WorldWideScience

Sample records for santowax

  1. The physical properties of Santowax 'R' for heat transfer calculations (AERE R/M 183 revised)

    International Nuclear Information System (INIS)

    Bowring, R.W.; Garton, D.A.; Kinneir, J.H.

    1961-03-01

    Values of the following physical properties of Santowax 'R' are presented in graphical and/or tabular form in both English and Metric units: Vapour Pressure, Specific heat, Enthalpy, Density, Dynamic viscosity, Kinematic viscosity, Thermal conductivity, Prandtl number, Surface tension, Latent heat of vaporisation, Critical properties, Gas solubilities. The data were obtained by new experimental measurements, by calculation or from the published literature. Wherever possible an estimate of the probable error is given. Conversion factors and Tables are also presented to facilitate the conversion of any of the properties to convenient units required for calculations. (author)

  2. The behaviour of zirconium alloys in Santowax OM organic coolant at high temperatures

    International Nuclear Information System (INIS)

    Sawatzky, A.

    1964-10-01

    Zirconium alloys have been exposed to Santowax OM at temperatures of 320 to 400 o C for times as long as 5000 hours. Short-term experiments (less than 2 weeks) were done in stainless-steel bombs and small out-of-pile loops. The X-7 organic loop in the NRX reactor was used to study long-term oxidation and hydriding both in-flux and out-of-flux. The results obtained lead to several tentative conclusions: Aluminum cladding serves as an effective hydrogen barrier; Considerable protection against hydriding is given by zirconium oxide, provided impurities in the organic are carefully controlled; Hydriding is greatly enhanced by the presence of chlorine in the coolant; and, Hydriding is somewhat enhanced by neutron irradiation. Of considerable significance is the fact that a Zircaloy-4 in-reactor test section of the X-7 loop was exposed to Santowax OM at 320 to 400 o C for more than 5000 hours without excessive hydriding. (author)

  3. Measurement of the specific heats of Santowax 'R', para-, meta- and ortho-terphenyl, diphenyl and dowtherm 'A'

    International Nuclear Information System (INIS)

    Bowring, R.W.; Garton, D.A.; Norris, H.F.

    1960-12-01

    New absolute measurements have been made of the specific heats of Santowax 'R1, the terphenyl isomers, diphenyl and Dowtherm 'A'. An adiabatic calorimeter was used in which the sample was heated electrically while a surrounding jacket was maintained at the same temperature as the calorimeter. The specific heats of all materials tested were found to increase linearly with temperature, the slope being substantially the same for all the pure materials except para-terphenyl. The specific heat of Santowax 'R' was about 1/2% less than the weighted mean of its components. The probable accuracy of the measurements was ± 2% and this was confirmed by comparison with diphenyl ether. A summary of results is given in Table 1 and Figure 10. (author)

  4. Measurement of the surface tension of Santowax 'R', para-, meta-, and ortho-terphenyl, diphenyl, diphenyl ether and dowtherm 'A'

    International Nuclear Information System (INIS)

    Bowring, R.W.; Garton, D.A.; Kinneir, J.H.

    1961-09-01

    Values of surface tension were obtained over the temperature range from near the melting point to near the normal boiling point of each substance. A capillary rise method was used employing a closed glass U-tube apparatus. The accuracy was ± 3% near the melting point falling to ± 5% near the normal boiling point. Values of the parachor calculated from the experimental data were in excellent agreement with those calculated from the molecular structure using the method proposed by Sugden. The surface tension in each case decreased with ascending temperature from near 30 to 40 dynes/cm close to the melting point to 13 to 15 dynes/cm near the normal boiling point. (author)

  5. Physical properties of organic coolants

    International Nuclear Information System (INIS)

    Debbage, A.G.; Garton, D.A.; Kinneir, J.H.

    1963-03-01

    Density, viscosity, specific heat, vapour pressure and calorific value were measured within the temperature range 100 - 400 deg C for mixtures of Santowax R with pyrolytic high boiler and Santowax R with O.M.R.E. radiolytic high boiler; in addition measurements were made on Santowax OM, X-7 standard, X-7 loop coolant and O.M.R.E. coolant supplied by Atomic Energy of Canada Ltd. The accuracy of the measurements made were density (± 1/4%), viscosity (± 2%), specific heat (± 2%), vapour pressure (± 2%) and calorific value (± 1/2%). Thermal conductivity was calculated from an improved form of the Smiths equation with an accuracy within ± 6%. Equations fitted to the vapour pressure results were used to provide data outside the experimental range for burnout correlation purposes. The general effect of high boiler content on the specific heat and calorific values was small. The differences in physical property values for corresponding values of either pyrolytic or radiolytic high boiler were small for density (0.3%) and specific heat (2%), but quite large for viscosity (70%) with the pyrolytic high boiler mixture giving the higher value. The chemical analysis of all materials was based on gas chromatography and the relationship between this and an earlier distillation method established. (author)

  6. Heat transfer properties of organic coolants containing high boiling residues

    International Nuclear Information System (INIS)

    Debbage, A.G.; Driver, M.; Waller, P.R.

    1964-01-01

    Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 10 4 to 10 5 . The data was correlated with the equation Nu = 0.015 Re b 0.85 Pr b 0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)

  7. Determination of average molecular weights on organic reactor coolants. I.- Freezing-point depression method for benzene solutions; Determinaciond e masas moleculares medias en refrigerantes nucleares organicos. I.- Crioscopia de disolucion bencenicas

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, M

    1965-07-01

    As a working method for determination of changes in molecular mass that may occur by irradiation (pyrolytic-radiolytic decomposition) of polyphenyl reactor coolants, a cryoscopic technique has been developed which associated the basic simplicity of Beckman's method with some experimental refinements taken out of the equilibrium methods. A total of 18 runs were made on samples of napthalene, biphenyl, and the commercial mixtures OM-2 (Progil) and Santowax-R (Monsanto), with an average deviation from the theoretical molecular mass of 0.6%. (Author) 7 refs.

  8. Determination of average molecular weights on organic reactor coolants. I.- Freezing-point depression method for benzene solutions

    International Nuclear Information System (INIS)

    Carreira, M.

    1965-01-01

    As a working method for determination of changes in molecular mass that may occur by irradiation (pyrolytic-radiolytic decomposition) of polyphenyl reactor coolants, a cryoscopic technique has been developed which associated the basic simplicity of Beckman's method with some experimental refinements taken out of the equilibrium methods. A total of 18 runs were made on samples of napthalene, biphenyl, and the commercial mixtures OM-2 (Progil) and Santowax-R (Monsanto), with an average deviation from the theoretical molecular mass of 0.6%. (Author) 7 refs

  9. Determination of average molecular weights on organic reactor coolants. I.- Freezing-point depression method for benzene solutions; Determinaciond e masas moleculares medias en refrigerantes nucleares organicos. I.- Crioscopia de disolucion bencenicas

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, M.

    1965-07-01

    As a working method for determination of changes in molecular mass that may occur by irradiation (pyrolytic-radiolytic decomposition) of polyphenyl reactor coolants, a cryoscopic technique has been developed which associated the basic simplicity of Beckman's method with some experimental refinements taken out of the equilibrium methods. A total of 18 runs were made on samples of napthalene, biphenyl, and the commercial mixtures OM-2 (Progil) and Santowax-R (Monsanto), with an average deviation from the theoretical molecular mass of 0.6%. (Author) 7 refs.

  10. The chemistry of the X-7 (organic) loop coolant part I, May 1960 to April 1965

    International Nuclear Information System (INIS)

    Smee, J.L.

    1966-01-01

    The report describes in detail the X-7 coolant chemistry from the start of loop operation in May 1960 to April 1965. During this period the coolant was Santowax OM containing a nominal 30% high boilers or high molecular weight decomposition products. During the first few months of operation it became apparent that there wa.s a serious problem in the fouling of fuel element heat transfer surfaces. This was overcome by continuous purification of the coolant by Attapulgus clay and filters. Since clay purification has been in use, the fouling rate has been less than 0.2 μg.cm -2 .h -1 (10 μm per year), the target value for successful operation of an organic cooled power reactor. Control of the fouling promoter chlorine has been accomplished by completely excluding it from the vicinity of the loop. Any which does get into the coolant is removed by a bed of Mg ribbon and Pd pellets. Since such a bed has been in use, the Cl content of the coolant has been less than 3 ppm. Also given in this report are: (a) a brief history of the loop since its inception in 1959. (b) the effect of the clay column on the coolant chemistry. (c) a complete description of the current purification, degas and make-up circuits, (d) a summary of the coolant chemistry during all fuel irradiations. (author)