WorldWideScience

Sample records for sanitary landfill methane

  1. The Application Of Biofilter System For Reduction Of Methane Emissions From Modern Sanitary Landfills

    Science.gov (United States)

    Sung, K.; Park, S.

    2007-12-01

    Increased atmospheric concentrations of greenhouse gases (GHG) caused by anthropogenic activities has been related to global climate change. Methane, the second most important GHG after CO2, is 21 times more effective at trapping heat than CO2. Therefore, methane emission control is of utmost importance for global warming reduction. To minimize leachate production and protect groundwater resources, modern sanitary landfills are equipped with composite covers and gas collection systems. Methane from modern sanitary landfills is vented directly to the atmosphere, except for some of the largest landfills where it is recovered as energy and burned at the site. However, the efficiency of energy recovery systems in larger landfills is reduced as the amount of CH4 generated from landfill begins to decrease. In this study, the performance of a lab-scale model biofilter system was investigated to treat CH4 gas emitted from modern sanitary landfills by conducting batch and column experiments using landfill cover soil amended with earthworm cast as the filter bed medium. From the batch experiments to measure the influence of moisture content and temperature of the filter medium on CH4 removal capacity of a biofilter system, the optimum moisture content and temperature were found to be 10-15% by weight and 25-35°C, respectively. The column experiment was conducted to measure the influence of inlet CH4 concentration and CH4 loading rate on CH4 removal capacity of a biofilter system. As the inlet CH4 concentration decreased, the percentage of CH4 oxidized increased. Up to a CH4 loading rate of 2785 g CH4 m3 h- 1 (EBRT = 7.7 min), the CH4 removal efficiency of the biofilter was able to reach 100%. Based on the results of the study, the installation of a properly managed biofilter system should be capable of achieving a reduction in atmospheric CH4 emissions from modern sanitary landfills at low CH4 generation stage.

  2. Children living near a sanitary landfill have increased breath methane and Methanobrevibacter smithii in their intestinal microbiota.

    Science.gov (United States)

    de Araujo Filho, Humberto Bezerra; Carmo-Rodrigues, Mirian Silva; Mello, Carolina Santos; Melli, Lígia Cristina Fonseca Lahoz; Tahan, Soraia; Pignatari, Antonio Carlos Campos; de Morais, Mauro Batista

    2014-01-01

    This study evaluated the breath CH4 excretion and concentration of M. smithii in intestinal microbiota of schoolchildren from 2 slums. One hundred and eleven children from a slum near a sanitary landfill, 35 children of a slum located away from the sanitary landfill, and 32 children from a high socioeconomic level school were included in the study. Real-time PCR was performed to quantify the M. smithii nifH gene and it was present in the microbiota of all the participating children, with higher (P landfill (3.16 × 10(7) CFU/g of feces), comparing with the children from the slum away from the landfill (2.05 × 10(6) CFU/g of feces) and those from the high socioeconomic level group (3.93 × 10(5) CFU/g of feces). The prevalence of children who present breath methane was 53% in the slum near the landfill, 31% in the slum further away from the landfill and, 22% in the high socioeconomic level group. To live near a landfill is associated with higher concentrations of M. smithii in intestinal microbiota, comparing with those who live away from the landfill, regardless of their socioeconomics conditions.

  3. Methods of Sensing Land Pollution from Sanitary Landfills

    Science.gov (United States)

    Nosanov, Myron Ellis; Bowerman, Frank R.

    1971-01-01

    Major cities are congested and large sites suitable for landfill development are limited. Methane and other gases are produced at most sanitary landfills and dumps. These gases may migrate horizontally and vertically and have caused fatalities. Monitoring these gases provides data bases for design and construction of safe buildings on and adjacent to landfills. Methods of monitoring include: (1) a portable combustible gas indicator; and (2) glass flasks valved to allow simultaneous exhaust of the flask and aspiration of the sample into the flask. Samples are drawn through tubing from probes as deep as twenty-five feet below the surface.

  4. Ammonia nitrogen desorption from sanitary landfill leachate in filling towers

    OpenAIRE

    Leite,Valderi D.; Barros,Aldre J. M.; Lopes,Wilton S.; Sousa,José T. de

    2014-01-01

    Sanitary landfill leachates present high concentrations of carbonaceous and nitrogenous materials. The crucial point is that carbonaceous materials are of difficult biodegradation, what compromises the performance of biological treatment processes, while nitrogenous materials, such as ammonia nitrogen, probably preclude the use of biological treatments. Therefore, the aim of this work was to study the desorption process of ammonia nitrogen from sanitary landfill leachate in filling towers. De...

  5. Methane emissions from sanitary landfills in Italy. Evaluation and forecasting; Le emissioni di metano dalle discariche di rifiuti in Italia: stima e scenari futuri

    Energy Technology Data Exchange (ETDEWEB)

    Colombari, F.; De Lauretis, R.; De Stefanis, P.; Gaudioso, D. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-07-01

    The report estimates the methane emissions from landfills by three different methodologies derived from IPCC experiences. A detailed evaluation of solid waste production (MSW) composition is shown in order to update results obtained from old researches. Finally it shows a prediction of MSW production from 1996 to 2011 in different scenarios related to MSW management strategies. [Italian] Il rapporto analizza la stima della quantita' di metano generato dalle discariche di rifiuti utilizzando tre differenti metodologie di calcolo, derivanti dalle conoscenze scientifiche dell'IPCC, dopo aver approfondito la composizione dei rifiuti. Riporta infine per il periodo 1996-2011, la stima della produzione e dello smaltimento dei rifiuti e la predisposizione di diversi scenari futuri di emissione del metano, relativi a differenti scelte all'interno del sistema di gestione dei rifiuti.

  6. Electrochemical treatment of leachates from sanitary landfills

    Directory of Open Access Journals (Sweden)

    ANNABEL FERNANDES

    2013-06-01

    Full Text Available The electrochemical treatment of leachate samples from a Portuguese intermunicipal sanitary landfill was carried out using anodic oxidation. The treatment was performed in a pilot plant that possesses an electrochemical cell, with boron-doped diamond electrodes, working in batch mode with recirculation. The influence of the applied current density and the flow rate on the performance of the electrochemical oxidation was investigated. Current density was decreased by steps, during the degradation, in order to study this effect on the efficiency of the process. For the assays run at equal flow rate and initial current intensity, chemical oxygen demand (COD removal seems to depend mainly on the charge passed and the variation of the current density during the anodic oxidation process can reduce the energetic costs. An increase in the recirculation flow rate leads to an increase in the organic load removal rate and a consequent decrease in the energetic costs, but it decreases the nitrogen removal rate. Also, the bias between dissolved organic carbon and COD removals increases with flow rate, indicating that an increase in recirculation flow rate decreases the mineralization index.

  7. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...... landfills varied between 2.6 and 60.8 kg CH4 h–1. The highest methane emission was measured at the largest (in terms of disposed waste amounts) of the 13 landfills, whereas the lowest methane emissions (2.6-6.1 kgCH4 h–1) were measured at the older and smaller landfills. At two of the sites, which had gas...... collection, emission measurements showed that the gas collection systems only collected between 30-50% of the methane produced (assuming that the produced methane equalled the sum of the emitted methane and the collected methane). Significant methane emissions were observed from disposed shredder waste...

  8. Phyto cover for Sanitary Landfill Sites: A brief review

    Directory of Open Access Journals (Sweden)

    Bhavya D. Shah

    2017-03-01

    Full Text Available Landfill gases (LFG are produced due to biodegradation of organic fraction of municipal solid waste (MSW when water comes in contact with buried wastes. The conventional clay cover is still practiced to mitigate the percolation of water in landfills in India. Gas extraction systems in landfill for gas collection are used but are much expensive. Thus, “Phytocapping” technique can be one of the alternatives to mitigate landfill gases and to minimize percolation of water into the landfill. Indian plants with locally available soil and municipal solid waste can be tested for the purpose of methane mitigation, heavy metals remediation from leachate. Methane oxidation due to vegetation can be observed compared to non-vegetated landfill. Root zone methane concentrations can be monitored for the plant species.

  9. Sanitary Landfill Groundwater Monitoring Report. Second Quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1995-08-01

    This report contains analytical data for samples taken during second quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  10. Sanitary Landfill groundwater monitoring report. First quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report contains analytical data for samples taken during first quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

  11. Sanitary landfill groundwater monitoring report, Third Quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-12-08

    This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  12. International training seminar: high training on sanitary landfills design, Madrid 7-11, April 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The seminar on design of sanitary landfills was articulated in 5 sessions: 1.- Design of sanitary landfills depending on the quality of wastes. 2.- Legal, techniques and administrative aspects of management. 3.- Geotechniques studies 4.- Biogas 5.- Environmental impact of sanitary landfills.

  13. Interim Sanitary Landfill Groundwater Monitoring Report (1998 Annual Report)

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.

    1999-03-18

    The SRS Interim Sanitary Landfill opened in Mid-1992 and operated until 1998 under Domestic Waste Permit No. 025500-1120. Several contaminants have been detected in the groundwater beneath the unit.The well sampling and analyses were conducted in accordance with Procedure 3Q5, Hydrogeologic Data Collection.

  14. Interim Sanitary Landfill Groundwater Monitoring Report. 1997 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 (formerly dWP-087A) and as part of the SRS Groundwater Monitoring Program.

  15. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  16. Characterization and toxicological evaluation of leachate from closed sanitary landfill.

    Science.gov (United States)

    Emenike, Chijioke U; Fauziah, Shahul H; Agamuthu, P

    2012-09-01

    Landfilling is a major option in waste management hierarchy in developing nations. It generates leachate, which has the potential of polluting watercourses. This study analysed the physico-chemical components of leachate from a closed sanitary landfill in Malaysia, in relation to evaluating the toxicological impact on fish species namely Pangasius sutchi S., 1878 and Clarias batrachus L., 1758. The leachate samples were taken from Air Hitam Sanitary Landfill (AHSL) and the static method of acute toxicity testing was experimented on both fish species at different leachate concentrations. Each fish had an average of 1.3 ± 0.2 g wet weight and length of 5.0 ± 0.1 cm. Histology of the fishes was examined by analysing the gills of the response (dead) group, using the Harris haemtoxylin and eosin (H&E) method. Finneys' Probit method was utilized as a statistical tool to evaluate the data from the fish test. The physico-chemical analysis of the leachate recorded pH 8.2 ± 0.3, biochemical oxygen demand 3500 ± 125 mg L(-1), COD 10 234 ± 175 mg L(-1), ammonical nitrogen of 880 ± 74 mg L(-1), benzene 0.22 ± 0.1 mg L(-1) and toluene 1.2 ± 0.4 mg L(-1). The 50% lethality concentration (LC(50)) values calculated after 96 h exposure were 3.2% (v/v) and 5.9% (v/v) of raw leachate on P. sutchi and C. batrachus, respectively. The H&E staining showed denaturation of the nucleus and cytoplasm of the gills of the response groups. Leachate from the sanitary landfill was toxic to both fish species. The P. sutchi and C. batrachus may be used as indicator organisms for leachate pollution in water.

  17. MATERIALS FOR THE FINAL COVER OF SANITARY LANDFILLS

    Directory of Open Access Journals (Sweden)

    Davorin Kovačić

    1994-12-01

    Full Text Available The paper deals with the selection of materials for the sea¬ling layer in the final cover of sanitary landfills. The sealing la¬yer is the most critical component of the final cover. Its role is to minimize percolation of water through the final cover. Ma¬terials used for the construction of the sealing layer are either of mineral origin (compacted clay or geosynthetic (geomem¬brane. They are most often used in combination creating com¬posite liners. Recently alternative materials are also used like paper mill sludge or discarded swelling clay.

  18. Sanitary landfill groundwater quality assessment plan Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.G.; Cook, J.W.

    1990-06-01

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  19. Interim sanitary landfill groundwater monitoring report. 1996 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L.A.

    1997-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site. These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 and as part of the SRS Groundwater Monitoring Program. Trichlorofluoromethane and 1,1,1-trichloroethane were elevated in one sidegradient well and one downgradient well during 1996. Zinc was elevated in three downgradient wells and also was detected in the associated laboratory blanks for two of those wells. Specific conductance was elevated in one background well and one sidegradient well. Barium and copper exceeded standards in one sidegradient well, and dichloromethane (a common laboratory contaminant) was elevated in another sidegradient well. Barium, copper, and dichloromethane were detected in the associated blanks for these wells, also. The groundwater flow direction in the Steed Pond Acquifer (Water Table) beneath the Interim Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 210 ft/year during first quarter 1996 and 180 ft/yr during third quarter 1996.

  20. Estimation of future methane production from Hellenic landfills

    Energy Technology Data Exchange (ETDEWEB)

    Tsatsarelis, T.; Karagiannidis, A. [Aristotle Univ., Thessaloniki (Greece). Lab. of Heat Transfer and Environmental Engineering

    2009-07-15

    Organic waste decomposition leads to the production of Landfill Gas (LFG). LFG mainly consists of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}). It is common understanding now that LFG should be considered either as a significant source of pollution and risk (if migrating uncontrollably to the air and ground), or as a significant source of renewable energy (if extracted and processed accordingly). There are two possible solutions for dealing with LFG emissions. In the case of low methane ratios, LFG should be extracted and flared or oxidized in biofilters. On the other hand, in the case of high methane content, LFG becomes an evidently valuable energy resource, as it is then able to sustain the fuelling of engines producing electricity and thermal energy. More specifically, it can be used as a supplementary or primary fuel to increase the production of electric power, as a pipeline quality gas and vehicle fuel, or even as a supply of heat and carbon dioxide for greenhouses and various industrial processes. Technologies that utilize LFG include internal combustion engines, gas turbines, fuel cells and boiler systems. The main objective of this research was to predict expected methane generation in Hellenic sanitary landfills, in order to evaluate its potential for energy production and to ensure health and safety in and around these sites on the long term. The study was performed for the period 2008--2028 with the use of a multi-phase model and included a sensitivity analysis in order to determine the impact of certain waste parameters. In this context, two 'extreme' reference scenarios were formulated and assessed, one anticipating fulfillment of the EU landfill directive (which sets limits to the amount of biodegradable and packaging materials to be deposited in sanitary landfills) whereas a second (do-nothing scenario) assuming no such timely compliance. The model used here for methane estimation is a multi-phase model developed by the Norwegian

  1. Methane elimination methods on landfills

    OpenAIRE

    Ponikvar, Martin

    2008-01-01

    Increase in substance and energy exploitation from waste which reduces the greenhouse gas emissions are one of the main goals of environmental protection. Slovenian legislation defines that in case captured landfill gas cannot be used for energy acquisition, incineration on the landfill itself or some other equivalent procedure must be used to prevent gas emissions into the air. The graduation thesis is based on existing municipal landfill Volče where suitable gas elimination is yet to be arr...

  2. The estimation of methane emissions from landfills with different cover systems

    Science.gov (United States)

    Park, S.; Lee, K.; Sung, K.

    2006-12-01

    Methane is a very potent greenhouse gas, second only to CO2 as an anthropogenic contributor to global warming. Landfills are important anthropogenic source in the CH4 emissions. Microbially mediated CH4 oxidation in landfills with conventional soil covers can serve as an efficient biological sink. Methane from modern sanitary landfills equipped with composite covers and gas collection system is vented directly to the atmosphere, except for some of the largest landfills at which it is collected and burned. However, previous laboratory research has shown that biofilters have the potential to reduce CH4 emissions from landfills with modern composite covers. In this study a CH4 emission model was developed. The model used the calculated CH4 oxidation rates to estimate CH4 emissions from landfills constructed with conventional soil covers, modern composite covers, and modern composite covers plus biofilters. According to the CH4 emission rates predicted by CH4 emission model, it was estimated that 90% of the generated CH4 was emitted to the atmosphere for landfills with modern composite cover. For landfills with modern composite cover plus biofilters, an average of only 9% of the generated CH4 was estimated to be emitted. For landfills with conventional covers, an average of 83% of the generated CH4 was estimated to be emitted. By comparing the CH4 emission rates from three different landfill types, the use of a properly managed biofilter should be an effective technique to reduce CH4 emissions from landfills.

  3. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  4. Sanitary Landfill Leachate Recycle and Environmental Problems at Selected Army Landfills: Lessons Learned

    Science.gov (United States)

    1986-09-01

    Benson, M. J. Staub , and M. A. Kamlys, Characteristics, Control and Treatment of Leachate at Military Irnstallations, !nterim Report N- 97/ADA097035...D. Smith, R. Pileccia, J. Handy, G. Gerdes, S. Kloster, G. Schanche, _. .1. fJanson, M. J. Staub , and M. A. Kamiya, Characteri.tic.i Control, and...Learned N 1. Do not construct buildings on top of or close to a closed landfill until methane gas production has stopped.... - 2. Note that explosive

  5. Methane production in simulated hybrid bioreactor landfill.

    Science.gov (United States)

    Xu, Qiyong; Jin, Xiao; Ma, Zeyu; Tao, Huchun; Ko, Jae Hac

    2014-09-01

    The aim of this work was to study a hybrid bioreactor landfill technology for landfill methane production from municipal solid waste. Two laboratory-scale columns were operated for about ten months to simulate an anaerobic and a hybrid landfill bioreactor, respectively. Leachate was recirculated into each column but aeration was conducted in the hybrid bioreactor during the first stage. Results showed that leachate pH in the anaerobic bioreactor maintained below 6.5, while in the hybrid bioreactor quickly increased from 5.6 to 7.0 due to the aeration. The temporary aeration resulted in lowering COD and BOD5 in the leachate. The volume of methane collected from the hybrid bioreactor was 400 times greater than that of the anaerobic bioreactor. Also, the methane production rate of the hybrid bioreactor was improved within a short period of time. After about 10 months' operation, the total methane production in the hybrid bioreactor was 212 L (16 L/kgwaste).

  6. Methane recovery from landfill in China

    Energy Technology Data Exchange (ETDEWEB)

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  7. Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)

    1993-02-19

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.

  8. Application of Grey Situation Decision-Making Theory in Site Selection of a Waste Sanitary Landfill

    Institute of Scientific and Technical Information of China (English)

    CAO Li-wen; CHENG Yun-huan; ZHANG Jing; ZHOU Xiao-zhi; LIAN Cui-xia

    2006-01-01

    An application of an unequal-weighted multi-objective decision making method in site selection of a waste sanitary landfill is discussed. The eight factors, which affected possible options, were: size and capacity of the landfill, permeability of the stratum, the average difference in elevation between the groundwater level and the bottom of the landfill pit, quality and source of clay, the quality grade of the landfill site, the effect of landfill engineering on nearby residents, distance to the water supply and the water source as well as the cost of construction and waste transport. These are determined, given the conditions of the geological environment, the need for environmental protection and landfill site construction and transportation related to the design and operation of a sanitary landfill. The weights of the eight factors were further investigated based on the difference in their relevance. Combined with practical experience from Xuzhou city (Jiangsu province, China), the objectives, effects and weights of grey decision-making were determined and the process and outcome of the landfill site selection are stated in detail. The decision-making results have been proven to be acceptable and correct. As we show, unequal-weighted multi-objective grey situation decision-mak- ing is characterized by easy calculations and good maneuverability when used in landfill site selection. The number of factors (objectives) affecting the outcome and the quantitative method of qualitative indices can be adjusted on the basis of concrete conditions in landfill site selection. Therefore, unequal-weighted multi-objective grey situation decision making is a feasible method in selecting landfill sites which offers a reference method for landfill site selection elsewhere. It is a useful, rational and scientific exploration in the choice of a landfill site.

  9. Sanitary Landfilling – A Key Component of Waste Management

    OpenAIRE

    Johann Fellner

    2013-01-01

    In many affluent countries waste management is experiencing a fast transition from landfilling to sophisticated recycling and waste to energy plants. Thus, landfilling of waste becomes less important in these countries. The present paper discusses whether a similar development will take place in transition economies, or waste management systems will mainly rely on landfilling in the near future. For this purpose, the current waste management practices and associated environmental impacts as w...

  10. Size-resolved culturable airborne bacteria sampled in rice field, sanitary landfill, and waste incineration sites.

    Science.gov (United States)

    Heo, Yongju; Park, Jiyeon; Lim, Sung-Il; Hur, Hor-Gil; Kim, Daesung; Park, Kihong

    2010-08-01

    Size-resolved bacterial concentrations in atmospheric aerosols sampled by using a six stage viable impactor at rice field, sanitary landfill, and waste incinerator sites were determined. Culture-based and Polymerase Chain Reaction (PCR) methods were used to identify the airborne bacteria. The culturable bacteria concentration in total suspended particles (TSP) was found to be the highest (848 Colony Forming Unit (CFU)/m(3)) at the sanitary landfill sampling site, while the rice field sampling site has the lowest (125 CFU/m(3)). The closed landfill would be the main source of the observed bacteria concentration at the sanitary landfill. The rice field sampling site was fully covered by rice grain with wetted conditions before harvest and had no significant contribution to the airborne bacteria concentration. This might occur because the dry conditions favor suspension of soil particles and this area had limited personnel and vehicle flow. The respirable fraction calculated by particles less than 3.3 mum was highest (26%) at the sanitary landfill sampling site followed by waste incinerator (19%) and rice field (10%), which showed a lower level of respiratory fraction compared to previous literature values. We identified 58 species in 23 genera of culturable bacteria, and the Microbacterium, Staphylococcus, and Micrococcus were the most abundant genera at the sanitary landfill, waste incinerator, and rice field sites, respectively. An antibiotic resistant test for the above bacteria (Micrococcus sp., Microbacterium sp., and Staphylococcus sp.) showed that the Staphylococcus sp. had the strongest resistance to both antibiotics (25.0% resistance for 32 microg ml(-1) of Chloramphenicol and 62.5% resistance for 4 microg ml(-1) of Gentamicin).

  11. Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-04-09

    A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

  12. Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-04-09

    A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

  13. Detection and quantification of methane leakage from landfills

    Energy Technology Data Exchange (ETDEWEB)

    Ljungberg, Sven-Aake; Maartensson, Stig-Goeran (Univ. of Gaevle, Gaevle (Sweden)); Meijer, Jan-Erik; Rosqvist, Haakan (NSR AB, Helsingborg (Sweden))

    2009-03-15

    The purpose of this project was to detect gas leakage and to measure and quantify methane emission from landfills using modern remote sensing techniques. In this project, a handheld laser instrument and an IR camera were used. The overall objective was to develop cost-effective methods for detecting and quantifying methane emissions from landfills. There are many methods available for measuring the methane concentration in air, both from close-up and from long distances. Combined with the use of a tracer gas, the methane emission from entire landfills can be measured relatively accurately. A number of methods are used to detect leakage from parts of landfill surfaces, but there are few methods for quantifying leakage from sub-zones. Field measurements with the laser instrument and the IR camera were carried out at seven Swedish landfills and two landfills in France. The investigated surfaces at the Swedish landfills were divided into different zones, such as top surface, slope, crest and toe of slope. The field measurements in France were taken over entire landfills. The methane emission varied between the different landfills in the project, and also between the different landfill zones. The results from repeated field measurements indicated that a landfill with a final cap and a successful gas recovery system produces barely measurable emissions. The weak points at a landfill are generally slopes, including crests and toes of slopes. Where the covering of the waste is inadequate, leakage often occurs at lift joints and in areas where waste protrudes through the cover. Other weak points are deficiencies in the gas recovery system. Leachate systems can lead landfill gas and thereby cause methane leakage. Along with wind velocity and variations in atmospheric pressure, moisture content in the ground is an important factor that affects methane emissions from landfill surfaces. Results from field measurements of the same feature/surface at different points in time and

  14. Research, development and demonstration in the design of sanitary landfill to optimize the generation and capture of compressible gas

    Science.gov (United States)

    Nosanov, M. E.; Teeple, F. E.; Buesch, S. C.

    1982-02-01

    The influences of selected factors on the generation and recovery of methane gas from sanitary landfills were investigated. The factors included encapsulation, shredding, air classifying, moisture, and pH. Facilities consisting of six model sanitary landfill cells, each with a capacity of approximately 450 cubic yards of municipal waste, and auxiliary subsystems were constructed. Municipal waste in each cell is contained in a 30-mil thick polyvinly chloride plastic sheeting forming a virtually gas-tight envelope. Two cells were filled with as-collected urban waste, two with shredded waste, and two with shredded and air classified waste, constituting three pairs of cells. One of each pair is a control cell with the other used as an experimental variable. Systems were provided for adding measured amounts of water, removing and recirculating leachate, and for extracting gas and measuring gas flow. During testing, gas production and internal cell characteristics were measured to determine the effects of mechanical processing, moisture content, and leachate pH.

  15. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with

  16. Life cycle analysis of sanitary landfill and incineration of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    倪晋仁; 韦洪莲; 刘阳生; 赵智杰

    2002-01-01

    Environmental consequences from sanitary landfill as well as incineration with power generation were compared in terms of life cycle analysis (LCA) for Laohukeng Waste-disposal Plant that is under consideration in Shenzhen. A variety of differences will be resulted from the two technologies, from which the primary issue that affects the conclusion is if the compensatory phase in power generation can be properly considered in the boundary definition of LCA. Upon the compensatory phase is taken into account in the landfill system, the negative environmental consequences from the landfill will be more significant than those from the incineration with power generation, although the reversed results can be obtained as the compensatory phase is neglected. In addition, mitigation of environmental impacts through the pollutant treatment in the incineration process will be more effective than in the landfill process.

  17. Anaerobic methane oxidation in a landfill-leachate plume.

    Science.gov (United States)

    Grossman, Ethan L; Cifuentes, Luis A; Cozzarelli, Isabelle M

    2002-06-01

    The alluvial aquifer adjacent to Norman Landfill, OK, provides an excellent natural laboratory for the study of anaerobic processes impacting landfill-leachate contaminated aquifers. We collected groundwaters from a transect of seven multilevel wells ranging in depth from 1.3 to 11 m that were oriented parallel to the flow path. The center of the leachate plume was characterized by (1) high alkalinity and elevated concentrations of total dissolved organic carbon, reduced iron, and methane, and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (delta13C) values suggest anaerobic methane oxidation was occurring within the plume and at its margins. Methane delta13C values increased from about -54 per thousand near the source to > -10 per thousand downgradient and at the plume margins. The isotopic fractionation associated with this methane oxidation was -13.6+/-1.0 per thousand. Methane 13C enrichment indicated that 80-90% of the original landfill methane was oxidized over the 210-m transect. First-order rate constants ranged from 0.06 to 0.23 per year, and oxidation rates ranged from 18 to 230 microM/y. Overall, hydrochemical data suggest that a sulfate reducer-methanogen consortium may mediate this methane oxidation. These results demonstrate that natural attenuation through anaerobic methane oxidation can be an important sink for landfill methane in aquifer systems.

  18. Evaluation of new location of Isfahan′s sanitary landfill site with Oleckno method

    Directory of Open Access Journals (Sweden)

    Maryam Salimi

    2013-01-01

    Full Text Available Aims: The objective of present study was to evaluate the new location of Isfahan solid waste sanitary landfill using Geographical Information System (GIS based on the Oleckno index method (OIM. Materials and Methods: This study was on the field- and library-based data collection and surveys of relevant data. Assessment parameters included average annual rainfall, soil type and ground water beneath and adjucent to the landfill site. To analyze data, ArcGIS version 9.3 was used. Results: In 2010 the total rainfall in the landfill location was less than 150 mm/year. The soil type was clay loam, and the average distance from the floor of the landfill to the groundwater level was 3-9 meters. As calculated results showed that, the Oleckno index (OI score in the study area was 40. Conclusion: The new Isfahan′s sanitary solid waste landfill site had a good OI and the possibility of contamination of groundwater by leachate production based on this method also was low.

  19. Final Disposal of Solid Waste in Sanitary Landfills and Human Health

    Directory of Open Access Journals (Sweden)

    Gustavo Silveira Graudenz

    2012-06-01

    Full Text Available This article presents a critical review of scientific literature on waste sanitary landfills and its effects on human health, with an approach to the adverse effects that are most commonly associated to living near waste landfills. The health variables included were low birth weight, congenital abnormalities, some types of neoplasms, allergies, asthma and other respiratory diseases using the MEDLINE, LILACS and CAPES’ thesis post graduation database for systematic review. In spite of the fact that some studies indicate positive asssociation between health risks and living close to landfills, the majority of the studies, mainly the most recent ones, do not demonstrate a significant health risk in this condition. Some common limitations and bias of the work in the field are discussed. The lack of direct quantification of exposure, lack of prospective approach and no comparaison of the different types and quality of management of the residues are common limitations to most studies. So far, there is weak evidence to support significant epidemiological health risks associated to landfills. More interdisciplinary research should improve the knoledge of the health risks related to living in the proximity to sanitary landfills.

  20. Barometric pumping of burial trench soil gases into the atmosphere at the 740-G Sanitary Landfill

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-12-01

    In 1991, a soil gas survey was performed at the Savannah River Site Sanitary Landfill as part of the characterization efforts required under the integrated Resource Conservation and Recovery Act (RCRA) Facility Investigation and Comprehensive Environmental Resource Conservation and Recovery Act (CERCLA) Remedial Investigation (RFI/RI) program. This report details the findings of this survey, which identified several areas of the landfill that were releasing volatile organic compounds to the atmosphere at levels exceeding regulatory standards. Knowledge of the rates of VOC outgassing is necessary to protect site workers, provide input into the human health and environmental risk assessment documents and provide input into the remedial design scenario.

  1. Preliminary site selection report for the new sanitary landfill at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Savannah River Site (SRS) has proposed a new sanitary landfill (NSL) for solid waste. A site selection team, comprised of representatives from Westinghouse Savannah River Company (WSRC) evaluated potential landfill sites. The site selection team conducted an initial screening of SRS to eliminate unsuitable areas. The screening was based on criteria that were principally environmental factors; however, the criteria also included avoiding areas with unacceptable features for construction or operation of the facility. This initial screening identified seven candidate sites for further evaluation.

  2. Partial nitrification for nitrogen removal from sanitary landfill leachate.

    Science.gov (United States)

    Spagni, Alessandro; Psaila, Giuliana; Rizzo, Andrea

    2014-09-19

    Biological nitrogen removal using nitrite as a shortcut has recently been proposed for the treatment of high strength landfill leachate. The aim of this study was to assess the application of the SHARON (Single reactor High activity Ammonium Removal Over Nitrite) process for the partial nitrification of leachate generated in old landfills. Particular attention was given to the start-up phase of the process. This study demonstrated that partial nitrification can be obtained when treating raw leachate after biomass acclimation. Only a fraction (50-70%) of the ammonia present in the leachate can be oxidised due to a limited amount of alkalinity available. Stable nitritation was obtained by applying a hydraulic retention time (HRT) of 4-5 d, which is higher than the values proposed for the effluent of anaerobic digesters. This higher HRT could probably be allowed by the high concentration of free ammonia present in the leachate, which could severely inhibit the growth of nitrite-oxidising bacteria.

  3. Sanitary Landfill Groundwater Monitoring Report. Fourth Quarter 1997 and 1997 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-02-01

    A maximum of forty-eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituents exceeding standards during 1997. Lead (total recoverable), 1,4-dichlorobenzene, mercury, benzene, dichloromethane (methylene chloride), a common laboratory contaminant, tetrachloroethylene, 1,2-dichloroethane, gross alpha, tritium, and 1.2-dichloropropane also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 139 ft/year during first quarter 1997 and 132 ft/year during fourth quarter.

  4. Estimate the potential production of electricity: a case study of the sanitary landfill of Santo Andre, Sao Paulo, Brazil; Estimativa do potencial de producao de eletricidade: estudo de caso do aterro sanitario de Santo Andre, Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Elissando Rocha da; Moreira, Joao M. L.; Candiani, Giovano [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), SP (Brazil)

    2010-07-01

    The recovery of the biogas generated from sanitary landfills, associated to its energetic use has been widely discussed. Thus, this paper aims to estimate the potential production of electric energy from sanitary landfill Santo Andre-SP. The biogas production was estimated using the rate of deposition of solid wastes in the landfill, using some mathematical models with parameters suggested by two models: LanGEM-USEPA (conventional landfill) and Word Bank. These results indicate that the potential of biogas production will be approximately 11 x 10{sup 6} Kg of methane/year in 2017 and production of electric energy in that year will be approximately 32,000 MWh, considering an of 75% over collection of biogas. (author)

  5. Sanitary Landfill Groundwater Monitoring Report - Third and Fourth Quarters 2000 and 2000 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    2001-03-07

    A maximum of forty wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the Sanitary Landfill Groundwater Quality Assessment Plan. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituent exceeding the Final Primary Drinking Water Standards during the calendar year 2000. 1,4-Dichlorobenzene, benzene, dichloromethane (methylene chloride), gross alpha, lead (total recoverable) mercury (total recoverable), thallium (total recoverable), and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate at this unit was approximately 122.64 ft/year during first quarter 2000 and 132.28 ft/year during fourth quarter 2000.

  6. Sanitary Landfill Groundwater Monitoring Report - Third and Fourth Quarters 2000 and 2000 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    2001-03-07

    A maximum of forty wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the Sanitary Landfill Groundwater Quality Assessment Plan. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituent exceeding the Final Primary Drinking Water Standards during the calendar year 2000. 1,4-Dichlorobenzene, benzene, dichloromethane (methylene chloride), gross alpha, lead (total recoverable) mercury (total recoverable), thallium (total recoverable), and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate at this unit was approximately 122.64 ft/year during first quarter 2000 and 132.28 ft/year during fourth quarter 2000.

  7. Conceptual model elaboration for the safety assessment of phosphogypsum use in sanitary landfills

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Stela D.; Braga, Leticia T.P.; Jacomino, Vanusa F., E-mail: sdsc@cdtn.b, E-mail: letsteixeira@gmail.co, E-mail: vmfj@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Phosphogypsum is a by-product of the phosphatic fertilizer production from the beneficiation of phosphate minerals (apatites). Produced in large quantities throughout the world and stored temporally in stacks, the final destination of this product is nowadays a subject of investigation. Due to the presence of radionuclides ({sup 226}Ra, {sup 232}Th and {sup 40}K, mainly), possible applications for the phosphogypsum must be verified for radiological safety. The goal of this paper was to elaborate a representative water flow conceptual model of a sanitary landfill for the safety assessment of the impact of using phosphogypsum as a cover material. For this, the ground water flow in variably saturated conditions and solute transport model HYDRUS-2D has been used for simulating the impact in the saturated zone of potential radionuclides leaching. The conceptual model was developed by collecting and analyzing the data from environmental license documentation of municipal sanitary landfills located on the State of Minas Gerais, Brazil. In order to fulfill the requirements of HDRUS-2D model in terms of the necessary parameters, the physical characteristics and typical configuration of the landfills, as well as the hydrogeological parameters of soils and aquifers related to the local of placement of the landfills, were taken in account for the formulation of the conceptual model. (author)

  8. Study on the Natural Soil Properties Endau Rompin National Park (PETA as Compacted Soil Liner for Sanitary Landfill

    Directory of Open Access Journals (Sweden)

    Zulkifli Ahmad

    2013-11-01

    Full Text Available Abstract: This paper reviews and extends an understanding of a study on potential suitability of the natural soil in Endau Rompin National Park (PETA as a compacted soil liner for sanitary landfill. Since the demand for landfill system becomes obvious so that concerning construction and operation of landfills are increasing. A number of studies have been conducted for the liner system of landfill. Hence, study is required to choose the suitable type of material as liner barrier for the landfill system in term to achieve optimum long term performance. The sanitary landfill plays an important role in the framework of solid waste disposal. The compacted soil liner is a part of a liner structure for landfill to restrict leachate migration from facility into the environment. So that, if the landfill system is not well manage it will contaminate the soil and ground water, thus presenting a risk to human and environmental health. This study, natural soil will be taken from Endau Rompin National Park (PETA, Johor as soil sample for testing. Natural soil is an economy material as a liner system, and it does not decay easily from time to time. So it is an ideal material as a sanitary landfill liner system. In short, the purpose of this study is to compile and organize available information on the use of laboratory testing, as well as providing some guidance on the use of natural soil as barrier layer of landfill and also it suitability of physical and chemical properties natural soil as barrier layer of landfill. Based on the laboratory testing were conducted, found that soil sample taken form Endau Rompin National Park (PETA is suitable as compacted soil liner for sanitary landfill.

  9. Modelization of Biogas production in Sanitary landfills; Modelizacion de la produccion de Biogas en vertederos controlados

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Iglesias, J.; Castrillon, L.; Maranon, E.; Sastre, H. [Universidad de Oviedo (Spain)

    2000-07-01

    Amongst all the different alternatives for the eliminator or treatment of MSW (Municipal Solid Waste), sanitary landfills is probably the one that is most widely employed to date, due to its economic advantages. With the coming into effect of the Spanish Containers and Packaging Law, alongside that of the Council Directive 1999/31/CE, concerning waste disposal, this situation will be substantially modified. At the same time, the application of said Directive will influence the amount of biogas generated in landfills. The present research work a study of the influence that the aforementioned Directive will have on the production of biogas in a sanitary landfill which currently disposes of around 400.000 Tm/year of MSW, 52% of which is easily biodegradable organic matter. The model proposed by Marticorena was applied and the kinetic parameters, MPO and d, were experimentally obtained by means of a pilot-plant study of MSW anaerobic degradation, the values employed being 173 Nm3 of biogas/Tm of the organic fraction of MSW for MPO, and 3 years for d. The results obtained in the model are compared with those obtained experimentally at the COGERSA landfill, Asturias, Spain. Twenty wells were chosen to analyse the production of biogas, giving an overall average yield of 70%. In 1999, around 4,100 m''3/h of biogas were extracted at the COGERSA landfill. Application of the model gave an estimation for 1999 of an average production of 5,369 m''3/h giving a maximum yield in the extraction of biogas of around 75%. The difference between the two average yields obtained may be due to the fact that the model only takes into account the easily biodegradable organic fraction, whilst in the landfill, given that more time has passed, other substances with a longer period of degradation, such as paper and cardboard, may also be degraded. (Author) 10 refs.

  10. Mathematical numeric models for assessing the groundwater pollution from Sanitary landfills

    Science.gov (United States)

    Petrov, Vasil; Stoyanov, Nikolay; Sotinev, Petar

    2014-05-01

    Landfills are among the most common sources of pollution in ground water. Their widespread deployment, prolonged usage and the serious damage they cause to all of the elements of the environment are the reasons, which make the study of the problem particularly relevant. Most dangerous of all are the open dumps used until the middle of the twentieth century, from which large amounts of liquid emissions flowed freely (landfill infiltrate). In recent decades, the problem is solved by the construction of sanitary landfills in which they bury waste or solid residue from waste utilization plants. The bottom and the sides of the sanitary landfills are covered with a protective waterproof screen made of clay and polyethylene and the landfill infiltrate is led outside through a drainage system. This method of disposal severely limits any leakage of gas and liquid emissions into the environment and virtually eliminates the possibility of contamination. The main topic in the conducted hydrogeological study was a quantitative assessment of groundwater pollution and the environmental effects of re-landfilling of an old open dump into a new sanitary landfill, following the example of the municipal landfill of Asenovgrad, Bulgaria. The study includes: 1.A set of drilling, geophysical and hydrogeological field and laboratory studies on: -the definition and designation of the spatial limits of the main hydrogeological units; -identification of filtration parameters and migration characteristics of the main hydrogeological units; -clarifying the conditions for the sustentation and drainage of groundwater; -determininng the structure of the filtration field; -identifying and assessing the size and the extent of groundwater contamination from the old open dump . 2.Mathematical numeric models of migration and entry conditions of contaminants below the bottom of the landfill unit, with which the natural protection of the geological environment, the protective effect of the engineering

  11. Superficial Methane Emissions from a Landfill in Merida, Yucatan, Mexico

    Directory of Open Access Journals (Sweden)

    Sauri-Riancho María Rosa

    2013-06-01

    Full Text Available On worldwide scale, one of the most important anthropogenic methane sources is landfill disposal for solid wastes. The main goal of this work was to quantify methane emissions at one landfill built in Merida, Mexico. This sit had venting wells by which a passive control for biogas movement was exerted. At the venting wells, methane concentrations were measured monthly during a 6 months period, Methane surface emission rate was estimated with the close chamber technique. Obtained results indicated that there are both spatial and seasonal variations in biogas composition. The average methane value during the monitoring period was 21.9% (12.7 to 32.5 V/V and the surface flow rate was in the range of 0 to 6,004 g CH4 m–2 d–1, with an average value of 1,480 g CH4 m–2 d–1, which is a high value in respect to these reported in publications.

  12. Detection and quantification of methane leakage from landfills

    Energy Technology Data Exchange (ETDEWEB)

    Ljungberg, Sven-Aake; Maartensson, Stig-Goeran (Univ. of Gaevle, Gaevle (Sweden)); Meijer, Jan-Erik; Rosqvist, Haakan (NSR AB, Helsingborg (Sweden))

    2009-03-15

    The purpose of this project was to detect gas leakage and to measure and quantify methane emission from landfills using modern remote sensing techniques. In this project, a handheld laser instrument and an IR camera were used. The overall objective was to develop cost-effective methods for detecting and quantifying methane emissions from landfills. There are many methods available for measuring the methane concentration in air, both from close-up and from long distances. Combined with the use of a tracer gas, the methane emission from entire landfills can be measured relatively accurately. A number of methods are used to detect leakage from parts of landfill surfaces, but there are few methods for quantifying leakage from sub-zones. Field measurements with the laser instrument and the IR camera were carried out at seven Swedish landfills and two landfills in France. The investigated surfaces at the Swedish landfills were divided into different zones, such as top surface, slope, crest and toe of slope. The field measurements in France were taken over entire landfills. The methane emission varied between the different landfills in the project, and also between the different landfill zones. The results from repeated field measurements indicated that a landfill with a final cap and a successful gas recovery system produces barely measurable emissions. The weak points at a landfill are generally slopes, including crests and toes of slopes. Where the covering of the waste is inadequate, leakage often occurs at lift joints and in areas where waste protrudes through the cover. Other weak points are deficiencies in the gas recovery system. Leachate systems can lead landfill gas and thereby cause methane leakage. Along with wind velocity and variations in atmospheric pressure, moisture content in the ground is an important factor that affects methane emissions from landfill surfaces. Results from field measurements of the same feature/surface at different points in time and

  13. Gas Production Potential in the Landfill of Tehran by Landfill Methane Outreach Program

    Directory of Open Access Journals (Sweden)

    Pazoki

    2015-10-01

    Full Text Available Background Landfilling is the most common way of municipal solid waste (MSW disposal in Iran. Many countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings as well as the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. Landfill gas (LFG consists of 50% - 60 vol% methane and 30% - 40 vol% carbon dioxide as well as trace amounts of numerous chemical compounds such as aromatics, chlorinated organic compounds and sulfur compounds. Landfill methane outreach program (LMOP is a voluntary assistance program which helps reduce methane emissions from landfills by encouraging the recovery and the beneficial use of LFG as an energy resource. Objectives In this study, the volume of LFG of Tehran by landfill methane outreach program (LMOP software was calculated. In addition, the relationship between the time of gas collection system operation and the volume of LFG production was evaluated. Materials and Methods The LMOP software was used. The available information and some presumptions were used to operate the software. The composition of the solid waste collected from the landfill of Tehran had specific details. A large amount of it was organic materials, which was about 67.8%. These materials have a good potential to produce gas. In addition, LMOP Colombia model uses the first-order equations in all the analytical equations. Furthermore, it is assumed that the landfill operation time is 30 years and the process is considered in two conditions; first, the gas was recovered in 2000, and second, the process started in 2015. Results The modeling results showed that for the gas recovery starting in 2000 and 2015, the power generation would be 2

  14. Sanitary landfills. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This bibliography contains citations concerning refuse disposal in sanitary landfills. Among the topics reviewed are site selection criteria, leachate analysis and treatment, and economic and management aspects. Hydrologic studies pertaining to contaminant transport, and the use of liners and covers are discussed. Considerable attention is given to gas generation and recovery, and specific operations are described. Citations pertaining specifically to hazardous and industrial waste materials are excluded. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Application of Deuterium and Oxygen-18 to Trace Leachate Movement in Bantar Gebang Sanitary Landfill

    Directory of Open Access Journals (Sweden)

    E.R. Pujiindiyati

    2011-08-01

    Full Text Available Bantar Gebang landfill was constructed in 1986 with total area of 108 ha and approximately 6000 ton/day solid waste is disposed to this landfill. Mostly, the people living surrounding landfill get afraid of impact of the hazardous chemicals produced by waste disposal to their health. The purpose of this investigation was to study the migration of leachate to Cibitung River water and shallow groundwaters near to the river. It is possible to be done because chemical contents and isotopic characteristics of municipal landfill leachate are unique, relative to aqueous media in the most natural environments. Laser absorption method developed by the LGR (Los Gatos Research was used to measure absolute abundances of 2HHO, HH18O and HHO in a number of water samples. In-situ measurements were also conducted as an additional parameter besides their isotopes. The δ2H of the H2O in landfill leachate was significantly enriched, with values of - 22.6 ‰ to + 4.3 ‰. This deuterium enrichment was undoubtedly due to the extensive production of microbial methane within the limited reservoir of the landfill. However, the enriched deuterium value in leachate was not detected in the river which still had depleted values. It was probably caused by the amount of natural water in the river was comparatively large, with respect to limited leachate discarded to the river.The electrical conductivity of the leachate was higher (3200 to 7600 S and the decreasing values were still monitored in the river to approximately 12 km after streaming the landfills. The effect of the high electrical conductivity and enriched deuterium of leachate was not clearly indicated in the groundwater samples which still represented the local precipitation recharge, except a monitoring well located in Bantar Gebang landfill area which has an indication of leachate contamination.

  16. Grouting of fly ash in sanitary landfills; Injektering av flygaska i hushaallsavfallsdeponi

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Energi och Miljoe AB, Stockhom (Sweden); Andreas, Lale; Lagerkvist, Anders [Luleaa Univ. of Technology (Sweden); Jannes, Sara; Tham, Gustav [Telge Aatervinning AB, Soedertaelje (Sweden); Sjoeblom, Rolf [Tekedo AB, Nykoeping (Sweden)

    2003-10-01

    The purpose of the study was to investigate the potential for stabilization of sanitary landfills by injecting fly ash. The method is supposed to prevent differential settlements in landfills and by that to counteract damages in the final cover. Injecting fly ash may also affect the chemical development in a positive way and prevent metal leaching. Pilot experiments at the Tveta waste recycling center (Tveta Aatervinningsanlaeggning) have been performed in order to estimate if the grouting technology is a suitable method for sanitary landfills. Fly ashes from the combustion of bio fuels were used in these tests. A literature study and laboratory experiments in order to prepare the field experiments were also part of the project. About 100 tons of ash slurry were injected during the pilot experiments. This corresponds to a filling degree of approximately 12-16 % of the available pores in the landfill body. As a result of the pilot test, the following conclusions can be drawn: Ash can be mixed with water to a pumpable slurry which can be injected without hardening inside the equipment. Neither the waste nor the grouting material caused a backpressure during the injection and nothing indicates that the injected ash deforms the landfilled waste. The ash-water-slurry flows through the voids in the waste easily. Thus, the ash may dispread quite far from the injection holes. Using a more powerful equipment backpressure and movements in the waste might occur. It was not possible to estimate the flow required for backpressure in this study. Large variations are possible but for safety reasons the maximal pressure should be limited with regard to the expected stability in the actual area. The grouted ash will harden within the landfill body within a couple of days. It accumulates in hard but brittle lumps, which may result in an increased stability of the landfill. Further studies are necessary in order to evaluate how the stability is affected and what amounts of ash are

  17. Ecotoxicological evaluation of leachate from the Limeira sanitary landfill with a view to identifying acute toxicity

    Directory of Open Access Journals (Sweden)

    José Euclides Stipp Paterniani

    2007-12-01

    Full Text Available Final disposal of solid waste is still a cause for serious impacts on the environment. In sanitary landfills, waste undergoes physical, chemical, and biological decomposition, generating biogas and leachate. Leachate is a highly toxic liquid with a very high pollution potential. The purpose of this work is to evaluate toxicity of in natura leachate samples collected from Limeira Sanitary Landfill, in Limeira, SP. The ecotoxicological evaluation comprised acute toxicity assays using as test organisms Daphnia Similis, seeds of Eruca sativa (arugula, and Allium cepa roots (onion. Analyses of color, pH, turbidity, conductivity, hardness, nitrogen, total organic carbon (TOC, adsorbable organic halogen (AOX, and metals were also carried out. The main results for Eruca sativa (arugula and Allium cepa (onion indicated that the diluted leachate 50% presented similar toxicity to the phenol solution of 1000 mg.L-1 for arugula and 2000 mg.L-1 for onion. With the solution of Cr+6 concentrations of 3000 mg.L-1 for arugula and 2000 mg.L-1 for onion were found. For analyses with Daphnia Similis the EC50 was 9.3% on average. This way it was possible to observe that biological tests are necessary to evaluate the pollution in the effluents or water bodies. These tests serve to determine the toxic potential of a chemical agent or complex mixture.

  18. Sanitary landfill groundwater monitoring report. Fourth quarter 1996 and 1996 summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    A maximum of eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and chloroethene (vinyl chloride) were the most widespread constituents exceeding standards during 1996. Benzene, trichloroethylene, 1,4-dichlorobenzene, 1,1-dichloroethylene, lead (total recoverable), gross alpha, mercury (total recoverable), tetrachloroethylene, fluoride, thallium, radium-226, radium-228, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 141 ft/year during first quarter 1996 and 132 ft/year during fourth quarter 1996

  19. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    2000-03-13

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

  20. Study of biogas production parameters in the sanitary landfill; Estudio de los parametros que afectan la produccion de biogas en un vertedero controlado

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Domenech, G.; Gordillo Bolasell, M. A.; Sanchez Ferrer, A.

    2001-07-01

    The following article contents a study about some of the parameters affecting the evolution of the gas production in a sanitary landfill placed in the province of Barcelona. The work is focused on the quality of biogas produced, measured as the percentage of methane and thus its energy profitability. The parameters included in this paper are: -Situation of the gas extraction station -Age of the wastes. -Reinfiltration of concentrated liquid leachate in the considered cell. Among the previous factors, the situation of the gas station and the age of wastes showed a critical influence on the methane content, whereas the use of leachate reinfiltration did not produce significant differences in the quality of biogas in the short-term applications. (Author) 5 refs.

  1. Leachates control in sanitary landfills of urban solid wastes in Gipuzkoa; Control de lixiviados en los vertederos de residuos solidos urbanos de Gipuzkoa

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Martin, M.A.; Antiguedad Auzmendi, I.

    1998-12-01

    The physico-chemical characterization of the leachates from seven sanitary landfills in Gipuzkoa has been studied. Flow rate, temperature and electric conductivity were monitored on line in some cases too. HELP model and other classic methods were applicated to calculate exactly the water balance. The authors conclude suggesting that these studies are essentials to know if the landfills are really sanitary landfills. (Author) 14 refs.

  2. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    DEFF Research Database (Denmark)

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter

    2015-01-01

    biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41-81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills...

  3. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  4. Treatment of leachates of sanitary landfills of urban solid wastes. Tratamiento de lixiviados de vertederos controlados de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Iza Lopez, J. (Departamento de Ingenieria Quimica y de Medio Ambiente, ETSII, Bilbao (Spain))

    1994-01-01

    The method more used for Urban Solid Wastes is the sanitary landfill. Its management is similar to the industrial process plant. The minimization techniques of wastes are applicated to reduce the environmental impact and to increase the degradation process in order to improve the biogas as alternative energy. This article analyzes the anaerobic digestion, the leachates characterization and treatment of leachates. (Author)

  5. Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.

    Science.gov (United States)

    Govindan, Siva Shangari; Agamuthu, P

    2014-10-01

    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills.

  6. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mønster, Jacob [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Samuelsson, Jerker, E-mail: jerker.samuelsson@fluxsense.se [Chalmers University of Technology/FluxSense AB, SE-41296 Göteborg (Sweden); Kjeldsen, Peter [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Scheutz, Charlotte, E-mail: chas@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark)

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for

  7. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.;

    2009-01-01

    utilizing oxygen that diffuses into the cover layer from the atmosphere. The methane oxidation process, which is governed by several environmental factors, can be exploited in engineered systems developed for methane emission mitigation. Mathematical models that account for methane oxidation can be used...... to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed.......Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials...

  8. Membrane Fouling in Microfiltration of Sanitary Landfill Leachate for Removals of Colour and Solids

    Institute of Scientific and Technical Information of China (English)

    Emad S.M.Ameen; Abdullrahim Mohd Yusoff; Mohd Razman Salim; Azmi Aris; Aznah Nor Anuar

    2013-01-01

    In this research,the treatability of solids from sanitary landfill leachate by microfiltration membrane was investigated and the fouling of the membrane was carefully studied.Continuous microfiltration process was carried out for 21 h in experimental system involved coagulation with Moringa oleifera followed by filtration using submerged hollow fibre microfiltration membrane (MFM).Coagulation with M.Oleifera,air diffusers and back flush technique were used for preventing or alleviating fouling of the membrane.The hollow fibre MFM showed high removals of 98%,91% and 99% for turbidity,colour and total suspended solids respectively.It was obtained at the beginning of the filtration.However,quality of the filtrate rapidly declined during the filtration process.Fouling was found to proceed according to the classical cake filtration model.Coagulation with M.Oleifera as well asthe back-flush technique could not fully restore the deterioration occurred to the membrane.

  9. Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate.

    Science.gov (United States)

    Labiadh, Lazhar; Fernandes, Annabel; Ciríaco, Lurdes; Pacheco, Maria José; Gadri, Abdellatif; Ammar, Salah; Lopes, Ana

    2016-10-01

    Conventional sanitary landfill leachate treatment has recently been complemented and, in some cases, completely replaced by reverse osmosis technology. Despite the good quality of treated water, the efficiency of the process is low and a large volume of reverse osmosis concentrate has to be either discharged or further treated. In this study, the use of anodic oxidation combined with electro-Fenton processes to treat the concentrate obtained in the reverse osmosis of sanitary landfill leachate was evaluated. The anodic oxidation pretreatment was performed in a pilot plant using an electrochemical cell with boron-doped diamond electrodes. In the electro-Fenton experiments, a boron-doped diamond anode and carbon-felt cathode were used, and the influence of the initial pH and iron concentration were studied. For the experimental conditions, the electro-Fenton assays performed at an initial pH of 3 had higher organic load removal levels, whereas the best nitrogen removal was attained when the electrochemical process was performed at the natural pH of 8.8. The increase in the iron concentration had an adverse impact on treatment under natural pH conditions, but it enhanced the nitrogen removal in the electro-Fenton assays performed at an initial pH of 3. The combined anodic oxidation and electro-Fenton process is useful for treating the reverse osmosis concentrate because it is effective at removing the organic load and nitrogen-containing species. Additionally, this process potentiates the increase in the biodegradability index of the treated effluent.

  10. Landfill methane emission mitigation – How to construct and document a full‐scale biocover system

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2014-01-01

    Landfills receiving organic wastes produce biogas (landfill gas – LFG) containing methane (CH4). Landfills are significant sources of methane, which contributes to climate change. As an alternative to gas utilization systems or as a follow‐on technology when a gas utilization system gets non...... rate can be obtained in soils, compost and other materials, high enough to significant reduce the methane emission from landfills. The process has been scaled up by DTU Environment to a full‐scale implemented technology at two Danish landfills. Now the Danish government has decided to establish bio...

  11. Nitrogen removal optimization in a sequencing batch reactor treating sanitary landfill leachate.

    Science.gov (United States)

    Spagni, Alessandro; Lavagnolo, M Cristina; Scarpa, Carlotta; Vendrame, Paola; Rizzo, Andrea; Luccarini, Luca

    2007-05-01

    Biological nitrogen removal via nitrite may represent a promising process for the optimization of nitrogen removal, in particular in the presence of a low biodegradable COD/TKN ratio. In the present study a lab-scale sequencing batch reactor (SBR) was monitored for approximately 2 years to evaluate the use of dissolved oxygen (DO), pH and oxidation-reduction potential (ORP) as monitoring parameters in order to optimize nitrogen removal via nitrite from leachate generated in old sanitary landfills. The SBR manifested a nitrification efficiency exceeding 99% whereas, due to the low biodegradability of the organic matter presents in the leachates, COD removal reached approximately 40% and the addition of external COD was required to accomplish denitrification process. Moreover, the results demonstrate that DO, pH and ORP are reliable parameters for use in the monitoring of nitritation and denitritation processes in SBRs treating landfill leachates. Through manual modification of the length of the SBR phases to achieve nitrogen removal via nitrite, the nitritation and denitritation processes were rendered unstable leading to the saving of 20% in addition of external COD, almost half the theoretically achievable value. Furthermore, the low dissolved oxygen concentration applied during the oxic phases in an attempt to increase the nitritation process would appear to cause the settling characteristics of the activated sludge to deteriorate.

  12. Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study.

    Science.gov (United States)

    Yang, Na; Damgaard, Anders; Lü, Fan; Shao, Li-Ming; Brogaard, Line Kai-Sørensen; He, Pin-Jing

    2014-05-01

    An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between landfill C&O and the total landfilling technology implies that the contribution of C&O to overall landfill emissions is not negligible. The non-toxic impacts induced by C&O can be attributed mainly to the consumption of diesel used for daily operation, while the toxic impacts are primarily due to the use of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively, the environmental burdens of C&O could be mitigated by between 2% and 27%. During the LCA of landfill C&O, the research scope or system boundary has to be declared when referring to material consumption values taken from the literature; for example, the misapplication of data could lead to an underestimation of diesel consumption by 60-80%.

  13. Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study

    DEFF Research Database (Denmark)

    Yang, Na; Damgaard, Anders; Lü, Fan

    2014-01-01

    An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through...... life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between...... of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively...

  14. Bio-tarp alternative daily cover prototypes for methane oxidation atop open landfill cells.

    Science.gov (United States)

    Adams, Bryn L; Besnard, Fabien; Bogner, Jean; Hilger, Helene

    2011-05-01

    Final landfill covers are highly engineered to prevent methane release into the atmosphere. However, methane production begins soon after waste placement and is an unaddressed source of emissions. The methane oxidation capacity of methanotrophs embedded in a "bio-tarp" was investigated as a means to mitigate methane release from open landfill cells. The bio-tarp would also serve as an alternative daily cover during routine landfill operation. Evaluations of nine synthetic geotextiles identified two that would likely be suitable bio-tarp components. Pilot tarp prototypes were tested in continuous flow systems simulating landfill gas conditions. Multilayered bio-tarp prototypes consisting of alternating layers of the two geotextiles were found to remove 16% of the methane flowing through the bio-tarp. The addition of landfill cover soil, compost, or shale amendments to the bio-tarp increased the methane removal up to 32%. With evidence of methane removal in a laboratory bioreactor, prototypes were evaluated at a local landfill using flux chambers installed atop intermediate cover at a landfill. The multilayered bio-tarp and amended bio-tarp configurations were all found to decrease landfill methane flux; however, the performance efficacy of bio-tarps was not significantly different from controls without methanotrophs. Because highly variable methane fluxes at the field site likely confounded the test results, repeat field testing is recommended under more controlled flux conditions.

  15. Gradient packing bed bio-filter for landfill methane mitigation.

    Science.gov (United States)

    Obulisamy, Parthiba Karthikeyan; Sim Yan May, Jane; Rajasekar, Balasubramanian

    2016-10-01

    We assessed the suitability of various biogenic materials for development of a gradient packed bed bio-filter to mitigate the methane (CH4) emission from landfills. Five different biogenic materials (windrow compost-WC; vermicompost-VC; landfill top cover-LTC; landfill bottom soil-LBS; and river soil sediment-SS) were screened. Among these materials, the VC showed a better CH4 oxidation potential (MOP) of 12.6μg CH4 gdw(-1)h(-1). Subsequently, the VC was used as a packing material along with wood chips in proto-type bio-filters. Wood chips were mixed at 5-15% to form three distinct gradients in a test bio-filter. Under the three different CH4 loading rates of 33, 44 and 55 gCH4 m(-3)h(-1), the achieved MOPs were 31, 41, and 47gCH4 m(-3)h(-1), respectively. The gradient packed bed bio-filter is effective for landfill CH4 mitigation than the conventional bio-filter as the latter shows gas channeling effects with poor MOPs.

  16. Report: the current situation of sanitary landfills in Brazil and the importance of the application of economic models.

    Science.gov (United States)

    Neto, Raul Oliveira; Petter, Carlos Otávio; Cortina, José Luis

    2009-12-01

    We present the development stage of the sanitary landfills in Brazil in the context of urban solid residue management, demonstrating the necessity and importance of the employment of economic models. In the article, a cost estimate model is proposed as the basis for studies to be applied by sector management, including the city council, companies, consultants and engineers, contributing to the choice of new areas, public bids, municipal consortia and private public partnerships.

  17. Report: the current situation of sanitary landfills in Brazil and the importance of the application of economic models

    OpenAIRE

    Oliveira Neto, Raúl; Otávio Petter, Carlos; Cortina Pallás, José Luís

    2009-01-01

    We present the development stage of the sanitary landfills in Brazil in the context of urban solid residue management, demonstrating the necessity and importance of the employment of economic models. In the article, a cost estimate model is proposed as the basis for studies to be applied by sector management, including the city council, companies, consultants and engineers, contributing to the choice of new areas, public bids, municipal consortia and private public partnerships. Peer Re...

  18. Potential production of electricity from biogas generated in a sanitary landfill

    Directory of Open Access Journals (Sweden)

    Quetzalli Aguilar-Virgen

    2011-08-01

    Full Text Available Energy forms the cornerstone of almost every economic, social and cultural sector in modern societies. Energy is regarded as an irreplaceable ingredient in such societies’ industrial development. The aim of this research was to estimate the generation of biogas in the city of Ensenada’s sanitary landfill to ascertain the amount of energy which could be generated from the solid waste being disposed of. Biogas estimates were conducted in two stages: a waste characterisation study followed by implementing the regulations proposed by SCS Engineers (SCS Engineers, 2009 regarding the Mexican biogas model (version 2.0. The results showed that a large quantity of organic matter (around 70% is a key element in anaerobic degradation of waste. As to energy generation, it is believed that a full 1.90 MW capacity will be reached in 2019. Such energy could increase Ensenada’s current electricity generation capacity by 3.46% and provide 60% of the energy needed for street lighting, thereby leading to USD $1.423 million in savings.

  19. Biogas from sanitary landfills for electricity production; Biogas de rellenos sanitarios para produccion de electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu F, Jose L; Huacuz V, Jorge M. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    There are many ways to eliminate the municipal solid wastes, but only a few help to treat them and to dispose of them suitably. Some of the forms to avoid the problems that the trash originate are: not to produce it, recycling it in a 100% or creating a fictitious market where its value is equal to or greater than the product that gave origin to it; in any case, these alternatives are not absolutely practical. The trash can be incinerated, be segregated, be recycled partially or also be arranged in sanitary landfills. Anyway, the trash has always existed and it will continue existing for sure. [Spanish] Existen muchas maneras de eliminar los residuos solidos municipales, pero solo unas pocas ayudan a tratarlos y disponerlos adecuadamente. Algunas de las formas para evitar los problemas que ocasiona la basura son: no produciendola, reciclandola en un 100% o creando un mercado ficticio donde su valor sea igual o mayor al del producto que le dio origen; en cualquier caso, estas alternativas no son del todo practicas. La basura tambien se puede incinerar, segregar, reciclar parcialmente o disponer en rellenos sanitarios. De cualquier manera, la basura siempre ha existido y seguramente seguira existiendo.

  20. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...

  1. The use of tritium content as an indicator of the groundwater contamination by sanitary landfills leachates in the region of Belo Horizonte City, Brazil.

    Science.gov (United States)

    Bandeira, J V; Mingote, R M; Baptista, M B; Oliveira, D M; Lima, F P

    2008-01-01

    Tritium content in the leachate of sanitary landfills, in concentrations well above those observed in global precipitation, can be used as a tracer for the evaluation of the contamination of groundwater in piezometers of the landfills and in neighbouring tubular wells. This possibility was first investigated in Brazil for sanitary landfills in the region of Belo Horizonte City. Tritium levels together with the content of metals present in water and the measurement of soil electrical conductivity, proved to be valuable for these studies and also as a tracer for hydrodynamic studies of the surface water in the Ressaca creek.

  2. Methane emission quantification from landfills using a double tracer approach

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Samuelsson, J.; Fredenslund, Anders Michael

    2007-01-01

    in the October respectively February measurement. The CH4 emission from the compost area was 0.5 kg CH4 h-1, whereas the carbon dioxide (CO2) flux and nitrous oxide (N2O) was quantified to be in the order of 332 kg CO2 h-1 and 0.06 kg N2O h-1 respectively. The sludge pit located west of the compost material......A tracer method was successfully used for quantification of the whole methane (CH4) emission from Fakse landfill. By using two different tracers the emission from different sections of the landfill could be quantified. Furthermore, is was possible to determine the emissions from local on site...... sources; a composting facility and a sewage sludge storage unit by scaling the tracer method down. Two field campaigns were performed; during October 11-12, 2006 and February 19-20, 2007. At both field campaigns an overall leak search showed that the CH4 emission from the old landfill section...

  3. Site selection of sanitary landfills on the small island of Mauritius using the analytical hierarchy process multi-criteria method.

    Science.gov (United States)

    Ramjeawon, T; Beerachee, B

    2008-10-01

    This paper focuses on the application of a multi-criteria analysis methodology - the analytical hierarchy process - for the locating of a sanitary landfill on the small island of Mauritius. Four candidate sites were assessed using three main criteria (environmental, technical and socio-economic) and twenty-one sub-criteria. Scores were assigned to each criterion and sub-criterion by stakeholders in the solid waste sector, based on the impact assessment of each site so as to obtain their relative importance. The analytical hierarchy process was then applied, which involved the combination of the weights obtained at the different stages of pair-wise comparisons. The candidate sites were finally ranked to obtain the optimum site. Because of political factors, the second best ranked site was chosen by the authorities for the location of a new landfill on the island. This technique provides a realistic approach for use by small island developing states such as Mauritius for choosing and justifying to all stakeholders the best location for a sanitary landfill site or any other waste management site.

  4. The prediction of the methane production in landfill affected by the temperature

    Directory of Open Access Journals (Sweden)

    Zhou Lianying

    2015-01-01

    Full Text Available The functional relationship between the generation rate coefficient and temperature was developed for quantitative prediction of the temperature effect in this paper. The methane production of the landfill was predicted under the condition of the seasonal variation. The results showed that considering the temperature effect, the methane production is higher than the methane production without temperature effect of the 0.14×106 m3~0.28×106m3.With the depth increasing, the effect of the atmospheric temperature fluctuation on the temperature change of the landfill was weakened. The temperature has a significant effect on the methane production in the landfill. The temperature effect should be considered when simulate the long time effect of the landfill methane production.

  5. Heavy Metals Exposure and Hygienic Behaviors of Workers in Sanitary Landfill Areas in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Somsiri Decharat

    2016-01-01

    Full Text Available Objectives. The main objective of this study was to assess the cadmium and lead exposure levels in subject workers that work in sanitary landfill areas in southern Thailand. The study evaluated the blood cadmium and lead levels in terms of their possible role in worker contamination and transfer of cadmium and lead to the body. Materials and Methods. A cross-sectional study was conducted with 114 subjects. Whole blood samples were collected to determine cadmium and lead levels by graphite furnaces atomic absorption spectrometer chromium analyzer. Results and Discussion. The mean blood cadmium levels and blood lead levels of subjects workers were 2.95±0.58 μg/L (range 1.58–7.03 μg/L and 8.58±2.58 μg/dL (range 1.98–11.12 μg/dL, respectively. Gender, income, smoked cigarettes, work position, duration of work, personal protective equipment (PPE, and personal hygiene were significantly associated with blood cadmium level and blood lead levels (p<0.001 and p<0.001. A multiple regression model was constructed. Significant predictors of blood cadmium levels and blood lead levels included smoked cigarettes, hours worked per day, days worked per week, duration of work (years, work position, use of PPE (mask and gloves, and personal hygiene behavior (ate snacks or drank water at work and washed hands before lunch. Conclusion. The elevated body burden of toxic metals in the solid waste exposure of subject workers is an indication of occupational metal toxicity associated with personal hygiene practices.

  6. Differential Absorption Lidar (DIAL) Measurements of Landfill Methane Emissions

    Science.gov (United States)

    Innocenti, Fabrizio; Robinson, Rod; Gardiner, Tom; Finlayson, Andrew; Connor, Andy

    2017-04-01

    DIFFERENTIAL ABSORPTION LIDAR (DIAL) MEASURMENTS OF LANDFILL METHANE EMISSIONS F. INNOCENTI *, R.A. ROBINSON *, T.D. GARDINER, A. FINLAYSON *, A. CONNOR* * National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom Methane is one of the most important gaseous hydrocarbon species for both industrial and environmental reasons. Understanding and quantifying methane emissions to atmosphere is an important element of climate change research. Range-resolved infrared Differential Absorption Lidar (DIAL) measurements provide the means to map and quantify a wide range of different methane sources. DIAL is a powerful technique that can be used to track and quantify plumes emitted from area emission sources such as landfill sites, waste water treatment plants and petrochemical plants. By using lidar (light detection and ranging), the DIAL technique is able to make remote range-resolved single-ended measurements of the actual distribution of target gases in the atmosphere, with no disruption to normal site operational activities. DIAL provides 3D mapping of emission concentrations and quantification of emission rates for a wide range of target gases such as methane. The NPL DIAL laser source is operated alternately at two similar wavelengths. One of these, termed the "on-resonant wavelength", is chosen to be at a wavelength which is absorbed by the target species. The other, the "off-resonant wavelength", is chosen to be at a nearby wavelength which is not absorbed significantly by the target species. The two wavelengths are chosen to be close, so that the atmospheric scattering properties are the same for both wavelengths. They are also chosen so that any differential absorption due to other atmospheric species are minimised. Any measured difference in the returned signals is therefore due to absorption by the target gas. In the typical DIAL measurement configuration the mobile DIAL facility is positioned downwind of the area being

  7. Methane from landfills in Sweden. Final report; Metan fraan avfallsupplag i Sverige. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, Jerker [Chalmers Univ. of Technology, Goeteborg (Sweden); Galle, Bo; Boerjesson, Gunnar [Linkoeping Univ. (Sweden). Dept. of Water and Environmental Studies

    2006-01-15

    Three years of measurements has been conducted at seven Swedish landfills, quantifying methane emission, methane oxidation and methane production. The measurements reveal a large span between the sites in terms of gas recovery efficiency, 29-78% during normal operation. The fraction of the totally produced methane that is eventually leaking out to the atmosphere, was found to vary between 21-68%. Regarding methane oxidation, the study shows that of the methane going from the landfill interior towards the atmosphere, 6-43% is oxidised to CO{sub 2} in the different landfill cover soils. The highest methane oxidation was found in closed landfills during summertime, and the lowest at active landfills during wintertime, due to the strong temperature dependence of the oxidation. The equipment developed for methane emission measurements is based on time resolved concentration measurements with FTIR spectroscopy in combination with tracer gas releases from the surface of the landfill. The method has proven to be able to state the methane emission from the landfills with high accuracy, {+-}18% of the emission estimate (95% confidence interval). This is in line with what has been achieved in the literature for fugitive emission sources. The system has also proven to be useful for on site leak search. The precision for the methane production measurement was demonstrated to be high, down to {+-}4.2%. This enables trend studies and verification of improvement measures taken at the landfill sites. In terms of absolute accuracy for the production estimate, a 95%-confidence interval of down to (-6.0%, +6.2%) has been achieved. At times of strong methane oxidation the uncertainties increase, particularly if the emission is high. The gas production at the landfill site is therefore preferably measured during autumn-winter-spring when the temperature and the methane oxidation are low. The methane oxidation has been measured by carbon isotope technique, utilising the enrichment in

  8. 简析生活垃圾卫生填埋场封场设计%Closure Design of Domestic Waste Sanitary Landfill Sites

    Institute of Scientific and Technical Information of China (English)

    吴健萍

    2011-01-01

    Functions of closure of domestic waste sanitary landfill sites were sketched. Main contents about closure design were analyzed, including landfill pile shaping, structure determining of closure cover system, collection and drainage of landfill gas, and collection and discharge of rainwater in landfill pile.%简述了生活垃圾卫生填埋场封场的作用,分析了封场设计中堆体整形、封场覆盖系统结构的确定、填埋气体的收集导排、垃圾堆体雨水的收集排放等主要内容.

  9. Estimating methane gas generation from Devil's swamp landfill using greenhouse gas emission models

    Science.gov (United States)

    Adeyemi, Ayodeji Thompson

    Greenhouse gas (GHG) has been a key issue in the study, design, and management of landfills. Landfill gas (LFG) is considered either as a significant source of renewable energy (if extracted and processed accordingly) or significant source of pollution and risk (if not mitigated or processed). A municipal solid waste (MSW) landfill emits a significant amount of methane, a potent GHG. Thus, quantification and mitigation of GHG emissions is an important area of study in engineering and other sciences related to landfill technology and management. The present study will focus on estimating methane generation from Devils swamp landfill (DSLF), a closed landfill in Baton Rouge, LA. The landfill operated for 53 years (1940-1993) and contains both industrial and municipal waste products. Since the Clean Air Act of 1963, landfills are now classified as New Source Performance Standard (NSPS) waste (i.e., waste that will decompose to generate LFG). Currently, the DSLF is being used as source of renewable energy through the "Waste to Energy" program. For this study, to estimate the methane potential in the DSLF, it is important to determine the characteristics and classification of the landfill's wastes. The study uses and compares different GHG modeling tools---LandGEM, a multiphase model, and a simple first-order model---to estimate methane gas emission and compare results with the actual emissions from the DSLF. The sensitivity of the methane generation rate was analyzed by the methane generation models to assess the effects of variables such as initial conditions, specific growth rate, and reaction rate constants. The study concludes that methane (L0) and initial organic concentration in waste (k) are the most important parameters when estimating methane generation using the models.

  10. Fluxes of methane between landfills and the atmosphere: Natural and engineered controls

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

    1997-08-01

    Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

  11. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

  12. Temperatures In Compost Landfill Covers As Result Of Methane Oxidation And Compost Respiration

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Merono, A. R.; Pedersen, Rasmus Broen

    2011-01-01

    This study investigated the influence of the temperature on methane (CH4) oxidation and respiration in compost sampled at a full scale biocover implemented at Klintholm landfill exhibiting high temperatures. Compost material was collected at Klintholm landfill and incubated with and without CH4...

  13. Development of the utilization of combustible gas produced in existing sanitary landfills: Investigation of effects of air inclusion

    Science.gov (United States)

    1983-01-01

    The effects of nitrogen and oxygen on landfill gas operations are discussed. A combustible gas mixture composed of methane and carbon dioxide is generated in municipal solid waste landfills. A consequence of the collection of this fuel gas is the inclusion of some air in the collected product. The effects include increased collected and purification costs, reduction in the quality of the fuel gas produced, corrosion, explosion hazards, and interference with odorant systems. The scope of such effects was determined by using landfill data of a gas recovery site as a basis. Useful supplemental fuel gas may be recovered despite the inclusion of air. Recommendations are made for establishing limits for nitrogen and oxygen content and minimizing the costs associated with their presence.

  14. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.

    Science.gov (United States)

    Moreira, Francisca C; Soler, J; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-09-15

    The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200 mA cm(-2) for a PEF process using a BDD anode, [TDI]0 of 60 mg L(-1), pH 2.8 and 20 °C. The relative oxidation ability of EAOPs increased in the order EF with 12 mg [TDI]0 L(-1) < EF with 60 mg [TDI]0 L(-1) < PEF with 60 mg [TDI]0 L(-1) ≤ SPEF with 60 mg [TDI]0 L(-1), using the abovementioned conditions. While EF process was much superior to the Fenton one, the superiority of PEF over photo-Fenton was less evident and SPEF attained similar degradation to solar photo-Fenton. To provide a final dissolved organic carbon (DOC) of 163 mg L(-1) to fulfill the discharge limits into the environment after

  15. Identifying suitable sanitary landfill locations in the state of Morelos, México, using a Geographic Information System

    Science.gov (United States)

    Marín, Luis E.; Torres, Vicente; Bolongaro, Andrea; Reyna, José A.; Pohle, O.; Hernández-Espriú, A.; Chavarría, Jerónimo; García-Barrios, R.; Tabla, Hugo Francisco Parra

    GIS is a powerful tool that may help to better manage natural resources. In this paper, we present a GIS model developed for the state of Morelos as an aid to determine whether a potential site, Loma de Mejia, met the Mexican Federal Guidelines. The Mexican Government has established federal guidelines for sanitary landfill site selection (NOM-083-SERMARNAT-2003). These guidelines were translated into a water-based Geographic Information System and applied to the state of Morelos, Mexico. For these examples, we used the SIGAM® (Sistema de Información Geográfico del Agua en México; a water-based GIS for Mexico) which has at least 60 layers from the National Water Commission (CONAGUA), the national mapping agency (INEGI; Instituto Nacional de Estadística, Geografía e Informática), NASA, and academic institutions. Results show that a GIS is a powerful tool that may allow federal, state and municipal policy makers to conduct an initial regional site reconnaissance rapidly. Once potential sites are selected, further characterization must be carried out in order to determine if proposed locations are suitable or not for a sanitary landfill. Based on the SIGAM© software, the Loma de Mejia would not comply with the Mexican Federal Guidelines.

  16. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual.

  17. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero......-order kinetics and occurred in parallel with the oxidation of methane. TeCM, CFC-11, and CFC-12 were not degradable in presence of oxygen and degradation of these compounds in the oxidative zone in landfill top covers is therefore expected to be limited. However these compounds were found degradable...... in the anaerobic zone in the lower part of soil columns permeated with artificial landfill gas. The lesser-chlorinated compounds were degraded in the upper oxic zone with overlapping gradients of methane and oxygen. Methane oxidation and degradation of HOCs in the top-soils may play a very important role...

  18. Use of stable isotopes to determine methane oxidation in landfill cover soils

    Science.gov (United States)

    Liptay, K.; Chanton, J.; Czepiel, P.; Mosher, B.

    1998-04-01

    The mean isotopic composition of CH4 emitted from six New England (United States) landfills was 13C and D enriched (-48.1 to -50.4‰ and -273 to -281‰) relative to anoxic zone landfill CH4 (mean values of -55.9 to -56.2‰ and -296 to -300‰) owing to the oxidation of methane as it was transported from the landfill to the atmosphere through the soil cap. The fraction of methane oxidized f0 during its passage through the soil cap was calculated from the degree of 13C enrichment in emitted CH4 relative to anoxic zone CH4 in conjunction with values determined for the preference of soil methane oxidizing bacteria for 12CH4 over 13CH4 (α = 1.022 ± 0.008). Mean values for methane oxidation in six landfills were from 24 to 35% of the total flux through the soil during the warm season, depending upon how the data were grouped. Our results bracket recent estimates of methane oxidation of about 30% in the warm summer period produced using a model with the input terms of soil temperature, moisture, depth, and oxygen concentration. Because of variations in the response of methane oxidation to temperature at these New England sites, our study is consistent with the modeling results of Czepiel et al. [1996b] that the best estimate for the annual value for methane oxidation in the landfills considered is about 10%.

  19. Estimating Landfill Methane Oxidation Using the Information of CO2/CH4 Fluxes Measured By the Eddy Covariance Method

    Science.gov (United States)

    Xu, L.; McDermitt, D. K.; Li, J.; Green, R. B.

    2016-12-01

    Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate the landfill methane oxidation fraction when the anaerobic CO2/CH4 production ratio is known. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2/CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested with eddy covariance CO2 and CH4 emission rates at Bluff Road Landfill in Lincoln Nebraska. It predicted zero oxidation rate in the northern portion of this landfill where a membrane and vents were present. The zero oxidation rate was expected because there would be little opportunity for methane to encounter oxidizing conditions before leaving the vents. We also applied the model at the Turkey Run Landfill in Georgia to estimate the CH4 oxidation rate over a one year period. In contrast to Bluff Road Landfill, the Turkey Run Landfill did not have a membrane or vents. Instead, methane produced in the landfill had to diffuse through a 0.5 m soil cap before release to the atmosphere. We observed evidence for methane oxidation ranging from about 18% to above 60% depending upon the age of deposited waste material. The model will be briefly described, and results from the two contrasting landfills will be discussed in this presentation.

  20. Sustainable sanitary landfills for neglected small cities in developing countries: The semi-mechanized trench method from Villanueva, Honduras

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, Stewart M., E-mail: soakley@csuchico.edu [Department of Civil Engineering, Chico State University, California State University, Chico, CA 95929 (United States); Jimenez, Ramon, E-mail: rjimenez1958@yahoo.com [Public Works, Municipality of Villanueva, Cortes (Honduras)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Open dumping is the most common form of waste disposal in neglected small cities. Black-Right-Pointing-Pointer Semi-mechanized landfills can be a sustainable option for small cities. Black-Right-Pointing-Pointer We present the theory of design and operation of semi-mechanized landfills. Black-Right-Pointing-Pointer Villanueva, Honduras has operated its semi-mechanized landfill for 15 years. Black-Right-Pointing-Pointer The cost of operation is US$4.60/ton with a land requirement of 0.2m{sup 2}/person-year. - Abstract: Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country's total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1-3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in

  1. Microbial Methane Oxidation Processes and Technologies for Mitigation of Landfill Gas Emissions

    Science.gov (United States)

    The aim of this paper is to review the present knowledge regarding the microbial methane oxidation in natural or engineered landfill environments with focus on process understanding, engineering experiences and modeling. This review includes seven sections. First, the methane oxidation is put in con...

  2. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    Energy Technology Data Exchange (ETDEWEB)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily

  3. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Gabriel Timm [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Giacobbo, Alexandre [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Santos Chiaramonte, Edson Abel dos [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Rodrigues, Marco Antônio Siqueira [Universidade FEEVALE, ICET, RS 239, 2755, CEP 93352-000 Novo Hamburgo, RS (Brazil); Meneguzzi, Alvaro [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Bernardes, Andréa Moura, E-mail: amb@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil)

    2015-02-15

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm{sup −2}, 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment.

  4. Methane Gas Utilization Project from Landfill at Ellery (NY)

    Energy Technology Data Exchange (ETDEWEB)

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  5. Turning a Liability into an Asset: Landfill Methane Recovery in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Solid waste disposal sites are not often seen as opportunities for energy solutions. The waste that is disposed in open dumps and landfills generates methane and other gases as it decomposes, causing concerns about explosions, odours, and, increasingly, about the contribution of methane to global climate change. However, the liability of landfill gas (LFG) can be turned into an asset. Many countries regularly capture LFG as a strategy to improve landfill safety, generate electricity, reduce greenhouse gas emissions, and to earn carbon emission reduction credits (e.g. 40% for the United States, 25% for Australia). Many projects in developing countries are taking advantage of the United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism (CDM) to earn carbon credits by capturing and combusting methane (e.g., the Sudokwon Landfill in Republic of South Korea, the Bandeirantes Landfill in Brazil and the Nanjing Tianjingwa Landfill in China). These Landfill Gas to Energy (LFGE) projects provide a valuable service to the environment and a potentially profitable business venture, providing benefits to local and regional communities.

  6. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Institute of Scientific and Technical Information of China (English)

    CAI Bo-Feng; LIU Jian-Guo; GAO Qing-Xian; NIE Xiao-Qin; CAO Dong; LIU Lan-Cui; ZHOU Ying; ZHANG Zhan-Sheng

    2014-01-01

    The methane (CH4) emissions from municipal solid waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (first-order decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.

  7. Site specific diel methane emission mechanisms in landfills: A field validated process based on vegetation and climate factors.

    Science.gov (United States)

    Xin, Danhui; Hao, Yongxia; Shimaoka, Takayuki; Nakayama, Hirofumi; Chai, Xiaoli

    2016-11-01

    Diel methane emission fluxes from a landfill that was covered by vegetation were investigated to reveal the methane emission mechanisms based on the interaction of vegetation characteristics and climate factors. The methane emissions showed large variation between daytime and nighttime, and the trend of methane emissions exhibited clear bimodal patterns from both Setaria viridis- and Neyraudia reynaudiana-covered areas. Plants play an important role in methane transportation as well as methane oxidation. The notable decrease in methane emissions after plants were cut suggests that methane transportation via plants is the primary way of methane emissions in the vegetated areas of landfill. Within plants, the methane emission fluxes were enhanced due to a convection mechanism. Given that the methane emission flux is highly correlated with the solar radiation during daytime, the convection mechanism could be attributed to the increase in solar radiation. Whereas the methane emission flux is affected by a combined impact of the wind speed and pedosphere characteristics during nighttime. An improved understanding of the methane emission mechanisms in vegetated landfills is expected to develop a reliable model for landfill methane emissions and to attenuate greenhouse gas emissions from landfills.

  8. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study

    DEFF Research Database (Denmark)

    Bilgili, M Sinan; Demir, Ahmet; Varank, Gamze

    2009-01-01

    The main goal of this study was to present a comparison of landfill performance with respect to solids decomposition. Biochemical methane potential (BMP) test was used to determine the initial and the remaining CH(4) potentials of solid wastes during 27 months of landfilling operation in two pilot...... and R2 reactors were 0.01571 and 0.01195 1/d, respectively. The correlation between the model and the experimental parameters was more than 95%, showing the good fit of the model....

  9. Growing trees on completed sanitary landfills. [Nyssa sylvatica, Picea abies, Ginkgo biloba

    Energy Technology Data Exchange (ETDEWEB)

    Leone, I.A.; Gilman, E.F.; Flower, F.B.

    1983-01-01

    A 10-year old completed landfill in New Jersey consisting of 9 m (depth) of refuse covered with 15-25 cm of soil was cleared of debris and vegetation and covered with 30 cm of subsoil and 15-25 cm of topsoil. Nineteen coniferous and broadleaved species were planted on the landfill and on a control site in 1975, and trees were maintained and growth and condition monitored over 4 years. On the basis of shoot length and stem area increase, the most successful of the surviving trees were Nyssa sylvatica, Picea abies and Ginkgo biloba, in decreasing order of tolerance. Tolerance of landfill conditions appeared to be greatest in those species with low water requirements, a slow growth rate, high acid tolerance and a shallow root system. (Refs. 11).

  10. A New IPCC Tier 4 Site-Specific Model for Landfill Methane Emissions Inclusive of Seasonal Methane Oxidation

    Science.gov (United States)

    This project was initiated in the U.S. by the California Energy Commission (CEC) in cooperation with the California Integrated Waste Management Board and the California Air Resources Board to develop improved methods for landfill methane emissions for the California greenhouse gas inventory. This 3-...

  11. Sustainable sanitary landfills for neglected small cities in developing countries: the semi-mechanized trench method from Villanueva, Honduras.

    Science.gov (United States)

    Oakley, Stewart M; Jimenez, Ramón

    2012-12-01

    Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country's total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1-3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in Villanueva has operated for 15 years, using a total land area of approximately 11 ha for a population that grew from 23,000 to 48,000, with a land requirement of 0.2m(2)/person year, a cover to waste ratio of 0.2, and an estimated soil surplus of 298,000 m(3) that is valorized and used onsite. The landfill has been operated solely by the municipality with an operational cost in 2010 estimated at US$4.60 per ton. A modified water balance analysis at Villanueva shows negligible leachate generation from covered trenches and 700 m(3)/yr (60 m(3)/ha yr) from the two open

  12. A new approach to estimation of methane emission rates from landfills.

    Science.gov (United States)

    Zhu, Han; Letzel, Marcus O; Reiser, Martin; Kranert, Martin; Bächlin, Wolfgang; Flassak, Thomas

    2013-12-01

    Methane emission monitoring has become increasingly essential for diffusive area sources, especially for landfills, which contribute to a significant fraction of the total anthropogenic methane emission globally. Statutorily, methane emission rate from landfills in Germany shall be examined on a semiannual basis; however, an appropriate approach has yet to be developed and adopted for general use. In this study, a new method is proposed based on experimental results, which utilizes a TDLAS (Tunable Diode Laser Absorption Spectroscopy) instrument - GasFinder2.0 system and a dispersion model LASAT (Lagrangian Simulation of Aerosol Transport) as the measurement device and calculation model, respectively. Between April 2010 and December 2011, a research project was conducted at a pilot scale landfill in the south of Germany. Drawing on the extensive research into this pilot project, an effective strategy of measurement setup was determined. Methane concentration was measured with GasFinder2.0 system in the upstream and downstream sections of the project site, while wind and turbulence data were measured simultaneously by an ultrasonic anemometer. The average methane emission rate from the source can be calculated by using the results as input data in the dispersion model. With this method, site-specific measurement approaches can be designed for not only landfills, but also different diffusive area sources with less workload and lower cost compared to conventional FID (Flame Ionization Detector) method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Neural Network Modeling and Prediction of Methane Fraction in Biogas from Landfill Bioreactors

    Directory of Open Access Journals (Sweden)

    A Ghavidel

    2009-09-01

    Full Text Available "n "nBackgrounds and Objectives:A number of different technologies have recently been studied todetermine the best use of biogas, however, to choose optimize technologies of using biogas for energy recovery it is necessary to monitor and predict the methane percentage of biogas. In this study, a method is proposed for predicting the methane fraction in landfill gas originating from Labscalelandfill bioreactors, based on neural network."nMaterials and Methods: In this study, two different systems were applied, to predict the methane fraction in landfill gas as a final product of anaerobic digestion, we used the leachate specifications as input parameters. In system I (C1, the leachate generated from a fresh-waste reactor was drained to recirculation tank, and recycled. In System II (C2, the leachate generated from a fresh waste landfill reactor was fed through a well-decomposed refuse landfill reactor, and at the same time, the leachate generated from a well-decomposed refuse landfill reactor recycled to a fresh waste landfill reactor."nResults: There is very good agreement in the trends between forecasted and measured data. R valuesare 0.999 and 0.997, and the obtained Root mean square error values are 1.098 and 2.387 for training and test data, respectively"nConclusion: The proposed method can significantly predict the methane fraction in landfill gasoriginating and, consequently, neural network can be use to optimize the dimensions of a plant using biogas for energy (i.e. heat and/or electricity recovery and monitoring system.

  14. Public concerns about and perceptions of solid waste dump sites and selection of sanitary landfill sites in the West Bank, Palestinian territory.

    Science.gov (United States)

    Al-Khatib, Issam A; Abu Hammad, Ahmad; Sharkas, Othman A; Sato, Chikashi

    2015-04-01

    Palestinian inhabitants have disposed of their solid wastes at open dumpsites over the past 40 years without an adequate solid waste management (SWM) plans. Recently, the Palestinian Authority initiated SWM planning to establish controlled sanitary landfills, based on a participatory approach. The purpose of this study was to assess public concerns about existing solid waste dumpsites and public perceptions of sanitary landfill site selection. The study will also take into consideration the effect of diverse social, economic, and environmental related factors of the inhabitants on sitting suitable landfill sites in three Palestinian districts in the West Bank, namely, "Nablus," "Salfit," and "Ramallah and Al-Bireh." The results of this study showed that 64.9% of the sample population are aware of the problems and potential impacts associated with random dumpsites, and 41.6% think that they are suffering from the dumps. Among the environmental, socioeconomic, and political factors, the environmental factors, air pollution in particular, are thought be the most important consideration in selecting a landfill site. The "fairness in selecting a landfill site" was chosen to be one of the most important socioeconomic factors, possibly as a reaction to the Israeli occupation and subsequent land use restrictions in the West Bank, Palestinian territory.

  15. Applications of geotextiles in sanitary landfills; Aplicacion de geotextiles en vertederos

    Energy Technology Data Exchange (ETDEWEB)

    Cuenca Lorenzo, J. L.

    2001-07-01

    This article describes the applications of geo textiles in landfills with protection and filter functions. The usual way of design in many projects is revised in this paper and the needed properties to require to the geotextiles are showed too. Finally, a quality control of these properties which should be run to be sure that a good specified project is being fulfilled. (Author) 3 refs.

  16. Effects of methane on the microbial populations and oxidation rates in different landfill cover soil columns.

    Science.gov (United States)

    He, Ruo; Ruan, Aidong; Shen, Dong-Sheng

    2007-05-01

    A considerable fraction of methane produced in landfills is oxidized by landfill cover soils. In this work, microbial populations and oxidation rates developed in response to the presence of methane were studied in three soil columns simulated landfill cover soil environments. The population of aerobic heterotrophic bacteria was highest in the waste soil, middle in the clay soil, and lowest in the red soil. After exposure to methane-rich environments, the populations of methanotrophic bacteria showed increases in the waste and clay soils. The population of methanotrophic bacteria increased from 30.77x10(4) to 141.77x10(4) cfu g d.w.-1 in the middle layer of the waste soil column as a function of exposure to methane for 120 days. The populations of methanotrophic bacteria were correlated with the potential methane oxidation rates in the waste and clay soils, respectively. The topsoil was observed to be dried in the three soil columns. Most of methane oxidation occurred at the depth of between 10 and 20 cm in the waste soil column, while it took place mainly at the depth of between 20 and 30 cm in the clay soil column.

  17. Comparison between controlled landfill reactor and conditioned landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    LUO Feng; CHEN Wan-zhi; SONG Fu-zhong; LI Xiao-peng; ZHANG Guo-qing

    2004-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The results of laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste(MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature can used to decompose MSW. The results of waste biodegradation were compared with that of the simulators of the leachate-recirculated landfill and conservative sanitary landfill. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown, and heavy metals concentration was observed. An obvious enhancement of effective disposal from simulator of conservative sanitary landfill(CSL), to that of leachate-recirculated landfill(LRL) and to that of conditioned bioreactor landfill(CBL) would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio.

  18. Biodegradability potential of two experimental landfills in Brazil

    Directory of Open Access Journals (Sweden)

    Vazoller Rosana Filomena

    2001-01-01

    Full Text Available Solid wastes anaerobic biodegradability, methane production potential and microbiological composition of two experimental sanitary landfills in Brazil, running for one year, were evaluated. The two landfills showed a similar organic matter stabilization during the methane production phase, despite the high heterogeneity of the solid wastes. Both landfills presented the same level of methane (around 91.5 L CH4 / kg Volatile Total Solids and organic acids, mainly acetic and butyric acids, in the leachate. Bacterial isolates belonged to genera Megasphaera, Selenomonas, Methanobacterium, Methanobrevibacter and Methanosarcina.

  19. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Directory of Open Access Journals (Sweden)

    Cai Bo-Feng

    2014-01-01

    Citation: Cai, B.-F., Liu, J.-G., Gao, Q.-X., et al., 2014. Estimation of methane emissions from municipal solid waste landfills in China based on point emission sources. Adv. Clim. Change Res. 5(2, doi: 10.3724/SP.J.1248.2014.081.

  20. Lateral gas transport in soil adjacent to an old landfill: factors governing emissions and methane oxidation

    DEFF Research Database (Denmark)

    Christophersen, Mette; Kjeldsen, Peter; Holst, Helle;

    2001-01-01

    influence on the fluxes, as did the distance from the landfill border, temperature, barometric pressure and the pressure gradient. Statistical analyses proved that soil moisture described the largest part of the variation. No methane at all emitted during the summer. Calculations and isotope analyses showed...

  1. Lateral gas transport in soil adjacent to an old landfill: factors governing emissions and methane oxidation

    DEFF Research Database (Denmark)

    Christophersen, Mette; Kjeldsen, Peter; Holst, Helle

    2001-01-01

    Field investigations of lateral gas transport and subsequent emissions in soil adjacent to an old landfill in Denmark have been conducted during a one-year period. A significant seasonal variation in the emissions with high carbon dioxide and low methane fluxes in the summer (May to October...

  2. Methane emissions measured at two California landfills by OTM-10 and an acetylene tracer method

    Science.gov (United States)

    Methane emissions were measured at two municipal solid waste landfills in California using static flux chambers, an optical remote sensing approach known as vertical radial plume mapping (VRPM) using a tunable diode laser (TDL) and a novel acetylene tracer method. The tracer meth...

  3. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2014-01-01

    The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily...... stored combustible waste were sampled from four Danish landfills. The waste was characterized in terms of physical characteristics (TS, VS, TC and TOC) and the BMP was analyzed in batch tests. The experiment was set up in triplicate, including blank and control tests. Waste samples were incubated at 55 C...... for more than 60 days, with continuous monitoring of the cumulative CH4 generation. Results showed that samples of mixed waste and shredder waste had similar BMP results, which was in the range of 5.4–9.1 kg CH4/ton waste (wet weight) on average. As a calculated consequence, their degradable organic carbon...

  4. Methodology for the determination of optimum power of a Thermal Power Plant (TPP) by biogas from sanitary landfill.

    Science.gov (United States)

    Silva, Tiago Rodrigo; Barros, Regina Mambeli; Tiago Filho, Geraldo Lúcio; Dos Santos, Ivan Felipe Silva

    2017-07-01

    This study aimed to determine theoretically, the electrical optimum power of LFG using the maximum net benefit (MNB) methodology, and taking into consideration the economic, demographic, and regional aspects of the Inter municipal Consortium of the Micro-region of the High Sapucaí for Sanitary Landfill (CIMASAS, as acronym in Portuguese), that is located in the southern part of the State of Minas Gerais, Brazil. To this end, the prognosis for a 20-year period of household solid waste generation in this region was estimated and quantified based on population data, in order to estimate the LFG production and the energy that can be generated. From this point, the optimum power for thermal power plant (TPP) by LFG was determined. The results indicated that the landfill in this region could produce more 66,293,282m(3)CH4 (with maximum power of 997kW in 2036) in twenty years and that there would be no economic viability to generate energy from LFG, because the Net Present Value (NPV) would not be positive. The smallest population to that can achieve a minimum attractiveness rate (MAR) of 15% should be 3,700,000 inhabitants under the conditions studied. Considering the Brazilian National Electric Energy Agency (ANEEL) Resolutions, it would be 339,000 inhabitants with an installed power of 440kW. In addition, the outcome of the CIMASAS case-study demonstrated the applicability of MNB methodology for the determination of TPP optimum power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of respiration in compost landfill biocovers intended for methane oxidation

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedicone, Alessio; Pedersen, Gitte Bukh

    2011-01-01

    will compete for O2 with other aerobic microorganisms. If the compost is not mature, a significant portion of the O2 diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH4 oxidation. The results of this study however also suggest that the consumption of O2 in the compost......A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration...... in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas...

  6. Mitigation of methane emission from Fakse landfill using a biowindow system

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Fredenslund, Anders Michael; Chanton, Jeffrey

    2011-01-01

    Landfills are significant sources of atmospheric methane (CH4) that contributes to climate change, and therefore there is a need to reduce CH4 emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called “biocovers”) to enhance biological...... oxidation of CH4. A full scale biocover system to reduce CH4 emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH4 oxidation. Ten biowindows with a total area of 5000m2 were integrated into the existing cover at the 12ha site. To increase CH4 load...... to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH4 was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH4...

  7. Application of portable gas detector in point and scanning method to estimate spatial distribution of methane emission in landfill.

    Science.gov (United States)

    Lando, Asiyanthi Tabran; Nakayama, Hirofumi; Shimaoka, Takayuki

    2017-01-01

    Methane from landfills contributes to global warming and can pose an explosion hazard. To minimize these effects emissions must be monitored. This study proposed application of portable gas detector (PGD) in point and scanning measurements to estimate spatial distribution of methane emissions in landfills. The aims of this study were to discover the advantages and disadvantages of point and scanning methods in measuring methane concentrations, discover spatial distribution of methane emissions, cognize the correlation between ambient methane concentration and methane flux, and estimate methane flux and emissions in landfills. This study was carried out in Tamangapa landfill, Makassar city-Indonesia. Measurement areas were divided into basic and expanded area. In the point method, PGD was held one meter above the landfill surface, whereas scanning method used a PGD with a data logger mounted on a wire drawn between two poles. Point method was efficient in time, only needed one person and eight minutes in measuring 400m(2) areas, whereas scanning method could capture a lot of hot spots location and needed 20min. The results from basic area showed that ambient methane concentration and flux had a significant (pmethane emissions in the expanded area by using Kriging method. The average of estimated flux from scanning method was 71.2gm(-2)d(-1) higher than 38.3gm(-2)d(-1) from point method. Further, scanning method could capture the lower and higher value, which could be useful to evaluate and estimate the possible effects of the uncontrolled emissions in landfill.

  8. Application of GIS/AHP in siting sanitary landfill: a case study in Northern Cyprus.

    Science.gov (United States)

    Kara, Can; Doratli, Naciye

    2012-09-01

    The present study utilized a multi-criteria evaluation (MCE) method in a geographical information systems (GIS) environment to evaluate the suitability of potential landfill sites in Northern Cyprus. To determine the most suitable landfill site, one of the MCE techniques, called analytical hierarchy process (AHP), was combined with a GIS to examine 12 criteria: distance from waste generation centres; distance from roads; slope; distance from surface waters; distance from groundwater areas; distance from environmentally sensitive areas; vegetation types; soil productivity; soil permeability; distance from settlements; distance from cultural sites; distance from stone quarries. The relative importance weights of these criteria were estimated using AHP and criteria maps were developed by using GIS spatial analysis. At the final stage two different suitability maps were produced using two different groups of weights. The first group suitability map had 11 052 (ha) with high suitability class, whereas the high suitability areas decreased to 5982 (ha) in the second group. Moreover, the seven potential sites identified within the first group decreased to four in the second suitability map. However, potential sites such as Gungor, Degirmenlik, Kirklar and Cayonu had similarities with higher suitability values and these same locations were regarded as suitable according to the both first and second suitability map results.

  9. Optimisation of sanitary landfill leachate treatment in a sequencing batch reactor.

    Science.gov (United States)

    Spagni, A; Marsili-Libelli, S; Lavagnolo, M C

    2008-01-01

    A bench-scale SBR was operated for almost three years in an attempt to optimise the treatment of leachates generated in old landfill. The results of the first two years were used to design a monitoring and control system based on artificial intelligence concepts. Nitrogen removal was optimized via the nitrite shortcut. Nitrification and N removal were usually higher than 98% and 90%, respectively, whereas COD (of the leachate) removal was approximately 30-40%. The monitoring and control system was demonstrated capable of optimizing process operation, in terms of phase length and external COD addition, to the varying loading conditions. Using the control system developed, a significant improvement of the process was obtained: COD and N load were increased (HRT decrease) and a significant decrease (approximately 34%) of the ratio of COD added to N leachate content was observed.

  10. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models.

    Science.gov (United States)

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-01

    Methane (CH(4)) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH(4) is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH(4) emissions from landfill sites and the quantification of CH(4) emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH(4) diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH(4) diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH(4) contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH(4) mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  11. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    Energy Technology Data Exchange (ETDEWEB)

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report

  12. Geotechnological characteristics of a sanitary land-fill:three years monitoring the sanitary landfills at Meruelo. Caracteristicas geotecnologicas de un vertedero controlado: tres aos de observacion de movimientos en el vertedero controlado de Meruelo

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Alciturri, J.M.; Palma, J.H.; Sagaseta, M.; Caizal, J. (Universidad de Cantabria. (Spain))

    1994-01-01

    As a part of research program on geotechnical problems involved in waste disposal, a sanitary landfill has been instrumented in Meruelo, in the region of Cantabria, Spain. It is located in a valley, with an initial retaining dyke whose height is increased by the ''upstream'' method up to a final value of 50 m. At present, the records of three years of monitoring are available, and they are analyzed in this paper. They include surface settlements in points with different thickness of waste (up to 16 m.) and horizontal and vertical movements of the front slope for stability assessment. (Author)

  13. Recycling potential of urban solid waste destined for sanitary landfills: the case of Indaiatuba, SP, Brazil.

    Science.gov (United States)

    Mancini, Sandro Donnini; Nogueira, Alex Rodrigues; Kagohara, Dennis Akira; Schwartzman, Jonas Age Saide; de Mattos, Tânia

    2007-12-01

    The urban solid waste of the city of Indaiatuba (pop. 175 000), located in the state of São Paulo, was characterized, focusing on the recycling potential. For this purpose, collected waste was subdivided into 27 items, classified by mass and volume. About 90% of this waste was found to be potentially recyclable and only 10% requiring landfilling. The compostable organic matter, in the form of food and garden waste, both with high moisture content (51 and 41%, respectively), represents 54% in mass and 21% in volume. The most common type of plastic in this waste is high density polyethylene, whose estimated disposal is about 5000kgday(-1). A socio-economic analysis of the waste generation indicates that low-income neighbourhoods discard relatively less packaging and more food waste, shoes and construction debris than middle and high income ones, which may be due to low purchasing power and schooling. Our findings indicate that more aluminium and uncoloured polyethylene terephthalate is discarded in the warmest months of the year, probably due to a greater consumption of canned and bottled drinks.

  14. Effects of ferric ions on the catalytic ozonation process on sanitary landfill leachates

    Directory of Open Access Journals (Sweden)

    Messias Borges Silva

    2013-04-01

    Full Text Available Leachates exhibiting an unstable ratio of biochemical oxygen demand (BOD and chemical oxygen demand (COD of approximately 0.45 are typical of new landfills in the City of Cachoeira Paulista, Brazil. Although the organic matter portion is bio-treatable, the presence of refractory leached organic material requires unconventional effluent-treatment processes. Leachate treatment with ozone oxidation, in the presence of ferric ions, acts as catalyst in the formation of hydroxyl radicals. Ozone was obtained by corona-discharge from high-purity O2 gas. The treatment was performed in natura in a jacketed borosilicate glass reactor containing 900 ml of leachate. The analyzed response variable was expressed as the concentration of dissolved organic carbon (DOC. In order to determine the optimal proportions to produce the greatest degradation rate for organic materials, variations in experimental O2 flow-fed to the generator, the Fe(iii concentration, and the output of the ozonator were conducted over two experimental runs. Experimental models showed a DOC degradation on the order of 81.25%.

  15. Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate.

    Science.gov (United States)

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah

    2013-12-01

    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.

  16. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover

    NARCIS (Netherlands)

    Kim, G.W.; Ho, A.; Kim, P.J.; Kim, Sang Yun

    2016-01-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to mit

  17. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover

    NARCIS (Netherlands)

    Kim, G.W.; Ho, A.; Kim, P.J.; Kim, Sang Yun

    2016-01-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to

  18. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover

    NARCIS (Netherlands)

    Kim, G.W.; Ho, A.; Kim, P.J.; Kim, Sang Yun

    2016-01-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to mit

  19. Measurements of methane emissions from landfills using mobile plume method with trace gas and cavity ring-down spectroscopy

    Science.gov (United States)

    Mønster, J.; Kjeldsen, P.; Scheutz, C.

    2012-04-01

    Methane is emitted to the atmosphere from both anthropogenic and natural sources. One of the major anthropogenic sources is methane produced by bacteria in anaerobic environments such as rice pads and landfills. Land filling has for many years been the preferred waste disposal method, resulting in a large methane production with a large contribution to the global increase in atmospheric green house gas concentration. Several steps have been taken to reduce the emission of methane from landfills. In order to validate the effect of these steps, a measurement method is needed to quantify methane emissions with a large spatial variation. One method is to use a highly sensitive and fast analytical method, capable of measuring the atmospheric concentration methane downwind from emission areas. Combined with down-wind measurements of a trace gas, emitted at a controlled mass flow rate, the methane emission can be calculated. This method is called the mobile plume method, as the whole plume is measured by doing several transects. In the current study a methane/acetylene analyzer with cavity ring-down spectroscopy detection (Picarro, G2203) was used to estimate methane from a number of Danish landfills. We measured at both active and closed landfills and investigated the difference in methane emission. At landfills where the emissions could have more than one origin, the source strength of the different emission areas was determined by accurate trace gas positioning and choosing appropriate wind speed and measurement distance. To choose these factors, we addressed the uncertainties and limitations of the method with respect to the configuration of the trace gas bottles and the distance between the emission area and the measurement points. Composting of organic material in large piles was done at several of the investigated landfills and where possible, the methane emission from this partly anaerobic digestion was measured as a separate emission.

  20. Translating landfill methane generation parameters among first-order decay models.

    Science.gov (United States)

    Krause, Max J; Chickering, Giles W; Townsend, Timothy G

    2016-11-01

    Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L0) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (kc) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase first

  1. An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale.

    Science.gov (United States)

    Silva, Tânia F C V; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2017-01-15

    In this work, an innovative methodology for the treatment of landfill leachates, after aerobic lagooning, is proposed and adjusted at pilot-scale. This methodology involves an aerobic activated sludge biological pre-oxidation (ASBO), a coagulation/sedimentation step (240mgFe(3+)/L, at pH4.2) and a photo-oxidation through a photo-Fenton (PF) reaction (60mg Fe(2+), at pH2.8) combining solar and artificial light. The ASBO process applied to a leachate after aerobic lagooning, with high organic and nitrogen content (1.1-1.5gC/L; 0.8-3.0gN/L) and low biodegradability (BOD5/COD =0.07-0.13), is capable to oxidise 62-99% of the ammonium nitrogen, consuming only the affluent alkalinity (70-100%). The coagulation/sedimentation stage led to the humic acids precipitation, promoting a marked change in leachate colour, from dark-brown to yellowish-brown (related to fulvic acids), accompanied by a reduction of 60%, 58% and 88% on DOC, COD and TSS, respectively. The PF system promoted the degradation of the recalcitrant organic molecules into more easily biodegradable ones. According to Zahn-Wellens biodegradability test, a leachate with 419mg DOC/L after coagulation, would have to be photo-oxidized until DOC 60%. The PF step cost to treat 100m(3)/day of leachate was 6.41€/m(3), combining 1339m(2) of CPCs with 31 lamps. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Methane oxidation at low temperatures in soil exposed to landfill gas

    DEFF Research Database (Denmark)

    Christophersen, Mette; Linderød, L.; Jensen, Pernille Erland

    2000-01-01

    to gas recovery at smaller and older landfills in northern Europe. Equations have been developed that describe the dependency of temperature and soil moisture content for each soil. The oxidation rates depended significantly on the soils (and thereby organic matter content), temperature, and soil...... moisture content. Soil moisture was the most important factor. However, high Q(10) values indicate that temperature also was important. The four soils tested had optimum soil moisture content between 11 and 32%. At increasing organic matter content, both the optimal soil moisture content and the maximum...... cannot be extrapolated to soils exposed to high methane concentrations. Four sandy soils with different organic matter content (1-9% w/w) from two landfills in Denmark were investigated in batch experiments in the laboratory to determine the response of methane oxidation at low temperatures and different...

  3. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    Science.gov (United States)

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-06-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g-1 COD and methane percentages of 53-76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L-1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg-1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L-1 d-1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68-95 fmol N cell-1 d-1, which finally led to the stable operation of the system.

  4. Utilization of biogas from sanitary landfill for generation of electrical energy in Sao Paulo: a case study; Aproveitamento do biogas proveniente de aterro sanitario para geracao de energia eletrica em Sao Paulo: estudo de caso

    Energy Technology Data Exchange (ETDEWEB)

    Garcilasso, Vanessa Pecora; Coelho, Suani Teixeira Coelho [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil); Velazquez, Silvia Maria Stortini Gonzalez [Universitaria Presbiteriana Mackenzie, Sao Paulo, SP (Brazil)

    2010-07-01

    Utilization of the biogas proceeding from urban solid residues for electricity generation: case study in Sao Paulo. The biogas, generated from organic matter degradation, is composed by a mixture of gases, the main components being carbon dioxide and methane, which is a greenhouse effect gas with global warming potential around 21 times greater when compared to CO{sub 2}. Biogas production is possible from a great variety of organic residues such as urban solid residues, residues from agricultural and livestock activities, swine livestock, sewage mud, among others. The sanitary landfills may count on techniques of capture of the produced biogas and its later burning in flare, where the methane is transformed in CO{sub 2}, minimizing the environmental impact. Besides the opportunity of reducing the environmental damages, biogas can also be used as fuel for generating electricity, thus adding environmental gain and reduction of costs, due to the diminishing of purchase of the energy consumed in the concessionaire. In this context, this article presents the project of utilization of biogas proceeding from urban solid residues for electricity generation and gas illumination, developed by CENBIO. This project is currently in development and the obtained results will provide technical and economic subsidies for its replication. (author)

  5. Landfills

    Data.gov (United States)

    Vermont Center for Geographic Information — This data set defines both current and historic landfills/waste disposal storage sites for the State of Vermont. Historic landfills were identified with the...

  6. Modeling of methane oxidation in landfill cover soil using an artificial neural network.

    Science.gov (United States)

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah; Younes, Mohammad K; Irwan, Dani

    2014-02-01

    Knowing the fraction of methane (CH4) oxidized in landfill cover soils is an important step in estimating the total CH4 emissions from any landfill. Predicting CH4 oxidation in landfill cover soils is a difficult task because it is controlled by a number of biological and environmental factors. This study proposes an artificial neural network (ANN) approach using feedforward backpropagation to predict CH4 oxidation in landfill cover soil in relation to air temperature, soil moisture content, oxygen (O2) concentration at a depth of 10 cm in cover soil, and CH4 concentration at the bottom of cover soil. The optimum ANN model giving the lowest mean square error (MSE) was configured from three layers, with 12 and 9 neurons at the first and the second hidden layers, respectively, log-sigmoid (logsig) transfer function at the hidden and output layers, and the Levenberg-Marquardt training algorithm. This study revealed that the ANN oxidation model can predict CH4 oxidation with a MSE of 0.0082, a coefficient of determination (R2) between the measured and predicted outputs of up to 0.937, and a model efficiency (E) of 0.8978. To conclude, further developments of the proposed ANN model are required to generalize and apply the model to other landfills with different cover soil properties.

  7. Field-scale treatment of landfill gas with a passive methane oxidizing biofilter

    Energy Technology Data Exchange (ETDEWEB)

    Philopoulos, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Felske, C. [Alberta Research Council, Edmonton, AB (Canada); McCartney, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering, Natural Resources Engineering Facility

    2008-09-15

    Municipal solid waste (MSW) landfills produce methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) as a result of the anaerobic biodegradation of organic fractions of waste. This paper provided details of field tests conducted to test 2 approaches that addressed the issue of gases produced at a landfill in Alberta. A CH{sub 4} oxidation layer was applied to replace intermediate and final landfill covers. Landfill gas (LFG) was then trapped using 3 biogenic CH{sub 4} oxidizing biofilters. Mature yard waste was used as a biofilter medium. The LFG was trapped by the liner, accumulated in a collection system, and then passed through the biofilter medium. The study was conducted over a period of 10 months. Results of the study showed that the integration of the biofilter into the landfill cover showed promising results. Low surface emissions were observed in 6 out of 8 monitoring events at 2 of the sites. Low influent LFG fluxes at the third site did not allow for full air sampling analyses to be conducted. 22 refs., 4 tabs., 8 figs.

  8. High Frequency Measurements of Methane Concentrations and Carbon Isotopes at a Marsh and Landfill

    Science.gov (United States)

    Mortazavi, B.; Wilson, B.; Chanton, J.; Eller, K.; Dong, F.; Baer, D. S.; Gupta, M.; Dzwonkowski, B.

    2012-12-01

    High frequency measurements of methane concentrations and carbon isotopes can help constrain the source strengths of methane emitted to the atmosphere. We report here methane concentrations and 13C values measured at 0.5 Hz with cavity enhanced laser absorption spectrometers (Los Gatos Research) deployed at a saltmarsh in Alabama and a landfill in Florida. Methane concentrations and 13C at the saltmarsh were monitored over a 2.5 day time period at 2 m, 0.5 m above the ground as well as from the outflow of a flow-through (2 L) chamber placed on the Spartina alterniflora dominated marsh. A typical measurement cycle included regular samples from two tanks of known methane concentrations and isotopic values and from ambient air samples. Over the 2.5-day measurement period methane concentrations and isotopic ratios at 2 m averaged 1.85 ppm and -43.57‰ (±0.34, 1 SE), respectively. The concentration and isotopic values from the chamber outflow varied from 1.92 to 5.81 ppm and -38.5 to -59.3‰, respectively. Methane flux from the marsh ranged from undetectable to 3.6 mgC m-2hr-1, with high fluxes measured during low tide. The 13δCH4 of the emitted CH4 from the marsh, determined from a mass balance equation using the chamber inflow and outflow concentration and isotopic values ranged from -62.1 to -93.9‰ and averaged -77‰ (±1.25, 1SE). At the landfill ambient methane concentrations and 13C ratios measured over multiple days varied from 4.25 to 11.91 ppm and from -58.81 to -45.12‰, respectively. At higher methane concentrations the δ13C of CH4 was more depleted consistent with previously observed relationship at this site made by more traditional techniques. Over a 30-minute measurement period CH4 concentrations at the landfill could vary by as much as 15 ppm. The high frequency continuous optical measurements with field-deployed instruments provide us with an unprecedented temporal resolution of CH4 concentrations and isotopic ratios. These measurements will

  9. Methane emission to the atmosphere from landfills in the Canary Islands

    Science.gov (United States)

    Hernández, Pedro A.; Asensio-Ramos, María; Rodríguez, Fátima; Alonso, Mar; García-Merino, Marta; Amonte, Cecilia; Melián, Gladys V.; Barrancos, José; Rodríguez-Delgado, Miguel A.; Hernández-Abad, Marta; Pérez, Erica; Alonso, Monica; Tassi, Franco; Raco, Brunella; Pérez, Nemesio M.

    2017-04-01

    Methane (CH4) is one of the most powerful greenhouse gases, and is increasing in the atmosphere by 0.6% each year (Intergovernmental Panel on Climate Change, IPCC, 2013). This gas is produced in landfills in large quantities following the anaerobic degradation of organic matter. The IPCC has estimated that more than 10% of the total anthropogenic emissions of CH4 are originated in landfills. Even after years of being no operative (closed), a significant amount of landfill gas could be released to the atmosphere through its surface as diffuse or fugitive degassing. Many landfills currently report their CH4 emissions to the atmosphere using model-based methods, which are based on the rate of production of CH4, the oxidation rate of CH4 and the amount of CH4 recovered (Bingemer and Crutzen, 1987). This approach often involves large uncertainties due to inaccuracies of input data and many assumptions in the estimation. In fact, the estimated CH4 emissions from landfills in the Canary Islands published by the Spanish National Emission and Pollutant Sources Registration (PRTR-Spain) seem to be overestimated due to the use of protocols and analytical methodologies based on mathematical models. For this reason, direct measurements to estimate CH4 emissions in landfills are essential to reduce this uncertainty. In order to estimate the CH4 emissions to the atmosphere from landfills in the Canary Islands 23 surveys have been performed since 1999. Each survey implies hundreds of CO2and CH4 efflux measurements covering the landfill surface area. Surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Samples of landfill gases were taken in the gas accumulated in the chamber and CO2 and CH4 were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux measurent was computed combining CO2 efflux and CH4/CO2 ratio

  10. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    Energy Technology Data Exchange (ETDEWEB)

    Scheutz, Charlotte; Pedersen, Rasmus Broe [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Petersen, Per Haugsted [Ramboll Denmark A/S, DK-5100 Odense C (Denmark); Jørgensen, Jørgen Henrik Bjerre [Klintholm I/S, DK-5874 Hasselager (Denmark); Ucendo, Inmaculada Maria Buendia; Mønster, Jacob G. [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Samuelsson, Jerker [FluxSense AB/Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Kjeldsen, Peter, E-mail: pekj@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2014-07-15

    Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.

  11. Comparison of first-order-decay modeled and actual field measured municipal solid waste landfill methane data.

    Science.gov (United States)

    Amini, Hamid R; Reinhart, Debra R; Niskanen, Antti

    2013-12-01

    The first-order decay (FOD) model is widely used to estimate landfill gas generation for emissions inventories, life cycle assessments, and regulation. The FOD model has inherent uncertainty due to underlying uncertainty in model parameters and a lack of opportunities to validate it with complete field-scale landfill data sets. The objectives of this paper were to estimate methane generation, fugitive methane emissions, and aggregated collection efficiency for landfills through a mass balance approach using the FOD model for gas generation coupled with literature values for cover-specific collection efficiency and methane oxidation. This study is unique and valuable because actual field data were used in comparison with modeled data. The magnitude and variation of emissions were estimated for three landfills using site-specific model parameters and gas collection data, and compared to vertical radial plume mapping emissions measurements. For the three landfills, the modeling approach slightly under-predicted measured emissions and over-estimated aggregated collection efficiency, but the two approaches yielded statistically equivalent uncertainties expressed as coefficients of variation. Sources of uncertainty include challenges in large-scale field measurement of emissions and spatial and temporal fluctuations in methane flow balance components (generated, collected, oxidized, and emitted methane). Additional publication of sets of field-scale measurement data and methane flow balance components will reduce the uncertainty in future estimates of fugitive emissions.

  12. Insights into solar photo-Fenton reaction parameters in the oxidation of a sanitary landfill leachate at lab-scale.

    Science.gov (United States)

    Silva, Tânia F C V; Ferreira, Rui; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2015-12-01

    This work evaluates the effect of the main photo-Fenton (PF) reaction variables on the treatment of a sanitary landfill leachate collected at the outlet of a leachate treatment plant, which includes aerated lagooning followed by aerated activated sludge and a final coagulation-flocculation step. The PF experiments were performed in a lab-scale compound parabolic collector (CPC) photoreactor using artificial solar radiation. The photocatalytic reaction rate was determined while varying the total dissolved iron concentration (20-100 mg Fe(2+)/L), solution pH (2.0-3.6), operating temperature (10-50 °C), type of acid used for acidification (H2SO4, HCl and H2SO4 + HCl) and UV irradiance (22-68 W/m(2)). This work also tries to elucidate the role of ferric hydroxides, ferric sulphate and ferric chloride species, by taking advantage of ferric speciation diagrams, in the efficiency of the PF reaction when applied to leachate oxidation. The molar fraction of the most photoactive ferric species, FeOH(2+), was linearly correlated with the PF pseudo-first order kinetic constants obtained at different solution pH and temperature values. Ferric ion speciation diagrams also showed that the presence of high amounts of chloride ions negatively affected the PF reaction, due to the decrease of ferric ions solubility and scavenging of hydroxyl radicals for chlorine radical formation. The increment of the PF reaction rates with temperature was mainly associated with the increase of the molar fraction of FeOH(2+). The optimal parameters for the photo-Fenton reaction were: pH = 2.8 (acidification agent: H2SO4); T = 30 °C; [Fe(2+)] = 60 mg/L and UV irradiance = 44 WUV/m(2), achieving 72% mineralization after 25 kJUV/L of accumulated UV energy and 149 mM of H2O2 consumed.

  13. Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements

    Science.gov (United States)

    Krautwurst, Sven; Gerilowski, Konstantin; Jonsson, Haflidi H.; Thompson, David R.; Kolyer, Richard W.; Iraci, Laura T.; Thorpe, Andrew K.; Horstjann, Markus; Eastwood, Michael; Leifer, Ira; Vigil, Samuel A.; Krings, Thomas; Borchardt, Jakob; Buchwitz, Michael; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2017-09-01

    Fugitive emissions from waste disposal sites are important anthropogenic sources of the greenhouse gas methane (CH4). As a result of the growing world population and the recognition of the need to control greenhouse gas emissions, this anthropogenic source of CH4 has received much recent attention. However, the accurate assessment of the CH4 emissions from landfills by modeling and existing measurement techniques is challenging. This is because of inaccurate knowledge of the model parameters and the extent of and limited accessibility to landfill sites. This results in a large uncertainty in our knowledge of the emissions of CH4 from landfills and waste management. In this study, we present results derived from data collected during the research campaign COMEX (CO2 and MEthane eXperiment) in late summer 2014 in the Los Angeles (LA) Basin. One objective of COMEX, which comprised aircraft observations of methane by the remote sensing Methane Airborne MAPper (MAMAP) instrument and a Picarro greenhouse gas in situ analyzer, was the quantitative investigation of CH4 emissions. Enhanced CH4 concentrations or CH4 plumes were detected downwind of landfills by remote sensing aircraft surveys. Subsequent to each remote sensing survey, the detected plume was sampled within the atmospheric boundary layer by in situ measurements of atmospheric parameters such as wind information and dry gas mixing ratios of CH4 and carbon dioxide (CO2) from the same aircraft. This was undertaken to facilitate the independent estimation of the surface fluxes for the validation of the remote sensing estimates. During the COMEX campaign, four landfills in the LA Basin were surveyed. One landfill repeatedly showed a clear emission plume. This landfill, the Olinda Alpha Landfill, was investigated on 4 days during the last week of August and first days of September 2014. Emissions were estimated for all days using a mass balance approach. The derived emissions vary between 11.6 and 17.8 kt CH4 yr-1

  14. Reduction of methane emission from landfills using bio-mitigation systems – from lab tests to full scale implementation

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    , or open or closed bed biofilter systems. The objective of this paper is to describe the relationship between research on process understanding of the oxidation of landfill gas contained methane and the up-scale to full bio-mitigation systems implemented at landfills. The oxidation of methane is controlled...... due to self-heating processes. Bio-mitigation can be used as a stand-alone technology or combined with active or passive gas collection. When implementing bio-mitigation systems focus should be on additional fugitive methane emissions or the presence of uncontrolled point releases. A protocol...... for implementing a bio-mitigation system is presented, and the reported landfill-implemented bio-mitigation systems either established as full-scale or pilot-scale systems are reviewed. It is concluded that bio-mitigation systems have a large potential for providing cost-efficient mitigation options for reducing...

  15. Analysis of the role of the sanitary landfill in waste management strategies based upon a review of lab leaching tests and new tools to evaluate leachate production

    Directory of Open Access Journals (Sweden)

    Francesco Lombardi

    2017-08-01

    Full Text Available This paper reviews the role of sanitary landfills in current and future waste management strategies based upon the principles and the goals established by the European Framework Directive on Waste (2008/98/EC. Specific reference is made to studies of our research group regarding new tools developed to evaluate leachate production, taking into account the different characteristics of municipal solid waste (MSW. Laboratory leaching tests and a methodology proposed to interpret the results are described and discussed, as well as tools developed to estimate landfill leachate production. Residual flows produced by mechanical-biological treatment (MBT plants, mainly Solid Recovered Fuel (SRF and Stabilized Organic Waste (SOW, incineration and composting plants are considered in particular. Experimental results showed that the most suitable end-uses or disposal options for the outputs of waste treatment plants are site-specific and should be defined on the basis of a detailed characterization. The application of the model developed to assess landfill leachate production showed a very good agreement with field data.

  16. Engineering geology and ground water considerations for sanitary landfills in Wisconsin-aged morainal deposits of central Indiana

    Energy Technology Data Exchange (ETDEWEB)

    West, T.R.

    1985-01-01

    In the past five years the author has been engaged as an engineering geology consultant concerning a number of existing and proposed landfills, located in the Wisconsin morainal plains of central Indiana. Work has involved the representation of landfill owners in some cases and opposing citizens in others. For each case except one, municipal waste or conventional waste landfills were involved with the other involving hazardous waste disposal. Several major geologic considerations are involved in proper sitting of landfills in this region. These include: (1) Type, nature and stratigraphy of unconsolidated materials; (2) Thickness of unconsolidated material; (3) Type and nature of bedrock below unconsolidated material: (4) Groundwater supplies in vicinity; (5) Topography of site including flood potential; and (6) Groundwater table and water bearing zones involved. Engineering details of landfill construction and monitoring must also be considered in regard to the site geology. Aspects of leachate generation and containment must be addressed as well.

  17. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations.

    Science.gov (United States)

    Ahoughalandari, Bahar; Cabral, Alexandre R

    2017-08-18

    The design process of passive methane oxidation biosystems needs to include design criteria that account for the effect of unsaturated hydraulic behavior on landfill gas migration, in particular, restrictions to landfill gas flow due to the capillary barrier effect, which can greatly affect methane oxidation rates. This paper reports the results of numerical simulations performed to assess the landfill gas flow behavior of several passive methane oxidation biosystems. The concepts of these biosystems were inspired by selected configurations found in the technical literature. We adopted the length of unrestricted gas migration (LUGM) as the main design criterion in this assessment. LUGM is defined as the length along the interface between the methane oxidation and gas distribution layers, where the pores of the methane oxidation layer material can be considered blocked for all practical purposes. High values of LUGM indicate that landfill gas can flow easily across this interface. Low values of LUGM indicate greater chances of having preferential upward flow and, consequently, finding hotspots on the surface. Deficient designs may result in the occurrence of hotspots. One of the designs evaluated included an alternative to a concept recently proposed where the interface between the methane oxidation and gas distribution layers was jagged (in the form of a see-saw). The idea behind this ingenious concept is to prevent blockage of air-filled pores in the upper areas of the jagged segments. The results of the simulations revealed the extent of the capability of the different scenarios to provide unrestricted and conveniently distributed upward landfill gas flow. They also stress the importance of incorporating an appropriate design criterion in the selection of the methane oxidation layer materials and the geometrical form of passive biosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Electrical Characters of Sanitary Landfill Border%卫生垃圾填埋场边界的地电特性研究

    Institute of Scientific and Technical Information of China (English)

    叶腾飞; 董路; 龚育龄; 汤洪志; 刘玉强

    2011-01-01

    研究卫生垃圾填埋场边界的地电特性,界定卫生垃圾填埋场边界有助于场地环境的维护和管理,采用电阻率二维层析成像技术中的3种装置排列(测深、温纳、偶极-偶极)对小型卫生垃圾填埋场模型进行对比测量,通过电阴率二维层析成像技术对填埋场边界的地电特性进行分析研究.研究结果表明,在测深和温纳两种装置排列,不能进行精确定位;而偶极-偶极的反演图象中可以界定垃圾填埋场的侧向和底部边界,其误差小于5%.%To determine the boundary of a sanitary landfill more accurately, this paper introduces a technology, namely 2D electric resistivity tomography (ERT). Thus, a comparative survey was conducted, in which electrical characters of the landfill border were measured with three arrays such as sounding array, Wenner array and dipole-dipole array respectively. Result showed that dipole-dipole array is more accurate with an error lower than 5% in determining the landfill boundary,being useful in defining the landfill's lateral and bottom boundary.

  19. Methane oxidation in a landfill cover soil reactor: Changing of kinetic parameters and microorganism community structure.

    Science.gov (United States)

    Xing, Zhi L; Zhao, Tian T; Gao, Yan H; Yang, Xu; Liu, Shuai; Peng, Xu Y

    2017-02-23

    Changing of CH4 oxidation potential and biological characteristics with CH4 concentration was studied in a landfill cover soil reactor (LCSR). The maximum rate of CH4 oxidation reached 32.40 mol d(-1) m(-2) by providing sufficient O2 in the LCSR. The kinetic parameters of methane oxidation in landfill cover soil were obtained by fitting substrate diffusion and consumption model based on the concentration profile of CH4 and O2. The values of [Formula: see text] (0.93-2.29%) and [Formula: see text] (140-524 nmol kgsoil-DW(-1)·s(-1)) increased with CH4 concentration (9.25-20.30%), while the values of [Formula: see text] (312.9-2.6%) and [Formula: see text] (1.3 × 10(-5) to 9.0 × 10(-3) nmol mL(-1) h(-1)) were just the opposite. MiSeq pyrosequencing data revealed that Methylobacter (the relative abundance was decreased with height of LCSR) and Methylococcales_unclassified (the relative abundance was increased expect in H 80) became the key players after incubation with increasing CH4 concentration. These findings provide information for assessing CH4 oxidation potential and changing of biological characteristics in landfill cover soil.

  20. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars.

    Science.gov (United States)

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-08-01

    The natural presence of methane oxidizing bacteria (MOB) in landfill soils can stimulate the bio-chemical oxidation of CH4 to CO2 and H2O under suitable environmental conditions. This mechanism can be enhanced by amending the landfill cover soil with organic materials such as biochars that are recalcitrant to biological degradation and are capable of adsorbing CH4 while facilitating the growth and activity of MOB within their porous structure. Several series of batch and small-scale column tests were conducted to quantify the CH4 sorption and transport properties of landfill cover soil amended with four types of waste hardwood biochars under different levels of amendment percentages (2, 5 and 10% by weight), exposed CH4 concentrations (0-1 kPa), moisture content (dry, 25% and 75% water holding capacity), and temperature (25, 35 and 45 °C). The linear forms of the pseudo second-order kinetic model and the Langmuir isotherm model were used to determine the kinetics and the maximum CH4 adsorption capacity of cover materials. The maximum CH4 sorption capacity of dry biochar-amended soils ranged from 1.03 × 10(-2) to 7.97 × 10(-2) mol kg(-1) and exhibited a ten-fold increase compared to that of soil with 1.9 × 10(-3) mol kg(-1). The isosteric heat of adsorption for soil was negative and ranged from -30 to -118 kJ/mol, while that of the biochar-amended soils was positive and ranged from 24 to 440 kJ/mol. The CH4 dispersion coefficients for biochar-amended soils obtained through predictive transport modeling indicated that amending the soil with biochar enhanced the methane transport rates by two orders of magnitude, thereby increasing their potential for enhanced exchange of gases within the cover system. Overall, the use of hardwood biochars as a cover soil amendment to reduce methane emissions from landfills appears to be a promising alternative to conventional soil covers.

  1. Variation of Coenzyme F420 Activity and Methane Yield in Landfill Simulation of Organic Waste

    Institute of Scientific and Technical Information of China (English)

    CHENG Yun-huan; SANG Shu-xun; HUANG Hua-zhou; LIU Xiao-juan; OUYANG Jin-bao

    2007-01-01

    A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated the dynamics of the coenzyme F420 activity and determined correlations between biogas yields, methane yields, methane concentration and coenzyme F420 activity. The experiment was carried out under different conditions from control without any treatment, addition of Fe3+, microorganism inoculation to a combination of Fe3+ addition and inoculation at a temperature of 36±2 ℃. The experiment was lasted 120 d and coenzyme F420 activity was analyzed using ultraviolet spectrophotometry. Experimental results indicated that activity of the coenzyme F420 treated by Fe3+ and microorganism inoculation increased substantially. The waste treated by inoculation had the greatest increase. When the waste was treated by Fe3+, inoculation and the combination of Fe3+ and inoculation, biogas yields increased by 46.9%, 132.6% and 153.1%, respectively; while the methane yields increased 4, 97 and 98 times. Methane concentration varied between 0 and 6% in the control reactor, from 0 to 14% for waste treated by the addition of Fe3+, from 0 to 59% for waste treated by inoculation and from 0 to 63% for waste treated by Fe3+ addition and inoculation. Correlations between coenzyme F420 activity and biogas production, methane production and methane concentration proved to be positively significant (p<0.05), except for the control. Consequently, coenzyme F420 activity could be used as an index for monitoring the ac-tivity of methanogens during anaerobic biodegradation of the organic fraction of municipal solid waste.

  2. Development of the utilization of combustible gas produced in existing sanitary landfills: Effects of corrosion at the Mountain View, California landfill gas-recovery plant

    Science.gov (United States)

    1982-10-01

    Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

  3. Bioreactor landfill

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; XING Kai; Anthony Adzomani

    2004-01-01

    Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.

  4. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    Science.gov (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  5. Ammonium-dependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation.

    Science.gov (United States)

    Lü, Fan; He, Pinjing; Guo, Min; Yang, Na; Shao, Liming

    2012-01-01

    The impacts of landfill leachate irrigation on methane oxidation activities and methane-consuming bacteria populations were studied by incubation of landfill cover soils with leachate and (NH4)2SO4 solution at different ammonium concentrations. The community structures and abundances of methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) were examined by PCR-DGGE and real-time PCR. Compared with the pure (NH4)2SO4 solution, leachate addition was found to have a positive effect on methane oxidation activity. In terms of the irrigation amount, ammonium in leachate was responsible for the actual inhibition of leachate. The extent of inhibitory effect mainly depended on its ammonium concentration. The suppression of the predominant methane-consuming bacteria, type I MOB, was responsible for the decreased methane oxidation activity by ammonium inhibition. Methane-consuming bacteria responded diversely in abundance to ammonium. The abundance of type I MOB decreased by fivefold; type II MOB showed stimulation response of fivefold magnification upon the first addition but lessened to be lower than the original level after the second addition; the amount of AOB was stimulated to increase for 20-30 times gradually. Accumulated nitrate from nitrification strengthened the ammonium inhibition on type I and type II MOB, as a result, repetitive irrigation was unfavorable for methane oxidation.

  6. Methane Emissions from Landfill: Isotopic Evidence for Low Percentage of Oxidation from Gas Wells, Active and Closed Cells

    Science.gov (United States)

    Lowry, David; Fisher, Rebecca; Zazzeri, Giulia; al-Shalaan, Aalia; France, James; Lanoisellé, Mathias; Nisbet, Euan

    2017-04-01

    Large landfill sites remain a significant source of methane emissions in developed and developing countries, with a global estimated flux of 29 Tg / yr in the EDGAR 2008 database. This is significantly lower than 20 years ago due to the introduction of gas extraction systems, but active cells still emit significant amounts of methane before the gas is ready for extraction. Historically the methane was either passively oxidized through topsoil layers or flared. Oxidation is still the primary method of methane removal in many countries, and covered, remediated cells across the world continue to emit small quantities of methane. The isotopic signatures of methane from landfill gas wells, and that emitted from active and closed cells have been characterized for more than 20 UK landfills since 2011, with more recent work in Kuwait and Hong Kong. Since 2013 the emission plumes have been identified by a mobile measurement system (Zazzeri et al., 2015). Emissions in all 3 countries have a characteristic δ13C signature of -58 ± 3 ‰ dominated by emissions from the active cells, despite the hot, dry conditions of Kuwait and the hot, humid conditions of Hong Kong. Gas well samples define a similar range. Surface emissions from closed cells and closed landfills are mostly in the range -56 to -52 ‰Ṫhese are much more depleted values than those observed in the 1990s (up to -35 ) when soil oxidation was the dominant mechanism of methane removal. Calculations using isotopic signatures of the amount of methane oxidised in these closed areas before emission to atmosphere range from 5 to 15%, but average less than 10%, and are too small to calculate from the high-emitting active cells. Compared to other major methane sources, landfills have the most consistent isotopic signature globally, and are distinct from the more 13C-enriched natural gas, combustion and biomass burning sources. Zazzeri, G. et al. (2015) Plume mapping and isotopic characterization of anthropogenic methane

  7. Innovative technologies of liquid media treatment in the system of ecological and sanitary-hygienic control of waste landfills

    Directory of Open Access Journals (Sweden)

    Shevchenko Andrey

    2017-01-01

    Full Text Available The article focuses on the scientific and practical aspects of establishing a comprehensive system of environmental compliance for industrial and household waste landfills, including the system of industrial and environmental monitoring and control, modern innovations in the field of instrumental-analytical control of the state of environmental components, new methods of neutralization of complex industrial pollution. Priority is given to wastewater treatment from toxic compounds coming from the surface and drainage water seepage of landfill sites into surface and underground water sources.

  8. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines.

    Science.gov (United States)

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-01

    According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills. Copyright © 2015. Published by Elsevier Ltd.

  9. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sangjae [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Nam, Anwoo [Korea Environment Corporation, 42 Hwangyeong-ro, Seo-gu, Incheon 404-170 (Korea, Republic of); Yi, Seung-Muk [Department of Environmental Health, School of Public Health, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Jae Young, E-mail: jaeykim@snu.ac.kr [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  10. Biodegradation of Methane and Halocarbons in Simulated Landfill Biocover Systems Containing Compost Materials

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedersen, Gitte Bukh; Costa, G.

    2009-01-01

    The attenuation potential of methane (CH4) and of selected volatile organic Compounds (VOCs) was compared in four types of compost materials using dynamic flow column experiments over a period of 255 d. Garden waste compost mixed with wood chips showed the highest steady-state CH4 oxidation rate...... (161 g m(-2) d(-1)), followed by a commercial compost product Supermuld (110 g m(-2) d(-1)). In the column containing the highest fraction of compost (compost/sand mixed in 1: 1), CH4 oxidation declined significantly during the period of operation, probably due to clogging by formation of exopolymeric...... of the columns. Overall, the highest removal of VOCs was observed in the column containing the compost/ wood chip mixture. This study demonstrates that biocovers consisting of compost materials have the potential to attenuate trace gas emissions from landfills....

  11. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.

    Science.gov (United States)

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2016-09-01

    The energy conversion potential of municipal solid waste (MSW) disposed of in landfills remains largely untapped because of the slow and variable rate of biogas generation, delayed and inefficient biogas collection, leakage of biogas, and landfill practices and infrastructure that are not geared toward energy recovery. A database consisting of methane (CH4) generation data, the major constituent of biogas, from 49 laboratory experiments and field monitoring data from 57 landfills was developed. Three CH4 generation parameters, i.e., waste decay rate (k), CH4 generation potential (L0), and time until maximum CH4 generation rate (tmax), were calculated for each dataset using U.S. EPA's Landfill Gas Emission Model (LandGEM). Factors influencing the derived parameters in laboratory experiments and landfills were investigated using multi-linear regression analysis. Total weight of waste (W) was correlated with biodegradation conditions through a ranked classification scheme. k increased with increasing percentage of readily biodegradable waste (Br0 (%)) and waste temperature, and reduced with increasing W, an indicator of less favorable biodegradation conditions. The values of k obtained in the laboratory were commonly significantly higher than those in landfills and those recommended by LandGEM. The mean value of L0 was 98 and 88L CH4/kg waste for laboratory and field studies, respectively, but was significantly affected by waste composition with ranges from 10 to 300L CH4/kg. tmax increased with increasing percentage of biodegradable waste (B0) and W. The values of tmax in landfills were higher than those in laboratory experiments or those based on LandGEM's recommended parameters. Enhancing biodegradation conditions in landfill cells has a greater impact on improving k and tmax than increasing B0. Optimizing the B0 and Br0 values of landfilled waste increases L0 and reduces tmax.

  12. Quantifying Spatial and Temporal Variability of Methane Emissions from a Complex Area Source: Case Study of a Central Indiana Landfill

    Science.gov (United States)

    Cambaliza, M. O. L.; Bogner, J. E.; Green, R. B.; Shepson, P. B.; Thoma, E. D.; Foster-wittig, T. A.; Spokas, K.

    2014-12-01

    Atmospheric methane is a powerful greenhouse gas that is responsible for about 17% of the total direct radiative forcing from long-lived greenhouse gases (IPCC 2013). While the global emission of methane is relatively well quantified, the temporal and spatial variability of methane emissions from individual area or point sources are still poorly understood. Using 4 field methods (aircraft-based mass balance, tracer correlation, vertical radial plume mapping, and static chambers) and a new field-validated process-based model (California Landfill Methane Inventory Model, CALMIM 5.4), we investigated both the total emissions from a central Indiana landfill as well as the partitioned emissions inclusive of methanotrophic oxidation for the various cover soils. This landfill is an upwind source for the city of Indianapolis, so the resolution of m2 to km2 scale emissions, as well as understanding the temporal variability for this complex area source, contributes to improved regional inventory calculations. Emissions for the site as a whole were measured using both an aircraft-based mass balance approach as well as a ground-based tracer correlation method, permitting direct comparison of the strengths, limitations, and uncertainties of these two approaches. Because US landfills are highly-engineered and composed of daily, intermediate, and final cover areas with differing thicknesses, composition, and implementation of gas recovery, we also expected different emission signatures and strengths from the various cover areas. Thus we also deployed static chambers and vertical radial plume mapping to quantify the spatial variability of emissions from the thinner daily and intermediate cover areas. Understanding the daily, seasonal and annual emission rates from a landfill is not trivial, and usually requires a combination of measurement and modeling approaches. Thus, our unique data set provides an opportunity to gain an improved understanding of the emissions from a complex

  13. Ammonium-dependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation

    Institute of Scientific and Technical Information of China (English)

    Fan Lü; Pinjing He; Min Guo; Na Yang; Liming Shao

    2012-01-01

    The impacts of landfill leachate irrigation on methane oxidation activities and methane-consuming bacteria populations were studied by incubation of landfill cover soils with leachate and (NH4)2SO4 solution at different ammonium concentrations.The community structures and abundances of methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) were examined by PCRDGGE and real-time PCR.Compared with the pure (NH4)2SO4 solution,leachate addition was found to have a positive effect on methane oxidation activity.In terms of the irrigation amount,ammonium in leachate was responsible for the actual inhibition of leachate.The extent of inhibitory effect mainly depended on its ammonium concentration.The suppression of the predominant methaneconsuming bacteria,type Ⅰ MOB,was responsible for the decreased methane oxidation activity by ammonium inhibition.Methaneconsuming bacteria responded diversely in abundance to ammonium.The abundance of type Ⅰ MOB decreased by fivefold; type Ⅱ MOB showed stimulation response of fivefold magnification upon the first addition but lessened to be lower than the original level after the second addition; the amount of AOB was stimulated to increase for 20-30 times gradually.Accumulated nitrate from nitrification strengthened the ammonium inhibition on type Ⅰ and type Ⅱ MOB,as a result,repetitive irrigation was unfavorable for methane oxidation.

  14. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Cassini, Filippo; De Schoenmaeker, Jan

    2017-01-01

    Greenhouse gas mitigation at landfills by methane (CH4) oxidation in engineered biocover systems is believed to be a cost effective technology but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation...... semi-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the often observed uneven gas distribution to the active CH4 oxidation layer...... methods; the carbon mass balance method (based on CH4 and carbon dioxide (CO2) concentrations in the deeper part of the cover and CH4 and CO2 surface flux measurements) and a new-developed tracer gas mass balance method (based on CH4 and tracer inlet fluxes and CH4 and tracer surface flux measurements...

  15. Assessing methods to estimate emissions of non-methane organic compounds from landfills

    DEFF Research Database (Denmark)

    Saquing, Jovita M.; Chanton, Jeffrey P.; Yazdani, Ramin

    2014-01-01

    in estimating speciated NMOC flux from landfills; (2) determine for what types of landfills the ratio method may be in error and why, using recent field data to quantify the spatial variation of (CNMOCs/CCH4) in landfills; and (3) formulate alternative models for estimating NMOC emissions from landfills...

  16. Did state renewable portfolio standards induce technical change in methane mitigation in the U.S. landfill sector?

    Science.gov (United States)

    Delhotal, Katherine Casey

    Landfill gas (LFG) projects use the gas created from decomposing waste, which is approximately 49% methane, and substitute it for natural gas in engines, boilers, turbines, and other technologies to produce energy or heat. The projects are beneficial in terms of increased safety at the landfill, production of a cost-effective source of energy or heat, reduced odor, reduced air pollution emissions, and reduced greenhouse gas emissions. However, landfills sometimes face conflicting policy incentives. The theory of technical change shows that the diffusion of a technology or groups of technologies increases slowly in the beginning and then picks up speed as knowledge and better understanding of using the technology diffuses among potential users. Using duration analysis, data on energy prices, State and Federal policies related to landfill gas, renewable energy, and air pollution, as well as control data on landfill characteristics, I estimate the influence and direction of influence of renewable portfolio standards (RPS). The analysis found that RPS positively influences the diffusion of landfill gas technologies, encouraging landfills to consider electricity generation projects over direct sales of LFG to another facility. Energy price increases or increased revenues for a project are also critical. Barriers to diffusion include air emission permits in non-attainment areas and policies, such as net metering, which promote other renewables over LFG projects. Using the estimates from the diffusion equations, I analyze the potential influence of a Federal RPS as well as the potential interaction with a Federal, market based climate change policy, which will increase the revenue of a project through higher energy sale prices. My analysis shows that a market based climate change policy such as a cap-and-trade or carbon tax scheme would increase the number of landfill gas projects significantly more than a Federal RPS.

  17. Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

    1998-09-01

    The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

  18. Sensitivity analysis of the leaching rate parameter in assessing the environmental risk of phosphogypsum application in sanitary landfills

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Marcos Vinicius A.; Hama, Naruhiko; Jacomino, Vanusa M.F.; Ladeira, Ana Claudia Q.; Cota, Stela D.S., E-mail: mvmarchesi@hotmail.com, E-mail: sdsc@cdtn.br, E-mail: vmfj@cdtn.br, E-mail: ana.ladeira@cdtn.br, E-mail: naruhikohama@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The attack with sulfuric acid to phosphate rock produces both phosphoric acid, basic raw material in the manufacture of fertilizers, as a by-product called phosphogypsum. Phosphogypsum is composed mostly of calcium sulfate dihydrated, but may have high levels of impurities from the phosphate rock matrix as a series of natural radionuclides, and heavy metals (e.g. Cd, Zn) and metalloids (e.g. , As and Se). Although it is used for agricultural purposes and more recently in construction, in Brazil the generation rate estimated at six million tons per year is much higher than the amount spent on existing alternatives, and therefore mostly deposited in piles in the same place production, causing thereby the risk of contamination of soil and water resources of the region and providing risk to human health. Taken into account the need to find alternative arrangements for phosphogypsum and reduce the impact generated by its contaminants, this study aims to analyze the sensitivity of the leaching rate parameter in the environmental risk evaluation of the application of phosphogypsum in landfills through mathematical modeling, where it is evaluated the concentration of heavy metals and radionuclides in the layer of the soil under the clay layer of the landfill.

  19. Determination of the coefficient of uranium and thorium distribution in phosphogypsum for their use in sanitary landfills

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Marcos Vinicius A.; Hama, Naruhiko; Jacomino, Vanusa M. F.; Ladeira, Ana Claudia Q.; Cota, Stela D. S., E-mail: mvmarchesi@hotmail.com, E-mail: sdsc@cdtn.br, E-mail: vmfj@cdtn.br, E-mail: ana.ladeira@cdtn.br, E-mail: naruhikohama@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nascimento, Marcos Roberto Lopes do; Taddei, Maria Helena, E-mail: pmarcos@cnen.gov.br, E-mail: mhtaddei@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2013-07-01

    Phosphogypsum is a byproduct from the production of phosphoric acid, and contain radionuclides, heavy metals and metalloids from phosphate rock. It represents a risk to the environment if improperly stored. Because it is composed mainly of dihydrated calcium sulphate, phosphogypsum can be used in anaerobic environments such as those found in landfills to accelerate microbial processes of decomposition of municipal solid waste and thus increase the life of these facilities. One of the options of your application being studied is the use of phosphogypsum replacing the covers of soil/clay in landfills. Besides reducing the demand for soil and clay, this application would be an alternative to disposal of the waste, since the alternatives are not sufficient for more than five million tons produced per year in Brazil. To ensure the safety of this application, the potential environmental impact of contaminants in phosphogypsum should be evaluated. The rate of leaching of contaminants are being studied by determining the coefficient of distribution of the contaminants in the phosphogypsum. Batch tests were performed by mixing different proportions of slurry and phosphogypsum. This work presents the results for the chain of uranium and natural thorium.

  20. Physical-chemical and bacteriological aspects of the groundwater in the sanitary landfills in the metropolitan region of Londrina, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2006-02-01

    Full Text Available A detailed study of the physical-chemical and bacteriological qualities of the subterranean water at sanitary landfills in the Metropolitan Region of Londrina (PR, was carried out. The field of twelve wells that reach the groundwater as well as the emergence of the watertable of the Periquitos River, were also monitored. The results of the analyses of 120 samples of the collected water were compared to the permissible maximum values for human consumption according to the Federal Legislation in Brazil. Total excrements were found around 3,1 NMP/100mL (Well 4 and 120330 NMP/100mL (Periquitos River and fecal matter between 0 and 4100 NMP/100mL (Periquitos River. Such values were associated to the contamination caused by the presence of animals from neighbor properties, feeding themselves in that region. The pH, turbidity, COD and BOD were among the values expected, except for the conductivity that showed to be altered.

  1. Bench scale model studies on sanitary landfill leachate treatment with M. oleifera seed extract and hollow fibre micro-filtration membrane

    Directory of Open Access Journals (Sweden)

    S. A. Muyibi

    2002-10-01

    Full Text Available A laboratory-based study using a Bench Scale model of four unit operations made up of coagulation (using Moringa oleifera seed extract as a coagulant, flocculation, sedimentation and micro-filtration, have been adopted to treat the leachate from Air Hitman Sanitary Landfill at Puchong in Malaysia. M. oleifera dosages of 150 and 175 mg/L had achieved 43.8% Cadmium removal, 21.2% Total Chromium removal, 66.8% Lead removal and 16% Iron removal. It also removed 55.4% of Total Suspended Solids, 10% of Total Dissolved Solids and 24.2% of Volatile Suspended Solids. Micro-filtration hollow fibre membrane decreased the turbidity, total suspended solids, total dissolved solids, volatile suspended solids, and organic matter in the leachate by 98.3%, 96.7%, 20.8%, 36.6% and 21.9% respectively. Overall heavy metals removal after micro-filtration using hollow fibre membrane was 94% for Cadmium, 29.8% for Total Chromium, 73.2% for Lead, and 18.3% for Iron. The results have shown that M. oleifera is a promising natural polymer for removing heavy metals from leachates and may be used as a pre-treatment to eliminate a portion of the toxic heavy metals, which limits the activity of micro organisms in the leachates.

  2. Use of gas push-pull tests for the measurement of methane oxidation in different landfill cover soils.

    Science.gov (United States)

    Streese-Kleeberg, Jan; Rachor, Ingke; Gebert, Julia; Stegmann, Rainer

    2011-05-01

    In order to optimise methane oxidation in landfill cover soils, it is important to be able to accurately quantify the amount of methane oxidised. This research considers the gas push-pull test (GPPT) as a possible method to quantify oxidation rates in situ. During a GPPT, a gas mixture consisting of one or more reactive gases (e.g., CH(4), O(2)) and one or more conservative tracers (e.g., argon), is injected into the soil. Following this, the mixture of injected gas and soil air is extracted from the same location and periodically sampled. The kinetic parameters for the biological oxidation taking place in the soil can be derived from the differences in the breakthrough curves. The original method of Urmann et al. (2005) was optimised for application in landfill cover soils and modified to reduce the analytical effort required. Optimised parameters included the flow rate during the injection phase and the duration of the experiment. 50 GPPTs have been conducted at different landfills in Germany during different seasons. Generally, methane oxidation rates ranged between 0 and 150 g m(soil air)(-3)h(-1). At one location, rates up to 440 g m(soil air)(-3)h(-1) were measured under particularly favourable conditions. The method is simple in operation and does not require expensive equipment besides standard laboratory gas chromatographs.

  3. Field-scale tracking of active methane-oxidizing communities in a landfill-cover soil reveals spatial and seasonal variability

    NARCIS (Netherlands)

    Henneberger, R.; Chiri, E.; Bodelier, P.L.E.; Frenzel, P.; Luke, C.; Schroth, M.H.

    2015-01-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable

  4. Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates.

    Science.gov (United States)

    Abichou, Tarek; Kormi, Tarek; Yuan, Lei; Johnson, Terry; Francisco, Escobar

    2015-02-01

    Plant roots are reported to enhance the aeration of soil by creating secondary macropores which improve the diffusion of oxygen into soil as well as the supply of methane to bacteria. Therefore, methane oxidation can be improved considerably by the soil structuring processes of vegetation, along with the increase of organic biomass in the soil associated with plant roots. This study consisted of using a numerical model that combines flow of water and heat with gas transport and oxidation in soils, to simulate methane emission and oxidation through simulated vegetated and non-vegetated landfill covers under different climatic conditions. Different simulations were performed using different methane loading flux (5-200 g m(-2) d(-1)) as the bottom boundary. The lowest modeled surface emissions were always obtained with vegetated soil covers for all simulated climates. The largest differences in simulated surface emissions between the vegetated and non-vegetated scenarios occur during the growing season. Higher average yearly percent oxidation was obtained in simulations with vegetated soil covers as compared to non-vegetated scenario. The modeled effects of vegetation on methane surface emissions and percent oxidation were attributed to two separate mechanisms: (1) increase in methane oxidation associated with the change of the physical properties of the upper vegetative layer and (2) increase in organic matter associated with vegetated soil layers. Finally, correlations between percent oxidation and methane loading into simulated vegetated and non-vegetated covers were proposed to allow decision makers to compare vegetated versus non-vegetated soil landfill covers. These results were obtained using a modeling study with several simplifying assumptions that do not capture the complexities of vegetated soils under field conditions.

  5. Validation of the methane emission reduction on the Nauerna landfill; Validatie van de methaan-emissie-reductie op stortplaats Nauerna

    Energy Technology Data Exchange (ETDEWEB)

    Hensen, A.

    1998-06-01

    Methane emission measurements were performed at a landfill site located approximately 20 km west of Amsterdam, Netherlands. These measurements aimed to determine the emission level of the 60 ha landfill site after the implementation of a gas extraction unit. In order to assess the emission, the concentration levels in the plume downwind of the site were determined using a Tuneable Diode Laser Atomic Spectrometer mounted in a small truck. This measurement system combines a high selectivity for methane (or nitrous oxide) with a high time resolution (up to 20 Hz is possible). The position of the truck was determined using a differential global positioning system (DGPS) that uses up to 8 satellites to retrieve the position. Meteorological measurements were obtained using an ultrasonic anemometer located on top of the landfill. The concentrations measured on transects through the plume that run about 780 m downwind of the centre of the landfill were compared with modeled concentrations. The model divides the landfill area into 100 point sources and calculates a gaussian plume for each point. The source strength is estimated by making a match between the measured and modelled concentrations in the plume. A validation of the model was done by releasing a tracer (nitrous oxide) from a known location on the landfill. The TDLAS is capable of measuring N2O simultaneous with CH4. A total number of 14 transects have been obtained. For 11 transects plumes were found. The emissions that were estimated ranged from 19 gCH{sub 4}.s{sup -1} to 40 gCH{sub 4}.s{sup -1} with one extreme value of 65 gCH{sub 4}.s{sup -1}. The best guess for the average emission was estimated to be 31 {+-} 13 gCH{sub 4}.s{sup -1}. In 1997 the same kind of measurements was performed to evaluate the emission level before implementation of this extraction system. In that campaign 8 plume measurements were obtained, which resulted in a best guess for the landfill emission of 62 {+-}12 gCH{sub 4}.s{sup -1}. The

  6. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.

    Science.gov (United States)

    Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A

    2006-10-01

    In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering

  7. POSTCLOSURE GROUNDWATER REMEDIATION AND MONITORING AT THE SANITARY LANDFILL, SAVANNAH RIVER SITE TRANSITIONING TO MONITORED NATURAL ATTENUATION

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T; D Noffsinger, D; Karen M Adams, K

    2006-11-17

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring and determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.

  8. Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements

    Directory of Open Access Journals (Sweden)

    S. Krautwurst

    2017-09-01

    Full Text Available Fugitive emissions from waste disposal sites are important anthropogenic sources of the greenhouse gas methane (CH4. As a result of the growing world population and the recognition of the need to control greenhouse gas emissions, this anthropogenic source of CH4 has received much recent attention. However, the accurate assessment of the CH4 emissions from landfills by modeling and existing measurement techniques is challenging. This is because of inaccurate knowledge of the model parameters and the extent of and limited accessibility to landfill sites. This results in a large uncertainty in our knowledge of the emissions of CH4 from landfills and waste management. In this study, we present results derived from data collected during the research campaign COMEX (CO2 and MEthane eXperiment in late summer 2014 in the Los Angeles (LA Basin. One objective of COMEX, which comprised aircraft observations of methane by the remote sensing Methane Airborne MAPper (MAMAP instrument and a Picarro greenhouse gas in situ analyzer, was the quantitative investigation of CH4 emissions. Enhanced CH4 concentrations or CH4 plumes were detected downwind of landfills by remote sensing aircraft surveys. Subsequent to each remote sensing survey, the detected plume was sampled within the atmospheric boundary layer by in situ measurements of atmospheric parameters such as wind information and dry gas mixing ratios of CH4 and carbon dioxide (CO2 from the same aircraft. This was undertaken to facilitate the independent estimation of the surface fluxes for the validation of the remote sensing estimates. During the COMEX campaign, four landfills in the LA Basin were surveyed. One landfill repeatedly showed a clear emission plume. This landfill, the Olinda Alpha Landfill, was investigated on 4 days during the last week of August and first days of September 2014. Emissions were estimated for all days using a mass balance approach. The derived emissions vary between 11

  9. Effect of enzyme additions on methane production and lignin degradation of landfilled sample of municipal solid waste.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, Sunil

    2011-04-01

    Operation of waste cells as landfill bioreactors with leachate recirculation is known to accelerate waste degradation and landfill gas generation. However, waste degradation rates in landfill bioreactors decrease with time, with the accumulation of difficult to degrade materials, such as lignin-rich waste. Although, potential exists to modify the leachate quality to promote further degradation of such waste, very little information is available in literature. The objective of this study was to determine the viability of augmenting leachate with enzymes to increase the rate of degradation of lignin-rich waste materials. Among the enzymes evaluated MnP enzyme showed the best performance in terms of methane yield and substrate (lignin) utilization. Methane production of 200 mL CH(4)/g VS was observed for the MnP amended reactor as compared to 5.7 mL CH(4)/g VS for the control reactor. The lignin reduction in the MnP amended reactor and control reactor was 68.4% and 6.2%, respectively.

  10. Evaluation of simultaneous biodegradation of methane and toluene in landfill covers.

    Science.gov (United States)

    Su, Yao; Zhang, Xuan; Wei, Xiao-Meng; Kong, Jiao-Yan; Xia, Fang-Fang; Li, Wei; He, Ruo

    2014-06-15

    The biodegradation of CH4 and toluene in landfill cover soil (LCS) and waste biocover soil (WBS) was investigated with a serial toluene concentration in the headspace of landfill cover microcosms in this study. Compared with the LCS sample, the higher CH4 oxidation activity and toluene-degrading capacity occurred in the WBS sample. The co-existence of toluene in landfill gas would positively or negatively affect CH4 oxidation, mainly depending on the toluene concentrations and exposure time. The nearly complete inhibition of toluene on CH4 oxidation was observed in the WBS sample at the toluene concentration of ∼ 80,000 mg m(-3), which was about 10 times higher than that in the LCS sample. The toluene degradation rates in both landfill covers fitted well with the Michaelis-Menten model. These findings showed that WBS was a good alternative landfill cover material to simultaneously mitigate emissions of CH4 and toluene from landfills to the atmosphere.

  11. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution

    DEFF Research Database (Denmark)

    Cassini, Filippo; Scheutz, Charlotte; Skov, Bent Henning

    2017-01-01

    Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology, but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi......-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover system was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the commonly observed surface emission hot spot areas resulting from an uGreenhouse gas...... mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology, but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-passive biocover system...

  12. Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate.

    Science.gov (United States)

    Øygard, Joar Karsten; Måge, Amund; Gjengedal, Elin

    2004-07-01

    A worst-case simulation of the mass-balance for metals in the waste deposited during 1 year and the levels of cadmium (Cd), lead (Pb), mercury (Hg), chromium (Cr) and iron (Fe) in the leachate was calculated for four sanitary landfills in Western Norway. Estimates of the levels of metal content in mixed municipal solid waste (MSW) were found by using recent literature values calculated in a mass-balance study at a Norwegian waste incinerator plant. Leachate from the landfills were sampled and analyzed monthly during 1 year, and from these measurements the total annual discharge of the selected metals through the leachate was determined. The levels of the measured heavy metals in the leachate were low. For Cd less than 0.06%, for Pb less than 0.01% and for Hg less than 0.02% of the estimated year's deposited mass of metals were leached from the landfills during the year of investigation. The high retention of these metals are most likely due to sulfide precipitation, but also due to the immobile condition of the metals in their original deposited solid state (plastics, ceramics, etc.). The percentage of Cr leached was relatively higher, but less than 1.0% per year. The mass balance of Fe suggests that this element is more mobile under the prevailing conditions. The percentage of Fe leached varied and was estimated to be between 1.9% and 18%. The present study clearly supports the theory that MSW only to a small extent will lead to discharge of metals if deposited at well-constructed sanitary landfills with top layers.

  13. Microbial methane oxidation as a means of treating residual emissions during passive landfill venting; Mikrobielle Methanoxidation zur Behandlung von Rest-Emissionen bei der passiven Deponieentgasung

    Energy Technology Data Exchange (ETDEWEB)

    Gebert, J.; Groengroeft, A. [Hamburg Univ. (Germany). Inst. fuer Bodenkunde

    2005-07-01

    Microbial oxidation of methane in biofilters provides a way of treating residual or lean gas emissions from landfills whose methane content and quantities no longer meet the minimum requirements for gas utilisation or flaring. In this process methane is oxidised by methanotropic bacteria in the presence of atmospheric oxygen. This yields carbon dioxide, which is less hazardous on account of its nonflammability and lower global warming potential. This contribution describes the methane degradation performance and performance governing factors of a biofilter which was exposed to a passive gas flow and observed over a period of two years.

  14. Experimental Study on Compactness of Clay Liners in Sanitary Landfill%卫生填埋场黏土衬层密实性试验研究

    Institute of Scientific and Technical Information of China (English)

    龚育龄; 叶腾飞; 董路; 汤洪志

    2011-01-01

    开展卫生填埋场中的黏土衬层密实性试验研究对填埋场的工程设计和后期运营具有现实意义.黏土压实的直接影响之一就是孔隙率的减小,并改变黏土的电阻率,为高密度电阻率法在衬层密实性中的调查研究提供了前提条件和物理基础.文章采用高密度电阻率法三种装置(测深、温纳、偶极-偶极)进行对比测量,通过电阻率成像技术对压实黏土的电性特征进行分析研究,确定了偶极-偶极装置反演精度较高.研究结果表明,渗透系数K为1.0×10-6cm/s的电阻率为40 Ω·m左右;K为1.0×10-6 cm/s的电阻率为30 Ω·m左右;K为1.0×10-7 cm/s的电阻率为20 Ω·m左右.%The study on density of clay liners is helpful for design and post-operation of the sanitary landfill. Resistivity change is one of direct impacts of decreasing porosity in compacted clay. The difference of resistivity would provide preconditions and physical basis for high density resistivity method. Three arrays including sounding array, Wenner array and dipole-dipole array were implemented and compared using electrical resistivity tomography technology. Electrical character of the compacted clay was investigated through the performance of resistivity tomography technology, and the inverse results of dipole-dipole array are more accurate. Results indicate that resistivity is about 40 ft'm at hydraulic conductivity of l.OxlO^cm/s, resistivity is about 30 ft*m at hydraulic conductivity of l.OxlO"6 cm/s and resistivity is about 20 ft*m at hydraulic conductivity of 1.0x10-7 cm/s.

  15. Estimating national landfill methane emissions: an application of the 2006 Intergovernmental Panel on Climate Change Waste Model in Panama.

    Science.gov (United States)

    Weitz, Melissa; Coburn, Jeffrey B; Salinas, Edgar

    2008-05-01

    This paper estimates national methane emissions from solid waste disposal sites in Panama over the time period 1990-2020 using both the 2006 Intergovernmental Panel on Climate Change (IPCC) Waste Model spreadsheet and the default emissions estimate approach presented in the 1996 IPCC Good Practice Guidelines. The IPCC Waste Model has the ability to calculate emissions from a variety of solid waste disposal site types, taking into account country- or region-specific waste composition and climate information, and can be used with a limited amount of data. Countries with detailed data can also run the model with country-specific values. The paper discusses methane emissions from solid waste disposal; explains the differences between the two methodologies in terms of data needs, assumptions, and results; describes solid waste disposal circumstances in Panama; and presents the results of this analysis. It also demonstrates the Waste Model's ability to incorporate landfill gas recovery data and to make projections. The former default method methane emissions estimates are 25 Gg in 1994, and range from 23.1 Gg in 1990 to a projected 37.5 Gg in 2020. The Waste Model estimates are 26.7 Gg in 1994, ranging from 24.6 Gg in 1990 to 41.6 Gg in 2020. Emissions estimates for Panama produced by the new model were, on average, 8% higher than estimates produced by the former default methodology. The increased estimate can be attributed to the inclusion of all solid waste disposal in Panama (as opposed to only disposal in managed landfills), but the increase was offset somewhat by the different default factors and regional waste values between the 1996 and 2006 IPCC guidelines, and the use of the first-order decay model with a time delay for waste degradation in the IPCC Waste Model.

  16. Mitigation of methane emissions in a pilot-scale biocover system at the av miljø landfill, denmark: system design and gas distribution

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Skov, B.; Cassini, Filippo

    2013-01-01

    Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-pa...

  17. [Uncertainty analysis for evaluating methane emissions from municipal solid waste landfill in Beijing].

    Science.gov (United States)

    Chen, Cao-Cao; Liu, Chun-Lan; Li, Zheng; Wang, Hai-Hua; Zhang, Yan; Wang, Lu

    2012-01-01

    In order to improve the accurate evaluation of CH4 emissions from municipal solid waste landfill in Beijing, FOD-model and Monte Carlo method were conducted. Based on local data, national data and experts' experience, the uncertainty of FOD-model and parameters' sensitivity analysis were identified. And we quantified effect of various parameters on model output. The results showed that 95% probability distribution range of CH4 emission from landfill was (11.8-19.76) x 10(4) t x a(-1) in Beijing. The mean value was 15.58 x 10(4)t x a(-1) with uncertainty range of -24.26% - 26.83%. Among all the parameters MCF (after 2000) showed the greatest impact on landfill CH4 emission in 2008, and its contribution to the uncertainty of emission result was 41.4%. This research can improve the assessment accuracy and quality on CH4 emission from municipal solid waste landfill in Beijing, as providing scientific basis to improve the landfill greenhouse gas inventory and data collection.

  18. ENGINEERING ASPECTS OF LANDFILLING MUNICIPAL SOLID WASTE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sanitary landfilling is the most important method of municipalsolid waste disposal in China. Landfill sites are always set up in mountain valley, on plain or beside seashore. A complete landfill consists of base system, cover system, and leachate collection and gas extraction system. This paper reviews the state-of-the-art landfilling technology in China and collection discusses research projects for engineers.

  19. A logistic model for the prediction of the influence of water on the solid waste methanization in landfills.

    Science.gov (United States)

    Pommier, S; Chenu, D; Quintard, M; Lefebvre, X

    2007-06-15

    This article deals with the impact of water content of solid waste on biogas production kinetics in landfills. This impact has been proved in the laboratory thanks to anaerobic biodegradation experiments on paper/cardboard waste samples. A strong dependence with the moisture level was observed for both kinetic rates and maximum methane production. In this article, a logistic model is proposed to simulate the biogas production rate. It is chosen as simple as possible in order to allow for a correct identification of the model parameters given the experimental data available. The moisture dependency is introduced through a linear weighing of the biomass specific growth rate and of the amount of accessible organic substrate. It is directly linked to physical properties of the waste: the holding capacity and the minimal moisture level allowing the presence of free water.

  20. Assessment of methane generation, oxidation, and emission in a subtropical landfill test cell.

    Science.gov (United States)

    Moreira, João M L; Candiani, Giovano

    2016-08-01

    This paper presents results of a methane balance assessment in a test cell built in a region with a subtropical climate near São Paulo, Brazil. Measurements and calculations were carried out to obtain the total methane emission to the atmosphere, the methane oxidation rate in the cover, and the total methane generation rate in the test cell. The oxidation rate was obtained through a calculation scheme based on a vertical one-dimensional methane transport in the cover region. The measured maximum and mean methane fluxes to the atmosphere were 124.4 and 15.87 g m(-2) d(-1), respectively. The total methane generation rate obtained for the test cell was 0.0380 ± 0.0075 mol s(-1). The results yielded that 69 % of the emitted methane occurred through the central well and 31 % through the cover interface with the atmosphere. The evaluations of the methane oxidation fraction for localized conditions in the lateral embankment of the test cell yielded 0.36 ± 0.11, while for the whole test cell yielded 0.15 ± 0.10. These results conciliate localized and overall evaluations reported in the literature. The specific methane generation rate obtained for the municipal solid waste with an age of 410 days was 317 ± 62 mol year(-1) ton(-1). This result from the subtropical São Paulo region is lower than reported figures for tropical climates and higher than reported figures for temperate climates.

  1. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover.

    Science.gov (United States)

    Kim, Gil Won; Ho, Adrian; Kim, Pil Joo; Kim, Sang Yoon

    2016-09-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to mitigate CH4 emissions, as well as to prevent water infiltration using vegetation on landfill cover soils. In our previous studies, bottom ash from coal-fired power plants was selected among several industrial residues (blast furnace slag, bottom ash, construction waste, steel manufacture slag, stone powder sludge, and waste gypsum) as the best additive for ET cover systems, with the highest mechanical performance achieved for a 35% (wtwt(-1)) bottom ash content in soil. In this study, to evaluate the field applicability of bottom ash mixed soil as ET cover, four sets of lysimeters (height 1.2m×width 2m×length 6m) were constructed in 2007, and four different treatments were installed: (i) soil+bottom ash (35% wtwt(-1)) (SB); (ii) soil+compost (2% wtwt(-1), approximately corresponding to 40Mgha(-1) in arable field scale) (SC); (iii) soil+bottom ash+compost (SBC); and (iv) soil only as the control (S). The effects of bottom ash mixing in ET cover soil on CH4 oxidation potential and vegetation growth were evaluated in a pilot ET cover system in the 5th year after installation by pilot experiments using the treatments. Our results showed that soil properties were significantly improved by bottom ash mixing, resulting in higher plant growth. Bottom ash addition significantly increased the CH4 oxidation potential of the ET cover soil, mainly due to improved organic matter and available copper concentration, enhancing methanotrophic abundances in soil amended with bottom ash. Conclusively, bottom ash could be a good alternative as a soil additive in the ET cover system to improve vegetation growth and mitigate CH4 emission impact in the waste landfill system. Copyright © 2016

  2. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability.

    Science.gov (United States)

    Henneberger, Ruth; Chiri, Eleonora; Bodelier, Paul E L; Frenzel, Peter; Lüke, Claudia; Schroth, Martin H

    2015-05-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.

  3. Sampling method for the determination of methane emissions from landfill surfaces.

    Science.gov (United States)

    Lucernoni, Federico; Rizzotto, Matteo; Capelli, Laura; Busini, Valentina; Del Rosso, Renato; Sironi, Selena

    2017-08-01

    The first aim of this work is the definition and the study of a suitable sampling method for the measurement of landfill gas (LFG) emissions from landfill surfaces, since, up to now, there are no codified nor universally accepted sampling methods for this specific task. The studied sampling method is based on the use of a static hood. The research work involves a preliminary theoretical study for the hood design, experimental tests for the definition of the optimal sampling procedures, and simulations of the hood fluid-dynamics for the system validation. The second aim of this study is the investigation of the correlations between LFG emissions and meteorological conditions, whose identification would be very useful in terms of effective landfill management and pollution control. This involved a wide literature study for the selection of those parameters that seem to have an influence on LFG emission, and the collection of a great number of experimental data on a target site, which led to the conclusion that atmospheric pressure and soil humidity are the parameters that mostly affect LFG emissions.

  4. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of southern China.

    Science.gov (United States)

    Chi, Zi-Fang; Lu, Wen-Jing; Wang, Hong-Tao

    2015-04-01

    Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes.

  5. Energetic use of biogas from sanitary landfill in Brazil: a technical feasibility study, economic and environmental; Do aproveitamento energetico do biogas em aterros sanitarios no Brasil: um estudo de viabilidade tecnica, economica e ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Fabio Viana de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Power generation through biogas in landfills is a production of clean and renewable energy in order to minimize the global impacts generated by the burning of municipal solid waste. In this article, the operational conditions of biogas are defined, and analyzed the appropriate areas and minimum flow of biogas, in m{sup 3}/h, to enable this type of project. The most significant environmental contribution of this project is to reduce emissions of greenhouse gases (GHG), by converting the methane into carbon dioxide. According to the Clean Development Mechanism (CDM), called developed countries can buy carbon credits from developing countries to meet their environmental goals. This alternative of raising revenue is one of the objects of this study. Are studied energy conversion technologies, with analysis of the best alternative for the conversion of landfill biogas energy. Comparative studies are presented and the results showed that the generating sets, using internal combustion engines (Otto or Diesel cycles) are more viable both technically and economic bias for energy conversion of landfill gas in Brazil through thermoelectric units.

  6. Assessment of methane production from shredder waste in landfills: The influence of temperature, moisture and metals

    DEFF Research Database (Denmark)

    Fathi Aghdam, Ehsan; Scheutz, Charlotte; Kjeldsen, Peter

    2017-01-01

    In this study, methane (CH4) production rates from shredder waste (SW) were determined by incubation of waste samples over a period of 230days under different operating conditions, and first-order decay kinetic constants (k-values) were calculated. SW and sterilized SW were incubated under...

  7. Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas.

    Science.gov (United States)

    Haubrichs, R; Widmann, R

    2006-01-01

    In the long-term, landfills are producing landfill gas (LFG) with low calorific values. Therefore, the utilization of LFG in combined heat and power plants (CHP) is limited to a certain period of time. A feasible method for LFG treatment is microbial CH(4) oxidation. Different materials were tested in actively aerated lab-scale bio-filter systems with a volume of 0.167 m(3). The required oxygen for the microbial CH(4) oxidation was provided through perforated probes, which distributed ambient air into the filter material. Three air input levels were installed along the height of the filter, each of them adjusted to a particular flow rate. During the tests, stable degradation rates of around 28 g/(m(3) h) in a fine-grained compost material were observed at a CH(4) inlet concentration of 30% over a period of 148 days. Compared with passive (not aerated) tests, the CH(4) oxidation rate increased by a factor of 5.5. Therefore, the enhancement of active aeration on the microbial CH(4) oxidation was confirmed. At a O(2)/CH(4) ratio of 2.5, nearly 100% of the CH(4) load was decomposed. By lowering the ratio from 2.5 to 2, the efficiency fell to values from 88% to 92%. By varying the distribution to the three air input levels, the CH(4) oxidation process was spread more evenly over the filter volume.

  8. Landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H. (Crone and Koch, Viborg (Denmark))

    1990-08-01

    In most landfills, the refuse deposit usually has a high content of organic matter consisting of a mixture of household, industrial and garden waste. Immediately after the refuse has been placed in the landfill, aerobic decomposition of the organic waste begins. Once the oxygen has been exhausted, anaerobic decomposition begins. 'Biogas' is produced which has a methane content of approximately 50% and can be used as a fuel. The exploitation of landfill gas for energy purposes was initiated in the USA around 1975 and later in Europe. A landfill gas plant consists of a recovery system and a production system. A recovery system can consist of vertical perforated pipe wells, horizontal perforated pipes or ditches, or membrane covers to collect the generated gas. Under normal conditions it will not be necessary to process the gas except for the removal of water and other impurities (e.g. solid particles) if the gas is to be used in a boiler or engine. In the USA most often only power is produced, whereas in Europe the waste heat is normally exploited, making the plant function as a combined power and heating plant. It is also possible to upgrade the landfill gas to a methane content of nearly 100, after which it can be distributed with natural gas. There are several such plants in the USA. 8 refs., 6 figs., 6 tabs.

  9. Environmental characterization foundry sands used in sanitary landfills; Caracterizacao ambiental de areias descartadas de fundicao utilizadas na cobertura de residuos em aterros sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, L.G.F.; Ferreira, G.C.S.; Pires, M.S.G.; Teixeira, I.; Carnin, R.; Sarro, W.S., E-mail: lucienegferrari@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    The national solid waste policy recommends reducing solid waste generation and reusing them in different applications. Preliminary studies show that the foundry sand generated from cast metal parts undercut, has excellent applicability in grain size stabilization of soils for geotechnical functions, and therefore, should not be discarded as waste. This study aimed at environmental characterization of two lots of waste foundry sand (WFS), from different industries, to the particle size stabilization of a clayey soil for use in coverage of solid waste in landfills. The methodology included physicochemical characterization tests (grain size, permeability, XRF and heavy metals) and environmental (NBR 10004: 2004, NBR 10005: 2004, NBR 10006: 20004 and acute toxicity with Vibrio fischeri). The results prove the environmental viability of using these lots of WFS as functional material in the composition of landfills. (author)

  10. Methane oxidation potential of boreal landfill cover materials: The governing factors and enhancement by nutrient manipulation.

    Science.gov (United States)

    Maanoja, Susanna T; Rintala, Jukka A

    2015-12-01

    Methanotrophs inhabiting landfill covers are in a crucial role in mitigating CH4 emissions, but the characteristics of the cover material or ambient temperature do not always enable the maximal CH4 oxidation potential (MOP). This study aimed at identifying the factors governing MOPs of different materials used for constructing biocovers and other cover structures. We also tested whether the activity of methanotrophs could be enhanced at cold temperature (4 and 12°C) by improving the nutrient content (NO3(-), PO4(3-), trace elements) of the cover material. Compost samples from biocovers designed to support CH4 oxidation were exhibiting the highest MOPs (4.16 μmol CH4 g dw(-1) h(-1)), but also the soil samples collected from other cover structures were oxidising CH4 (0.41 μmol CH4 g dw(-1) h(-1)). The best predictors for the MOPs were the NO3(-) content and activity of heterotrophic bacteria at 72.8%, which were higher in the compost samples than in the soil samples. The depletion of NO3(-) from the landfill cover material limiting the activity of methanotrophs could not be confirmed by the nutrient manipulation assay at 4°C as the addition of nitrogen decreased the MOPs from 0.090 μmol CH4 g dw(-1) h(-1) to 0.096 μmol CH4 g dw(-1)h(-1)) suggesting that this was attributable to stimulation of the enzymatic activity of the psychrotolerant methanotrophs.

  11. Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2O8(2-)) techniques to deal with sanitary landfill leachate.

    Science.gov (United States)

    Hassan, Muhammad; Wang, Xiaoyuan; Wang, Fei; Wu, Dong; Hussain, Asif; Xie, Bing

    2016-09-12

    The aim of this study was to provide an alternative way to remove bio-refractory organics and ammonical-nitrogen from mature municipal solid waste (MSW) landfill leachate by combining biological and photochemical processes. To achieve this objective, the effectiveness of anoxic aged refuse-based bioreactor (ARB) for biological leachate pretreatment followed by Advanced Oxidation Processes (AOPs) by heterogeneous photocatalysis (TiO2/UV) and persulfate (S2O8(2-)) oxidation were tested. The results obtained after ARB based pre-treatment demonstrated a mean 72%, 81% and 92% degradation of COD, NH4N and TN, respectively. However, this treated leachate cannot be discharged without another treatment; hence, it was further treated by UV-mediated TiO2 photocatalysis and S2O8(2-) oxidation. An average 82% of COD was abated at optimum condition (1gL(-1) TiO2; pH 5) whereas, using an optimum 1.5gL(-1) persulfate at pH 5, 81% COD reduction occurred. Acidic and alkaline pH favored COD and NH4N removal respectively. The results of this study demonstrated that coupling ARB with AOPs is potentially applicable process to deal with bio-recalcitrant compounds present in mature landfill leachate.

  12. On optimization design for a flood intercepting trench of solid waste sanitary landfill in Shaanxi province%陕西省某生活垃圾卫生填埋场泄洪沟设计分析

    Institute of Scientific and Technical Information of China (English)

    赵丰毅; 张莉平; 曹叶; 文国庆; 袁莹

    2012-01-01

    西北地区山谷形垃圾填埋场一般具有汇水面积大、土质疏松、易发生山体垮塌等特点,因而需进行降水拦截导排。以实际工程设计为基点,结合当地条件进行了基本参数的选取、断面比选、出口形式选择、消力区段设计计算等。针对场区地形高差大、坡度陡实际情况,给出了陡坡段消力设计计算的一般方法。%Valley-shaped solid waste sanitary landfill in northwest has generally the characteristics of large catchment area, loose soil and high incidence of mountain collapse, therefore, it is required to discharge the rainfall humanly. Based on the actual engineering design and combined with the local conditions, the selection of basic parameters, the choice of the section, outlet of the ditches and the calculation of hydraulic drop pipeline are discussed. According to the actual situation of high level difference and slope, general design and calculate method on hydraulic drop pipeline in slope area is given, and as well as a summary.

  13. 高安屯卫生填埋场刚性调节池除臭新工艺的应用%Application of Deodorant Technology in Regulating Pond of Gao'antun Waste Sanitary Landfill Site

    Institute of Scientific and Technical Information of China (English)

    王志茹; 彭旭阳; 任丽梅

    2012-01-01

    介绍了北京市朝阳区高安屯填埋场调节池除臭新工艺,即在原有设备基础上增加调节池密闭性,并抽出调节池内部臭气作为火炬助燃空气对调节池臭气进行除臭,实践证明该工艺可有效解决调节池除臭问题,满足GB14554-1993排放要求;且系统运行安全有效、成本较低.%The deodorant technology of regulating pond in Chaoyang District Gao'antun Waste Sanitary Landfill Site of Beijing was introduced. That is to say, the deodorant technology improved the leakproofness of regulating pond based on existing deodorant equipment, and extracted the air inside the regulation pond as combustion air for small torch system to deodorant. The project has been proved that it can effectively solve the deodorant problem for regulation ponds, and meet the emission requirements of GB 14554-1993. The system is safe and effective, and has low costs.

  14. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    Science.gov (United States)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and

  15. Landfill gas from environment to energy

    Energy Technology Data Exchange (ETDEWEB)

    Gendebien, A.; Pauwels, M.; Constant, M.; Ledrut-Damanet, M.J.; Nyns, E.J. [Louvain Univ. (Belgium); Fabry, R.; Ferrero, G.L. [Commission of the European Communities, Brussels (Belgium); Willumsen, H.C.; Butson, J.

    1992-11-01

    Landfill gas is an alternative source of energy which can be commercially exploited wherever municipal solid wastes are disposed of in sanitary landfills. In this context, it was decided to launch a comprehensive study on the subject of energy valorization of landfill gas. The main topics dealt with in the study, which is supported by a comprehensive literature survey and six detailed case-studies, include; (i) the environmental impact of landfill gas, (ii) the process of landfill gas genesis and the technology of landfill gas control by its exploitation, (iii) the monitoring of landfill gas emissions, (iv) the policies and legal aspects of landfill gas in the European Community and in the world, (v) the estimation of landfill gas potentials and economics of landfill gas control and exploitation, (vi) the status of landfill gas exploitation in the European Community and in the world. (authors). refs., figs., tabs.

  16. Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale.

    Science.gov (United States)

    Vilar, Vítor J P; Rocha, Elisangela M R; Mota, Francisco S; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R

    2011-04-01

    A solar photo-Fenton process combined with a biological nitrification and denitrification system is proposed for the decontamination of a landfill leachate in a pilot plant using photocatalytic (4.16 m(2) of Compound Parabolic Collectors - CPCs) and biological systems (immobilized biomass reactor). The optimum iron concentration for the photo-Fenton reaction of the leachate is 60 mg Fe(2+) L(-1). The organic carbon degradation follows a first-order reaction kinetics (k = 0.020 L kJ(UV)(-1), r(0) = 12.5 mg kJ(UV)(-1)) with a H(2)O(2) consumption rate of 3.0 mmol H(2)O(2) kJ(UV)(-1). Complete removal of ammonium, nitrates and nitrites of the photo-pre-treated leachate was achieved by biological denitrification and nitrification, after previous neutralization/sedimentation of iron sludge (40 mL of iron sludge per liter of photo-treated leachate after 3 h of sedimentation). The optimum C/N ratio obtained for the denitrification reaction was 2.8 mg CH(3)OH per mg N-NO(3)(-), consuming 7.9 g/8.2 mL of commercial methanol per liter of leachate. The maximum nitrification rate obtained was 68 mg N-NH(4)(+) per day, consuming 33 mmol (1.3 g) of NaOH per liter during nitrification and 27.5 mmol of H(2)SO(4) per liter during denitrification. The optimal phototreatment energy estimated to reach a biodegradable effluent, considering Zahn-Wellens, respirometry and biological oxidation tests, at pilot plant scale, is 29.2 kJ(UV) L(-1) (3.3 h of photo-Fenton at a constant solar UV power of 30 W m(-2)), consuming 90 mM of H(2)O(2) when used in excess, which means almost 57% mineralization of the leachate, 57% reduction of polyphenols concentration and 86% reduction of aromatic content. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Yolo County controlled landfill project

    Energy Technology Data Exchange (ETDEWEB)

    Augenstein, D. [IEM, Palo Alto, CA (United States); Yazdani, R.; Dahl, K.; Mansoub, A.; Moore, R. [Yolo County Department of Public Works, Davis, CA (United States); Pacey, J. [Emcon, San Mateo, CA (United States)

    1999-07-01

    A new landfill management approach controlled landfilling is being demonstrated by the Yolo County, California Department of Public Works at the Yolo County Central Landfill (YCCL) near Davis. Overall objectives are to obtain earlier and greater methane energy recovery from landfilled waste and to reduce landfill greenhouse gas emissions to near-negligible levels. Methane generation and waste stabilization were accelerated by improving biological conditions within a test cell through carefully controlled additions of water and leachate. A control cell was operated in parallel. Landfill gas capture was maximized, with emissions reduced to minimal levels, by a combination of surface membrane containment, a permeable layer conducting gas to collection points, and operation at slight vacuum. Cells are highly instrumented to determine performance. To date, normalized methane recovery is the highest seen from such a large waste mass, anywhere - about ten times that from conventional landfall practice. The rationale and details of this project, and first three years' results, are summarized. (author)

  18. Microbial reduction of methane emissions. Subproject 1: Development of a biofilter system for the degradation of methane, odours and trace gases for actively vented landfills. Subproject 2: Development of a biofilter system for the degradation of methane, odours and trace gases for passively vented landfills. Subproject 3: Planning, development and realisation of medium and large scale biofilter plants at active and passive gas drainage systems. Final report; Mikrobielle Verminderung von Methanemissionen. Teilvorhaben 1: Entwicklung eines Biofilterverfahrens zum Abbau von Methan, Geruechen und Spurengasen bei der aktiven Deponieentgasung. Teilvorhaben 2: Entwicklung eines Biofilterverfahrens zum Abbau von Methan, Geruechen und Spurengasen bei der passiven Deponieentgasung. Teilvorhaben 3: Planung, Entwicklung und Realisation halb- und grosstechnischer Biofilteranlagen an aktiven und passiven Entgasungssystemen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, R.; Streese, J.; Dammann, Bernd; Gebert, J.; Groengroeft, A.; Miehlich, G.; Schulze, H.; Berndt, M.

    2003-07-01

    Old landfills may emit considerable amounts of methane, carbon dioxide and trace gases. However, gas flow rate and methane content are usually too low for energetic utilization or flaring of the landfill gas. Microbial degradation is considered an alternative treatment for the reduction of methane emissions from those sites. The project aimed in the investigation of the suitability of actively vented biofilters for this purpose and the collection of operational experience and dimensioning data for large scale applications of the process. Different experimental plants were operated in laboratory scale (filter volume: 60 L) and container scale (filter volume: 4 m{sup 3}). The laboratory scale plant was operated with synthetic methane, whereas the container scale plant was set up at an old landfill and operated with real landfill gas. For each plant, the gas was diluted with ambient air prior to feeding into the closed biofilters, thus sufficient oxygen for methane oxidation was present throughout the filter material. At first, fine-grained compost as biofilter material was investigated. A biofilter unit of 15 m{sup 3} size containing porous clay pellets as filter material was integrated into the recultivation layer of a Hamburg harbour sludge landfill. The parameters of landfill gas emission as well as the abiotic parameters of biofilter operation were monitored by a high-resolution automatic data collection system and gas distribution and gas emissions via the biofilter surface measured regularly. In addition, microbiological laboratory studies and studies concerning physical questions of biofilter operations were conducted. (orig.)

  19. Superficial methane emissions from a landfill in Merida, Yucatan, Mexico; Emisiones superficiales de metano en un relleno sanitario en Merida, Yucatan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sauri-Riancho, Maria Rosa [Universidad Autonoma de Yucatan, Yucatan (Mexico)]. E-mail: sriancho@uady.mx; Stentiford, Edward I. [University of Leeds (UK)]. E-mail: e.i.stentiford@leeds.ac.uk; Gamboa-Marrufo, Mauricio; Reza-Bacelis, Gabriela; Cahuich-Poot, Nayla; Mendez-Novelo, Roger [Universidad Autonoma de Yucatan, Yucatan (Mexico)]. E-mails: gmarrufo@uady.mx; gabriela.reza@proactiva.com.mx; nayre63@hotmail.com; mnovelo@uady.mx

    2013-07-15

    On worldwide scale, one of the most important anthropogenic methane sources is landfill disposal for solid wastes. The main goal of this work was to quantify methane emissions at one landfill built in Merida, Mexico. This site had venting wells by which a passive control for biogas movement was exerted. At the venting wells, methane concentrations were measured monthly during a 6 months period. Methane surface emission rate was estimated with the close chamber technique. Obtained results indicated that there are both spatial and seasonal variations in biogas composition. The average methane value during the monitoring period was 21.9% (12.7 to 32.5 V/V) and the surface flow rate was in the range of 0 to 6,004 g CH{sub 4} m-2 d-1, with an average value of 1,480 g CH{sub 4} m-2 d-1, which is a high value in respect to these reported in publications. [Spanish] Entre las fuentes antropogenicas mas importantes de metano a escala mundial se encuentra la disposicion final de los residuos solidos. El objetivo de este trabajo fue cuantificar las emisiones de metano provenientes de un relleno sanitario en Merida, Mexico, en el que el movimiento del biogas se controlaba pasivamente utilizando pozos de venteo. Las concentraciones de metano se midieron mensualmente en los pozos de venteo del sitio a lo largo de un periodo de 6 meses. La tasa de emision superficial de metano se determino utilizando la tecnica de camara cerrada. Los resultados indicaron que existen variaciones considerables tanto espaciales como estacionales de la composicion del biogas proveniente de los pozos de venteo con un promedio de concentracion de metano en el sitio, durante todo el periodo de monitoreo, de 21.9% (12.7 a 32.5 V/V). Los flujos superficiales de gas medidos en diversos puntos a lo largo de la superficie del relleno sanitario tuvieron un promedio de 1,480 g CH{sub 4} m-2 d-1, lo que se considero un valor muy alto cuando se comparo con la informacion hallada en la literatura. El intervalo

  20. Landfill leachate treatment in assisted landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    HE Pin-jing; QU Xian; SHAO Li-ming; LEE Duu-jong

    2006-01-01

    Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95%(61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas.

  1. Research Progress on Methanotrophic Bacteria in Landfills and the Reduction of Methane Emission%垃圾填埋场甲烷氧化菌及甲烷减排的研究进展

    Institute of Scientific and Technical Information of China (English)

    王晓琳; 曹爱新; 周传斌; 赵恺凝; 赵国柱

    2016-01-01

    As the main source of anthropogenic methane emission,landfills globally produce 35-69 Tg methane per year. The technology of reducing the methane emission in landfills has become a hot topic at present. Methanotrophic bacteria decomposing methane are the important biological collection to reduce atmospheric methane emissions,which is of significance in keeping the balance of the methane concentration in the atmosphere. Starting from the taxonomy and characteristics of methanotrophic bacteria,and the mechanism of its oxidizing methane, we summarized the latest research progress on the methods of studying diversity,factors affecting the activities of methanotrophic bacteria in landfills,and applications of them in the biological reduction of methane emission. Based on the prior researches,the issues in current studies of methanotrophic bacteria are also discussed. We propose comprehensive measures of utilizing the complex microbial agents of methanotrophic bacteria in landfills,providing a new thought in the research and application of reducing methane emission in landfills.%垃圾填埋场是全球最重要的人为甲烷排放源之一,其全球年甲烷释放量为35-69 Tg,垃圾填埋场甲烷减排是目前全球温室气体研究的热点。甲烷氧化菌能够氧化分解甲烷,作为减少大气甲烷排放的重要生物汇,对保持大气中甲烷浓度的平衡具有重要意义。从甲烷氧化菌的类型及其特征、甲烷氧化机理着手,介绍了多样性研究方法、填埋场中甲烷氧化菌的活性影响因素及甲烷生物减排应用等最新研究进展。在综述前人研究的基础上,探讨了目前研究的不足,提出了利用甲烷氧化菌复合微生物菌剂等综合处理措施,旨为垃圾填埋场甲烷减排的研究和应用提供新的思路。

  2. Management of Leadchate from Army Sanitary Landfills.

    Science.gov (United States)

    1986-07-01

    C0ONTAINNENT X x X X X COLLECTION SYSTEM LEACHATE TREATMENTxx -PROCESSES A GAS CONTROL SYSTEMS x x x GROUNDWATER RENOVATION TECHNOLOGIES x x x x 28 5 LEACHATE...Horace R. Collins Director Ohio Div. of Geol. Survey Servicio Geologico de P.R. Fountain Square, Bldg. B Dept. de Recursos Naturales Columbus, OH

  3. Study of the environmental effects of sanitary landfill in Pinto, Madrid (Spain); Estudio de la influencia del vertedero de residuos solidos urbanos de Pinto (Comunidad de Madrid) y su entorno

    Energy Technology Data Exchange (ETDEWEB)

    Dorronsoro, J.L.; Carreras, N.; Sanchez, D.M.; Quejido, A.; Sanchez, M.; Herranz, I.; Fernandez, M.E.

    1996-10-01

    Here we report the results obtained in the studies of the environmental affection of a municipal solid waste (MSW) Landfill (Pinto, spain). For this purpose samples of waters, soils, sediments, vegetation and leachates were analyzed during three years (1990-1993). The results do not indicate environmental affection, due to the favourable situation (low permeability and runoff and low population density) of the landfill.

  4. Methodology for environmental diagnosis of sanitary landfills: Data during 2003; Metodologia de diagnostico ambiental de vertederos como herramienta en la planificacion ambiental. Datos obtenidos en el Observatorio sobre Vertederos de residuos de 2003

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte, J.

    2003-07-01

    Lack of data regarding environmental matters in relation to the great majority of MSW landfills throughout Spanish territory makes it difficult to consider them suitable for exploitation or territorial expansion required for different activities demanded by society. The environmental risk of a landfill must be minimised with the help of environmental planning tools. One of these tools is based on the environmental diagnosis and characterisation of the areas affected by the solid waste deposit.. Diagnosis by means of quantifiable environmental indexes helped us in our work to determine the priorities for the environmental control of certain Spanish landfills. This diagnosis was used for creating the Observatory on Solid Waste Landfills, organized by ATEGRUS (Spanish Technical Association for Waste Management) in 2003 and presented at ATEGRUS 30th Annual conference on Controlled Landfills. (Author)

  5. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedersen, Rasmus Broen; Petersen, Per Haugsted

    2014-01-01

    as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux...... chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis...... indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options....

  6. Experiences of closing in sanitary landfills with geosynthetics clay liners and geocomposites drainage products in Spain and Portugal; Experiencias de sellado de vertederos con geocompuestos impermeabilizantes y drenantes en Espana y Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Abad, P. L.

    2002-07-01

    Since the EC presents the Directive 1999/31 in reference with waste disposal, most of od landfills are closing and new landfills according with this directive are constructing. For this landfill closures, the best experienced solution, not only technically, even financially, is the use of geo synthetics clay liners and geo composites drainage products. Installation facilities are cheaper and the installation times are reduced, even slope stability are improved with this solution. The experience obtained during last years in Spain and Portugal are the purpose of this article. (Author)

  7. Use of CFD for static sampling hood design: An example for methane flux assessment on landfill surfaces.

    Science.gov (United States)

    Lucernoni, Federico; Rizzotto, Matteo; Tapparo, Federica; Capelli, Laura; Sironi, Selena; Busini, Valentina

    2016-11-01

    The work focuses on the principles for the design of a specific static hood and on the definition of an optimal sampling procedure for the assessment of landfill gas (LFG) surface emissions. This is carried out by means of computational fluid dynamics (CFD) simulations to investigate the fluid dynamics conditions of the hood. The study proves that understanding the fluid dynamic conditions is fundamental in order to understand the sampling results and correctly interpret the measured concentration values by relating them to a suitable LFG emission model, and therefore to estimate emission rates. For this reason, CFD is a useful tool for the design and evaluation of sampling systems, among others, to verify the fundamental hypotheses on which the mass balance for the sampling hood is defined. The procedure here discussed, which is specific for the case of the investigated landfill, can be generalized to be applied also to different scenarios, where hood sampling is involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils.

    Science.gov (United States)

    Bogner, Jean E; Spokas, Kurt A; Chanton, Jeffrey P

    2011-01-01

    Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (types, including both final covers, averaging 200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers.

  9. The impact of daily covers on sidewall leakage in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Welker, A. L. [Villanova Univ., Dept. of Civil Engineering, PA (United States)

    2000-09-01

    Typically, sanitary landfills are covered by 15 cm of locally available soil on a daily basis. This practice is intended to limit short term negative effects of the waste material on the above-ground environment such as odor, fire, or vermin attraction. Daily placement of compacted soil creates low hydraulic conductivity stratifying layers within the landfill which, in due course, may result in side-slope seepage, decreased stability and decreased efficiency of methane gas venting. The expense of soil acquisitions and the the diminishing availability of landfill space increases the need for alternative materials to replace the daily cover. This paper examines the the threat of sidewall landfill leakage for a hypothetical landfill with traditional soil cover and an alternative daily cover, to demonstrate that the threat of sidewall leakage is real and can be decreased with the use of alternative material as the daily cover such as crushed glass, sludge from waste-water treatment plants, industrial waste, foams and various geosynthetics. At the same time, results of the modelling study showed that with proper drainage sidewall seepage will not occur even with a daily cover that has a hydraulic conductivity two orders of magnitude smaller than the waste, despite positive pressure building up on top of the daily cover. These results imply that the threat of sidewall leakage is minimal, and while alternative daily cover material would help to reduce it even further, their use is most likely to be the result of economic, not technical, considerations. 12 refs., 3 tabs., 4 figs.

  10. DETERMINATON OF ORGANIC MATTER PRESENT IN URBAN WASTE RESIDUE FROM A SANITARY LANDFILL USING THERMOGRAVIMETRIC CURVES: THE CASE OF SÃO CARLOS = DETERMINAÇÃO POR TERMOGRAVIMETRIA (TG DA MATÉRIA ORGÂNICA PRESENTE EM AMOSTRA DE RESÍDUO SÓLIDO URBANO DE ATERRO SANITÁRIO: O CASO DE SÃO CARLOS

    Directory of Open Access Journals (Sweden)

    Valdir Schalch

    2008-01-01

    Full Text Available The excessive amount of household waste produced by the population is generally deposited in sanitary landfills. Most of this waste is composed of organic matter, followed by paper and cardboard, plastic, metal and others. After the waste is covered with soil in the landfill, the organic matter begins to decompose, producing several organic compounds, among them the organic acids and acetates. Thermal analysis and Atomic Absorption Spectrometry, which are Analytic Chemistry resources, as well as the dust x-rays method of analysis, were used in this study to identify the amount of organic matter, the kind of residue, and the metals present in a sample from a sanitary landfill. The results of the Thermogravimetric (TG analysis curves generated information about dehydration, thermal stability, thermal decomposition, and the amount of organic matter present in urban solid waste that had been deposited in the landfill for four years. = A quantidade excessiva de resíduo sólido domiciliar gerado pela população é em geral disposta em aterros sanitários. A maior parte desse resíduo é constituída de matéria orgânica seguido de papel e papelão, plástico, metal e outros. Após a cobertura do lixo com terra nos aterros, a matéria orgânica começa a se decompor gerando diversos compostos entre eles os ácidos orgânicos e acetatos. A Análise Térmica e a Espectrometria de Absorção Atômica, que são recursos da Química Analítica, bem como a análise de raios X método de pó foram usadas neste trabalho, visando identificar a quantidade de matéria orgânica, o tipo de resíduo final e a presença de metais em amostra retirada de aterro sanitário. O resultado da análise Termogravimétrica (TG forneceu informações sobre a desidratação, estabilidade térmica, decomposição térmica e a quantidade de matéria orgânica presente no resíduo sólido urbano (RSU, após quatro anos de disposição no aterro sanitário de São Carlos, SP.

  11. Mathematical modelization of physical process of biogas migration in sanitary landfills of urban solid wastes; Modelizacion matematica del proceso fisico de migracion del biogas en vertederos controlados de R.S.U

    Energy Technology Data Exchange (ETDEWEB)

    Maranon Maison, E.; Sastre Andres, H.; Martin Gonzalez, S.

    1997-09-01

    An analysis of the laws that govern the biogas movements inside the landfill is carried out. The mathematical equations needed to resolve the problem are studied. Then, a model is defined and used to calculate the biogas movements in several situations. The results obtained are contrasted with data from the bibliography and with tests carried out at the La Zoreda, Landfill (Asturias Spain). (Author) 11 refs.

  12. Methane production in anaerobic digestion of organic waste from Recife (Brazil landfill: evaluation in refuse of diferent ages

    Directory of Open Access Journals (Sweden)

    W. N. Schirmer

    2014-06-01

    Full Text Available This work focuses on monitoring the generation of biogas by biochemical methane potential (BMP assays, commonly used to assess anaerobic biodegradability of solid and liquid wastes under controlled conditions. The experiment employed 5 g of substrate of both refuses (fresh and one-year-old wastes, digested with 250 mL of inoculum in 1 L flasks as bioreactors (all of them in triplicate, operating under batch conditions at ± 35 ºC. Despite the difference of age of both refuses evaluated, there was no significant differences in volume (near 1800 mL and composition (55% methane of biogas generated in 80 days of incubation under mesophilic conditions. The important parameters of both refuses (such as moisture content, volatile solids and chemical oxygen demand also showed very similar initial values.

  13. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  14. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    Science.gov (United States)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  15. Simulation model for oxygen consumption flux and prediction of methane oxidation in landfill cover soil%覆盖层氧气消耗通量模型及甲烷氧化能力预测

    Institute of Scientific and Technical Information of China (English)

    邢志林; 赵天涛; 陈新安; 车轮; 张丽杰; 全学军

    2015-01-01

    填埋场覆盖层生物气扩散规律和甲烷氧化能力的评估是甲烷减排研究的重要组成部分。以数值模拟方法分析了氧气在覆盖层中的扩散规律,得到了指数方程形式的氧气扩散模型(R2范围0.8941~0.9975);通过检测有机碳和甲烷浓度变化进一步考察了模拟覆盖层不同深度的甲烷氧化能力,证实了在0.05~0.25 m范围内甲烷氧化活性最高;以Fick定律和轴向扩散模型推导了模拟覆盖层中氧气消耗通量模型,该模型计算得到的氧气消耗通量与覆盖层中微生物甲烷氧化经验方程相比无显著差异;结合以上模型推演出覆盖层甲烷消耗通量模型,与实际检测值相比,预测结果理想(R2=0.9983)。该成果可为揭示填埋场覆盖层生物气扩散规律、强化甲烷氧化能力以及预测甲烷排放提供新的思路和理论依据。%Diffusion process of biogas and evaluation of methane oxidation in landfill cover soil are important parts of research on methane emission. Diffusion process of oxygen in landfill cover soil was analyzed by simulation, and an oxygen diffusion model fitted by exponential equation (0.8941methane oxidation in different landfill cover depths was also investigated by analyzing organic carbon and monitoring methane concentration. The most intensive methane oxidation occurred at the layer of 0.05—0.25 m. An oxygen consumption flux model in landfill cover was derived on the basis of Fick’s law and axial dispersion model. There was no significant difference between fitted values by oxygen consumption flux model and derived values by empirical equation of biological methane oxidation. Based on the above model, a methane consumption flux model was derived finally, and the prediction was consistent with detection. These results provided new ideas and theoretical basis for revealing biogas diffusion process in landfill cover soil

  16. The use of sewage sludges from waste water treatment plants for re-vegetation of sanitary landfills; Aplicacion de lodos de depuradora procedentes de aguas residuales urbanas en la revegetacion de vertederos de RSU

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, F. I.; Camarero, J. G.; Morenilla Martinez, J. J.; Bernacer Bonora, I.; Herrero Chamorro, O.; Amores Blasco, S.; Fernandez, C.; Codoner, M. A.

    1999-08-01

    The use of forest soil for re vegetating sealed urban landfills is a practice leading to economic and environmental problems. Recently, it has been demonstrated a suitable technique for minimizing soil needs in re-vegetation of closed urban landfill in which, the layer of fertile soil usually added for plants to settle and develop in such degraded substrate is replaced by a layer of the degraded soil amended with anaerobic sewage sludge. In this work we expose the phases and the design for the implementation of a pilot project for the re-vegetation with this procedure of a closed landfill of municipal solid wastes managed by GIRSA, in a collaborative research between CIDE (CSIC-UVEG-GV), Entidad Publica de Saneamiento de Aguas Residuales de la Comunidad Valenciana and DAM, S.L. The closed landfill has a surface of 2,6 ha and its re-vegetation will be carried out by introducing native plants (annuals, bush and trees) after incorporation into the degrades soil of the anaerobic sewage sludge at the single dose of 60 tn/ha. Twelve plots of 20 m by 8 m will be employed to a quarterly research of the effects on the soil and on the introduced vegetation of three doses (0,60, 120 tn/ha) of the anaerobic sewage sludge. (Author) 17 refs.

  17. Application of urban waste water sludge in revegetation of sanitary landfills; Aplicacion de lodos de depuradora procedentes de aguas residuales urbanas en la revegetacion de vertederos de RSU (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ingelmo Sanchez, F.; Garcia Camarero, J.; Morenilla Martinez, J. J.; Bernacer Bonora, I.; Herrero Chamorro, O.; Amores Blasco, S.

    2000-07-01

    The use of forest soil for re vegetating sealed urban landfills is a practice leading to economic and environmental problems. Recently, it has been demonstrated a suitable technique for minimizing soil needs in the re-vegetation of a closed urban landfill which, the layer of fertile soil usually added for plants to settle and develop in such degraded substrate is replaced by a layer of the degraded soil amended with urban anaerobic sewage sludges. In this work we expose the firsts results of a pilot project for the re-vegetation with this procedure of a closed landfill of municipal solid wastes managed by the company Gestion Integral de Residuos in a collaborative research among the Centro de Investigaciones sobre Desertificacion, the Entidad Publica de Saneamiento de Aguas Residuales de la Comunidad Valenciana and the company Depuracion de Aguas del Mediterraneo. The closed landfill has a surface of 2,6 ha and its re-vegetation will be carried out by introducing native plants (annuals, busch and trees) after incorporation into the degraded soil of the anaerobic sewage sludge at the single dose of 60 tn/ha. (Author) 3 refs.

  18. The implementation of artificial neural networks to model methane oxidation in landfill soil covers[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, A.; Albanna, M.; Warith, M. [Ottawa Univ., ON (Canada). Faculty of Civil and Environmental Engineering

    2009-07-01

    The disposal of solid waste significantly contributes to the total anthropogenic emissions of methane (CH{sub 4}), a greenhouse gas that negatively affects climate change. The oxidation of methane in landfill bio-covers takes place through the use of methanotrophic bacteria which provides a sink for methane. The rate at which methane is biologically oxidized depends on several parameters. This study provided a better understanding of the oxidation of methane in landfill soil covers through modeling methane oxidation with artificial neural networks (ANNs). An ANN was trained and tested to model methane oxidation in various batch scale systems for 3 types of soils. Input data consisted of temperature, moisture content, soil composition and the nutrient content added to the system. Model results were in good agreement with experimental results reported by other researchers. It was concluded that the use of ANNs to model methane oxidation in batch scale bio-covers can address the large number of complicated physical and biochemical processes that occur within the landfill bio-cover. 10 refs., 7 tabs., 5 figs.

  19. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities......-circuiting. In the final section different existing hydrological models for landfills are presented with a special focus on the HELP model. This model is the most widely used tool for the prediction of leachate quantities in landfills, and for the sizing of leachate control and management infrastructure....

  20. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities......-circuiting. In the final section different existing hydrological models for landfills are presented with a special focus on the HELP model. This model is the most widely used tool for the prediction of leachate quantities in landfills, and for the sizing of leachate control and management infrastructure....

  1. Controlled landfill project, Yolo County, California

    Energy Technology Data Exchange (ETDEWEB)

    Augenstein, D.C.; Benemann, J.R. [Inst. for Environmental Management Inc., Palo Alto, CA (United States); Yazdani, R.; Kieffer, J.; Akau, H. [Yolo County Dept. of Public Works, Woodland, CA (United States)

    2004-07-01

    Controlled bioreactor landfill tests were conducted at the Central Landfill in Yolo County, California to determine how to maximize methane recovery for energy use while minimizing methane emissions to the atmosphere. Landfill gas has the potential to contribute 1 per cent to the total electricity supplies in the United States. The failure to use methane to its potential is due to unpredictability, variability and slow rates of production and low recovery factors of landfill methane. The main challenge lies in accelerating the biological decomposition and treatment of the municipal solid waste (MSW). The breakdown rate of MWS can be increased through the use of basic landfill biochemical engineering methods. This study demonstrated the influence of adding supplemental water and leachate to the MSW. Moisture, temperature and gas pressures were recorded throughout the waste mass. This study also focused on eliminating volatile organic compounds, reducing the costs for post-closure landfill care, improving the economics of scale for energy use, improving leachate quality and reducing the costs for off-site disposal of landfill leachate. It was shown that methane capture was maximized when a surface membrane was placed over a permeable layer and when the bioreactor was operated at a slight vacuum. Accelerated methane production and waste reduction were noted in the enhanced test cell. The first order rate constant for methanogenesis was about 0.45 per year. The control cell stopped producing gas after one year. 12 refs., 4 figs.

  2. Microbiological indication of municipal solid waste landfill non-stabilization

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qi-xing; SYLVESTER Runyuzi; YU Ji-yu; ZHANG Qian-ru

    2004-01-01

    Accidental collapse resulted from unstable factors is an important technological problem to be solved in sanitary landfill. Microbiological degradation of organic matters in landfilled solid waste are an important unstable factor. A landfill reactor was thus manufactured and installed to examine quantitative and population dynamics of microorganisms during degradation of landfilled solid waste. It was showed that unstable landfill can be reflected and indicated by microbiological features such as rapidly decreased growth amount of microorganisms, no detection of fungi and actinomyces, and changing the dominant population into methanogenic bacteria and Acinotobacter.

  3. Results of coalbed-methane drilling, Meadowfill Landfill, Harrison County, West Virginia: Chapter G.4 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Trippi, Michael H.; Fedorko, Nick; Grady, William C.; Eble, Cortland F.; Schuller, William A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The U.S. Environmental Protection Agency funded drilling of a borehole (39.33889°N., 80.26542°W.) to evaluate the potential of enhanced coalbed-methane production from unminable Pennsylvanian coal beds at the Meadowfill Landfill near Bridgeport, Harrison County, W. Va. The drilling commenced on June 17, 2004, and was completed on July 1, 2004. The total depth of the borehole was 1,081 feet (ft) and contained 1,053.95 ft of Pennsylvanian coal-bearing strata, and 27.05 ft of Mississippian strata.

  4. Ammonia release and conversion in bioreactor landfill simulators

    Energy Technology Data Exchange (ETDEWEB)

    Lubberding, H.; Valencia, R.; Salazar, R.; Lens, P.

    2009-07-01

    Bioreactor landfills are considered to be an improvements to normal sanitary landfills, because the Municipal Solid Waste is stabilised faster and the biogas is produced in a shorter period of time (Valencia et al 2008a, b). In spite of these advantages, it is still difficult to reach within 30 years a safe status of the landfill due to the elevated NH{sub 4}{sup +} levels (up to 3 g/L) in the leachate. (Author)

  5. Climate co-benefits of energy recovery from landfill gas in developing Asian cities: a case study in Bangkok.

    Science.gov (United States)

    Menikpura, S N M; Sang-Arun, Janya; Bengtsson, Magnus

    2013-10-01

    Landfilling is the most common and cost-effective waste disposal method, and it is widely applied throughout the world. In developing countries in Asia there is currently a trend towards constructing sanitary landfills with gas recovery systems, not only as a solution to the waste problem and the associated local environmental pollution, but also to generate revenues through carbon markets and from the sale of electricity. This article presents a quantitative assessment of climate co-benefits from landfill gas (LFG) to energy projects, based on the case of Bangkok Metropolitan Administration, Thailand. Life cycle assessment was used for estimating net greenhouse gas (GHG) emissions, considering the whole lifespan of the landfill. The assessment found that the total GHG mitigation of the Bangkok project would be 471,763 tonnes (t) of carbon dioxide (CO(2))-equivalents (eq) over its 10-year LFG recovery period.This amount is equivalent to only 12% of the methane (CH(4)) generated over the whole lifespan of the landfill. An alternative scenario was devised to analyse possible improvement options for GHG mitigation through LFG-to-energy recovery projects. This scenario assumes that LFG recovery would commence in the second year of landfill operation and gas extraction continues throughout the 20-year peak production period. In this scenario, GHG mitigation potential amounted to 1,639,450 tCO(2)-eq during the 20-year project period, which is equivalent to 43% of the CH(4) generated throughout the life cycle. The results indicate that with careful planning, there is a high potential for improving the efficiency of existing LFG recovery projects which would enhance climate co-benefits, as well as economic benefits. However, the study also shows that even improved gas recovery systems have fairly low recovery rates and, in consequence, that emissions of GHG from such landfills sites are still considerable.

  6. DEP Reported Sanitary Sewer Overflows

    Data.gov (United States)

    Montgomery County of Maryland — Sanitary sewer overflows reported to the Department of Environmental Protection by the Washington Suburban Sanitary Commission or individuals in the County. Update...

  7. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    Science.gov (United States)

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  8. Quantifying landfill biogas production potential in the U.S.

    Science.gov (United States)

    This study presents an overview of the biogas (biomethane) availability in U.S. landfills, calculated from EPA estimates of landfill capacities. This survey concludes that the volume of landfill-derived methane in the U.S. is 466 billion cubic feet per year, of which 66 percent is collected and onl...

  9. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  10. Desempenho operacional e ambiental de unidades de reciclagem e disposição final de resíduos sólidos domésticos financiadas pelo ICMS Ecológico de Minas Gerais Operational and environmental performance of sanitary landfills and recycling facilities supported by the Ecological ICMS in Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    José Francisco do Prado Filho

    2007-03-01

    Full Text Available Este estudo avalia sistemas de reciclagem e de disposição de resíduos sólidos domésticos que possuem incentivos fiscais definidos pela Lei Estadual nº 13.803/2000 de Minas Gerais. A pesquisa foi desenvolvida por análise de documentação de licenciamento ambiental de aterros sanitários e usinas de reciclagem e compostagem de resíduos financiados pela referida Lei e por visitas às unidades sanitárias, sendo usados os instrumentos metodológicos da agência ambiental do Estado de São Paulo (CETESB que avaliam as condições de instalação e operação desses tipos de empreendimentos. Do estudo, constatou-se que o incentivo de Minas Gerais, definido pela Lei do ICMS Ecológico, traz importantes benefícios ambientais aos municípios, embora ainda seja reduzido o número dos contemplados por esse fomento à gestão dos resíduos sólidos urbanos. Conclui-se, também, que algumas das unidades estudadas apresentam problemas de natureza ambiental e operacional.This paper reports a qualitative assessment made at the sanitary landfill, recycling centers and composting units sponsored by the State Law No 13.803/2000, Minas Gerais, Brazil. The analyses of all the documentation used for the environmental licensing process as well as field trips to sanitary landfills and domestic recycle/composting unities were performed. The IQC and IQR indexes from the São Paulo State Environmental Agency (CETESB were used as quality assessment tools. It is concluded that this State Law (Ecological ICMS Law has been promoting substantial environmental benefits to the local communities, despite it is still small the number of cities which have been attended by this regulation for solid waste management. On the other hand, it can be noticed that some operational and environmental issues remain to be addressed in the visited facilities.

  11. Design of Cut-off Ditch at Valley-type Small Waste Sanitary Landfill Site in Southwest China%西南地区山谷型小型垃圾填埋场截洪沟设计

    Institute of Scientific and Technical Information of China (English)

    邹许鑫; 吕燕; 尹滔

    2012-01-01

    对西南地区山谷型小型垃圾填埋场截洪沟设计展开探讨,结合相关规范优选适用于西南地区的截洪沟设计充满度、设计流速、径流系数等关键设计参数,对截洪沟的流量计算、断面选择、沟壁沟底材料及基础设计、出水口及转弯段的设计、整体平面布置等进行讨论,提出三种优化截洪沟断面.通过截洪沟的优化设计可实现清污分流,降低渗滤液产量,减少雨水对垃圾渗滤液收集及处理系统的冲击,降低垃圾渗滤液处理成本,确保垃圾填埋场正常、安全运行.%The design of cut-off ditch at valley-type small landfill site in the southwest China is explored. The design parameters of cut-off ditch applicable to the southwest China, such as design filling degree, design flow, runoff coefficient and other key design parameters are selected according to the related codes. The flow calculation, cross section selection, materials and foundation design for the ditch walls and bottom, design of outlet and curved segment and overall layout are discussed. Three kinds of optimized cross sections of cut-off ditch are proposed. The optimization design of cut-off dilch can achieve the separation of rainwater and sewage, reduce the leachate production, mitigate the impact of rainwater on collection and treatment systems of landfill leachate, thus reducing the treatment cost of landfill leachate and ensuring the normal and safe operation of landfill site.

  12. The influence of the gas flow rate during methane biofiltration on an inorganic packing material

    Energy Technology Data Exchange (ETDEWEB)

    Nikiema, J.; Heitz, M. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering

    2009-02-15

    Sanitary landfills are a major anthropogenic source of methane (CH{sub 4}), an important greenhouse gas (GHG). In 2005, sanitary landfills contributed nearly 25 per cent of the total atmospheric CH{sub 4} emissions in Canada. In order to address this concern, 52 landfills were equipped with gas collection systems in 2005. This study measured the influence of the gas flow rate (GFR) on CH{sub 4} elimination through biofiltration and estimated the maximum level of GFR that allowed conversions within the biofilter above 90 per cent. Since CH{sub 4} biodegrades in the biofilter due to microbial activity, the efficiency of this bioprocess is affected by the number and type of microorganisms present in the biofilter. This study also compared the performance of the biofilter under different gas flow regimes, at two different phosphorus concentrations. The experiments involved the use of a nitrogen minimal salt nutrient solution, for the biofilter periodic irrigation, in which the nitrogen concentration was maintained at 0.75 g/L, while the phosphorus concentration was 1.5 g/L. The objective was to determine if the phosphorus concentration can modify the influence of the GFR on the biofilter. The results showed that the GFR is an important parameter which affects the biofilter performance. It was concluded that the biofiltration process requires a high phosphorus level in the nutrient solution. 23 refs., 2 tabs., 5 figs.

  13. The co-oxidation of methane and dichloromethane in landfill bio-cover[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Dagher, E.; Albanna, M.; Fernandes, L.; Warith, M. [Ottawa Univ., ON (Canada). Faculty of Engineering

    2009-07-01

    Solid waste landfills are responsible for 13 per cent of the annual global anthropogenic methane (CH{sub 4}) emissions. Landfill bio-cover systems using methanotrophic bacteria to oxidize CH{sub 4} to carbon dioxide (CO{sub 2}) and water (H{sub 2}O) is a cost effective solution for the attenuation of these fugitive greenhouse gases (GHGs). This study analyzed the affect of dichloromethane (DCM), a volatile organic compound (VOC), on the rate of methane oxidation at several environmental conditions. Compost from Trail Road, a municipal landfill in Ottawa, was used in batch experiments. Gas chromatography was used to measure the concentrations of CH{sub 4} in the absence of DCM, and under varying DCM concentrations and atmospheric temperatures. The oxidation of DCM by the methanotrophs in the presence as well as absence of CH{sub 4} was also observed, and their oxidation rates determined. The study showed that the presence of DCM plays a very significant role on the oxidative capacity of CH{sub 4} under closed conditions on a laboratory scale. The study also showed that it will be important to restrict the type of waste that can be dumped in landfills. Controlling the industrial waste of non-methane organic carbon (NMOC) dumped into municipal landfills is crucial if CH{sub 4} is to be oxidized by a bio-cover. 15 refs., 4 figs.

  14. Comparison Of Four Landfill Gas Models Using Data From Four Danish Landfills

    DEFF Research Database (Denmark)

    Mønster, Jacob G.; Mou, Zishen; Kjeldsen, Peter

    2011-01-01

    , and to compare the four Danish landfill sites. The results show that three of the models generally give similar methane generation output. Only the LandGem model seems to give a much higher methane generation for Danish waste data, most likely due to a low organic fraction. Interpretation of the waste data......Data about type and quantity of waste disposed in four Danish landfills was collected and used on four different landfill gas generation models. This was done to compare the output data in order to evaluate the performance of the four landfill gas models when used on Danish waste types...... and the categorization of the waste play an important role in the methane prediction and combining the model predictions with whole site methane measurements would therefore be advised....

  15. 联合型生物反应器填埋场厌氧单元产甲烷规律研究%Study on Methane Generation Regulation in Anaerobic-semiaerobic Bioreactor Anaerobic Landfill

    Institute of Scientific and Technical Information of China (English)

    宋豪娟; 刘丹; 韩智勇; 王宁

    2013-01-01

    基于模拟实验,研究新型厌氧型生物反应器(ANBL)-准好氧矿化垃圾联合型生物反应器(SAABR)厌氧单元产气速率、产气CH4含量以及累计产CH4量的变化规律.实验证明,由于回灌复氧后的渗滤液甲烷菌的活性受到抑制,AN-SABL中的厌氧填埋单元的产气受到了抑制,但较高的回灌频率使得渗滤液与微生物的接触机会增多,利于垃圾产气;综合分析产气CH4含量、渗滤液COD和渗滤液pH值,在此判断3个ANBL CH4发酵阶段分别为705~820,690~ 800和660~740 d,该阶段产气φ(CH4)最大值分别为78.6%,74.1%和71.5%.建立了ANBL累计产CH4量的指数增长模型,对生物反应器CH.的收集和利用有重要意义.%Alstract:Based on the experimental simulation device,the regulation of the gas production,content of methane and cumulative methane production in the anaerobic-semiaerobic bioreactor landfill were studied.It was proved that,methane germ of the activity was repressed because of leachate recirculation to infuse to reply oxygen,and gas production in the ANSABL was repressed,but higher leachate recirculation frequency improved the contact opportunity of leachate and microorganism,then benefit gas production; comprehensively analyzed the gas methane content,leachate COD and leachate pH,this research judged three ANBL methane ferments stage were 705 ~ 820 d,690 ~ 800 d and 660 ~ 740 d,that stage the biggest content of methane is 78.6%,74.1% and 71.5%.The index number growth model of the ANBL cumulative methane was built up,which was important to collections and exploitation of bioreactor methane.

  16. Methane oxidation kinetics of bio-cover sewage sludge modified by coal ash for landfill%垃圾填埋场覆盖材料改性污泥的甲烷氧化动力学

    Institute of Scientific and Technical Information of China (English)

    王丹; 赵玲; 尹平河; 肖娟宜; 黄思明

    2012-01-01

    在实验室模拟条件下,以粉煤灰改性污泥为垃圾填埋场生物覆盖材料,分析了初始甲烷浓度、初始氧气浓度对甲烷氧化效率的影响,并测定了甲烷氧化动力学方程及动力学参数,旨在为材料实际工程应用提供理论依据.结果表明:初始CH4、O2浓度制约生物覆盖材料的甲烷氧化效率,初始CH4、O2浓度越高,材料甲烷氧化能力越强;甲烷氧化过程符合2级动力学方程-dV(CH4)/dt=kV(CH4)V(O2);利用Michaelis-Menten模型得出覆盖层材料的最大氧化速率Vmax为2.54 μmol g-1h-1,半速常数Km为0.49 μmol.%In this study, laboratory-scale experiments were carried out to examine the effects of initial methane and oxygen contents on methane oxidation efficiency in landfill bio-cover sewage sludge, and the kinetic equation and corresponding parameters were also determined, aiming to provide scientific basis for the practical engineering application. The results showed that the methane and oxygen contents strongly affected the methane oxidation efficiency. The higher methane and oxygen contents resulted in stronger methane oxidation efficiency. The kinetics of methane oxidation was - dV( CH4)/di = kV{ CH4 ) V( 02) , which fit the second-order reaction. As calculated from Michaelis-Menten equation, the largest methane oxidation rate ( Kmax ) was 2. 54 μmol g ‐ 1h‐ 1, and the half saturation constant ( Km ) was found at 0. 49 μmol.

  17. Managing the leachate at the regional landfill in Kikinda

    Directory of Open Access Journals (Sweden)

    Marković Sanja

    2016-01-01

    Full Text Available In developed, industrial countries, there is 1.2kg waste per capita, waste being collected and disposed of in regulated, sanitary landfills, which have systems for the protection of groundwater and air from pollutants, in Serbia, the largest number of landfills does not meet even the basic safety criteria for environmental protection. Several municipalities in Serbia began with the organization of the regional waste management system and within that frame, the construction of regional landfills which meet European standards in terms of environmental protection. The paper presents a method of management and use of leachate at the regional waste landfill 'ASA', Kikinda.

  18. Methane Emissions from Domestic Waste Management Facilities in Jordan-Applicability of IPCC Methodology.

    Science.gov (United States)

    Abdulla, Fayez A; Al-Ghazzawi, Ziad D

    2000-02-01

    In this paper, methane emissions from municipal wastewater treatment plants and municipal solid waste (MSW) landfills in Jordan for 1994 have been estimated using the methodology developed by the Intergovernmental Panel on Climate Change (IPCC). For this purpose, the 14 domestic wastewater treatment plants in the country were surveyed. Generation rates and characterization of MSW components as well as dumping and landfilling practices were surveyed in order to estimate 1994 CH4 emissions from these sites. Locally available waste statistics were used in cases where those of the IPCC guidelines were not representative of Jordan's statistics. Methane emissions from domestic wastewater in Jordan were estimated at 4.66 gigagrams (Gg). Total 1994 CH4 emissions from MSW management facilities in Jordan are estimated at 371.76 Gg-351.12 Gg (94.45%) from sanitary landfills, 19.83 Gg (5.33%) from MSW open dumps, and 0.81 Gg (0.22%) from raw sewage-water dumping ponds. Uncertainties associated with these estimations are presented.

  19. Methane emissions from domestic waste management facilities in Jordan--applicability of IPCC methodology.

    Science.gov (United States)

    Abdulla, F A; al-Ghazzawi, Z D

    2000-02-01

    In this paper, methane emissions from municipal wastewater treatment plants and municipal solid waste (MSW) landfills in Jordan for 1994 have been estimated using the methodology developed by the Intergovernmental Panel on Climate Change (IPCC). For this purpose, the 14 domestic wastewater treatment plants in the country were surveyed. Generation rates and characterization of MSW components as well as dumping and landfilling practices were surveyed in order to estimate 1994 CH4 emissions from these sites. Locally available waste statistics were used in cases where those of the IPCC guidelines were not representative of Jordan's statistics. Methane emissions from domestic wastewater in Jordan were estimated at 4.66 gigagrams (Gg). Total 1994 CH4 emissions from MSW management facilities in Jordan are estimated at 371.76 Gg--351.12 Gg (94.45%) from sanitary landfills, 19.83 Gg (5.33%) from MSW open dumps, and 0.81 Gg (0.22%) from raw sewage-water dumping ponds. Uncertainties associated with these estimations are presented.

  20. The biological degradation as an energy option, determination of the effects of the aerobic phase on the subsequent production of biogas in a sanitary landfill; La degradacion biologica como una opcion energetica, determinacion de los efectos de la fase aerobia sobre la subsecuente produccion de biogas en un relleno sanitario

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Juarez, Oscar [Asesoria de Servicios Ambientales del Bajio (ASSB), (Mexico)

    2010-07-01

    The present work deals with the energy evaluation of biological processes as energy source and is based on works concerning laboratory, pilot and field research. The objective of the research is to integrate the effect of the aerobic phase during the process of degradation of organic residues (basically the organic fraction of domestic residues), where the last aim is the biogas production. The usefulness of the results is reflected in the suitable estimation of the filling of a sanitary landfill considering the composition of the residues deposited and the effects that this management will have on the run-up time of the same and the velocity of biogas production. Finally, integrates a reflection on the intrinsic energy implications of the process and of the biogas yielding, which is evaluated as well as energy source. [Spanish] El presente trabajo trata sobre la valoracion energetica de procesos biologicos como fuente de energia y se basa en trabajos de investigacion a nivel de laboratorio, piloto y de campo. El objetivo de la investigacion es integrar el efecto de la fase aerobia durante el proceso de degradacion de residuos organicos (basicamente la fraccion organica de residuos domesticos), donde el fin ultimo es la produccion de biogas. La utilidad de los resultados se refleja en la estimacion adecuada del llenado de un relleno sanitario considerando la composicion de los residuos ahi depositados y los efectos que tendra esta gestion sobre el tiempo de estabilizacion de los mismos y la velocidad de produccion de biogas. Finalmente, se integra una reflexion sobre las implicaciones energeticas intrinsecas al proceso y del rendimiento de biogas, el cual a su vez es valorizado como fuente de energia.

  1. Project identification for methane reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  2. Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial--biodegradability enhancement and evolution profile of trace pollutants.

    Science.gov (United States)

    Silva, Tânia F C V; Silva, M Elisabete F; Cunha-Queda, A Cristina; Fonseca, Amélia; Saraiva, Isabel; Sousa, M A; Gonçalves, C; Alpendurada, M F; Boaventura, Rui A R; Vilar, Vítor J P

    2013-10-15

    A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO. The raw leachate was characterized by a high concentration of humic substances (HS) (1211 mg CHS/L), representing 39% of the dissolved organic carbon (DOC) content, and a high nitrogen content, mainly in the form of ammonium nitrogen (>3.8 g NH4(+)-N/L). In the first biological oxidation step, a 95% removal of total nitrogen and a 39% mineralization in terms of DOC were achieved, remaining only the recalcitrant fraction, mainly attributed to HS (57% of DOC). Under aerobic conditions, the highest nitrification rate obtained was 8.2 mg NH4(+)-N/h/g of volatile suspended solids (VSS), and under anoxic conditions, the maximum denitrification rate obtained was 5.8 mg (NO2(-)-N + NO3(-)-N)/h/g VSS, with a C/N consumption ratio of 2.4 mg CH3OH/mg (NO2(-)-N + NO3(-)-N). The precipitation of humic acids (37% of HS) after acidification of the bio-treated leachate corresponds to a 96% DOC abatement. The amount of UV energy and H2O2 consumption during the photo-Fenton reaction was 30% higher in the experiment without sludge removal and, consequently, the reaction velocity was 30% lower. The phototreatment process led to the depletion of HS >80%, of low-molecular-weight carboxylate anions >70% and other organic micropollutants, thus resulting in a total biodegradability increase of >70%. The second biological oxidation allowed to obtain a final treated leachate in compliance with legal discharge limits regarding water bodies (with the exception of sulfate ions), considering the experiment without sludge. Finally, the high efficiency of the overall treatment

  3. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  4. Generating CO(2)-credits through landfill in situ aeration.

    Science.gov (United States)

    Ritzkowski, M; Stegmann, R

    2010-04-01

    Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO(2-eq). can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the "Avoidance of landfill gas emissions by in situ aeration of landfills" (UNFCCC, 2009). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Landfills as a biorefinery to produce biomass and capture biogas.

    Science.gov (United States)

    Bolan, N S; Thangarajan, R; Seshadri, B; Jena, U; Das, K C; Wang, H; Naidu, R

    2013-05-01

    While landfilling provides a simple and economic means of waste disposal, it causes environmental impacts including leachate generation and greenhouse gas (GHG) emissions. With the introduction of gas recovery systems, landfills provide a potential source of methane (CH4) as a fuel source. Increasingly revegetation is practiced on traditionally managed landfill sites to mitigate environmental degradation, which also provides a source of biomass for energy production. Combustion of landfill gas for energy production contributes to GHG emission reduction mainly by preventing the release of CH4 into the atmosphere. Biomass from landfill sites can be converted to bioenergy through various processes including pyrolysis, liquefaction and gasification. This review provides a comprehensive overview on the role of landfills as a biorefinery site by focusing on the potential volumes of CH4 and biomass produced from landfills, the various methods of biomass energy conversion, and the opportunities and limitations of energy capture from landfills.

  6. Numerical Model Study on Working Performance of Seepproof Liner in Sanitary Landfill%卫生填埋场防渗层工作性能的数值模型研究

    Institute of Scientific and Technical Information of China (English)

    刘庭发; 张鹏伟; 胡黎明

    2012-01-01

    The anti-seepage and absorption ability of clay layer are main factors influencing landfill liner working performance. A ID convection-dispersion model was proposed to analyze the influence of permeability coefficient, diffusion coefficient, infiltration intensity, and absorption ability on the breakthrough time and leaching quantity. A 2D numerical model considering soil stratification, inhomogeneity, underground water motion and macro-dispersivity was introduced to reflett practical complex conditions, and parameter sensitivity analysis was conducted. The results show that keeping a relatively low leachate head is of great importance to obtaining well anti-seepage performance and durability of clay liner. The permeability coeffisient of clay liner varies within extensive range because of variation in material character and quality control during construction and the breakthrough time decrease sharply when the permeability coefficient increase by one order of magnitude. A nearly linear relation between breakthrough time and retardation factor can be obtained when the permeability keeps constant. Underground water can severely influence the transportation and distribution of pollutant. The results show that pollutant transport occures mainly in vertical direction when the water level is low. The pollutant concentration in lower layer soil and underground water is much lower because of intense absorption in unsaturated soil above the water level.%粘土衬垫的防渗性能和吸附阻滞性能对卫生填埋场防渗系统工作性能有着重要影响.通过建立一维对流-弥散模型,分析了渗透系数、扩散系数、入渗强度、吸附能力对渗漏量及衬垫击穿时间的影响.考虑实际工程的复杂性,建立能反映土体分层、土体非均质性、地下水运动及宏观弥散等复杂因素影响的污染物运移二维分析模型,并对各参数的敏感性进行分析.计算结果表明,保持填埋场在低渗滤液水位下运

  7. Characterization and Energy Generation of Sharda Landfill at Agra

    Directory of Open Access Journals (Sweden)

    Sohail Ayub

    2014-05-01

    Full Text Available Most of the global municipal solid waste is dumped in non regulated landfills and the generated methane is emitted to the atmosphere which has global warming potential. Some of the modern regulated landfills attempt to capture and utilize landfill gas. An attempt has been made in this study for the recovery of energy potential of Shadra site. This includes different methodologies to determine the feasibility of recovery project. The laboratory results show that the percentage by volume of methane is 51%. The landfill gas (LFG generation is very low (i.e. low-range recovery scenario and it is un-economical to recover such low flow gases produced in landfill. So, this reveals that flaring is only the option to reduce the global warming potential (GWP and also the problems of odour in the vicinity of landfill.

  8. Biogas movements in sanitary landdfills; Movimiento de biogas en rellenos sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Vidales A, Humberto

    1988-12-31

    This paper shows a model to study the physical and kinetic equations that determine the movement and diffusion of the biogas in sanitary landfills. This model for biogas flow was made in function of pressure, temperature, waste porosity and permeability, due to a diffusion coefficient of biogas determination 6 refs., 4 figs.

  9. Suggested guidelines for gas emission monitoring at danish landfills

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2015-01-01

    Landfill gas is produced on waste disposal sites receiving organic waste resulting in emission of methane. Regulation requires that the landfill gas is managed in order to reduce emissions, but very few suggestions exist to how the landfill gas management activities are monitored, what requirements...... measures to determine the efficiency of the performed emission mitigation is defined. Finally, several principles are presented for how criteria can be developed for when a monitoring program can be terminated....

  10. Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill

    Institute of Scientific and Technical Information of China (English)

    HUANG Qifei; YANG Yufei; PANG Xiangrui; WANG Qi

    2008-01-01

    To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi-aerobic landfill theory. Consequently, the concentrations of chemical oxygen demand (COD), ammonia nitrogen, and nitrite nitrogen, and the pH value in leachate, as well as the component contents of landfill gas composition (methane, carbon dioxide, and oxygen) in landfill were regularly monitored for 52 weeks. The results showed that COD and ammonia concentrations declined rapidly and did not show the accumulating rule like anaerobic landfill, and remained at about 300 and 100 mg/L, respectively, after 48 weeks. Meanwhile, the descending rate reached 98.9% and 96.9%, respectively. Nitrate concentration increased rapidly after 24 weeks and fluctuated between 220-280 mg/L after 43 weeks. The pH values were below 7 during the first 8 weeks and after that leachates appeared to be alkaline. Carbon dioxide was the main composition in landfill gas and its concentration remained at a high level through the whole stabilization process. The average contents of carbon dioxide, oxygen, and methane varied between 19 vol.%-28 vol.%, 2 vol.%-8 vol.%, and 5 vol.%-13 vol.%, respectively. A relative equilibrium was reached after 48 weeks. The highest temperature in the landfill chamber could amount to 75.8 degrees centigrade.

  11. Modelling the Potential Biogas Productivity Range from a MSW Landfill for Its Sustainable Exploitation

    Directory of Open Access Journals (Sweden)

    Elena Cristina Rada

    2015-01-01

    Full Text Available A model of biogas generation was modified and applied to the case of a sanitary landfill in Italy. The modifications considered the role of the temperature field normally established within each layer of waste. It must be pointed out the temperature affects the anaerobic biodegradation kinetics. In order to assess the effect of moisture on the waste biodegradation rate, on the bacteria process and then on the methane production, the model was compared with the LandGEM one. Information on the initial water content came from data concerning waste composition. No additional information about the hydrological balance was available. Thus, nine sets of kinetic constants, derived by literature, were adopted for the simulations. Results showed a significant variability of the maximal hourly biogas flows on a yearly basis, with consequences for the collectable amount during the operating period of a hypothetical engine. The approach is a useful tool to assess the lowest and highest biogas productivity in order to analyze the viability of biogas exploitation for energy purposes. This is useful also in countries that must plan for biogas exploitation from old and new landfills, as a consequence of developments in the waste sector.

  12. Ocorrência de bactérias clinicamente relevantes nos resíduos de serviços de saúde em um aterro sanitário brasileiro e perfil de susceptibilidade a antimicrobianos Occurrence of clinically relevant bacteria in health service waste in a Brazilian sanitary landfill and antimicrobial susceptibility profile

    Directory of Open Access Journals (Sweden)

    Thiago César Nascimento

    2009-08-01

    Full Text Available Os resíduos de serviços de saúde suscitam polêmica quanto a importância para a saúde humana, animal e ambiental. Avaliou-se a ocorrência de bactérias clinicamente relevantes na pilha de resíduos de serviços de saúde em um aterro sanitário e seu perfil de susceptibilidade aos antimicrobianos. Alíquotas de chorume foram processadas para isolamento seletivo de Staphylococcus sp, bastonetes Gram negativos da família Enterobacteriaceae e não fermentadores. Resistência bacteriana a todos os antimicrobianos testados foi observada em todos os grupos microbianos, além de resistência a mais de uma droga. Os resultados permitem sugerir que bactérias viáveis nos resíduos de serviços de saúde representam riscos à saúde humana e animal. Além disso, a ocorrência de linhagens multirresistentes sustenta a hipótese dos resíduos de serviços de saúde atuarem como reservatórios de marcadores de resistência, com impacto ambiental. A falta de legislação regional de segregação, tratamento e destino de resíduos podem expor diferentes populações a riscos de transmissão de doenças infecciosas associadas a microrganismos multirresistentes.Health service waste gives rise to controversy regarding its importance for human, animal and environmental health. Occurrences of clinically relevant bacteria in piles of health service waste in a sanitary landfill and their antimicrobial susceptibility profile were evaluated. Aliquots of leachate were processed for selective isolation of Staphylococcus sp, Gram-negative rods of the Enterobacteriaceae family and non-fermenters. Bacterial resistance to all the antimicrobials tested was observed in all microbial groups, including resistance to more than one drug. The results make it possible to suggest that viable bacteria in health service waste represent risks to human and animal health. Furthermore, occurrences of multiresistant strains support the hypothesis that health service waste acts as a

  13. Avaliação dos níveis de metais pesados em efluente líquido percolado do aterro sanitário de Paranavaí, Estado do Paraná, Brasil = Assessment of heavy metal levels in percolated liquid from sanitary landfill in Paranavaí, Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    Lucila Akiko Nagashima

    2009-01-01

    Full Text Available O percolado pode conter diversas substâncias químicas com características tóxicas, dentre elas os metais pesados oriundos de vários materiais provenientes de indústrias, atividades agrícolas, laboratórios, hospitais, residências. A contaminação pormetais apresenta amplo espectro de toxicidade que inclui efeitos neurotóxicos, hepatóxicos, nefrotóxicos, teratogênicos, carcinogênicos ou mutagênicos. O objetivo deste trabalho foi aavaliação dos níveis de Cd, Cr, Cu, Mn, Ni, Pb e Zn do percolado gerado no aterro sanitário de Paranavaí - PR. As amostras foram coletadas a partir de setembro de 2006 a julho de 2007, em quatro pontos distintos nas lagoas de tratamento. Para detecção dosmetais utilizou-se o espectrofotômetro de absorção atômica com chama. Os resultados foram comparados com os limites máximos de concentração de metais em efluentes líquidos estabelecidos pela Resolução 397/2008 - Conama (BRASIL, 2008. Verificou-se que os níveis dos metais analisados, com exceção do Pb, estão dentro dos limites permissíveispela legislação ambiental.Percolated liquid may contain several chemical substances with toxic characteristics, among them heavy metals from industrial sources, agricultural activities, laboratories, hospitals and residences. Metal contamination presents a wide array of toxicities, such as neurotoxic, hepatotoxic, nephrotoxic, teratogenic, carcinogenic or mutagenic effects. The objective of this work was to assess the levels of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in percolated liquid produced at the sanitary landfill in Paranavaí. The samples were collected from September of 2006 to July of 2007, at fourdistinct places of the treatment lake. An atomic absorption spectrophotometer with a burner was used to detect the metals. The results were compared with the maximum allowed values for metal concentration present in Resolution 397/2008 – Conama (BRAZIL, 2008.It was verified that the level of analyzed

  14. 垃圾渗滤液发酵产氢和产甲烷特性研究%Bio-production of hydrogen and methane from landfill leachate by anaerobic fermentation

    Institute of Scientific and Technical Information of China (English)

    徐乔根; 傅木星; 苏泱洲; 汪敏; 潘建国

    2012-01-01

    The characteristics of hydrogen and methane production from landfill leachate by anaerobic fermentation at 37 ℃ and pH 7. 0 was studied. The experimental results suggested that during the process of leachate anaerobic fermentation,the maximum cumulative production of hydrogen and methane was 24. 33,91. 95 mL (counted by per gram of COD) respectively; there was a lag phase a in the process of hydrogen production,while the methane production process appear no lag phase. Large amount of volatile organic acids and ethanol were found in the ultimate liquid product in hydrogen production process with the concentration of ethanol,acetate and butyrate was 487. 23,1 175. 21, 1 225. 78 mg/L respectively. Compared with hydrogen production process,ethanol,acetate and butyrate production of methane production process was relatively low,the concentration of was 256. 38,106. 73,107. 42 mg/L respectively. The ultimate mixture of hydrogen production process was strong acidic, the pH value was 4. 21. While, in methane production process,the ultimate mixture was close to neutral, the pH value was 6. 32. The removal rate of COD in methane production process was 41. 78% , which was higher than that of hydrogen production process (32. 14%). This might be the acetate in ultimate mixture of hydrogen production process could be utilized by methanogenesis and further be biodegrade.%以实际垃圾渗滤液作为厌氧发酵基质,研究了初始pH为7.0、中温(37℃)条件下的发酵产氢、产甲烷特性.结果表明,利用垃圾渗滤液作为基质发酵产氢或甲烷时,氢气的最大累积产量为24.33 mL(以每克COD计,下同),甲烷的最大累积产量为91.59 mL,产氢发酵在初期存在明显的迟滞期,但是产甲烷发酵不存在明显迟滞期;产氢发酵的液相末端产物中含有大量的挥发性有机酸和乙醇,乙醇、乙酸、丁酸质量浓度分别为487.23、1175.21、1225.78 mg/L,相比产氢发酵,产甲烷发酵的液相末端产物中乙

  15. Measurement of representative landfill gas migration samples at landfill perimeters: a case study

    OpenAIRE

    Kiernan, Breda M.; Beirne, Stephen; Fay, Cormac; Diamond, Dermot

    2009-01-01

    This paper describes the development of a fully integrated autonomous system based on existing infrared sensing technology capable of monitoring landfill gas migration (specifically carbon dioxide and methane) at landfill sites. Sampling using the described system was validated against the industry standard, GA2000 Plus hand held device, manufactured by Geotechnical Instruments Inc. As a consequence of repeated sampling during validation experiments, fluctuations in the gas mixtures became ap...

  16. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  17. Sanitary costs of osteoarthritis

    Directory of Open Access Journals (Sweden)

    M. Franceschini

    2011-09-01

    Full Text Available Muscoloskeletal disorders are the first cause of disability and the second cause of permanent disablement in Italy. Osteoarthritis is the most frequent rheumatic disease and affects about 4 million Italians. In spite of that, data concerning social costs are lacking. On account of this lack we measured sanitary costs of 314 patients suffering from osteoarthritis. A retrospective, prevalence- based multicentric study was performed using a bottom-up approach. The study period was 12 months and referred to 1999. Eight percent of patients didn’t take any drug for the treatment of osteoarthritis; NSAIDs were prescribed to 86.9% of patients, analgesics to 29.9%, chondroprotective drugs to 7.6%, and gastroprotective drugs to 36.9%. Total sanitary costs came to 455 € / patient / year: 122 € were spent on diagnostics, 293 € on therapy and 40 € on management of drug-related gastropathy. Since the costs of anti-inflammatory drugs came to 30 € we calculated iatrogenic cost factor of 2.3. Moreover, the study supplied interesting informations about prescriptive habits, which differ in Italy from international guidelines for the medical treatment of OA, about patient management, because of hospitalization, which by itself absorbs 1/3 of resources, and about physiotherapy, which costs twice as much as pharmacological therapy. At last, data analysis gave the cue for suggestions on changing patients’ management.

  18. The new Waste Law: Challenging opportunity for future landfill operation in Indonesia.

    Science.gov (United States)

    Meidiana, Christia; Gamse, Thomas

    2011-01-01

    The Waste Law No. 18/2008 Article 22 and 44 require the local governments to run environmentally sound landfill. Due to the widespread poor quality of waste management in Indonesia, this study aimed to identify the current situation by evaluating three selected landfills based on the ideal conditions of landfill practices, which are used to appraise the capability of local governments to adapt to the law. The results indicated that the local governments have problems of insufficient budget, inadequate equipment, uncollected waste and unplanned future landfill locations. All of the selected landfills were partially controlled landfills with open dumping practices predominating. In such inferior conditions the implementation of sanitary landfill is not necessarily appropriate. The controlled landfill is a more appropriate solution as it offers lower investment and operational costs, makes the selection of a new landfill site unnecessary and can operate with a minimum standard of infrastructure and equipment. The sustainability of future landfill capacity can be maintained by utilizing the old landfill as a profit-oriented landfill by implementing a landfill gas management or a clean development mechanism project. A collection fee system using the pay-as-you-throw principle could increase the waste income thereby financing municipal solid waste management.

  19. Methane Tracking and Mitigation Options - EPA CMOP

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the sub-model for EPA's MARKAL model, which tracks methane emissions from the energy system, and limited other sources (landfills and manure...

  20. Landfill is an important atmospheric mercury emission source

    Institute of Scientific and Technical Information of China (English)

    FENG Xinbin; TANG Shunlin; LI Zhonggen; WANG Shaofeng; LIANG Lian

    2004-01-01

    Since municipal wastes contain refuses with high mercury contents, incineration of municipal wastes becomes the major anthropogenic atmospheric mercury emission source. In China, landfills are however the main way to dispose of municipal wastes. Total gaseous mercury (TGM) concentrations in landfill gas of Gaoyan sanitary landfill located in suburb of Guiyang City were monitored using a high temporal resolved automated mercury analyzer, and mono-methylmercury (MMHg) and dimethylmercury (DMHg) concentrations in landfill gas were also measured using GC coupled with the cold vapor atomic fluorescence (CVAFS) method. Meanwhile, the TGM exchange fluxes between exposed waste and air and the soil surface of the landfill and air, were measured using low Hg blank quartz flux chamber coupled with high temporal resolved automated mercury analyzer technique. TGM concentrations in landfill gas from half year filling area averaged out at 665.52±291.25 ng/m3, which is comparable with TGM concentrations from flue gas of a small coal combustion boiler in Guiyang. The average MMHg and DMHg concentrations averaged out at 2.06±1.82 ng/m3 and 9.50±5.18 ng/m3, respectively. It is proven that mercury emission is the predominant process at the surfaces of both exposed wastes and soil of landfill. Landfills are not only TGM emission source, but also methylmercury emission source to the ambient air. There are two ways to emit mercury to the air from landfills, one is with the landfill gas through landfill gas duct, and the other through soil/air exchange. The Hg emission processes from landfills are controlled by meteorological parameters.

  1. Nitrogen Removal from Landfill Leachate by Microalgae

    Directory of Open Access Journals (Sweden)

    Sérgio F. L. Pereira

    2016-11-01

    Full Text Available Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+ concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates.

  2. Nitrogen Removal from Landfill Leachate by Microalgae

    Science.gov (United States)

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  3. Nitrogen Removal from Landfill Leachate by Microalgae.

    Science.gov (United States)

    Pereira, Sérgio F L; Gonçalves, Ana L; Moreira, Francisca C; Silva, Tânia F C V; Vilar, Vítor J P; Pires, José C M

    2016-11-17

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N-NH₄⁺) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N-NH₄⁺ concentration. In terms of nutrients uptake, an effective removal of N-NH₄⁺ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N-NO₃(-) removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates.

  4. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  5. Landfills, Landfills, Published in 2003, Taylor County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Landfills dataset, was produced all or in part from Published Reports/Deeds information as of 2003. It is described as 'Landfills'. Data by this publisher are...

  6. Landfilling: Environmental Issues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    to air, soil and water caused by the processes stabilizing the waste in the landfill. The main factors controlling the actual environmental impacts from the landfilling are: the nature and amount of the waste landfilled, the geological and hydrological setting of the landfill, the landfill technology......, the extent and quality of the technical environmental protection measures introduced, the daily operation and the timescale. This chapter describes the main potential environmental impacts from landfills. The modern landfill is able to avoid most of these impacts. However, in the planning and design...... of landfills it is important to understand the potential environmental impacts, which must be avoided. The emissions of landfill gas and leachate causing most of the environmental risks are described in detail in the chapters addressing specific landfill types: Chapter 10.5 (mineral waste landfill), Chapter 10...

  7. Availability and properties of materials for the Fakse Landfill biocover

    DEFF Research Database (Denmark)

    Pedersen, Gitte Bukh; Scheutz, Charlotte; Kjeldsen, Peter

    2010-01-01

    Methane produced in landfills can be oxidized in landfill covers made of compost; often called biocovers. Compost materials originating from seven different sources were characterized to determine their methane-oxidizing capacity and suitability for use in a full-scale biocover at Fakse Landfill...... in Denmark. Methane oxidation rates were determined in batch incubations. Based on material availability, characteristics, and the results of batch incubations, five of the seven materials were selected for further testing in column incubations. Three of the best performing materials showed comparable...... average methane oxidation rates: screened garden waste compost, sewage sludge compost, and an unscreened 4-year old garden waste compost (120, 112, and 108 g m2 d1, respectively). On the basis of these results, material availability and cost, the unscreened garden waste compost was determined...

  8. Gaseous methyl- and inorganic mercury in landfill gas from landfills in Florida, Minnesota, Delaware, and California

    Science.gov (United States)

    Lindberg, S. E.; Southworth, G.; Prestbo, E. M.; Wallschläger, D.; Bogle, M. A.; Price, J.

    2005-01-01

    Municipal waste landfills contain numerous sources of mercury which could be emitted to the atmosphere. Their generation of methane by anaerobic bacteria suggests that landfills may act as bioreactors for methylated mercury compounds. Since our previous study at a single Florida landfill, gaseous inorganic and methylated mercury species have now been identified and quantified in landfill gas at nine additional municipal landfills in several regions of the US. Total gaseous mercury occurs at concentrations in the μg m-3 range, while methylated compounds occur at concentrations in the ng m-3 range at all but one of the landfill sites. Dimethylmercury is the predominant methylated species, at concentrations up to 100 ng m-3, while monomethyl mercury was generally lower. Limited measurements near sites where waste is exposed for processing (e.g. working face, transfer areas) suggest that dimethylmercury is released during these activities as well. Although increasing amounts of landfill gas generated in the US are flared (which should thermally decompose the organic mercury to inorganic mercury), unflared landfill gas is a potentially important anthropogenic source of methylated mercury emissions to the atmosphere.

  9. Landfill stabilization focus area: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  10. [Topical problems of sanitary and epidemiologic examination concerning projects of sanitary protection zones in airports].

    Science.gov (United States)

    Isayeva, A M; Zibaryov, E V

    2015-01-01

    The article covers data on major errors in sanitary protection zones specification for civil airports, revealed through sanitary epidemiologic examination. The authors focus attention on necessity to develop unified methodic approach to evaluation of aviation noise effects, when justifying sanitary protection zone of airports and examining sanitary and epidemiologic project documents.

  11. The future of methane

    Energy Technology Data Exchange (ETDEWEB)

    Howell, D.G.

    1995-12-31

    Natural gas, mainly methane, produces lower CO{sub 2}, CO, NO{sub x}, SO{sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce ca. 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions steming from the need to drill an enormous number of wells, many in ecologically sensitive areas. Until all these aspects of methane are better understood, its future role in the world`s energy mix will remain uncertain. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity and importance of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  12. THE "CHEMICAL OXYGEN DEMAND / TOTAL VOLATILE ACIDS" RATIO AS AN ANAEROBIC TREATABILITY INDICATOR FOR LANDFILL LEACHATES

    OpenAIRE

    Contrera,R. C.; K. C. da Cruz Silva; G. H. Ribeiro Silva; D. M. Morita; Zaiat,M.; V. Schalch

    2015-01-01

    Abstract In some operational circumstances a fast evaluation of landfill leachate anaerobic treatability is necessary, and neither Biochemical Methane Potential nor BOD/COD ratio are fast enough. Looking for a fast indicator, this work evaluated the anaerobic treatability of landfill leachate from São Carlos-SP (Brazil) in a pilot scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was conducted at ambient temperature in the landfill area. After the acclimation, at a ...

  13. Proposed Expansion of Acme Landfill Operations.

    Science.gov (United States)

    1982-08-01

    decays, it produces bacteria that release gases. Methane develops in phases. Initially, during a phase which can last several days to months, a...90 and 95°F. Another factor which affects landfill gas production is pH. Methanogenic bacteria need a pH near 7.0 to produce optimal amounts of...Los Osos-Millsholm-Los Gatos soil association while the other four sites were located in the Altamont-Diablo-Fontana association. A standard slope

  14. Applying of Electrical Imaging Survey (EIS) to Evaluate Leachate Pollution in Underground Area of Informal Landfill

    DEFF Research Database (Denmark)

    Du, Song; Wang, Di; Mou, Zishen

    2014-01-01

    An informal landfill is an open dump that pollutes the underground environment because it lacks an impervious liner. The leakage of such a landfill is unidirectional and thus difficult to directly test. This study uses electrical imaging survey to evaluate the pollution of the underground...... environment of an informal landfill for municipal solid waste in Beijing. We hypothesize that every location has a specific resistivity resulting from the leachate. We use the membership function of fuzzy mathematics to quantitatively represent the pollution of the underground environment in the sanitary...

  15. Assessment of groundwater contamination by landfill leachate: a case in México.

    Science.gov (United States)

    Reyes-López, Jaime A; Ramírez-Hernández, Jorge; Lázaro-Mancilla, Octavio; Carreón-Diazconti, Concepción; Garrido, Miguel Martín-Loeches

    2008-01-01

    In México, uncontrolled landfills or open-dumps are regularly used as "sanitary landfills". Interactions between landfills/open-dumps and shallow unconfined aquifers have been widely documented. Therefore, evidence showing the occurrence of aquifer contamination may encourage Mexican decision makers to enforce environmental regulations. Traditional methods such as chemical analysis of groundwater, hydrological descriptions, and geophysical studies including vertical electrical sounding (VES) and ground penetrating radar (GPR) were used for the identification and delineation of a contaminant plume in a shallow aquifer. The Guadalupe Victoria landfill located in Mexicali is used as a model study site. This landfill has a shallow aquifer of approximately 1m deep and constituted by silty sandy soil that may favor the transport of landfill leachate. Geophysical studies show a landfill leachate contaminant plume that extends for 20 and 40 m from the SE and NW edges of the landfill, respectively. However, the zone of the leachate's influence stretches for approximately 80 m on both sides of the landfill. Geochemical data corroborates the effects of landfill leachate on groundwater.

  16. Methane on the greenhouse agenda

    Science.gov (United States)

    Hogan, Kathleen B.; Hoffman, John S.; Thompson, Anne M.

    1991-01-01

    Options for reducing methane emissions, which could have a significant effect on global warming, are addressed. Emissions from landfills, coal mining, oil and natural gas systems, ruminants, animal wastes and wastewater, rice cultivation, and biomass burning are considered. Methods for implementing these emission reductions are discussed.

  17. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  18. Methane Dynamics in Flooded Lands

    Science.gov (United States)

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas m...

  19. Characterization and treatment of Denizli landfill leachate using anaerobic hybrid/aerobic CSTR systems.

    Science.gov (United States)

    Ağdağ, Osman Nuri

    2011-01-01

    Leachate generated in municipal solid waste landfill contains large amounts of organic and inorganic contaminants. In the scope of the study, characterization and anaerobic/aerobic treatability of leachate from Denizli (Turkey) Sanitary Landfill were investigated. Time-based fluctuations in characteristics of leachate were monitored during a one-year period. In characterization study; chemical oxygen demand (COD), biochemical oxygen demand (BOD) dissolved oxygen, temperature, pH, alkalinity, volatile fatty acids, total nitrogen, NH4-N, BOD5/COD ratio, suspended solid, inert COD, anaerobic toxicity assay and heavy metals concentrations in leachate were monitored. Average COD, BOD and NH4-N concentration in leachate were measured as 18034 mg/l, 11504 mg/l and 454 mg/l, respectively. Generally, pollution parameters in leachate were higher in summer and relatively lower in winter due to dilution by precipitation. For treatment of leachate, two different reactors, namely anaerobic hybrid and aerobic completely stirred tank reactor (CSTR) having effective volumes of 17.7 and 10.5 litres, respectively, were used. After 41 days of start-up period, leachate was loaded to hybrid reactor at 10 different organic loading rates (OLRs). OLR was increased by increasing COD concentrations. COD removal efficiency of hybrid reactor was carried out at a maximum of 91%. A percentage of 96% of residual COD was removed in the aerobic reactor. NH4-N removal rate in CSTR was quite high. In addition, high methane content was obtained as 64% in the hybrid reactor. At the end of the study, after 170 operation days, it can be said that the hybrid reactor and CSTR were very effective for leachate treatment.

  20. Landfilling: Environmental Issues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    Waste disposed of in a landfill is by its nature different from the material found in the surroundings of the landfill and thereby the landfill may potentially affect the surrounding environment. This may be in terms of attracting or repelling flora and fauna from the area and through the emissio...

  1. Landfill gas as vehicle fuel; Deponigas som fordonsbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Johansson, Nina; Karlsvaerd, Johan (Grontmij AB, Stockholm (Sweden))

    2010-03-15

    The landfill gas extraction in Sweden 2008 was 370 GWh. Mainly because of lack of available technologies for landfill gas upgrading and high assessed upgrading costs, landfill gas has so far only been used for heating and cogenerations plants (CHP). In recent years, interest has been brought to upgrade landfill gas and this study highlights the possibility of using landfill gas as fuel for vehicles. A decision in investment in an upgrading installation requires a forecast of future gas production and landfill gas extraction. From 2005, dispose of organic waste is prohibited, reducing the number of active landfills and the landfill gas production will go down. Factors such as moisture content, design of the final coverage and landfill gas collection system have a major impact on the extraction. It is therefore difficult to make appropriate predictions of the future gas production. Today's landfill gas extraction is approximately 35% of the landfill gas production and in the light of this, extraction can be in a level comparable to today's at least ten years ahead, provided that the extraction system is being expanded and that measurements are taken to so that landfills should not dry out. In comparison with biogas from anaerobic digestion in a dedicated digester, landfill gas has a high percentage of nitrogen and a content of many contaminants such as organic silicon compounds (siloxanes) and halogenated hydrocarbons (hydrocarbons containing the halogens chlorine, fluorine and bromine). This often requires more treatment and a further separation step. A common method for purification of landfill gas is regenerative adsorption on a dedicated adsorption material. Carbon dioxide is separated by conventional techniques like PSA, water scrubber and membranes. The main barrier to use landfill gas as vehicle fuel is a cost-effective separation of nitrogen that does not generate high methane losses. Nitrogen is separated by PSA or distillation technique (cryogenic

  2. 生活垃圾填埋场甲烷自然减排的新途径——厌氧与好氧的共氧化作用%New Way for Natural Mitigation of Methane in Domestic Waste Landfill Sites: Co-oxidation of Anaerobic and Aerobic Oxidation

    Institute of Scientific and Technical Information of China (English)

    周海燕; 韩丹

    2011-01-01

    通过证实生活垃圾填埋场中甲烷厌氧氧化与好氧氧化的共存,提出了甲烷自然减排的新途径.分别选取暴雨过后垃圾填埋表层30~60 cm的覆土、1.5 m以下的垃圾以及底层矿化垃圾做硫酸盐还原菌阳性反应实验,结果表明:生活垃圾填埋体不同填埋层都存在不同数量级的硫酸盐还原菌,且底层矿化垃圾中的硫酸盐还原菌的数量最多,表层覆土中最少.颗粒大小比例为50%:50%的垃圾样品表现出最佳的甲烷好氧与厌氧氧化效果,且厌氧氧化在共氧化作用中的比例达到20%以上.含水率为25%时,矿化垃圾中微生物活性最大,好氧与厌氧氧化甲烷速率均达到最大;当含水率接近70%时,甲烷厌氧氧化的贡献率可达30%以上.外源甲烷的补充可以驯化甲烷氧化微生物,其中甲烷好氧氧化时间最大可缩短50%;而甲烷通入量超过2 mL后,甲烷好氧与厌氧氧化均受到抑制.%A new way for natural mitigation of methane was put forward by authenticating co-oxidation of anaerobic and aerobic oxidation of methane in domestic waste landfill sites. The soil at 30-60 cm, the waste below 1.5 m from the surface, and the aged waste at the bottom, were selected for the experiments of sulfate-reducing bacteria positive reaction. The results showed that sulfate-reducing bacteria nearly existed in all landfill layers of waste landfill bodies, and aged waste at the bottom contained most, the surface soil contained least. Waste samples with 50%: 50% of coarse and fine particle size proportion showed the best methane oxidation effect of aerobic and anaerobic oxidation, and anaerobic oxidation accounted for above 20%. Microbial activity in aged waste and its methane co-oxidation rate both reached the maximum value as moisture content was 25%. Anaerobic oxidation rate could reach more than 30% as moisture content was close to 70%. Supplement of exogenous methane could culture methane-oxidizing bacteria

  3. Airborne monitoring of landfills CH_{4} emissions

    Science.gov (United States)

    Gasbarra, Daniele; Gioli, Beniamino; Carlucci, Pantaleone; Magliulo, Vincenzo; Toscano, Piero; Zaldei, Alessandro

    2017-04-01

    The disposal and treatment of waste produces emissions of greenhouse gases (GHGs), which contribute to global climate change. In particular, large quantities of Methane are released in the breakdown of organic matter in landfills. In this work we present a new payload of the Sky Arrow ERA aircraft and an original methodology to compute methane emissions, based on the atmospheric mass budget approach. The payload is presently being used for intensive measurements in the area known as "Terra dei fuochi". In this area, located between the provinces of Naples and Caserta (Southern Italy), urban waste combined with industrial toxic waste has been illegally dumped in old quarries or buried in the nearby countryside for decades. This led to patchy sources of methane, with several hot spots spread over a heterogeneous land. In this context, the use of aircraft allows for the investigation at the landscape as well as at the regional scale, taking into account all sources, including those of small dimensions. The Sky Arrow ERA is equipped with the Mobile Flux Platform, capable of deriving the 3D wind vector at 50 Hz, while CO2 and water vapor densities are measured by an infrared gas analyzer (Licor 7500). A new configuration of the Licor 7700 open path fast methane gas analyzer was developed, based on enclosing the sensor within a cylinder exposed to the external air in-flow. This set-up allows for fast response measurements, while avoiding external modifications, subjected to restrictions. Ambient methane mixing ratios in excess of 7 ppm were measured during landfills overpasses; performing grid flight plans at different heights, to describe a virtual box enclosing the study area, and applying interpolation procedures, it was possible to reconstruct wind components and scalar concentrations in a 5x5 kilometers domain containing 6 different landfills, with a resolution of 50 m horizontal and 20 m vertical. For each flight the methane mass flows along and across the wind

  4. Ultrasound assisted biogas production from landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  5. Landfilling: Concepts and Challenges

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Scharff, H.; Hjelmar, O.

    2011-01-01

    Landfilling of waste historically has been the main management route for waste, and in many parts of the world it still is. Landfills have developed from open polluting dumps to modern highly engineered facilities with sophisticated control measures and monitoring routines. However, in spite of all...... new approaches and technological advancement the landfill still is a long lasting accumulation of waste in the environment. Much of current landfill design and technology has been introduced as a reaction to problems encountered at actual landfills. The solution was in many cases sought in isolation...... to understand the concepts, the processes and the long-term aspects of landfilling. This chapter describes the main conceptual aspects of landfilling. The historical development is presented and key issues of time frames, mass balances and technical approaches are discussed. The environmental issues...

  6. Landfill site selection using combination of GIS and fuzzy AHP, a case study: Iranshahr, Iran.

    Science.gov (United States)

    Torabi-Kaveh, M; Babazadeh, R; Mohammadi, S D; Zaresefat, M

    2016-03-09

    One of the most important recent challenges in solid waste management throughout the world is site selection of sanitary landfill. Commonly, because of simultaneous effects of social, environmental, and technical parameters on suitability of a landfill site, landfill site selection is a complex process and depends on several criteria and regulations. This study develops a multi-criteria decision analysis (MCDA) process, which combines geographic information system (GIS) analysis with a fuzzy analytical hierarchy process (FAHP), to determine suitable sites for landfill construction in Iranshahr County, Iran. The GIS was used to calculate and classify selected criteria and FAHP was used to assess the criteria weights based on their effectiveness on selection of potential landfill sites. Finally, a suitability map was prepared by overlay analyses and suitable areas were identified. Four suitability classes within the study area were separated, including high, medium, low, and very low suitability areas, which represented 18%, 15%, 55%, and 12% of the study area, respectively.

  7. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    Science.gov (United States)

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. © The Author(s) 2015.

  8. Estimation of methane generation based on anaerobic digestion ...

    African Journals Online (AJOL)

    Drake

    generation of methane from waste at Kiteezi landfill was measured using laboratory-scale anaerobic ... environmental and health challenges (Komakech, 2014). ..... Z (2007). Climate Change 2007. The Physical Science Basis. Contribution of ...

  9. Minimizing N2O fluxes from full-scale municipal solid waste landfill with properly selected cover soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills,this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux.

  10. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil.

    Science.gov (United States)

    Héry, Marina; Singer, Andrew C; Kumaresan, Deepak; Bodrossy, Levente; Stralis-Pavese, Nancy; Prosser, Jim I; Thompson, Ian P; Murrell, J Colin

    2008-01-01

    In the United Kingdom, landfills are the primary anthropogenic source of methane emissions. Methanotrophic bacteria present in landfill biocovers can significantly reduce methane emissions via their capacity to oxidize up to 100% of the methane produced. Several biotic and abiotic parameters regulate methane oxidation in soil, such as oxygen, moisture, methane concentration and temperature. Earthworm-mediated bioturbation has been linked to an increase in methanotrophy in a landfill biocover soil (AC Singer et al., unpublished), but the mechanism of this trophic interaction remains unclear. The aims of this study were to determine the composition of the active methanotroph community and to investigate the interactions between earthworms and bacteria in this landfill biocover soil where the methane oxidation activity was significantly increased by the earthworms. Soil microcosms were incubated with 13C-CH4 and with or without earthworms. DNA and RNA were extracted to characterize the soil bacterial communities, with a particular emphasis on methanotroph populations, using phylogenetic (16S ribosomal RNA) and functional methane monooxygenase (pmoA and mmoX) gene probes, coupled with denaturing gradient-gel electrophoresis, clone libraries and pmoA microarray analyses. Stable isotope probing (SIP) using 13C-CH4 substrate allowed us to link microbial function with identity of bacteria via selective recovery of 'heavy' 13C-labelled DNA or RNA and to assess the effect of earthworms on the active methanotroph populations. Both types I and II methanotrophs actively oxidized methane in the landfill soil studied. Results suggested that the earthworm-mediated increase in methane oxidation rate in the landfill soil was more likely to be due to the stimulation of bacterial growth or activity than to substantial shifts in the methanotroph community structure. A Bacteroidetes-related bacterium was identified only in the active bacterial community of earthworm-incubated soil but

  11. Avaliação dos níveis de metais pesados em efluente líquido percolado do aterro sanitário de Paranavaí, Estado do Paraná, Brasil - DOI: 10.4025/actascihealthsci.v31i1.1154 Assessment of heavy metal levels in percolated liquid from sanitary landfill in Paranavaí, Paraná State, Brazil - DOI: 10.4025/actascihealthsci.v31i1.1154

    Directory of Open Access Journals (Sweden)

    Cynthia Algayer da Silva

    2009-05-01

    Full Text Available O percolado pode conter diversas substâncias químicas com características tóxicas, dentre elas os metais pesados oriundos de vários materiais provenientes de indústrias, atividades agrícolas, laboratórios, hospitais, residências. A contaminação por metais apresenta amplo espectro de toxicidade que inclui efeitos neurotóxicos, hepatóxicos, nefrotóxicos, teratogênicos, carcinogênicos ou mutagênicos. O objetivo deste trabalho foi a avaliação dos níveis de Cd, Cr, Cu, Mn, Ni, Pb e Zn do percolado gerado no aterro sanitário de Paranavaí - PR. As amostras foram coletadas a partir de setembro de 2006 a julho de 2007, em quatro pontos distintos nas lagoas de tratamento. Para detecção dos metais utilizou-se o espectrofotômetro de absorção atômica com chama. Os resultados foram comparados com os limites máximos de concentração de metais em efluentes líquidos estabelecidos pela Resolução 397/2008 - Conama (BRASIL, 2008. Verificou-se que os níveis dos metais analisados, com exceção do Pb, estão dentro dos limites permissíveis pela legislação ambiental.Percolated liquid may contain several chemical substances with toxic characteristics, among them heavy metals from industrial sources, agricultural activities, laboratories, hospitals and residences. Metal contamination presents a wide array of toxicities, such as neurotoxic, hepatotoxic, nephrotoxic, teratogenic, carcinogenic or mutagenic effects. The objective of this work was to assess the levels of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in percolated liquid produced at the sanitary landfill in Paranavaí. The samples were collected from September of 2006 to July of 2007, at four distinct places of the treatment lake. An atomic absorption spectrophotometer with a burner was used to detect the metals. The results were compared with the maximum allowed values for metal concentration present in Resolution 397/2008 – Conama (BRAZIL, 2008. It was verified that the level of

  12. 生活垃圾填埋场甲烷自然减排的新途径:厌氧与好氧的共氧化作用%A new way of natural mitigation of methane in a refuse landfill: Anaerobic and aerobic co-oxidation

    Institute of Scientific and Technical Information of China (English)

    韩丹; 石峰; 柴晓利; 陈浩泉; 赵由才

    2011-01-01

    The surface soil at 30 ~60 cm, refuse at 1.5 m depth and the aged refuse at the bottom of the refuse landfill were selected for experiments on sulfate-reducing bacteria (SRB). It was found that SRB existed in nearly all layers of the solid waste landfill, with aged refuse at the bottom containing the most and the surface soil the least SRB. Garbage samples with a 50%: 50% coarse:fine particle size proportion showed the best aerobic and anaerobic methane oxidation effect, and anaerobic oxidation accounted for above 20%. Microbial activity in aged refuse and co-oxidation rate of methane reached a maximum value with a 25% moisture content. Anaerobic oxidation rate could reach more than 30% as the moisture content approached 70%. Supplementation of exogenous methane could shorten the time of aerobic oxidation by 50%. However, both aerobic and anaerobic oxidation were weakened if the amount of exogenous methane was beyond 2 mL for the 20 g aged refuse. Therefore, a new way for natural mitigation of methane in a refuse landfill is put forward based on anaerobic and aerobic co-oxidation of methane.%采用暴雨过后垃圾填埋表层30~60 cm的覆土、表层1.5 m以下的垃圾,以及刚刚开挖出来的9年矿化垃圾进行硫酸盐还原菌阳性反应试验,结果表明生活垃圾填埋体不同填埋层都存在不同数量级的硫酸盐还原菌,且底层矿化垃圾中的硫酸盐还原菌的数量最多,表层覆土中最少.颗粒大小比例为50%:50%的垃圾样品表现出最佳的甲烷好氧与厌氧氧化效果,且厌氧氧化在共氧化作用中的比例达到20%以上.含水率为25%时,矿化垃圾中微生物活性最大,好氧与厌氧氧化甲烷速率均达到最大.当含水率接近70%时,甲烷厌氧氧化的贡献率可达30%以上.外源甲烷的补充可以驯化甲烷氧化微生物,其中甲烷好氧氧化时间最大可缩短50%;而初始甲烷一次通人量超过2 mL(20g矿化垃圾)后,甲烷好氧与厌氧氧化

  13. Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration

    DEFF Research Database (Denmark)

    Christophersen, Mette; Kjeldsen, Peter

    2001-01-01

    migration of landfill gas was a very dynamic system and the concentrations of LFG at a specific place and depth changed dramatically within a very short time. The experiments showed that change in barometric pressure was an important factor affecting gas migration at the Skellingsted landfill in Denmark.......Field experiments investigating lateral gas transport in soil adjacent to an old landfill in Denmark during a one-year period were conducted. A significant seasonal variation, with low concentrations of methane and high concentrations of carbon dioxide in the summer, caused by methane oxidation...

  14. Sustainable Approach for Landfill Management at Final Processing Site Cikundul in Sukabumi City, Indonesia

    Directory of Open Access Journals (Sweden)

    Sri Darwati

    2012-01-01

    Full Text Available The main problem of landfill management in Indonesia is the difficulty in getting a location for Final Processing Sites (FPS due to limited land and high land prices. Besides, about 95% of existing landfills are uncontrolled dumping sites, which could potentially lead to water, soil and air pollution. Based on data from the Ministry of Environment (2010, The Act of the Republic of Indonesia Number 18 Year 2008 Concerning Solid Waste Management, prohibits open dumping at final processing sites and in ratification, the Local Governments have to convert the open dump sites into controlled or sanitary landfill. The Research Institute for Human Settlements has been conducting multi-year researches related to the rehabilitation of dumpsites toward sustainable landfill. The research methods are literature reviews, experiments, laboratory analysis and field observations. A pilot model of dumpsite rehabilitation was carried out in 2010 at the Final Processing Site at Cikundul in Sukabumi City, consisting of (1 mining landfill (2 construction of landfill cells in a former mining area with a semi aerobic landfill and an anaerobic landfill and (3 landfill operations using decomposed material from landfill mining as a soil cover. The purpose of the study is to develop a sustainable approach for landfill management and rehabilitation through landfill mining and implementation of semi aerobic landfill. Findings in the construction of landfill mining indicate that (1 the construction of landfill mining is constrained by leachate that is trapped in a pile of waste, therefore, the leachate needs to be pumped to leachate treatment installations, (2 the volume of waste excavation is expanding due to the high plastic content of about 26% in landfills (3 the potency of decomposed materials from landfill mining is 40–83% for landfill operations or greening.. The performance of landfill systems shows that leachate quality of semi aerobic landfill tends to be lower

  15. Trends in sustainable landfilling in Malaysia, a developing country.

    Science.gov (United States)

    Fauziah, S H; Agamuthu, P

    2012-07-01

    In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia.

  16. The Use of Biofilter to Reduce Atmospheric Global Warming Gas (CH4) Eemissions from Landfills

    Science.gov (United States)

    Park, S.; Thomas, J. C.; Brown, K. W.; Sung, K.

    2001-12-01

    The emission of greenhouse gasses resulting from anthropogenic activities is increasing the atmospheric concentration of these gases, which can influence the climatic system by changing the temperature, precipitation, wind and other climate factors. Methane (CH4) is a very potent greenhouse gas and CH4 emission from landfills in US has been reported as 37% of total anthropogenic source of CH4 emission. Properly designed soil biofilters may reduce atmospheric CH4 emissions from landfills and help reduce the accumulation of greenhouse gasses in the atmosphere. Biofilter performance was tested under a variety of environmental and design conditions. The results showed that biofilters have the potential to reduce CH4 emissions from landfills by as much as 83%. A quadratic equation was developed to describe the dependence of methane oxidation rate in a sandy loam textured soil as a function of soil temperature, soil moisture and ammonium nitrogen concentration. Using this equation and the averaged soil temperature and moisture contents, and census data for the largest cities of each of the 48 contiguous states, oxidation rates was calculated. A methane emission model was also developed to estimate the methane emission from municipal waste landfills with different covers. Older landfills with soil covers emitted an average of 83% of the generated CH4. Landfills with RCRA covers emitted 90% of the generated CH4 without biofilters and only 10% with biofilters. Thus, the installation of properly sized biofilters should significantly reduce atmospheric CH4 emissions from landfills.

  17. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    the landfill section has been filled or several years later depending on the settlement patterns. Significant differential settlements may disturb the functioning of the top cover. The specific design of the cover system depends on the type of waste landfilled (municipal, hazardous, or inert waste...... such as lowpermeability clay soils and geomembranes are required. The avoidance of water input to organic waste may impede the microbial stabilization processes including gas generation. Therefore watertight top covers may be in conflict with the purposes of reactor landfills (see Chapter 10.6). At some sites covers...... sometimes are made to include components for recirculation of landfill leachate (see Section 10.9.2 for more details). The top cover is an important factor in the water management of landfills. Details about water infiltration through top covers and its influence on the hydrology of the landfill is covered...

  18. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after...... the landfill section has been filled or several years later depending on the settlement patterns. Significant differential settlements may disturb the functioning of the top cover. The specific design of the cover system depends on the type of waste landfilled (municipal, hazardous, or inert waste...... however, top covers may be the only environmental protection measure. In some landfill regulations (for instance the Subtitle D landfills receiving municipal solid waste in the USA) it is required to minimize infiltration into the waste layers. Therefore top covers containing liner components...

  19. Modeling lateral gas transport in soil adjacent to an old landfill

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2001-01-01

    Lateral migration of landfill gases in soils surrounding old (closed) municipal landfills can lead to explosion hazards and damage to vegetation. Landfill gas production and migration is controlled by microbial activity and soil physical properties such as gas (air) permeability, gas diffusivity....... An empirical expression for calculating methane oxidation rate as a function of soil temperature was developed using site-specific measurements of methane oxidation rate. The transport and degradation parameter expressions were incorporated into a numerical model for simulating landfill gas transport, using...... soil-water content, temperature, and soil organic matter content as measured input parameters (functions of time and soil depth). Previous measurements of landfill gas (CO2 and CH4) concentrations and fluxes in the agricultural field soil conducted over a period of one year were used to calibrate...

  20. Optimizing gas extraction at landfills in Denmark; Optimering af gasindvinding pae deponeringsanlaeg i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H.C. [LFG Consult (Denmark)

    2005-07-01

    In landfills which contain organic material and anaerobic decomposition takes place, and landfill gas (LFG) is produced. The LFG contains approximately 50% methane, which contributes to the greenhouse effect when emitting from the landfill. Approximately 19% of the greenhouse gases in the atmosphere are methane, and around 8% of this is emission from landfills. This means that roughly 1.5% of the global warming is related to emission from landfills. Extraction of LFG for energy purposes was started 30 years ago in USA. In Denmark 26 LFG plants have been established since 1985. The gas is utilized for CHP or pure power production in gas engine/generator units. In some cases the LFG is used in gas burners in connection with boilers for district heating systems. 24 million m{sup 3} was recovered in 2004, which is equivalent to a reduction of CO{sub 2} of 160.000 tons CO{sub 2}/year. (BA)

  1. Environmental and Geologic Assessment to Locate a Manual Sanitary Refill in the Mene de Mauroa Church, Venezuela

    Directory of Open Access Journals (Sweden)

    Simón E. Morales-Soto

    2016-05-01

    Full Text Available The inadequate disposal of urban wastes is nowadays an environmental issue having a negative impact on several communities. The objective of this investigation is to select the most adequate place to locate a manual sanitary landfill to dump the solid wastes from the Mene de Mauroa (Venezuela church. A total of 19 variables were subjected to a series of evaluations applying the scale and weight method. This method consists of comparing the variables according to their level of priority. The area with the highest score is to be selected as the most adequate area for the sanitary landfill according to a weighting scale of 5 values for the scoring of each variable.

  2. Aerobic landfill bioreactor

    Science.gov (United States)

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  3. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    Energy Technology Data Exchange (ETDEWEB)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  4. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    Science.gov (United States)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  5. Environmental and Geologic Assessment to Locate a Manual Sanitary Refill in the Mene de Mauroa Church, Venezuela

    OpenAIRE

    Simón E. Morales-Soto; Alina Rodríguez-Infante

    2016-01-01

    The inadequate disposal of urban wastes is nowadays an environmental issue having a negative impact on several communities. The objective of this investigation is to select the most adequate place to locate a manual sanitary landfill to dump the solid wastes from the Mene de Mauroa (Venezuela) church. A total of 19 variables were subjected to a series of evaluations applying the scale and weight method. This method consists of comparing the variables according to their level of priority. The ...

  6. Recovery of landfill gas. Udnyttelse af lossepladsgas; Demonstrationsprojekt: Endelige rapporter

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H.C. (Novo Industri A/S, Bagsvaerd (Denmark))

    1989-01-01

    The present report treats of the establishment of a demonstration plant for exploitation of landfill gas, the experience that has been gleaned and the results achieved in this connection. The main objective of the project was to construct a plant which can ensure optimum recovery and exploitation of the landfill gas in small landfills where the filling height is relatively low. Also, the plant should be economically viable. For optimum recovery a special adjustment system was introduced, which has proved very satisfactory, as it has resulted in an increase in the recovered gas volume and ensures a constant methane content. The landfill gas is used in a boiler which supplies heat to Viborg district heating system. Some of the gas is used in a Stirling motor in order to test how this particular motor works on landfill gas. The report contains information about the measuring and registration system of the plant and data derived from the measuring programme. The project has been implemented by Crone Koch in a close cooperation with the owner of the landfill, Viborg Municipality, and the main contractor, A/S Marius Pedersen. The demonstration project has been granted financial support by the Commission of the EEC (Contract no. BM741/83, Recovery of Landfill Gas''), and by the Danish Ministry of Energy. 42 figs., 6 tabs.

  7. Increasing of the efficiency of energetic production by leachating control and biogas extraction in municipal waste sanitary landfills; Incremento del rendimiento de produccion energetica mediante sistema simultaneo de control de lixiviados y extraccion de biogas en vertederos de R.S.U.

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Carrillo, J.

    2000-07-01

    A new practice have been introduced to combat the problems in dual extraction, leachate and biogas, where the leachate is pumped directly from the gas extraction well. Using dual extraction, leachate levels can be kept to a minimum, LFG extraction increased and methane content improved for electricity production. (Author)

  8. The impact of municipal solid waste landfills in Suceava County on air quality

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2014-08-01

    Full Text Available The location of municipal solid waste (MSW landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of air quality deterioration through emissions of toxic gas resulted from anaerobic decomposition of organic waste. The paper discusses in detail the qualitative and quantitative effects of municipal waste landfills of the main urban settlements in Suceava County (Suceava City municipal landfill and Gura Humorului, Rădăuţi, Siret, Câmpulung Moldovenesc, Fălticeni and Vatra Dornei urban waste landfills on air quality. The dispersion of methane emitted from the largest MSW landfill in the county, the Suceava municipal landfill respectively, is also presented, taking into account seasonal, daytime and nighttime meteorological parameters

  9. Evaluation and application of site-specific data to revise the first-order decay model for estimating landfill gas generation and emissions at Danish landfills

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    Methane (CH4) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required...... categories. In general, the single-phase model, LandGEM, significantly overestimated CH4 generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH4 potential (BMP) and CH4 generation rate constant (k.......Implications: Landfill operators use the first-order decay (FOD) models to estimate methane (CH4) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in overestimation when handling a low-organic waste scenario. Site-specific data were important and capable of calibrating key parameter...

  10. Methanotrophy in London, UK, Landfill Topsoil: Microbiology, Stable Carbon Isotopes, Seasonal Variation and Laboratory Model Study

    Science.gov (United States)

    Sriskantharajah, S.; Fisher, R.; Lowry, D.; Grassineau, N.; Nisbet, E. G.

    2004-12-01

    Landfill is a major source of methane emissions into the atmosphere. Aerobic soil is also a good sink of methane, as it is inhabited by methane consuming bacteria, methanotrophs. Methanotrophic bacteria were cultured from landfill soil samples. Three genera of methanotrophs were cultured: Methylocaldum, Methylosinus and Methylomonas. Interestingly, the only established members of the Methylocaldum genus are all thermophilic, whilst those isolated in this study are mesophilic. This suggests that those Methylocaldum methanotrophs found in landfills may have migrated from hot spring natural settings. Representatives of each genera were inoculated into a simple topsoil model and subjected to variations in temperature, methane concentration and incubation periods. As expected, temperature greatly affected methane oxidation, but methane concentration affected the rate of oxidation far more than expected. The model study implies that the complete combustion of methane to carbon dioxide is greatly affected by temperature and methane availability, whilst the effect on the uptake of methane is not as great. Seasonal variations in methane concentrations within the topsoil were monitored over a one year period from November 2002 to October 2003 and show that methane flow through the topsoil, and consequently methanotrophy, is strongly controlled by meteorology, mainly air temperature and pressure. Generally, methanotrophy was low during colder months and higher at during warmer months, but changes in air pressure complicate this by controlling the rate of flow of methane through the topsoil. δ 13C analyses of methane and carbon dioxide emitted from landfill topsoil showed that there was a great deal of methanotrophic activity during the warmer months of 2003, with most fractionation of residual methane occurring during August. During the heat wave experienced in the UK in August 2003, the δ 13C from borehole samples of methane in the anaerobic zone shifted from -57‰ to -16

  11. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  12. Microbial mitigation of greenhouse gas emissions from landfill cover soils

    Science.gov (United States)

    Lee, Sung-Woo

    Landfills are one of the major sources of methane (CH4), a potent greenhouse gas with a global warming potential (GWP) ˜23 times higher than that of carbon dioxide (CO2). Although some effective strategies have been formulated to prevent methane emissions from large landfills, many landfills allow methane to be freely emitted to the atmosphere. In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria that consume methane, in the cover soil to prevent fugitive methane emissions. Several factors, however, must be addressed to make such a biogenic removal mechanism effective. First, methanotrophic activity can be inhibited by nonmethane organic compounds (NMOCs) that are commonly found in landfill soil gas. Second, although methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, biogenic production of nitrous oxide with a GWP ˜296 times higher than that of carbon dioxide, is also stimulated. To consider these issues, two general areas of research were performed. First, a dimensionless number was developed based on Michaelis-Menten kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic growth and survival. This model was validated via experimental measurements of methanotrophic growth in the presence of varying amounts of NMOCs. Second, the effects of nutrient amendments on methane oxidation and nitrous oxide production were examined by constructing soil microcosms using landfill cover soils. Here, it was shown that the addition of ammonium in the presence of phenylacetylene stimulated methane oxidation but inhibited nitrous oxide production. Furthermore, to understand the methanotrophic community structure and activity in response to these amendments, DNA microarray and transcript analyses were performed. The results indicated the predominance of Type II methanotrophs but that Type I methanotrophs responded more significantly to these amendments. Also, substantial activity

  13. Landfill Site Selection by AHP Based Multi-criteria Decision Making Tool: A Case Study in Kolkata, India

    Science.gov (United States)

    Majumdar, Ankush; Hazra, Tumpa; Dutta, Amit

    2017-07-01

    This work presents a Multi-criteria Decision Making (MCDM) tool to select a landfill site from three candidate sites proposed for Kolkata Municipal Corporation (KMC) area that complies with accessibility, receptor, environment, public acceptability, geological and economic criteria. Analytical Hierarchy Process has been used to solve the MCDM problem. Suitability of the three sites (viz. Natagachi, Gangajoara and Kharamba) as landfills as proposed by KMC has been checked by Landfill Site Sensitivity Index (LSSI) as well as Economic Viability Index (EVI). Land area availability for disposing huge quantity of Municipal Solid Waste for the design period has been checked. Analysis of the studied sites show that they are moderately suitable for landfill facility construction as both LSSI and EVI scores lay between 300 and 750. The proposed approach represents an effective MCDM tool for siting sanitary landfill in growing metropolitan cities of developing countries like India.

  14. Groundwater geochemistry of a municipal landfill in Araras, SP

    Directory of Open Access Journals (Sweden)

    Carlos Frederico de Castro Alves 1

    2014-03-01

    Full Text Available A contaminated area associated with a residential unlined landfill, located in Araras, was investigated. The aim of this work was to develop a hydrogeological and geochemical conceptual model in order to identify the redox zones related to the landfill and to explain the main processes resulting from the impact of leachates on the local groundwaters and soil. The work consisted of a surface geological mapping, geophysical survey with electric tomography, logging of subsoil boreholes, an installation of monitoring wells and soil, gas, leachate and groundwater samples analyses. The results show that the Araras landfill is in the methanogenic phase and promotes alterations in local groundwater quality. The main parameters of environmental interest identified in the leachate were total dissolved solids, biochemical oxygen demand, ammonium, methane, Na, Cl, Fe, Mn, Ba, B, Co and Cd. According to criteria specifically developed for this landfill, the following redox zones were identified in the groundwater: (i aerobic, located upgradient from the landfill; (ii methanogenic, downgradient from the landfill; (iii iron and/or manganese reduction, located between the methanogenic zone and the Araras river. Bypassing the iron and/or manganese redox zone, the existence of a denitrification zone was inferred. Besides the redox reactions in these zones, other processes that mitigate the impact of leachate into groundwater were also discovered: dilution, degradation by the action of surface microorganisms, dispersion, ionic exchange, formation of organic and inorganic complexes, dissolution and precipitation.

  15. A review on utilization of combustible waste gas (II):Landfill gas,flare gas,associated gas and coalbed methane%可燃废气利用技术研究进展(Ⅱ):填埋气、火炬气、伴生天然气和煤矿瓦斯

    Institute of Scientific and Technical Information of China (English)

    王一坤; 陈国辉; 雷小苗; 王长安; 邓磊; 车得福

    2014-01-01

    The utilization of combustible waste gas is an important way of energy conservation and emission reduction.The progress in utilization technologies of landfill gas,flare gas,associated gas and coalbed methane has been presented.Due to the very low utilization ratio and insufficient resourceful utilization of landfill gas,the waste landfill treatment of which the leachate treatment and efficient LFG extraction and utilization are the key technologies should be widely popularized.Generally,the flare gas is fired to provide heat which is then recycled by waste heat boiler.Sometimes it can be directly burned in gas turbine for power generation.With low yield,the associated gas can be used as the inj ection fluid for oil production,or for field power generation.When the yield is high and stable,the associated gas can be transported by pipe-lines,liquid natural gas (LNG)and compressed natural gas (CNG)ships.The optimal utilization of low concentration coalbed methane is for gas-steam combined cycle power generation,of which the power gen-eration efficiency can reach up to higher than 45%.Usually,the coalbed methane is applied as assistant air in mine-mouth power plants,for the technical requirements and cost of this method are the lowest.%可燃废气利用是实现我国节能减排的重要途径之一。介绍了目前填埋气、火炬气、伴生天然气和煤矿瓦斯几种可燃废气的利用技术和工业应用现状。其中:填埋气的利用率很低,资源化利用技术不足,需大力推广以渗滤液处理、高效LFG抽排及利用为核心的填埋垃圾处理工艺;火炬气通常引入燃油或燃气锅炉加以利用,也可以将火炬气燃烧后利用余热锅炉回收热量,或者作为中等热值的气体,直接引入燃气轮机燃烧发电;伴生天然气的产量不高时,可以将其回注驱油或就地发电,产量高且稳定时,可以采用管道输送、液化天然气(LNG)和压缩天然气(CNG

  16. Coal Mine Methane in Russia [Russian Version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  17. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  18. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte

    2008-01-01

    of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate, the contributions of various gas transport processes on methane attenuation in landfill cover soils....... For this purpose, a reactive transport model that includes advection and the Dusty Gas Model for simulation of multicomponent gas diffusion was used. The simulations are constrained by data from a series of counter-gradient laboratory experiments. Diffusion typically accounts for over 99% of methane emission....... Simulations suggest that production of water or accumulation of exopolymeric substances due to microbially mediated methane oxidation can significantly reduce diffusive fluxes. Assuming a constant rate of methane production within a landfill, reduction of the diffusive transport properties, primarily due...

  19. Landfilling of waste: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas H; Scharff, Heijo

    2009-11-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery, and landfills receiving low-organic-carbon waste. The results showed that direct emissions of GHG from the landfill systems (primarily dispersive release of methane) are the major contributions to the GHG accounting, up to about 1000 kg CO(2)-eq. tonne( -1) for the open dump, 300 kg CO(2)-eq. tonne( -1) for conventional landfilling of mixed waste and 70 kg CO(2)-eq. tonne(-1) for low-organic-carbon waste landfills. The load caused by indirect, upstream emissions from provision of energy and materials to the landfill was low, here estimated to be up to 16 kg CO(2)-eq. tonne(-1). On the other hand, utilization of landfill gas for electricity generation contributed to major savings, in most cases, corresponding to about half of the load caused by direct GHG emission from the landfill. However, this saving can vary significantly depending on what the generated electricity substitutes for. Significant amounts of biogenic carbon may still be stored within the landfill body after 100 years, which here is counted as a saved GHG emission. With respect to landfilling of mixed waste with energy recovery, the net, average GHG accounting ranged from about -70 to 30 kg CO(2)-eq. tonne(- 1), obtained by summing the direct and indirect (upstream and downstream) emissions and accounting for stored biogenic carbon as a saving. However, if binding of biogenic carbon was not accounted for, the overall GHG load would be in the range of 60 to 300 kg CO(2)-eq. tonne( -1). This paper clearly shows that electricity generation as well as accounting of stored biogenic carbon are crucial to the accounting of GHG of waste landfilling.

  20. Use of the Geographic Information System and Analytic Hierarchy Process for Municipal Solid Waste Landfill Site Selection: A Case Study of Najafabad, Iran

    Directory of Open Access Journals (Sweden)

    A. Afzali

    2014-03-01

    Full Text Available Following technological advancements and integrated municipal solid waste management in recent decades, various methods such as recycling, biotreatment, thermal treatment, and sanitary landfills have been developed and employed. Creating sanitary landfills is a major strategy in the integrated solid waste management hierarchy. It is cheaper and thus more common than other disposal methods. Selecting a suitable solid waste landfill site can prevent adverse ecological and socioeconomic effects. Landfill site selection requires the analysis of spatial data, regulations, and accepted criteria. The present study aimed to use the geographic information system and the analytic hierarchy process to identify an appropriate landfill site for municipal solid wastes in Najafabad (Isfahan, Iran. Environmental and socioeconomic criteria were evaluated through different information layers in the Boolean and fuzzy logics. The analytical hierarchy process was applied for weighing the fuzzy information layers. Subsequently, two suitable sites were identified by superimposing the maps from the Boolean and fuzzy logics and considering the minimum required landfill area for 20 years. However, proximity of these two sites to Tiran (a nearby city made them undesirable landfill sites for Najafabad. Therefore, due to the existing restrictions in Najafabad, the possibility of creating landfill sites in common with adjacent cities should be further investigated.

  1. [Application of cowl in semi-aerobic landfill and its influence in initial stage].

    Science.gov (United States)

    Han, Dan; Zhao, You-cai; Xue, Bin-jie; Gao, Pin

    2009-10-15

    Enhancement of semi-aerobic landfill performance through a cowl installed on the gas ventilation pipeline using a simulated landfill box with 2 m x 1 m x 2 m in size was investigated, aiming at the maximum methane emission reduction. Influence of cowl on semi-aerobic environment formation was explored, and variety of methane and carbon dioxide concentrations at different wind speeds and mechanism of cowl operation were identified to provide information on design and improvement of semi-aerobic landfill. The results show that the cowl speeds up the semi-aerobic environment to shape, from over 50 days down to approximately 40 days, and reduces methane emission by promoting methane transformation to carbon dioxide. When the cowl is taken off suddenly during the normal operation, carbon dioxide concentration falls to 15.88% from the initial 16.67% immediately, and methane concentration increases to 16.12% from 6.14%. However, the carbon dioxide and methane concentration becomes 19.18% and 10.05%, respectively, as the cowl is taken on again. Additionally, methane emissions in the exhaust gas were monitored at different wind speeds of 2.0, 3.5, 5.0, 6.5, 8.0 m/s, and finds that the methane concentration reduces from the initial 15% to below 5% when the wind speed increases from 2 m/s to 8 m/s.

  2. IJER@2014 Page 57 Disposal Criteria of Bhanpur Solid Waste Landfill Site: Investigation and Suggestions

    Directory of Open Access Journals (Sweden)

    Tapas Dasgpta

    2014-03-01

    Full Text Available The solid waste management and design assist waste management officials in developing and encouraging environmentally sound methods for the disposal of "nonhazardous" solid waste. Promulgated under the authority of municipal act, the Municipal Solid Waste Landfill (MSWLF regulation act establish a framework for planning and implementing municipal solid waste landfill programs at the state and local levels. This framework sets minimum standards for protecting human health and the environment, while allowing states to develop more flexible MSWLF criteria. Intension to mitigate or expeditiously remediate potential adverse environmental impacts resulting from municipal landfills. However, other regulations existed prior to the revised MSWLF standards discussed in this module. The promulgation Criteria for Classification of Solid Waste Disposal Facilities and Practices. The established regulatory standards to satisfy the minimum national performance criteria for sanitary landfills governs only those solid waste disposal facilities and practices that do not meet the definition of a MSWLF. Such facilities include waste piles, industrial nonhazardous waste landfills, surface impoundments, and land application units. Environmental Protect Authority (EPA modified address the fact that these non-municipal non-hazardous wastes landfills may receive Conditionally Exempt Small Quantity Generator (CESQG hazardous waste, further clarify that construction and demolition landfills may receive residential lead-based paint waste as Solid Waste Disposal Facilities without for MSWLFs as long as all conditions are met.

  3. Solid waste management in Croatia in response to the European Landfill Directive.

    Science.gov (United States)

    Stanic-Maruna, Ira; Fellner, Johann

    2012-08-01

    The European Landfill Directive 99/31/EC represents the most influential piece of waste legislation on the management of municipal solid waste. In addition to technical standards regarding the design and location of landfills, it calls for a decrease in the amount of biodegradable waste landfilled. In order to meet the reduction targets set in the Landfill Directive, national solid waste strategies need to be changed. This article outlines the impact of the Landfill Directive on the Croatian waste management strategy and discusses the key challenges of its implementation. In addition, three scenarios of future waste management (mechanical biological pre-treatment, waste-to-energy and landfilling) have been investigated and evaluated regarding environmental impacts and affordability. The results of the analysis show that Croatia has transposed the said Directive into its own legislation in an exemplary way. The developed national waste management strategy foresees the set up of a separate collection of recyclables, waste pre-treatment of MSW, as well as the upgrading of existing disposal sites to sanitary landfills. However, the practical progress of carrying out provisions implemented on paper is lagging behind. Concerning the investigated scenarios the results of the evaluation indicate that mechanical biological pre-treatment in conjunction with separate collection of recyclables appears to be the most feasible option (in terms of economic and ecologic parameters). This result is in line with the proposed national waste management strategy.

  4. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    Science.gov (United States)

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  5. Sanitary survey rapport 2: Nissum Bredning

    DEFF Research Database (Denmark)

    Larsen, Martin Mørk; Jakobsen, Hans Henrik; Göke, Cordula

    .3and the associated sampling plan are required to be based on so-called ‘sanitary surveys’. A sanitary survey is an assessment of the interactions between potential sources of microbial pollution, climate conditions and oceanography in the area. The EU Commission guidance for making a sanitary...... survey formed the basis for this report. However, in certain cases, the Danish practice for microbiological sampling frequency and classification made previously on the basis of this, as described in ‘muslingebekendtgørelsen’ is summarized in Appendix 13. The report covers production areas P1, P2, P3...... is determined in samples of mussels, etc. taken at different sampling points within each area. The report points to the most precautionary fixed sampling points for future monitoring In summary, the sanitary survey of Nissum Broads identifies an area that in general is a microbial homogeneous, stable...

  6. Behavior of engineered nanoparticles in landfill leachate.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R; Santra, Swadeshmukul

    2013-08-01

    This research sought to understand the behavior of engineered nanoparticles in landfill leachate by examining the interactions between nanoparticles and leachate components. The primary foci of this paper are the effects of ZnO, TiO2, and Ag nanoparticles on biological landfill processes and the form of Zn, Ti, and Ag in leachate following the addition of nanoparticles. Insight into the behavior of nanoparticles in landfill leachate was gained from the observed increase in the aqueous concentrations over background for Zn, Ti, and Ag in some tested leachates attributed to leachate components interacting with the nanoparticle coatings resulting in dispersion, dissolution/dissociation, and/or agglomeration. Coated nanoparticles did not affect biological processes when added to leachate; five-day biochemical oxygen demand and biochemical methane potential results were not statistically different when exposed to nanoparticles, presumably due to the low concentration of dissolved free ionic forms of the associated metals resulting from the interaction with leachate components. Chemical speciation modeling predicted that dissolved Zn in leachate was primarily associated with dissolved organic matter, Ti with hydroxide, and Ag with hydrogen sulfide and ammonia; less than 1% of dissolved Zn and Ag was in the free ionic form, and free ionic Ti and Ag concentrations were negligible.

  7. Ultrasound assisted biogas production from landfill leachate.

    Science.gov (United States)

    Oz, Nilgün Ayman; Yarimtepe, Canan Can

    2014-07-01

    The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman's test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (pbiogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann-Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p<0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.

  8. Influence of Landfill Operation and Tropical Seasonal Variation on Leachate Characteristics: Results from Lysimeter Experiment

    Directory of Open Access Journals (Sweden)

    Islam M. Rafizul

    2012-01-01

    Full Text Available This study demonstrates the influence of lysimeter operational condition and tropical seasonal variation of leachate characteristics generated from municipal solid waste (MSW deposited in landfill lysimeter at KUET campus, Bangladesh. Three different situations of landfill were considered here as well as both the open dump lysimeter-A having a base liner and sanitary landfill lysimeter-B and C at two different types of cap liner were simulated. The leachate characteristics, leachate generation and climatic influence parameter had been continually monitored, from June 2008 to May 2010. This period covers both dry and rainy season. The leachate generation followed the rainfall pattern and the open dump lysimeter-A without top cover was recorded to have the highest leachate generation. Moreover, the open dump lysimeter-A had lower concentration and load of total kjeldahl nitrogen (TKN, ammonia nitrogen (NH4-N and dissolved organic carbon (DOC, while chemical oxygen demand (COD and biological oxygen demand (BOD5 concentration were higher compared with sanitary lysimeter-B and C. On the other hand, sanitary lysimeter-B, not only had lowest leachate generation, but also produced reasonably low COD and BOD5 concentration compared with open dump lysimeter-A. Based on evaluated results, it was also concluded that metal concentrations which were comparatively higher in leachate of open dump lysimeter were Ca and K, however, the heavy metal concentrations of Cd, Cu, Zn and Mn, and those apparently lower were metals of Na, Mg and Fe as well as heavy metals of Cr, Pb and Ni. However, significant release of heavy metals under open dump lysimeter was observed compared to sanitary lysimeter. Moreover, meaningful correlation between DOC and leaching of Cu and Pb was observed. Result reveals that lysimeter operational mode had direct effect on leachate quality. Finally, it can be concluded that the knowledge of leachate quality will be useful in planning and

  9. Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Bo Yue; Qi Wang; Zechun Huang; Qifei Huang; Zengqiang Zhang

    2011-01-01

    The abundance and phylogenetic composition of bacterial community in leachate of semi-aerobic and anaerobic landfill were compared through real-time polymerase chain reaction and denaturing gradient gel electrophoresis.In semi-aerobic landfill scenario,the bacterial 16S rRNA copy numbers in leachate had no significant reduction from initial stage to stable period.In the scenario of anaerobic landfill,the largest bacterial 16S rRNA gene copy number was found in leachate at initial stage,but it reduced significantly at stable period.Moreover,methane-oxidizing bacteria population in stable period was lower than that in initial period in both two landfill processes.However,semi-aerobic landfill leachate had more methanotrophic bacteria populations than that in the anaerobic one.Furthermore,according to the sequences and phylogenetic analysis,obvious difference could be detected in bacterial community composition in different scenarios.Proteobacteria and bacteroidetes took up a dominantly higher proportion in semi-aerobic landfill leachate.To summarize up,different landfill methods and its landfill ages had crucial impacts on bacterial abundance and composition in leachate of semi-aerobic and anaerobic landfills.

  10. N 2O emissions at municipal solid waste landfill sites: Effects of CH 4 emissions and cover soil

    Science.gov (United States)

    Zhang, Houhu; He, Pinjing; Shao, Liming

    Municipal solid waste landfills are the significant anthropogenic sources of N 2O due to the cooxidation of ammonia by methane-oxidizing bacteria in cover soils. Such bacteria could be developed through CH 4 fumigation, as evidenced by both laboratory incubation and field measurement. During a 10-day incubation with leachate addition, the average N 2O fluxes in the soil samples, collected from the three selected landfill covers, were multiplied by 1.75 ( p landfill sites, N 2O fluxes in two landfill sites were significantly correlated with the variations of the CH 4 emissions without landfill gas recovery ( p landfill gas recovery in another landfill site ( p > 0.05). The annual average N 2O flux was 176 ± 566 μg N 2O-N m -2 h -1 ( p landfill site, which was 72% ( p landfill sites, respectively. The magnitude order of N 2O emissions in three landfill sites was also coincident by the results of laboratory incubation, suggesting the sandy soil cover could mitigate landfill N 2O emissions.

  11. [On-site measurement of landfill gas yield and verification of IPCC model].

    Science.gov (United States)

    Luo, Yu-Xiang; Wang, Wei; Gao, Xing-Bao

    2009-11-01

    In order to obtain the accurate yield of landfill gas in Yulongkeng Landfill, Shenzhen, improved pumping test was conducted. The methane production rates of the influence region were figured out as 14.67 x 10(-5), 9.46 x 10(-5), 9.55 x 10(-5), and 4.28 x 10(-5) m3/(t x h), respectively. According to the methane production rate, the whole methane yield of Yulongkeng Landfill in 2005 was 322 m3/h, which indicated that Yulongkeng Landfill had went into stationary phase and the recycle of landfill gas was not valuable. IPCC model was verified by the measured data. Degradation half life of the waste was the key parameter concerned to the prediction accuracy of IPCC model. In China, the degradable waste in municipal solid waste was mainly kitchen waste leading to a short degradation period, which caused the degradation half life was shorter than the proposed value in IPCC model. For the improvement in prediction accuracy of landfill gas yield, the model parameters should be adopted reasonably based on a full survey of waste characterization in China, which will boost the applicability of IPCC model.

  12. Promotion of landfill gas recovering in Denmark; Fremme af lossepladsgas-udnyttelse i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H.C.

    1998-12-01

    The primary objective for the Danish Energy Agency with this project has been to increase the number of landfill gas plants in Denmark where the gas may used for energy purposes. This will fulfil some of the aims in Energy 21 where landfill gas is one of the possibilities in the area of biomass. The recovery and utilisation of landfill gas and the replacement of fossil fuels with CO{sub 2} neutral energy sources will mean a reduction of emission of methane and a reduction of greenhouse gases. The report contains investigations of a number of landfills in Denmark. For each landfill is listed the size, amount of waste, and type of waste. From these figures are made an estimate of the gas production over the next 20 years. (SM)

  13. Turkey Run Landfill Emissions Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — landfill emissions measurements for the Turkey run landfill in Georgia. This dataset is associated with the following publication: De la Cruz, F., R. Green, G....

  14. Compositional and physicochemical changes in waste materials and biogas production across 7 landfill sites in UK.

    Science.gov (United States)

    Frank, R R; Cipullo, S; Garcia, J; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2016-08-28

    The aim of this study was to evaluate the spatial distribution of the paper and fines across seven landfill sites (LFS) and assess the relationship between waste physicochemical properties and biogas production. Physicochemical analysis of the waste samples demonstrated that there were no clear trends in the spatial distribution of total solids (TS), moisture content (MC) and waste organic strength (VS) across all LFS. There was however noticeable difference between samples from the same landfill site. The effect of landfill age on waste physicochemical properties showed no clear relationship, thus, providing evidence that waste remains dormant and non-degraded for long periods of time. Landfill age was however directly correlated with the biochemical methane potential (BMP) of waste; with the highest BMP obtained from the most recent LFS. BMP was also correlated with depth as the average methane production decreased linearly with increasing depth. There was also a high degree of correlation between the Enzymatic Hydrolysis Test (EHT) and BMP test results, which motivates its potential use as an alternative to the BMP test method. Further to this, there were also positive correlations between MC and VS, VS and biogas volume and biogas volume and CH4 content. Outcomes of this work can be used to inform waste degradation and methane enhancement strategies for improving recovery of methane from landfills.

  15. Distribution of Redox-Sensitive Groundwater Quality Parameters Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rügge, Kirsten; Pedersen, Jørn K.;

    1995-01-01

    , dinitrogen oxide, nitrite, nitrate, and oxygen in the groundwater samples indicate that methane production, sulfate reduction, iron reduction, manganese reduction, and nitrate reduction take place in the plume. Adjacent to the landfill, methanogenic and sulfatereducing zones were identified, while aerobic......The leachate plume stretching 300 m downgradient from the Grindsted Landfill (Denmark) has been characterized in terms of redox-sensitive groundwater quality parameters along two longitudinal transects (285 samples). Variations in the levels of methane, sulfide, iron(ll), manganese(ll), ammonium...

  16. Evaluating Gas Emissions From Landfills – Which Methodologies Can Be Used?

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2011-01-01

    Many methodologies exist to measure whole landfill methane emission as alternatives to imprecise estimation of the methane emission using existing landfill gas generation models. An overview of the different measurement methodologies is given, and suggestions to the most promising methodologies...... are presented. Methods based on the tracer dilution approach are most promising. However, still some developments are needed, both in respect to the technical implementation, and in respect to the protocols needed to obtain annual emission estimates based on the limited number of measurement campaigns....

  17. Landfill Mining of Shredder Residues

    DEFF Research Database (Denmark)

    Hansen, Jette Bjerre; Hyks, Jiri; Shabeer Ahmed, Nassera

    In Denmark, shredder residues (SR) are classified as hazardous waste and until January 2012 the all SR were landfilled. It is estimated that more than 1.8 million tons of SR have been landfilled in mono cells. This paper describes investigations conducted at two Danish landfills. SR were excavated...

  18. Analysis of the economic potential of the landfill in the municipality of Chapeco - SC, Brazil; Analise do potencial economico do aterro sanitario do municipio de Chapeco - SC

    Energy Technology Data Exchange (ETDEWEB)

    Cansian, Maricy Moreno, Email: maricymc@gmail.com

    2006-07-01

    This study aims to evaluate the economic and environmental viability of the exploitation of methane gas (CH4) - biogas - concentrated at the bottom of the mountains of waste from landfill Chapeco for power generation. The landfill receives approximately of 80 tons / day, the vast majority of domestic origin.

  19. Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chen

    2011-10-06

    Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach

  20. Production and the application of anaerobic granular sludge produced by landfill

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sludge granulation is considered to be the most critical parameter governing successful operation of an upflow anaerobic sludge blanket and expanded granular sludge bed (EGSB) reactors. Pre-granulated seeding sludge could greatly reduce the required start-up time. Two lab-scale and a pilot-scale EGSB reactors were operated to treat Shaoxing Wastewater Treatment Plant containing wastewater from real engineering printing and dyeing with high pH and sulfate concentration. The microbiological structure and the particle size distribution in aerobic excess sludge, sanitary landfill sludge digested for one year, and the granular sludge of EGSB reactor after 400 d of operation were analyzed through scanning electron microscopy (SEM) and sieves. The lab-scale EGSB reactor seeded with anaerobic sludge after digestion for one year in landfill showed obviously better total chemical oxygen demand (TCOD) removal efficiency than one seeded with aerobic excess sludge after cation polyacrylamide flocculation-concentration and dehydration. The TCOD removed was 470.8 mg/L in pilot scale EGSB reactor at short hydraulic retention time of 15 h. SEM of sludge granules showed that the microbiological structure of the sludge from different sources showed some differences. SEM demonstrated that Methanobacterium sp. was present in the granules of pilot-scale EGSB and the granular sludge produced by landfill contained a mixture of anaerobic/anoxic organisms in abundance. The particle size distribution in EGSB demonstrated that using anaerobic granular sludge produced by sanitary landfill as the seeding granular sludge was feasible.

  1. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  2. Waste Informatics: Establishing Characteristics of Contemporary U.S. Landfill Quantities and Practices.

    Science.gov (United States)

    Powell, Jon T; Pons, José C; Chertow, Marian

    2016-10-06

    Waste generation is expected to increase in most countries for many decades with landfill disposal still the dominant solid waste management method(1-3). Yet, operational characteristics of landfills are often poorly understood with comparative statistics substantially lacking. Here, we call for a more formal waste informatics to organize and standardize waste management knowledge at multiple spatial scales through analysis of recently reported data from 1232 U.S. landfills and other high resolution data sets. We create the first known estimate of available U.S. municipal waste stocks (8.5 billion tonnes) and go on to resolve these stocks at the county level, reflecting prospective urban mining opportunities. Our analysis of disposal rates and landfill capacities reveals that more than half of U.S. states have more than 25 years of life remaining. We also estimate the gross energy potential of landfill gas in the U.S. (338 billion MJ/yr) by examining 922 operational methane collection systems and demonstrate that the greatest energy recovery opportunities lie at landfills with existing collection systems and energy conversion infrastructure. Finally, we found that the number of landfills reaching the federally defined 30-year postclosure care period will more than triple in the coming two decades, with 264 sites expected by the year 2044, highlighting the need to develop and standardize metrics carefully to define and standardize when it is appropriate to end or scale back long-term landfill monitoring.

  3. Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces

    Science.gov (United States)

    Lucernoni, Federico; Tapparo, Federica; Capelli, Laura; Sironi, Selena

    2016-11-01

    Emission factors are fundamental tools for air quality management. Odour Emission Factors (OEFs) can be developed in analogy with the emission factors defined for other chemical compounds, which relate the quantity of a pollutant released to the atmosphere to a given associated activity. Landfills typically represent a common source of odour complaint; for this reason, the development of specific OEFs allowing the estimation of odour emissions from this kind of source would be of great interest both for the landfill design and management. This study proposes an up-to-date methodology for the development of an OEF for the estimation of odour emissions from landfills, thereby focusing on the odour emissions related to the emissions of landfill gas (LFG) from the exhausted landfill surface. The proposed approach is an "indirect" approach based on the quantification of the LFG emissions from methane concentration measurements carried out on an Italian landfill. The Odour Emission Rate (OER) is then obtained by multiplying the emitted gas flow rate by the LFG odour concentration. The odour concentration of the LFG emitted through the landfill surface was estimated by means of an ad hoc correlation investigated between methane concentration and odour concentration. The OEF for the estimation of odour emissions from landfill surfaces was computed, considering the landfill surface as the activity index, as the product between the mean specific LFG flux emitted through the surface resulting from the experimental campaigns, equal to 0.39 l/m2/h, and its odour concentration, which was estimated to be equal to 105‧000 eq. ouE/m3, thus giving an OEF of 0.011 ouE/m2/s. This value, which is considerably lower than those published in previous works, should be considered as an improved estimation based on the most recent developments of the research in the field of odour sampling on surface sources.

  4. The decay of wood in landfills in contrasting climates in Australia.

    Science.gov (United States)

    Ximenes, Fabiano; Björdal, Charlotte; Cowie, Annette; Barlaz, Morton

    2015-07-01

    Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16-44years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples from Cairns indicates that those wood types were more susceptible to biodegradation. Microscopic analyses revealed that most decay patterns observed in samples analysed from Sydney were consistent with aerobic fungal decay. Only a minor portion of the microbial decay was due to erosion bacteria active in anaerobic/near anaerobic environments. The findings of this study strongly suggest that models that adopt

  5. Energy sector methane recovery and use: the importance of policy

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kerr; Michelle Hershman

    2009-08-15

    To raise awareness about appropriate policy options to advance methane recovery and use in the energy sector, the IEA has conducted a series of analyses and studies over the past few years. This report continues IEA efforts by providing policy makers with examples and best practices in methane mitigation policy design and implementation. This report offers an overview of four types of methane mitigation projects that have the strongest links to the energy sector: oil and gas methane recovery and reduction of leaks and losses; coal mine methane; landfill methane; and manure methane recovery and use. It identifies successful policies that have been used to advance these important projects. This information is intended to guide policy makers as they search for low-cost, near-term solutions to climate change. 38 refs., 10 figs., 1 app.

  6. 21 CFR 1210.14 - Sanitary inspection of plants.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sanitary inspection of plants. 1210.14 Section... FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.14 Sanitary inspection of plants. The sanitary conditions of any plant handling milk or cream any part of which is to be shipped or transported into...

  7. 21 CFR 1210.11 - Sanitary inspection of dairy farms.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sanitary inspection of dairy farms. 1210.11... UNDER THE FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.11 Sanitary inspection of dairy farms. The sanitary conditions of any dairy farm producing milk or cream to be shipped or transported...

  8. [Safety and electromagnetic compatibility in sanitary field].

    Science.gov (United States)

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  9. Sanitary technology. Special issue; Sanitairtechniek. Themanummer

    Energy Technology Data Exchange (ETDEWEB)

    Lodder, H. [Deerns Raadgevende Ingenieurs, Rijswijk (Netherlands); De Veer, T. [PWN Waterleidingbedrijf Noord-Holland, Velserbroek (Netherlands); Korstanje, H.; De Gids, Ph. K. [LegioFreeWaterSystems, Wijk bij Duurstede (Netherlands); Lansbergen, A. [Itho, Schiedam (Netherlands); Scheffer, W.J.H. [UNETO-VNI, Zoetermeer (Netherlands); Van Wolferen, H. [TNO Milieu en Energie, Apeldoorn (Netherlands); Donker, H. [Kemper Nederland, Groenlo (Netherlands); Engelenburg, M. [ATECA, Den Haag (Netherlands); Wolters, J. [Tour en Andersson, Alphen aan den Rijn (Netherlands); Doldersum, R.H. [De Melker Sanitairtechniek, Veenendaal (Netherlands)

    2007-09-15

    In 11 articles attention is paid to several aspects of sanitary technology, in particular the prevention and control of legionella in heating systems and water supply installations. [Dutch] In 11 artikelen wordt aandacht besteed aan verschillende aspecten m.b.t. sanitaire techniek, in het bijzonder legionella preventie en beheer in verwarmingssystemen en leidingwaterinstallaties.

  10. 21 CFR 110.35 - Sanitary operations.

    Science.gov (United States)

    2010-04-01

    ..., when cleaning is necessary to protect against the introduction of microorganisms into food, all food... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sanitary operations. 110.35 Section 110.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  11. [Sanitary-hygienic assessment of microbial biofertilizer].

    Science.gov (United States)

    Arkhipchenko, N A; Akhtemava, G A; Lebedeva, T V; Voronina, A A; Makhan'kova, T I; Pavlova, M M; Shteĭntsaĭg, T A

    1991-10-01

    Biological treatment of sewage from pig-breeding complexes allowed to produce microbial biomass and primary sediments. The mixture of these components (1:1) after rendering harmless and drying out become the high effective biofertilizer. The results of chronic experiment on sanitary status of soil (microbial and helminthological indexes) under this biofertilizer usage are discussed, and the harmlessness of it is demonstrated.

  12. Energy utilization from landfill biogas; Aproveitamento energetico do biogas de aterros sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Candiani, Giovano [Universidade Federal do ABC, Santo Andre, SP (Brazil). Programa de Pos-Graduacao em Energia; Hoffmann, Gustavo; Silva, Elissandro Rocha da; Moreira, Joao M.L.; Tomioka, Jorge

    2008-07-01

    Landfills for solid waste disposal are used in Brazil and in most of countries in the world. The organic part of the solid wastes produces gas out of the decomposition of its organic content. This gas, named biogas and mostly made of carbon dioxide and methane, may be collected and used as an energy source due the methane presence. In this work we analyze the possible energy utilization of landfill biogas in Brazil in which the organic content of the solid waste is about 60%. The use of biogas as energy source can reduce the greenhouse gas emissions and improve the sanitation conditions of landfills. Moreover, it allows financial gains through selling of energy and carbon credits. In order to make possible the biogas utilization it is necessary to recognize the differences among the many landfills which exist in the country. There are the large and small landfills. The large ones usually have good instrumentation and gas exhaustion systems while the small ones have passive exhaustion systems and very few field instrumentation. The small landfills need to improve their instrumentation system and to incorporate exhaustion systems. (author)

  13. USING LANDFILL GAS IN FUEL CELLS - A STEP CLOSER TO COMMERICAL REALITY

    Science.gov (United States)

    The article discusses Phase II and Phase III results of a U.S. EPA program underway at International Fuel Cells Corporation. The program involves controlling methane emissions from landfills using a fuel cell. The fuel cell would reduce air emissions affecting global warming, aci...

  14. Methane; the other greenhouse gas research and policy in the Netherlands

    NARCIS (Netherlands)

    Amstel AR van; Swart RJ; Krol MS; Beck JP; Bouman AF; Hoek KW van der

    1993-01-01

    The increase of anthropogenic activities is the main reason for the increase of methane emissions in the Netherlands. Methane is an important greenhouse gas. The most important sources in the Netherlands are landfills, cattle, manure and the exploration, transport and distribution of oil and gas. In

  15. Contribution by the methanogenic endosymbionts of anaerobic ciliates to methane production in Dutch freshwater sediments

    NARCIS (Netherlands)

    Hoek, van A.H.A.M.; Alen, T.A.; Vogels, G.D.; Hackstein, J.H.P.

    2006-01-01

    Biogenic methane contributes substantially to the atmospheric methane concentration and thus to global warming. This trace gas is predominantly produced by strictly anaerobic methanogenic archaea, which thrive in the most divergent ecological niches, e. g. paddy fields, sediments, landfills, and the

  16. Residential landfill remedial action construction case history

    Energy Technology Data Exchange (ETDEWEB)

    Creamer, P.D.; Martin, K.E. [RMT, Inc., Madison, WI (United States); Fahrney, J.S. [City of Madison, WI (United States)

    1995-12-31

    The City of Madison - Mineral Point Park is located on Madison`s west side within a well-established neighborhood on approximately 11 acres of open green space, which was formerly the Mineral Point Landfill. In 1994, a comprehensive remedial action construction project was implemented to more effectively extract methane gas and control gas migration, to minimize potential groundwater contamination, and to improve surface water run-off controls. This was accomplished by installing two new gas extraction systems, constructing a 4-foot-thick composite final cover with a geosynthetic subsurface drainage system, and adding 12 feet of relief and a storm sewer system to promote positive surface water drainage. While these features alone are not uncommon to many other landfills, the challenging aspect of this project was to install them in extreme proximity to homes, condominiums, and a school that were quickly developed shortly after the landfill closed. Some of the issues unique to this project due to the residential setting included strict noise, dust, and odor controls, easement negotiations, limited hours of operation, limited material storage areas, utility relocations and crossings, continuous operation of the existing gas extraction system, limited construction access, and increased health and safety concerns for the general public. The need to keep the neighboring residents informed, as well as to address their concerns and requests, was also a critical requirement in both the design and construction phases. This paper will review the design of the remedial action plan and present the construction process, highlighting the constructability issues encountered and the innovative means to overcome them. The program for communication with the neighbors throughout the design and construction phases will also be addressed.

  17. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    K. David Newell; Timothy R. Carr

    2007-03-31

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier

  18. The decay of wood in landfills in contrasting climates in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Ximenes, Fabiano, E-mail: fabiano.ximenes@dpi.nsw.gov.au [Forest Science, Agriculture NSW, New South Wales Department of Primary Industries, Level 12, 10 Valentine Ave, Parramatta, NSW 2150 (Australia); Björdal, Charlotte [Department of Conservation, Gothenburg University, Guldhedsgatan 5A, Box 130, SE-405 30 Göteborg (Sweden); Cowie, Annette [NSW Department of Primary Industries, Beef Industry Centre, Trevenna Rd., University of New England, Armidale, NSW 2351 (Australia); Barlaz, Morton [Dept. of Civil, Construction, & Environmental Eng., North Carolina State University, Box 7908, Raleigh, NC 27695-7908 (United States)

    2015-07-15

    Highlights: • We examine decay in wood from landfills in contrasting environments in Australia. • Analysis is based on changes in chemical composition and microscopy. • Climate did not influence levels of decay observed. • Microscopy of retrieved samples revealed most of the decay was aerobic in nature. • Current default factors for wood decay in landfills overestimate methane emissions. - Abstract: Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16–44 years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples

  19. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    Energy Technology Data Exchange (ETDEWEB)

    Tansel, Berrin, E-mail: tanselb@fiu.edu; Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  20. Attributing Atmospheric Methane to Anthropogenic Emission Sources.

    Science.gov (United States)

    Allen, David

    2016-07-19

    Methane is a greenhouse gas, and increases in atmospheric methane concentration over the past 250 years have driven increased radiative forcing of the atmosphere. Increases in atmospheric methane concentration since 1750 account for approximately 17% of increases in radiative forcing of the atmosphere, and that percentage increases by approximately a factor of 2 if the effects of the greenhouse gases produced by the atmospheric reactions of methane are included in the assessment. Because of the role of methane emissions in radiative forcing of the atmosphere, the identification and quantification of sources of methane emissions is receiving increased scientific attention. Methane emission sources include biogenic, geogenic, and anthropogenic sources; the largest anthropogenic sources are natural gas and petroleum systems, enteric fermentation (livestock), landfills, coal mining, and manure management. While these source categories are well-known, there is significant uncertainty in the relative magnitudes of methane emissions from the various source categories. Further, the overall magnitude of methane emissions from all anthropogenic sources is actively debated, with estimates based on source sampling extrapolated to regional or national scale ("bottom-up analyses") differing from estimates that infer emissions based on ambient data ("top-down analyses") by 50% or more. To address the important problem of attribution of methane to specific sources, a variety of new analytical methods are being employed, including high time resolution and highly sensitive measurements of methane, methane isotopes, and other chemical species frequently associated with methane emissions, such as ethane. This Account describes the use of some of these emerging measurements, in both top-down and bottom-up methane emission studies. In addition, this Account describes how data from these new analytical methods can be used in conjunction with chemical mass balance (CMB) methods for source

  1. The Importance of Landfill Gas Policy Measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The purpose of this document is to identify and examine global policies, measures, and incentives that appear to be stimulating LFG use. As certain countries have made great advances in LFGE development through effective policies, the intention of this report is to use information from the IEA's Global Renewable Energy and Energy Efficiency Measures and Policies Databases to identify and discuss policies. By consolidating this information and categorising it according to policy type, the attributes that are most appealing or applicable to the circumstances of a particular country or area -- technology demonstration, financial incentives, awareness campaigns, etc. -- are more easily identified. The report begins with background information on LFG and sanitary landfill practices, including a discussion of regional disparities, followed by a description of LFG mitigation technologies. Barriers to LFGE projects are then outlined. An explanation of the importance and effectiveness of policy measures leads into a discussion of types and examples of measures that are being used to overcome these barriers and encourage LFGE development. The report concludes with lessons learned, recommendations for further study, and resources where more information can be found.

  2. Methylated mercury species in municipal waste landfill gas sampled in Florida, USA

    Science.gov (United States)

    Lindberg, S. E.; Wallschläger, D.; Prestbo, E. M.; Bloom, N. S.; Price, J.; Reinhart, D.

    Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, electrical switches, thermometers, and general waste. Despite its known volatility, persistence, and toxicity in the environment, the fate of mercury in landfills has not been widely studied. The nature of landfills designed to reduce waste through generation of methane by anaerobic bacteria suggests the possibility that these systems might also serve as bioreactors for the production of methylated mercury compounds. The toxicity of such species mandates the need to determine if they are emitted in municipal landfill gas (LFG). In a previous study, we had measured levels of total gaseous mercury (TGM) in LFG in the μg/m 3 range in two Florida landfills, and elevated levels of monomethyl mercury (MMM) were identified in LFG condensate, suggesting the possible existence of gaseous organic Hg compounds in LFG. In the current study, we measured TGM, Hg 0, and methylated mercury compounds directly in LFG from another Florida landfill. Again, TGM was in the μg/m 3 range, MMM was found in condensate, and this time we positively identified dimethyl mercury (DMM) in the LGF in the ng/m 3 range. These results identify landfills as a possible anthropogenic source of DMM emissions to air, and may help explain the reports of MMM in continental rainfall.

  3. Potential application of biocover soils to landfills for mitigating toluene emission.

    Science.gov (United States)

    Su, Yao; Pei, Junshen; Tian, Baohu; Fan, Fengxi; Tang, Mengling; Li, Wei; He, Ruo

    2015-12-15

    Biocover soils have been demonstrated to be a good alternative cover material to mitigate CH4 emission from landfills. To evaluate the potential of biocover soil in mitigating emissions of non-methane volatile organic compounds (NMVOCs) from landfills, simulated cover soil columns with the influx of toluene (chosen as typical of NMVOCs) concentrations of 102-1336 mg m(-3) in the presence or absence of the major landfill gas components (i.e., CH4 and CO2) were conducted in this study. In the two experimental materials (waste biocover soils (WBS) and landfill cover soils (LCS)), higher toluene reduction was observed in WBS with respect to LCS. After the introduction of landfill gas, an increase of microbial diversity and relative abundance of toluene-degrading bacteria and methanotrophs occurred in WBS. To illustrate the role of toluene-degrading activity in mitigating toluene emissions through landfill covers, an analytical model was developed by incorporating the steady-state vapor transport with the first-order kinetics of aerobic biodegradation limited by O2 availability. This study demonstrated that biocover soils have great potential in applying to landfills for mitigating toluene emission to the atmosphere.

  4. Effect of nano-ZnO on biogas generation from simulated landfills.

    Science.gov (United States)

    Temizel, İlknur; Emadian, S Mehdi; Di Addario, Martina; Onay, Turgut T; Demirel, Burak; Copty, Nadim K; Karanfil, Tanju

    2017-05-01

    Extensive use of nanomaterials in commercial consumer products and industrial applications eventually leads to their release to the waste streams and the environment. Nano-ZnO is one of the most widely-used nanomaterials (NMs) due to its unique properties. It is also known to impact biological processes adversely. In this study, the effect of nano-ZnO on biogas generation from sanitary landfills was investigated. Two conventional and two bioreactor landfills were operated using real MSW samples at mesophilic temperature (35°C) for a period of about 1year. 100mg nano-ZnO/kg of dry waste was added to the simulated landfill reactors. Daily gas production, gas composition and leachate Zn concentrations were regularly monitored. A model describing the fate of the nano-ZnO was also developed. The results obtained indicated that as much as 99% of the nano-ZnO was retained within the waste matrix for both reactor operation modes. Waste stabilization was faster in simulated landfill bioreactors with and without the addition of nano-ZnO. Moreover, the presence of the nano-ZnO within the waste led to a decrease in biogas production of about 15%, suggesting that the nano-ZnO might have some inhibitory effects on waste stabilization. This reduction can have potentially significant implications on waste stabilization and the use of biogas from landfills as a renewable energy source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Alternative landfill cover technology demonstration at Kaneohe Marine Corps Base Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Karr, L.A.; Harre, B. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States); Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States)

    1997-12-31

    Surface covers to control water infiltration to waste buried in landfills will be the remediation alternative of choice for most hazardous and sanitary landfills operated by the Department of Defense. Although surface covers are the least expensive method of remediation for landfills, they can still be expensive solutions. Conventional wisdom suggests that landfill capping technology is well developed as evidenced by the availability of EPA guidance for designing and constructing what has become known as the {open_quotes}RCRA Cap{close_quotes}. In practice, however, very little testing of the RCRA cap, or any other design, has been done to evaluate how effective these designs are in limiting infiltration of water into waste. This paper describes a low cost alternative to the {open_quotes}RCRA Cap{close_quotes} that is being evaluated at Marine Corps Base Hawaii (MCBH) Kaneohe Bay. This study uses an innovative, simple and inexpensive concept to manipulate the fate of water falling on a landfill. The infiltration of water through the cap will be controlled by combining the evaporative forces of vegetation to remove soil water, with engineered structures that limit infiltration of precipitation into the soil. This approach relies on diverting enough of the annual precipitation to runoff, so that the water that does infiltrate into the soil can easily be removed by evapotranspiration.

  6. Achieving "Final Storage Quality" of municipal solid waste in pilot scale bioreactor landfills.

    Science.gov (United States)

    Valencia, R; van der Zon, W; Woelders, H; Lubberding, H J; Gijzen, H J

    2009-01-01

    Entombed waste in current sanitary landfills will generate biogas and leachate when physical barriers fail in the future, allowing the intrusion of moisture into the waste mass contradicting the precepts of the sustainability concept. Bioreactor landfills are suggested as a sustainable option to achieve Final Storage Quality (FSQ) status of waste residues; however, it is not clear what characteristics the residues should have in order to stop operation and after-care monitoring schemes. An experiment was conducted to determine the feasibility to achieve FSQ status (Waste Acceptance Criteria of the European Landfill Directive) of residues in a pilot scale bioreactor landfill. The results of the leaching test were very encouraging due to their proximity to achieve the proposed stringent FSQ criterion after 2 years of operation. Furthermore, residues have the same characteristics of alternative waste stabilisation parameters (low BMP, BOD/COD ratio, VS content, SO4(2-)/Cl- ratio) established by other researchers. Mass balances showed that the bioreactor landfill simulator was capable of practically achieving biological stabilisation after 2 years of operation, while releasing approximately 45% of the total available (organic and inorganic) carbon and nitrogen into the liquid and gas phases.

  7. Isolation of methanotrophic bacteria from a london landfill: a preliminary study using molecular and stable isotopic techniques.

    Science.gov (United States)

    Sriskantharajah, S.; Cutting, S.; Lowry, D.; Grassineau, N.; Nisbet, E.

    2003-04-01

    Methane emissions from landfills are an important source of European greenhouse emissions, and could be reduced by a biological management program that used methanotrophs in landfill cover soils. Topsoil samples taken from a London Landfill were incubated on Nitrate Mineral Salts medium in the presence of methane. The resulting colonies were probed for methanotrophic DNA using PCR amplification. DNA from methanotroph positive colonies was cloned and sequenced for identification. Isolates belonging to the genera Methylocaldum, Methylomonas and Methylosinus were detected. Phylogenetic analysis suggests the presence of possible new species. In addition dried samples of the isolates were analysed for their stable carbon isotope (δ 13C) composition. The results were δ 13C values of -27 per mil and -25 per mil for Methylomonas isolates, -35 per mil and -44 per mil for Methylosinus isolates, -58 per mil and -60 per mil for some of the Methylocaldum isolates and -35 per mil and -45 per mil for the others. This isotopic variation is reflected in a phylogenetic tree of the isolates. The differences shown in the δ 13C analysis could be due to differing biochemical properties, and if the technique is further developed, it may be used for rapid identification of bacteria useful in landfill management for reducing methane emissions. The results suggest that useful reductions in methane emissions could be achieved by a careful design of landfill cover to culture methanotrophs.

  8. Drilling down on methane emissions in the US Four Corners region

    Science.gov (United States)

    Petron, G.

    2016-12-01

    Two years ago the Four Corners region became known as the largest methane hotspot in the US [Kort et al., 2014]. More specifically, satellite based methane columns over the San Juan Basin had the largest enhancements above the regional mean column and this feature pertained between 2003 and 2009. The methane "hotpsot" designation hides a more complex reality. The region is home to large scale coal, oil, coalbed methane and natural gas extraction and processing which all can emit methane. Portions of the Fruitland coal outcrop on the Colorado side also have been degassing methane for decades. Other minor methane sources in the area include landfills and a few animal operations. In April 2015, a large airborne and ground-based campaign investigated the Four Corners methane hotspot to further characterize methane emissions in the region. In this talk we will summarize what has been learned and which questions remain.

  9. Kinetics of methane oxidation in selected mineral soils

    Science.gov (United States)

    Walkiewicz, A.; Bulak, P.; Brzeziñska, M.; Włodarczyk, T.; Polakowski, C.

    2012-10-01

    The kinetic parameters of methane oxidation in three mineral soils were measured under laboratory conditions. Incubationswere preceded by a 24-day preincubationwith 10%vol. of methane. All soils showed potential to the consumption of added methane. None of the soils, however, consumed atmospheric CH4. Methane oxidation followed the Michaelis-Menten kinetics, with relatively low values of parameters for Eutric Cambisol, while high values for Haplic Podzol, and especially for Mollic Gleysol which showed the highest methanotrophic activity and much lower affinity to methane. The high values of parameters for methane oxidation are typical for organic soils and mineral soils from landfill cover. The possibility of the involvement of nitrifying microorganisms, which inhabit the ammonia-fertilized agricultural soils should be verified.

  10. Process for separating nitrogen from methane using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Qiu, Dongming; Dritz, Terence Andrew; Neagle, Paul; Litt, Robert Dwayne; Arora, Ravi; Lamont, Michael Jay; Pagnotto, Kristina M.

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  11. The Characteristics of Leachate and Groundwater Pollution at Municipal Solid Waste Landfill of Ibb City, Yemen

    Directory of Open Access Journals (Sweden)

    Esmail A. Sabahi

    2009-01-01

    government should do sanitary landfill to prevent further contamination to surface water, groundwater as well as soil.

  12. Landfill Construction and Capacity Expansion

    NARCIS (Netherlands)

    Andre, F.J.; Cerda, E.

    2003-01-01

    We study the optimal capacity and lifetime of landfills taking into account their sequential nature.Such an optimal capacity is characterized by the so-called Optimal Capacity Condition.Particular versions of this condition are obtained for two alternative settings: first, if all the landfills are t

  13. Stabilizing Waste Materials for Landfills

    Science.gov (United States)

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  14. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been

  15. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been sugges

  16. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    Directory of Open Access Journals (Sweden)

    Alan F. Smeaton

    2011-06-01

    Full Text Available The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  17. Biogeochemistry and isotope geochemistry of a landfill leachate plume.

    Science.gov (United States)

    van Breukelen, Boris M; Röling, Wilfred F M; Groen, Jacobus; Griffioen, Jasper; van Verseveld, Henk W

    2003-09-01

    The biogeochemical processes were identified which improved the leachate composition in the flow direction of a landfill leachate plume (Banisveld, The Netherlands). Groundwater observation wells were placed at specific locations after delineating the leachate plume using geophysical tests to map subsurface conductivity. Redox processes were determined using the distribution of solid and soluble redox species, hydrogen concentrations, concentration of dissolved gases (N(2), Ar, and CH(4)), and stable isotopes (delta15N-NO(3), delta34S-SO(4), delta13C-CH(4), delta2H-CH(4), and delta13C of dissolved organic and inorganic carbon (DOC and DIC, respectively)). The combined application of these techniques improved the redox interpretation considerably. Dissolved organic carbon (DOC) decreased downstream in association with increasing delta13C-DOC values confirming the occurrence of degradation. Degradation of DOC was coupled to iron reduction inside the plume, while denitrification could be an important redox process at the top fringe of the plume. Stable carbon and hydrogen isotope signatures of methane indicated that methane was formed inside the landfill and not in the plume. Total gas pressure exceeded hydrostatic pressure in the plume, and methane seems subject to degassing. Quantitative proof for DOC degradation under iron-reducing conditions could only be obtained if the geochemical processes cation exchange and precipitation of carbonate minerals (siderite and calcite) were considered and incorporated in an inverse geochemical model of the plume. Simulation of delta13C-DIC confirmed that precipitation of carbonate minerals happened.

  18. The seasonal distribution of bioaerosols in municipal landfill sites: a 3-yr study

    Science.gov (United States)

    Huang, Chu-Yun; Lee, Ching-Chang; Li, Fang-Chun; Ma, Yu-Pei; Su, Huey-Jen Jenny

    Landfill is the most common way to dispose waste in many countries, and most landfill sites after closure are often considered for public recreation purposes. It is important that the pollutant levels of closed landfill areas are free of adverse health concerns. However, only limited studies have investigated the airborne biological contamination in closed landfill sites. The objective of this study was to document the bioaerosol levels in a closed landfill site while the temporal, seasonal, and meteorological effects were also taken into accounts. Study site was at one sanitary landfill, taking mostly municipal wastes, in southern Taiwan. Airborne bacteria and fungi were collected on tryptic soy agar (Difco) and malt extract agar (Difco) by a Burkard impactor (Burkard Manufacturing Co. Ltd.) operating at about 10 l m -3 for 30 s. Air samples were collected sequentially in winter, spring, summer and fall in 1998, winter, spring, summer in 1999, as well as summer and fall in 2000. In addition, sampling was conducted in the morning, at noon, in the evening and the following morning during each field assessment. Levels of airborne bacteria and fungi were all far above 10 3 CFU m -3. The concentrations of culturable bacteria and fungi were higher in winter than in other seasons. The difference of bioaerosol level and fungal percentages between the undergoing-closure and closed areas was obvious, and the concentrations were higher in closed area. We therefore recommend that before any complete investigation can be conducted to assure the safety, the closed area of landfill site is probably not ready for immediate public use.

  19. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    Directory of Open Access Journals (Sweden)

    Fahime Khademi

    2016-01-01

    Full Text Available Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA. BTEX comounds affect the air quality and may be harmful to human health. Benzene, toluene, ethylbenzene and xylene isomers that are generally called BTEX compounds are the most abundant VOCs in biogas. Methods: Sampling of VOCs in biogas vents was operated passively or with Tedlar bags. 20 samples were collected from 40 wells of old and new biogas sites of Shiraz’ landfill. Immediately after sampling, the samples were transferred to the laboratory. Analysis of the samples was performed with GC-MS. Results: The results showed that in the collection of the old and new biogas sites, the highest concentration of VOCs was observed in toluene (0.85ppm followed by benzene (0.81ppm, ethylbenzene (0.13ppm and xylene (0.08ppm. Conclusion: The results of the study showed that in all samples, most available compounds in biogas vents were aromatic hydrocarbon compounds.These compounds’ constituents originate from household hazardous waste materials deposited in the landfill or from biological/chemical decomposition processes within the landfill.

  20. [Modern problems of the application of sanitary regulations concerning sanitary protection zones and sanitary classification of enterprises, buildings and other facilities].

    Science.gov (United States)

    Lomtev, A Iu; Eremin, G B; Mozzhukhina, N A; Kombarova, M Iu; Mel'tser, A V; Giul'mamedov, É Iu

    2013-01-01

    In this paper there was performed an analysis of the application of sanitary norms and rules concerning sanitary protective zones and sanitary classification of enterprises, buildings and other facilities, including requirements for the sufficiency and accuracy of information in the performance of projects in sanitary protection zone (SPZ). There is presented an analysis of regulations that set requirements for implementation of mapping works in drafting the SPZ. The design of the SPZ was shown to be, on the one hand, the element of territorial planning subjects of the Russian Federation, on the other hand, the object of capital construction. The substantiations of requirements for graphic and text content, structure, and composition of data, sources of their obtaining, methods of data convergence are reported. There are revealed inconsistencies in Sanitary Regulations and Norms (SanPins) and in their relationship with the Town Planning and Land Code and other laws, and regulations adopted in their development.

  1. Final Environmental Assessment for Sanitary Landfill Expansion on the Tonopah Test Range, NYE County, NV

    Science.gov (United States)

    2007-01-01

    Palma Bureau of Land Management Las Vegas Field Office 4701 N Torrey Pines Dr Las Vegas, NV 89130-2301 Mr. Robert Williams, State Supervisor U.S...Fish and Wildlife Service Nevada Ecological Field Office 1340 Financial Blvd, Ste 234 Reno, NV 89502 Ms. Cynthia Martinez US Fish and

  2. Environmental Assessment for Sanitary Landfill Expansion on the Tonopah Test Range, Nye County, NV

    Science.gov (United States)

    2007-01-01

    Administration 209 E Musser St, Room 200 Carson City, NV 89701-4298 Electronic format Mr. Juan Palma Bureau of Land Management Las Vegas... Ecological Field Office 1340 Financial Blvd, Ste 234 Reno, NV 89502 Ms. Cynthia Martinez US Fish and Wildlife Service Southern Nevada Field Office

  3. Life Cycle Comparison of Waste-to-Energy to Sanitary Landfill

    Science.gov (United States)

    Life cycle assessment (LCA) can be used to evaluate the environmental footprint of products, processes, and services. An LCA allows decision makers to compare products and processes through systematic evaluation of supply chains. Also known as a “cradle-to-grave” approach, LCA ev...

  4. The applications of geotextiles in the sanitary landfills; Aplicaciones de los geotextiles en los vertederos

    Energy Technology Data Exchange (ETDEWEB)

    Morera, J.; Marin, J.

    1999-11-01

    The spillways controlled of Solid Urban Residuals, Industrial Residuals and Industrial Special Residuals should be waterproofed. The waterproofing should be assured, to avoid the possibility of contamination of the aquifer for the filtration of leachates coming from the garbage and rain waters eventually polluted for their contact with the mass of deposited waste already.

  5. Appendices for Fort George G. Meade Active Sanitary Landfill and Clean Fill Dump Remedial Investigation Report

    Science.gov (United States)

    1992-12-01

    FOR THE SPECIFIC TEST bA."E EXCEPT FOR THE FOLLOWING TEST NAMES: PH, COND, TEMP, OILGR, BOD, COD, TOC, HARD, ASBEST , TSS -LAB DOES NOT REQUIRE...ACENAPHTHYLENE. AI4ELNT *ANION ELUENT ANIL ANILINE AI4TRC ANTHRACENE ANTRCN 9-ANTHRACENECARBONITRILE ANTRQO ATHRAQUINONE / 9,10 -ANTHRACENED ONE AS ARSENIC ASBEST ...ANION ELUENT ANTRC ANTHRACENE ACHE ANTICHOLINESTERASE SB ANTIMONY AS ARSENIC ASEXT -ARSENIC, EXTRACTABLE ASTOT *AR.SENIC, TOTAL ASBEST ASBESTOS’ ANTROTJ

  6. Fort George G. Meade Active Sanitary Landfill and Clean Fill Dump, Remedial Investigation Report

    Science.gov (United States)

    1992-12-01

    acceptable. However, the RME exposure yielded an unacceptable cancer risk. Clean Fill Dump A two-phase study was conducted at this site concurrently with...Indian hemp FACU Asclepias syriaca Pink milkweed UP* Aster spp. Asters UNK Cardamine hirsuta Hairy bitter cress FACU Centaurea maculata Batchelor’s...bound excess cancer risk associated with lifetime exposure to 1 mg/kg.day of a compound. There is a 95 percent chance that the actual risk value is

  7. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming, E-mail: wangxiaoming@cqu.edu.cn [Key Laboratory of Three Gorges Reservoir Region' s Eco-Environment under Ministry of Education, Chongqing University, Chongqing 400044 (China); Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2016-07-01

    Tree branches are an important component of yard waste disposed in U.S. municipal solid waste (MSW) landfills. The objective of this study was to characterize the anaerobic biodegradability of hardwood (HW) and softwood (SW) branches under simulated but optimized landfill conditions by measuring methane (CH{sub 4}) yields, decay rates, the decomposition of cellulose, hemicellulose and organic carbon, as well as carbon storage factors (CSFs). Carbon conversions to CH{sub 4} and CO{sub 2} ranged from zero to 9.5% for SWs and 17.1 to 28.5% for HWs. When lipophilic or hydrophilic compounds present in some of the HW and SW samples were extracted, some samples showed increased biochemical methane potentials (BMPs). The average CH{sub 4} yield, carbon conversion, and CSF measured here, 59.4 mL CH{sub 4} g{sup −1} dry material, 13.9%, and 0.39 g carbon stored g{sup −1} dry material, respectively, represent reasonable values for use in greenhouse gas inventories in the absence of detailed wood type/species data for landfilled yard waste. - Highlights: • Characterized biodegradation of branches under simulated but optimized landfill conditions • Observed varied biodegradation between HW and SW branches with different diameters • Inhibitory extractives were observed on boughs or twigs of some branch species. • CH{sub 4} yield and carbon storage factors presented for use in landfill related inventories.

  8. Microbial community structure and diversity in a municipal solid waste landfill.

    Science.gov (United States)

    Wang, Xiaolin; Cao, Aixin; Zhao, Guozhu; Zhou, Chuanbin; Xu, Rui

    2017-08-01

    Municipal solid waste (MSW) landfills are the most prevalent waste disposal method and constitute one of the largest sources of anthropogenic methane emissions in the world. Microbial activities in disposed waste play a crucial role in greenhouse gas emissions; however, only a few studies have examined metagenomic microbial profiles in landfills. Here, the MiSeq high-throughput sequencing method was applied for the first time to examine microbial diversity of the cover soil and stored waste located at different depths (0-150cm) in a typical MSW landfill in Yangzhou City, East China. The abundance of microorganisms in the cover soil (0-30cm) was the lowest among all samples, whereas that in stored waste decreased from the top to the middle layer (30-90cm) and then increased from the middle to the bottom layer (90-150cm). In total, 14 phyla and 18 genera were found in the landfill. A microbial diversity analysis showed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla, whereas Halanaerobium, Methylohalobius, Syntrophomonas, Fastidiosipila, and Spirochaeta were the dominant genera. Methylohalobius (methanotrophs) was more abundant in the cover layers of soil than in stored waste, whereas Syntrophomonas and Fastidiosipila, which affect methane production, were more abundant in the middle to bottom layers (90-150cm) in stored waste. A canonical correlation analysis showed that microbial diversity in the landfill was most strongly correlated with the conductivity, organic matter, and moisture content of the stored waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  10. Evaluation and analysis of gaseous emission in landfill area and estimation of its pollutants dispersion, (case of Rodan in Hormozgan, Iran

    Directory of Open Access Journals (Sweden)

    Amirreza Talaiekhozani

    2016-08-01

    Full Text Available Background: The biogases are the mixture of gases produced through the microbial decomposition of organic waste which are amply observed in the landfills. The main purpose of this study was to estimate the emission rates of landfill gases such as carbon dioxide, methane and non-methane organic compounds (NMOCs in the solid waste landfill of Rodan city in Hormozgan province. Methods: All the necessary information such as population, geographic and climate of Rodan city were collected. Solid waste analysis was then conducted. Afterward, the LandGEM software is used in this study for the purpose of estimation of total biogas, methane, carbon dioxide and NMOCs emission from Rodan’s landfill. Results: The analysis of results showed that only 24.18% of the produced waste in this city is perishable. The calculations indicate that the peak of biogas production which is equal to 420 tons per year would be achieved in the year 2019. The production rates of carbon dioxide and methane in the same year would be equal to 308 and 112 tons per year respectively. The pollutants transmittance calculations in the vicinity of the landfill revealed that the maximum pollutant concentration is within the maximum distance of 200 m. Conclusion: The results obtained in this study could be used for the purpose of design and installation of extraction or incineration equipment in the landfill of Rodan.

  11. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.

    Science.gov (United States)

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G

    2013-10-01

    Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ(13)C-value of the dissolved inorganic carbon (δ(13)C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ(13)C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ(13)C-DIC of -20‰ to -25‰. The production of methane under anaerobic conditions caused an increase in δ(13)C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ(13)C-DIC of about -20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation-reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and

  12. Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill.

    Science.gov (United States)

    Cossu, Raffaello; Morello, Luca; Raga, Roberto; Cerminara, Giulia

    2016-09-01

    Landfilling continues to be one of the main methods used in managing Municipal Solid Waste (MSW) worldwide, particularly in developing countries. Although in many countries national legislation aims to reduce this practice as much as possible, landfill is a necessary and unavoidable step in closing the material cycle. The need for innovative waste management techniques to improve landfill management and minimize the adverse environmental impact produced has resulted in an increasing interest in innovative systems capable of accelerating waste stabilization. Landfill bioreactors allow decomposition kinetics to be increased and post-operational phase to be shortened; in particular, hybrid bioreactors combine the benefits afforded by both aerobic and anaerobic processes. Six bioreactor simulators were used in the present study: four managed as hybrid, with an initial semi-aerobic phase and a second anaerobic phase, and two as anaerobic control bioreactors. The main goal of the first aerated phase is to reduce Volatile Fatty Acids (VFA) in order to increase pH and enhance methane production during the anaerobic phase; for this reason, air injection was stopped only when these parameters reached the optimum range for methanogenic bacteria. Biogas and leachate were constantly monitored throughout the entire methanogenic phase with the aim of calibrating a Gompertz Model and evaluating the effects of pre-aeration on subsequent methane production. The results showed that moderate and intermittent pre-aeration produces a positive effect both on methane potential and in the kinetics of reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterization, Concentrations and Emission Rates of Volatile Organic Compounds from Two Major Landfill Sites in Kuwait

    Directory of Open Access Journals (Sweden)

    Mohammad AlAhmad

    2012-01-01

    Full Text Available Problem statement: The emission of pollutants from landfill sites in Kuwait is of major concern due to the associated adverse environmental and health impacts. There are 18 landfill sites in Kuwait which are contributing to the emission of atmospheric pollutants including; methane, carbon dioxide and Volatile Organic Compounds (VOCs. Approach: Determine the concentration and composition of VOCs in LFG emissions from two major landfill sites in Kuwait and to investigate the influence of the "In-Situ Aerobic Stabilization" on the reduction of VOCs emission. VOCs samples were collected during an intensive, short-term field sampling campaign conducted in 2010 where 50 individual volatile organic compounds were identified and quantified in landfill gas samples collected from the two landfill sites and the Project Area. Results: The concentration levels of VOCs were found to be significantly different within the same landfill site; however, the average total VOCs emissions were comparable between the two landfill sites. Concentration of total VOCs (i.e., sum of 50 compounds in LFG emissions varied between 9.4-67.2 ppm in Jleeb Al-Shuyoukh landfill site and from 15.4-57.7 ppm in Al-Qurain landfill site. Annual emissions of the well-known five VOCs (i.e., benzene, toluene, ethylbenzene, m-, o- and p-xylenes and styrene were also computed for each vent pipe from Jleeb Al-Shuyoukh landfill using the measured average concentrations and LFG flow rates. The results, if calculated in terms of the average ΣBTEX+S quantity emitted per vent pipe per year, showed that the magnitude of ΣBTEX+S emissions ranged between 0.108 -11.686 g y−1. Conclusion: The results of this pilot project demonstrated that the “in-situ aerobic stabilization method” applied on old solid waste deposits in the project area of Jleeb Al-Shuyoukh landfill can significantly reduce the average VOCs concentration in LFG emissions from high-productivity wells in the project

  14. Sanitary effects of fossil fuels; Effets sanitaires des combustibles fossiles

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H. [Centre National de la Recherche Scientifique (IN2P3/CNRS), 38 - Grenoble (France)

    2006-07-01

    In this compilation are studied the sanitary effects of fossil fuels, behavioral and environmental sanitary risks. The risks in connection with the production, the transport and the distribution(casting) are also approached for the oil(petroleum), the gas and the coal. Accidents in the home are evoked. The risks due to the atmospheric pollution are seen through the components of the atmospheric pollution as well as the sanitary effects of this pollution. (N.C.)

  15. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  16. PERFORMA OKSIDASI METAN PADA REAKTOR KONTINYU DENGAN PENINGKATAN KETEBALAN LAPISAN BIOCOVER LANDFILL

    Directory of Open Access Journals (Sweden)

    Opy Kurniasari

    2013-11-01

    Full Text Available PERFORMANCE OF METHANE OXIDATION IN CONTINUOUS REACTOR BY BIOCOVER LANDFILL FILM THICKNESS IMPROVEMENT. Municipal solid waste (MSW handling in Indonesia is currently highly dependent on landfilling at the final disposal facility (TPA, which generally operated in layer-by-layer basis, allowing the anaerobic (absent of oxygen process. This condition will certainly generate biogas in the form of methane (CH4 and CO2. Methane is a greenhouse gas with a global warming potential greater than CO2, and can absorb infrared radiation 23 times more efficient than CO2 in the period of over 100 years. One way that can be done to reduce methane gas from landfills that escape into nature is to oxidize methane by utilizing landfill cover material (biocover as methane-oxidizing microorganism media. Application of compost as landfill cover material is a low-cost approach to reduce emissions so are suitable for developing countries. The compost used in this study was compost landfill mining, which is degraded naturally in landfill. The purpose of this study was to evaluate the ability of biocover to oxidize the methane on a certain layer thickness with a continuous flow conditions. Three column reactors were used, which were made of flexy glass measuring 70 cm in high and 15 cm in diameter. The methane flowed from the bottom of the reactor continuously at a flow rate of 5 ml/minute. The columns were filled with biocover compost landfill mining with layer thickness of 5, 25, 35 and 60 cm. The results showed that the thicker layer of biocover, the higher the efficiency of methane oxidation. The oxidation efficiency obtained in each layer thickness of 15, 25, 35 and 60 cm was 56.43%, 63.69%, 74.58% and 80, 03% respectively, with the rate of oxidation of 0.29 mol m-2 d-1 and the fraction of oxidation of 99%. The oxidation result was supported by the identification of bacteria isolated in this experiment, namely metanotrophic bacteria that have the ability to oxidize

  17. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  18. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area.

  19. THE "CHEMICAL OXYGEN DEMAND / TOTAL VOLATILE ACIDS" RATIO AS AN ANAEROBIC TREATABILITY INDICATOR FOR LANDFILL LEACHATES

    Directory of Open Access Journals (Sweden)

    R. C. Contrera

    2015-03-01

    Full Text Available Abstract In some operational circumstances a fast evaluation of landfill leachate anaerobic treatability is necessary, and neither Biochemical Methane Potential nor BOD/COD ratio are fast enough. Looking for a fast indicator, this work evaluated the anaerobic treatability of landfill leachate from São Carlos-SP (Brazil in a pilot scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR. The experiment was conducted at ambient temperature in the landfill area. After the acclimation, at a second stage of operation, the AnSBBR presented efficiency above 70%, in terms of COD removal, utilizing landfill leachate without water dilution, with an inlet COD of about 11,000 mg.L-1, a TVA/COD ratio of approximately 0.6 and reaction time equal to 7 days. To evaluate the landfill leachate biodegradability variation over time, temporal profiles of concentration were performed in the AnSBBR. The landfill leachate anaerobic biodegradability was verified to have a direct and strong relationship to the TVA/COD ratio. For a TVA/CODTotal ratio lower than 0.20, the biodegradability was considered low, for ratios between 0.20 and 0.40 it was considered medium, and above 0.40 it was considered high.

  20. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sukhwan; Carey, Jeffrey N.; Semrau, Jeremy D. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Civil and Environmental Engineering

    2009-07-15

    Methane is a potent greenhouse gas with a global warming potential {proportional_to}23 times that of carbon dioxide. Here, we describe the modeling of a biotrickling filtration system composed of methane-consuming bacteria, i.e., methanotrophs, to assess the utility of these systems in removing methane from the atmosphere. Model results indicate that assuming the global average atmospheric concentration of methane, 1.7 ppmv, methane removal is ineffective using these methanotrophic biofilters as the methane concentration is too low to enable cell survival. If the concentration is increased to 500-6,000 ppmv, however, similar to that found above landfills and in concentrated animal feeding operations (factory farms), 4.98-35.7 tons of methane can be removed per biofilter per year assuming biotrickling filters of typical size (3.66 m in diameter and 11.5 m in height). Using reported ranges of capital, operational, and maintenance costs, the cost of the equivalent ton of CO{sub 2} removal using these systems is $90-$910 ($2,070-$20,900 per ton of methane), depending on the influent concentration of methane and if heating is required. The use of methanotrophic biofilters for controlling methane emissions is technically feasible and, provided that either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive. (orig.)

  1. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    Science.gov (United States)

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  2. [Sanitary-and-epidemiologic examination of the food-products].

    Science.gov (United States)

    Sukhanov, V B; Kerimova, M G; Elizarova, E V

    2011-01-01

    Some aspects of sanitary and epidemiologic examination of food products are considered. The examination is an important part of sanitary and epidemiologic control and surveillance in the sphere of food safety and quality, consumer rights protection, consumer market and human welfare.

  3. Mining the Midden: A Facility for Dynamic Waste Harvesting at the Cedar Hills Regional Landfill

    Science.gov (United States)

    Allan, Aaron

    Mining the Midden intends to re-frame the sanitary landfill as a new typology of public land containing an embodied energy of cultural and material value. By reconnecting the public with the landfill and seriously exposing its layers of history and then digesting both mined and new waste within an industrial facility of materials recovery and plasma gasification technology waste-to-energy plant. The sequence of experience for a public visitor begins where the waste is transformed to energy and flows in the opposite direction of the trash through the facility and then into the active landfill mining operation which is the large site component of the project. The mine is flanked by the visitor path, which is suspended from the soldier piles of the excavation system and allows the visitor to interpret along the 1/3 mile path their personal connection to the waste stream and the consumption patterns which drive our waste. Interpretation results from multi-sensory experience of the open mine and its connection to the processing structure as one hovers above, through moments of seeing through structural glass lagging directly into the sectional cut of the landfill, and through cultural artifacts harvested by landfill archaeologists which are displayed in rhythm with the structure and lagging. The culmination of the prescribed path is a narrow cut which frames the view of Mt. Rainier in the distance and opens up a visual connection with the remaining majority of the landfill which have up to this point been blocked by the small mountain of trash which they just walked up and through. This thesis intends that by confronting people with the juxtapositions of 2 potentially destructive mounds or mountains, and how we as a culture value and protect land while we simultaneously dump our rubbish on other lands, this experience will make the visitor more conscious of ones personal contribution to our culture of disposable commodities.

  4. Impact of landfill leachate on the groundwater quality: A case study in Egypt

    Directory of Open Access Journals (Sweden)

    Magda M. Abd El-Salam

    2015-07-01

    Full Text Available Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69 indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes.

  5. From phytoaccumulation to post-harvest use of water fern for landfill management.

    Science.gov (United States)

    Song, Uhram; Kim, Dae Won; Waldman, Bruce; Lee, Eun Ju

    2016-11-01

    We examined the potential of Azolla japonica as a remediating plant for leachate channels and post-accumulation use as fertilizer for landfill slope. The harvested biomass of Azolla after one month grown in leachate was 254% that of the initial biomass and the predicted annual harvestable biomass of Azolla using a growth model was 32 times that of the initial biomass. Na, Fe, Mn, Mg, and P were accumulated in Azolla at very high concentrations. Such rapid increase of biomass and high accumulation rates suggest that this plant could be an excellent remediating plant. The post-harvest use of Azolla as compost was studied for the management and use of phytoaccumulating Azolla. Metal contents of Azolla compost were below permissible limits for co-composting material. Nitrogen, organic matter, P, and Mg content of the Azolla compost improved the soil condition of the landfill and enhanced ecophysiological responses of the plants. The application of Azolla compost can improve management of sanitary landfills, including the restoration of vegetation. Considering its ease of harvesting, high accumulation rates, harvestable biomass and suitability for composting, Azolla can provide a suitable solution for sustainable management of leachate channels and landfill slopes.

  6. Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)

    Energy Technology Data Exchange (ETDEWEB)

    IT Corporation, Las Vegas, NV

    2002-05-28

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution

  7. An experimental study with bioreactor-landfill system%生物反应器填埋场的试验研究

    Institute of Scientific and Technical Information of China (English)

    王君琴; 沈东升

    2003-01-01

    In this study, a methane bioreactor-landfill system was utilized to treat municipal solid waste (MSW). Through analyzing and detecting the pollutant(CODcr) in the bioreactor-landfill system, a simulated mathematic formulaof waste degradation was established. After treated with this system, the CODcr and VFA concentrations in MSW could be decreased from more than 20000 and 7000 mg·L-1 to less than 1500 and 200 mg·L-1, respec-tively.

  8. [Culturable psychrotolerant methanotrophic bacteria in landfill cover soil].

    Science.gov (United States)

    Kallistova, A Iu; Montonen, L; Jurgens, G; Munster, U; Kevbrina, M V; Nozhevnikova, A N

    2014-01-01

    Methanotrophs closely related to psychrotolerant members of the genera Methylobacter and Methylocella were identified in cultures enriched at 10@C from landfill cover soil samples collected in the period from April to November. Mesophilic methanotrophs of the genera Methylobacter and Methylosinus were found in cultures enriched at 20 degrees C from the same cover soil samples. A thermotolerant methanotroph related to Methylocaldum gracile was identified in the culture enriched at 40 degrees C from a sample collected in May (the temperature of the cover soil was 11.5-12.5 degrees C). In addition to methanotrophs, methylobacteria of the genera Methylotenera and Methylovorus and members of the genera Verrucomicrobium, Pseudomonas, Pseudoxanthomonas, Dokdonella, Candidatus Protochlamydia, and Thiorhodospira were also identified in the enrichment cultures. A methanotroph closely related to the psychrotolerant species Methylobacter tundripaludum (98% sequence identity of 16S r-RNA genes with the type strain SV96(T)) was isolated in pure culture. The introduction of a mixture of the methanotrophic enrichments, grown at 15 degrees C, into the landfill cover soil resulted in a decrease in methane emission from the landfill surface in autumn (October, November). The inoculum used was demonstrated to contain methanotrophs closely related to Methylobacter tundripaludum SV96.

  9. Landfill gas generation and emission at danish waste disposal sites receiving waste with a low organic waste content

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    two models are multi-phase models, which defines waste fractions into traditional MSW and low-organic waste categories, respectively. Both the LandGEM and the IPCC model estimated significantly larger methane (CH4) generation in comparison to the Afvalzorg model. The Afvalzorg model could better show...... the influence of not only the total disposed waste amount, but also various waste categories, and was found more suitable to estimate LFG generation from landfills receiving low-organic waste. Four major waste categories currently being disposed at Danish landfills (mixed bulky, shredder, dewatered sludge...... results. The LFG generation from four Danish landfills was estimated by the Afvalzorg model using the experimentally based BMP and k values and compared to whole landfill emission rates measured by applying a tracer gas dispersion method. The results showed that the revised modelled LFG generation rates...

  10. Evaluation of potential opportunities for electric power generation from landfill gas at “Tsalapitsa”

    Directory of Open Access Journals (Sweden)

    Ganev Ivaylo

    2014-01-01

    Full Text Available Potential opportunities for electric power generation from landfill gas (LFG utilization were estimated for the second largest landfill site in Bulgaria, situated near the city of Plovdiv. The work performed was based on detailed analysis of experimentally obtained and model-predicted features of the “Tsalapitsa” landfill site. The study presents a short description of the site, the global characteristics of the disposed municipal solid waste, and the experimentally obtained methane composition of the LFG. Based on the above described observations, the potential for LFG recovery at “Tsalapitsa” was determined, together with that for electric power generation for the next 25 years. A set of recommendations was then developed regarding the parameters required for the installation of electric power generation from LFG in Plovdiv.

  11. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    Science.gov (United States)

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  12. Landfill to Learning Facility

    Science.gov (United States)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will bring hands-on scientific experiences to the 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Our programs adhere to the New Jersey Core Curriculum Content Standards and are modified for accessibility for the underserved communities that visit us, specifically those individuals that have mobility, sensory, and/or cognitive ability differences. The programs are conducted in a classroom setting and are designed to nourish the individual's inquisitive nature and provide an opportunity to function as a scientist by, making observations, performing experiments and recording data. We have an $850,000, three year NSF grant that targets adults with disabilities and older adults with age related limitations in vision, hearing, cognition and/or mobility. From dip netting in the marsh to astronomical investigation of the cosmos, the MEC/CESE remains committed to reaching the largest audience possible and leaving them with a truly exceptional scientific experience that serves to educate and inspire.

  13. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    Science.gov (United States)

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill.

  14. CYANOBACTERIA FOR MITIGATING METHANE EMISSION FROM SUBMERGED PADDY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Upasana Mishra; Shalini Anand [Department of Environmental Studies, Inderprastha Engineering College, Sahibabad, Ghaziabad (India)

    2008-09-30

    Atmospheric methane, a potent greenhouse gas with high absorption potential for infrared radiation, is responsible for one forth of the total anticipated warming. It is forming a major part of green house gases, next after carbon dioxide. Its concentration has been increasing alarmingly on an average at the rate of one percent per year. Atmospheric methane, originating mainly from biogenic sources such as paddy fields, natural wetlands and landfills, accounts for 15-20% of the world's total anthropogenic methane emission. With intensification of rice cultivation in coming future, methane emissions from paddy fields are anticipated to increase. India's share in world's rice production is next after to China and likewise total methane emission from paddy fields also. Methane oxidation through planktophytes, particularly microalgae which are autotrophic and abundant in rice rhizospheres, hold promise in controlling methane emission from submerged paddy fields. The present study is focused on the role of nitrogen fixing, heterocystous cyanobacteria and Azolla (a water fern harboring a cyanobacterium Anabaena azollae) as biological sink for headspace concentration of methane in flooded soils. In this laboratory study, soil samples containing five potent nitrogen fixer cyanobacterial strains from paddy fields, were examined for their methane reducing potential. Soil sample without cyanobacterial strain was tested and taken as control. Anabaena sp. was found most effective in inhibiting methane concentration by 5-6 folds over the control. Moist soil cores treated with chemical nitrogen, urea, in combination with cyanobacteria mixture, Azolla microphylla or cyanobacteria mixture plus Azolla microphylla exhibited significance reduction in the headspace concentration of methane than the soil cores treated with urea alone. Contrary to other reports, this study also demonstrates that methane oxidation in soil core samples from paddy fields was stimulated by

  15. A review of landfill microbiology research

    Energy Technology Data Exchange (ETDEWEB)

    Archer, D.; Reynolds, P.; Blakey, N.C.

    1995-05-01

    In May 1994 the DTI through ETSU commissioned WRc to undertake a comprehensive review of the landfill microbiology programme to date. The review has attempted to identify remaining gaps in knowledge which are most likely to find application in controlling the production of gas from landfills, and concludes with a list of recommendations for specific landfill process research which is likely to facilitate and optimise energy recovery from landfill. (UK)

  16. Quantitative Study of Biogas Generation Potential from Different Landfill Sites of Nepal

    Directory of Open Access Journals (Sweden)

    Bikash Adhikari

    2015-01-01

    Full Text Available This research paper was study of waste composition and quantitative analysis of biogas generation potential with its recovery at Sisdole, Pokhara and Karaute Dada landfill sites (LFS of Nepal. The waste management practice in LFS are significant deciding factors for the assessment of environmental impacts caused including the release of green house gases like methane, carbondioxide etc to the atmosphere, that could contribute significantly to global warming and climate change. The total waste disposed to Sisdole LFS, Pokhara LFS and Karaute Dada LFS are 410, 80 and 7.8 tons respectively.  The waste composition was studied onsite with waste reduction method and analyzed for their composition. The organic component of wastes was found high as 61.6%, 52.5% and 65% at Sisdole, Pokhara and Karaute Dada LFS respectively. The biogas potential at these landfill sites were 12157.78 cum, 851.99 cum and 169 cum of biogas per day in Sisdole, Pokhara and Karaute Dada LFS respectively. 4.68, 0.33 and 0.07 MW energy per day can be generated from these amounts of biogas produced in Sisdole, Pokhara and Karaute Dada LFS respectively. Proper gas collection system can be the source of income from these landfill sites and help to mitigate the adverse impact of methane that is being released from these landfill sites

  17. Landfill gas control facility with automatic wobbe-correction for Gas-Otto-Engines

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, K.; Pauli, H.

    1986-01-01

    In open sanitary landfills large amounts of energy-rich landfillgas is generated. Without a purposeful collection, this gas would escape into the covering layers and into the air and thus burden the environment. In the sanitary landfill of 'Gummersloch' near Berne, the gas is systematically collected and piped to the Senior and Nursing Home of Kuehlewil where it is utilised in a thermal power-coupling facility (heating power station) of the Bernese Power Plants (BKW) to produce power and heat. This plant, with additional equipment for the automatic wobbe-correction, has been in operation for about 2 years and has proved its worth in practical use. By way of the automatic wobbe-correction through the disturbance-variable feed-forward system, the uncontrolled occuring fluctuations of the gas quality are being, up to 40%, so levelled out, that a faultless operation is guaranteed. Actual experiences have confirmed that the adaption to changing gas qualities by means of the constant extended wobbe-index is ideally suited to the use of gas engines.

  18. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  19. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  20. Emission model for landfills with mechanically-biologically pretreated waste, with the emphasis on modelling the gas balance; Emissionsprognosemodell fuer Deponien mit mechanisch-biologisch vorbehandelten Abfaellen - Schwerpunkt: Modellierung des Gashaushaltes

    Energy Technology Data Exchange (ETDEWEB)

    Danhamer, H.

    2001-07-01

    The objective of this work was to determine influence factors on processes going on in landfills with mechanically-biologically pretreated waste (MBP-landfills) in order to predict emissions. For this purpose a computer based model has been developed. The model allows to simulate the gas, water and heat balance as well as settlement processes and was called DESIM2005 (version MB). It is based on theoretical modeling approaches as well as data from lab and reactor experiments. The main focus of model application was to determine factors influencing the gas phase and the emissions of landfill gas and methane during operation and aftercare of MBP-landfills. By performing simulations the effects of changing parameters for the processes gas transport and biological degradation as well as the effects of different qualities in waste pretreatment and of varying landfill operation techniques were investigated. Possibilities for increasing the environmental sustainability of landfills containing mechanically-biologically pretreated waste were shown. (orig.)

  1. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...... of the ashes. Leaching test, however, must be selected carefully to provide information relevant for the actual disposal scenario and for evaluating the benefits of pre-treating the residues prior to landfilling. This paper describes research at the Technical University of Denmark addressing some...... of these issues focusing on pH-development in landfilled residues, effects of leaching test conditions on Cr leaching and effects of pre-treatment with FeSO4....

  2. Sustainable treatment of landfill leachate

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd. Suffian; Aziz, Hamidi Abdul; Hung, Yung-Tse

    2015-06-01

    Landfill leachate is a complex liquid that contains excessive concentrations of biodegradable and non-biodegradable products including organic matter, phenols, ammonia nitrogen, phosphate, heavy metals, and sulfide. If not properly treated and safely disposed, landfill leachate could be an impending source to surface and ground water contamination as it may percolate throughout soils and subsoils, causing adverse impacts to receiving waters. Lately, various types of treatment methods have been proposed to alleviate the risks of untreated leachate. However, some of the available techniques remain complicated, expensive and generally require definite adaptation during process. In this article, a review of literature reported from 2008 to 2012 on sustainable landfill leachate treatment technologies is discussed which includes biological and physical-chemical techniques, respectively.

  3. Astronomy on a Landfill

    Science.gov (United States)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  4. Decomposition and carbon storage of selected paper products in laboratory-scale landfills

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming, E-mail: wangxiaoming_cqu@163.com [Key Laboratory of Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, National Center for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing (China); Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); De la Cruz, Florentino B. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Ximenes, Fabiano [Department of Primary Industries, New South Wales (Australia); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2015-11-01

    The objective of this study was to measure the anaerobic biodegradation of different types of paper products in laboratory-scale landfill reactors. The study included (a) measurement of the loss of cellulose, hemicellulose, organic carbon, and (b) measurement of the methane yields for each paper product. The test materials included two samples each of newsprint (NP), copy paper (CP), and magazine paper (MG), and one sample of diaper (DP). The methane yields, carbon storage factors and the extent of cellulose and hemicellulose decomposition all consistently show that papers made from mechanical pulps (e.g., NPs) are less degradable than those made from chemical pulps where essentially all lignin was chemically removed (e.g., CPs). The diaper, which is not only made from chemical pulp but also contains some gel and plastic, exhibited limited biodegradability. The extent of biogenic carbon conversion varied from 21 to 96% among papers, which contrasts with the uniform assumption of 50% by the Intergovernmental Panel on Climate Change (IPCC) for all degradable materials discarded in landfills. Biochemical methane potential tests also showed that the solids to liquid ratio used in the test can influence the results. - Highlights: • Decomposition of major paper products measured under simulated landfill conditions • Varied decomposition behaviors across paper types governed by pulp types • A copy paper made from eucalyptus exhibited inhibited decomposition.

  5. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...... of the ashes. Leaching test, however, must be selected carefully to provide information relevant for the actual disposal scenario and for evaluating the benefits of pre-treating the residues prior to landfilling. This paper describes research at the Technical University of Denmark addressing some...

  6. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, Bernhard, E-mail: bernhard.wimmer@ait.ac.at [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Environmental Resources and Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Hrad, Marlies; Huber-Humer, Marion [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Environmental Resources and Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria)

    2013-10-15

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW

  7. Biogas generation in landfills. Equilibria, rates and yields

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, M.

    1997-05-01

    Landfilling in `cells` has become more common in recent years. Different waste streams are guided to different cells, among which the biocell is a landfill designed for biogas production. In this thesis, the dependence of biogas generation on waste composition was investigated. Six 8,000 m{sup 3} test cells, with contents ranging from mainly commercial waste to pure domestic waste and equipped with gas extraction systems and bottom plastic liners, were monitored for seven years. Great emphasis was given to the characterization of conversion processes and governing mechanism in the topics of bio-energetics, kinetics and capacities. A thermodynamic model, in which the oxidations of volatile fatty acids (VFA) (2methane production rates and internal conditions observed during a two year period, demonstrated that high biogas rates corresponded with low VFA levels. To explain the discrepancies between theoretical methane potentials and quantified yields (in this study found to be 150-200 and 40-70 Nm{sup 3}/dry tonne, respectively), the possible nutritional limitation was investigated. Pools and emissions of chemical oxygen demand, N, P and K were quantified. Biomass pools were estimated from methane yields, growth yield coefficients, and bacterial mineral contents. However, results from commercial waste test cells showed that the assimilation of P exceeded the refuse content, which suggests the turnover of microbial biomass and questions the notion of nutritional limitation. In sum, the results showed that the advantages of a reduced content of readily biodegradable material, achieved by guidance or pretreatment, encompass several aspects of the performance. 84 refs, 6 figs, 1 tab

  8. A correction in the CDM methodological tool for estimating methane emissions from solid waste disposal sites.

    Science.gov (United States)

    Santos, M M O; van Elk, A G P; Romanel, C

    2015-12-01

    Solid waste disposal sites (SWDS) - especially landfills - are a significant source of methane, a greenhouse gas. Although having the potential to be captured and used as a fuel, most of the methane formed in SWDS is emitted to the atmosphere, mainly in developing countries. Methane emissions have to be estimated in national inventories. To help this task the Intergovernmental Panel on Climate Change (IPCC) has published three sets of guidelines. In addition, the Kyoto Protocol established the Clean Development Mechanism (CDM) to assist the developed countries to offset their own greenhouse gas emissions by assisting other countries to achieve sustainable development while reducing emissions. Based on methodologies provided by the IPCC regarding SWDS, the CDM Executive Board has issued a tool to be used by project developers for estimating baseline methane emissions in their project activities - on burning biogas from landfills or on preventing biomass to be landfilled and so avoiding methane emissions. Some inconsistencies in the first two IPCC guidelines have already been pointed out in an Annex of IPCC latest edition, although with hidden details. The CDM tool uses a model for methane estimation that takes on board parameters, factors and assumptions provided in the latest IPCC guidelines, while using in its core equation the one of the second IPCC edition with its shortcoming as well as allowing a misunderstanding of the time variable. Consequences of wrong ex-ante estimation of baseline emissions regarding CDM project activities can be of economical or environmental type. Example of the first type is the overestimation of 18% in an actual project on biogas from landfill in Brazil that harms its developers; of the second type, the overestimation of 35% in a project preventing municipal solid waste from being landfilled in China, which harms the environment, not for the project per se but for the undue generated carbon credits. In a simulated landfill - the same

  9. T2LBM Version 1.0: Landfill bioreactor model for TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.

    2001-05-22

    The need to control gas and leachate production and minimize refuse volume in landfills has motivated the development of landfill simulation models that can be used by operators to predict and design optimal treatment processes. T2LBM is a module for the TOUGH2 simulator that implements a Landfill Bioreactor Model to provide simulation capability for the processes of aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid in the aqueous phase by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. Acetic acid is considered a proxy for all biodegradable substrates in the refuse. Aerobic and anaerobic microbes are assumed to be immobile and not limited by nutrients in their growth. Methane and carbon dioxide generation due to biodegradation with corresponding thermal effects are modeled. The numerous parameters needed to specify biodegradation are input by the user in the SELEC block of the TOUGH2 input file. Test problems show that good matches to laboratory experiments of biodegradation can be obtained. A landfill test problem demonstrates the capabilities of T2LBM for a hypothetical two-dimensional landfill scenario with permeability heterogeneity and compaction.

  10. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  11. Indoor Environmental Conditions and Sanitary Practices in Selected ...

    African Journals Online (AJOL)

    African Journal of Sustainable Development ... Rapidly urbanizing cities are witnessing an increase in Day care centres (DCCs) whose ... Keywords: Day Care Centres, sanitary practices, indoor air quality, children, urban communities ...

  12. Sanitary and Phytosanitary Measures in NAFTA: The Canada Experience

    OpenAIRE

    Terry Norman

    2005-01-01

    Canada's Experience in Implementing the Sanitary and Phytosanitary (SPS) provisions of the North American free trade agreement (NAFTA). The NAFTA has been a major success story for Canada since its entry into force on January 1, 1994.

  13. Charles Dickens and the movement for sanitary reform.

    Science.gov (United States)

    Litsios, Socrates

    2003-01-01

    Charles Dickens's adult life parallels the period when the movement for sanitary reform took root in England. Although he was not one of its leaders, he became in time one of its most outspoken advocates. This essay describes Dickens's growing involvement in the sanitary movement and looks at one of the most important ways he supported it--articles published in his weekly journal Household Words

  14. Quantifying capital goods for waste landfilling

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Stentsøe, Steen; Willumsen, Hans Christian

    2013-01-01

    Materials and energy used for construction of a hill-type landfill of 4 million m3 were quantified in detail. The landfill is engineered with a liner and leachate collections system, as well as a gas collection and control system. Gravel and clay were the most common materials used, amounting...... to approximately 260 kg per tonne of waste landfilled. The environmental burdens from the extraction and manufacturing of the materials used in the landfill, as well as from the construction of the landfill, were modelled as potential environmental impacts. For example, the potential impact on global warming was 2.......5 kg carbon dioxide (CO2) equivalents or 0.32 milli person equivalents per tonne of waste. The potential impacts from the use of materials and construction of the landfill are low-to-insignificant compared with data reported in the literature on impact potentials of landfills in operation...

  15. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  16. Quantifying Methane Fluxes Simply and Accurately: The Tracer Dilution Method

    Science.gov (United States)

    Rella, Christopher; Crosson, Eric; Green, Roger; Hater, Gary; Dayton, Dave; Lafleur, Rick; Merrill, Ray; Tan, Sze; Thoma, Eben

    2010-05-01

    Methane is an important atmospheric constituent with a wide variety of sources, both natural and anthropogenic, including wetlands and other water bodies, permafrost, farms, landfills, and areas with significant petrochemical exploration, drilling, transport, or processing, or refining occurs. Despite its importance to the carbon cycle, its significant impact as a greenhouse gas, and its ubiquity in modern life as a source of energy, its sources and sinks in marine and terrestrial ecosystems are only poorly understood. This is largely because high quality, quantitative measurements of methane fluxes in these different environments have not been available, due both to the lack of robust field-deployable instrumentation as well as to the fact that most significant sources of methane extend over large areas (from 10's to 1,000,000's of square meters) and are heterogeneous emitters - i.e., the methane is not emitted evenly over the area in question. Quantifying the total methane emissions from such sources becomes a tremendous challenge, compounded by the fact that atmospheric transport from emission point to detection point can be highly variable. In this presentation we describe a robust, accurate, and easy-to-deploy technique called the tracer dilution method, in which a known gas (such as acetylene, nitrous oxide, or sulfur hexafluoride) is released in the same vicinity of the methane emissions. Measurements of methane and the tracer gas are then made downwind of the release point, in the so-called far-field, where the area of methane emissions cannot be distinguished from a point source (i.e., the two gas plumes are well-mixed). In this regime, the methane emissions are given by the ratio of the two measured concentrations, multiplied by the known tracer emission rate. The challenges associated with atmospheric variability and heterogeneous methane emissions are handled automatically by the transport and dispersion of the tracer. We present detailed methane flux

  17. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations.

    Science.gov (United States)

    Tansel, Berrin; Surita, Sharon C

    2014-11-01

    The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si-O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si-O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  18. Preface for the Special Column of Methane Transformation

    Institute of Scientific and Technical Information of China (English)

    Ye Wang

    2009-01-01

    @@ Methane is the main constituent of natural gas, coal-bed gas, landfill gas and methane hydrate resources. These resources may be used more efficiently as clean fuels or as chemical feedstocks if methane can be effectively transformed into liquid fuels or chemicals. However, methane only possesses C-H bonds and is a very stable organic molecule hard to functionalize. The C-H activation, particularly the selective functionalization of C-H bonds in saturated hydrocarbons, remains a difficult challenge in chemistry. The present technology for chemical utilization of methane involves the steam reforming of methane to synthesis gas and the subsequent transformation of synthesis gas to methanol or hydrocarbon fuels via methanol synthesis or Fischer-Tropsch synthesis. However, the steam reforming of methane is a high-cost process. The development of more efficient and economical processes for methane transformation is a dream of all chemists and chemical engineers. I think that this is also one of the most important themes of the Journal of Natural Gas Chemistry.

  19. Quantification of Methane Emissions From Street Level Data

    Science.gov (United States)

    Prasad, K.; Cambaliza, M. L.; Lavoie, T. N.; Salmon, O. E.; Shepson, P. B.; Lauvaux, T.; Davis, K. J.; Whetstone, J. R.

    2013-12-01

    The problem of identifying, attributing, and quantifying methane emissions from urban sources such as landfills, waste-water treatment facilities and natural gas distribution systems is an active area of research. This interest is fueled, in part, by recent measurements indicating that urban emissions are a significant source of methane (CH4, a potent greenhouse gas) and in fact may be substantially higher than current inventory estimates. As a result, developing methods for locating and quantifying emissions from urban methane sources is of great interest to industries such as landfill owners, and governmental agencies. In an attempt to identify major methane source locations and emissions in the city of Indianapolis, systematic measurements of CH4 concentrations and meteorology data were made at street level using multiple vehicles equipped with cavity ring-down spectrometers. A number of discrete sources were detected at methane molar ratios in excess of 15 times background levels. The street level data is analyzed with plume inversion models including Weather Research and Forecasting (WRF) software, Fire Dynamics Simulator (FDS) and backward Lagrangian Simulations (bLS) to identify source location and emission rates. The methodology for analyzing the street level data and our estimates of CH4 emissions from various sources in the city of Indianapolis will be presented.

  20. Scrutinizing compost properties and their impact on methane oxidation efficiency.

    Science.gov (United States)

    Huber-Humer, Marion; Tintner, Johannes; Böhm, Katharina; Lechner, Peter

    2011-05-01

    Methane emissions from active or closed landfills can be reduced by means of microbial methane oxidation enhanced by properly designed landfill covers and engineered biocovers. Composts produced using different waste materials have already been proven to support methane oxidation, and may represent a low-cost alternative to other suitable substrates such as sandy or humic-rich soils, which are frequently not available in sufficient amounts or are too costly. In the present study a data set of 30 different compost materials (different age and input materials) and mixtures, as well as seven soils and mineral substrates were tested to assess methane oxidation rate under similar conditions in a laboratory column set-up. Multivariate data analysis (discriminant analysis) was applied to predict the influence of 21 different parameters (chemical, maturation and physical) on methane oxidation rate in a PLS-DA model. The results show that bulk density, total nutrient content (nitrogen and phosphorus), as well as the quantity and quality (with respect to maturity) of organic matter determined methane oxidation rate in this data set. The model explained 50% of the data variation, indicating how characterisation of oxidation rate by single, even diverse conventional parameters was limited. Thus for the first time, Fourier Transform Infrared (FTIR) spectroscopy was applied to a series of samples to better determine the characteristics of methane-oxidising materials. The initial data obtained in this study appear to be most promising. The prediction of specific methane oxidation rate of a potential biocover material from FTIR spectra and multivariate data analyses is a target to be focused on in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Plume mapping and isotopic characterisation of anthropogenic methane sources

    Science.gov (United States)

    Zazzeri, G.; Lowry, D.; Fisher, R. E.; France, J. L.; Lanoisellé, M.; Nisbet, E. G.

    2015-06-01

    Methane stable isotope analysis, coupled with mole fraction measurement, has been used to link isotopic signature to methane emissions from landfill sites, coal mines and gas leaks in the United Kingdom. A mobile Picarro G2301 CRDS (Cavity Ring-Down Spectroscopy) analyser was installed on a vehicle, together with an anemometer and GPS receiver, to measure atmospheric methane mole fractions and their relative location while driving at speeds up to 80 kph. In targeted areas, when the methane plume was intercepted, air samples were collected in Tedlar bags, for δ13C-CH4 isotopic analysis by CF-GC-IRMS (Continuous Flow Gas Chromatography-Isotope Ratio Mass Spectrometry). This method provides high precision isotopic values, determining δ13C-CH4 to ±0.05 per mil. The bulk signature of the methane plume into the atmosphere from the whole source area was obtained by Keeling plot analysis, and a δ13C-CH4 signature, with the relative uncertainty, allocated to each methane source investigated. Both landfill and natural gas emissions in SE England have tightly constrained isotopic signatures. The averaged δ13C-CH4 for landfill sites is -58 ± 3‰. The δ13C-CH4 signature for gas leaks is also fairly constant around -36 ± 2‰, a value characteristic of homogenised North Sea supply. In contrast, signatures for coal mines in N. England and Wales fall in a range of -51.2 ± 0.3‰ to -30.9 ± 1.4‰, but can be tightly constrained by region. The study demonstrates that CRDS-based mobile methane measurement coupled with off-line high precision isotopic analysis of plume samples is an efficient way of characterising methane sources. It shows that isotopic measurements allow type identification, and possible location of previously unknown methane sources. In modelling studies this measurement provides an independent constraint to determine the contributions of different sources to the regional methane budget and in the verification of inventory source distribution.

  2. Auto generation plant of Artigas landfill (Bilbao, Spain); Planta de autogeneracion electrica del vertedero de Artigas (Bilbao)

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, N.; Dorronsoro, J.L.

    1996-07-01

    The disposition of MSW in the landfill generates a mixture of gases or {sup b}iogas{sup ,} its primary content is methane (50-60%) which has a very important energetic value, that can be very useful. In this sense, the present work point out the characteristics of the auto generation electrical plant of Artigas landfill, just like the results of the analytical study of the past two years. In this project which was partly funded by the UE, have participated Excmo. Ayuntamiento de Bilbao, EVE and CIEMAT. (Author) 6 refs.

  3. Emission Control and Utilization of Landfill Gas in Ningbo Waste Landfill Site%宁波市垃圾填埋场填埋气体排放控制及利用研究

    Institute of Scientific and Technical Information of China (English)

    王斌

    2013-01-01

    Taking Ningbo city as an example,the treatment measures of unorganized emission of odor landfill gas from domestic waste sanitary landfill site were discussed,for instance,ordered collection and incineration-power generation.It could treat greenhouse gases such as CH4 effectively to make the pollutions control,and use waste heat to produce electricity.Thus it would achieve energy-saving and emission-reduction.%以宁波市为例,探讨了生活垃圾卫生填埋场产生的无组织排放的异味填埋气体有序收集及焚烧发电的处理措施,既有效处理了CH4等温室气体,使污染排放得到有效控制,又利用余热发电,实现节能减排.

  4. Imaging and characterization of heterogeneous landfills using geophysical methods

    NARCIS (Netherlands)

    Konstantaki, L.A.

    2016-01-01

    Nowadays many countries use landfilling for the management of their waste or for treating old landfills. Emissions from landfills can be harmful to the environment and to human health, making the stabilization of landfills a priority for the landfill communities. Estimation of the emission potential

  5. Imaging and characterization of heterogeneous landfills using geophysical methods

    NARCIS (Netherlands)

    Konstantaki, L.A.

    2016-01-01

    Nowadays many countries use landfilling for the management of their waste or for treating old landfills. Emissions from landfills can be harmful to the environment and to human health, making the stabilization of landfills a priority for the landfill communities. Estimation of the emission potential

  6. Optimization of first order decay gas generation model parameters for landfills located in cold semi-arid climates.

    Science.gov (United States)

    Vu, Hoang Lan; Ng, Kelvin Tsun Wai; Richter, Amy

    2017-08-17

    Canada has one of the highest waste generation rates in the world. Because of high land availability, land disposal rates in the province of Saskatchewan are high compared to the rest of the country. In this study, landfill gas data was collected at semi-arid landfills in Regina and Saskatoon, Saskatchewan, and curve fitting was carried out to find optimal k and Lo or DOC values using LandGEM, Afvalzorg Simple, and IPCC first order decay models. Model parameters at each landfill were estimated and compared using default k and Lo or DOC values. Methane generation rates were substantially overestimated using default values (with percentage errors from 55 to 135%). The mean percentage errors for the optimized k and Lo or DOC values ranged from 11.60% to 19.93% at the Regina landfill, and 1.65% to 10.83% at the Saskatoon landfill. Finally, the effect of different iterative methods on the curve fitting process was examined. The residual sum of squares for each model and iterative approaches were similar, with the exception of iterative method 1 for the IPCC model. The default values in these models fail to represent landfills located in cold semi-arid climates. The use of site specific data, provided enough information is available regarding waste mass and composition, can greatly help to improve the accuracy of these first order decay models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Identification of Cellulose Breaking Bacteria in Landfill Samples for Organic Waste Management

    Science.gov (United States)

    Chan, P. M.; Leung, F. C.

    2015-12-01

    According to the Hong Kong Environmental Protection Department, the citizens of Hong Kong disposes 13,500 tonnes of waste to the landfill everyday. Out of the 13,500 tonnes, 3600 tonnes consist of organic waste. Furthermore, due to the limited supply of land for landfills in Hong Kong, it is estimated that landfills will be full by about 2020. Currently, organic wastes at landfills undergo anaerobic respiration, where methane gas, one of the most harmful green house gases, will be released. The management of such waste is a pressing issue, as possible solutions must be presented in this crucial period of time. The Independent Schools Foundation Academy introduced their very own method to manage the waste produced by the students. With an approximate of 1500 students on campus, the school produces 27 metric tonnes of food waste each academic year. The installation of the rocket food composter provides an alternate method of disposable of organic waste the school produces, for the aerobic environment allows for different by-products to be produced, namely compost that can be used for organic farming by the primary school students and subsequently carbon dioxide, a less harmful greenhouse gas. This research is an extension on the current work, as another natural factor is considered. It evaluates the microorganism community present in leachate samples collected from the North East New Territories Landfill, for the bacteria in the area exhibits special characteristics in the process of decomposition. Through the sequencing and analysis of the genome of the bacteria, the identification of the bacteria might lead to a break through on the current issue. Some bacteria demonstrate the ability to degrade lignin cellulose, or assist in the production of methane gas in aerobic respirations. These characteristics can hopefully be utilized in the future in waste managements across the globe.

  8. SITE SELECTION OF MUNICIPAL SOLID WASTE LANDFILLS USING ANALYTICAL HIERARCHY PROCESS METHOD IN A GEOGRAPHICAL INFORMATION TECHNOLOGY ENVIRONMENT IN GIROFT

    Directory of Open Access Journals (Sweden)

    H. Javaheri, T. Nasrabadi, M. H. Jafarian, G. R. Rowshan, H. Khoshnam

    2006-07-01

    Full Text Available Municipal solid waste generation is among the most significant sources which threaten the global environmental health. As an ideal selection depends on considering several independent factors concerning land use, socio economy and hydrogeology, the use of a multi criteria evaluation method seems inevitable. Taking benefit of geographic information system as a tool in combination with geographical information technology, equips the spatial decision support systems in appropriate site selection of sanitary landfills. The present study involves a kind of multi criteria evaluation method under the name of weighted linear combination by using geographical information technology as a practical instrument to evaluate the suitability of the vicinity of Giroft city in Kerman province of Iran for landfill. Water permeability, slope, distance from rivers, depth of underground watertable, distance from residential areas, distance from generation centers, general environmental criterion and distance from roads are the criteria which have been taken in to consideration in the process of analyzing. Superposing all of the raster type layers including geomorphologic, hydrologic, humanistic and land use criteria in land suitability, the final zoning of appropriate, fairly appropriate and inappropriate districts have been identified. Considering relative priority of all criteria in comparison with others, a specific weight is designated to each criterion according to their total influence on the whole process of decision making. The results from the application of the presented methodology are zones for landfill with varying zonal land suitability. Finally the zones will be ranked in descending order to indicate the priority of different options in front of the eyes of decision makers. The results achieved by this study may help policy makers of Giroft city by a variety of options for being considered as sanitary landfill locations.

  9. Landfill reduction experience in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Scharff, Heijo, E-mail: h.scharff@afvalzorg.nl

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  10. Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes.

    Science.gov (United States)

    Monje-Ramirez, I; Orta de Velásquez, M T

    2004-05-01

    The Bordo Poniente sanitary landfill in Mexico City currently receives 11,500 ton/day of solid wastes. The landfill has been in operation since 1985, in what was formerly Texcoco Lake, now a dried-up lakebed. The physico-chemical characteristics of the leachate generated by this particular landfill are altered by the incorporation of freatic saline water present in the area. This paper reports the results from a study evaluating coagulation and ozonation as alternative processes for removing and transforming recalcitrant organic matter from stabilized saline landfill leachate. Coagulation with ferric sulfate was found to remove up to 67% of COD and 96% of leachate color. The remaining 33% COD was removed with ozone. Recalcitrant organic matter removal by ozonation is limited by the reaction kinetic due mainly to ozone's low reactivity with the organic compounds present in the leachates (amines, amides, alcohols, aliphatic compounds, and carboxylic acids). However, ozone contributes greatly to changing the recalcitrant characteristics of organic matter. Leachate biodegradability was found to be significantly enhanced through ozonation: BOD(5) values reach 265%, and the BOD(5)/COD ratio increases from 0.003 to 0.015. Infrared analysis of ozonated leachates shows that the main by-products of recalcitrant organic matter ozonation are an increase in the hydroxyl and carboxylic groups, and the presence of aldehydes groups.

  11. Bioleach: a mathematical model for the joint evaluation of leachate and biogas production in urban solid waste landfills

    Science.gov (United States)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2017-04-01

    One of the most serious environmental problems in modern societies is the management and disposal of urban solid waste (MSW). Despite the efforts of the administration to promote recycling and reuse policies and energy recovery technologies, nowadays the majority of MSW still is disposed in sanitary landfills. During the phases of operation and post-closure maintenance of any solid waste disposal site, two of the most relevant problems are the production of leachate and the generation of biogas. The leachate and biogas production formation processes occur simultaneously over time and are coupled together through the consumption and/or production of water. However, no mathematical models have been easily identified that allow to the evaluation of the joint production of leachate and biogas, during the operational and the post-closure phase of an urban waste landfill. This paper introduces BIOLEACH, a new mathematical model programmed on a monthly scale, that evaluates the joint production of leachate and biogas applying water balance techniques and considers the management of the landfill as a bioreactor. The application of such a model on real landfills allows to perform an environmentally sustainable management that minimizes the environmental impacts produced being also economically more profitable.

  12. A 3D FINITE ELEMENT ANALYSIS OF INCOMPRESSIBLE FLUID FLOW AND CONTAMINANT TRANSPORT THROUGH A POROUS LANDFILL

    Directory of Open Access Journals (Sweden)

    ADEGUN, I. K.

    2014-08-01

    Full Text Available The paper investigated the flow of incompressible fluid and contaminant transport through a Porous Landfill using a numerical technique. A threedimensional finite element analysis technique was adopted for the solution. The problem was based on the Darcy’s Law and the Advection-Dispersion equation. The solutions of the Darcy’s and Advection-Dispersion equations were generated using Finite Element Analysis Software known as COMSOL Multiphysics. This simulation tool tracked the contaminant transport in the Landfill for 360 days at 10 days interval. It first modeled steady-state fluid flow by employing the Darcy’s Law Application Mode and then followed up with a transient solute-transport simulation by employing the Solute-Transport Application Mode from the Earth Science Module of COMSOL. The solution results obtained from this model were found to be in close agreement with reallife data obtained at the 130- million ton Bukit Tagar Mega Sanitary Landfill site, Selangor near Kuala Lumpur, Malaysia. This showed that the model can effectively predict the trends in the distributions of pollutants from a Municipal Solid Waste Landfill into nearby land and water sources. The model is thus applicable to the issues of environmental protection and safety of groundwater.

  13. Landfilling: Bottom Lining and Leachate Collection

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    from entering the groundwater or surface water. The bottom lining system should cover the full footprint area of the landfill, including both the relatively flat bottom and the sideslopes in the case of an excavated configuration. This prevents the lateral migration of leachate from within the landfill...... triple) liners, are extremely effective in preventing leachate from entering into the environment. In addition, the risk of polluting the groundwater at a landfill by any leakage of leachate depends on several factors related to siting of the landfill: distance to the water table, distance to surface...... water bodies, and the properties of the soil beneath the landfill. In addition to the lining and drainage systems described in this chapter, the siting and hydrogeology of the landfill site (Chapter 10.12) and the top cover (Chapter 10.9) are also part of the barrier system, contributing to reducing...

  14. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  15. Mobile measurement of methane: plumes, isotopes and inventory verification

    Science.gov (United States)

    Lowry, D.; Zazzeri, G.; Fisher, R. E.; France, J.; Al-Shalaan, A.; Lanoisellé, M.; Nisbet, E. G.

    2015-12-01

    Since 2013 the RHUL group has been identifying methane plumes from major UK sources using a Picarro 2301 coupled to the A0941 mobile module. Once identified the plumes have been sampled by filling Tedlar or Flexfoil bags for later carbon isotopic analysis by high-precision IRMS. This method has ben successfully deployed to isotopically characterize the main anthropogenic methane emitters in the UK (natural gas, coal, landfill, wastewater treatment, cattle; Zazzeri et al., 2015) and during overseas campaigns in eastern Australia (coal, cattle, legacy gas wells) and Kuwait (landfill, wastewater treatment, oil refineries, cattle, camels). This has identified strong similarities of isotopic signature for some sources (landfill, cattle), but large variations for others (natural gas, coal), which must be isotopically resolved at regional scale. Both landfill and natural gas emissions in SE England have tightly-constrained δ13C signatures, averaging -58 ± 3‰ and -36 ± 2‰, respectively, the latter being characteristic of homogenised North Sea gas supply. In contrast, signatures for coal mines in England and Wales fall in a range of 51.2 ± 0.3‰ to 30.9 ± 1.4‰, but can be tightly constrained by region. On a local scale in west London, repeat surveys in the boroughs of Hounslow and Runnymede have been made for comparison with the latest 1x1 km grid UK inventories for 2009 and 2012, which are subdivided by UNECE categories. An excess methane map can be derived for comparison with inventory emissions maps by identifying daily background and binning the excess values from mobile measurements by grid-square. This shows that the spatial distribution of emissions in the UK 2012 inventory is a big improvement on that of 2009. It also suggests that there is an overestimation of emissions from old landfills (closed before 2000 and reliant on a topsoil cap for oxidation), and an underestimation on emissions from currently active landfill cells. Zazzeri, G. et al. (2015

  16. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen

    2013-06-30

    systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh's of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  17. Gas Transport Parameters for Landfill Final Cover Soil: Measurements and Model Modification by Dry Bulk Density

    Science.gov (United States)

    Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric methane (CH4). Until recently, landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest sources of anthropogenic CH4 emission, the final cover system should also be designed for minimizing the greenhouse gases migration into the atmosphere or the areas surrounding the landfill while securing the hydraulic performance. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil, few studies about gas transport characteristics of landfill cover soils have been done. However, recent soil-gas studies implied that the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size are key parameters to understand landfill gaseous performance. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport. In this study, the effects of compaction level and particle size fraction effects on ka and Dp for landfill final cover soil was investigated. The disturbed soil samples were taken from landfill final cover in Japan. A compaction tests were performed for the soil samples with two different size fractions (content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm, 2120 cm3) at two different compaction levels [(MP):2700 kN/m2 and (SP):600 kN/m2]. After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential of 0.98, 2.94, 9.81, 1235 kPa and with air-dried and oven-dried conditions. Results showed that measured Dp and ka values for the coarser (content. Further, compaction effort was much significant

  18. Geotechnical characterization of peat-based landfill cover materials

    Institute of Scientific and Technical Information of China (English)

    Afshin Khoshand; Mamadou Fall

    2016-01-01

    Natural methane (CH4) oxidation that is carried out through the use of landfill covers (biocovers) is a promising method for reducing CH4 emissions from landfills. Previous studies on peat-based landfill covers have mainly focused on their biochemical properties (e.g. CH4 oxidation capacity). However, the utilization of peat as a cover material also requires a solid understanding of its geotechnical properties (thermal, hydraulic, and mechanical), which are critical to the performance of any biocover. Therefore, the objective of this context is to investigate and assess the geotechnical properties of peat-based cover materials (peat, peat-sand mixture), including compaction, consolidation, and hydraulic and thermal conductivities. The studied materials show high compressibility to the increase of vertical stress, with compression index (Cc) values ranging from 0.16 to 0.358. The compressibility is a function of sand content such that the peat-sand mixture (1:3) has the lowest Cc value. Both the thermal and hydraulic conductivities are functions of moisture content, dry density, and sand content. The hydraulic conduc-tivity varies from 1.74 × 10-9 m/s to 7.35 × 10-9 m/s, and increases with the increase in sand content. The thermal conductivity of the studied samples varies between 0.54 W/(m K) and 1.41 W/(m K) and it in-creases with the increases in moisture and sand contents. Increases in sand content generally increase the mechanical behavior of peat-based covers; however, they also cause relatively high hydraulic and thermal conductivities which are not favored properties for biocovers.

  19. Quantifying methane emissions and sources in the Colorado Front Range

    Science.gov (United States)

    Hughes, S.; Townsend-Small, A.; Schroeder, J.; Blake, N. J.; Blake, D. R.

    2016-12-01

    Methane is a powerful greenhouse gas and is relatively constant throughout the atmosphere, at 1.8 ppmv. This value, however, is increasing primarily due to anthropogenic sources, including agriculture and natural gas extraction. Here we present atmospheric methane fluxes measured during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) in July - August 2014 in the Colorado Front Range on the NCAR C-130. During this campaign 775 advanced whole air samples (AWAS) were collected onboard the aircraft and 248 samples were collected on the ground in order to quantify and evaluate air pollution sources. Methane concentrations were measured continuously aboard the aircraft using cavity ringdown spectroscopy. Major sources of methane in this region are oil and natural gas extraction and distribution, landfills, and cattle feed lots. In order to assess the impact of methane emissions on this area, methane flux was evaluated by comparing upwind and downwind concentrations where significant enhancements were observed downwind. We also present information from other hydrocarbons measured in canisters to attribute methane emissions to urban, agricultural, and oil and gas sources. The state of Colorado recently enacted legislation to reduce emissions of hydrocarbons from oil and gas facilities and our measurements will provide a preliminary estimate of whether these regulations are effective.

  20. Congenital anomalies and proximity to landfill sites.

    LENUS (Irish Health Repository)

    Boyle, E

    2004-01-01

    The occurrence of congenital anomalies in proximity to municipal landfill sites in the Eastern Region (counties Dublin, Kildare, Wicklow) was examined by small area (district electoral division), distance and clustering tendancies in relation to 83 landfills, five of which were major sites. The study included 2136 cases of congenital anomaly, 37,487 births and 1423 controls between 1986 and 1990. For the more populous areas of the region 50% of the population lived within 2-3 km of a landfill and within 4-5 km for more rural areas. In the area-level analysis, the standardised prevalence ratios, empirical and full Bayesian modelling, and Kulldorff\\'s spatial scan statistic found no association between the residential area of cases and location of landfills. In the case control analysis, the mean distance of cases and controls from the nearest landfill was similar. The odds ratios of cases compared to controls for increasing distances from all landfills and major landfills showed no significant difference from the baseline value of 1. The kernel and K methods showed no tendency of cases to cluster in relationship to landfills. In conclusion, congenital anomalies were not found to occur more commonly in proximity to municipal landfills.

  1. Landfill Barrier-Overview and Prospect

    Institute of Scientific and Technical Information of China (English)

    Zheng Liange; Zhao Yongsheng

    2000-01-01

    Landfill is the primary method of waste disposal. The increasing attention focused on the effect of landfill on environment prompts the development of environmental sound landfill system. As the key parts of landfill, the barrier system can provide impermeabilization of leachate and prevent biogas from escaping intotheenvironment. In recent years, the technology pertaining the barrier system developed rapidly. In this paper, new materials used in liners and new concept of barrier construction are reviewed; the mechanisms of leachate through clay liner and geomembrane, the calculation of leaks through liner and the effect of freezing/thaw on liner are discussed.

  2. Landfills - LANDFILL_BOUNDARIES_IDEM_IN: Waste Site Boundaries in Indiana (Indiana Department of Environmental Management, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — LANDFILL_BOUNDARIES_IDEM_IN.SHP is a polygon shapefile that contains boundaries for open dump sites, approved landfills, and permitted landfills in Indiana, provided...

  3. [Sanitary regulation in Mexico and the Free Trade Treaty].

    Science.gov (United States)

    Juan-López, M

    1994-01-01

    In this paper are discussed essential issues about the concept, characteristics and general functions of sanitary regulation, as well as the principles and main lines of action contained in the Program of Modernization of the Sanitary Regulation, which is being implemented by the Ministry of Health of Mexico. In addition, some considerations are offered regarding the supporting role of such a program, in the context of the free trade era that Mexico is undergoing. After 40 years o