with the strongest synergistic induction encoded proteins with diverse roles, such as plant-specific development and cell death (DCD domain-containing proteins, an ubiquitin-associated (UBA protein homolog and NAC domain-containing proteins. This integrated pathway diverged further from characterized specific branches of ER-stress as

  12. 49 CFR 40.311 - What are the requirements concerning SAP reports?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What are the requirements concerning SAP reports... Process § 40.311 What are the requirements concerning SAP reports? (a) As the SAP conducting the required... ensure that you receive SAP written reports directly from the SAP performing the evaluation and that no...

  13. Interaction of prechilling, temperature, osmotic stress, and light in Picea abies seed germination

    International Nuclear Information System (INIS)

    Leinonen, K.; Rita, H.

    1995-01-01

    A multi-factor experimental approach and proportional odds model was used to study interactions between five environmental factors significant to Norway spruce seed germination: prechilling (at +4.5 °C), suboptimal temperatures (+12 and +16 °C), osmotically induced water stress (–0.3 Mpa and 0 Mpa), prolonged white light, and short-period far-red light. Temperature and osmotic stress interacted with one another in the germination of seeds: the effect of osmotic stress being stronger at +16 °C than at +12 °C. In natural conditions, this interaction may prevent germination early in the summer when soil dries and temperature increases. Prolonged white light prevented germination at low temperature and low osmotic potential. Inhibitory effect was less at higher temperatures and higher osmotic potential, as well as after prechilling. Short-period far-red light did not prevent germination of unchilled seeds in darkness. Prechilling tended to make seeds sensitive to short pulses of far-red light, an effect which depended on temperature: at +12 °C the effect on germination was promotive, but at +16 °C, inhibitory and partly reversible by white light. It seems that Norway spruce seeds may have adapted to germinate in canopy shade light rich in far-red. The seeds may also have evolved mechanisms to inhibit germination in prolonged light

  14. Liquid effluent Sampling and Analysis Plan (SAP) implementation summary report

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-01-01

    This report summarizes liquid effluent analytical data collected during the Sampling and Analysis Plan (SAP) Implementation Program, evaluates whether or not the sampling performed meets the requirements of the individual SAPs, compares the results to the WAC 173-200 Ground Water Quality Standards. Presented in the report are results from liquid effluent samples collected (1992-1994) from 18 of the 22 streams identified in the Consent Order (No. DE 91NM-177) requiring SAPs

  15. Comparative Erythrocytes Osmotic Fragility Test and some ...

    African Journals Online (AJOL)

    Erythrocytes osmotic fragility and haematological parameters of subjects with HbAS (sickle cell trait) and HbSS (sickle cell anaemia) were determined and compared with subjects with HbAA (normal adult haemoglobin), which acted as control. They were divided into three groups of 40 subjects for HbAA, 35 subjects for ...

  16. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu; Xiong, Liming; Li, Wenbo; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA

  17. Faculty perceptions of the integration of SAP in academic programs

    Directory of Open Access Journals (Sweden)

    Sam Khoury

    2012-08-01

    Full Text Available In order to prepare students for the workforce, academic programs incorporate a variety of tools that students are likely to use in their future careers. One of these tools employed by business and technology programs is the integration of live software applications such as SAP through the SAP University Alliance (SAP UA program. Since the SAP UA program has been around for only about 10 years and the available literature on the topic is limited, research is needed to determine the strengths and weaknesses of the SAP UA program. A collaborative study of SAP UA faculty perceptions of their SAP UAs was conducted in the fall of 2011. Of the faculty invited to participate in the study, 31% completed the online survey. The results indicate that most faculty experienced difficulty implementing SAP into their programs and report that a need exists for more standardized curriculum and training, while a large percentage indicated that they are receiving the support they need from their schools and SAP.

  18. 49 CFR 40.295 - May employees or employers seek a second SAP evaluation if they disagree with the first SAP's...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false May employees or employers seek a second SAP evaluation if they disagree with the first SAP's recommendations? 40.295 Section 40.295 Transportation Office... seek a second SAP evaluation if they disagree with the first SAP's recommendations? (a) As an employee...

  19. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    Science.gov (United States)

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Statistical characterization of the Sub-Auroral Polarization Stream (SAPS)

    Science.gov (United States)

    Kunduri, B.; Baker, J. B.; Ruohoniemi, J. M.; Erickson, P. J.; Coster, A. J.; Oksavik, K.

    2017-12-01

    The Sub-Auroral Polarization Stream (SAPS) is a narrow region of westward directed plasma convection typically observed in the dusk-midnight sector equatorward of the main auroral oval. SAPS plays an important role in mid-latitude space weather dynamics and has a controlling influence on the evolution of large-scale plasma features, such as Storm Enhanced Density (SED) plumes. In this study, data from North American mid-latitude SuperDARN radars collected between January 2011 and December 2014 have been used to compile a database of SAPS events for statistical analysis. We examine the dependence of SAPS velocity magnitude and direction on geomagnetic activity and magnetic local time. The lowest speed limit and electric fields observed during SAPS are discussed and histograms of SAPS velocities for different Dst bins and MLAT-MLT locations are presented. We find significant differences in SAPS characteristics between periods of low and high geomagnetic activity, suggesting that SAPS are driven by different mechanisms during storm and non-storm conditions. To further explore this possibility, we have characterized the SAPS location and peak speed relative to the ionospheric trough specified by GPS Total Electron Content (TEC) data from the MIT Haystack Madrigal database. A particular emphasis is placed on identifying the extent to which the location, structure, and depth of the trough may play a controlling influence on SAPS speeds during storm and non-storm periods. The results are interpreted in terms of the current paradigm for active thermosphere-ionosphere feedback being an important component of SAPS physics.

  1. Osmotic therapies added to antibiotics for acute bacterial meningitis

    Science.gov (United States)

    Wall, Emma Cb; Ajdukiewicz, Katherine Mb; Bergman, Hanna; Heyderman, Robert S; Garner, Paul

    2018-01-01

    children with bacterial meningitis die in high-income countries with much higher rates in low-income settings. The infection causes the brain to swell, and this is thought to contribute to death and to long-term brain damage in survivors. Osmotic therapies increase the concentration of the blood by exerting an osmotic pressure across a semi-permeable membrane (such as a cell wall or blood vessel lining in the brain). This draws water from the brain into the blood, thereby reducing pressure in the brain. Potentially osmotic therapies could increase the rate of survival, or they could do harm. What are the main results of the review? We included five trials that compared glycerol with placebo in a total of 1451 patients with bacterial meningitis. In the studies steroids were often given as well, but this did not appear to modify any of the effects seen with glycerol. This review detected no benefit from glycerol relating to death. There appeared to be marginal protection against deafness and against neurological disability. No effect on epileptic seizures at follow-up was noted. Glycerol was not associated with any severe adverse effects. The number of trials included was small and only two tested a large number of participants. All trials were from different healthcare settings and examined either adults or children. PMID:29405037

  2. An osmotic model of the growing pollen tube.

    Directory of Open Access Journals (Sweden)

    Adrian E Hill

    Full Text Available Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip.

  3. An Osmotic Model of the Growing Pollen Tube

    Science.gov (United States)

    Hill, Adrian E.; Shachar-Hill, Bruria; Skepper, Jeremy N.; Powell, Janet; Shachar-Hill, Yair

    2012-01-01

    Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip. PMID:22615784

  4. Growth of Verticillium longisporum in Xylem Sap of Brassica napus is Independent from Cultivar Resistance but Promoted by Plant Aging.

    Science.gov (United States)

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-09-01

    As Verticillium stem striping of oilseed rape (OSR), a vascular disease caused by Verticillium longisporum, is extending into new geographic regions and no control with fungicides exists, the demand for understanding mechanisms of quantitative resistance increases. Because V. longisporum is strictly limited to the xylem and resistance is expressed in the systemic stage post root invasion, we investigated a potential antifungal role of soluble constituents and nutritional conditions in xylem sap as determinants of cultivar resistance of OSR to V. longisporum. Assessment of biometric and molecular genetic parameters applied to describe V. longisporum resistance (net area under disease progress curve, stunting, stem thickness, plant biomass, and V. longisporum DNA content) showed consistent susceptibility of cultivar 'Falcon' in contrast to two resistant genotypes, 'SEM' and 'Aviso'. Spectrophotometric analysis revealed a consistently stronger in vitro growth of V. longisporum in xylem sap extracted from OSR compared with the water control. Further comparisons of fungal growth in xylem sap of different cultivars revealed the absence of constitutive or V. longisporum induced antifungal activity in the xylem sap of resistant versus susceptible genotypes. The similar growth of V. longisporum in xylem sap, irrespective of cultivar, infection with V. longisporum and xylem sap filtration, was correlated with about equal amounts of total soluble proteins in xylem sap from these treatments. Interestingly, compared with younger plants, xylem sap from older plants induced significantly stronger fungal growth. Growth enhancement of V. longisporum in xylem sap of aging plants was reflected by increased contents of carbohydrates, which was consistent in mock or V. longisporum-infected plants and independent from cultivar resistance. The improved nutritional conditions in the xylem of more mature plants may explain the late appearance of disease symptoms, which are observed only in

  5. Antidiarrhoeal Activity of Musa paradisiaca Sap in Wistar Rats.

    Science.gov (United States)

    Yakubu, Musa T; Nurudeen, Quadri O; Salimon, Saoban S; Yakubu, Monsurat O; Jimoh, Rukayat O; Nafiu, Mikhail O; Akanji, Musbau A; Oladiji, Adenike T; Williams, Felicia E

    2015-01-01

    The folkloric claim of Musa paradisiaca sap in the management of diarrhoea is yet to be substantiated or refuted with scientific data. Therefore, the aim of the current study was to screen the sap of M. paradisiaca for both its secondary metabolites and antidiarrhoeal activity at 0.25, 0.50, and 1.00 mL in rats. Secondary metabolites were screened using standard methods while the antidiarrhoeal activity was done by adopting the castor oil-induced diarrhoeal, castor oil-induced enteropooling, and gastrointestinal motility models. The sap contained flavonoids, phenolics, saponins, alkaloids, tannins, and steroids while cardiac glycosides, anthraquinones, triterpenes, cardenolides, and dienolides were not detected. In the castor oil-induced diarrhoeal model, the sap significantly (P sap were accompanied by increase in inhibition of intestinal fluid content in the enteropooling model. The sap decreased the charcoal meal transit in the gastrointestinal motility model. In all the models, the 1.00 mL of the sap produced changes that compared well with the reference drugs. Overall, the antidiarrhoeal activity of Musa paradisiaca sap attributed to the presence of alkaloids, phenolics, flavonoids, and/or saponins which may involve, among others, enhancing fluid and electrolyte absorption through de novo synthesis of the sodium potassium ATPase and/or reduced nitric oxide levels.

  6. Structural and binding studies of SAP-1 protein with heparin.

    Science.gov (United States)

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity. © 2014 John Wiley & Sons A/S.

  7. SAPS simulation with GITM/UCLA-RCM coupled model

    Science.gov (United States)

    Lu, Y.; Deng, Y.; Guo, J.; Zhang, D.; Wang, C. P.; Sheng, C.

    2017-12-01

    Abstract: SAPS simulation with GITM/UCLA-RCM coupled model Author: Yang Lu, Yue Deng, Jiapeng Guo, Donghe Zhang, Chih-Ping Wang, Cheng Sheng Ion velocity in the Sub Aurora region observed by Satellites in storm time often shows a significant westward component. The high speed westward stream is distinguished with convection pattern. These kind of events are called Sub Aurora Polarization Stream (SAPS). In March 17th 2013 storm, DMSP F18 satellite observed several SAPS cases when crossing Sub Aurora region. In this study, Global Ionosphere Thermosphere Model (GITM) has been coupled to UCLA-RCM model to simulate the impact of SAPS during March 2013 event on the ionosphere/thermosphere. The particle precipitation and electric field from RCM has been used to drive GITM. The conductance calculated from GITM has feedback to RCM to make the coupling to be self-consistent. The comparison of GITM simulations with different SAPS specifications will be conducted. The neutral wind from simulation will be compared with GOCE satellite. The comparison between runs with SAPS and without SAPS will separate the effect of SAPS from others and illustrate the impact on the TIDS/TADS propagating to both poleward and equatorward directions.

  8. Superabsorbent polymers (SAP) enhance efficient and eco-friendly ...

    African Journals Online (AJOL)

    In arid and semiarid regions of northern China, there is an increasing interest in using reduced rate of chemical fertilizer along with water-saving superabsorbent polymer (SAP) for field crop production. The objective was to evaluate the effectiveness of different rates of SAP (low, 0.75; medium, 11.3 and high, 15.0 kg ha-1) ...

  9. Plasma osmotic changes during major abdominal surgery.

    Science.gov (United States)

    Malone, R A; McLeavey, C A; Arens, J F

    1977-12-01

    Fluid balance across the capillary membrane is maintained normally by a balance of hydrostatic and colloid osmotic pressures (COP). In 12 patients having major intra-abdominal procedures, the COP was followed during the operative and immediate postoperative periods. The patients' intraoperative fluid management consisted of replacing shed blood with blood and following Shires' concept of crystalloid replacement. Significant decreases in COP to approximately two thirds of the initial value occurred in patients having intra-abdominal procedures versus only a 10 percent decrease in those having peripheral procedures (greater than .001). As a result of this decrease in COP, the balance between hydrostatic and colloid osmotic pressures is lost and risk of pulmonary intersitial edema is increased.

  10. Assessing the ERP-SAP implementation strategy from cultural perspectives

    Science.gov (United States)

    Wang, Gunawan; Syaiful, Bakhri; Sfenrianto; Nurul, Fajar Ahmad

    2017-09-01

    Implementing ERP-SAP projects in Indonesian large enterprises frequently create headaches for the consultants, since there are always be a large gap between the outcomes of the SAP with the expected results. Indonesian enterprises have experience with a huge amount of investments and ended up with minor benefits. Despite its unprecedented benefits, the SAP strategy is still considered as a mandatory enterprise system for every enterprise to compete in the marketplaces. The article examines the SAP implementation from cultural perspectives to present new horizon that commonly ignored by major Indonesian enterprises. The article applies the multiple case studies with three large Indonesia enterprises, such as KS, the largest steel producer; GEM, a subsidiary of conglomerate enterprise operates in the mining industry, and HS, a subsidiary of the largest retailer in Asia with more than 700 stores in Indonesia. The outcome of the article is expected to provide a comprehensive analysis from cultural perspectives regarding to common problems faced by SAP consultants.

  11. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  12. Measurement of respirable superabsorbent polyacrylate (SAP) dust by ethanol derivatization using gas chromatography-mass spectrometry (GC-MS) detection.

    Science.gov (United States)

    McCormack, Paul; Lemmo, John S; Macomber, Margaret; Holcomb, Mark L; Lieckfield, Robert

    2011-04-01

    Superabsorbent polyacrylate (SAP) is an important industrial chemical manufactured primarily as sodium polyacrylate but occasionally as potassium salt. It has many applications owing to its intrinsic physical property of very high water absorption, which can be more than 100 times it own weight. SAP is commonly used in disposable diapers and feminine hygiene products and is known by a number of synonyms-sodium polyacrylate, superabsorbent polyacrylate (SAP), polyacrylate absorbent (PA), and superabsorbent material (SAM). Germany and The Netherlands have adopted a nonbinding scientific guideline value 0.05 mg/m³ (8-hr time-weighted average, TWA) as the maximum allowable workplace concentration for the respirable dust of SAP (acrylate was developed and validated for the analysis of respirable superabsorbent polyacrylate dust collected on filter cassettes in the workplace environment. This method is an alternative to the commonly used sodium-based method, which is limited owing to potential interference by other sources of sodium from the workplace and laboratory environments. The alcohol derivatization method effectively eliminates sodium interference from several classes of sodium compounds, as shown by their purposeful introduction at two and six times the equivalent amount of SAP present in reference samples. The accuracy of the method, as determined by comparison with sodium analysis of known reference samples, was greater than 80% over the study range of 5-50 μg of SAP dust. The lower reporting limit of the method is 3.0 μg of SAP per sample, which is equivalent to 3 (μg/m³) for an 8-hr sampling period at the recommended flow rate of 2.2 L/min.

  13. Expression of the Aeluropus littoralis AlSAP Gene Enhances Rice Yield under Field Drought at the Reproductive Stage

    Directory of Open Access Journals (Sweden)

    Thaura Ghneim-Herrera

    2017-06-01

    Full Text Available We evaluated the yields of Oryza sativa L. ‘Nipponbare’ rice lines expressing a gene encoding an A20/AN1 domain stress-associated protein, AlSAP, from the halophyte grass Aeluropus littoralis under the control of different promoters. Three independent field trials were conducted, with drought imposed at the reproductive stage. In all trials, the two transgenic lines, RN5 and RN6, consistently out-performed non-transgenic (NT and wild-type (WT controls, providing 50–90% increases in grain yield (GY. Enhancement of tillering and panicle fertility contributed to this improved GY under drought. In contrast with physiological records collected during previous greenhouse dry-down experiments, where drought was imposed at the early tillering stage, we did not observe significant differences in photosynthetic parameters, leaf water potential, or accumulation of antioxidants in flag leaves of AlSAP-lines subjected to drought at flowering. However, AlSAP expression alleviated leaf rolling and leaf drying induced by drought, resulting in increased accumulation of green biomass. Therefore, the observed enhanced performance of the AlSAP-lines subjected to drought at the reproductive stage can be tentatively ascribed to a primed status of the transgenic plants, resulting from a higher accumulation of biomass during vegetative growth, allowing reserve remobilization and maintenance of productive tillering and grain filling. Under irrigated conditions, the overall performance of AlSAP-lines was comparable with, or even significantly better than, the NT and WT controls. Thus, AlSAP expression inflicted no penalty on rice yields under optimal growth conditions. Our results support the use of AlSAP transgenics to reduce rice GY losses under drought conditions.

  14. Analysis of plastic residues in maple sap and syrup collected from tubing systems sanitized with isopropyl alcohol

    Directory of Open Access Journals (Sweden)

    Luc Lagacé

    2017-05-01

    Full Text Available A plastic tubing system operated under vacuum is usually used to collect sap from maple trees during spring time to produce maple syrup. This system is commonly sanitized with isopropyl alcohol (IPA to remove microbial contamination colonizing the system during the sugar season. Questions have been raised whether IPA would contribute to the leaching of plastic residues in maple sap and syrup coming from sanitized systems. First, an extraction experiment was performed in the lab on commercial plastic tubing materials that were submitted to IPA under harsh conditions. The results of the GC-MS analysis revealed the presence of many compounds that served has target for further tests. Secondly, tests were done on early and mid-season maple sap and syrup coming from many sugarbushes using IPA or not to determine potential concentrations of plastic residues. Results obtained from sap and syrup samples showed that no quantifiable (< 1–75 μg/L concentration of any plastic molecules tested was determined in all samples coming from IPA treated or not treated systems. However, some samples of first sap run used as a rinse solution to be discarded before the season start and that were coming from non sanitized or IPA sanitized systems, showed quantifiable concentrations of chemical residue such as ultraviolet protector (octabenzone. These results show that IPA can be safely used to sanitize maple sap collection system in regards to the leaching of plastic residues in maple sap and syrup and reinforced the need to thoroughly rinse the tubing system at the beginning of the season for both sanitized and non sanitized systems. Keywords: Food science, Food safety, Materials chemistry

  15. Utilization of chitosan as an antimicrobial agent for pasteurized palm sap (Borassus flabellifer Linn.) during storage.

    Science.gov (United States)

    Naknean, Phisut; Jutasukosol, Keawta; Mankit, Theerarat

    2015-02-01

    The objective of this research was to assess the potential of chitosan for improvement the quality of pasteurized palm sap during storage. First, the effect of chitosan content on sensory attributes was investigated to select suitable concentration of chitosan for further study. Fresh palm sap was enriched with chitosan at various concentrations (0-2 g/L) and pasteurized at 80 °C for 10 min, consequently evaluated by consumers. It was found that samples added chitosan in the range of 0-1.00 g/L were considered acceptable. Thus, the addition chitosan in the concentration of 0-1.00 g/L was chosen for further study. The sample without chitosan addition was used as a control sample. Each selected sample was determined for their qualities during storage at 1 week interval. It was found that lightness and transmittance values of all samples tended to increase during storage. Lower PPO and invertase activity were observed in all chitosan-treated samples compared to control sample. Chitosan could minimize the loss of sucrose and the increase in glucose and fructose content during storage. In addition, an increase in chitosan concentration resulted in the increase in DPPH radical scavenging activity. Furthermore, the addition of chitosan could retard the development of microorganism during storage as demonstrated by lower microbial loads compared to control sample. It can be concluded that a combination of pasteurization with chitosan addition (0.50 g/L) and low temperature storage could preserve palm sap for approximately 6 weeks. Thus, the incorporation of chitosan in palm sap could be used as an alternative way to extend shelf life of pasteurized palm sap.

  16. Osmotic and Heat Stress Effects on Segmentation.

    Directory of Open Access Journals (Sweden)

    Julian Weiss

    Full Text Available During vertebrate embryonic development, early skin, muscle, and bone progenitor populations organize into segments known as somites. Defects in this conserved process of segmentation lead to skeletal and muscular deformities, such as congenital scoliosis, a curvature of the spine caused by vertebral defects. Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals. Here we show that a brief exposure to a high osmolarity solution causes reproducible segmentation defects in developing zebrafish (Danio rerio embryos. Both osmotic shock and heat shock produce border defects in a dose-dependent manner, with an increase in both frequency and severity of defects. We also show that osmotic treatment has a delayed effect on somite development, similar to that observed in heat shocked embryos. Our results establish osmotic shock as an alternate experimental model for stress, affecting segmentation in a manner comparable to other known environmental stressors. The similar effects of these two distinct environmental stressors support a model in which a variety of cellular stresses act through a related response pathway that leads to disturbances in the segmentation process.

  17. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity

    Science.gov (United States)

    Cai, Chenxu; Liu, Guangao; Wang, Yuande; Du, Juan; Lin, Xin; Yang, Meixiang

    2017-01-01

    Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. PMID:28049627

  18. Thermal-dissipation sap flow sensors may not yield consistent sap-flux estimates over multiple years

    Science.gov (United States)

    Georgianne W. Moore; Barbara J. Bond; Julia A. Jones; Frederick C. Meinzer

    2010-01-01

    Sap flow techniques, such as thermal dissipation, involve an empirically derived relationship between sap flux and the temperature differential between a heated thermocouple and a nearby reference thermocouple inserted into the sapwood. This relationship has been widely tested but mostly with newly installed sensors. Increasingly, sensors are used for extended periods...

  19. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity.

    Science.gov (United States)

    Chen, Shasha; Cai, Chenxu; Li, Zehua; Liu, Guangao; Wang, Yuande; Blonska, Marzenna; Li, Dan; Du, Juan; Lin, Xin; Yang, Meixiang; Dong, Zhongjun

    2017-02-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (T FH ) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in T FH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient T FH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. © 2017 Chen et al.

  20. Thermal and Osmotic Tolerance of 'Irukandji' Polyps: Cubozoa; Carukia barnesi.

    Directory of Open Access Journals (Sweden)

    Robert Courtney

    Full Text Available This research explores the thermal and osmotic tolerance of the polyp stage of the Irukandji jellyfish Carukia barnesi, which provides new insights into potential polyp habitat suitability. The research also targets temperature, salinity, feeding frequency, and combinations thereof, as cues for synchronous medusae production. Primary findings revealed 100% survivorship in osmotic treatments between 19 and 46‰, with the highest proliferation at 26‰. As salinity levels of 26‰ do not occur within the waters of the Great Barrier Reef or Coral Sea, we conclude that the polyp stage of C. barnesi is probably found in estuarine environments, where these lower salinity conditions commonly occur, in comparison to the medusa stage, which is oceanic. Population stability was achieved at temperatures between 18 and 31°C, with an optimum temperature of 22.9°C. We surmise that C. barnesi polyps may be restricted to warmer estuarine areas where water temperatures do not drop below 18°C. Asexual reproduction was also positively correlated with feeding frequency. Temperature, salinity, feeding frequency, and combinations thereof did not induce medusae production, suggesting that this species may use a different cue, possibly photoperiod, to initiate medusae production.

  1. Shelf-life extension of gilthead seabream fillets by osmotic treatment and antimicrobial agents.

    Science.gov (United States)

    Tsironi, T N; Taoukis, P S

    2012-02-01

    The objectives of the study were to evaluate the effect of selected antimicrobial agents on the shelf life of osmotically pretreated gilthead seabream and to establish reliable kinetic equations for shelf-life determination validated in dynamic conditions. Fresh gilthead seabream (Sparus aurata) fillets were osmotically treated with 50% high dextrose equivalent maltodextrin (HDM, DE 47) plus 5% NaCl and 0·5% carvacrol, 0·5% glucono-δ-lactone or 1% Citrox (commercial antimicrobial mix). Untreated and treated slices were aerobically packed and stored isothermally (0-15°C). Microbial growth and quality-related chemical indices were modelled as functions of temperature. Models were validated at dynamic storage conditions. Osmotic pretreatment with the use of antimicrobials led to significant shelf-life extension of fillets, in terms of microbial growth and organoleptic deterioration. The shelf life was 7 days for control samples at 5°C. The osmotic pretreatment with carvacrol, glucono-δ-lactone and Citrox allowed for shelf-life extension by 8, 10 and 5 days at 5°C, respectively. The results of the study show the potential of adding carvacrol, glucono-δ-lactone or Citrox in the osmotic solution to extend the shelf life and improve commercial value of chilled osmotically pretreated fish products. The developed models can be a reliable tool for predicting the shelf life of fresh or minimally processed gilthead seabream fillets in the real chill chain. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  2. Ada Apa Dengan SAP (AADS Akrual?

    Directory of Open Access Journals (Sweden)

    Eka Findi Tresnawati

    2013-08-01

    Full Text Available This article provides anoverview regarding SAP accrual-based and its problems. It compares information content of PP 24/2005’s cash toward accrual and PP 71/2010’s accrual-based toshow the urgency of accrual-based financial reporting requirements. The analysis borrows Abeysekara’s accounting imperialism. Discussion also involves empirical evidence and evaluation of accrual-based implementation probability in Sumenep Regency. Findings show that accrual-based information is not an urgent need and tends to be difficult to be implemented. Reflecting the evidence in Sumenep, local governments are faced with the need of human resources, the question of the use-fulness of accrual information, and technical difficulties on implementation.

  3. Date palm sap collection: exploring opportunities to prevent Nipah transmission.

    Science.gov (United States)

    Nahar, Nazmun; Sultana, Rebeca; Gurley, Emily S; Hossain, M Jahangir; Luby, Stephen P

    2010-06-01

    Nipah virus (NiV) infection is a seasonal disease in Bangladesh that coincides with the date palm sap collection season. Raw date palm sap is a delicacy to drink in Bengali culture. If fruit bats that are infected with NiV gain access to the sap for drinking, they might occasionally contaminate the sap through saliva and urine. In February 2007, we conducted a qualitative study in six villages, interviewing 27 date palm sap collectors (gachhis) within the geographical area where NiV outbreaks have occurred since 2001. Gachhis reported that bats pose a challenge to successful collection of quality sap, because bats drink and defecate into the sap which markedly reduces its value. They know some methods to prevent access by bats and other pests but do not use them consistently, because of lack of time and resources. Further studies to explore the effectiveness of these methods and to motivate gachhis to invest their time and money to use them could reduce the risk of human Nipah infection in Bangladesh.

  4. 30 CFR 285.605 - What is a Site Assessment Plan (SAP)?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What is a Site Assessment Plan (SAP)? 285.605... Assessment Plan (SAP)? (a) A SAP describes the activities (e.g., installation of meteorological towers... project easement, or to test technology devices. (1) Your SAP must describe how you will conduct your...

  5. 30 CFR 285.614 - When may I begin conducting activities under my approved SAP?

    Science.gov (United States)

    2010-07-01

    ... approved SAP? 285.614 Section 285.614 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Plans and Information Requirements Activities Under An Approved Sap § 285.614 When may I begin conducting activities under my approved SAP? (a) You may begin conducting the activities approved in your SAP...

  6. Enhanced monoclonal antibody production by gradual increase of osmotic pressure

    OpenAIRE

    Lin, Jianqiang; Takagi, Mutsumi; Qu, Yinbo; Gao, Peiji; Yoshida, Toshiomi

    1999-01-01

    The time length required for the adaptation of AFP-27 hybridoma cells to high osmotic pressure and the effect of a gradual increase of osmotic pressure on monoclonal antibody production were investigated. When the cells were subjected to an increase of osmotic pressure from 300 mOsmol kg-1 to 366 mOsmol kg- 1, the intracellular content of osmoprotective free amino acids reached a maximum level 6 h after the osmotic pressure was increased to 366 mOsmol kg-1. The same time period of 6 h incubat...

  7. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-10-01

    • To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  8. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    Science.gov (United States)

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  9. Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening.

    Science.gov (United States)

    Hughes, Nicole M; Carpenter, Kaylyn L; Cannon, Jonathan G

    2013-01-15

    The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψ(π)) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψ(π) during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens. Both species exhibit dramatic leaf reddening under high light during winter, concomitant with declines in leaf water potential and accumulation of solutes. Data previously published by the authors on osmotic potential at full turgor (Ψ(π,100)) of G. urceolata and G. procumbens leaves before and after leaf reddening were used to estimate OA. In vivo molar concentrations of anthocyanin, glucose, fructose, and sucrose measured from the same individuals were converted to pressure equivalents using the Ideal Gas Law, and percent contribution to OA was estimated. Estimated mean OA during winter was -0.7MPa for G. urceolata and -0.8MPa for G. procumbens. In vivo concentrations of anthocyanin (3-10mM) were estimated to account for ∼2% of OA during winter, and comprised <0.7% of Ψ(π,100) in both species. Glucose, fructose, and sucrose combined accounted for roughly 50 and 80% of OA for G. urceolata and G. procumbens, respectively, and comprised ∼20% of Ψ(π,100). We observed that a co-occurring, acyanic species (Vinca minor) achieved similar OA without synthesizing anthocyanin. We conclude that anthocyanins represent a measurable, albeit meager, component of OA in red-leafed evergreen species during winter. However, due to their low concentrations, metabolic costliness relative to other osmolytes, and striking red color (unnecessary for an osmotic function), it is unlikely that they are synthesized solely for an

  10. The installations maintenance control using SAP R/3; O controle de manutencao de instalacoes utilizando o SAP R/3

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Robison Tirre; Pereira, Paulo Manoel Borges; Jorge, Kemal Vieira [Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    TBG (Transportadora Brasileira Gasoduto Bolivia Brasil S.A.) began their operations in 1999 and since the beginning the SAP R/3 PM module (Plant Maintenance) is used for the control of the maintenance activities and to manager the Master Maintenance and Inspection Plans. On these five years, a series of reports and SAP functionalities were developed or configured to adapt the system R/3 to the needs of TBG maintenance. Now, the whole management and control of the surface facilities maintenance (compression station, city gate, measurement station, etc) is accomplished by SAP R/3 system. (author)

  11. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  12. Solute coupled diffusion in osmotically driven membrane processes.

    Science.gov (United States)

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process.

  13. Map of important transactions and master data in SAP ERP

    OpenAIRE

    Schermann, Michael

    2015-01-01

    This image represents the most important transactions and master data in SAP ERP as a tube map. As such, it covers most of the content of Magal & Word (2012) Integrated Business Processes with ERP Systems. Wiley, Hoboken, NJ, USA.

  14. Novel regulation of aquaporins during osmotic stress.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Bohnert, Hans J; Pantoja, Omar

    2004-08-01

    Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions.

  15. Osmotic properties of sulfobutylether and hydroxypropyl cyclodextrins.

    Science.gov (United States)

    Zannou, E A; Streng, W H; Stella, V J

    2001-08-01

    The purpose of this study was to determine the osmolality of sulfobutylether (SBE) and hydroxypropyl (HP) derivatives of cyclodextrins (CDs) via vapor pressure osmometry (VPO) and freezing point depression (FPD). (SBE) and HP-CDs are efficient excipients capable of solubilizing and stabilizing poorly water-soluble drugs in parenteral formulations. (SBE)-CDs have also been used as solubility enhancers and osmotic agents for the sustained release of poorly water-soluble drugs from osmotic pump tablets. The knowledge of the CD's osmolality in solution or inside such tablets would allow one to further characterize the release mechanisms. Experiments were conducted at 37 degrees C with eight types of HP and (SBE)-CDs. The aqueous solutions ranged from 0.005-0.350 mol(-1). Methods were developed to allow the measurement of high osmolalities using a vapor pressure osmometer or a differential scanning calorimeter. The osmolality calculations from the VPO and FPD measurements correlated well. The osmolality of (SBE)-CDs was significantly higher than the osmolality of HP-CDs and increased with the total degree of substitution (TDS). All CDs showed deviations from ideality at high concentrations. Empirical correlations of osmolality with concentration and TDS allowed the prediction of osmolality over a wide concentration range. This study also gave some useful insights into the behavior of CD derivatives in solution.

  16. Vapor Pressure Deficit and Sap Velocity Dynamic Coupling in Canopy Dominant Trees in the Amazon basin

    Science.gov (United States)

    Chambers, J. Q.; Gimenez, B.; Jardine, K.; Negron Juarez, R. I.; Cobello, L. O.; Fontes, C.; Dawson, T. E.; Higuchi, N.

    2017-12-01

    In order to improve our ability to predict terrestrial water fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, especially in tropical forests which recycle large fluxes of water to the atmosphere. This need has become more relevant due to observed records in global temperature. In this study we show a strong temporal correlation between sap velocity and leaf-to-air vapor pressure deficit (VPD) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As VPDs in the upper canopy (20-30 m) varied throughout the day and night, basal sap velocity (1.5 m) responded rapidly without an observable delay (< 15 min). Sap velocity showed a sigmoidal dependence on VPDs including an exponential increase, an inflection point, and a plateau, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity, stomatal conductance, and leaf water potential was evident with morning periods showing higher sensitivities to VPD than afternoon and night periods. Diurnal leaf gas exchange observations revealed a morning to midday peak in stomatal conductance, but midday to afternoon peak in transpiration and VPD. Thus, our study confirms that the temporal lag between the Gs peak and VPD peak are the major regulators of the hysteresis phenomenon as previously described by other studies. Moreover, out study provide direct evidence for the role of decreased stomatal conductance in the warm afternoon periods to reduce transpiration and allow for the partial recovery of leaf water potential to less negative values. Our results suggests the possibility of predicting evapotranspiration fluxes from ecosystem to regional scales using remote sensing of vegetation temperature from, for example, thermal images of satellites and drones.

  17. REA analysis of SAP HCM; some initial findings

    OpenAIRE

    Fallon, Richard; Polovina, Simon

    2013-01-01

    This paper explores further the claim that the Transaction-Oriented Architecture (TOA) based on the principles of Resources, Events, Agents (REA) can enhance Enterprise Resource Planning (ERP) systems by providing a principled theoretical basis that can underpin ERP business process implementations. We provide details of some of our initial findings of the REA/TOA analysis which we carried out on the SAP Human Capital Management (HCM) module. Given that SAP is recognized as the dominant ERP s...

  18. Implantación del sistema ERP SAP R/3

    OpenAIRE

    Muñoz Fernandez, Jorge Juan

    2012-01-01

    El objetivo del presente trabajo ha sido realizar un estudio de investigación y desarrollo sobre la implantación del sistema Enterprise Resource Planning (ERP) SAP R/3 de una empresa. L'objectiu d'aquest treball final de carrera ha estat realitzar un estudi d'investigació i desenvolupament sobre la implantació del sistema Enterprise Resource Planning (ERP) SAP R/3 d'una empresa.

  19. Sap-Sugar Content of Grafted Sugar Maple Trees

    Science.gov (United States)

    Maurice E. Jr. Demeritt; Maurice E. Jr. Demeritt

    1985-01-01

    In March and April 1983, 289 and 196 young grafted sugar maple trees were tapped and evaluated for sap-sugar content. In April, sap was collected from taps both above and below the graft union. Diameter of all tapped trees at 18 inches above the ground was measured. Analysis of the data revealed that: (1) trees selected for high sugar yield cannot be reproduced by...

  20. Antidiarrhoeal Activity of Musa paradisiaca Sap in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Musa T. Yakubu

    2015-01-01

    Full Text Available The folkloric claim of Musa paradisiaca sap in the management of diarrhoea is yet to be substantiated or refuted with scientific data. Therefore, the aim of the current study was to screen the sap of M. paradisiaca for both its secondary metabolites and antidiarrhoeal activity at 0.25, 0.50, and 1.00 mL in rats. Secondary metabolites were screened using standard methods while the antidiarrhoeal activity was done by adopting the castor oil-induced diarrhoeal, castor oil-induced enteropooling, and gastrointestinal motility models. The sap contained flavonoids, phenolics, saponins, alkaloids, tannins, and steroids while cardiac glycosides, anthraquinones, triterpenes, cardenolides, and dienolides were not detected. In the castor oil-induced diarrhoeal model, the sap significantly (P<0.05 prolonged the onset time of diarrhoea, decreased the number, fresh weight, and water content of feaces, and increased the inhibition of defecations. Na+-K+-ATPase activity in the small intestine increased significantly whereas nitric oxide content decreased. The decreases in the masses and volumes of intestinal fluid by the sap were accompanied by increase in inhibition of intestinal fluid content in the enteropooling model. The sap decreased the charcoal meal transit in the gastrointestinal motility model. In all the models, the 1.00 mL of the sap produced changes that compared well with the reference drugs. Overall, the antidiarrhoeal activity of Musa paradisiaca sap attributed to the presence of alkaloids, phenolics, flavonoids, and/or saponins which may involve, among others, enhancing fluid and electrolyte absorption through de novo synthesis of the sodium potassium ATPase and/or reduced nitric oxide levels.

  1. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih

    2013-01-01

    We present a novel design of micropumps and valves driven by osmotic force for point-of-care applications. Although there have been significant progresses in microfluidic components and control devices such as fluidic diodes, switches, resonators and digital-to-analog converters, the ultimate power source still depends on bulky off-chip components, which are expensive and cannot be easily miniaturized. For point-of-care applications, it is critical to integrate all the components in a compact size at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations under 125 kPa back pressure. We have also implemented an osmotic pump, which can pump a high flow rate over 30 μL/min for longer than 30 minutes. The experimental data demonstrates the possibility and potential of applying osmotic actuation in point-of-care disposable microfluidics. © 2013 IEEE.

  2. Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress.

    Science.gov (United States)

    Arndt, Stefan K; Livesley, Stephen J; Merchant, Andrew; Bleby, Timothy M; Grierson, Pauline F

    2008-07-01

    This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.

  3. Osmotic Gradients Induce Bio-reminiscent Morphological Transformations in Giant Unilamellar Vesicles

    Directory of Open Access Journals (Sweden)

    Kamila eOglecka

    2012-05-01

    Full Text Available We report observations of large-scale, in-plane and out-of-plane membrane deformations in giant uni- and multilamellar vesicles composed of binary and ternary lipid mixtures in the presence of net transvesicular osmotic gradients. The lipid mixtures we examined consisted of binary mixtures of DOPC and DPPC lipids and ternary mixtures comprising POPC, sphingomyelin, and cholesterol over a range of compositions – both of which produce co-existing phases for selected ranges of compositions at room temperature under thermodynamic equilibrium. In the presence of net osmotic gradient, we find that the in-plane phase separation potential of these mixtures is non-trivially altered and a variety of out-of-plane morphological remodeling occurs. The repertoire of membrane deformations we observe display striking resemblance to their biological counterparts in live cells encompassing vesiculation, membrane fission and fusion, tubulation and pearling, as well as expulsion of entrapped vesicles from multicompartmental GUV architectures through large, self-healing transient pores. These observations suggest that the forces introduced by simple osmotic gradients across membrane boundaries could act as a trigger for shape-dependent membrane and vesicle trafficking activities. We speculate that such coupling of osmotic gradients with membrane properties might have provided lipid-mediated mechanisms during the early evolution of membrane compartmentalization in the absence of osmoregulatory protein machinery.

  4. Stable-carbon isotopic composition of maple sap and foliage

    International Nuclear Information System (INIS)

    Leavitt, S.W.; Long, A.

    1985-01-01

    The 13 C/ 12 C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and 13 C/ 12 C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the 13 C/ 12 C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose→glucose→cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The 13 C/ 12 C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season. (author)

  5. The effects of exogenous proline and osmotic stress on morpho ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... For evaluation of growth parameters of strawberry callus under osmotic stress and exogenous proline, embryonic calli were transferred to Murashige and Skoog (MS) medium containing four sucrose. (osmotic stress) treatments including 3, 6, 9 and 12% and various concentrations of exogenous L- proline ...

  6. The effects of exogenous proline and osmotic stress on morpho ...

    African Journals Online (AJOL)

    For evaluation of growth parameters of strawberry callus under osmotic stress and exogenous proline, embryonic calli were transferred to Murashige and Skoog (MS) medium containing four sucrose (osmotic stress) treatments including 3, 6, 9 and 12% and various concentrations of exogenous Lproline (0, 2.5, 5 and 10 ...

  7. Osmotic Power: A Fresh Look at an Old Experiment

    Science.gov (United States)

    Dugdale, Pam

    2014-01-01

    Electricity from osmotic pressure might seem a far-fetched idea but this article describes a prototype in Norway where the osmotic pressure generated between salt and fresh water drives a turbine. This idea was applied in a student investigation, where they were tasked with researching which alternative materials could be used for the…

  8. 21 CFR 864.6600 - Osmotic fragility test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Osmotic fragility test. 864.6600 Section 864.6600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6600 Osmotic fragility...

  9. Improved Erythrocyte Osmotic Fragility and Packed Cell Volume ...

    African Journals Online (AJOL)

    Improved Erythrocyte Osmotic Fragility and Packed Cell Volume following administration of Aloe barbadensis Juice Extract in Rats. ... Abstract. Aloe barbadensis is a popular house plant that has a long history of a multipurpose folk remedy. ... Keywords: osmotic fragility, packed cell volume, haemoglobin, Aloe vera ...

  10. On the use of phloem sap δ13C to estimate canopy carbon discrimination

    Science.gov (United States)

    Rascher, Katherine; Máguas, Cristina; Werner, Christiane

    2010-05-01

    Although the carbon stable isotope composition (d13C) of bulk leaf material is a good integrative parameter of photosynthetic discrimination and can be used as a reliable ecological index of plant functioning; it is not a good tracer of short-term changes in photosynthetic discrimination. In contrast, d13C of phloem sap is potentially useful as an indicator of short-term changes in canopy photosynthetic discrimination. However, recent research indicates that d13C signatures may be substantially altered by metabolic processes downstream of initial leaf-level carbon fixation (e.g. post-photosynthetic fractionation). Accordingly, before phloem sap d13C can be used as a proxy for canopy level carbon discrimination an understanding of factors influencing the degree and magnitude of post-photosynthetic fractionation and how these vary between species is of paramount importance. In this study, we measured the d13C signature along the basipetal transport pathway in two co-occurring tree species in the field - an understory invasive exotic legume, Acacia longifolia, and a native pine, Pinus pinaster. We measured d13C of bulk leaf and leaf water soluble organic matter (WSOM), phloem sap sampled at two points along the plant axis and leaf and root dark respiration. In general, species differences in photosynthetic discrimination resulted in more enriched d13C values in the water-conserving P. pinaster relative to the water-spending A. longifolia. Post-photosynthetic fractionation led to differences in d13C of carbon pools along the plant axis with progressively more depleted d13C from the canopy to the trunk (~6.5 per mil depletion in A. longifolia and ~0.8per mil depletion in P. pinaster). Leaf and root respiration, d13C, were consistently enriched relative to putative substrates. We hypothesize that the pronounced enrichment of leaf respired CO2 relative to leaf WSOM may have left behind relatively depleted carbon to be loaded into the phloem resulting in d13C depletion

  11. 14CO2 labeling: a reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crops

    International Nuclear Information System (INIS)

    Singh, Bhupinder; Ahuja, Sumedha; Pandey, Renu; Singhal, R.K.

    2014-01-01

    Ability of roots to release organic compounds in its rhizosphere is known to improve plant available nutrients and reduces heavy metal toxicity by immobilization. It is regarded as an important determinant of micro nutrient deficiency tolerance in plants. Uptake of nutrients and translocation of photoassimilates, on the other hand are governed by the strength of the transpiration stream and sink demand respectively. Measurement of vascular sap flow, thus, is critical for understanding of the translocation efficiency and consequently the sink demand that keeps changing during the crop growth cycle. Measurement of the root exudation capacity and the vascular sap flow is cumbersome and time consuming. Since, the exudates released by the roots and the photosynthates translocated between the source and the sink are essentially carbon compounds, use of labeled carbon as tag could potentially be exploited for a rapid and reliable measurement of exudation and vascular sap flow in crop plants. We report here the experimental results involving 14 C labeling of groundnut, a legume crop, as 14 CO 2 generated by acidification of sodium bicarbonate. An additional factor of seed gamma irradiation was used to generate variability in the root exudation and the sap flow. The 14 C release by the roots was compared against the 14 C transport in the vascular sap. An experimental hypothesis that a higher 14 C level in the vascular sap would indicate a higher root release of carbon by the roots into the rhizosphere was verified. (author)

  12. The Effect of Sub-Auroral Polarization Streams (SAPS) on Ionosphere and Thermosphere during 2015 St. Patrick's Day storm: Global Ionosphere-Thermosphere Model (GITM) Simulations

    Science.gov (United States)

    Guo, J.; Deng, Y.; Zhang, D.; Lu, Y.; Sheng, C.

    2017-12-01

    Sub-Auroral Polarization Streams (SAPS) are incorporated into the non-hydrostatic Global Ionosphere-Thermosphere Model (GITM), revealing the complex effects on neutral dynamics and ion-neutral coupling processes. The intense westward ion stream could enhance the neutral zonal wind within the SAPS channel. Through neutral dynamics the neutrals then divide into two streams, one turns poleward and the other turns equatorward, forming a two-cell pattern in the SAPS-changed wind. The significant Joule heating induced by SAPS also leads to traveling atmospheric disturbances (TAD) accompanied by traveling ionospheric disturbances (TID), increasing the total electron content (TEC) by 2-8 TECu in the mid-latitude ionosphere. We investigate the potential causes of the reported poleward wind surge during the St. Patrick's Day storm in 2015. It is confirmed that Coriolis force on the westward zonal wind can contribute the poleward wind during post-SAPS interval. In addition, the simulations imply that the sudden decrease of heating rate within auroral oval could result in a TAD propagating equatorward, which could also be responsible for the sudden poleward wind surge. This study highlights the complicated effects of SAPS on ion-neutral coupling and neutral dynamics.

  13. An experimental study on Sodalite and SAP matrices for immobilization of spent chloride salt waste

    Science.gov (United States)

    Giacobbo, Francesca; Da Ros, Mirko; Macerata, Elena; Mariani, Mario; Giola, Marco; De Angelis, Giorgio; Capone, Mauro; Fedeli, Carlo

    2018-02-01

    In the frame of Generation IV reactors a renewed interest in pyro-processing of spent nuclear fuel is underway. Molten chloride salt waste arising from the recovering of uranium and plutonium through pyro-processing is one of the problematic wastes for direct application of vitrification or ceramization. In this work, Sodalite and SAP have been evaluated and compared as potential matrices for confinement of spent chloride salt waste coming from pyro-processing. To this aim Sodalite and SAP were synthesized both in pure form and mixed with different glass matrices, i.e. commercially available glass frit and borosilicate glass. The confining matrices were loaded with mixed chloride salts to study their retention capacities with respect to the elements of interest. The matrices were characterized and leached for contact times up to 150 days at room temperature and at 90 °C. SEM analyses were also performed in order to compare the matrix surface before and after leaching. Leaching results are discussed and compared in terms of normalized releases with similar results reported in literature. According to this comparative study the SAP matrix with glass frit binder resulted in the best matrix among the ones studied, with respect to retention capacities for both matrix and spent fuel elements.

  14. A single-probe heat pulse method for estimating sap velocity in trees.

    Science.gov (United States)

    López-Bernal, Álvaro; Testi, Luca; Villalobos, Francisco J

    2017-10-01

    Available sap flow methods are still far from being simple, cheap and reliable enough to be used beyond very specific research purposes. This study presents and tests a new single-probe heat pulse (SPHP) method for monitoring sap velocity in trees using a single-probe sensor, rather than the multi-probe arrangements used up to now. Based on the fundamental conduction-convection principles of heat transport in sapwood, convective velocity (V h ) is estimated from the temperature increase in the heater after the application of a heat pulse (ΔT). The method was validated against measurements performed with the compensation heat pulse (CHP) technique in field trees of six different species. To do so, a dedicated three-probe sensor capable of simultaneously applying both methods was produced and used. Experimental measurements in the six species showed an excellent agreement between SPHP and CHP outputs for moderate to high flow rates, confirming the applicability of the method. In relation to other sap flow methods, SPHP presents several significant advantages: it requires low power inputs, it uses technically simpler and potentially cheaper instrumentation, the physical damage to the tree is minimal and artefacts caused by incorrect probe spacing and alignment are removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Investigation of the Effects of Extracellular Osmotic Pressure on Morphology and Mechanical Properties of Individual Chondrocyte.

    Science.gov (United States)

    Nguyen, Trung Dung; Oloyede, Adekunle; Singh, Sanjleena; Gu, YuanTong

    2016-06-01

    It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic force microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate-dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young's modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young's modulus. Moreover, using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.

  16. MORPHOMETRIC PARAMETERS AND MICRORELIEF OF THE LUMBRICUS CELOMOCYTES IN THE CONDITIONS OF THE OSMOTIC PRESSURE

    Directory of Open Access Journals (Sweden)

    Andrey Andreevich Prisnyi

    2017-10-01

    Full Text Available Background: Study the morphometric parameters and microrelief of the coelomocytes membrane of the Lumbricus representatives in normal and under osmotic pressure. Materials and methods: In the experiments, representatives of three species belonging to the genus Lumbricus were used. To conduct each series of experiments a coelomic liquid of 15 representatives of each species was used. From the circulation system of each individual examined, at least 250 cells were processed. The study of morphometric parameters of coelomocytes was carried out in isotonic conditions, and also with the use of osmotic tests in vitro. The features of the surface topography of coelomocytes were study using the “Integra Vita Probe Nanaboratorium” (NT-MDT, Russia. The analysis of amplitude and functional average statistical parameters of membrane roughness is carried out. The results of the research were processed using statistics methods using the Microsoft Excel 7.0 analysis package. Results: The Lumbricus representatives of revealed differences in the responses of amoebocytes and eleocytes to the effect of osmotic stress. Under the conditions of osmotic pressure, several morphologically different forms were found among the cells of each type. This indicates the potential ability of coelomocytes to spread out on the substrate for any type of osmotic pressure. The change in the topography of the cell membrane of coelomocytes under the hypoosmotic pressure is characterized by a smoothing of the microrelief structures with a decrease in the size of the microvysings and microinvaginations. Conclusion: The microrelief of the coelomocytes membrane reflects the features of their functional status changing under the influence of environmental factors.

  17. Osmotic mechanism of the loop extrusion process

    Science.gov (United States)

    Yamamoto, Tetsuya; Schiessel, Helmut

    2017-09-01

    The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.

  18. Isolated Extrapontine Myelinolysis of Osmotic Demyelination Syndrome

    Directory of Open Access Journals (Sweden)

    Ömer Yılmaz

    2013-01-01

    Full Text Available The osmotic demyelination syndrome (ODS has been identified as a complication of the rapid correction of hyponatremia for decades (King and Rosner, 2010. However, in recent years, a variety of other medical conditions have been associated with the development of ODS, independent of changes in serum sodium which cause a rapid changes in osmolality of the interstitial (extracellular compartment of the brain leading to dehydration of energy-depleted cells with subsequent axonal damage that occurs in characteristic areas (King and Rosner, 2010. Slow correction of the serum sodium concentration and additional administration of corticosteroids seems to be a major prevention step in ODS patients. In the current report we aimed to share a rare case which we observed in our clinic.

  19. Design of an osmotic pressure sensor for sensing an osmotically active substance

    International Nuclear Information System (INIS)

    Ch, Nagesh; Paily, Roy P

    2015-01-01

    A pressure sensor based on the osmosis principle has been designed and demonstrated successfully for the sensing of the concentration levels of an osmotically active substance. The device is fabricated using the bulk micro-machining technique on a silicon on insulator (SOI) substrate. The substrate has a square cavity on the bottom side to fill with the reference glucose solution and a silicon (Si) membrane on the top side for the actuation. Two sets of devices, having membrane thicknesses of 10 µm and 25 µm, but the same area of 3 mm ×3 mm, are fabricated. The cavity is filled with a glucose solution of 100 mg dL −1 and it is sealed with a semi-permeable membrane made up of cellulose acetate material. The glucose solution is employed to prove the functionality of the device and it is tested for different glucose concentration levels, ranging from 50 mg dL −1 to 450 mg dL −1 . The output voltage obtained for the corresponding glucose concentration levels ranges from −6.7 mV to 22.7 mV for the 10 µm device and from −1.7 mV to 4 mV for the 25 µm device. The device operation was simulated using the finite element method (FEM) and the finite volume method (FVM), and the simulation and experimental results match closely. A response time of 40 min is obtained in the case of the 10 µm device compared to one of 30 min for the 25 µm device. The response times obtained for these devices are found to be small compared to those in similar works based on the osmosis principle. This pressure sensor has the potential to provide controlled drug delivery if it can be integrated with other microfluidic devices. (paper)

  20. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Directory of Open Access Journals (Sweden)

    Xia Chen

    2018-01-01

    Full Text Available An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis photosynthetic stems, and the sap flux (Js and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII and ΦPSII (effective photochemical quantum yield of PSII values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux and Js,n (nighttime sap flux of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680 than in non-photosynthetic stems species (SlopeSMA = 1.943. These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  1. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  2. Pigmentiphaga aceris sp. nov., isolated from tree sap.

    Science.gov (United States)

    Lee, Soon Dong

    2017-09-01

    Two Gram-stain-negative bacterial strains, SAP-32T and SAP-36, were isolated from sap drawn from the Acer pictum from Mount Halla in Jeju, Republic of Korea. The organisms were strictly aerobic, non-sporulating, motile rods and showed growth at 10-30 °C, pH 7-8 and with 0-2 % NaCl. The major isoprenoid quinone was Q-8. The predominant fatty acids were C16 : 0, cyclo-C17 : 0, summed feature 3 and C18 : 0. The polar lipids contained phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unknown aminophosphoglycolipid, an unknown glycolipid, an unknown phospholipid and two unknown lipids. The DNA G+C content was 64.4 mol%. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that SAP-32T and SAP-36 formed a distinct cluster with members of the genus Pigmentiphaga within the family Alcaligenaceae. Both strains showed 16S rRNA gene sequence similarity of 100 % to each other. The closest relatives of the isolates were Pigmentiphaga daeguensis (97.08 % sequence similarity), Pigmentiphaga kullae (97.01 %) and Pigmentiphaga litoralis (96.73 %). On the basis of data from phenotypic, chemotaxonomic and phylogenetic analyses, SAP-32T (=KCTC 52619T=DSM 104039T) and SAP-36 (=KCTC 52620=DSM 104072) represent members of a novel species of the genus Pigmentiphaga, for which the name Pigmentiphaga aceris sp. nov. is proposed.

  3. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  4. Energy diagnosis in industry: case of SAP Olympic

    International Nuclear Information System (INIS)

    Sandouidi, Ziwendtaore Frederic

    2007-01-01

    The control of the energy consumption became a crucial problem in the production facilities in Burkina Faso. Energy efficiency is a fact that cannot be ignored in the industrial sector because of the rise unceasingly in the prices of the petroleum. Current reality makes it possible to note the extent of the cost of electricity in our country. The economic pressures in all the sectors of the economic activity, unrestrained competitiveness, the removal of the tariff barriers in the UEMAO member countries caused many difficulties for several companies. SAP Olympic, potential consumer of electrical energy, has difficulties in control and optimize its energy consumption. The importance of this consumption of energy is the subject of great debates at this African Company of Tire. The performances of the old installations of energy are often distant from those obtained with the new installations. If it is relatively easy to carry out new powerful installations, the improvement of the energy consumption of the existing installations requires a study on a case-by-case basis, and it is not always possible to find a solution ensuring the same performances as a new installation. It is necessary to set up rigorous methods of follow-up of the calorific and electric consumption of the equipment in order to have a sufficiently precise energy assessment. The energy diagnosis indeed carries out the most relevant choices for our actions of energy saving [fr

  5. Sedimentation equilibria of ferrofluids: II. Experimental osmotic equations of state of magnetite colloids

    International Nuclear Information System (INIS)

    Luigjes, Bob; Thies-Weesie, Dominique M E; Erné, Ben H; Philipse, Albert P

    2012-01-01

    The first experimental osmotic equation of state is reported for well-defined magnetic colloids that interact via a dipolar hard-sphere potential. The osmotic pressures are determined from the sedimentation equilibrium concentration profiles in ultrathin capillaries using a low-velocity analytical centrifuge, which is the subject of the accompanying paper I. The pressures of the magnetic colloids, measured accurately to values as low as a few pascals, obey Van ’t Hoff’s law at low concentrations, whereas at increasing colloid densities non-ideality appears in the form of a negative second virial coefficient. This virial coefficient corresponds to a dipolar coupling constant that agrees with the coupling constant obtained via independent magnetization measurements. The coupling constant manifests an attractive potential of mean force that is significant but yet not quite strong enough to induce dipolar chain formation. Our results disprove van der Waals-like phase behavior of dipolar particles for reasons that are explained. (paper)

  6. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  7. Development and psychometric evaluation of the self-assessment of psoriasis symptoms (SAPS) - clinical trial and the SAPS - real world patient-reported outcomes.

    Science.gov (United States)

    Armstrong, April W; Banderas, Benjamin; Foley, Catherine; Stokes, Jonathan; Sundaram, Murali; Shields, Alan L

    2017-09-01

    The Self-Assessment of Psoriasis Symptoms - Clinical Trials (SAPS-CT) and SAPS - Real World (SAPS-RW) were simultaneously created to assess the experience of plaque psoriasis in two unique contexts. Qualitative and quantitative research was conducted in four phases namely concept elicitation, questionnaire construction, content evaluation and psychometric evaluation. Following concept elicitation, 18 concepts were selected to inform questionnaire construction of the SAPS-CT and SAPS-RW. To accommodate each context of use, the SAPS-CT asks respondents to rate the target symptom 'at its worst' in the 24 h prior to assessment, while the SAPS-RW asks respondents to rate the target symptom "on average" in the 7 days prior to assessment. Cognitive debriefing confirmed that patients could comprehend and provide meaningful responses to both versions and, after minor modifications, resulted in 11-item questionnaires administered in an observational study (N = 200). Results from the observational study informed further item reduction (SAPS-RW to six items and SAPS-CT to nine items) and demonstrated that scores from each were reliable (Cronbach's α > 0.90, test-retest intraclass correlation coefficient >0.70), construct valid and able to differentiate among clinically distinct groups. The SAPS-CT and SAPS-RW are content-valid PRO questionnaires capable of producing psychometrically sound scores when administered chronic to plaque psoriasis patients.

  8. Crescimento, trocas gasosas e potencial osmótico da bananeira-'Prata', submetida a diferentes doses de sódio e cálcio em solução nutritiva Growth, gaseous exchange and osmotic potential of banana 'Prata' plants, exposed to different concentrations of sodium and calcium in nutritive solution

    Directory of Open Access Journals (Sweden)

    LUDMILA LAFETÁ DE MELO NEVES

    2002-08-01

    Full Text Available O cálcio vem sendo utilizado com o intuito de incrementar tolerância a sais nas plantas, pois sabe-se que a salinidade restringe o crescimento e a produtividade de muitas culturas. Este estudo teve por objetivo avaliar os efeitos da aplicação de sódio e cálcio sobre o crescimento inicial, trocas gasosas e potencial osmótico da bananeira (Musa spp. 'Prata' (AAB. Foi utilizado o delineamento experimental em blocos casualizados, com arranjo fatorial 4 x 4 [ 4 doses de sódio ( 0; 5; 10; 15 mmol L-1 e 4 de cálcio ( 2; 4; 8; 12 mmol L-1] e 3 repetições. A emissão total de folhas e o potencial osmótico das plantas não foram influenciados pelos tratamentos. O aumento dos níveis de sódio na solução promoveu redução significativa na massa fresca da parte aérea, altura, área foliar, diâmetro do pseudocaule e massa seca das plantas. A presença de 5 mmol L-1 de Na na solução favoreceu as trocas gasosas. O aumento dos níveis de cálcio na solução promoveu a redução da massa fresca da parte aérea, altura e área foliar da bananeira-'Prata'.The Calcium has been used to increase salt tolerance in plants since salinity restricts growth and productivity in many crops. This study was conducted with the objective of evaluating the effects of sodium and calcium application on the initial growth, gaseous exchange and osmotic potential of banana (Musa spp. 'Prata' plants (AAB. The experimental layout was a 4 x 4 factorial with three replicates in a randomized complete block design. The factors tested were concentrations of sodium (0; 5; 10; 15 mmol L-1 and calcium (2; 4; 8; 12 mmol L-1. The total emition of leaves and the osmotic potential of the plants were not influenced by the treatments. However, the increase in concentrations of sodium in the nutritive solution resulted in significant reduction of the fresh weight of aerial plant parts, height and leaf area of the plants, diameter of the pseudostem, and dry weight of the plants. The

  9. Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Virag, Istvan [L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Cseh, Edit; Fodor, Ferenc [L. Eoetvoes University, Department of Plant Physiology, Budapest (Hungary); Zaray, Gyula [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary)

    2005-10-01

    Flow injection analysis (FIA) and high-performance liquid chromatography double-focusing sector field inductively coupled plasma mass spectrometry (HPLC-DF-ICP-MS) were used for total arsenic determination and arsenic speciation of xylem sap of cucumber plants (Cucumis sativus L.) grown in hydroponics containing 2 {mu}mol dm{sup -3} arsenate or arsenite, respectively. Arsenite [As(III)], arsenate [As(V)] and dimethylarsinic acid (DMA) were identified in the sap of the plants. Arsenite was the predominant arsenic species in the xylem saps regardless of the type of arsenic treatment, and the following concentration order was determined: As(III) > As(V) > DMA. The amount of total As, calculated taking into consideration the mass of xylem sap collected, was almost equal for both treatments. Arsenite was taken up more easily by cucumber than arsenate. Partial oxidation of arsenite to arsenate (<10% in 48 h) was observed in the case of arsenite-containing nutrient solutions, which may explain the detection of arsenate in the saps of plants treated with arsenite. (orig.)

  10. Inner strategies of coping with operational work amongst SAPS officers

    Directory of Open Access Journals (Sweden)

    Masefako A. Gumani

    2013-11-01

    Research purpose: The objective of this study was to describe inner coping strategies used by officers in the Vhembe district (South Africa to reconstruct stressful and traumatic experiences at work. Motivation for the study: Most studies on coping amongst SAPS officers focus on organisational stress and not on the impact of the officers’ operational work. Research design, approach and method: An exploratory design was used and 20 SAPS officers were selected through purposive sampling. In-depth face-to-face and telephone interviews, as well as diaries were used to collect data, which were analysed using content thematic data analysis. Main findings: The results showed that the main categories of coping strategies that led to management of the impact of operational work amongst the selected sample were centred around problem-focused and emotion-focused strategies, with some use of reappraisal and minimal use of avoidance. Considering the context of the officers’ work, the list of dimensions of inner coping strategies amongst SAPS officers should be extended. Practical/managerial implications: Intervention programmes designed for the SAPS, including critical incident stress debriefing, should take the operational officers’ inner strategies into account to improve the management of the impact of their work. Contribution/value-add: This study contributes to the body of knowledge on the inner coping strategies amongst SAPS officers, with special reference to operational work in a specific setting.

  11. Auditoria fiscal previdenciária em ambiente SAP

    Directory of Open Access Journals (Sweden)

    Alexandre David Viva

    2006-12-01

    Full Text Available Este trabalho busca identificar meios para efetuar auditoria fiscal nos bancos de dados do SAP - o mais adotado ERP da atualidade (Bae e Ashcroft, 2004, 1 e 5; Khan, 2005, 5. Pretende-se concentrar no método de acesso às tabelas SAP, um dos cinco métodos de acesso aos bancos de dados de ERP (Neil Raden, 2004, 10. Em um primeiro momento, é necessário o levantamento, por empresa, de uma listagem dos cabeçalhos das tabelas com as quais ela trabalha, em bancos de dados que já alcançam os terabytes (SAP, SAP NetWeaver: 50. Como o SAP é um programa multilíngüe e multiempresarial, suas tabelas são criptografadas, isto é, os nomes das tabelas e de duas colunas não guardam a menor relação com os dados que elas registram (Saphir, 2004, 1. Em um segundo momento, então, por meio do ACL, a listagem de cabeçalhos de tabelas obtida é filtrada. As tabelas que interessam ao Fisco são solicitadas à empresa de uma forma mais precisa, de modo a não sobrecarregar nem a empresa nem do Fisco. Em um terceiro momento, ainda com auxílio do ACL, as tabelas especificadas são analisadas (Primeiros Passos, 2003, 3.

  12. Analysis of bleeding saps and radioactive measurements of deciduous trees

    International Nuclear Information System (INIS)

    Gomernik-Besser, E.

    1993-07-01

    Samples of bleeding sap of Betula pendula Roth, Betula lutea L., Betula papyrifera L., Betula mandshuria L., Salix melichoferi Saut., Cornus florida L., Evodea velutina L., Vitis amurensis L., Acer tartaricum L., Aesculus parviflora L., and Juglans regia L. in the botanical garden in Graz have been collected during springs of 1987, 1988, and 1989. After a special treatment (ion-exchange and freeze-drying) the bleeding saps have been searched for the compounds of sugars, amino acids and organic acids by gaschromatrography. LAMMA-spectra showed the ion composition, and radioactivity measurements on leaves of the trees have also been made. In all bleeding saps sugars could be identified in various concentrations, mainly glucose and fructose. All trees showed nearly the same acid spectrum, and the most common ingredient was malic acid. In the bleeding saps of the Betulaceae and Juglans regia the major constituent was citrulline. In Acer tartaricum allantoine was present in large concentration. In Evodea velutina, Aesculus parviflora, Vitis amurensis and Cornus florida glutamin could be identified in large concentration. After the reactor accident of Tschernobyl in April 1986 the number of synthetic radionuclides increased and they could be identified. The LAMMA-spectra showed high contents of potassium and calcium in the bleeding saps. (author)

  13. Analysis of bleeding saps and radioactive measurements of deciduous trees

    International Nuclear Information System (INIS)

    Gomernik-Besser, E.

    1993-07-01

    Samples of bleeding sap of Betula pendula Roth, Betula lutea L., Betula papyrifera L., Betula mandshuria L., Salix mielichoferi Saut., Cornus florida L., Evodea velutina L., Vitis amurensis L., Acer tartaricum L., Aesculus parviflora L., and Juglans regia L. in the botanical garden in Graz have been collected during springs of 1987, 1988, and 1989. After a special treatment (ion-exchange and freeze-drying) the bleeding saps have been searched for the compounds of sugars, amino acids and organic acids by gas-chromatrography. LAMMA-spectra showed the ion composition, and radioactivity measurements on leaves of the trees have also been made. In all bleeding saps sugars could be identified in various concentrations, mainly glucose and fructose. All trees showed nearly the same acid spectrum, and the most common ingredient was malic acid. In the bleeding saps of the Betulaceae and Juglans regia the major constituent was citrulline. In Acer tartaricum allantoine was present in large concentration. In Evodea velutina, Aesculus parviflora, Vitis amurensis and Cornus florida glutamin could be identified in large concentration. After the reactor accident of Tschernobyl in April 1986 the number of synthetic radionuclides increased and they could be identified. The LAMMA-spectra showed high contents of kalium and calcium in the bleeding saps. (author)

  14. Self-assembly of silk fibroin under osmotic stress

    Science.gov (United States)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  15. Mechanism of actuation in conducting polymers: Osmotic expansion

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben; West, Keld

    2001-01-01

    Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansion...... is compared with measurements on PPy(DBS) films. The experiments show that the expansion decreases as the electrolyte concentration is increased. This means that a considerable part of the total expansion is due to the osmotic effect. The osmotic effect should be taken into account when interpreting...

  16. Impact of LbSapSal Vaccine in Canine Immunological and Parasitological Features before and after Leishmania chagasi-Challenge.

    Directory of Open Access Journals (Sweden)

    Lucilene Aparecida Resende

    Full Text Available Dogs represent the most important domestic reservoir of L. chagasi (syn. L. infantum. A vaccine against canine visceral leishmaniasis (CVL would be an important tool for decreasing the anxiety related to possible L. chagasi infection and for controlling human visceral leishmaniasis (VL. Because the sand fly salivary proteins are potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in past decades. We investigated the immunogenicity of the "LbSapSal" vaccine (L. braziliensis antigens, saponin as adjuvant, and Lutzomyia longipalpis salivary gland extract in dogs at baseline (T0, during the post-vaccination protocol (T3rd and after early (T90 and late (T885 times following L. chagasi-challenge. Our major data indicated that immunization with "LbSapSal" is able to induce biomarkers characterized by enhanced amounts of type I (tumor necrosis factor [TNF]-α, interleukin [IL]-12, interferon [IFN]-γ cytokines and reduction in type II cytokines (IL-4 and TGF-β, even after experimental challenge. The establishment of a prominent pro-inflammatory immune response after "LbSapSal" immunization supported the increased levels of nitric oxide production, favoring a reduction in spleen parasitism (78.9% and indicating long-lasting protection against L. chagasi infection. In conclusion, these results confirmed the hypothesis that the "LbSapSal" vaccination is a potential tool to control the Leishmania chagasi infection.

  17. Effect of drought and abscisic acid application on the osmotic adjustment of four wheat cultivars

    International Nuclear Information System (INIS)

    Iqbal, S.; Bano, A.

    2010-01-01

    The accumulation of osmolytes in leaf tissues and the abscisic acid-induced stomatal closure are well-recognized mechanisms associated with drought tolerance in crop plants. We determine the response in terms of osmotic potential and the contents of leaf proline, glycine betaine and soluble sugar at booting and grain filling stages of four wheat (Triticum aestivum L.) cultivars to drought and exogenously applied abscisic acid (ABA) in a pot study. Leaf sample were collected 3, 6 and 9 days after drought induction and at 48 and 72 h of re-watering (recovery). Marked decreases in osmotic potential associated with the accumulation of proline, glycine betaine and soluble sugars occurred under conditions of drought stress Accession 011320 was most sensitive to drought and showed the largest decrease in osmotic potential and least accumulation of proline, sugar and glycine betaine The inhibitory effects of drought stress were ameliorated by exogenous application of ABA. This ameliorating effect was more pronounced at the booting than at grain filling stage particularly in the sensitive accession 011320. Upon rewatering the recovery from drought stress was found to be greater in case of abscisic acid application. The leaf praline content is seen to be a suitable indicator for selecting drought-tolerant genotypes. (author)

  18. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity level

    DEFF Research Database (Denmark)

    Hariadi, Yuda; Marandon, Karl; Tian, Yu

    2011-01-01

    or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment......Cl-induced activation of H+-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K+ leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na...

  19. SAP and life-cycle management in the upstream

    International Nuclear Information System (INIS)

    Davis, B.

    1997-01-01

    Business relationships today depend more than ever on changing alliances and partnerships to leverage risk in a commodity market. SAP is a fully integrated, enterprise-wide software system that uses business processes tightly integrated around a common data model to facilitate these business relationships across the oil and gas supply chain. The SAP modules contain the business processes that are needed to handle the logistics and operations maintenance for operating an oil or gas field. Each industry has unique business-process requirements that the core SAP application set may not cover. In the oil and gas business, there are unique financial requirements in the upstream for working in joint ventures. In the downstream business segment, handling bulk hydrocarbons requires additional functionality

  20. SAP FLOW RESPONSE OF CHERRY TREES TO WEATHER CONDITION

    Directory of Open Access Journals (Sweden)

    Á. JUHÁSZ

    2011-03-01

    Full Text Available Sap flow response of cherry trees to weather condition. Themain goal of our study is to measure water-demand of cherry trees budded ontodifferent rootstocks by sapflow equipment and to study the sap flow response to themeteorological factors. The investigations are carried out in Soroksár in Hungary at‘Rita’ sweet cherry orchard. The pattern of sapflow was analyzed in relation ofsolar radiation, vapour pressure deficit and air temperature. Between solar radiationand sap flow was found a parabolic relation, daily pattern of sapflow is in closerelation (cubic also to vapour pressure deficit. No significant relationship existedbetween sapflow and air temperature. The sapflow performance of sweet cherrytrees on different rootstocks showed typical daily characters.

  1. The influence of alkalinity of portland cement on the absorption characteristics of superabsorbent polymers (SAP) for use in internally cured concrete

    Science.gov (United States)

    Tabares Tamayo, Juan D.

    The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking. This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions to provide a better understanding of: (1) the influence of the chemistry of the pore solution (i.e. its level of alkalinity and the type of ionic species present) on the absorption capacity of SAP, and (2) the effectiveness of SAP with different absorption capacities as an internal curing agent. This research work was divided into three stages: (a) materials characterization, (b) measurement of absorption capacity of SAP in synthetic pore solutions, and (c) evaluation of the internal curing effectiveness of SAP. During the first stage (Materials Characterization), pore solutions were extracted from the fresh (5 minutes old) cement pastes prepared using cements with three different levels of alkalinity. The pH values of the extracted solutions were determined (using the pH meter) and their chemical analysis was performed by means of titration (concentration of hydroxyl), ion chromatography (sulfates and chlorides), atomic absorption (AA) and inductively coupled plasma optical emission spectrometry (ICP) (sodium, potassium and calcium). The commercial SAP adopted for this study was used with "as-supplied" gradation and with the finer gradation obtained by grinding the original polymer in the 6850 Cryomilling Freezer/Mill. The physical properties of these SAP's, such

  2. Osmotic potential of Zinnia elegans plant material affects the yield ...

    African Journals Online (AJOL)

    To examine whether the growth conditions that determine leaf osmolarity (LO) affect the final %TE, we used three light intensities (50, 70 and 100 μmol.m-2s-1) and three electrical conductivity (EC) levels (EC 2, 4 and 6 dS.m-1 ) in hydroponic systems to induce different osmolarities in leaf materials from two cultivars (cvs) of ...

  3. Germination at low osmotic potential as a selection criteria for ...

    African Journals Online (AJOL)

    user

    2014-01-08

    Jan 8, 2014 ... 1Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,. Malaysia. .... papers at 26°C. The germination data were recorded daily. ... (D) and D is the number of counted days from the beginning of ... USA, SAS (r) Proprietary Software 9.2 (TS1M0)).

  4. Osmotic potential of Zinnia elegans plant material affects the yield ...

    African Journals Online (AJOL)

    Jane

    2010-12-20

    Dec 20, 2010 ... The Zinnia elegans cell suspension culture is excellent for ... development and therefore dimensions of TEs in an in vitro .... Electrical conductivity and light intensity effects on ..... cell wall formation in the woody dicot stem.

  5. SAPFLUXNET: towards a global database of sap flow measurements.

    Science.gov (United States)

    Poyatos, Rafael; Granda, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Steppe, Kathy; Martínez-Vilalta, Jordi

    2016-12-01

    Plant transpiration is the main evaporative flux from terrestrial ecosystems; it controls land surface energy balance, determines catchment hydrological responses and influences regional and global climate. Transpiration regulation by plants is a key (and still not completely understood) process that underlies vegetation drought responses and land evaporative fluxes under global change scenarios. Thermometric methods of sap flow measurement have now been widely used to quantify whole-plant and stand transpiration in forests, shrublands and orchards around the world. A large body of research has applied sap flow methods to analyse seasonal and diurnal patterns of transpiration and to quantify their responses to hydroclimatic variability, but syntheses of sap flow data at regional to global scales are extremely rare. Here we present the SAPFLUXNET initiative, aimed at building the first global database of plant-level sap flow measurements. A preliminary metadata survey launched in December 2015 showed an encouraging response by the sap flow community, with sap flow data sets from field studies representing >160 species and >120 globally distributed sites. The main goal of SAPFLUXNET is to analyse the ecological factors driving plant- and stand-level transpiration. SAPFLUXNET will open promising research avenues at an unprecedented global scope, namely: (i) exploring the spatio-temporal variability of plant transpiration and its relationship with plant and stand attributes, (ii) summarizing physiological regulation of transpiration by means of few water-use traits, usable for land surface models, (iii) improving our understanding of the coordination between gas exchange and plant-level traits (e.g., hydraulics) and (iv) analysing the ecological factors controlling stand transpiration and evapotranspiration partitioning. Finally, SAPFLUXNET can provide a benchmark to test models of physiological controls of transpiration, contributing to improve the accuracy of

  6. The efficiency of SAP in improving the HR performance case study ...

    African Journals Online (AJOL)

    The efficiency of SAP in improving the HR performance case study: Masdar ... administrative and strategic levels, as well as identifying the contribution of ... Keywords: SAP, human resources management, Masdar Building Materials Company ...

  7. Efficiency of Osmotic Dehydration of Apples in Polyols Solutions

    Directory of Open Access Journals (Sweden)

    Joanna Cichowska

    2018-02-01

    Full Text Available The present study aimed to evaluate the influence of selected compounds from the polyol group, as well as other saccharides, on the osmotic dehydration process of apples. The following alternative solutions were examined: erythritol, xylitol, maltitol, inulin and oligofructose. Efficiency of the osmotic dehydration process was evaluated based on the kinetics of the process, and through comparison of the results obtained during the application of a sucrose solution. This innovative research utilizes alternative solutions in osmotic pretreatment, which until now, have not been commonly used in fruit processing by researchers worldwide. Results indicate that erythritol and xylitol show stronger or similar efficiency to sucrose; however, the use of inulin, as well as oligofructose, was not satisfactory due to the insufficient, small osmotic driving forces of the process, and the low values of mass transfer parameters.

  8. Efficiency of Osmotic Dehydration of Apples in Polyols Solutions.

    Science.gov (United States)

    Cichowska, Joanna; Żubernik, Joanna; Czyżewski, Jakub; Kowalska, Hanna; Witrowa-Rajchert, Dorota

    2018-02-17

    The present study aimed to evaluate the influence of selected compounds from the polyol group, as well as other saccharides, on the osmotic dehydration process of apples. The following alternative solutions were examined: erythritol, xylitol, maltitol, inulin and oligofructose. Efficiency of the osmotic dehydration process was evaluated based on the kinetics of the process, and through comparison of the results obtained during the application of a sucrose solution. This innovative research utilizes alternative solutions in osmotic pretreatment, which until now, have not been commonly used in fruit processing by researchers worldwide. Results indicate that erythritol and xylitol show stronger or similar efficiency to sucrose; however, the use of inulin, as well as oligofructose, was not satisfactory due to the insufficient, small osmotic driving forces of the process, and the low values of mass transfer parameters.

  9. Method of osmotic energy harvesting using responsive compounds and molecules

    KAUST Repository

    Hu, Xiao; Cai, Yufeng; Lai, Zhiping; Zhong, Yujiang

    2017-01-01

    The present invention discloses and claims a more efficient and economical method and system for osmotic energy production and capture using responsive compounds and molecules. The present invention is an energy harvest system enabled by stimuli

  10. Plant response to sunflower seeds to osmotic conditioning

    Directory of Open Access Journals (Sweden)

    Camila Santos Barros de Morais

    2014-10-01

    Full Text Available The aim of this study was to evaluate the effect of seeds osmotic conditioning in seedlings emergence and plants performance of sunflower. Three lots of seeds sunflower (Catissol, was submited to osmotic conditioning with polyethylene glycol solution, –2,0 MPa in aerated system, under 15 ºC for 8 hour and then was evaluated for germination tests and vigour. Under filed conditions was conducted emergency evaluations of seedling, plants development as well as the productivity and seeds quality, and the accumulation of nutrients in the seeds. The osmotic conditioning improve the survival of seedling, the dry matter mass to aerial part of plants from 60 days after sowing and oil content, in lots with low seeds physiological quality. The osmotic conditioning not increase the seeds yield but promotes the vigour of seeds produced, regardless of the lot used for sowing seeds.

  11. A physiological evaluation of the enhanced osmotic stress tolerance ...

    African Journals Online (AJOL)

    ELO

    2012-01-05

    Jan 5, 2012 ... SR3 and Jinan 177 were hydroponically subjected to osmotic stress, the accumulation of proline .... hydroponically in half strength Hoagland's solution for three weeks ..... ascrobate specific peroxidase in spinach chloroplasts.

  12. Method of osmotic energy harvesting using responsive compounds and molecules

    KAUST Repository

    Hu, Xiao

    2017-07-27

    The present invention discloses and claims a more efficient and economical method and system for osmotic energy production and capture using responsive compounds and molecules. The present invention is an energy harvest system enabled by stimuli responsive draw solutions that are competent in terms of energy production, geographic location flexibility, and the affordable, efficient and economical production and delivery of osmotic power. Specifically, the present invention is a novel osmotic power system that uses stimuli responsive draw solutions, economically feasible larger permeable membranes, and low grade heat sources to deliver osmotic power more efficiently and economically with less negative environmental impact, greater power output, and located in more geographically diverse areas of the world than previously thought possible for supporting such a power source.

  13. Managing the Technology Acquisition Integration Paradox at SAP

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Kude, Thomas; Popp, Karl Michael

    2016-01-01

    rests in ensuring critical speed while not compromising accuracy in the integration process. For SAP, the Product Council became a vital component in its technology acquisition capability that allows the company to retain its technological edge in the hypercompetitive software industry.......In this paper, we report on a novel approach developed by SAP AG, the German enterprise software company, for managing the integration of acquisitions of companies to access innovative technologies and related capabilities: the Product Council approach. The value of the Product Council approach...

  14. Improvement of lipid yield from microalgae Spirulina platensis using ultrasound assisted osmotic shock extraction method

    Science.gov (United States)

    Adetya, NP; Hadiyanto, H.

    2018-01-01

    Microalgae Spirulina sp. has been identified as potential source of natural food supplement and food colorant. The high water content of microalgae (70-90%) causes an obstacle in biomass dehydration which requires large amounts of energy, eventually damaging the lipid in the microalgae. Therefore, the lipid must be extracted by using a suitable method which complies to wet biomass conditions. One of the methods is applying osmotic shock. This study was aimed to investigate the influence of osmotic agent (NaCl) concentration (10-30%) and extraction time (20-50 min) on yield of lipid and also to determine the optimal conditions in the extraction process through response surface methodology. The extraction was conducted at a temperature of 40°C under ultrasound frequency of 40 kHz. The result showed that the optimum yield lipid obtained was 6.39% in 16.98% NaCl concentration for 36 minutes 10 seconds.

  15. Experimental Support for a Predictive Osmotic Model of Clay Membranes

    International Nuclear Information System (INIS)

    Fritz, S.J.

    2001-01-01

    Osmosis has been cited as a mechanism for explaining anomalously high fluid pressures in the subsurface. Clays and shales act as membranes, and osmotic flux across these units may result in pressures sufficiently high to explain these anomalies. The theoretical osmotic pressures as calculated solely from solution properties can be quite large; however, it is not yet resolved whether these geologic membranes are sufficiently ideal to generate such pressures

  16. Osmotic and stimulant laxatives for the management of childhood constipation

    OpenAIRE

    Gordon, Morris; Macdonald, John; Parker, Claire; Akobeng, Anthony; Thomas, Adrian

    2016-01-01

    Background\\ud \\ud Constipation within childhood is an extremely common problem. Despite the widespread use of osmotic and stimulant laxatives by health professionals to manage constipation in children, there has been a long standing paucity of high quality evidence to support this practice.\\ud \\ud \\ud Objectives\\ud \\ud We set out to evaluate the efficacy and safety of osmotic and stimulant laxatives used to treat functional childhood constipation.\\ud \\ud \\ud Search methods\\ud \\ud We searched ...

  17. Osmotic pressure in a bacterial swarm.

    Science.gov (United States)

    Ping, Liyan; Wu, Yilin; Hosu, Basarab G; Tang, Jay X; Berg, Howard C

    2014-08-19

    Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼ 30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼ 120 μm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (∼ 30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. 49 CFR 40.281 - Who is qualified to act as a SAP?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Who is qualified to act as a SAP? 40.281 Section... § 40.281 Who is qualified to act as a SAP? To be permitted to act as a SAP in the DOT drug and alcohol.... (2) You must be knowledgeable about the SAP function as it relates to employer interests in safety...

  19. 30 CFR 285.610 - What must I include in my SAP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my SAP? 285.610 Section... Requirements Contents of the Site Assessment Plan § 285.610 What must I include in my SAP? Your SAP must... SAP, you must provide the following information: ER29AP09.115 (b) You must provide the results of...

  20. Five years' experience of the new SAPs: overview and way forward

    International Nuclear Information System (INIS)

    Pape, R.P.

    1998-01-01

    This paper gives an overview of the five years' experience gained in applying the new safety assessment principles (SAPs). Beginning with a brief history of SAPs, it goes on to discuss their structure and their relevance to safety matters. It develops some of the more basic issues which users have to bear in mind and also considers how SAPs are used by NII. Finally, there is a look forward to future developments in SAPs usage and application. (author)

  1. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Science.gov (United States)

    Marcińska, Izabela; Czyczyło-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T.; Janowiak, Franciszek; Filek, Maria; Dziurka, Michał; Dziurka, Kinga; Waligórski, Piotr; Juzoń, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanisław

    2013-01-01

    The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity

  2. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    Katarzyna Cyganek

    2013-06-01

    Full Text Available The aim of the study was to assess the role of salicylic acid (SA and abscisic acid (ABA in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1 and drought resistant (CS wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM or ABA (0.1 μM to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa. The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant

  3. Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication.

    Science.gov (United States)

    Zhu, Zixiang; Yang, Fan; Zhang, Keshan; Cao, Weijun; Jin, Ye; Wang, Guoqing; Mao, Ruoqing; Li, Dan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2015-10-02

    Leader protein (L(pro)) of foot-and-mouth disease virus (FMDV) manipulates the activities of several host proteins to promote viral replication and pathogenicity. L(pro) has a conserved protein domain SAP that is suggested to subvert interferon (IFN) production to block antiviral responses. However, apart from blocking IFN production, the roles of the SAP domain during FMDV infection in host cells remain unknown. Therefore, we identified host proteins associated with the SAP domain of L(pro) by a high-throughput quantitative proteomic approach [isobaric tags for relative and absolute quantitation (iTRAQ) in conjunction with liquid chromatography/electrospray ionization tandem mass spectrometry]. Comparison of the differentially regulated proteins in rA/FMDVΔmSAP- versus rA/FMDV-infected SK6 cells revealed 45 down-regulated and 32 up-regulated proteins that were mostly associated with metabolic, ribosome, spliceosome, and ubiquitin-proteasome pathways. The results also imply that the SAP domain has a function similar to SAF-A/B besides its potential protein inhibitor of activated signal transducer and activator of transcription (PIAS) function. One of the identified proteins UBE1 was further analyzed and displayed a novel role for the SAP domain of L(pro). Overexpression of UBE1 enhanced the replication of FMDV, and knockdown of UBE1 decreased FMDV replication. This shows that FMDV manipulates UBE1 for increased viral replication, and the SAP domain was involved in this process.

  4. Osmotic dehydration of fruits and vegetables: a review.

    Science.gov (United States)

    Yadav, Ashok Kumar; Singh, Satya Vir

    2014-09-01

    The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effects of osmotic dehydration have been reviewed. Studied showed that combination of different osmotic agents were more effective than sucrose alone due to combination of properties of solutes. During the experiments it was found that optimum osmosis was found at approximately 40 °C, 40 °B of osmotic agent and in near about 132 min. Pretreatments also leads to increase the osmotic process in fruits and vegetables. Mass transfer kinetics study is an important parameter to study osmosis. Solids diffusivity were found in wide range (5.09-32.77 kl/mol) studied by Fick's laws of diffusion. These values vary depending upon types of fruits and vegetables and osmotic agents.

  5. Mass transfer kinetics during osmotic dehydration of pomegranate arils.

    Science.gov (United States)

    Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati

    2011-01-01

    The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products.

  6. PHOTOMETRIC EVIDENCE FOR THE OSMOTIC BEHAVIOR OF RAT LIVER MICROSOMES

    Science.gov (United States)

    Tedeschi, Henry; James, Joseph M.; Anthony, William

    1963-01-01

    Electron microscope observations are consistent with the interpretation that the elements of the endoplasmic reticulum are osmotically active in situ as well as after isolation. More recently, it has been reported that microsomal suspensions equilibrate almost completely with added C14-sucrose and that no osmotic behavior is evident from photometric data. These findings were considered at variance with the electron microscope data. However, equilibration with added label simply attests to a relatively high permeability, and, in addition, the photometric data need not be critical. Osmotic volume changes, measured photometrically, may be masked by concomitant events (e.g., changes in the refractive index of the test solutions at varying osmotic pressures, breakdown of the particles, and agglutination). For these reasons the photometric experiments were repeated. In this work, the reciprocal of optical density of microsomal suspensions was found to vary linearly with the reciprocal of concentration of the medium at constant refractive index. These changes probably correspond to osmotic volume changes, since the effect was found to be (a) independent of substance used and (b) osmotically reversible. The transmission of the suspension was found to vary with the refractive index of the medium, the concentration of particles, and the wavelength of incident light, according to relationships that are similar to or identical with those obtained for mitochondrial suspensions. PMID:14064105

  7. Flux, rejection and fouling during microfiltration and ultrafiltration of sugar palm sap using a pilot plant scale

    Directory of Open Access Journals (Sweden)

    Wanichapichart, P.

    2006-07-01

    Full Text Available The possibility of using a pilot plant scale microfiltration (MF and ultrafiltration (UF to clarify and reduce number of bacteria, yeast and mould of sugar palm sap was studied. The membrane used was multi channel tubular ceramic membrane (ZrO2-TiO2 with membrane pore size 0.2 and 0.1 μm and molecular weight cut off (MWCO 300 and 50 kDa for microfiltration and ultrafiltration respectively. The experiment was carried out to investigate the rejection of the components in sugar palm sap, permeate flux and fouling characteristics. The results showed that the turbidity, the total solid, the viscosity and the numbers of bacteria, yeast and mould in the permeate obtained by MF and UF were reduced significantly compared to those of fresh sugar palm sap. The total soluble solid, total sugar, reducing sugar and pH were not affected by MF and UF. The permeate fluxes for all membranes were reduced greatly as the volume concentration ratio (VCR increased due to severe fouling. The irreversible fouling on membrane surface and/or inside the membrane tended to increase with increasing membrane pore size or MWCO. The result also suggested that protein and small particle in the sugar palm sap were probably responsible for the internal fouling of large pore size membrane. According to the physical, chemical and microorganism quality results, both MF and UF showed the potential use for improving the quality of sugar palm sap but flux reduction due to fouling was a major problem affecting the process performance.

  8. 49 CFR 40.285 - When is a SAP evaluation required?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false When is a SAP evaluation required? 40.285 Section... § 40.285 When is a SAP evaluation required? (a) As an employee, when you have violated DOT drug and... unless you complete the SAP evaluation, referral, and education/treatment process set forth in this...

  9. 30 CFR 285.613 - How will MMS process my SAP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS process my SAP? 285.613 Section... Requirements Contents of the Site Assessment Plan § 285.613 How will MMS process my SAP? (a) The MMS will review your submitted SAP, and additional information provided pursuant to § 285.611, to determine if it...

  10. 30 CFR 285.606 - What must I demonstrate in my SAP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I demonstrate in my SAP? 285.606 Section 285.606 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE... demonstrate in my SAP? (a) Your SAP must demonstrate that you have planned and are prepared to conduct the...

  11. 49 CFR 40.289 - Are employers required to provide SAP and treatment services to employees?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Are employers required to provide SAP and... Professionals and the Return-to-Duty Process § 40.289 Are employers required to provide SAP and treatment services to employees? (a) As an employer, you are not required to provide a SAP evaluation or any...

  12. 49 CFR 40.297 - Does anyone have the authority to change a SAP's initial evaluation?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Does anyone have the authority to change a SAP's... the Return-to-Duty Process § 40.297 Does anyone have the authority to change a SAP's initial... managed-care provider, any service agent) may change in any way the SAP's evaluation or recommendations...

  13. DMPD: The SAP family of adaptors in immune regulation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15541655 The SAP family of adaptors in immune regulation. Latour S, Veillette A. Se...min Immunol. 2004 Dec;16(6):409-19. (.png) (.svg) (.html) (.csml) Show The SAP family of adaptors in immune ...regulation. PubmedID 15541655 Title The SAP family of adaptors in immune regulation. Authors Latour S, Veill

  14. Loss of Heterozygosity at an Unlinked Genomic Locus Is Responsible for the Phenotype of a Candida albicans sapsapsap6Δ Mutant ▿

    OpenAIRE

    Dunkel, Nico; Morschhäuser, Joachim

    2011-01-01

    The diploid genome of the pathogenic yeast Candida albicans exhibits a high degree of heterozygosity. Genomic alterations that result in a loss of heterozygosity at specific loci may affect phenotypes and confer a selective advantage under certain conditions. Such genomic rearrangements can also occur during the construction of C. albicans mutants and remain undetected. The SAP2 gene on chromosome R encodes a secreted aspartic protease that is induced and required for growth of C. albicans wh...

  15. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap.

    Science.gov (United States)

    Varkonyi-Gasic, Erika; Gould, Nick; Sandanayaka, Manoharie; Sutherland, Paul; MacDiarmid, Robin M

    2010-08-04

    Plant microRNAs (miRNAs) are a class of small, non-coding RNAs that play an important role in development and environmental responses. Hundreds of plant miRNAs have been identified to date, mainly from the model species for which there are available genome sequences. The current challenge is to characterise miRNAs from plant species with agricultural and horticultural importance, to aid our understanding of important regulatory mechanisms in crop species and enable improvement of crops and rootstocks. Based on the knowledge that many miRNAs occur in large gene families and are highly conserved among distantly related species, we analysed expression of twenty-one miRNA sequences in different tissues of apple (Malus x domestica 'Royal Gala'). We identified eighteen sequences that are expressed in at least one of the tissues tested. Some, but not all, miRNAs expressed in apple tissues including the phloem tissue were also detected in the phloem sap sample derived from the stylets of woolly apple aphids. Most of the miRNAs detected in apple phloem sap were also abundant in the phloem sap of herbaceous species. Potential targets for apple miRNAs were identified that encode putative proteins shown to be targets of corresponding miRNAs in a number of plant species. Expression patterns of potential targets were analysed and correlated with expression of corresponding miRNAs. This study validated tissue-specific expression of apple miRNAs that target genes responsible for plant growth, development, and stress response. A subset of characterised miRNAs was also present in the apple phloem translocation stream. A comparative analysis of phloem miRNAs in herbaceous species and woody perennials will aid our understanding of non-cell autonomous roles of miRNAs in plants.

  16. Determining sap sweetness in small sugar maple trees

    Science.gov (United States)

    Melvin R. Koelling

    1967-01-01

    Describes a technique based on the use of a hypodermic needle for determining sap-sugar concentrations in small trees. The technique is applicable to pot cultures in greenhouses and also, with the use of a movable shelter, to seedlings in nursery beds.

  17. Accounting Control Technology Using SAP: A Case-Based Approach

    Science.gov (United States)

    Ragan, Joseph; Puccio, Christopher; Talisesky, Brandon

    2014-01-01

    The Sarbanes-Oxley Act (SOX) revolutionized the accounting and audit industry. The use of preventative and process controls to evaluate the continuous audit process done via an SAP ERP ECC 6.0 system is key to compliance with SOX and managing costs. This paper can be used in a variety of ways to discuss issues associated with auditing and testing…

  18. SAP BusinessObjects Dashboards 4.1 cookbook

    CERN Document Server

    Lai, David

    2015-01-01

    If you are a developer with a good command and knowledge of creating dashboards, but are not yet an advanced user of SAP BusinessObjects Dashboards, then this is the perfect book for you. Prerequisites include a good working knowledge of Microsoft Excel as well as knowledge of basic dashboard practices.

  19. Application of Super Absorbent Polymers (SAP) in Concrete Construction State-of-the-Art Report Prepared by Technical Committee 225-SAP

    CERN Document Server

    Reinhardt, Hans-Wolf

    2012-01-01

    This is the state-of-the-art report prepared by the RILEM TC “Application of Super Absorbent Polymers (SAP) in concrete construction”. It gives a comprehensive overview of the properties of SAP, specific water absorption and desorption behaviour of SAP in fresh and hardening concrete, effects of the SAP addition on rheological properties of fresh concrete, changes of cement paste microstructure and mechanical properties of concrete. Furthermore, the key advantages of using SAP are described in detail: the ability of this material to act as an internal curing agent to mitigate autogenous shrinkage of high-performance concrete, the possibility to use SAP as an alternative to air-entrainment agents in order to increase the frost resistance of concrete, and finally, the benefit of steering the rheology of fresh cement-based materials. The final chapter describes the first existing and numerous prospective applications for this new concrete additive.

  20. Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion.

    Science.gov (United States)

    Zanforlin, Tamiris; Bayer-Santos, Ethel; Cortez, Cristian; Almeida, Igor C; Yoshida, Nobuko; da Silveira, José Franco

    2013-01-01

    To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms. Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. This study provides novel information about the genomic organization, expression and cellular localization of SAP proteins and proposes a triggering role for extracellular SAP

  1. Hydrodynamic bifurcation in electro-osmotically driven periodic flows

    Science.gov (United States)

    Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.

    2018-06-01

    In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.

  2. Regulation of Aquaporin Z osmotic permeability in ABA tri-block copolymer

    Directory of Open Access Journals (Sweden)

    Wenyuan Xie

    2015-08-01

    Full Text Available Aquaporins are transmembrane water channel proteins present in biological plasma membranes that aid in biological water filtration processes by transporting water molecules through at high speeds, while selectively blocking out other kinds of solutes. Aquaporin Z incorporated biomimetic membranes are envisaged to overcome the problem of high pressure needed, and holds great potential for use in water purification processes, giving high flux while keeping energy consumption low. The functionality of aquaporin Z in terms of osmotic permeability might be regulated by factors such as pH, temperature, crosslinking and hydrophobic thickness of the reconstituted bilayers. Hence, we reconstituted aquaporin Z into vesicles that are made from a series of amphiphilic block copolymers PMOXA-PDMS-PMOXAs with various hydrophobic molecular weights. The osmotic permeability of aquaporin Z in these vesicles was determined through a stopped-flow spectroscopy. In addition, the temperature and pH value of the vesicle solutions were adjusted within wide ranges to investigate the regulation of osmotic permeability of aquaporin Z through external conditions. Our results show that aquaporin Z permeability was enhanced by hydrophobic mismatch. In addition, the water filtration mechanism of aquaporin Z is significantly affected by the concentration of H+ and OH- ions.

  3. Soybean mother plant exposure to temperature stress and its effect on germination under osmotic stress

    International Nuclear Information System (INIS)

    Khalil, S.K.; Rehman, A.; Khan, A.Z.; Mexal, J.G.; Zubair, M.; Wahab, S.; Khalil, I.H.; Mohammad, F.

    2010-01-01

    High temperature reduces quality of soybean seed developed at different positions on the plant. The objective of this research was to study the quality of seed produced under different temperature regimes located at different position in the canopy. Soybean plants grown in pots were transferred at first pod stage to three growth chambers fixed at 18/10, 25/15 and 32/20 deg. C day/night temperature having 13/11 hrs day/night length. The plants remained in growth chambers until physiological maturity. Seeds harvested from each growth chamber were exposed to osmotic stress having osmotic potential of -0.5 MPa and unstressed control. Both stressed and control treatments were germinated in three growth chambers fixed at 18, 25 and 35 deg. C. Seed developed at lowest temperature (18/10 deg. C day/night) had maximum germination. Germination decreased linearly with increased day/night temperature and lowest germination was recorded at highest temperature of 32/20 deg. C (day/night). Seed developed at bottom position was heaviest and had better germination compared with seed developed at middle and top position. Seed germination was highest at 25 deg. C and took fewer days to 50% germination than 18 and 25 deg. C. Osmotic stress decreased germination and delayed days to 50% germination than control. It can be concluded that optimum temperature for seed development was 18/10 deg. C (day/night) whereas best germination temperature was 25 deg. C. (author)

  4. Osmotic Compounds Enhance Antibiotic Efficacy against Acinetobacter baumannii Biofilm Communities.

    Science.gov (United States)

    Falghoush, Azeza; Beyenal, Haluk; Besser, Thomas E; Omsland, Anders; Call, Douglas R

    2017-10-01

    Biofilm-associated infections are a clinical challenge, in part because a hydrated matrix protects the bacterial community from antibiotics. Herein, we evaluated how different osmotic compounds (maltodextrin, sucrose, and polyethylene glycol [PEG]) enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Established (24-h) test tube biofilms (strain ATCC 17978) were treated with osmotic compounds in the presence or absence of 10× the MIC of different antibiotics (50 μg/ml tobramycin, 20 μg/ml ciprofloxacin, 300 μg/ml chloramphenicol, 30 μg/ml nalidixic acid, or 100 μg/ml erythromycin). Combining antibiotics with hypertonic concentrations of the osmotic compounds for 24 h reduced the number of biofilm bacteria by 5 to 7 log ( P baumannii strains were similarly treated with 400-Da PEG and tobramycin, resulting in a mean 2.7-log reduction in recoverable bacteria compared with tobramycin treatment alone. Multivariate regression models with data from different osmotic compounds and nine antibiotics demonstrated that the benefit from combining hypertonic treatments with antibiotics is a function of antibiotic mass and lipophilicity ( r 2 > 0.82; P baumannii and Escherichia coli K-12. Augmenting topical antibiotic therapies with a low-mass hypertonic treatment may enhance the efficacy of antibiotics against wound biofilms, particularly when using low-mass hydrophilic antibiotics. IMPORTANCE Biofilms form a barrier that protects bacteria from environmental insults, including exposure to antibiotics. We demonstrated that multiple osmotic compounds can enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities, but viscosity is a limiting factor, and the most effective compounds have lower molecular mass. The synergism between osmotic compounds and antibiotics is also dependent on the hydrophobicity and mass of the antibiotics. The statistical models presented herein provide a basis for predicting the optimal combination of

  5. Functional dependency between the logistics security system and the MySAP ERP in metallurgy

    Directory of Open Access Journals (Sweden)

    P. Ranitović

    2013-10-01

    Full Text Available MySAP ERP - Enterprise Resource Planning (system - solution which provides a whole set of functions for the business analytics, finance, human resources management, logistics and corporate services has developed from SAP R/3. It is one of the main products of the SAP AG German multinational company and as such, it is a very important element of the international industrial and technological security system. By defining the functional dependency between the security systems (logistics security systems and the IT (My SAP ERP systems in metallurgy, a concept for designing MY SAP ERP system in metallurgic industry is defined, based on the security aspects.

  6. Intermolecular crosslinks mediate aggregation of phospholipid vesicles by pulmonary surfactant-associated protein SAP-35

    International Nuclear Information System (INIS)

    Ross, G.R.; Sawyer, J.; Whitsett, J.

    1987-01-01

    Pulmonary surfactant-associated protein, Mr=35,000 (SAP-35) is known to bind phospholipids and is hypothesized to function in the organization of surfactant lipid membranes. SAP-35 has been observed to accelerate the calcium-induced aggregation of phospholipid vesicles. In order to define the molecular domains of SAP-35 which function in phospholipid aggregation, they have measured the light scattering properties (400nm) of purified canine SAP-35-phospholipid vesicle suspensions. Accelerated aggregation of unilamellar vesicles, requires SAP-35 and at least 2mM free calcium. The initial rate of A 400 change is proportional to the amount of native SAP-35 added over lipid:protein molar ratios ranging from 100:1 to 5000:1. Removal of the SAP-35 collagen-like domain and a specific cysteine residue involved in intermolecular disulfide bonding by bacterial collagenase digestion destroys the protein's lipid aggregation activity. Pre-incubation of SAP-35 with dithiothreitol (DTT) under nondenaturing conditions also results in a time-dependent loss of aggregation activity. Sucrose density gradient floatation of SAP-35 with 14 C dipalmitoyl phosphatidycholine labelled vesicles in the absence or presence of DTT suggests retention of SAP-35 lipid binding capacity. These data demonstrate the importance of SAP-35 triple helix and disulfide crosslinking integrity for the aggregation of unilamellar phospholipid vesicles

  7. SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice

    Science.gov (United States)

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172

  8. Serum Amyloid P Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels.

    Science.gov (United States)

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria; Enghild, Jan J

    2017-02-14

    The pentraxin serum amyloid P component (SAP) is secreted by the liver and found in plasma at a concentration of approximately 30 mg/L. SAP is a 25 kDa homopentamer known to bind both protein and nonprotein ligands, all in a calcium-dependent manner. The function of SAP is unclear but likely involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to bind to the generic structure of amyloid deposits and possibly to protect them against proteolysis. In this study, we have characterized the SAP interactome in human plasma containing the physiological Ca 2+ concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins, of which 24 were direct or indirect interaction partners not previously reported. The SAP interactome can be divided into categories that include apolipoproteins, the complement system, coagulation, and proteolytic regulation.

  9. Subauroral Polarization Streams (SAPS) Duration as Determined From Van Allen Probe Successive Electric Drift Measurements

    Science.gov (United States)

    Lejosne, Solène; Mozer, F. S.

    2017-09-01

    We examine a characteristic feature of the magnetosphere-ionosphere coupling, namely, the persistent and latitudinally narrow bands of rapid westward ion drifts called the subauroral polarization streams (SAPS). Despite countless works on SAPS, information relative to their durations is lacking. Here we report on the first statistical analysis of more than 200 near-equatorial SAPS observations based on more than 2 years of Van Allen Probe electric drift measurements. First, we present results relative to SAPS radial locations and amplitudes. Then, we introduce two different ways to estimate SAPS durations. In both cases, SAPS activity is estimated to last for about 9 h on average. However, our estimates for SAPS duration are limited either by the relatively long orbital periods of the spacecraft or by the relatively small number of observations involved. Fifty percent of the events fit within the time interval [0;18] hours.

  10. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease

    NARCIS (Netherlands)

    Lowe-Power, Tiffany M.; Hendrich, Connor G.; Roepenack-Lahaye, von Edda; Li, Bin; Wu, Dousheng; Mitra, Raka; Dalsing, Beth L.; Ricca, Patrizia; Naidoo, Jacinth; Cook, David; Jancewicz, Amy; Masson, Patrick; Thomma, Bart; Lahaye, Thomas; Michael, Anthony J.; Allen, Caitilyn

    2018-01-01

    Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from

  11. Structure and osmotic pressure of ionic microgel dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Hedrick, Mary M. [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Chung, Jun Kyung; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2015-01-21

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.

  12. Drying characteristics of osmotically pretreated cranberries : Energy and quality aspects

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, S.; Marcotte, M. [Agriculture and Agri-Food Canada, St. Hyacinthe, PQ (Canada). Food Research and Development Centre; Poirier, M.; Kudra, T. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2002-06-01

    This paper presents the results of a study in which osmotically pretreated cranberries were dried. The osmotic treatment included dehydration and sugar infusion. The process involved pretreating halved cranberries in a standard osmotic solution followed by freeze-drying, vacuum-drying and air-drying in various dryers, such as cabinet-air-through, fluid bed, pulsed fluid bed, and vibrated fluid bed dryers. The intent was to identify the best drying technology. The comparison criteria selected were energy consumption and product quality. Product quality for freeze-dried berries was quantified based on anthocyanins content, rehydration ratio, color, and taste. Unit heat consumption could be used for selecting the drying method, as all other drying methods yielded similar but slightly lower quality products. The highest energy efficiency was obtained with the vibrated fluid bed and the pulsed fluid bed. It was noted that drying rates were reduced during the second drying period when sugar was infused into the cranberries during osmotic pretreatment, but the total energy consumption was reduced by osmotic dehydration. 22 refs., 1 tab., 5 figs.

  13. Quantification of osmotic water transport in vivo using fluorescent albumin.

    Science.gov (United States)

    Morelle, Johann; Sow, Amadou; Vertommen, Didier; Jamar, François; Rippe, Bengt; Devuyst, Olivier

    2014-10-15

    Osmotic water transport across the peritoneal membrane is applied during peritoneal dialysis to remove the excess water accumulated in patients with end-stage renal disease. The discovery of aquaporin water channels and the generation of transgenic animals have stressed the need for novel and accurate methods to unravel molecular mechanisms of water permeability in vivo. Here, we describe the use of fluorescently labeled albumin as a reliable indicator of osmotic water transport across the peritoneal membrane in a well-established mouse model of peritoneal dialysis. After detailed evaluation of intraperitoneal tracer mass kinetics, the technique was validated against direct volumetry, considered as the gold standard. The pH-insensitive dye Alexa Fluor 555-albumin was applied to quantify osmotic water transport across the mouse peritoneal membrane resulting from modulating dialysate osmolality and genetic silencing of the water channel aquaporin-1 (AQP1). Quantification of osmotic water transport using Alexa Fluor 555-albumin closely correlated with direct volumetry and with estimations based on radioiodinated ((125)I) serum albumin (RISA). The low intraperitoneal pressure probably accounts for the negligible disappearance of the tracer from the peritoneal cavity in this model. Taken together, these data demonstrate the appropriateness of pH-insensitive Alexa Fluor 555-albumin as a practical and reliable intraperitoneal volume tracer to quantify osmotic water transport in vivo. Copyright © 2014 the American Physiological Society.

  14. Structure and osmotic pressure of ionic microgel dispersions

    International Nuclear Information System (INIS)

    Hedrick, Mary M.; Chung, Jun Kyung; Denton, Alan R.

    2015-01-01

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions

  15. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis.

    Science.gov (United States)

    Kumar, Rohitashw; Saraswat, Darpan; Tati, Swetha; Edgerton, Mira

    2015-07-01

    Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually with C. albicans cells overexpressing Sap6 (SAP6 OE and a Δsap8 strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6 strain was attenuated. These hypervirulent strains had highly aggregative colony structure in vitro and higher secreted proteinase activity; however, the levels of proteinase activity of C. albicans Saps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6 OE and Δsap8 cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increased C. albicans adhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis.

  16. Spatial and temporal variations in sap flux density in Japanese cedar (Cryptomeria japonica) trees, central Taiwan

    Science.gov (United States)

    Tseng, Han; Chiu, Chen-Wei; Wey, Tsong-Huei; Kume, Tomonori

    2013-04-01

    Sap flow measurement method is a technique widely used for measuring forest transpiration. However, variations in sap flow distribution can make accurately estimating individual tree-scale transpiration difficult. Significant spatial variations in sap flow across the sapwood within tree have been reported in many studies. In contrast, few studies have discussed azimuthal variations in sap flow, and even fewer have examined their seasonal change characteristics. This study was undertaken to clarify within-tree special and temporal variations in sap flow, and to propose an appropriate design for individual-tree scale transpiration estimates for Japanese cedar trees. The measurement was conducted in a Japanese cedar plantation located in Central Taiwan. Spatial distribution of sap flux density through the sapwood cross-section was measured using Granier's thermal dissipation technique. Sensors were installed at 1.3 m high on the east, west, north and south sides of the stem at 0-2 cm in 8 trees, and at 2-4 cm in the 6 larger trees. We found, in radial profile analysis, that sap flux densities measured at the depth of 2-4 cm were 50 % in average of those measured at depth of 0-2 cm. In azimuthal profile analysis, we found significant azimuthal variations in sap flux density. In one individual tree, the ratio of sap flux density on one aspect to another could be approximately 40-190 %, with no dependency on directions. Both radial and azimuthal profiles in most sample trees were fairly consistent throughout the measurement period. We concluded that radial and azimuthal variations in sap flow across sapwood might introduce significant errors in individual tree-scale transpiration estimations based on single point sap flow measurement, and seasonal change of within-tree spatial variations in sap flow could have insignificant impacts on accuracy of long-term individual tree-scale transpiration estimates. Keywords: transpiration, sap flow measurement, scaling up, sap flow

  17. Influence of osmotic processes on the excess-hydraulic head measured in the Toarcian/Domerian argillaceous formation of Tournemire

    International Nuclear Information System (INIS)

    Tremosa, J.

    2010-01-01

    In the framework of the studies dealing on ability to store radioactive wastes in argillaceous formations, signification of interstitial pressures is an important point to understand water and solutes transport. In very low permeability argillaceous formations, like those studied in the Callovo-Oxfordian of the Paris basin by ANDRA, pore pressure is frequently higher than the theoretical hydrostatic pressure or than the pressure in the surrounding aquifers. Such an overpressure is also measured in the Toarcian/Domerian argillaceous formation (k = 10 -21 m 2 ), studied by the IRSN in the underground research laboratory of Tournemire (Aveyron, France). The hydraulic head profile has been specified in this manuscript and found to present a 30 ±10 m excess head. This excess-head can be due to compaction disequilibrium of the argillaceous formation, diagenetic evolution of the rock, tectonic compression, changes in hydrodynamic boundary conditions or osmotic processes. Amongst these potential causes, chemical osmosis and thermo-osmosis, a fluid flow under a chemical concentration and a temperature gradient, respectively, are expected to develop owing to the small pore size and the electrostatic interactions related to the charged surface of clay minerals. The goal of the work presented here was to study and quantify the contribution of each cause to the measured excess-head. Chemo-osmotic and thermo-osmotic permeabilities were obtained by experiments and using theoretical models. Theoretical models are based on the reproduction of the interactions occurring between the charged surface of clay minerals and pore solution and their up-scaling at the representative elementary volume macroscopic scale. Chemical osmosis phenomenon is related to anionic exclusion and the determination of the chemo-osmotic efficiency requires the resolution of an electrical interactions model. A triple-layer-model which considers diffuse layers overlapping was improved during this thesis to be

  18. Detection of osmotic damages in GRP boat hulls

    Science.gov (United States)

    Krstulović-Opara, L.; Domazet, Ž.; Garafulić, E.

    2013-09-01

    Infrared thermography as a tool of non-destructive testing is method enabling visualization and estimation of structural anomalies and differences in structure's topography. In presented paper problem of osmotic damage in submerged glass reinforced polymer structures is addressed. The osmotic damage can be detected by a simple humidity gauging, but for proper evaluation and estimation testing methods are restricted and hardly applicable. In this paper it is demonstrated that infrared thermography, based on estimation of heat wave propagation, can be used. Three methods are addressed; Pulsed thermography, Fast Fourier Transform and Continuous Morlet Wavelet. An additional image processing based on gradient approach is applied on all addressed methods. It is shown that the Continuous Morlet Wavelet is the most appropriate method for detection of osmotic damage.

  19. Osmotic stress tolerance in semi-terrestrial tardigrades

    DEFF Research Database (Denmark)

    Heidemann, Nanna W T; Smith, Daniel K.; Hygum, Thomas L.

    2016-01-01

    Little is known about ionic and osmotic stress tolerance in tardigrades. Here, we examine salt stress tolerance in Ramazzottius oberhaeuseri and Echiniscus testudo from Nivå (Denmark) and address whether limno-terrestrial tardigrades can enter a state of quiescence (osmobiosis) in the face of high......-ionic osmolytes as compared to NaCl. Ramazzottius oberhaeuseri furthermore readily regained activity following gradual increases in non-ionic osmolytes and NaCl of up to 2434 ± 28 and 1905 ± 3 mOsm kg−1, respectively, showing that short-term acclimation promoted salt stress tolerance. Our results suggest...... that the limno-terrestrial R. oberhaeuseri enters a state of quiescence in the face of high external osmotic pressure and that it, in this state, is highly tolerant of ionic and osmotic stress....

  20. Solute Transfer in Osmotic Dehydration of Vegetable Foods: A Review.

    Science.gov (United States)

    Muñiz-Becerá, Sahylin; Méndez-Lagunas, Lilia L; Rodríguez-Ramírez, Juan

    2017-10-01

    While various mechanisms have been proposed for the water transfer during osmotic dehydration (OD), little progress has been made to understand the mechanisms of solute transfer during osmotic dehydration. The transfer of solutes has been often described only by the diffusion mechanism; however, numerous evidences suggest the participation of a variety of mechanisms. This review deals with the main issues of solute transfer in the OD of vegetables. In this context, several studies suggest that during OD of fruits and vegetables, the migration of solutes is not influenced by diffusion. Thus, new theories that may explain the solute transport are analyzed, considering the influence of the plant microstructure and its interaction with the physicochemical properties of osmotic liquid media. In particular, the surface adhesion phenomenon is analyzed and discussed, as a possible mechanism present during the transfer of solutes in OD. © 2017 Institute of Food Technologists®.

  1. Studies of Protein Solution Properties Using Osmotic Pressure Measurements

    Science.gov (United States)

    Agena, S.; Bogle, David; Pusey, Marc; Agena, S.

    1998-01-01

    Examination of the protein crystallization process involves investigation of the liquid and solid state and a protein's properties in these states. Liquid state studies such as protein self association in solution by light scattering methods or other methods have been used to examine a protein Is properties and therefore its crystallization process and conditions. Likewise can osmotic pressure data be used to examine protein properties and various published osmotic pressure studies were examined by us to correlate osmotic pressure to protein solution properties. The solution behavior of serum albumin, alpha - chymotrypsin, beta - lactoglobulin and ovalbumin was examined over a range of temperatures, pH values and different salt types and concentrations. Using virial expansion and a local composition model the non ideal solution behavior in form of the activity coefficients (thermodynamic) was described for the systems. This protein activity coefficient data was related to a protein's solubility behavior and this process and the results will be presented.

  2. Folding propensity of intrinsically disordered proteins by osmotic stress

    International Nuclear Information System (INIS)

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.

    2016-01-01

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.

  3. Modelling the coupled chemico-osmotic and advective-diffusive transport of nitrate salts in the Callovo-Oxfordian clay

    International Nuclear Information System (INIS)

    Baechler, S.; Croise, J.; Altmann, S.

    2010-01-01

    Document available in extended abstract form only. Fine-grained saturated porous materials can act as a semi-permeable osmotic membrane when exposed to a solute concentration gradient. The ions diffusion is hindered while water movement towards higher concentrations takes place in the semi-permeable membrane. The capacity of the fine-grained porous material to act as a semi permeable osmotic membrane is referred to as the osmotic efficiency (its value is 1 when the membranes is ideal, less than 1 when the membrane is leaky, allowing diffusion). The efficiency to retain ions in solution is dependent on the thickness of the diffuse double layer which itself depends on the solution concentration in the membrane. Clay rich formations have been shown to act as non-ideal semi-permeable membrane. Andra is investigating the Callovo-Oxfordian clay as a host rock for intermediate-level to high-level radioactive waste. In this context, it has been feared that osmotic water flows generated by the release of sodium nitrate salt in high concentrations, out of intermediate radioactive bituminous waste, could induce important over-pressures. The latest would eventually lead to fracturing of the host rock around the waste disposal drifts. The purpose of the present study was to develop a simulation code with the capacity to assess the potential impact of osmosis on: the re-saturation of the waste disposal drifts, the pressure evolution and the solute transport in and around a waste disposal drift. A chemo-osmotic coupled flow and transport model was implemented using the FlexPDE-finite element library. Our model is based on the chemo-osmotic formulation developed by Bader and Kooi, 2005. The model has been extended to highly concentrated solutions based on Pitzer's equation. In order to assess the impact of osmotic flow on the re-saturation time, the model was also designed to allow unsaturated flow modelling. The model configuration consists of an initially unsaturated 2D

  4. Sap flow measurements combining sap-flux density radial profiles with punctual sap-flux density measurements in oak trees (Quercus ilex and Quercus pyrenaica) - water-use implications in a water-limited savanna-

    Science.gov (United States)

    Reyes, J. Leonardo; Lubczynski1, Maciek W.

    2010-05-01

    Sap flow measurement is a key aspect for understanding how plants use water and their impacts on the ecosystems. A variety of sensors have been developed to measure sap flow, each one with its unique characteristics. When the aim of a research is to have accurate tree water use calculations, with high temporal and spatial resolution (i.e. scaled), a sensor with high accuracy, high measurement efficiency, low signal-to-noise ratio and low price is ideal, but such has not been developed yet. Granier's thermal dissipation probes (TDP) have been widely used in many studies and various environmental conditions because of its simplicity, reliability, efficiency and low cost. However, it has two major flaws when is used in semi-arid environments and broad-stem tree species: it is often affected by high natural thermal gradients (NTG), which distorts the measurements, and it cannot measure the radial variability of sap-flux density in trees with sapwood thicker than two centimeters. The new, multi point heat field deformation sensor (HFD) is theoretically not affected by NTG, and it can measure the radial variability of the sap flow at different depths. However, its high cost is a serious limitation when simultaneous measurements are required in several trees (e.g. catchment-scale studies). The underlying challenge is to develop a monitoring schema in which HFD and TDP are combined to satisfy the needs of measurement efficiency and accuracy in water accounting. To assess the level of agreement between TDP and HFD methods in quantifying sap flow rates and temporal patterns on Quercus ilex (Q.i ) and Quercus pyrenaica trees (Q.p.), three measurement schemas: standard TDP, TDP-NTG-corrected and HFD were compared in dry season at the semi-arid Sardon area, near Salamanca in Spain in the period from June to September 2009. To correct TDP measurements with regard to radial sap flow variability, a radial sap flux density correction factor was applied and tested by adjusting TDP

  5. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress.

    Science.gov (United States)

    Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo

    2017-08-01

    To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017

  6. Relation between lowered colloid osmotic pressure, respiratory failure, and death.

    Science.gov (United States)

    Tonnesen, A S; Gabel, J C; McLeavey, C A

    1977-01-01

    Plasma colloid osmotic pressure was measured each day in 84 intensive care unit patients. Probit analysis demonstrated a direct relationship between colloid osmotic pressure (COP) and survival. The COP associated with a 50% survival rate was 15.0 torr. COP was higher in survivors than in nonsurvivors without respiratory failure and in patients who recovered from respiratory failure. We conclude that lowered COP is associated with an elevated mortality rate. However, the relationship to death is not explained by the relationship to respiratory failure.

  7. Implantación de SAP ERP en una distribuidora

    OpenAIRE

    Martínez Costales, Guillermo

    2013-01-01

    En este trabajo se pretende reflejar en qué consistiría un proyecto de implantación de un ERP, en nuestro caso SAP ERP, en una empresa del sector de la distribución alimenticia. Para llevarlo a cabo se empleará la metodología ASAP, pretendiendo ser el resultado final del proyecto el análisis y diseño del mismo. En aquest treball es pretén reflectir en què consistiria un projecte d'implantació d'un ERP, en el nostre cas SAP ERP, en una empresa del sector de la distribució alimentària. Per f...

  8. Stormtime Simulations of Sub-Auroral Polarization Streams (SAPS)

    Science.gov (United States)

    Huba, J.; Sazykin, S. Y.; Coster, A. J.

    2017-12-01

    We present simulation results from the self-consistently coupled SAMI3/RCM code on the impact of geomagnetic storms on the ionosphere/plasmasphere system with an emphasis on the development of sub-auroral plasma streams (SAPS). We consider the following storm events: March 31, 2001, March 17, 2013, March 17, 2015, September 3, 2012, and June 23, 2015. We compare and contrast the development of SAPS for these storms. The main results are the development of sub-auroral (< 60 degrees) low-density, high-speed flows (1 - 2 km/s). Additionally, we discuss the impact on plasmaspheric dynamics. We compare our model results to data (e.g., Millstone Hill radar, GPS TEC).

  9. Osmotic Adjustment in Leaves of VA Mycorrhizal and Nonmycorrhizal Rose Plants in Response to Drought Stress.

    Science.gov (United States)

    Augé, R M; Schekel, K A; Wample, R L

    1986-11-01

    Osmotic adjustment in Rosa hybrida L. cv Samantha was characterized by the pressure-volume approach in drought-acclimated and unacclimated plants brought to the same level of drought strain, as assayed by stomatal closure. Plants were colonized by either of the vesicular-arbuscular mycorrhizal fungi Glomus deserticola Trappe, Bloss and Menge or G. intraradices Schenck and Smith, or were nonmycorrhizal. Both the acclimation and the mycorrhizal treatments decreased the osmotic potential (Psi(pi)) of leaves at full turgor and at the turgor loss point, with a corresponding increase in pressure potential at full turgor. Mycorrhizae enabled plants to maintain leaf turgor and conductance at greater tissue water deficits, and lower leaf and soil water potentials, when compared with nonmycorrhizal plants. As indicated by the Psi(pi) at the turgor loss point, the active Psi(pi) depression which attended mycorrhizal colonization alone was 0.4 to 0.6 megapascals, and mycorrhizal colonization and acclimation in concert 0.6 to 0.9 megapascals, relative to unacclimated controls without mycorrhizae. Colonization levels and sporulation were higher in plants subjected to acclimation. In unacclimated hosts, leaf water potential, water saturation deficit, and soil water potential at a particular level of drought strain were affected most by G. intraradices. G. deserticola had the greater effect after drought preconditioning.

  10. Cost of Maple Sap Production for Various Size Tubing Operations

    Science.gov (United States)

    Niel K. Huyler

    2000-01-01

    Reports sap production costs for small (500 to 1,000 taps), medium (1,000 to 5,000), and large (5,000 to 15,000) maple syrup operations that use plastic tubing with vacuum pumping. The average annual operating cost per tap ranged from $4.64 for a 500-tap sugarbush operation to $1.84 for a sugarbush with 10,000 taps. The weighted average was $2.87 per tap or $11.48 per...

  11. Uses of tree saps in northern and eastern parts of Europe

    Directory of Open Access Journals (Sweden)

    Ingvar Svanberg

    2012-12-01

    Full Text Available In this article we review the use of tree saps in northern and eastern Europe. Published accounts by travellers, ethnologists and ethnobotanists were searched for historical and contemporary details. Field observations made by the authors have also been used. The presented data shows that the use of tree sap has occurred in most north and eastern European countries. It can be assumed that tree saps were most used where there were extensive stands of birch or maple trees, as these two genera generally produce the largest amount of sap. The taxa most commonly used have been Betula pendula, B. pubescens, and Acer platanoides, but scattered data on the use of several other taxa are presented. Tree sap was used as a fresh drink, but also as an ingredient in food and beverages. It was also fermented to make light alcoholic products like ale and wine. Other folk uses of tree saps vary from supplementary nutrition in the form of sugar, minerals and vitamins, to cosmetic applications for skin and hair and folk medicinal use. Russia, Ukraine, Belarus, Estonia, Latvia and Lithuania are the only countries where the gathering and use of sap (mainly birch sap has remained an important activity until recently, due to the existence of large birch forests, low population density and the incorporation of sap into the former Soviet economic system. It is evident that gathering sap from birch and other trees was more widespread in earlier times. There are records indicating extensive use of tree saps from Scandinavia, Poland, Slovakia and Romania, but it is primarily of a historical character. The extraction of tree sap in these countries is nowadays viewed as a curiosity carried out only by a few individuals. However, tree saps have been regaining popularity in urban settings through niche trading.

  12. Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?

    Science.gov (United States)

    Vitor, Simone C; do Amarante, Luciano; Sodek, Ladaslav

    2018-05-16

    A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N 2 fixation also contained elevated concentrations of malate in the xylem sap. When either nitrate or ammonium was supplied, malate concentrations in the xylem sap were low, both for nodulated and non-nodulated plants. Evidence was obtained that the elevated malate concentration of the xylem was derived from amino acids supplied by the phloem. Aspartate was a prominent component of the phloem sap amino acids and, therefore, a potential source of malate. Supplying the roots of intact plants with 13 C-aspartate revealed that malate of the xylem sap was readily labelled under N starvation. A hypothetical scheme is proposed whereby aspartate supplied by the phloem is metabolised in the roots and the products of this metabolism cycled back to the shoot. Under N starvation, aspartate metabolism is diverted from asparagine synthesis to supply N for the synthesis of other amino acids via transaminase activity. The by-product of aspartate transaminase activity, oxaloacetate, is transformed to malate and its export accounts for much of the elevated concentration of malate found in the xylem sap. This mechanism represents a new additional role for malate during mineral N starvation of soybean, beyond that of charge balance.

  13. A comprehensive strategy for identifying long-distance mobile peptides in xylem sap.

    Science.gov (United States)

    Okamoto, Satoru; Suzuki, Takamasa; Kawaguchi, Masayoshi; Higashiyama, Tetsuya; Matsubayashi, Yoshikatsu

    2015-11-01

    There is a growing awareness that secreted pemediate organ-to-organ communication in higher plants. Xylem sap peptidomics is an effective but challenging approach for identifying long-distance mobile peptides. In this study we developed a simple, gel-free purification system that combines o-chlorophenol extraction with HPLC separation. Using this system, we successfully identified seven oligopeptides from soybean xylem sap exudate that had one or more post-transcriptional modifications: glycosylation, sulfation and/or hydroxylation. RNA sequencing and quantitative PCR analyses showed that the peptide-encoding genes are expressed in multiple tissues. We further analyzed the long-distance translocation of four of the seven peptides using gene-encoding peptides with single amino acid substitutions, and identified these four peptides as potential root-to-shoot mobile oligopeptides. Promoter-GUS analysis showed that all four peptide-encoding genes were expressed in the inner tissues of the root endodermis. Moreover, we found that some of these peptide-encoding genes responded to biotic and/or abiotic factors. These results indicate that our purification system provides a comprehensive approach for effectively identifying endogenous small peptides and reinforce the concept that higher plants employ various peptides in root-to-shoot signaling. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  14. Adulteration and Contamination of Commercial Sap of Hymenaea Species

    Directory of Open Access Journals (Sweden)

    Katyuce de Souza Farias

    2017-01-01

    Full Text Available The Hymenaea stigonocarpa and Hymenaea martiana species, commonly known as “jatobá,” produce a sap which is extracted by perforation of the trunk and is commonly used in folk medicine as a tonic. For this study, the authenticity of commercial samples of jatobá was verified by the identification of the main compounds and multivariate analysis and contamination by microbial presence analysis. The acute toxicity of the authentic jatobá sap was also evaluated. The metabolites composition and multivariate analysis revealed that none of the commercial samples were authentic. In the microbiological contamination analysis, five of the six commercial samples showed positive cultures within the range of 1,700–100,000 CFU/mL and the authentic sap produced no signs of toxicity, and from a histological point of view, there was the maintenance of tissue integrity. In brief, the commercial samples were deemed inappropriate for consumption and represent a danger to the population.

  15. Effect of pore structure on chemico-osmotic, diffusion and hydraulic properties of mud-stones

    International Nuclear Information System (INIS)

    Takeda, M.; Manaka, M.; Ito, K.; Miyoshi, S.; Tokunaga, T.

    2012-01-01

    Document available in extended abstract form only. An in-situ experiment by Neuzil (2000) has obtained the substantial proof of chemical osmosis in natural clayey formation. Chemical osmosis in clayey formations has thus received attention in recent years in the context of geological disposal of radioactive waste. Chemical osmosis is the diffusion of water through a semi-permeable membrane driven by the difference of chemical potentials between solutions to compensate the difference of water potentials, increasing the other potential differences, such as the pressure difference. Accordingly, the chemical osmosis could generate localized, abnormal fluid pressures in geological formations where formation media act as semi-permeable membranes and groundwater salinity is not uniform. Without taking account of the chemical osmosis, groundwater flow modeling may mislead the prediction of the groundwater flow direction. Therefore the possibility of chemical osmosis needs to be identified for potential host formations for radioactive waste repositories. The chemico-osmotic property of formation media is an essential parameter to identify the possibility of chemical osmosis in the formation; however, the diffusion and hydraulic properties are also fundamental parameters to estimate the duration of chemical osmosis since they control the spatial variation of salinity and the dissipation of osmotically induced pressures. In order to obtain the chemico-osmotic, diffusion and hydraulic parameters from a rock sample, this study developed a laboratory experimental system capable of performing chemical osmosis and permeability experiments. A series of experiments were performed on mud-stones. The chemico-osmotic parameter of each rock sample was further interpreted by the osmotic efficiency model proposed by Bresler (1973) to examine the pore structure inherent in rocks. Diatomaceous and siliceous mud-stone samples were obtained from drill cores taken from the Koetoi and Wakkanai

  16. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Zhu, Jianhua; Lee, Byeongha; Dellinger, Michael T.; Cui, Xinping; Zhang, Changqing; Wu, Shang; Nothnagel, Eugene A.; Zhu, Jian-Kang

    2010-01-01

    Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have

  17. Osmotically driven membrane process for the management of urban runoff in coastal regions

    KAUST Repository

    Li, Zhenyu; Valladares Linares, Rodrigo; Abu-Ghdaib, Muhannad; Zhan, Tong; Yangali-Quintanilla, Victor; Amy, Gary L.

    2014-01-01

    An osmotic detention pond was proposed for the management of urban runoff in coastal regions. Forward osmosis was employed as a bridge to utilize natural osmotic energy from seawater for concentrating and reusing urban runoff water, and as a barrier

  18. Validation of the scale on Satisfaction of Adolescents with Postoperative pain management-idiopathic Scoliosis (SAP-S

    Directory of Open Access Journals (Sweden)

    Khadra C

    2017-01-01

    Full Text Available Christelle Khadra,1–3 Sylvie Le May,1,2 Ariane Ballard,1,2 Jean Théroux,1,4 Sylvie Charette,5 Edith Villeneuve,6,7 Stefan Parent,2,8,9 Argerie Tsimicalis,10,11 Jill MacLaren Chorney12,13 1Faculty of Nursing, Université de Montréal, 2CHU Sainte-Justine Research Centre, 3Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada; 4School of Health Professions, Murdoch University, Perth, WA, Australia; 5Direction of Nursing, 6Department of Anesthesia, CHU Sainte-Justine, 7Department of Anesthesia, 8Department of Surgery, Faculty of Medicine, Université de Montréal, 9Orthopaedic Service, Department of Surgery, CHU Sainte-Justine, 10Ingram School of Nursing, McGill University, 11Shriners Hospitals for Children, Montreal, QC, 12Pediatric Complex Pain Team, IWK Health Centre, 13Department of Anesthesia, Pain Management, and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada Background: Spinal fusion is a common orthopedic surgery in children and adolescents and is associated with high pain levels postoperatively. If the pain is not well managed, negative outcomes may ensue. To our knowledge, there is no measure in English that assesses patient’s satisfaction with postoperative pain management following idiopathic scoliosis surgery. The aim of the present study was to assess the psychometric properties of the satisfaction subscale of the English version of the Satisfaction of Adolescents with Postoperative pain management – idiopathic Scoliosis (SAP-S scale.Methods: Eighty-two participants aged 10–18 years, who had undergone spinal fusion surgery, fully completed the SAP-S scale at 10–14 days postdischarge. Construct validity was assessed through a principal component analysis using varimax rotation.Results: Principal component analysis indicated a three-factor structure of the 13-item satisfaction subscale of the SAP-S scale. Factors referred to satisfaction regarding current

  19. Assessing dam development, land use conversion, and climate change pressures on tributary river flows and water quality of the Mekong's Tonle Sap basin.

    Science.gov (United States)

    Cochrane, T. A.; Arias, M. E.; Oeurng, C.; Arnaiz, M.; Piman, T.

    2016-12-01

    The Tonle Sap Lake is Southeast Asia's most productive freshwater fishery, but the productivity of this valuable ecosystem is under threat from extensive development in the lower Mekong. With dams potentially blocking all major tributaries along the lower Mekong River, the role of local Tonle Sap basin tributaries for maintaining environmental flows, sediment loads, and fish recruitment is becoming increasingly critical. Development within the Tonle Sap basin, however, is not stagnant. Developers are proposing extensive dam development in key Tonle Sap tributaries (see Figure). Some dams will provide hydroelectricity and others will provide opportunities for large-scale irrigation resulting in agro-industrial expansion. There is thus an immediate need to assess the current situation and understand future effects of dam development and land use conversion under climate change on local riverine ecosystems. A combination of remote sensing, field visits, and hydro-meteorological data analyses enabled an assessment of water infrastructure and agricultural development in the basin. The application of SWAT for modelling flows and water quality combined with HEC-RESSIM for reservoir operations enabled for a holistic modelling approach. Initial results show that dams and land use change dominate flow and water quality responses, when compared to climate change. Large ongoing dam and irrigation development in the Pursat and Battambang subbasins will critically alter the natural river flows to the Tonle Sap Lake. Some of the observed dams did not have provisions for sediment flushing, clearing of flooded areas, fish passages, or other environmental protection measures. Poor planning and operation of this infrastructure could have dire consequences on the fragile riverine ecosystem of Tonle Sap tributaries, resulting in fish migration barriers, losses in aquatic habitats, and ecological degradation. The seemingly chaotic development in the Tonle Sap basin induces a great level

  20. Alterations in the colonic microbiota in response to osmotic diarrhea.

    Science.gov (United States)

    Gorkiewicz, Gregor; Thallinger, Gerhard G; Trajanoski, Slave; Lackner, Stefan; Stocker, Gernot; Hinterleitner, Thomas; Gülly, Christian; Högenauer, Christoph

    2013-01-01

    Diseases of the human gastrointestinal (GI) tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease. We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG). Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure. Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases. Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status) or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy) are used.

  1. Alterations in the colonic microbiota in response to osmotic diarrhea.

    Directory of Open Access Journals (Sweden)

    Gregor Gorkiewicz

    Full Text Available BACKGROUND & AIMS: Diseases of the human gastrointestinal (GI tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease. METHODS: We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG. Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure. RESULTS: Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases. CONCLUSIONS: Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy are used.

  2. Self-consistent unstirred layers in osmotically driven flows

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Bohr, Tomas; Bruus, Henrik

    2010-01-01

    It has long been recognized that the osmotic transport characteristics of membranes may be strongly influenced by the presence of unstirred concentration boundary layers adjacent to the membrane. Previous experimental as well as theoretical works have mainly focused on the case where the solutions...

  3. Effect of road transport stress on Erthrocyte Osmotic Fragility (EOF ...

    African Journals Online (AJOL)

    After an overnight fast, venous blood was collected from each subject for the determination of serum cortisol, glucose concentration and erythrocyte osmotic fragility. The subjects were then transported at a speed of 65 – 75Km/h covering a distance of 180km. Thereafter venous blood was again collected (within 10 minutes) ...

  4. Compression and reswelling of microgel particles after an osmotic shock

    NARCIS (Netherlands)

    Sleeboom, J.F.; Voudouris, P.; Punter, M.T.J.J.M.; Aangenendt, F.J.; Florea, D.; van der Schoot, P.P.A.M.; Wyss, H.M.

    2016-01-01

    We use dedicated microfluidic devices to expose soft hydrogel particles to a rapid change in the externally applied osmotic pressure and observe a non-monotonic response: After an initial rapid compression the particle slowly reswells to approximately its original size. Using a simple

  5. Drying of carrots in slices with osmotic dehydration

    African Journals Online (AJOL)

    SAM

    2014-07-23

    Jul 23, 2014 ... extend the shelf-life by a few weeks, one year or more. The methods .... drated carrots, this work studied the drying of carrot with pre-osmotic ... e) Weight Loss - obtained directly using balance semi-analytical model BEL ...

  6. Modeling and computational simulation of the osmotic evaporation process

    Directory of Open Access Journals (Sweden)

    Freddy Forero Longas

    2016-09-01

    Conclusions: It was found that for the conditions studied the Knudsen diffusion model is most suitable to describe the transfer of water vapor through the hydrophobic membrane. Simulations developed adequately describe the process of osmotic evaporation, becoming a tool for faster economic development of this technology.

  7. Root water extraction under combined water and osmotic stress

    NARCIS (Netherlands)

    Jong van Lier, de Q.; Dam, van J.C.; Metselaar, K.

    2009-01-01

    Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The

  8. Osmotic pressure of ring polymer solutions : A Monte Carlo study

    NARCIS (Netherlands)

    Flikkema, Edwin; Brinke, Gerrit ten

    2000-01-01

    Using the wall theorem, the osmotic pressure of ring polymers in solution has been determined using an off-lattice topology conserving Monte Carlo algorithm. The ring polymers are modeled as freely-jointed chains with point-like beads, i.e., under conditions corresponding to θ-conditions for the

  9. Controlled porosity solubility modulated osmotic pump tablets of gliclazide.

    Science.gov (United States)

    Banerjee, Arti; Verma, P R P; Gore, Subhash

    2015-06-01

    A system that can deliver drug at a controlled rate is very important for the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Poorly water-soluble drug with pH-dependent solubility such as gliclazide (GLZ) offers challenges in the controlled-release formulation because of low dissolution rate and poor bioavailability. Solid dispersion (SD) of GLZ consisted of hydroxypropyl cellulose (HPC-SSL) as a polymeric solubilizer was manufactured by hot melt extrusion (HME) technology. Then, controlled porosity osmotic pump (CPOP) tablet of gliclazide was designed to deliver drug in a controlled manner up to 16 h. The developed formulation was optimized for type and level of pore former and coating weight gain. The optimized formulation was found to exhibit zero order kinetics independent of pH and agitation speed but depends on osmotic pressure of dissolution media indicated that mechanism of drug release was osmotic pressure. The in vivo performance prediction of developed formulation using convolution approach revealed that the developed formulation was superior to the existing marketed extended-release formulation in terms of attaining steady state plasma levels and indicated adequate exposure in translating hypoglycemic response. The prototype solubilization method combined with controlled porosity osmotic pump based technique could provide a unique way to increase dissolution rate and bioavailability of many poorly water-soluble, narrow therapeutic index drugs used in diabetes, cardiovascular diseases, etc.

  10. Vocal Fold Epithelial Response to Luminal Osmotic Perturbation

    Science.gov (United States)

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2007-01-01

    Purpose: Dry-air challenges increase the osmolarity of fluid lining the luminal surface of the proximal airway. The homeostasis of surface fluid is thought to be essential for voice production and laryngeal defense. Therefore, the authors hypothesized that viable vocal fold epithelium would generate a water flux to reduce an osmotic challenge (150…

  11. Development of an electro-osmotic heat pump

    NARCIS (Netherlands)

    Stoel, J.P. van der; Oostendorp, P.A.

    1999-01-01

    The majority of heat pumps and refrigerators is driven by a mechanical compressor. Although they usually function very well, the search for new and in some cases better heat pumping concepts continues. One of the topics in this field is the development of an electro-osmotic heat pump. As each

  12. Phosphorylated SAP155, the spliceosomal component, is localized to chromatin in postnatal mouse testes

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Ko, E-mail: etoko@gpo.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Sonoda, Yoshiyuki [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Jin, Yuji [School of Basic Medicine, Jilin Medical College, Jilin 132013 (China); Abe, Shin-ichi [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan)

    2010-03-19

    SAP155 is an essential component of the spliceosome and its phosphorylation is required for splicing catalysis, but little is known concerning its expression and regulation during spermatogenesis in postnatal mouse testes. We report that SAP155 is ubiquitously expressed in nuclei of germ and Sertoli cells within the seminiferous tubules of 6- and 35-day postpartum (dpp) testes. Analyses by fractionation of testes revealed that (1) phosphorylated SAP155 was found in the fraction containing nuclear structures at 6 dpp in amounts much larger than that at other ages; (2) non-phosphorylated SAP155 was detected in the fraction containing nucleoplasm; and (3) phosphorylated SAP155 was preferentially associated with chromatin. Our findings suggest that the active spliceosome, containing phosphorylated SAP155, performs pre-mRNA splicing on chromatin concomitant with transcription during testicular development.

  13. Collection of pure phloem sap from wheat and its chemical composition

    International Nuclear Information System (INIS)

    Hayashi, H.; Chino, M.

    1986-01-01

    Wheat Phloem sap was collected without contamination from the stylets of small brown planthopper severed by a YAG laser beam. The sugar, amino acid and inorganic ion composition was determined using only one μl of the sap. The sap had a high sucrose level (251 mM), and also a high K+ level (299 mM). Total amino acid compounds in the sap reached 262 mM. The dominant amino acids were glutamic acid, aspartic acid and serine, while r-amino butylic acid was absent. The major anion in the sap was Cl− and its concentration was 25.1 mM. Nitrate was also present at a concentration of 8.1 mM. These results suggested that the sap obtained from the cut end of the stylets of the small brown planthopper was a phloem origin of wheat. (author)

  14. SAPS effects on thermospheric winds during the 17 March 2013 storm

    Science.gov (United States)

    Sheng, C.; Lu, G.; Wang, W.; Doornbos, E.; Talaat, E. R.

    2017-12-01

    Strong subauroral polarization streams (SAPS) were observed by DMSP satellites during the main phase of the 17 March 2013 geomagnetic storm. Both DMSP F18 and GOCE satellites sampled at 19 MLT during this period, providing near-simultaneous measurements of ion drifts and neutral winds near dusk. The fortuitous satellite conjunction allows us to directly examine the SAPS effects on thermospheric winds. In addition, two sets of model runs were carried out for this event: (1) the standard TIEGCM run with high-latitude forcing; (2) the SAPS-TIEGCM run by incoporating an empirical model of SAPS in the subauroral zone. The difference between these two runs represents the influence of SAPS forcing. In particular, we examine ion-neutral coupling at subauroral latitudes through detailed forcing term analysis to determine how the SAPS-related strong westward ion drifts alter thermospheric winds.

  15. Groundwater sapping channels: Summary of effects of experiments with varied stratigraphy

    Science.gov (United States)

    Kochel, R. Craig; Simmons, David W.

    1987-01-01

    Experiments in the recirculating flume sapping box have modeled valley formation by groundwater sapping processes in a number of settings. The effects of the following parameters on sapping channel morphology were examined: surface slope; stratigraphic variations in permeability cohesion and dip; and structure of joints and dikes. These kinds of modeling experiments are particularly good for: testing concepts; developing a suite of distinctive morphologies and morphometries indicative of sapping; helping to relate process to morphology; and providing data necessary to assess the relative importance of runoff, sapping, and mass wasting processes on channel development. The observations from the flume systems can be used to help interpret features observed in terrestrial and Martian settings where sapping processes are thought to have played an important role in the development of valley networks.

  16. Functional dependency between the logistics security system and the MySAP ERP in metallurgy

    OpenAIRE

    Ranitović, P.; Tepić, G.; Matić, B.; Sremac, S.; Vukadinović, V.

    2013-01-01

    MySAP ERP - Enterprise Resource Planning (system - solution which provides a whole set of functions for the business analytics, finance, human resources management, logistics and corporate services) has developed from SAP R/3. It is one of the main products of the SAP AG German multinational company and as such, it is a very important element of the international industrial and technological security system. By defining the functional dependency between the security systems (logistics securit...

  17. Pengaruh Pemahaman Standar Akuntansi Pemerintahan (SAP, Pelatihan, Akuntabilitas, Transparansi Terhadap Penyusunan Laporan Keuangan SKPD Kota Padangsidimpuan

    OpenAIRE

    Daulay, Putri Bunga Meiliana

    2016-01-01

    This skripsi is intended to (a) get a clear view about the effect of understanding SAP, training, accountability, tranparancy (b) calculate the effect of understanding SAP, training, accountability, transparancy to the way of making financial statement, (c) give some advices which may assist the City Government in solving its problems especially the discussed problem, that is the way of making financial statement which is affected by understanding SAP, training, accountability, transparancy. ...

  18. 30 CFR 285.607 - How do I submit my SAP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I submit my SAP? 285.607 Section 285.607... Assessment Plan and Information Requirements for Commercial Leases § 285.607 How do I submit my SAP? You must submit one paper copy and one electronic version of your SAP to MMS at the address listed in § 285.110(a). ...

  19. The finite element structural analysis code SAP IV conversion from CDC to IBM

    International Nuclear Information System (INIS)

    Harrop, L.P.

    1977-02-01

    SAP IV is a general three dimensional, linear, static and dynamic finite element structural analysis program. The program which was obtained from the Earthquake Engineering Research Center, University of California, Berkeley, was written in FORTRAM for a CDC 6400. Its main use was anticipated to be the seismic analysis of reactor structures. SAP IV may also prove useful for fracture mechanics studies as well as the usual elastic stress analysis of structures. A brief description of SAP IV and a more detailed account of the FORTRAN conversion required to make SAP IV run successfully on the UKAEA Harwell IBM 370/168 are given. (author)

  20. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    Science.gov (United States)

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  1. ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis

    Science.gov (United States)

    Wang, Liuqiang; Li, Zhen; Lu, Mengzhu; Wang, Yucheng

    2017-01-01

    NAC (NAM, ATAF1/2, and CUC2) proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC recognized sites and calmodulin-binding NAC (CBNAC) binding element. Overexpression of ThNAC13 in Arabidopsis improved seed germination rate and increased root growth and fresh weight gain under salt or osmotic stress. Transgenic T. hispida plants transiently overexpressing ThNAC13 and with RNAi-silenced ThNAC13 were generated for gain- and loss-of-function experiments. Following exposure to salt or osmotic stress, overexpression of ThNAC13 induced superoxide dismutase (SOD) and peroxidase (POD) activities, chlorophyll and proline contents; decreased the reactive oxygen species (ROS) and malondialdehyde levels; and reduced electrolyte leakage rates in both transgenic Tamarix and Arabidopsis plants. In contrast, RNAi-silenced ThNAC13 showed the opposite results in transgenic Tamarix. Furthermore, ThNAC13 induced the expression of SODs and PODs in transgenic Arabidopsis. These results suggest that ThNAC13 improves salt and osmotic tolerance by enhancing the ROS-scavenging capability and adjusting osmotic potential. PMID:28491072

  2. ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mengzhu Lu

    2017-04-01

    Full Text Available NAC (NAM, ATAF1/2, and CUC2 proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC recognized sites and calmodulin-binding NAC (CBNAC binding element. Overexpression of ThNAC13 in Arabidopsis improved seed germination rate and increased root growth and fresh weight gain under salt or osmotic stress. Transgenic T. hispida plants transiently overexpressing ThNAC13 and with RNAi-silenced ThNAC13 were generated for gain- and loss-of-function experiments. Following exposure to salt or osmotic stress, overexpression of ThNAC13 induced superoxide dismutase (SOD and peroxidase (POD activities, chlorophyll and proline contents; decreased the reactive oxygen species (ROS and malondialdehyde levels; and reduced electrolyte leakage rates in both transgenic Tamarix and Arabidopsis plants. In contrast, RNAi-silenced ThNAC13 showed the opposite results in transgenic Tamarix. Furthermore, ThNAC13 induced the expression of SODs and PODs in transgenic Arabidopsis. These results suggest that ThNAC13 improves salt and osmotic tolerance by enhancing the ROS-scavenging capability and adjusting osmotic potential.

  3. Prediction of Osmotic Pressure of Ionic Liquids Inside a Nanoslit by MD Simulation and Continuum Approach

    Science.gov (United States)

    Moon, Gi Jong; Yang, Yu Dong; Oh, Jung Min; Kang, In Seok

    2017-11-01

    Osmotic pressure plays an important role in the processes of charging and discharging of lithium batteries. In this work, osmotic pressure of the ionic liquids confined inside a nanoslit is calculated by using both MD simulation and continuum approach. In the case of MD simulation, an ionic liquid is modeled as singly charged spheres with a short-ranged repulsive Lennard-Jones potential. The radii of the spheres are 0.5nm, reflecting the symmetry of ion sizes for simplicity. The simulation box size is 11nm×11nm×7.5nm with 1050 ion pairs. The concentration of ionic liquid is about 1.922mol/L, and the total charge on an individual wall varies from +/-60e(7.944 μm/cm2) to +/-600e(79.44 μm/cm2) . In the case of continuum approach, we classify the problems according to the correlation length and steric factor, and considered the four separate cases: 1) zero correlation length and zero steric factor, 2) zero correlation length and non-zero steric factor, 3) non-zero correlation length and zero steric factor, and 4) non-zero correlation and non-zero steric factor. Better understanding of the osmotic pressure of ionic liquids confined inside a nanoslit can be achieved by comparing the results of MD simulation and continuum approach. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP: Ministry of Science, ICT & Future Planning) (No. 2017R1D1A1B05035211).

  4. Transcriptomic Profiling and Physiological Analysis of Haloxylon ammodendron in Response to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    Hui-Juan Gao

    2017-12-01

    Full Text Available Haloxylon ammodendron, a perennial xero-halophyte, is an essential species for investigating the effects of drought on desert tree. To gain a comprehensive knowledge on the responses of H. ammodendron to drought stress, we specially performed the molecular and physiological analysis of H. ammodendron in response to −0.75 MPa osmotic stress for six and 24 h in lab condition via RNA-seq and digital gene expression (DGE. In total, 87,109 unigenes with a mean length of 680 bp and 13,486 potential simple sequence repeats (SSRs were generated, and 3353 differentially expressed genes (DEGs in shoots and 4564 in roots were identified under stress. These DEGs were mainly related to ion transporters, signal transduction, ROS-scavenging, photosynthesis, cell wall organization, membrane stabilization and hormones. Moreover, the physiological changes of inorganic ions and organic solute content, peroxidase (POD activity and osmotic potential were in accordance with dynamic transcript profiles of the relevant genes. In this study, a detailed investigation of the pathways and candidate genes identified promote the research on the molecular mechanisms of abiotic stress tolerance in the xero-halophytic species. Our data provides valuable genetic resources for future improvement of forage and crop species for better adaptation to abiotic stresses.

  5. Xylem sap nitrogen compounds of some Crotalaria species

    Directory of Open Access Journals (Sweden)

    Vitória Angela Pierre

    1999-01-01

    Full Text Available Thirteen species of Crotalaria were analysed for nitrogen compounds in the xylem root bleeding sap. Amino acids were the main form of organic nitrogen found, but only traces of ureides were present. Of the four species analysed for amino acid composition, asparagine was found to be the major amino acid, accounting for over 68% of the nitrogen transported. No striking deviations from this general pattern was found between species, between vegetative and floral stages of development, or between nodulated and non-nodulated plants. It was concluded that the Crotalaria species studied here have an asparagine-based nitrogen metabolism, consistent with many other non-ureide-producing legume species.

  6. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-04-01

    The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAP's second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.

  7. Analytical Expressions for Thermo-Osmotic Permeability of Clays

    Science.gov (United States)

    Gonçalvès, J.; Ji Yu, C.; Matray, J.-M.; Tremosa, J.

    2018-01-01

    In this study, a new formulation for the thermo-osmotic permeability of natural pore solutions containing monovalent and divalent cations is proposed. The mathematical formulation proposed here is based on the theoretical framework supporting thermo-osmosis which relies on water structure alteration in the pore space of surface-charged materials caused by solid-fluid electrochemical interactions. The ionic content balancing the surface charge of clay minerals causes a disruption in the hydrogen bond network when more structured water is present at the clay surface. Analytical expressions based on our heuristic model are proposed and compared to the available data for NaCl solutions. It is shown that the introduction of divalent cations reduces the thermo-osmotic permeability by one third compared to the monovalent case. The analytical expressions provided here can be used to advantage for safety calculations in deep underground nuclear waste repositories.

  8. Osmotic pressure of the cutaneous surface fluid of Rana esculenta

    DEFF Research Database (Denmark)

    Hviid Larsen, Erik; Ramløv, Hans

    2012-01-01

    The osmotic pressure of the cutaneous surface fluid (CSF) in vivo was measured for investigating whether evaporative water loss (EWL) derives from water diffusing through the skin or fluid secreted by exocrine subepidermal mucous glands. EWL was stimulated by subjecting R. esculenta to 30–34 °C....../Kg, n = 16. Osmolality of lymph was, 239 ± 4 mosmol/Kg, n = 8. Thus the flow of water across the epidermis would be in the direction from CSF to the interstitial fluid driven by the above osmotic gradients and/or coupled to the inward active Na+ flux via the slightly hyperosmotic paracellular...... compartment [EH Larsen et al. (2009) Acta Physiologica 195: 171–186]. It is concluded that the source of EWL of the frog on land is the fluid secreted by the mucous glands and not water diffusing through the skin. The study supports the hypothesis [EH Larsen (2011) Acta Physiologica 202: 435–464] that volume...

  9. Glucose Monitoring System Based on Osmotic Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Alexandra LEAL

    2011-02-01

    Full Text Available This paper presents the design and development of a prototype sensor unit for implementation in a long-term glucose monitoring system suitable for estimating glucose levels in people suffering from diabetes mellitus. The system utilizes osmotic pressure as the sensing mechanism and consists of a sensor prototype that is integrated together with a pre-amplifier and data acquisition unit for both data recording and processing. The sensor prototype is based on an embedded silicon absolute pressure transducer and a semipermeable nanoporous membrane that is enclosed in the sensor housing. The glucose monitoring system facilitates the integration of a low power microcontroller that is combined with a wireless inductive powered communication link. Experimental verification have proven that the system is capable of tracking osmotic pressure changes using albumin as a model compound, and thereby show a proof of concept for novel long term tracking of blood glucose from remote sensor nodes.

  10. Comparative Transcriptome Analysis Reveal Candidate Genes Potentially Involved in Regulation of Primocane Apex Rooting in Raspberry (Rubus spp.).

    Science.gov (United States)

    Liu, Jianfeng; Ming, Yuetong; Cheng, Yunqing; Zhang, Yuchu; Xing, Jiyang; Sun, Yuqi

    2017-01-01

    Raspberries ( Rubus spp.) exhibit a unique rooting process that is initiated from the stem apex of primocane, conferring an unusual asexual mode of reproduction to this plant. However, the full complement of genes involved in this process has not been identified. To this end, the present study analyzed the transcriptomes of the Rubus primocane and floricane stem apex at three developmental stages by Digital Gene Expression profiling to identify genes that regulate rooting. Sequencing and de novo assembly yielded 26.82 Gb of nucleotides and 59,173 unigenes; 498, 7,346, 4,110, 7,900, 9,397, and 4,776 differently expressed genes were identified in paired comparisons of SAF1 (floricane at developmental stage 1) vs. SAP1 (primocane at developmental stage 1), SAF2 vs. SAP2, SAF3 vs. SAP3, SAP1 vs. SAP2, SAP1 vs. SAP3, and SAP2 vs. SAP3, respectively. SAP1 maintains an extension growth pattern; SAP2 then exhibits growth arrest and vertical (downward) gravitropic deflection; and finally, short roots begin to form on the apex of SAP3. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis of SAP1 vs. SAP2 revealed 12 pathways that were activated in response to shoot growth arrest and root differentiation, including circadian rhythm-plant (ko04712) and plant hormone signal transduction (ko04075). Our results indicate that genes related to circadian rhythm, ethylene and auxin signaling, shoot growth, and root development are potentially involved in the regulation of primocane apex rooting in Rubus . These findings provide a basis for elucidating the molecular mechanisms of primocane apex rooting in this economically valuable crop.

  11. Hydro-osmotic Instabilities in Active Membrane Tubes

    Science.gov (United States)

    Al-Izzi, Sami C.; Rowlands, George; Sens, Pierre; Turner, Matthew S.

    2018-03-01

    We study a membrane tube with unidirectional ion pumps driving an osmotic pressure difference. A pressure-driven peristaltic instability is identified, qualitatively distinct from similar tension-driven Rayleigh-type instabilities on membrane tubes. We discuss how this instability could be related to the function and biogenesis of membrane bound organelles, in particular, the contractile vacuole complex. The unusually long natural wavelength of this instability is in agreement with that observed in cells.

  12. Osmotic dehydration of fruits and vegetables: a review

    OpenAIRE

    Yadav, Ashok Kumar; Singh, Satya Vir

    2012-01-01

    The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effec...

  13. The Efficiency of SAP in improving the HR Performance Case Study ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... operations at the operational, administrative and strategic levels, as well as identifying ... Key Words- SAP, human resources management, Masdar. Building ... There are thousands of companies around the world using the SAP ... results indicate that managers have a fairly positive view of the impact of the ...

  14. Preliminary results of sugar maple carbohydrate and growth response under vacuum and gravity sap extraction

    Science.gov (United States)

    Mark L. Isselhardt; Timothy D. Perkins; Abby K. van den Berg; Paul G. Schaberg

    2016-01-01

    Recent technological advancements have increased the amount of sugar-enriched sap that can be extracted from sugar maple (Acer saccharum). This pilot study quantified overall sugar removal and the impacts of vacuum (60 cm Hg) and gravity sap extraction on residual nonstructural carbohydrate (NSC) concentrations and on stem and twig growth. Vacuum...

  15. Baseliner: an open source, interactive tool for processing sap flux data from thermal dissipation probes.

    Science.gov (United States)

    Andrew C. Oishi; David Hawthorne; Ram Oren

    2016-01-01

    Estimating transpiration from woody plants using thermal dissipation sap flux sensors requires careful data processing. Currently, researchers accomplish this using spreadsheets, or by personally writing scripts for statistical software programs (e.g., R, SAS). We developed the Baseliner software to help establish a standardized protocol for processing sap...

  16. An interactive tool for processing sap flux data from thermal dissipation probes

    Science.gov (United States)

    Andrew C. Oishi; Chelcy F. Miniat

    2016-01-01

    Sap flux sensors are an important tool for estimating tree-level transpiration in forested and urban ecosystems around the world. Thermal dissipation (TD) or Granier-type sap flux probes are among the most commonly used due to their reliability, simplicity, and low cost.

  17. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Science.gov (United States)

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  18. Ray tissues as an indirect measure of relative sap-sugar concentration in sugar maple

    Science.gov (United States)

    Peter W. Garrett; Kenneth R. Dudzik; Kenneth R. Dudzik

    1989-01-01

    Attempts to correlate ray tissue as a percentage of total wood volume with sap-sugar concentrations of sugar maple progenies were unsuccessful. These results raise doubts about our ability to use a relatively constant value such as ray-tissue volume in a selection program designed to increase the sap-sugar concentration of sugar maple seedlings.

  19. Predictors of placebo response in adults with attention-deficit/hyperactivity disorder: data from 2 randomized trials of osmotic-release oral system methylphenidate

    NARCIS (Netherlands)

    Buitelaar, J.K.; Sobanski, E.; Stieglitz, R.D.; Dejonckheere, J.; Waechter, S.; Schauble, B.

    2012-01-01

    OBJECTIVE: To find potential correlates of placebo response in adults with attention-deficit/hyperactivity disorder (ADHD) and gain insights into why placebo response may be high in clinical trials. METHOD: Post hoc analysis of placebo data from 2 randomized controlled trials of osmotic-release oral

  20. Introduction of Sap ERP System Into a Heterogeneous Academic Community

    Science.gov (United States)

    Mornar, Vedran; Fertalj, Krešimir; Kalpić, Damir

    2010-06-01

    Introduction of a complex ERP system like SAP into a heterogeneous academic environment like the University of Zagreb is far from being a trivial task. The University comprises more than 30 constituents, called faculties or academies, geographically dispersed, with long and specific traditions. Financing according to the lump sum principle, enforced in Croatia as a side effect of the in Europe obligatory and omnipresent Bologna process, requires a unified view on the educational institutions in order to provide a more just and appropriate financing scheme than the current one. After the experience with own development to support educational tasks and student administration, for standard financial and administration tasks SAP has been chosen as the most appropriate platform. The developer was selected after public bidding and the authors' institution was chosen for the pilot project. The authors were playing principal roles in the process of successful deployment and still expect to offer their expertise for implementation in the rest of the University. However, serious risks stemming from lack of motivation by some constituents are present.

  1. Handling of the demilitarized zone using service providers in SAP

    Science.gov (United States)

    Iovan, A.; Robu, R.

    2016-02-01

    External collaboration needs to allow data access from the Internet. In a trusted Internet collaboration scenario where the external user works on the same data like the internal user direct access to the data in the Intranet is required. The paper presents a solution to get access to certain data in the Enterprise Resource Planning system, having the User Interface on a system in the Demilitarized Zone and the database on a system which is located in the trusted area. Using the Service Provider Interface framework, connections between separate systems can be created in different areas of the network. The paper demonstrates how to connect the two systems, one in the Demilitarized Zone and one in the trusted area, using SAP ERP 6.0 with Enhancement Package 7. In order to use the Service Provider Interface SAP Business Suite Foundation component must be installed in both systems. The advantage of using the Service Provider Interface framework is that the external user works on the same data like the internal user (and not on copies). This assures data consistency and less overhead for backup and security systems.

  2. Does Osmotic Stress Affect Natural Product Expression in Fungi?

    Science.gov (United States)

    Overy, David; Correa, Hebelin; Roullier, Catherine; Chi, Wei-Chiung; Pang, Ka-Lai; Rateb, Mostafa; Ebel, Rainer; Shang, Zhuo; Capon, Rob; Bills, Gerald; Kerr, Russell

    2017-08-13

    The discovery of new natural products from fungi isolated from the marine environment has increased dramatically over the last few decades, leading to the identification of over 1000 new metabolites. However, most of the reported marine-derived species appear to be terrestrial in origin yet at the same time, facultatively halo- or osmotolerant. An unanswered question regarding the apparent chemical productivity of marine-derived fungi is whether the common practice of fermenting strains in seawater contributes to enhanced secondary metabolism? To answer this question, a terrestrial isolate of Aspergillus aculeatus was fermented in osmotic and saline stress conditions in parallel across multiple sites. The ex-type strain of A. aculeatus was obtained from three different culture collections. Site-to-site variations in metabolite expression were observed, suggesting that subculturing of the same strain and subtle variations in experimental protocols can have pronounced effects upon metabolite expression. Replicated experiments at individual sites indicated that secondary metabolite production was divergent between osmotic and saline treatments. Titers of some metabolites increased or decreased in response to increasing osmolite (salt or glycerol) concentrations. Furthermore, in some cases, the expression of some secondary metabolites in relation to osmotic and saline stress was attributed to specific sources of the ex-type strains.

  3. Development and evaluation of microporous osmotic tablets of diltiazem hydrochloride

    Directory of Open Access Journals (Sweden)

    Afifa Bathool

    2012-01-01

    Full Text Available Microporous osmotic tablet of diltiazem hydrochloride was developed for colon targeting. These prepared microporous osmotic pump tablet did not require laser drilling to deliver the drug to the specific site of action. The tablets were prepared by wet granulation method. The prepared tablets were coated with microporous semipermeable membrane and enteric polymer using conventional pan coating process. The incorporation of sodium lauryl sulfate (SLS, a leachable pore-forming agent, could form in situ delivery pores while coming in contact with gastrointestinal medium. The effect of formulation variables was studied by changing the amounts of sodium alginate and NaCMC in the tablet core, osmogen, and that of pore-forming agent (SLS used in the semipermeable coating. As the amount of hydrophilic polymers increased, drug release rate prolonged. It was found that drug release was increased as the concentration of osmogen and pore-former was increased. Fourier transform infrared spectroscopy and Differential scanning calorimetry results showed that there was no interaction between drug and polymers. Scanning electron microscopic studies showed the formation of pores after predetermined time of coming in contact with dissolution medium. The formation of pores was dependent on the amount of pore former used in the semipermeable membrane. in vitro results showed acid-resistant, timed release at an almost zero order up to 24 hours. The developed osmotic tablets could be effectively used for prolonged delivery of Diltiazem HCl.

  4. Active osmotic exchanger for advanced filtration at the nano scale

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  5. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.

    Science.gov (United States)

    Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan

    2017-07-01

    Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.

  6. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Comparison of Seed Germination and Recovery Responses of a Salt Marsh Halophyte Halopeplis Perfoliata to Osmotic and Ionic Treatments

    International Nuclear Information System (INIS)

    Rasool, S. G.; Hameed, A.; Ahmed, M. Z.; Khan, M. A.

    2016-01-01

    Salinity affects seed germination of halophytes by inducing ionic toxicity, osmotic constraint or both. Information about the effects of salinity on seed germination of a large number of halophytes exists, but generally little is known about the basis of salinity-induced germination inhibition. In order to partition salinity effects, we studied seed germination and recovery responses of a coastal salt marsh halophyte halopeplis perfoliata to different isotonic treatments (Psi/sub S/: -0.5, -1.0, -1.5, -2.0 and -2.5, MPa) of various salts and polythylene glycol (PEG) under two light regimes (12-h light photo period and 24-h complete darkness). Highest seed germination was observed in distilled water under 12-h light photo period and reduction in osmotic potential of the solution decreased seed germination. However, some seeds of H. perfoliata could germinate in as low as -2.5 MPa (600 mM NaCl), which is equivalent to seawater salinity. Sea-salt treatment was more inhibitory than isotonic NaCl at the lowest osmotic potential (Psi/sub S/ -2.5 MPa). Generally, chloride salts with lowest Psi/sub S/ inhibited germination more than the isotonic sulfate salts. Comparable germination responses of the seeds in NaCl and isotonic PEG treatments as well as high recovery of germination in un-germinated seeds after alleviation of NaCl salinity indicated prevalence of osmotic constraint. These results thus indicate that the seeds of H. perfoliata could tolerate high levels of a wide variety of salts found in soil. (author)

  8. Evaluasi Implementasi SAP Modul Material Management: Studi Kasus pada PT Bumitama Gunajaya Agro

    Directory of Open Access Journals (Sweden)

    Santo Fernandi Wijaya

    2012-06-01

    Full Text Available An integrated information system is a necessity for a company to help solve problems in business transactions management. SAP application is an application that is able to provide solutions to such problems. The purpose of this study was to evaluate the running business processes on the Material Management module;evaluate the performance of the running SAP systems associated with the implementation and maintenance of SAP applications as well as to give sugestions based on the development of evaluation results obtained, in terms of business processes, performance, and financial. Utilized for analysis is IT Balanced Scorecard method, while ASAP (Accelerated SAP method is used for the system development. This study produced an analysis of the evaluation of the enterprise business processes in implementing the SAP development of ERP system modulesMaterial Management.

  9. Revaluasi Inventory dengan Menu Standard pada SAP-B1 Sesuaikah dengan IFRS

    Directory of Open Access Journals (Sweden)

    Eka Novianti

    2011-05-01

    Full Text Available Some available standard modules in SAP-B1 can be adapted for changes in accounting rules and regulations. One is the Inventory Revaluation menu of Inventory module. Users can use the menu to make Inventory value adjustments of value in SAP-B1, to be consistent with the values that must be presented in the financial statements. Based on the flexibility provided by SAP-B1menu, should not be too difficult for users of SAP-B1 to manage accounting transactions based on accounting rules that apply today, IFRS. IFRS requirements on inventory adjustment transactions with a value of SAP-B1 could be done more easily.

  10. Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion.

    Science.gov (United States)

    Zhang, Zhen; Sui, Xin; Li, Pei; Xie, Ganhua; Kong, Xiang-Yu; Xiao, Kai; Gao, Longcheng; Wen, Liping; Jiang, Lei

    2017-07-05

    The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m 2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.

  11. Irreversibility of a bad start: early exposure to osmotic stress limits growth and adaptive developmental plasticity.

    Science.gov (United States)

    Wu, Chi-Shiun; Gomez-Mestre, Ivan; Kam, Yeong-Choy

    2012-05-01

    Harsh environments experienced early in development have immediate effects and potentially long-lasting consequences throughout ontogeny. We examined how salinity fluctuations affected survival, growth and development of Fejervarya limnocharis tadpoles. Specifically, we tested whether initial salinity effects on growth and rates of development were reversible and whether they affected the tadpoles' ability to adaptively accelerate development in response to deteriorating conditions later in development. Tadpoles were initially assigned to either low or high salinity, and then some were switched between salinity levels upon reaching either Gosner stage 30 (early switch) or 38 (late switch). All tadpoles initially experiencing low salinity survived whereas those initially experiencing high salinity had poor survival, even if switched to low salinity. Growth and developmental rates of tadpoles initially assigned to high salinity did not increase after osmotic stress release. Initial low salinity conditions allowed tadpoles to attain a fast pace of development even if exposed to high salinity afterwards. Tadpoles experiencing high salinity only late in development metamorphosed faster and at a smaller size, indicating an adaptive acceleration of development to avoid osmotic stress. Nonetheless, early exposure to high salinity precluded adaptive acceleration of development, always causing delayed metamorphosis relative to those in initially low salinity. Our results thus show that stressful environments experienced early in development can critically impact life history traits, having long-lasting or irreversible effects, and restricting their ability to produce adaptive plastic responses.

  12. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition

    Directory of Open Access Journals (Sweden)

    Simon Swapna

    2017-09-01

    Full Text Available Drought is the major abiotic stress factor that limits rice production worldwide. To evaluate the osmotic stress responses in rice varieties under drought condition, a total of 42 high-yielding rice varieties were collected from various research stations of Kerala Agricultural University in India. The experimental setup comprises of initial hydroponic treatments at different osmotic potentials, artificially induced by desired strengths of polyethylene glycol (PEG6000, and followed by the pot planted experiments in the rain-out-zone. The activities of antioxidant enzymes, relative water content, cell membrane stability, photosynthetic pigments, proline content, along with plant growth parameters of the varieties under drought condition were evaluated. Moreover, the standard scores of these rice varieties were assessed under stress and recovery conditions based on the scoring scale of the Standard Evaluation System for rice. Among the 42 rice varieties, we identified 2 rice varieties, Swarnaprabha and Kattamodan, with less leaf rolling, better drought recovery ability as well as relative water content, increased membrane stability index, osmolyte accumulation, and antioxidant enzyme activities pointed towards their degree of tolerance to drought stress. The positive adaptive responses of these rice varieties towards drought stress can be used in the genetic improvement of rice drought resistance breeding program.

  13. Osmotic Effect of Conditioning on Seeds of Tomato (Solanum Lycopersicum L. Santa Clara Variety

    Directory of Open Access Journals (Sweden)

    Brigitte Liliana Moreno Medina

    2013-12-01

    Full Text Available The tomato (Solanum lycopersicum L. is one of the most important vegetables in the world, taking into account its nutritional potential and high economic value. In this crop the quality of seed depends on various factors, one of which is its physiology, which is determined by a germination and viability test. Osmotic seed conditioning is reported to be a technique for improving the physiological quality through the uniformity of the germination percentage. For this reason, the objective of this research was to evaluate the osmotic conditioning on tomato seeds of the Santa Clara variety. Using treatments of four doses of potassium nitrate (0, 100, 200 and 400 mg L-1 , the seeds were imbibitioned for 24 hours in solution and then washed with distilled water. They were placed in petri dishes in random order with three replications for a total of 12 experimental units, consisting of 35 seeds. The method seeks to hydrate the seeds with a solution of given concentration and for a period of time, in order to activate the seed metabolism. The best result was obtained with the treatment of 200 mg L-1 of potassium nitrate, followed by 400 mg L-1 , represented by a lower TMG , lower and higher PG VMG.

  14. Osmotic distillation and quality evaluation of sucrose, apple and orange juices in hollow fiber membrane contactor

    Directory of Open Access Journals (Sweden)

    Rehman Waheed Ur

    2017-01-01

    Full Text Available Sucrose solution, apple and orange juices were concentrated through osmotic distillation (OD process using a mini-module Liqui-CelTM hollow fibre membrane contactor. Mass transport characteristics of water molecules from feed to stripping solution were studied. Process parameters such as feed temperature, feed flow rate and concentration of stripping solution (CaCl2 were varied. Sucrose solution was concentrated from 135 to 510 g TSS kg-1 in 340 min using feed-in- -lumen flow configuration at a start-up water flux of 0.250 L m-2 h-1 and a temperature of 30°C. Similarly, it was concentrated up to 510 g TSS kg-1 in 200 min using feed-in-shell flow configuration at a start-up water flux of 0.505 L m-2 hr1 and a temperature of 30°C. In a total recycle time of 340 min, clarified apple and orange juices were concentrated up to 500 g TSS kg-1 using feed-in-lumen flow configuration at a start-up water flux of 0.204 and 0.294 L m-2 hr1, respectively. It was found that quality parameters of fruit juices were well improved after the osmotic distillation process. The process therefore has good potential for application in the fruit processing industry for concentration of fruit juices.

  15. Estimates of evapotranspiration for riparian sites (Eucalyptus) in the Lower Murray -Darling Basin using ground validated sap flow and vegetation index scaling techniques

    Science.gov (United States)

    Doody, T.; Nagler, P. L.; Glenn, E. P.

    2014-12-01

    Water accounting is becoming critical globally, and balancing consumptive water demands with environmental water requirements is especially difficult in in arid and semi-arid regions. Within the Murray-Darling Basin (MDB) in Australia, riparian water use has not been assessed across broad scales. This study therefore aimed to apply and validate an existing U.S. riparian ecosystem evapotranspiration (ET) algorithm for the MDB river systems to assist water resource managers to quantify environmental water needs over wide ranges of niche conditions. Ground-based sap flow ET was correlated with remotely sensed predictions of ET, to provide a method to scale annual rates of water consumption by riparian vegetation over entire irrigation districts. Sap flux was measured at nine locations on the Murrumbidgee River between July 2011 and June 2012. Remotely sensed ET was calculated using a combination of local meteorological estimates of potential ET (ETo) and rainfall and MODIS Enhanced Vegetation Index (EVI) from selected 250 m resolution pixels. The sap flow data correlated well with MODIS EVI. Sap flow ranged from 0.81 mm/day to 3.60 mm/day and corresponded to a MODIS-based ET range of 1.43 mm/day to 2.42 mm/day. We found that mean ET across sites could be predicted by EVI-ETo methods with a standard error of about 20% across sites, but that ET at any given site could vary much more due to differences in aquifer and soil properties among sites. Water use was within range of that expected. We conclude that our algorithm developed for US arid land crops and riparian plants is applicable to this region of Australia. Future work includes the development of an adjusted algorithm using these sap flow validated results.

  16. Combining stable isotope and carbohydrate analyses in phloem sap and fine roots to study seasonal changes of source-sink relationships in a Mediterranean beech forest.

    Science.gov (United States)

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2015-08-01

    Carbon isotope composition (δ(13)C) and carbohydrate content of phloem sap and fine roots were measured in a Mediterranean beech (Fagus sylvatica L.) forest throughout the growing season to study seasonal changes of source-sink relationships. Seasonal variations of δ(13)C and content of phloem sap sugars, collected during the daylight period, reflected the changes in soil and plant water status. The correlation between δ(13)C and content of phloem sap sugars, collected from plants belonging to different social classes, was significantly positive only during the driest month of July. In this month, δ(13)C of phloem sap sugars was inversely related to the increment of trunk radial growth and positively related to δ(13)C of fine roots. We conclude that the relationship between δ(13)C and the amount of phloem sap sugars is affected by a combination of causes, such as sink strength, tree social class, changes in phloem anatomy and transport capacity, and phloem loading of sugars to restore sieve tube turgor following the reduced plant water potential under drought conditions. However, δ(13)C and sugar composition of fine roots suggested that phloem transport of leaf sucrose to this belowground component was not impaired by mild drought and that sucrose was in a large part allocated towards fine roots in July, depending on tree social class. Hence, fine roots could represent a functional carbon sink during the dry seasonal periods, when transport and use of assimilates in other sink tissues are reduced. These results indicate a strict link between above- and belowground processes and highlight a rapid response of this Mediterranean forest to changes in environmental drivers to regulate source-sink relationships and carbon sink capacity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange).

    Science.gov (United States)

    Hijaz, Faraj; Killiny, Nabil

    2014-01-01

    Through utilizing the nutrient-rich phloem sap, sap feeding insects such as psyllids, leafhoppers, and aphids can transmit many phloem-restricted pathogens. On the other hand, multiplication of phloem-limited, uncultivated bacteria such as Candidatus Liberibacter asiaticus (CLas) inside the phloem of citrus indicates that the sap contains all the essential nutrients needed for the pathogen growth. The phloem sap composition of many plants has been studied; however, to our knowledge, there is no available data about citrus phloem sap. In this study, we identified and quantified the chemical components of phloem sap from pineapple sweet orange. Two approaches (EDTA enhanced exudation and centrifugation) were used to collect phloem sap. The collected sap was derivatized with methyl chloroformate (MCF), N-methyl-N- [tert-butyl dimethylsilyl]-trifluroacetamide (MTBSTFA), or trimethylsilyl (TMS) and analyzed with GC-MS revealing 20 amino acids and 8 sugars. Proline, the most abundant amino acid, composed more than 60% of the total amino acids. Tryptophan, tyrosine, leucine, isoleucine, and valine, which are considered essential for phloem sap-sucking insects, were also detected. Sucrose, glucose, fructose, and inositol were the most predominant sugars. In addition, seven organic acids including succinic, fumaric, malic, maleic, threonic, citric, and quinic were detected. All compounds detected in the EDTA-enhanced exudate were also detected in the pure phloem sap using centrifugation. The centrifugation technique allowed estimating the concentration of metabolites. This information expands our knowledge about the nutrition requirement for citrus phloem-limited bacterial pathogen and their vectors, and can help define suitable artificial media to culture them.

  18. Osmotic phenomena in application for hyperbaric oxygen treatment.

    Science.gov (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  19. Dynamic Acquisition and Loss of Dual-Obligate Symbionts in the Plant-Sap-Feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea)

    Science.gov (United States)

    Carol D. von Dohlen; Usha Spaulding; Kistie B. Patch; Kathryn M. Weglarz; Robert G. Foottit; Nathan P. Havill; Gaelen R. Burke

    2017-01-01

    Sap-sucking insects typically engage in obligate relationships with symbiotic bacteria that play nutritional roles in synthesizing nutrients unavailable or in scarce supply from the plant-sap diets of their hosts. Adelgids are sap-sucking insects with complex life cycles that involve alternation between conifer tree species. While all adelgid species feed on spruce...

  20. 78 FR 43091 - Technical Operations Safety Action Program (T-SAP) and Air Traffic Safety Action Program (ATSAP)

    Science.gov (United States)

    2013-07-19

    ... Administration 14 CFR Part 193 [Docket No.: FAA-2013-0375] Technical Operations Safety Action Program (T-SAP) and... Disclosure. SUMMARY: The FAA is proposing that safety information provided to it under the T-SAP, established... to the FAA under the T-SAP and ATSAP, so the FAA can learn about and address aviation safety hazards...

  1. 49 CFR 40.307 - What is the SAP's function in prescribing the employee's follow-up tests?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What is the SAP's function in prescribing the... the Return-to-Duty Process § 40.307 What is the SAP's function in prescribing the employee's follow-up tests? (a) As a SAP, for each employee who has committed a DOT drug or alcohol regulation violation, and...

  2. 78 FR 12676 - Timing Requirements for the Submission of a Site Assessment Plan (SAP) or General Activities Plan...

    Science.gov (United States)

    2013-02-25

    ...: BOEM-2012-0077] RIN 1010-AD77 Timing Requirements for the Submission of a Site Assessment Plan (SAP) or... would amend the timing requirements for submitting a Site Assessment Plan (SAP) or General Activities... and grants will have a preliminary term of 12 months in which a lessee or grantee must submit a SAP or...

  3. 49 CFR 40.293 - What is the SAP's function in conducting the initial evaluation of an employee?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What is the SAP's function in conducting the... Professionals and the Return-to-Duty Process § 40.293 What is the SAP's function in conducting the initial evaluation of an employee? As a SAP, for every employee who comes to you following a DOT drug and alcohol...

  4. 30 CFR 285.615 - What other reports or notices must I submit to MMS under my approved SAP?

    Science.gov (United States)

    2010-07-01

    ... MMS under my approved SAP? 285.615 Section 285.615 Mineral Resources MINERALS MANAGEMENT SERVICE... CONTINENTAL SHELF Plans and Information Requirements Activities Under An Approved Sap § 285.615 What other reports or notices must I submit to MMS under my approved SAP? (a) You must notify MMS in writing within...

  5. 30 CFR 285.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Science.gov (United States)

    2010-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 285.902 Section 285.902 Mineral Resources... SAP, COP, or GAP? (a) Except as otherwise authorized by MMS under § 285.909, within 2 years following... under your SAP, COP, or GAP, you must submit a decommissioning application and receive approval from the...

  6. 49 CFR 40.287 - What information is an employer required to provide concerning SAP services to an employee who...

    Science.gov (United States)

    2010-10-01

    ... provide concerning SAP services to an employee who has a DOT drug and alcohol regulation violation? 40.287... § 40.287 What information is an employer required to provide concerning SAP services to an employee who... (including an applicant or new employee) who violates a DOT drug and alcohol regulation a listing of SAPs...

  7. Ozone uptake by adult urban trees based on sap flow measurement

    International Nuclear Information System (INIS)

    Wang Hua; Zhou Weiqi; Wang Xiaoke; Gao Fuyuan; Zheng Hua; Tong Lei; Ouyang Zhiyun

    2012-01-01

    The O 3 uptake in 17 adult trees of six urban species was evaluated by the sap flow-based approach under free atmospheric conditions. The results showed very large species differences in ground area scaled whole-tree ozone uptake (F O 3 ), with estimates ranging from 0.61 ± 0.07 nmol m −2 s −1 in Robinia pseudoacacia to 4.80 ± 1.04 nmol m −2 s −1 in Magnolia liliiflora. However, average F O 3 by deciduous foliages was not significantly higher than that by evergreen ones (3.13 vs 2.21 nmol m −2 s −1 , p = 0.160). Species of high canopy conductance for O 3 (G O 3 ) took up more O 3 than those of low G O 3 , but that their sensitivity to vapour pressure deficit (D) were also higher, and their F O 3 decreased faster with increasing D, regardless of species. The responses of F O 3 to D and total radiation led to the relative high flux of O 3 uptake, indicating high ozone risk for urban tree species. - Highlights: ► O 3 uptake by urban trees varied considering contrasting species and study period. ►The responses of G O 3 to microclimate lead to relative high O 3 uptake by urban trees. ►Many urban species are susceptible to O 3 damage. ►The annual O 3 uptake in our study is greatly less than that from modeling approaches. ►The difference suggests considering the species-specific flux in O 3 risk assessment. - Sap flow-based O 3 uptake among urban species suggests high capacity and variation of ozone uptake, as well as potentially detrimental effects to urban species.

  8. Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions.

    Science.gov (United States)

    Selvakumar, Govindan; Bhatt, Ravindra M; Upreti, Kaushal K; Bindu, Gurupadam Hema; Shweta, Kademani

    2015-05-01

    The water potential of rhizospheric soil is a key parameter that determines the availability of water, oxygen, and nutrients to plants and microbes. Recent global warming trends and erratic precipitation patterns have resulted in the emergence of drought as a major constraint of agricultural productivity. Though several strategies are being evaluated to address this issue, a novel approach is the utilization of microbes for alleviation of drought stress effects in crops. Citricoccus zhacaiensis B-4 is an osmotolerant actinobacterium isolated from banana rhizosphere on mannitol supplemented medium (-2.92 MPa osmotic potential). This isolate expressed plant growth promotion traits viz, IAA, GA3 production, phosphate, zinc solubilization, ACC deaminase activity and ammonia production under PEG induced osmotic stress and non-stress conditions. Under in vitro osmotic conditions, biopriming with the actinobacterium improved the percent germination, seedling vigour and germination rate of onion seeds (cv. Arka Kalyan) at osmotic potentials up to -0.8 MPa. Considering its novelty, osmotolerance and plant growth promoting traits, biopriming with C. zhacaiensis is suggested as a viable option for the promotion of onion seed germination under drought stressed environments.

  9. Fast Centrifugal Partition Chromatography Fractionation of Concentrated Agave (Agave salmiana) Sap to Obtain Saponins with Apoptotic Effect on Colon Cancer Cells.

    Science.gov (United States)

    Santos-Zea, Liliana; Fajardo-Ramírez, Oscar R; Romo-López, Irasema; Gutiérrez-Uribe, Janet A

    2016-03-01

    Separation of potentially bioactive components from foods and plant extracts is one of the main challenges for their study. Centrifugal partition chromatography has been a successful technique for the screening and identification of molecules with bioactive potential, such as steroidal saponins. Agave is a source of steroidal saponins with anticancer potential, though the activity of these compounds in concentrated agave sap has not been yet explored. In this study, fast centrifugal partition chromatography (FCPC) was used coupled with in vitro tests on HT-29 cells as a screening procedure to identify apoptotic saponins from an acetonic extract of concentrated agave sap. The three most bioactive fractions obtained by FCPC at partition coefficients between 0.23 and 0.4 contained steroidal saponins, predominantly magueyoside b. Flow cytometry analysis determined that the fraction rich in kammogenin and manogenin glycosides induced apoptosis, but when gentrogenin and hecogenin glycosides were also found in the fraction, a necrotic effect was observed. In conclusion, this study provides the evidence that steroidal saponins in concentrated agave sap were potential inductors of apoptosis and that it was possible to separate them using fast centrifugal partition chromatography.

  10. Effect of plasma colloid osmotic pressure on intraocular pressure during haemodialysis

    OpenAIRE

    Tokuyama, T.; Ikeda, T.; Sato, K.

    1998-01-01

    BACKGROUND—In a previous case report, it was shown that an increase in plasma colloid osmotic pressure induced by the removal of fluid during haemodialysis was instrumental in decreasing intraocular pressure. The relation between changes in intraocular pressure, plasma osmolarity, plasma colloid osmotic pressure, and body weight before and after haemodialysis is evaluated.
METHODS—Intraocular pressure, plasma osmolarity, plasma colloid osmotic pressure, and body weight were evaluated before a...

  11. Effect of osmotic stress and post-stress recovery on the content of phenolics and properties of antioxidants in germinating seeds of grapevine Vitis californica

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner

    2011-05-01

    antioxidizing enzymes in germinating grapevine seeds. Thus, the antioxidative defence system is largely blocked under osmotic stress. It seems that a very high oxidoreductive potential in grapevine tissues prior to occurrence of osmotic stress is essential for maintaining proper homeostasis of oxidation and reduction reactions.

  12. An Auroral Boundary-Oriented Model of Subauroral Polarization Streams (SAPS)

    Science.gov (United States)

    Landry, R. G.; Anderson, P. C.

    2018-04-01

    An empirical model of subauroral polarization stream (SAPS) electric fields has been developed using measurements of ion drifts and particle precipitation made by the Defense Meteorological Satellite Program from 1987 to 2012 and Dynamics Explorer 2 as functions of magnetic local time (MLT), magnetic latitude, the auroral electrojet index (AE), hemisphere, and day of year. Over 500,000 subauroral passes are used. This model is oriented in degree magnetic latitude equatorward of the aurora and takes median values instead of the mean to avoid the contribution of low occurrence frequency subauroral ion drifts so that the model is representative of the much more common, latitudinally broad, low-amplitude SAPS field. The SAPS model is in broad agreement with previous statistical efforts in the variation of the SAPS field with MLT and magnetic activity level, although the median field is weaker. Furthermore, we find that the median SAPS field is roughly conjugate in both hemispheres for all seasons, with a maximum in SAPS amplitude and width found for 1800-2000 MLT. The SAPS amplitude is found to vary seasonally only from about 1800-2000 MLT, maximizing in both hemispheres during equinox months. Because this feature exists despite controlling for the AE index, it is suggested that this is due to a seasonal variation in the flux tube averaged ionospheric conductance at MLT sectors where it is more likely that one flux tube footprint is in darkness while the other is in daylight.

  13. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats.

    Science.gov (United States)

    Yoo, Yeong-Min; Jung, Eui-Man; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2011-10-01

    In the present study, we examined whether Acer okamotoanum (A. okamotoanum) sap decreased the serum alcohol and acetaldehyde levels after acute ethanol treatment in a rat model. Male rats were orally administered 25, 50 or 100% A. okamotoanum sap 30 min prior to oral challenge with 3 ml of ethanol (15 ml/kg of a 20% ethanol solution in water), and the blood concentrations of alcohol and acetaldehyde were analyzed up to 7 h after the treatment. Pre-treatment with the sap significantly decreased the blood ethanol and acetaldehyde concentrations after 5 h when compared with ethanol treatment alone (a negative control). The expression levels of liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) mRNA were increased significantly in animals pre-treated with A. okamotoanum sap when compared with negative and positive controls. The data suggest that sap pre-treatment enhanced the alcohol metabolism rate in the rat liver. To investigate the involvement of mitochondrial regulation in the ethanol-induced hepatocyte apoptosis, we carried out an immunohistochemical analysis of Bax and Bcl-2. Pre-treatment with sap significantly decreased Bax expression and increased Bcl-2 expression 7 h after ethanol administration when compared with the negative control. The data suggest that A. okamotoanum sap pre-treatment may reduce the alcohol-induced oxidative stress in the rat liver.

  14. The performance and customization of SAPS 3 admission score in a Thai medical intensive care unit.

    Science.gov (United States)

    Khwannimit, Bodin; Bhurayanontachai, Rungsun

    2010-02-01

    The aim of this study was to evaluate the performance of Simplified Acute Physiology Score 3 (SAPS 3) admission scores, both the original and a customized version, in mixed medical critically ill patients. A prospective cohort study was conducted over a 2-year period in the medical intensive care unit (MICU) of a tertiary referral university teaching hospital in Thailand. The probability of hospital mortality of the original SAPS 3 was calculated using the general and customized Australasia version (SAPS 3-AUS). The patients were randomly divided into equal calibration and validation groups for customization. A total of 1,873 patients were enrolled. The hospital mortality rate was 28.6%. The general equation of SAPS 3 had excellent discrimination with an area under the receiver operating characteristic curve of 0.933, but poor calibration with the Hosmer-Lemeshow goodness-of-fit H = 106.7 and C = 101.2 (P customized SAPS 3 showed a good calibration of all patients in the validation group (H = 14, P = 0.17 and C = 11.3, P = 0.33) and all subgroups according to main diagnosis, age, gender and co-morbidities. The SAPS 3 provided excellent discrimination but poor calibration in our MICU. A first level customization of the SAPS 3 improved the calibration and could be used to predict mortality and quality assessment in our ICU or other ICUs with a similar case mix.

  15. SAP buran injury management of mangoes (mangifera indica L.) in sri lanka

    International Nuclear Information System (INIS)

    Krishnapillai, N.

    2016-01-01

    Sap burn injury is one of the major postharvest disorders that causes postharvest losses of mangoes. Popular dessert mango fruits from northern Sri Lanka were selected for this study. Mature mango fruits - Willard, Karuthakolumban, Chembaddan and Ambalavi - were harvested carefully with 5cm stalk for different treatments to minimize sap burn injury. Stalks were removed and fruits were dipped in GRAS compounds of 1 and 5% sodium chloride (Table salt) and 0.5 and 1% calcium hydroxide separately for 5 minutes. De-stemming and dipping fruits in 5% sodium chloride and 1% calcium hydroxide were effective in reducing sap burn injury in Karuthakolumban. However, 1% table salt and 0.5% calcium hydroxide successfully reduced sap burn injury in Willard, Chembaddan and Ambalavi mangoes. Fruit quality was measured in terms of pH, Total Soluble Solids (TSS) and marketability. Quality parameters of treated fruits were not significantly different (P=0.05) from non chemical treated good quality mango fruits. Sap management dynamics was very useful in controlling sap burn in Chembaddan and Ambalavi mangoes. No latex exudation was observed in these mangoes when stalk was broken by next day after harvesting. These results suggest that low cost environmentally friendly methods could be used to reduce sap burn injury in mangoes. (author)

  16. Gene expression analysis in response to osmotic stimuli in the intervertebral disc with DNA microarray.

    Science.gov (United States)

    Zhang, Wenzhi; Li, Xu; Shang, Xifu; Zhao, Qichun; Hu, Yefeng; Xu, Xiang; He, Rui; Duan, Liqun; Zhang, Feng

    2013-12-27

    Intervertebral disc (IVD) cells experience a broad range of physicochemical stimuli under physiologic conditions, including alterations in their osmotic environment. At present, the molecular mechanisms underlying osmotic regulation in IVD cells are poorly understood. This study aims to screen genes affected by changes in osmotic pressure in cells of subjects aged 29 to 63 years old, with top-scoring pair (TSP) method. Gene expression data set GSE1648 was downloaded from Gene Expression Omnibus database, including four hyper-osmotic stimuli samples, four iso-osmotic stimuli samples, and three hypo-osmotic stimuli samples. A novel, simple method, referred to as the TSP, was used in this study. Through this method, there was no need to perform data normalization and transformation before data analysis. A total of five pairs of genes ((CYP2A6, FNTB), (PRPF8, TARDBP), (RPS5, OAZ1), (SLC25A3, NPM1) and (CBX3, SRSF9)) were selected based on the TSP method. We inferred that all these genes might play important roles in response to osmotic stimuli and age in IVD cells. Additionally, hyper-osmotic and iso-osmotic stimuli conditions were adverse factors for IVD cells. We anticipate that our results will provide new thoughts and methods for the study of IVD disease.

  17. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress.

    Science.gov (United States)

    Yang, Yongchao; Mo, Yanling; Yang, Xiaozheng; Zhang, Haifei; Wang, Yongqi; Li, Hao; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Osmotic stress adversely affects the growth, fruit quality and yield of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Increasing the tolerance of watermelon to osmotic stress caused by factors such as high salt and water deficit is an effective way to improve crop survival in osmotic stress environments. Roots are important organs in water absorption and are involved in the initial response to osmosis stress; however, few studies have examined the underlying mechanism of tolerance to osmotic stress in watermelon roots. For better understanding of this mechanism, the inbred watermelon accession M08, which exhibits relatively high tolerance to water deficits, was treated with 20% polyethylene glycol (PEG) 6000. The root samples were harvested at 6 h after PEG treatment and untreated samples were used as controls. Transcriptome analyses were carried out by Illumina RNA sequencing. A total of 5246 differentially expressed genes were identified. Gene ontology enrichment and biochemical pathway analyses of these 5246 genes showed that short-term osmotic stress affected osmotic adjustment, signal transduction, hormone responses, cell division, cell cycle and ribosome, and M08 may repress root growth to adapt osmotic stress. The results of this study describe the watermelon root transcriptome under osmotic stress and propose new insight into watermelon root responses to osmotic stress at the transcriptome level. Accordingly, these results allow us to better understand the molecular mechanisms of watermelon in response to drought stress and will facilitate watermelon breeding projects to improve drought tolerance.

  18. Sapfluxnet: a global database of sap flow measurements to unravel the ecological factors of transpiration regulation in woody plants

    Science.gov (United States)

    Poyatos, Rafael; Martínez-Vilalta, Jordi; Molowny-Horas, Roberto; Steppe, Kathy; Oren, Ram; Katul, Gabriel; Mahecha, Miguel

    2016-04-01

    Plant transpiration is one of the main components of the global water cycle, it controls land energy balance, determines catchment hydrological responses and exerts strong feedbacks on regional and global climate. At the same time, plant productivity, growth and survival are severely constrained by water availability, which is expected to decline in many areas of the world because of global-change driven increases in drought conditions. While global surveys of drought tolerance traits at the organ level are rapidly increasing our knowledge of the diversity in plant functional strategies to cope with drought stress, a whole-plant perspective of drought vulnerability is still lacking. Sap flow measurements using thermal methods have now been applied to measure seasonal patterns in water use and the response of transpiration to environmental drivers across hundreds of species of woody plants worldwide, covering a wide range of climates, soils and stand structural characteristics. Here, we present the first effort to build a global database of sub-daily, tree-level sap flow (SAPFLUXNET) that will be used to improve our understanding of physiological and structural determinants of plant transpiration and to further investigate the role of vegetation in controlling global water balance. We already have the expression of interest of data contributors representing >115 globally distributed sites, > 185 species and > 700 trees, measured over at least one growing season. However, the potential number of available sites and species is probably much higher given that > 2500 sap flow-related papers have been identified in a Scopus literature search conducted in November 2015. We will give an overview of how data collection, harmonisation and quality control procedures are implemented within the project. We will also discuss potential analytical strategies to synthesize hydroclimatic controls on sap flow into biologically meaningful traits related to whole-plant transpiration

  19. Osmotic membrane bioreactor for phenol biodegradation under continuous operation

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, Prashant; Loh, Kai-Chee, E-mail: chelohkc@nus.edu.sg

    2016-03-15

    Highlights: • Osmotic membrane bioreactor was used for phenol biodegradation in continuous mode. • Extractant impregnated membranes were used to alleviate substrate inhibition. • Phenol removal was achieved through both biodegradation and membrane rejection. • Phenol concentrations up to 2500 mg/L were treated at HRT varying in 2.8–14 h. • A biofilm removal strategy was formulated to improve bioreactor sustainability. - Abstract: Continuous phenol biodegradation was accomplished in a two-phase partitioning osmotic membrane bioreactor (TPPOMBR) system, using extractant impregnated membranes (EIM) as the partitioning phase. The EIMs alleviated substrate inhibition during prolonged operation at influent phenol concentrations of 600–2000 mg/L, and also at spiked concentrations of 2500 mg/L phenol restricted to 2 days. Filtration of the effluent through forward osmosis maintained high biomass concentration in the bioreactor and improved effluent quality. Steady state was reached in 5–6 days at removal rates varying between 2000 and 5500 mg/L-day under various conditions. Due to biofouling and salt accumulation, the permeate flux varied from 1.2–7.2 LMH during 54 days of operation, while maintaining an average hydraulic retention time of 7.4 h. A washing cycle, comprising 1 h osmotic backwashing using 0.5 M NaCl and 2 h washing with water, facilitated biofilm removal from the membranes. Characterization of the extracellular polymeric substances (EPS) through FTIR showed peaks between 1700 and 1500 cm{sup −1}, 1450–1450 cm{sup −1} and 1200–1000 cm{sup −1}, indicating the presence of proteins, phenols and polysaccharides, respectively. The carbohydrate to protein ratio in the EPS was estimated to be 0.3. These results indicate that TPPOMBR can be promising in continuous treatment of phenolic wastewater.

  20. Tirilazad mesylate protects stored erythrocytes against osmotic fragility.

    Science.gov (United States)

    Epps, D E; Knechtel, T J; Bacznskyj, O; Decker, D; Guido, D M; Buxser, S E; Mathews, W R; Buffenbarger, S L; Lutzke, B S; McCall, J M

    1994-12-01

    The hypoosmotic lysis curve of freshly collected human erythrocytes is consistent with a single Gaussian error function with a mean of 46.5 +/- 0.25 mM NaCl and a standard deviation of 5.0 +/- 0.4 mM NaCl. After extended storage of RBCs under standard blood bank conditions the lysis curve conforms to the sum of two error functions instead of a possible shift in the mean and a broadening of a single error function. Thus, two distinct sub-populations with different fragilities are present instead of a single, broadly distributed population. One population is identical to the freshly collected erythrocytes, whereas the other population consists of osmotically fragile cells. The rate of generation of the new, osmotically fragile, population of cells was used to probe the hypothesis that lipid peroxidation is responsible for the induction of membrane fragility. If it is so, then the antioxidant, tirilazad mesylate (U-74,006f), should protect against this degradation of stored erythrocytes. We found that tirilazad mesylate, at 17 microM (1.5 mol% with respect to membrane lecithin), retards significantly the formation of the osmotically fragile RBCs. Concomitantly, the concentration of free hemoglobin which accumulates during storage is markedly reduced by the drug. Since the presence of the drug also decreases the amount of F2-isoprostanes formed during the storage period, an antioxidant mechanism must be operative. These results demonstrate that tirilazad mesylate significantly decreases the number of fragile erythrocytes formed during storage in the blood bank.

  1. Enhanced production and purification of recombinant surface array protein (Sap) for use in detection of Bacillus anthracis.

    Science.gov (United States)

    Puranik, Nidhi; Tripathi, N K; Pal, V; Goel, Ajay Kumar

    2018-05-01

    Surface array protein (Sap) can be an important biomarker for specific detection of Bacillus anthracis , which is released by the bacterium during its growth in culture broth. In the present work, we have cloned and expressed Sap in Escherichia coli . The culture conditions and cultivation media were optimized and used in batch fermentation process for scale up of Sap in soluble form. The recombinant Sap was purified employing affinity chromatography followed by diafiltration. The final yield of purified protein was 20 and 46 mg/l of culture during shake flasks and batch fermentation, respectively. The protein purity and its reactivity were confirmed employing SDS-PAGE and Western blot, respectively. The antibodies raised against purified Sap were evaluated by Western blotting for detection of Sap released by B. anthracis . Our results showed that the Sap could be a novel marker for detection and confirmation of B. anthracis .

  2. Artificial neural network model of pork meat cubes osmotic dehydration

    OpenAIRE

    Pezo, Lato L.; Ćurčić, Biljana Lj.; Filipović, Vladimir S.; Nićetin, Milica R.; Koprivica, Gordana B.; Mišljenović, Nevena M.; Lević, Ljubinko B.

    2013-01-01

    Mass transfer of pork meat cubes (M. triceps brachii), shaped as 1x1x1 cm, during osmotic dehydration (OD) and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w), temperature (20-50ºC), and immersion time (1-5 h) in terms of water loss (WL), solid gain (SG), final dry matter content (DM), and water activity (aw), were investigated using experimental results. Five artificial neural net...

  3. Compression and Reswelling of Microgel Particles after an Osmotic Shock

    Science.gov (United States)

    Sleeboom, Jelle J. F.; Voudouris, Panayiotis; Punter, Melle T. J. J. M.; Aangenendt, Frank J.; Florea, Daniel; van der Schoot, Paul; Wyss, Hans M.

    2017-09-01

    We use dedicated microfluidic devices to expose soft hydrogel particles to a rapid change in the externally applied osmotic pressure and observe a surprising, nonmonotonic response: After an initial rapid compression, the particle slowly reswells to approximately its original size. We theoretically account for this behavior, enabling us to extract important material properties from a single microfluidic experiment, including the compressive modulus, the gel permeability, and the diffusivity of the osmolyte inside the gel. We expect our approach to be relevant to applications such as controlled release, chromatography, and responsive materials.

  4. Sulfonic-based precursors (SAPs for silica mesostructures: Advances in synthesis and applications

    Directory of Open Access Journals (Sweden)

    Sadegh Rostamnia*

    2016-01-01

    Full Text Available Sulfonic acid-based precursors (SAP play an important role in tailoring mesoporous silica’s and convert them to a solid acid catalyst with a Bronsted-type nature. These kinds of solid acids contribute to sustainable and green chemistry by their heterogeneous, recyclable, and high efficiency features. Therefore, knowing the properties and reactivity of SAPs can guide us to manufacture a sulfonated mesostructures compatible with reaction type and conditions. In the present review, some of the important SAPs, their reactivity and mechanism of functionalization are discussed.

  5. ERP SAP-osaamisen kehittäminen Pohjois-Karjalan ammattikorkeakoulussa

    OpenAIRE

    Nuutinen, Päivi

    2012-01-01

    Opinnäytetyön tavoitteena oli tutkia, millä toimin Pohjois-Karjalan ammattikorkeakoulun liiketalouden ja tekniikan keskuksen opetushenkilöstön ERP SAP-osaamista on kehitetty ja vastaako osaaminen ulkoisten asiakkaiden tarpeisiin. Tutkimustavoitteena oli selvittää myös ne menetelmät, jotka opetushenkilöstö kokee parhaimpina ERP SAP-osaamisen kehittämisen keinoina. ERP SAP-osaamisen kehittämisessä huomioitiin ulkoisten asiakkuuksien näkemykset. Tutkimustulosten osalta tuli esille, että ty...

  6. Management of setpoint information using SAP-PM; Gerenciamento das informacoes de setpoints usando o SAP-PM

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Robison Tirre; Pereira, Paulo Manoel Borges [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    It is always a challenge to assure that the set points of field instruments and valves (e.g., transmitters, regulator valves, shut off valves, safety valves, etc) are adjusted in conformity either to the originally designed values or the ones established by the operations team, specially when multiple teams are involved in the activity. In such circumstances, keeping these values updated on proper data sheets is also a defying task. The correct information is essential to the Control Room operators and its accuracy is a step ahead towards operational availability and safety. TBG, through CMMS (Computerized Maintenance Management System) - SAP R/3, PM Module, developed a set of automated tools to integrate data from different environments (reports, handhelds, workflows and procedures), thus allowing allow a better control over the set point adjustment process. (author)

  7. Observation of Intravascular Changes of Superabsorbent Polymer Microsphere (SAP-MS) with Monochromatic X-Ray Imaging

    International Nuclear Information System (INIS)

    Tanimoto, Daigo; Ito, Katsuyoshi; Yamamoto, Akira; Sone, Teruki; Kobatake, Makito; Tamada, Tsutomu; Umetani, Keiji

    2010-01-01

    This study was designed to evaluate the intravascular transformation behavior of superabsorbent polymer microsphere (SAP-MS) in vivo macroscopically by using monochromatic X-ray imaging and to quantitatively compare the expansion rate of SAP-MS among different kinds of mixtures. Fifteen rabbits were used for our study and transcatheter arterial embolization (TAE) was performed for their auricular arteries using monochromatic X-ray imaging. We used three kinds of SAP-MS (particle diameter 100-150 μm) mixture as embolic spherical particles: SAP-MS(H) absorbed with sodium meglumine ioxaglate (Hexabrix 320), SAP-MS(V) absorbed with isosmolar contrast medium (Visipaque 270), and SAP-MS(S) absorbed with 0.9% sodium saline. The initial volume of SAP-MS particles just after TAE and its final volume 10 minutes after TAE in the vessel were measured to calculate the expansion rate (ER) (n = 30). Intravascular behavior of SAP-MS particles was clearly observed in real time at monochromatic X-ray imaging. Averaged initial volumes of SAP-MS (H) (1.24 x 10 7 μm 3 ) were significantly smaller (p 7 μm 3 ) and SAP-MS (S) (5.85 x 10 7 μm 3 ). Averaged final volumes of SAP-MS (H) were significantly larger than averaged initial volumes (4.41 x 10 7 μm 3 vs. 1.24 x 10 7 μm 3 ; p < 0.0001, ER = 3.55). There were no significant difference between averaged final volumes and averaged initial volumes of SAP-MS (V) and SAP-MS (S). SAP-MS (H), which first travels distally, reaches to small arteries, and then expands to adapt to the vessel lumen, is an effective particle as an embolic agent, causing effective embolization.

  8. Seasonal shift in climatic limiting factors on tree transpiration: evidence from sap flow observations at alpine treelines in southeast Tibet

    Directory of Open Access Journals (Sweden)

    Liu Xinsheng

    2016-07-01

    Full Text Available Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii and juniper (Juniperus saltuaria treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0 oC. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change.

  9. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verbakel, Werner, E-mail: werner.verbakel@chem.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium); Carmeliet, Geert, E-mail: geert.carmeliet@med.kuleuven.be [Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Herestraat 49, Bus 902, 3000 Leuven (Belgium); Engelborghs, Yves, E-mail: yves.engelborghs@fys.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium)

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP

  10. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    International Nuclear Information System (INIS)

    Verbakel, Werner; Carmeliet, Geert; Engelborghs, Yves

    2011-01-01

    Highlights: → The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. → This SAP-like domain is essential for chromosome loading during early mitosis. → NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. → The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP-chromatin interaction

  11. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum

    DEFF Research Database (Denmark)

    O'Donnell, Natalie H.; Møller, Birger Lindberg; Neale, Alan D.

    2013-01-01

    Sorghum (Sorghum bicolor L. Moench) is a valuable forage crop in regions with low soil moisture. Sorghum may accumulate high concentrations of the cyanogenic glucoside dhurrin when drought stressed resulting in possible cyanide (HCN) intoxication of grazing animals. In addition, high concentratio...... of plant growth and root activity, increasing the rate of nitrate uptake. Data presented in this article support a role for cyanogenic glucosides in mitigating oxidative stress....... of nitrate, also potentially toxic to ruminants, may accumulate during or shortly after periods of drought. Little is known about the degree and duration of drought-stress required to induce dhurrin accumulation, or how changes in dhurrin concentration are influenced by plant size or nitrate metabolism....... Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20...

  12. Global analysis of the yeast osmotic stress response by quantitative proteomics

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kelstrup, C.D.; Stoehr, G.

    2009-01-01

    a comprehensive, quantitative, and time-resolved analysis using high-resolution mass spectrometry of phospho-proteome and proteome changes in response to osmotic stress in yeast. We identified 5534 unique phosphopeptide variants and 3383 yeast proteins. More than 15% of the detected phosphorylation site status...... changed more than two-fold within 5 minutes of treatment. Many of the corresponding phosphoproteins are involved in the early response to environmental stress. Surprisingly, we find that 158 regulated phosphorylation sites are potential substrates of basophilic kinases as opposed to the classical proline......-directed MAP kinase network implicated in stress response mechanisms such as p38 and HOG pathways. Proteome changes reveal an increase in abundance of more than one hundred proteins after 20 min of salt stress. Many of these are involved in the cellular response to increased osmolarity, which include proteins...

  13. Nano-funnels as electro-osmotic ``tweezers and pistons''

    Science.gov (United States)

    Wang, Yanqian; Panyukov, Sergey; Zhou, Jinsheng; Menard, Laurent D.; Ramsey, J. Michael; Rubinstien, Michael

    2014-03-01

    An electric field is used to force a DNA molecule into a nano-channel by compensating the free energy penalty that results from the reduced conformational entropy of the confined macromolecule. Narrow nano-channels require high critical electric fields to achieve DNA translocation, leading to short dwell times of DNA in these channels. We demonstrate that nano-funnels integrated with nano-channels reduce the free energy barrier and lower the critical electric field required for DNA translocation. A focused electric field within the funnel increases the electric force on the DNA, compresses the molecule, and increases the osmotic pressure at the nano-channel entrance. This ``electro-osmotic piston'' forces the molecule into the nano-channel at lower electric fields than those observed without the funnel. Appropirately designed nano-funnels can also function as tweezers that allow manipulation of the position of the DNA molecule. The predictions of our theory describing double-stranded DNA behavior in nano-funnel - nano-channel devices are consistent with experimental results. Thanks for the financial support from NSF (DMR-1309892, DMR-1121107, DMR-1122483), NIH (1-P50-HL107168, 1-P01-HL108808-01A1, R01HG02647), NHGRI and CF Foundation.

  14. Novel Regulation of Aquaporins during Osmotic Stress1

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; Bohnert, Hans J.; Pantoja, Omar

    2004-01-01

    Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions. PMID:15299122

  15. Protozoa inhibition by different salts: Osmotic stress or ionic stress?

    Science.gov (United States)

    Li, Changhao; Li, Jingya; Lan, Christopher Q; Liao, Dankui

    2017-09-01

    Cell density and morphology changes were tested to examine the effects of salts including NaHCO 3 , NaCl, KHCO 3 , and KCl at 160 mM on protozoa. It was demonstrated that ionic stress rather than osmotic stress led to protozoa cell death and NaHCO 3 was shown to be the most effective inhibitor. Deformation of cells and cell shrinkage were observed when protozoan cells were exposed to polyethylene glycol (PEG) or any of the salts. However, while PEG treated cells could fully recover in both number and size, only a small portion of the salt-treated cells survive and cell size was 36-58% smaller than the regular. The disappearance of salt-treated protozoa cells was hypothetically attributed to disruption of the cytoplasmic membrane of these cells. It is further hypothesized that the PEG-treated protozoan cells carried out regulatory volume increase (RVI) after the osmotic shock but the RVI of salt-treated protozoa was hurdled to varied extents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1418-1424, 2017. © 2017 American Institute of Chemical Engineers.

  16. Augmentation of peristaltic microflows through electro-osmotic mechanisms

    International Nuclear Information System (INIS)

    Chakraborty, Suman

    2006-01-01

    The present work aims to theoretically establish that the employment of an axial electric field can substantially augment the rate of microfluidic transport occurring in peristaltic microtubes. For theoretical analysis, shape evolution of the tube is taken to be arbitrary, except for the fact that the characteristic wavelength is assumed to be significantly greater than the average radius of cross section. First, expressions for the velocity profile within the tube are derived and are subsequently utilized to obtain variations in the net flow rate across the same, as a function of the pertinent system parameters. Subsequently, the modes of interaction between the electro-osmotic and peristaltic mechanisms are established through the variations in the time-averaged flow rates for zero pressure rise and the pressure rise for zero time-averaged flow rates, as expressed in terms of the occlusion number, characteristic electro-osmotic velocity and the peristaltic wave speed. From the simulation predictions, it is suggested that a judicious combination of peristalsis and an axial electrokinetic body force can drastically enhance the time-averaged flow rate, provided that the occlusion number is relatively small

  17. Does osmotic distillation change the isotopic relation of wines?

    Directory of Open Access Journals (Sweden)

    Schmitt Matthias

    2014-01-01

    Full Text Available Currently partial alcohol reduction of wine is in the focus of research worldwide. There are several technologies available to achieve this target. These techniques are either based on distilling or membrane processes. Osmotic distillation, one of the possibilities, is a quite modern membrane process that can be used. During that process, wine is pumped in counter flow to water along a micro porous, hydrophobic membrane. The volatile components of the wine can permeate that membrane and are dissolved in water. The driving force of that process is the vapor pressure difference between the volatiles on the wine and water side of the membrane. The aim of this work was to determine if the alcohol reduction by osmotic distillation can change the isotopic relation in a wine. Can this enological practice change the composition of a wine in a way that an illegal water addition is simulated? Different wines were reduced by 2% alcohol v/v with varying process parameters. The isotopic analysis of the O 16/18 ratio in the wine were performed according to the OIV methods (353/2009 These analyses showed that the isotopic ratio is modified by an alcohol reduction of 2% v/v in a way that corresponds to an addition of 4–5% of external water.

  18. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    Science.gov (United States)

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Osmotic and activity coefficients of triorganophosphates in n-octane

    International Nuclear Information System (INIS)

    Sagert, N.H.; Lau, D.W.P.

    1982-01-01

    Vapour pressure osmometry was used to measure osmotic coefficients for tributylphosphate (TBP), tricresylphosphate (TCP), and triethylhexylphosphate (THEP) in n-octane at 30, 40, 50, and 60 0 C and at molalities up to 0.3 mol/kg. Activity coefficients and excess thermodynamic properties (unsymmetrical definition) were calculated from these osmotic coefficients. At 30 0 C, the excess Gibbs free energies for 0.1 mol of solute in 1.0 kg n-octane were -42 J, -66 J, and -20 J for TBP, TCP, and TEHP, respectively. The more ideal behavior of the TEHP-octane system is attributed to the increasing importance of hydrocarbon-hydrocarbon interactions as the chain length is increased. The excess enthalpies for 0.1 mol of solute in 1.0 kg of solvent were -100 J, and -300 J, and -150 J for TBP, TCP, and TEHP, respectively. Thus, association of these solutes arises primarily from entropic effects. Our data could generally be accommodated adequately by postulating association of monomers into dimmers. The exception was TCP at lower temperatures, where more complex models were required

  20. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site

    Science.gov (United States)

    Čermák, J.; Cienciala, E.; Kučera, J.; Lindroth, A.; Bednářová, E.

    1995-06-01

    Transpiration in a mixed old stand of sub-boreal forest in the Norunda region (central Sweden) was estimated on the basis of direct measurement of sap flow rate in 24 large Scots pine and Norway spruce trees in July and August 1993. Sap flow rate was measured using the trunk tissue heat balance method based on internal (electric) heating and sensing of temperature. Transpiration was only 0.7 mm day -1 in a relatively dry period in July (i.e. about 20% of potential evaporation) and substantially higher after a rainy period in August. The error of the estimates of transpiration was higher during a dry period (about 13% and 22% in pine and spruce, respectively) and significantly lower (about 9% in both species) during a period of sufficient water supply. Shallow-rooted spruce trees responded much faster to precipitation than deeply rooted pines.

  1. Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing.

    Science.gov (United States)

    Gaspar, Maria João; Velasco, Tania; Feito, Isabel; Alía, Ricardo; Majada, Juan

    2013-01-01

    Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.

  2. Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing.

    Directory of Open Access Journals (Sweden)

    Maria João Gaspar

    Full Text Available Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.

  3. Studi Kelayakan Implementasi SAP dengan Metode Fit/Gap Analysis dan CBA

    Directory of Open Access Journals (Sweden)

    Nurlina Nurlina

    2013-12-01

    Full Text Available An application system is required by a company to meet the needs of enterprise business processes so as to provide information quickly and accurately. Therefore, it is necessary to study the feasibility status of plan of enterprise system implementation. SAP R/3 contains various modules which is deserved to be considered as a company's information system solution. Results of the feasibility study through the analysis of fit/ gap analysis state that the implementation of SAP R/3 sales module is feasible and able to meet all the needs of the system.Results of cost and benefit analysis state that the strategy implementation of SAP R/3 module is feasible. Based on the analysis and research using the two methods above, a decision can be taken whether the SAP R/3 is worth to be implemented or not.

  4. Paraformaldehyde pellet not necessary in vacuum-pumped maple sap system

    Science.gov (United States)

    H. Clay Smith; Carter B. Gibbs

    1970-01-01

    In a study of sugar maple sap collection through a vacuum-pumped plastic tubing system, yields were compared between tapholes in which paraformaldehyde pellets were used and tapholes without pellets, Use of the pellets did not increase yield.

  5. Implementation of SAP-IV on a minicomputer disc operating system

    International Nuclear Information System (INIS)

    Spencer, R.B.; Howard, G.E.

    1977-01-01

    The objective of the described effort was the implementation of a linear elastic finite element structural analysis program version on a minicomputer operating system while maintaining (as much as possible) the general features of the original program. SAP-IV has been successfully implemented on a minicomputer operating system as one component in a portable vibration testing, data acquisition and processing, parameter identification and design optimization system for field work. The primary features in SAP-IV facilitating conversion and implementation on a minicomputer are: (1) the calculational procedures of SAP-IV are well documented and the subroutine structure easy to follow; (2) SAP-IV is organized in a highly modular fashion; (3) it is versatile with respect to its calculational options; and (4) the element library can be readily expanded. (Auth.)

  6. Mechanical properties of Concrete with SAP. Part I: Development of compressive strength

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    The development of mechanical properties has been studied in a test program comprising 15 different concrete mixes with 3 different w/c ratios and different additions of superabsorbent polymers (SAP). The degree of hydration is followed for 15 corresponding paste mixes. This paper concerns...... compressive strength. It shows that results agree well with a model based on the following: 1. Concrete compressive strength is proportional to compressive strength of the paste phase 2. Paste strength depends on gel space ratio, as suggested by Powers 3. The influence of air voids created by SAP...... on compressive strength can be accounted for in the same way as when taking the air content into account in Bolomeys formula. The implication of the model is that at low w/c ratios (w/c SAP additions, SAP increases the compressive strength at later ages (from 3 days after casting and onwards...

  7. Shared access protocol (SAP) in femtocell channel resources for cellular coverage enhancement

    KAUST Repository

    Magableh, Amer M.; Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2012-01-01

    protocol (SAP), that enables the unlicensed macro-cell user equipments (MC-UE) to communicate with partially closed access femtocell base stations and hence, improves and enhances the overall system performance in closed environments. For the proposed

  8. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato

    NARCIS (Netherlands)

    Rep, Martijn; Dekker, Henk L.; Vossen, Jack H.; de Boer, Albert D.; Houterman, Petra M.; Speijer, Dave; Back, Jaap W.; de Koster, Chris G.; Cornelissen, Ben J. C.

    2002-01-01

    The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during

  9. Assessing ERP SAP implementation in the small and medium enterprises (SMEs) in Indonesia

    Science.gov (United States)

    Yohannes; Gunawan, W.; Ikhsan, R. B.; Aries

    2018-03-01

    The consistent growth of Indonesian SMEs has received attention of global IT vendors. One of major ERP player in Indonesian market such as SAP, has introduced ERP solutions for SMEs through SAP Business One. Due to its fast growth, unfortunately, there are still very few articles can be found to understand the ERP implementation in Indonesian SMEs. The article addressed the common factors that affect the successful of the ERP implementation at SMEs. They are: identifying vendor quality, opening balance data migration, and A-SAP methodology. The article applied case study method to examine the fast growth companies owned by same owners, such as: GRK, MMM, and KM25; with the objectives to identify the practical pattern of ERP implementation in SMEs that will be useful for SAP project manager and consultants.

  10. ANALIZA PODPORE KADROVSKIH PROCESOV S SISTEMOM SAP V PODJETJU AVTENTA.SI D.O.O.

    OpenAIRE

    Vehovec, David

    2011-01-01

    V okviru diplomskega dela so z metodo prenove poslovnih procesov predstavljeni procesi zaposlovanja in razporejanja, upravljanja kadrovskih podatkov in prenehanja delovnega razmerja v podjetju Avtenta.si d.o.o. Na podlagi popisanih procesov je narejena analiza njihove podprtosti s sistemom SAP in predlog prenove. Le-ta vključuje modele prenovljenih procesov in prilagoditev sistema SAP do nivoja delujočega prototipa. V teoretičnem delu so opisana področja prenove poslovnih procesov, upravl...

  11. Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting.

    Science.gov (United States)

    Kosugi, Akihiko; Tanaka, Ryohei; Magara, Kengo; Murata, Yoshinori; Arai, Takamitsu; Sulaiman, Othman; Hashim, Rokiah; Hamid, Zubaidah Aimi Abdul; Yahya, Mohd Khairul Azri; Yusof, Mohd Nor Mohd; Ibrahim, Wan Asma; Mori, Yutaka

    2010-09-01

    Old oil palm trunks that had been felled for replanting were found to contain large quantities of high glucose content sap. Notably, the sap in the inner part of the trunk accounted for more than 80% of the whole trunk weight. The glucose concentration of the sap from the inner part was 85.2g/L and decreased towards the outer part. Other sugars found in relatively low concentrations were sucrose, fructose, galactose, xylose, and rhamnose. In addition, oil palm sap was found to be rich in various kinds of amino acids, organic acids, minerals and vitamins. Based on these findings, we fermented the sap to produce ethanol using the sake brewing yeast strain, Saccharomyces cerevisiae Kyokai no.7. Ethanol was produced from the sap without the addition of nutrients, at a comparable rate and yield to the reference fermentation on YPD medium with glucose as a carbon source. Likewise, we produced lactic acid, a promising material for bio-plastics, poly-lactate, from the sap using the homolactic acid bacterium Lactobacillus lactis ATCC19435. We confirmed that sugars contained in the sap were readily converted to lactic acid with almost the same efficiency as the reference fermentation on MSR medium with glucose as a substrate. These results indicate that oil palm trunks felled for replanting are a significant resource for the production of fuel ethanol and lactic acid in palm oil-producing countries such as Malaysia and Indonesia. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.

    Science.gov (United States)

    Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk

    2015-01-01

    Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed.

  13. Phrenic long-term facilitation following intrapleural CTB-SAP-induced respiratory motor neuron death.

    Science.gov (United States)

    Nichols, Nicole L; Craig, Taylor A; Tanner, Miles A

    2017-08-16

    Amyotrophic lateral sclerosis (ALS) is a devastating disease leading to progressive motor neuron degeneration and death by ventilatory failure. In a rat model of ALS (SOD1 G93A ), phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) is enhanced greater than expected at disease end-stage but the mechanism is unknown. We suggest that one trigger for this enhancement is motor neuron death itself. Intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) selectively kill respiratory motor neurons and mimic motor neuron death observed in SOD1 G93A rats. This CTB-SAP model allows us to study the impact of respiratory motor neuron death on breathing without many complications attendant to ALS. Here, we tested the hypothesis that phrenic motor neuron death is sufficient to enhance pLTF. pLTF was assessed in anesthetized, paralyzed and ventilated Sprague Dawley rats 7 and 28days following bilateral intrapleural injections of: 1) CTB-SAP (25μg), or 2) un-conjugated CTB and SAP (control). CTB-SAP enhanced pLTF at 7 (CTB-SAP: 162±18%, n=8 vs. 63±3%; n=8; pSAP: 64±10%, n=10 vs. 60±13; n=8; p>0.05). Thus, pLTF at 7 (not 28) days post-CTB-SAP closely resembles pLTF in end-stage ALS rats, suggesting that processes unique to the early period of motor neuron death enhance pLTF. This project increases our understanding of respiratory plasticity and its implications for breathing in motor neuron disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Application of three heat pulse technique-based methods to determine the stem sap flow].

    Science.gov (United States)

    Wang, Sheng; Fan, Jun

    2015-08-01

    It is of critical importance to acquire tree transpiration characters through sap flow methodology to understand tree water physiology, forest ecology and ecosystem water exchange. Tri-probe heat pulse sensors, which are widely utilized in soil thermal parameters and soil evaporation measurement, were applied to implement Salix matsudana sap flow density (Vs) measurements via heat-ratio method (HRM), T-Max method (T-Max) and single-probe heat pulse probe (SHPP) method, and comparative analysis was conducted with additional Grainer's thermal diffusion probes (TDP) measured results. The results showed that, it took about five weeks to reach a stable measurement stage after TPHP installation, Vs measured with three methods in the early stage after installation was 135%-220% higher than Vs in the stable measurement stage, and Vs estimated via HRM, T-Max and SHPP methods were significantly linearly correlated with Vs estimated via TDP method, with R2 of 0.93, 0.73 and 0.91, respectively, and R2 for Vs measured by SHPP and HRM reached 0.94. HRM had relatively higher precision in measuring low rates and reverse sap flow. SHPP method seemed to be very promising to measure sap flow for configuration simplicity and high measuring accuracy, whereas it couldn' t distinguish directions of flow. T-Max method had relatively higher error in sap flow measurement, and it couldn' t measure sap flow below 5 cm3 · cm(-2) · h(-1), thus this method could not be used alone, however it could measure thermal diffusivity for calculating sap flow when other methods were imposed. It was recommended to choose a proper method or a combination of several methods to measure stem sap flow, based on specific research purpose.

  15. Large-Scale Structure and Dynamics of the Sub-Auroral Polarization Stream (SAPS)

    Science.gov (United States)

    Baker, J. B. H.; Nishitani, N.; Kunduri, B.; Ruohoniemi, J. M.; Sazykin, S. Y.

    2017-12-01

    The Sub-Auroral Polarization Stream (SAPS) is a narrow channel of high-speed westward ionospheric convection which appears equatorward of the duskside auroral oval during geomagnetically active periods. SAPS is generally thought to occur when the partial ring current intensifies and enhanced region-2 field-aligned currents (FACs) are forced to close across the low conductance region of the mid-latitude ionospheric trough. However, recent studies have suggested SAPS can also occur during non-storm periods, perhaps associated with substorm activity. In this study, we used measurements from mid-latitude SuperDARN radars to examine the large-scale structure and dynamics of SAPS during several geomagnetically active days. Linear correlation analysis applied across all events suggests intensifications of the partial ring current (ASYM-H index) and auroral activity (AL index) are both important driving influences for controlling the SAPS speed. Specifically, SAPS flows increase, on average, by 20-40 m/s per 10 nT of ASYM-H and 10-30 m/s per 100 nT of AL. These dependencies tend to be stronger during the storm recovery phase. There is also a strong local time dependence such that the strength of SAPS flows decrease by 70-80 m/s for each hour of local time moving from dusk to midnight. By contrast, the evidence for direct solar wind control of SAPS speed is much less consistent, with some storms showing strong correlations with the interplanetary electric field components and/or solar wind dynamic pressure, while others do not. These results are discussed in the context of recent simulation results from the Rice Convection Model (RCM).

  16. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).

    Science.gov (United States)

    Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C

    2011-05-01

    The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.

  17. The osmotic pressure of 3He-4He mixtures along the phase separation curve

    NARCIS (Netherlands)

    van de Klundert, L.J.M.; Bos, M.R.E.; van der Meij, J.A.M.; Steffens, H.A.

    1977-01-01

    The osmotic pressure of 3He-4He mixtures was measured along the phase separation curve at temperatures up to 500 mK by balancing it with the fountain pressure of pure 4He. The usefullness of the secondary osmotic pressure thermometer was reinvestigated.

  18. The osmotic pressure of 3He-4He mixtures along the phase separation curve

    International Nuclear Information System (INIS)

    Klundert, L.J.M. van de; Bos, M.R.E.; Meij, J.A.M. van der; Steffens, H.A.

    1977-01-01

    The osmotic pressure of 3 He- 4 He mixtures was measured along the phase separation curve at temperatures up to 500 mK by balancing it with the fountain pressure of pure 4 He. The usefullness of the secondary osmotic pressure thermometer was reinvestigated. (Auth.)

  19. Effect of osmotic stress on in vitro propagation of Musa sp. (Malbhog ...

    African Journals Online (AJOL)

    This study demonstrates up to 36% reduced microbial contamination in aseptic culture establishment and subsequent micropropagation due to osmotic stress induction in the banana suckers. Osmotic stress was induced by keeping the freshly collected suckers in shade and measuring fresh weight at 0, 7, 14, 21, and 28 ...

  20. Influence of osmotic pressure changes on the opening of existing cracks in 2 intervertebral disc models

    NARCIS (Netherlands)

    Wognum, Silvia; Huyghe, Jacques M.; Baaijens, Frank P. T.

    2006-01-01

    An experimental hydrogel model and a numerical mixture model were used to investigate why the disc herniates while osmotic pressure is decreasing. To investigate the influence of decreasing osmotic pressure on the opening of cracks in the disc. In the degeneration process, the disc changes structure

  1. The dependence of molecular transmembrane electrotransfer efficiency on medium conductivity and osmotic pressure

    OpenAIRE

    Jakutavičiūtė, Milda; Ruzgys, Paulius; Šatkauskas, Saulius

    2014-01-01

    The electrotransfer efficiency was evaluated for different external medium conductivities, osmotic pressures and electric pulse voltages. It was found that increase in conductivity or decrease in electric pulse strength decreases electrotransfer efficiency. Decrease in osmotic pressure tends to decrease electrotransfer efficiency.

  2. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique

    NARCIS (Netherlands)

    Basser, P.J.; Schneiderman, R.; Bank, R.A.; Wachtel, E.; Maroudas, A.

    1998-01-01

    We have used an isotropic osmotic stress technique to assess the swelling pressures of human articular cartilage over a wide range of hydrations in order to determine from these measurements, for the first time, the tensile stress in the collagen network, P(c), as a function of hydration. Osmotic

  3. Critical role of SAP in progression and reactivation but not maintenance of T cell-dependent humoral immunity.

    Science.gov (United States)

    Zhong, Ming-Chao; Veillette, André

    2013-03-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (T(FH)) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway.

  4. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    Science.gov (United States)

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Raw Sap Consumption Habits and Its Association with Knowledge of Nipah Virus in Two Endemic Districts in Bangladesh.

    Science.gov (United States)

    Nahar, Nazmun; Paul, Repon C; Sultana, Rebeca; Gurley, Emily S; Garcia, Fernando; Abedin, Jaynal; Sumon, Shariful Amin; Banik, Kajal Chandra; Asaduzzaman, Mohammad; Rimi, Nadia Ali; Rahman, Mahmudur; Luby, Stephen P

    2015-01-01

    Human Nipah virus (NiV) infection in Bangladesh is a fatal disease that can be transmitted from bats to humans who drink contaminated raw date palm sap collected overnight during the cold season. Our study aimed to understand date palm sap consumption habits of rural residents and factors associated with consumption. In November-December 2012 the field team interviewed adult respondents from randomly selected villages from Rajbari and Kushtia Districts in Bangladesh. We calculated the proportion of people who consumed raw sap and had heard about a disease from raw sap consumption. We assessed the factors associated with raw sap consumption by calculating prevalence ratios (PR) adjusted for village level clustering effects. Among the 1,777 respondents interviewed, half (50%) reported drinking raw sap during the previous sap collection season and 37% consumed raw sap at least once per month. Few respondents (5%) heard about NiV. Thirty-seven percent of respondents reported hearing about a disease transmitted through raw sap consumption, inclusive of a 10% who related it with milder illness like diarrhea, vomiting or indigestion rather than NiV. Respondents who harvested date palm trees in their household were more likely to drink sap than those who did not own date palm trees (79% vs. 65% PR 1.2, 95% CI 1.1-1.3, psap was available, respondents who heard about a disease from raw sap consumption were just as likely to drink it as those who did not hear about a disease (69% vs. 67%, PR 1.0, 95% CI 0.9-1.1, p = 0.512). Respondents' knowledge of NiV was low. They might not have properly understood the risk of NiV, and were likely to drink sap when it was available. Implementing strategies to increase awareness about the risks of NiV and protect sap from bats might reduce the risk of NiV transmission.

  6. Molecular pathogenesis of EBV susceptibility in XLP as revealed by analysis of female carriers with heterozygous expression of SAP.

    Directory of Open Access Journals (Sweden)

    Umaimainthan Palendira

    2011-11-01

    Full Text Available X-linked lymphoproliferative disease (XLP is a primary immunodeficiency caused by mutations in SH2D1A which encodes SAP. SAP functions in signalling pathways elicited by the SLAM family of leukocyte receptors. A defining feature of XLP is exquisite sensitivity to infection with EBV, a B-lymphotropic virus, but not other viruses. Although previous studies have identified defects in lymphocytes from XLP patients, the unique role of SAP in controlling EBV infection remains unresolved. We describe a novel approach to this question using female XLP carriers who, due to random X-inactivation, contain both SAP(+ and SAP(- cells. This represents the human equivalent of a mixed bone marrow chimera in mice. While memory CD8(+ T cells specific for CMV and influenza were distributed across SAP(+ and SAP(- populations, EBV-specific cells were exclusively SAP(+. The preferential recruitment of SAP(+ cells by EBV reflected the tropism of EBV for B cells, and the requirement for SAP expression in CD8(+ T cells for them to respond to Ag-presentation by B cells, but not other cell types. The inability of SAP(- clones to respond to Ag-presenting B cells was overcome by blocking the SLAM receptors NTB-A and 2B4, while ectopic expression of NTB-A on fibroblasts inhibited cytotoxicity of SAP(- CD8(+ T cells, thereby demonstrating that SLAM receptors acquire inhibitory function in the absence of SAP. The innovative XLP carrier model allowed us to unravel the mechanisms underlying the unique susceptibility of XLP patients to EBV infection in the absence of a relevant animal model. We found that this reflected the nature of the Ag-presenting cell, rather than EBV itself. Our data also identified a pathological signalling pathway that could be targeted to treat patients with severe EBV infection. This system may allow the study of other human diseases where heterozygous gene expression from random X-chromosome inactivation can be exploited.

  7. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA.

    Science.gov (United States)

    Else, Mark A; Taylor, June M; Atkinson, Christopher J

    2006-01-01

    In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.

  8. Biochemical characterization of sap (latex) of a few Indian mango varieties.

    Science.gov (United States)

    John, K Saby; Bhat, S G; Prasada Rao, U J S

    2003-01-01

    Mango sap (latex) from four Indian varieties was studied for its composition. Sap was separated into non-aqueous and aqueous phases. Earlier, we reported that the non-aqueous phase contained mainly mono-terpenes having raw mango aroma (Phytochemistry 52 (1999) 891). In the present study biochemical composition of the aqueous phase was studied. Aqueous phase contained little amount of protein (2.0-3.5 mg/ml) but showed high polyphenol oxidase (147-214 U/mg protein) and peroxidase (401-561 U/mg protein) activities. It contained low amounts of polyphenols and protease activities. On native PAGE, all the major protein bands exhibited both polyphenol oxidase and peroxidase activities. Both polyphenol oxidase and peroxidase activities were found to be stable in the aqueous phase of sap at 4 degrees C. Sap contained large amount of non-dialyzable and non-starchy carbohydrate (260-343 mg/ml sap) which may be responsible for maintaining a considerable pressure of fluid in the ducts. Thus, the mango sap could be a valuable by-product in the mango industry as it contains some of the valuable enzymes and aroma components.

  9. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang; Zuo, Jian; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic

  10. Concentration of phenolic acids and flavonoids in aronia melanocarpa (choke berry) juice by osmotic membrane distillation

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Christensen, Knud Villy; Horn, Vibeke G

    2009-01-01

    melanocarpa is among the red fruits with the highest content of antioxidants [2] and has gained must interest due to the content of phenolic acids, procyanidins and polyphenolic compounds as anthocyanins [3]. In this study, osmotic membrane distillation (OMD) has been tested for the concentration of not only...... sugars, but in particular potentially bioactive components such as phenolic acids and flavonoids. OMD is carried out on 37 kg aronia juice at 30°C and the juice is concentrated from 12 wt% to 74 wt% dry matter. The juice is filtered to remove kernels, peel residues etc before concentration by OMD...

  11. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    KAUST Repository

    Zaher, A.

    2015-09-29

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices\\' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  12. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions.

    Science.gov (United States)

    Álvarez-Aragón, Rocío; Rodríguez-Navarro, Alonso

    2017-07-01

    Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na + effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na + uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate-dependent transport systems in series that take up and load Na + into the xylem constitute the major pathway for the accumulation of Na + in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na + accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate-dependent Na + transport. Arabidopsis plants exposed to an osmotic potential of -1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na + could not be accumulated. In contrast, in NaCl the plants that accumulated Na + lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na + uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long-term toxicity. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.

    Science.gov (United States)

    Chen, Xi; Yip, Ngai Yin

    2018-02-20

    Current practice of using thermally driven methods to treat hypersaline brines is highly energy-intensive and costly. While conventional reverse osmosis (RO) is the most efficient desalination technique, it is confined to purifying seawater and lower salinity sources. Hydraulic pressure restrictions and elevated energy demand render RO unsuitable for high-salinity streams. Here, we propose an innovative cascading osmotically mediated reverse osmosis (COMRO) technology to overcome the limitations of conventional RO. The innovation utilizes the novel design of bilateral countercurrent reverse osmosis stages to depress the hydraulic pressure needed by lessening the osmotic pressure difference across the membrane, and simultaneously achieve energy savings. Instead of the 137 bar required by conventional RO to desalinate 70 000 ppm TDS hypersaline feed, the highest operating pressure in COMRO is only 68.3 bar (-50%). Furthermore, up to ≈17% energy saving is attained by COMRO (3.16 kWh/m 3 , compared to 3.79 kWh/m 3 with conventional RO). When COMRO is employed to boost the recovery of seawater desalination to 70% from the typical 35-50%, energy savings of up to ≈33% is achieved (2.11 kWh/m 3 , compared to 3.16 kWh/m 3 with conventional RO). Again, COMRO can operate at a moderate hydraulic pressure of 80 bar (25% lower than 113 bar of conventional RO). This study highlights the encouraging potential of energy-efficient COMRO to access unprecedented high recovery rates and treat hypersaline brines at moderate hydraulic pressures, thus extending the capabilities of membrane-based technologies for high-salinity desalination.

  14. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    KAUST Repository

    Zaher, Amir; Li, S.; Wolf, K. T.; Pirmoradi, F. N.; Yassine, Omar; Lin, L.; Khashab, Niveen M.; Kosel, Jü rgen

    2015-01-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  15. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    Science.gov (United States)

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  16. Fecal osmotic gap and pH in experimental diarrhea of various causes.

    Science.gov (United States)

    Eherer, A J; Fordtran, J S

    1992-08-01

    Although the osmotic gap of fecal fluid is often used to distinguish osmotic diarrhea from secretory diarrhea, there has never been a scientific evaluation of the validity of this concept. Similarly, although a low fecal fluid pH value is used to indicate that diarrhea is mediated by carbohydrate malabsorption, the validity of this method is unproven. Therefore, in the present study, diarrhea was induced in normal subjects by different mechanisms and fecal fluid osmotic gap (using an assumed fecal fluid osmolality of 290 mOsm/kg) and pH were measured. In secretory diarrhea caused by phenolphthalein, the osmotic gap was always less than 50 mOsm/kg, whereas in osmotic diarrhea caused by polyethylene glycol, magnesium hydroxide, lactulose, and sorbitol, the osmotic gap always exceeded 50 mOsm/kg. In osmotic diarrhea caused by sodium sulfate, the fecal fluid osmotic gap was less than 50 mOsm/kg, but phenolphthalein-induced secretory diarrhea could be distinguished from sodium sulfate-induced osmotic diarrhea by the fecal chloride concentration. When diarrhea was caused by carbohydrate malabsorption (lactulose or sorbitol), the fecal fluid pH was always less than 5.6 and usually less than 5.3; by contrast, other causes of diarrhea rarely caused a fecal pH as low as 5.6 and never caused a pH less than 5.3. It is concluded that measurement of fecal fluid osmotic gap and pH can distinguish various mechanisms of experimental diarrhea in normal subjects. The concepts on which these tests are based are therefore verified experimentally.

  17. SAPS and SAID: Differences and implications on modeling

    Science.gov (United States)

    Anderson, P. C.; Landry, R. G.

    2017-12-01

    Large subauroral electric fields/ion drifts associated with geomagnetic activity and known as Polarization Jets [Galperin et al., 1973] or subauroral ion drifts (SAID) [Spiro et al., 1978] have been reported by a number of researchers over the years starting in the early 1970s. They are latitudinally narrow ( 1 - 3°), are primarily located between the late afternoon and early morning sectors, are extended several hours in magnetic local time, and have westward drifts that can exceed 5000 m/s. Foster et al., [2002] used Millstone Hill radar data to derive a statistical model of the subauroral ion drifts and coined the term SAPS (Subauroral Polarization Streams) to identify the sometimes broad region of subauroral drifts that the SAID are embedded within. While both are located in the subauroral region and closely associated with ionospheric conductivity and the region 2 field-aligned currents, they are in reality separate phenomena. We investigate this difference, their production mechanisms, and the implications for modeling them.

  18. iSAP: Interactive Sparse Astronomical Data Analysis Packages

    Science.gov (United States)

    Fourt, O.; Starck, J.-L.; Sureau, F.; Bobin, J.; Moudden, Y.; Abrial, P.; Schmitt, J.

    2013-03-01

    iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.

  19. Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5(SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification

    International Nuclear Information System (INIS)

    Ahn, Soo Na; Park, Hwan Seo; Cho, In Hak; Kim, In Tae; Cho, Yong Zun

    2012-01-01

    Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of Fe 2 O 3 into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP(Fe=0.1). The experimental results indicated that the addition of Fe 2 O 3 increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing B 2 O 3 into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3 - 4 g of wasteform for final disposal. The final volume would be about 3 - 4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.

  20. Osmotically driven flows in microchannels separated by a semipermeable membrane

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Lee, J.; Bohr, Tomas

    2009-01-01

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 mu m wide and 50-200 mu...... m deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance......, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental...

  1. Osmotic de-swelling and swelling of latex dispersions

    International Nuclear Information System (INIS)

    Bonnet-Gonnet, Cecile

    1993-01-01

    This research thesis reports the comparison of, on the one hand, direct measurements of de-swelling resistance of latex dispersions obtained by osmotic pressure with, on the other hand, predictions made by models of electrostatic interactions. This resistance is explained in the case of sulphate-stabilised polystyrene particles (direct repulsion between charged particles), and in the case of copolymer (ps-pba) particles covered by an amphiphilic polymer (interactions between surface macromolecules and polymers). The study of de-swelling and swelling cycles highlights the existence of thresholds beyond which the concentrated dispersion has some cohesion. This irreversibility can be modelled by a Van der Waals attraction. The role of hydrophobic forces in latex destabilisation is studied [fr

  2. Environmental impacts by running an osmotic power plan

    Energy Technology Data Exchange (ETDEWEB)

    Staalstroem, A.; Gitmark, J.

    2012-07-01

    The possible environmental impact by running an osmotic power plant is assessed by using results from monitoring of the prototype plant at Tofte in the Oslofjord, where a water flow of approximately 13 L/s of freshwater is mixed with 20 L/s of saltwater and discharged at 2 m depth. The results from the biological investigations show no impact of the discharge water on the benthic communities in the area. Eutrophication effects near the discharge point are identified as the main environmental concern in an up-scaled power plant. Water samples from the saltwater intake indicate that the phosphorous concentration often is higher at 35 m depth than in the euphotic layer, and there will be a net supply of phosphorous to this layer. By diving the outlet plume below the euphotic zone, eutrophication effects as well as possible effects from use of chemicals and possible changed temperature and salinity in the surface layer is avoided. (Author)

  3. Osmotic pressure induced tensile forces in tendon collagen.

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J; Fratzl, Peter

    2015-01-22

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  4. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Science.gov (United States)

    Cai, Gaochao; Vanderborght, Jan; Langensiepen, Matthias; Schnepf, Andrea; Hüging, Hubert; Vereecken, Harry

    2018-04-01

    How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil-plant-atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes-Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in

  5. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Directory of Open Access Journals (Sweden)

    G. Cai

    2018-04-01

    Full Text Available How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil–plant–atmosphere system. Physically based root water uptake (RWU models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes–Jarvis (FJ model and the physically based Couvreur (C model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC, water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities

  6. Ethanol fermentation by the thermotolerant yeast, Kluyveromyces marxianus TISTR5925, of extracted sap from old oil palm trunk

    Directory of Open Access Journals (Sweden)

    Yoshinori Murata

    2015-05-01

    Full Text Available Palm sap extracted from old oil palm trunks was previously found to contain sugar and nutrients (amino acids and vitamins. Some palm saps contain a low content of sugar due to differences in species or in plant physiology. Here we condensed palm sap with a low content of sugar using flat membrane filtration, then fermented the condensed palm sap at high temperature using the thermotolerant, high ethanol-producing yeast, Kluyveromyces marxianus. Ethanol production under non-optimum conditions was evaluated. Furthermore, the energy required to concentrate the palm sap, and the amount of energy that could be generated from the ethanol, was calculated. The condensation of sugar in sap from palm trunk required for economically viable ethanol production was evaluated.

  7. GABA not only a neurotransmitter: osmotic regulation by GABAAR signalling

    Directory of Open Access Journals (Sweden)

    Tiziana eCesetti

    2012-01-01

    Full Text Available In neurons the anionic channel γ-aminobutyric (GABA A receptor (GABAAR plays a central role in mediating both the neurotrophic and neurotransmitter role of GABA. Activation of this receptor by GABA also affects the function of non-neuronal cells in the central nervous system (CNS, as GABAARs are expressed in mature macroglia and in almost all progenitor types, including neural stem cells. The relevance of GABA signalling in non-neuronal cells has been comparatively less investigated than in neurons. However, it is becoming increasingly evident that these cells are direct targets of GABA regulation. In non-neuronal cells GABAAR activation leads to influx or efflux of chloride (Cl- depending on the electrochemical gradient. Ion transport is indissolubly associated to water fluxes across the plasma membrane and plays a key role in brain physiology. Therefore, GABAAR could affect osmotic tension in the brain by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signalling could affect the movement of water also by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. This regulation has consequences at the cellular level as it modulates cell volume and activates multiple intracellular signalling mechanisms important for cell proliferation, maturation and survival. It may also have consequences at the systemic level. For example, it may indirectly control neuronal excitability, by regulating the extracellular space and interstitial concentration of Cl-, and contribute to brain water homeostasis. Therefore, GABAergic osmotic regulation should be taken into account during the treatment of pathologies requiring the administration of GABAAR modulators and for the development of therapies for diseases causing water unbalance in the brain.

  8. Potencials of sap flow evaluation by means of acoustic emission measurements

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2011-01-01

    Full Text Available The work deals with measurement techniques of water conducting system in the trees. Water conducting system (including xylem and phloem indicates its importance for related physiological processes. There are still problems how to measure its functioning (which variables and how, especially in the open field (e.g., forests and orchards in order to get maximum information about it. Simple band dendrometers measuring seasonal dynamics of stem growth have been already applied for many years, being gradually replaced by their more sophisticated electronic versions most recently. The sap flow is a suitable variable, because it links roots and crowns and provide information about transporting the largest amount of mass in plants, which can be decisive for their behavior. Following pioneering work in the last century (Huber, 1932, many types of sap flow measurement methods based on a variety of principles (e.g., thermodynamic, electric, magneto-hydrodynamic, nuclear magnetic resonance, etc. have been described. Only a few of these, particularly those based on thermodynamics, have been widely used in field-grown trees. E.g., heat pulse velocity system developed by Green (1998 and Cohen et al. (1981. Heat ratio method also works with pulses, but interpreted the data in more sophisticated way (Burgess, 2001. Widely used is a simple heat-dissipation method (Granier, 1985. Direct electric heating and internal sensing of temperature was applied in the trunk heat balance method (Čermák et al., 1973, 1976, 1982, 2004; Kučera et al., 1977; Tatarinov et al., 2005. The heat field deformation method is based on measurement of the deformation of the heat field around a needle-like linear heater (Nadezhdina et al., 1998, 2002, 2006; Čermák et al., 2004.Another important variable is water potential, which could be measured in the past only periodically on selected pieces of plant material using pressure (Scholander bomb, but most recently also continuous

  9. Pengaruh Pemahaman SAP, Pendidikan dan Pelatihan, serta Latar Belakang Pendidikan terhadap Penyusunan Laporan Keuangan Daerah pada Pemerintah Kota Medan.

    OpenAIRE

    Enho, Yohanes

    2011-01-01

    This skripsi is intended to (a) get a clear view about the effect of understanding SAP, training and workshop, also educational background, (b) calculate the effect of understanding SAP, training and workshop, also educational background to the way of making financial statement, (c) give some advices which may assist the City Government in solving its problems especially the discussed problem, that is the way of making financial statement which is affected by understanding SAP, training and w...

  10. 49 CFR 40.301 - What is the SAP's function in the follow-up evaluation of an employee?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What is the SAP's function in the follow-up... the Return-to-Duty Process § 40.301 What is the SAP's function in the follow-up evaluation of an employee? (a) As a SAP, after you have prescribed assistance under § 40.293, you must re-evaluate the...

  11. Leaf temperature and stomatal influences on sap velocity diurnal hysteresis in the Amazon rainforest

    Science.gov (United States)

    Jardine, K.; Gimenez, B.; Negron Juarez, R. I.; Koven, C.; Powell, T.; Higuchi, N.; Chambers, J.; Varadharajan, C.

    2016-12-01

    In order to improve our ability to predict terrestrial evapotranspiration fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, but remains poorly characterized, especially in tropical ecosystems. In this study we show a tight positive correlation between sap velocity (at 1 m of height) and leaf surface temperature (LST, 20-30 m of height) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As leaf temperatures varied throughout the day, sap velocity responded with little delay (<15 min). Positive sap velocity was often observed at night, but also closely followed night time LSTs. When plotted versus LST, sap velocity showed an exponential increase before reaching a reflection point and a plateau and is characterized as a sigmoidal curve, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity was evident with morning periods showing higher temperature sensitivities than afternoon and night periods. Diurnal leaf observations showed a morning peak in stomatal conductance ( 10:00-10:30), but a mid-day to afternoon peak in transpiration and leaf temperature (12:00-14:00). Our observations suggest the sap velocity-LST hysteresis pattern arises due to the temporal offset between stomatal conductance and vapor pressure deficits (VPD) and demonstrates the dominating effect of VPD over stomatal conductance in maintaining high transpiration/sap flow rates under elevated temperatures. Our results have important implications for modeling tropical forest transpiration and suggests the possibility of predicting evapotranspiration fluxes at the ecosystem to regional scales based on remote sensed vegetation temperature.

  12. Influence of Auroral Streamers on Rapid Evolution of Ionospheric SAPS Flows

    Science.gov (United States)

    Gallardo-Lacourt, Bea; Nishimura, Y.; Lyons, L. R.; Mishin, E. V.; Ruohoniemi, J. M.; Donovan, E. F.; Angelopoulos, V.; Nishitani, N.

    2017-12-01

    Subauroral polarization streams (SAPS) often show large, rapid enhancements above their slowly varying component. We present simultaneous observations from ground-based all-sky imagers and flows from the Super Dual Auroral Radar Network radars to investigate the relationship between auroral phenomena and flow enhancement. We first identified auroral streamers approaching the equatorward boundary of the auroral oval to examine how often the subauroral flow increased. We also performed the reverse query starting with subauroral flow enhancements and then evaluated the auroral conditions. In the forward study, 98% of the streamers approaching the equatorward boundary were associated with SAPS flow enhancements reaching 700 m/s and typically hundreds of m/s above background speeds. The reverse study reveals that flow enhancements associated with streamers (60%) and enhanced larger-scale convection (37%) contribute to SAPS flow enhancements. The strong correlation of auroral streamers with rapid evolution (approximately minutes) of SAPS flows suggests that transient fast earthward plasma sheet flows can often lead to westward SAPS flow enhancements in the subauroral region and that such enhancements are far more common than only during substorms because of the much more frequent occurrences of streamers under various geomagnetic conditions. We also found a strong correlation between flow duration and streamer duration and a weak correlation between SAPS flow velocity and streamer intensity. This result suggests that intense flow bursts in the plasma sheet (which correlate with intense streamers) are associated with intense SAPS ionospheric flows perhaps by enhancing the ring current pressure and localized pressure gradients when they are able to penetrate close enough to Earth.

  13. Variability in Saponin Content, Cancer Antiproliferative Activity and Physicochemical Properties of Concentrated Agave Sap.

    Science.gov (United States)

    Santos-Zea, Liliana; Rosas-Pérez, Aratza Mireya; Leal-Díaz, Ana María; Gutiérrez-Uribe, Janet A

    2016-08-01

    Concentrated agave sap (CAS) has gained popularity as an unrefined sweetener. It is obtained by boiling "aguamiel" that contains phytochemicals with diverse bioactivities. Saponins have been the most widely studied agave phytochemicals due to their cancer antiproliferative effect but their concentration may vary due to maturity of the agave plant and collection site. In this study, 18 CAS samples produced in different states of Mexico were analyzed using multivariate methods to determine which physicochemical or phytochemical parameters were responsible for variation. Additionally, extracts with different saponin profiles were tested to determine possible correlations with antiproliferative activity. Total soluble solids, pH, and water activity were similar to those reported for other agave sweeteners. Antioxidant capacity of samples was correlated to browning index. Eleven steroidal saponins were found in CAS samples and they were the main source of variability. Magueyoside B, a kammogenin tetraglycoside, was the most abundant saponin in all samples. With respect to bioactivity, multivariate analysis indicated that magueyoside B and a gentrogenin tetraglycoside were compounds strongly related with bioactivity. CAS from Hidalgo, Puebla, and Veracruz had higher concentration of magueyoside B than from the other kamogenin tetraglycoside found in the samples from other Mexican states. These results could be used as a first approach to characterize and standardize CAS to validate the potential health benefits derived from its consumption. © 2016 Institute of Food Technologists®

  14. Use of osmotic dehydration to improve fruits and vegetables quality during processing.

    Science.gov (United States)

    Maftoonazad, Neda

    2010-11-01

    Osmotic treatment describes a preparation step to further processing of foods involving simultaneous transient moisture loss and solids gain when immersing in osmotic solutions, resulting in partial drying and improving the overall quality of food products. The different aspects of the osmotic dehydration (OD) technology namely the solutes employed, solutions characteristics used, process variables influence, as well as, the quality characteristics of the osmodehydrated products will be discussed in this review. As the process is carried out at mild temperatures and the moisture is removed by a liquid diffusion process, phase change that would be present in the other drying processes will be avoided, resulting in high quality products and may also lead to substantial energy savings. To optimize this process, modeling of the mass transfer phenomenon can improve high product quality. Several techniques such as microwave heating, vacuum, high pressure, pulsed electric field, etc. may be employed during or after osmotic treatment to enhance performance of the osmotic dehydration. Moreover new technologies used in osmotic dehydration will be discussed. Patents on osmotic dehydration of fruits and vegetables are also discussed in this article.

  15. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Zhu, Jianhua

    2010-04-16

    Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6-1, which defines a locus essential for osmotic stress tolerance. sos6-1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase-like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6-1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress. © 2010 Blackwell Publishing Ltd.

  16. The Role of Superoxide Dismutase in Inducing of Wheat Seedlings Tolerance to Osmotic Shock

    Directory of Open Access Journals (Sweden)

    Oboznyi A.I.

    2013-08-01

    Full Text Available Influence of short-term hardening osmotic exposure (immersion in 1 M sucrose solution with subsequent transferring to distilled water for 20 min on the hydrogen peroxide generation and superoxide dismutase activity in wheat (Triticum aestivum L., cv. Elegiya seedlings and their tolerance to osmotic shock were investigated. During the initial 30 min after osmotic exposure, the increasing of hydrogen peroxide amount in roots and shoots (to a lesser extent was observed, but the resistance of the seedlings and superoxide dismutase (SOD activity decreased. Sometime later the decrease in hydrogen peroxide amount and the increase of seedlings tolerance to osmotic shock took place. SOD activity increased in 10 min after hardening osmotic exposure. Transient accumulation of hydrogen peroxide induced in this way was suppressed by the treatment of seedlings with sodium diethyldithiocarbamate (DDC, SOD inhibitor. DDC and hydrogen peroxide scavenger dimethylthiourea decreased positive hardening effect of osmotic exposure on the development of seedlings tolerance. It was concluded that SOD providing the generation of signal hydrogen peroxide pool took part in the induction of seedlings tolerance to osmotic shock development caused by preliminary hardening effect.

  17. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce's Disease.

    Science.gov (United States)

    Hao, Lingyun; Zaini, Paulo A; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2016-01-01

    Xylella fastidiosa is a xylem-limited bacterium in plant hosts and causes Pierce's disease (PD) of grapevines, which differ in susceptibility according to the Vitis species (spp.). In this work we compared X. fastidiosa biofilm formation and population dynamics when cultured in xylem saps from PD-susceptible and -resistant Vitis spp. under different conditions. Behaviors in a closed-culture system were compared to those in different sap-renewal cultures that would more closely mimic the physicochemical environment encountered in planta. Significant differences in biofilm formation and growth in saps from PD-susceptible and -resistant spp. were only observed using sap renewal culture. Compared to saps from susceptible V. vinifera, those from PD-resistant V. aestivalis supported lower titers of X. fastidiosa and less biofilm and V. champinii suppressed both growth and biofilm formation, behaviors which are correlated with disease susceptibility. Furthermore, in microfluidic chambers X. fastidiosa formed thick mature biofilm with three-dimensional (3-D) structures, such as pillars and mounds, in saps from all susceptible spp. In contrast, only small aggregates of various shapes were formed in saps from four out of five of the resistant spp.; sap from the resistant spp. V. mustangensis was an exception in that it also supported thick lawns of biofilm but not the above described 3-D structures typically seen in a mature biofilm from the susceptible saps. Our findings provide not only critical technical information for future bioassays, but also suggest further understanding of PD susceptibility.

  18. SAP expression in invariant NKT cells is required for cognate help to support B-cell responses.

    Science.gov (United States)

    Detre, Cynthia; Keszei, Marton; Garrido-Mesa, Natividad; Kis-Toth, Katalin; Castro, Wilson; Agyemang, Amma F; Veerapen, Natacha; Besra, Gurdyal S; Carroll, Michael C; Tsokos, George C; Wang, Ninghai; Leadbetter, Elizabeth A; Terhorst, Cox

    2012-07-05

    One of the manifestations of X-linked lymphoproliferative disease (XLP) is progressive agammaglobulinemia, caused by the absence of a functional signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) in T, invariant natural killer T (NKT) cells and NK cells. Here we report that α-galactosylceramide (αGalCer) activated NKT cells positively regulate antibody responses to haptenated protein antigens at multiple checkpoints, including germinal center formation and affinity maturation. Whereas NKT cell-dependent B cell responses were absent in SAP(-/-).B6 mice that completely lack NKT cells, the small number of SAP-deficient NKT cells in SAP(-/-).BALB/c mice adjuvated antibody production, but not the germinal center reaction. To test the hypothesis that SAP-deficient NKT cells can facilitate humoral immunity, SAP was deleted after development in SAP(fl/fl).tgCreERT2.B6 mice. We find that NKT cell intrinsic expression of SAP is dispensable for noncognate helper functions, but is critical for providing cognate help to antigen-specific B cells. These results demonstrate that SLAM-family receptor-regulated cell-cell interactions are not limited to T-B cell conjugates. We conclude that in the absence of SAP, several routes of NKT cell-mediated antibody production are still accessible. The latter suggests that residual NKT cells in XLP patients might contribute to variations in dysgammaglobulinemia.

  19. Arsenate impact on the metabolite profile, production and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Kalle eUroic

    2012-04-01

    Full Text Available Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analysed including a metabolite profiling under arsenate stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure has a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up regulated, one compound down regulated by arsenate exposure. The compound down regulated was identified to be isoleucine. Furthermore, arsenate has a significant influence on sap production, leading to a reduction of up to 96 % sap production when plants are exposed to 1000 μg kg-1 arsenate. No difference to control plants was observed when plants were exposed to 1000 μg kg-1 DMA. Absolute arsenic amount in xylem sap was the lowest at high arsenate exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  20. [Dynamics of sap flow density in stems of typical desert shrub Calligonum mongolicum and its responses to environmental variables].

    Science.gov (United States)

    Xu, Shi-qin; Ji, Xi-bin; Jin, Bo-wen

    2016-02-01

    Independent measurements of stem sap flow in stems of Calligonum mongolicum and environmental variables using commercial sap flow gauges and a micrometeorological monitoring system, respectively, were made to simulate the variation of sap flow density in the middle range of Hexi Corridor, Northwest China during June to September, 2014. The results showed that the diurnal process of sap flow density in C. mongolicum showed a broad unimodal change, and the maximum sap flow density reached about 30 minutes after the maximum of photosynthetically active radiation (PAR) , while about 120 minutes before the maximum of temperature and vapor pressure deficit (VPD). During the studying period, sap flow density closely related with atmosphere evapor-transpiration demand, and mainly affected by PAR, temperature and VPD. The model was developed which directly linked the sap flow density with climatic variables, and good correlation between measured and simulated sap flow density was observed in different climate conditions. The accuracy of simulation was significantly improved if the time-lag effect was taken into consideration, while this model underestimated low and nighttime sap flow densities, which was probably caused by plant physiological characteristics.

  1. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce's Disease

    Science.gov (United States)

    Hoch, Harvey C.; Burr, Thomas J.; Mowery, Patricia

    2016-01-01

    Xylella fastidiosa is a xylem-limited bacterium in plant hosts and causes Pierce’s disease (PD) of grapevines, which differ in susceptibility according to the Vitis species (spp.). In this work we compared X. fastidiosa biofilm formation and population dynamics when cultured in xylem saps from PD-susceptible and -resistant Vitis spp. under different conditions. Behaviors in a closed-culture system were compared to those in different sap-renewal cultures that would more closely mimic the physicochemical environment encountered in planta. Significant differences in biofilm formation and growth in saps from PD-susceptible and -resistant spp. were only observed using sap renewal culture. Compared to saps from susceptible V. vinifera, those from PD-resistant V. aestivalis supported lower titers of X. fastidiosa and less biofilm and V. champinii suppressed both growth and biofilm formation, behaviors which are correlated with disease susceptibility. Furthermore, in microfluidic chambers X. fastidiosa formed thick mature biofilm with three-dimensional (3-D) structures, such as pillars and mounds, in saps from all susceptible spp. In contrast, only small aggregates of various shapes were formed in saps from four out of five of the resistant spp.; sap from the resistant spp. V. mustangensis was an exception in that it also supported thick lawns of biofilm but not the above described 3-D structures typically seen in a mature biofilm from the susceptible saps. Our findings provide not only critical technical information for future bioassays, but also suggest further understanding of PD susceptibility. PMID:27508296

  2. Arsenate Impact on the Metabolite Profile, Production, and Arsenic Loading of Xylem Sap in Cucumbers (Cucumis sativus L.)

    Science.gov (United States)

    Uroic, M. Kalle; Salaün, Pascal; Raab, Andrea; Feldmann, Jörg

    2012-01-01

    Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV) and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analyzed including a metabolite profiling under AsV stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure had a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up-regulated, one compound down-regulated by AsV exposure. The compound down-regulated was identified to be isoleucine. Furthermore, AsV exposure had a significant influence on sap production, leading to a reduction of up to 96% sap production when plants were exposed to 1000 μg kg−1 AsV. No difference to control plants was observed when plants were exposed to 1000 μg kg−1 DMA. Absolute arsenic amount in xylem sap was the lowest at high AsV exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention. PMID:22536187

  3. Microvillus-Specific Protein Tyrosine Phosphatase SAP-1 Plays a Role in Regulating the Intestinal Paracellular Transport of Macromolecules.

    Science.gov (United States)

    Mori, Shingo; Kamei, Noriyasu; Murata, Yoji; Takayama, Kozo; Matozaki, Takashi; Takeda-Morishita, Mariko

    2017-09-01

    The stomach cancer-associated protein tyrosine phosphatase 1 (SAP-1) is a receptor-type protein tyrosine phosphatase that is specifically expressed on the apical membrane of the intestinal epithelium. SAP-1 is known to maintain the balance of phosphorylation of proteins together with protein kinases; however, its biological function and impact on pharmacokinetics in the intestine remain unclear. The present study, therefore, aimed at clarifying the relationship between SAP-1 and the intestinal absorption behaviors of typical transporter substrates and macromolecules. The endogenous levels of glucose and total cholesterol in the blood were similar between wild-type and SAP-1-deficient mice (Sap1 -/- ), suggesting no contribution of SAP-1 to biogenic influx. Moreover, in vitro transport study with everted ileal sacs demonstrated that there was no difference in the absorption of breast cancer resistance protein, P-glycoprotein, and peptide transporter substrates between both mice. However, absorptive clearance of macromolecular model dextrans (FD-4 and FD-10) in Sap1 -/- mice was significantly higher than that in wild-type mice, and this was confirmed by the trend of increased FD-4 absorption from colonic loops of Sap1 -/- mice. Therefore, the results of this study suggest the partial contribution of SAP-1 to the regulated transport of hydrophilic macromolecules through paracellular tight junctions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study.

    Science.gov (United States)

    Wesselink, Christiaan; Jansonius, Nomdo M

    2017-09-01

    To determine the usefulness of frequency doubling perimetry (FDT) for progression detection in glaucoma, compared to standard automated perimetry (SAP). Data were used from 150 eyes of 150 glaucoma patients from the Groningen Longitudinal Glaucoma Study. After baseline, SAP was performed approximately yearly; FDT every other year. First and last visit had to contain both tests. Using linear regression, progression velocities were calculated for SAP (Humphrey Field Analyzer) mean deviation (MD) and FDT MD and the number of test locations with a total deviation probability below p glaucoma progression in patients who cannot perform SAP reliably. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  5. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce's Disease.

    Directory of Open Access Journals (Sweden)

    Lingyun Hao

    Full Text Available Xylella fastidiosa is a xylem-limited bacterium in plant hosts and causes Pierce's disease (PD of grapevines, which differ in susceptibility according to the Vitis species (spp.. In this work we compared X. fastidiosa biofilm formation and population dynamics when cultured in xylem saps from PD-susceptible and -resistant Vitis spp. under different conditions. Behaviors in a closed-culture system were compared to those in different sap-renewal cultures that would more closely mimic the physicochemical environment encountered in planta. Significant differences in biofilm formation and growth in saps from PD-susceptible and -resistant spp. were only observed using sap renewal culture. Compared to saps from susceptible V. vinifera, those from PD-resistant V. aestivalis supported lower titers of X. fastidiosa and less biofilm and V. champinii suppressed both growth and biofilm formation, behaviors which are correlated with disease susceptibility. Furthermore, in microfluidic chambers X. fastidiosa formed thick mature biofilm with three-dimensional (3-D structures, such as pillars and mounds, in saps from all susceptible spp. In contrast, only small aggregates of various shapes were formed in saps from four out of five of the resistant spp.; sap from the resistant spp. V. mustangensis was an exception in that it also supported thick lawns of biofilm but not the above described 3-D structures typically seen in a mature biofilm from the susceptible saps. Our findings provide not only critical technical information for future bioassays, but also suggest further understanding of PD susceptibility.

  6. Development of hyper osmotic resistant CHO host cells for enhanced antibody production.

    Science.gov (United States)

    Kamachi, Yasuharu; Omasa, Takeshi

    2018-04-01

    Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Osmotic coefficients of water for thorium nitrate solutions at 25, 37, and 50oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Sagert, N.H.; Lau, D.W.P.

    1983-01-01

    Vapor pressure osmometry was used to measure osmotic coefficients of water for thorium nitrate solutions at 25, 37, and 50 o C and at molalities up to 0.2 mol·kg -1 . The data were fitted to three- and four-parameter equations containing limiting-law terms for a 4:1 electrolyte. The variation of the osmotic coefficients as a function of temperature was found to be small. The results are compared to published values for the osmotic coefficients. (author)

  8. Physicochemical characteristics of guava “Paluma” submitted to osmotic dehydration

    OpenAIRE

    Roselene Ferreira Oliveira; Lia Mara Moterlle; Edmar Clemente

    2014-01-01

    The aim of this work was to evaluate the conservation post process osmotic of guava stored temperature at 5oC. Guava (Psidium guajava L.), red variety “Paluma” minimally processed by mild osmotic dehydration, were packaged in polyethylene terephthalate (PET) and stored temperature at 5ºC. Non-treated guava, packed in PET trays, was used as control. The treatment used was osmotic dehydration in sucrose syrup at 60ºBrix and physicochemical determinations were pH, total soluble solids (TSS), tot...

  9. A micropuncture study of proximal tubular transport of lithium during osmotic diuresis

    DEFF Research Database (Denmark)

    Leyssac, P P; Holstein-Rathlou, N H; Skøtt, P

    1990-01-01

    Lithium and sodium are normally reabsorbed in parallel with water by the renal proximal tubule whereby their tubular fluid-to-plasma concentration ratios (TF/P) remain close to unity throughout the proximal convoluted segment. During osmotic diuresis, the late proximal (TF/P)Na is known to decrease....... The present experiments were undertaken to study whether the late proximal TF/P for Li decreases like that of Na during osmotic diuresis. Data were obtained in a control period (C) and in two successive periods during mannitol diuresis (P1, P2). Glomerular filtration rate decreased gradually during osmotic...

  10. Neutral lipid production in Dunaliella salina during osmotic stress and adaptation

    DEFF Research Database (Denmark)

    Yao, Shuo; Lu, Jingquan; Sárossy, Zsuzsa

    2016-01-01

    The salt-tolerant green microalga Dunaliella salina can survive both hyper- and hypo-osmotic shock. Upon osmotic shock, the cells transiently and rapidly decreased or increased in size within minutes and slowly over hours acquired their original cell size and volume. Cell size distribution differs...... significantly in the cultures grown in the salinity range from 1.5 to 15 % NaCl. By using Nile Red fluorescence to detect neutral lipids, it became clear that only hyper-osmotic shock on cells induced transient neutral lipid appearance in D. salina, while those transferred from 9 to 15 % NaCl stimulated...

  11. Sap flow is Underestimated by Thermal Dissipation Sensors due to Alterations of Wood Anatomy

    Science.gov (United States)

    Marañón-Jiménez, S.; Wiedemann, A.; van den Bulcke, J.; Cuntz, M.; Rebmann, C.; Steppe, K.

    2014-12-01

    The thermal dissipation technique (TD) is one of the most commonly adopted methods for sap flow measurements. However, underestimations of up to 60% of the tree transpiration have been reported with this technique, although the causes are not certainly known. The insertion of TD sensors within the stems causes damage of the wood tissue and subsequent healing reactions, changing wood anatomy and likely the sap flow path. However, the anatomical changes in response to the insertion of sap flow sensors and the effects on the measured flow have not been assessed yet. In this study, we investigate the alteration of vessel anatomy on wounds formed around TD sensors. Our main objectives were to elucidate the anatomical causes of sap flow underestimation for ring-porous and diffuse-porous species, and relate these changes to sap flow underestimations. Successive sets of TD probes were installed in early, mid and end of the growing season in Fagus sylvatica (diffuse-porous) and Quercus petraea (ring-porous) trees. They were logged after the growing season and additional sets of sensors were installed in the logged stems with presumably no healing reaction. The wood tissue surrounding each sensor was then excised and analysed by X-ray computed microtomography (X-ray micro CT). This technique allowed the quantification of vessel anatomical characteristics and the reconstruction of the 3-D internal microstructure of the xylem vessels so that extension and shape of the altered area could be determined. Gels and tyloses clogged the conductive vessels around the sensors in both beech and oak. The extension of the affected area was larger for beech although these anatomical changes led to similar sap flow underestimations in both species. The higher vessel size in oak may explain this result and, therefore, larger sap flow underestimation per area of affected conductive tissue. The wound healing reaction likely occurred within the first weeks after sensor installation, which

  12. The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes.

    Science.gov (United States)

    Wang, Z; Irianto, J; Kazun, S; Wang, W; Knight, M M

    2015-02-01

    Osteoarthritis (OA) is associated with a gradual reduction in the interstitial osmotic pressure within articular cartilage. The aim of this study was to compare the effects of sudden and gradual hypo-osmotic challenge on chondrocyte morphology and biomechanics. Bovine articular chondrocytes were exposed to a reduction in extracellular osmolality from 327 to 153 mOsmol/kg applied either suddenly (osmotic stress, 66% of chondrocytes exhibited an increase in diameter followed by RVD, whilst 25% showed no RVD. By contrast, cells exposed to gradual hypo-osmotic stress exhibited reduced cell swelling without subsequent RVD. There was an increase in the equilibrium modulus for cells exposed to sudden hypo-osmotic stress. However, gradual hypo-osmotic challenge had no effect on cell mechanical properties. This cell stiffening response to sudden hypo-osmotic challenge was abolished when actin organization was disrupted with cytochalasin D or RVD inhibited with REV5901. Both sudden and gradual hypo-osmotic challenge reduced cortical F-actin distribution and caused chromatin decondensation. Sudden hypo-osmotic challenge increases chondrocyte mechanics by activation of RVD and interaction with the actin cytoskeleton. Moreover, the rate of hypo-osmotic challenge is shown to have a profound effect on chondrocyte morphology and biomechanics. This important phenomenon needs to be considered when studying the response of chondrocytes to pathological hypo-osmotic stress. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. [Stem sap flow and water consumption of Tamarix ramosissima in hinterland of Taklimakan Desert].

    Science.gov (United States)

    Xu, Hao; Zhang, Xi-Ming; Yan, Hai-Long; Yao, Shi-Jun

    2007-04-01

    From April to November 2005, the stem sap flow and water consumption of Tamarix ramosissima in the hinterland of Taklimakan Desert was measured by Flow-32 System. The results showed that, in the extremely arid hinterland of Taklimakan Desert and under enough water supply, the average daily water consumption of T. ramosissima with a stem diameter of 3.5 cm and 2.0 cm was 6.322 kg and 1.179 kg, respectively in one growth season. The stem sap flow of T. ramosissima presented a single-peaked curve, with an obvious day and night variation rhythm and fluctuated with environment factors. Under enough water supply, the environmenal factors such as total radiation, wind speed and air temperature were the main factors affecting the stem sap flow, and the dynamics of stem sap flow could be predicted by the liner regression model based on total radiation and wind speed. Because of the extremely arid environment and enough water supply, T. ramosissima had a relatively higher stem sap flow rate and a great water consumption.

  14. Proteomics approach to identify unique xylem sap proteins in Pierce's disease-tolerant Vitis species.

    Science.gov (United States)

    Basha, Sheikh M; Mazhar, Hifza; Vasanthaiah, Hemanth K N

    2010-03-01

    Pierce's disease (PD) is a destructive bacterial disease of grapes caused by Xylella fastidiosa which is xylem-confined. The tolerance level to this disease varies among Vitis species. Our research was aimed at identifying unique xylem sap proteins present in PD-tolerant Vitis species. The results showed wide variation in the xylem sap protein composition, where a set of polypeptides with pI between 4.5 and 4.7 and M(r) of 31 kDa were present in abundant amount in muscadine (Vitis rotundifolia, PD-tolerant), in reduced levels in Florida hybrid bunch (Vitis spp., PD-tolerant) and absent in bunch grapes (Vitis vinifera, PD-susceptible). Liquid chromatography/mass spectrometry/mass spectrometry analysis of these proteins revealed their similarity to beta-1, 3-glucanase, peroxidase, and a subunit of oxygen-evolving enhancer protein 1, which are known to play role in defense and oxygen generation. In addition, the amount of free amino acids and soluble sugars was found to be significantly lower in xylem sap of muscadine genotypes compared to V. vinifera genotypes, indicating that the higher nutritional value of bunch grape sap may be more suitable for Xylella growth. These data suggest that the presence of these unique proteins in xylem sap is vital for PD tolerance in muscadine and Florida hybrid bunch grapes.

  15. Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry.

    Science.gov (United States)

    Schenk, H Jochen; Espino, Susana; Visser, Ate; Esser, Bradley K

    2016-04-01

    A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples. © 2015 John Wiley & Sons Ltd.

  16. Environmental controls on sap flow in black locust forest in Loess Plateau, China.

    Science.gov (United States)

    Ma, Changkun; Luo, Yi; Shao, Mingan; Li, Xiangdong; Sun, Lin; Jia, Xiaoxu

    2017-10-13

    Black locust accounts for over 90% of artificial forests in China's Loess Plateau region. However, water use of black locust is an uphill challenge for this semi-arid region. To accurately quantify tree water use and to explain the related hydrological processes, it is important to collect reliable data for application in the estimation of sap flow and its response to environmental factors. This study measured sap flow in black locust in the 2015 and 2016 growth seasons using the thermal dissipation probes technique and laboratory-calibrated Granier's equation. The study showed that the laboratory calibrated coefficient α was much larger than the original value presented by Granier, while the coefficient β was similar to the original one. The average daily transpiration was 2.1 mm day -1 for 2015 and 1.6 mm day -1 for 2016. Net solar radiation (Rn) was the key meteorological factor controlling sap flow, followed by vapor pressure deficit (VPD) and then temperature (T). VPD had a threshold control on sap flow at threshold values of 1.9 kPa for 2015 and 1.6 kPa for 2016. The effects of diurnal hysteresis of Rn, VPD and T on sap flow were evident, indicating that black locust water use was conservative.

  17. Human SAP is a novel peptidoglycan recognition protein that induces complement- independent phagocytosis of Staphylococcus aureus

    Science.gov (United States)

    An, Jang-Hyun; Kurokawa, Kenji; Jung, Dong-Jun; Kim, Min-Jung; Kim, Chan-Hee; Fujimoto, Yukari; Fukase, Koichi; Coggeshall, K. Mark; Lee, Bok Luel

    2014-01-01

    The human pathogen Staphylococcus aureus is responsible for many community-acquired and hospital-associated infections and is associated with high mortality. Concern over the emergence of multidrug-resistant strains has renewed interest in the elucidation of host mechanisms that defend against S. aureus infection. We recently demonstrated that human serum mannose-binding lectin (MBL) binds to S. aureus wall teichoic acid (WTA), a cell wall glycopolymer, a discovery that prompted further screening to identify additional serum proteins that recognize S. aureus cell wall components. In this report, we incubated human serum with 10 different S. aureus mutants and determined that serum amyloid P component (SAP) bound specifically to a WTA-deficient S. aureus ΔtagO mutant, but not to tagO-complemented, WTA-expressing cells. Biochemical characterization revealed that SAP recognizes bacterial peptidoglycan as a ligand and that WTA inhibits this interaction. Although SAP binding to peptidoglycan was not observed to induce complement activation, SAP-bound ΔtagO cells were phagocytosed by human polymorphonuclear leukocytes in an Fcγ receptor-dependent manner. These results indicate that SAP functions as a host defense factor, similar to other peptidoglycan recognition proteins and nucleotide-binding oligomerization domain (NOD)-like receptors. PMID:23966633

  18. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhibiao; Li, Na; Jiang, Shan; Gonzalez, Nathalie; Huang, Xiahe; Wang, Yingchun; Inzé, Dirk; Li, Yunhai

    2016-04-06

    Control of organ size by cell proliferation and growth is a fundamental process, but the mechanisms that determine the final size of organs are largely elusive in plants. We have previously revealed that the ubiquitin receptor DA1 regulates organ size by repressing cell proliferation in Arabidopsis. Here we report that a mutant allele of STERILE APETALA (SAP) suppresses the da1-1 mutant phenotype. We show that SAP is an F-box protein that forms part of a SKP1/Cullin/F-box E3 ubiquitin ligase complex and controls organ size by promoting the proliferation of meristemoid cells. Genetic analyses suggest that SAP may act in the same pathway with PEAPOD1 and PEAPOD2, which are negative regulators of meristemoid proliferation, to control organ size, but does so independently of DA1. Further results reveal that SAP physically associates with PEAPOD1 and PEAPOD2, and targets them for degradation. These findings define a molecular mechanism by which SAP and PEAPOD control organ size.

  19. The study of Cr(III) complexation in the xylem sap using ion exchange and radiotracer

    International Nuclear Information System (INIS)

    Juneja, Shikha; Prakash, Satya

    2003-01-01

    Radiotracer was employed to carry out ion exchange experiments to study the chromium speciation in the in vitro samples of xylem sap of maize stem of 60 days old plants. Cr(III) radiolabelled with its radioactive isotope ( 51 Cr) was mixed with both the ion exchange fraction of the sap which represented the carboxylic acids, as well as the whole sap and was analysed for complexation after 10 and 30 days at 25 degC. Prior to this, the ion exchange elution chromatography of Cr(III), and the Cr(III) complexes with oxalic and citric acid were used to compare the complexes being formed in the in vitro studies. The in vitro Cr(III) complexation results indicated that Cr(III) was vitally present as anionic species. The elution curve trend was similar to that of citric acid complexation. Citric acid was also found to be the major complexing acid in the xylem sap as determined by HPLC. The results indicate the transportation of Cr(III) as a citrate complex in the xylem sap of maize plants. (author)

  20. Symbiotic maple saps minimize disruption of the mice intestinal microbiota after oral antibiotic administration.

    Science.gov (United States)

    Hammami, Riadh; Ben Abdallah, Nour; Barbeau, Julie; Fliss, Ismail

    2015-01-01

    This study was undertaken to evaluate the in vivo impact of new symbiotic products based on liquid maple sap or its concentrate. Sap and concentrate, with or without inulin (2%), were inoculated with Bifidobacterium lactis Bb12 and Lactobacillus rhamnosus GG valio at initial counts of 2-4 × 10(8) cfu mL(-1). The experiments started with intra-gastric administration of antibiotic (kanamycin 40 mg in 0.1 cc) (to induce microbiota disturbance and/or diarrhea) to 3-to-5-week-old C57BL/6 female mice followed by a combination of prebiotic and probiotics included in the maple sap or its concentrate for a week. The combination inulin and probiotics in maple sap and concentrate appeared to minimize the antibiotic-induced breakdown of mice microbiota with a marked effect on bifidobacterium and bacteroides levels, thus permitting a more rapid re-establishment of the baseline microbiota levels. Results suggest that maple sap and its concentrate represent good candidates for the production of non-dairy functional foods.