WorldWideScience

Sample records for sanger sequencing confirmed

  1. Pyrosequencing-An Alternative to Traditional Sanger Sequencing

    OpenAIRE

    2012-01-01

    Problem statement: Pyrosequencing has the potential to rapidly and reliably sequence DNA taking advantages over traditional Sanger di-deoxy sequencing approach. Approach: A comprehensive review of the literature on the principles, applications, challenges and prospects of pyrosequencing was performed. Results: Pyrosequencing was a DNA sequencing technology based on the sequencing-by-synthesis principle. It employs a series of four enzymes to accurately detect nucleic acid sequences during the...

  2. Pyrosequencing-An Alternative to Traditional Sanger Sequencing

    Directory of Open Access Journals (Sweden)

    Fakruddin

    2012-01-01

    Full Text Available Problem statement: Pyrosequencing has the potential to rapidly and reliably sequence DNA taking advantages over traditional Sanger di-deoxy sequencing approach. Approach: A comprehensive review of the literature on the principles, applications, challenges and prospects of pyrosequencing was performed. Results: Pyrosequencing was a DNA sequencing technology based on the sequencing-by-synthesis principle. It employs a series of four enzymes to accurately detect nucleic acid sequences during the synthesis. Pyrosequencing had the potential advantages of accuracy, flexibility, parallel processing and could be easily automated. The technique dispenses with the need for labeled primers, labeled nucleotides and gel-electrophoresis. Pyrosequencing had opened up new possibilities for performing sequence-based DNA analysis. The method had been proven highly suitable for single nucleotide polymorphism analysis and sequencing of short stretches of DNA. Pyrosequencing had been successful for both confirmatory sequencing and de novo sequencing. By increasing the read length to higher scores and by shortening the sequence reaction time per base calling, pyrosequencing may take over many broad areas of DNA sequencing applications as the trend was directed to analysis of fewer amounts of specimens and large-scale settings, with higher throughput and lower cost. Conclusion/Recommendations: The Competitiveness of pyrosequencing with other sequencing methods can be improved in future."

  3. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics

    NARCIS (Netherlands)

    Sikkema-Raddatz, B.; Johansson, L.F.; de Boer, E.N.; Almomani, R.; Boven, L.G.; van den Berg, M.P.; van Spaendonck-Zwarts, K.Y.; van Tintelen, J.P.; Sijmons, R.H.; Jongbloed, J.D.H.; Sinke, R.J.

    2013-01-01

    Mutation detection through exome sequencing allows simultaneous analysis of all coding sequences of genes. However, it cannot yet replace Sanger sequencing (SS) in diagnostics because of incomplete representation and coverage of exons leading to missing clinically relevant mutations. Targeted next-g

  4. Automated Sanger Analysis Pipeline (ASAP): A Tool for Rapidly Analyzing Sanger Sequencing Data with Minimum User Interference

    Science.gov (United States)

    Singh, Aditya; Bhatia, Prateek

    2016-01-01

    Sanger sequencing platforms, such as applied biosystems instruments, generate chromatogram files. Generally, for 1 region of a sequence, we use both forward and reverse primers to sequence that area, in that way, we have 2 sequences that need to be aligned and a consensus generated before mutation detection studies. This work is cumbersome and takes time, especially if the gene is large with many exons. Hence, we devised a rapid automated command system to filter, build, and align consensus sequences and also optionally extract exonic regions, translate them in all frames, and perform an amino acid alignment starting from raw sequence data within a very short time. In full capabilities of Automated Mutation Analysis Pipeline (ASAP), it is able to read "*.ab1" chromatogram files through command line interface, convert it to the FASTQ format, trim the low-quality regions, reverse-complement the reverse sequence, create a consensus sequence, extract the exonic regions using a reference exonic sequence, translate the sequence in all frames, and align the nucleic acid and amino acid sequences to reference nucleic acid and amino acid sequences, respectively. All files are created and can be used for further analysis. ASAP is available as Python 3.x executable at https://github.com/aditya-88/ASAP. The version described in this paper is 0.28. PMID:27790076

  5. Screening PCR Versus Sanger Sequencing: Detection of CALR Mutations in Patients With Thrombocytosis.

    Science.gov (United States)

    Jeong, Ji Hun; Lee, Hwan Tae; Seo, Ja Young; Seo, Yiel Hea; Kim, Kyung Hee; Kim, Moon Jin; Lee, Jae Hoon; Park, Jinny; Hong, Jun Shik; Park, Pil Whan; Ahn, Jeong Yeal

    2016-07-01

    Mutations in calreticulin (CALR) have been reported to be key markers in the molecular diagnosis of myeloid proliferative neoplasms. In most previous reports, CALR mutations were analyzed by using Sanger sequencing. Here, we report a new, rapid, and convenient system for screening CALR mutations without sequencing. Eighty-three bone marrow samples were obtained from 81 patients with thrombocytosis. PCR primers were designed to detect wild-type CALR (product: 357 bp) and CALR with type 1 (product: 302 bp) and type 2 mutations (product: 272 bp) in one reaction. The results were confirmed by Sanger sequencing and compared with results from fragment analysis. The minimum detection limit of the screening PCR was 10 ng for type 1, 1 ng for type 2, and 0.1 ng for cases with both mutations. CALR type 1 and type 2 mutants were detected with screening PCR with a maximal analytical sensitivity of 3.2% and <0.8%, respectively. The screening PCR detected 94.1% (16/17) of mutation cases and showed concordant results with sequencing in the cases of type 1 and type 2 mutations. Sanger sequencing identified one novel mutation (c.1123_1132delinsTGC). Compared with sequencing, the screening PCR showed 94.1% sensitivity, 100.0% specificity, 100.0% positive predictive value, and 98.5% negative predictive value. Compared with fragment analysis, the screening PCR presented 88.9% sensitivity and 100.0% specificity. This screening PCR is a rapid, sensitive, and cost-effective method for the detection of major CALR mutations.

  6. Hidden mutations in Cornelia de Lange syndrome limitations of sanger sequencing in molecular diagnostics.

    Science.gov (United States)

    Braunholz, Diana; Obieglo, Carolin; Parenti, Ilaria; Pozojevic, Jelena; Eckhold, Juliane; Reiz, Benedikt; Braenne, Ingrid; Wendt, Kerstin S; Watrin, Erwan; Vodopiutz, Julia; Rieder, Harald; Gillessen-Kaesbach, Gabriele; Kaiser, Frank J

    2015-01-01

    Cornelia de Lange syndrome (CdLS) is a well-characterized developmental disorder. The genetic cause of CdLS is a mutation in one of five associated genes (NIPBL, SMC1A, SMC3, RAD21, and HDAC8) accounting for about 70% of cases. To improve our current molecular diagnostic and to analyze some of CdLS candidate genes, we developed and established a gene panel approach. Because recent data indicate a high frequency of mosaic NIPBL mutations that were not detected by conventional sequencing approaches of blood DNA, we started to collect buccal mucosa (BM) samples of our patients that were negative for mutations in the known CdLS genes. Here, we report the identification of three mosaic NIPBL mutations by our high-coverage gene panel sequencing approach that were undetected by classical Sanger sequencing analysis of BM DNA. All mutations were confirmed by the use of highly sensitive SNaPshot fragment analysis using DNA from BM, urine, and fibroblast samples. In blood samples, we could not detect the respective mutation. Finally, in fibroblast samples from all three patients, Sanger sequencing could identify all the mutations. Thus, our study highlights the need for highly sensitive technologies in molecular diagnostic of CdLS to improve genetic diagnosis and counseling of patients and their families. © 2014 WILEY PERIODICALS, INC.

  7. The utility of direct specimen detection by Sanger sequencing in hospitalized pediatric patients.

    Science.gov (United States)

    Mongkolrattanothai, Kanokporn; Dien Bard, Jennifer

    2017-02-01

    Direct microbial DNA detection from clinical specimens by polymerase chain reaction and Sanger sequencing has been developed to address the innate limitations of traditional culture-based work-up. We report our institution's experience with direct specimen sequencing, its clinical utility, and barriers to effective clinical implementation.

  8. Noncontinuously binding loop-out primers for avoiding problematic DNA sequences in PCR and sanger sequencing.

    Science.gov (United States)

    Sumner, Kelli; Swensen, Jeffrey J; Procter, Melinda; Jama, Mohamed; Wooderchak-Donahue, Whitney; Lewis, Tracey; Fong, Michael; Hubley, Lindsey; Schwarz, Monica; Ha, Youna; Paul, Eleri; Brulotte, Benjamin; Lyon, Elaine; Bayrak-Toydemir, Pinar; Mao, Rong; Pont-Kingdon, Genevieve; Best, D Hunter

    2014-09-01

    We present a method in which noncontinuously binding (loop-out) primers are used to exclude regions of DNA that typically interfere with PCR amplification and/or analysis by Sanger sequencing. Several scenarios were tested using this design principle, including M13-tagged PCR primers, non-M13-tagged PCR primers, and sequencing primers. With this technique, a single oligonucleotide is designed in two segments that flank, but do not include, a short region of problematic DNA sequence. During PCR amplification or sequencing, the problematic region is looped-out from the primer binding site, where it does not interfere with the reaction. Using this method, we successfully excluded regions of up to 46 nucleotides. Loop-out primers were longer than traditional primers (27 to 40 nucleotides) and had higher melting temperatures. This method allows the use of a standardized PCR protocol throughout an assay, keeps the number of PCRs to a minimum, reduces the chance for laboratory error, and, above all, does not interrupt the clinical laboratory workflow.

  9. Online Diagnosis System: a webserver for analysis of Sanger sequencing-based genetic testing data.

    Science.gov (United States)

    Sun, Kun; Yuen, Yuet-Ping; Wang, Huating; Sun, Hao

    2014-10-01

    Sanger sequencing is a well-established molecular technique for diagnosis of genetic diseases. In these tests, DNA sequencers produce vast amounts of data that need to be examined and annotated within a short period of time. To achieve this goal, an online bioinformatics platform that can automate the process is essential. However, to date, there is no such integrated bioinformatics platform available. To fulfill this gap, we developed the Online Diagnosis System (ODS), which is a freely available webserver and supports the commonly used file format of Sanger sequencing data. ODS seamlessly integrates base calling, single nucleotide variation (SNV) identification, and SNV annotation into one single platform. It also allows laboratorians to manually inspect the quality of the identified SNVs in the final report. ODS can significantly reduce the data analysis time therefore allows Sanger sequencing-based genetic testing to be finished in a timely manner. ODS is freely available at http://sunlab.lihs.cuhk.edu.hk/ODS/. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences

    Directory of Open Access Journals (Sweden)

    Zheng Yi

    2011-11-01

    Full Text Available Abstract Background Expressed Sequence Tags (ESTs have played significant roles in gene discovery and gene functional analysis, especially for non-model organisms. For organisms with no full genome sequences available, ESTs are normally assembled into longer consensus sequences for further downstream analysis. However current de novo EST assembly programs often generate large number of assembly errors that will negatively affect the downstream analysis. In order to generate more accurate consensus sequences from ESTs, tools are needed to reduce or eliminate errors from de novo assemblies. Results We present iAssembler, a pipeline that can assemble large-scale ESTs into consensus sequences with significantly higher accuracy than current existing assemblers. iAssembler employs MIRA and CAP3 assemblers to generate initial assemblies, followed by identifying and correcting two common types of transcriptome assembly errors: 1 ESTs from different transcripts (mainly alternatively spliced transcripts or paralogs are incorrectly assembled into same contigs; and 2 ESTs from same transcripts fail to be assembled together. iAssembler can be used to assemble ESTs generated using the traditional Sanger method and/or the Roche-454 massive parallel pyrosequencing technology. Conclusion We compared performances of iAssembler and several other de novo EST assembly programs using both Roche-454 and Sanger EST datasets. It demonstrated that iAssembler generated significantly more accurate consensus sequences than other assembly programs.

  11. Comparison of base composition analysis and Sanger sequencing of mitochondrial DNA for four U.S. population groups.

    Science.gov (United States)

    Kiesler, Kevin M; Coble, Michael D; Hall, Thomas A; Vallone, Peter M

    2014-01-01

    A set of 711 samples from four U.S. population groups was analyzed using a novel mass spectrometry based method for mitochondrial DNA (mtDNA) base composition profiling. Comparison of the mass spectrometry results with Sanger sequencing derived data yielded a concordance rate of 99.97%. Length heteroplasmy was identified in 46% of samples and point heteroplasmy was observed in 6.6% of samples in the combined mass spectral and Sanger data set. Using discrimination capacity as a metric, Sanger sequencing of the full control region had the highest discriminatory power, followed by the mass spectrometry base composition method, which was more discriminating than Sanger sequencing of just the hypervariable regions. This trend is in agreement with the number of nucleotides covered by each of the three assays. Published by Elsevier Ireland Ltd.

  12. Comparing Whole-Genome Sequencing with Sanger Sequencing for spa Typing of Methicillin-Resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bartels, Mette Damkjaer; Petersen, Andreas; Worning, Peder

    2014-01-01

    spa typing of methicillin-resistant Staphylococcus aureus (MRSA) has traditionally been done by PCR amplification and Sanger sequencing of the spa repeat region. At Hvidovre Hospital, Denmark, whole-genome sequencing (WGS) of all MRSA isolates has been performed routinely since January 2013......, and an in-house analysis pipeline determines the spa types. Due to national surveillance, all MRSA isolates are sent to Statens Serum Institut, where the spa type is determined by PCR and Sanger sequencing. The purpose of this study was to evaluate the reliability of the spa types obtained by 150-bp paired......-end Illumina WGS. MRSA isolates from new MRSA patients in 2013 (n = 699) in the capital region of Denmark were included. We found a 97% agreement between spa types obtained by the two methods. All isolates achieved a spa type by both methods. Nineteen isolates differed in spa types by the two methods, in most...

  13. Simplified large-scale Sanger genome sequencing for influenza A/H3N2 virus.

    Directory of Open Access Journals (Sweden)

    Hong Kai Lee

    Full Text Available BACKGROUND: The advent of next-generation sequencing technologies and the resultant lower costs of sequencing have enabled production of massive amounts of data, including the generation of full genome sequences of pathogens. However, the small genome size of the influenza virus arguably justifies the use of the more conventional Sanger sequencing technology which is still currently more readily available in most diagnostic laboratories. RESULTS: We present a simplified Sanger-based genome sequencing method for sequencing the influenza A/H3N2 virus in a large-scale format. The entire genome sequencing was completed with 19 reverse transcription-polymerase chain reactions (RT-PCRs and 39 sequencing reactions. This method was tested on 15 native clinical samples and 15 culture isolates, respectively, collected between 2009 and 2011. The 15 native clinical samples registered quantification cycle values ranging from 21.0 to 30.56, which were equivalent to 2.4×10(3-1.4×10(6 viral copies/µL of RNA extract. All the PCR-amplified products were sequenced directly without PCR product purification. Notably, high quality sequencing data up to 700 bp were generated for all the samples tested. The completed sequence covered 408,810 nucleotides in total, with 13,627 nucleotides per genome, attaining 100% coding completeness. Of all the bases produced, an average of 89.49% were Phred quality value 40 (QV40 bases (representing an accuracy of circa one miscall for every 10,000 bases or higher, and an average of 93.46% were QV30 bases (one miscall every 1000 bases or higher. CONCLUSIONS: This sequencing protocol has been shown to be cost-effective and less labor-intensive in obtaining full influenza genomes. The constant high quality of sequences generated imparts confidence in extending the application of this non-purified amplicon sequencing approach to other gene sequencing assays, with appropriate use of suitably designed primers.

  14. Identification of novel BRCA founder mutations in Middle Eastern breast cancer patients using capture and Sanger sequencing analysis.

    Science.gov (United States)

    Bu, Rong; Siraj, Abdul K; Al-Obaisi, Khadija A S; Beg, Shaham; Al Hazmi, Mohsen; Ajarim, Dahish; Tulbah, Asma; Al-Dayel, Fouad; Al-Kuraya, Khawla S

    2016-09-01

    Ethnic differences of breast cancer genomics have prompted us to investigate the spectra of BRCA1 and BRCA2 mutations in different populations. The prevalence and effect of BRCA 1 and BRCA 2 mutations in Middle Eastern population is not fully explored. To characterize the prevalence of BRCA mutations in Middle Eastern breast cancer patients, BRCA mutation screening was performed in 818 unselected breast cancer patients using Capture and/or Sanger sequencing. 19 short tandem repeat (STR) markers were used for founder mutation analysis. In our study, nine different types of deleterious mutation were identified in 28 (3.4%) cases, 25 (89.3%) cases in BRCA 1 and 3 (10.7%) cases in BRCA 2. Seven recurrent mutations identified accounted for 92.9% (26/28) of all the mutant cases. Haplotype analysis was performed to confirm c.1140 dupG and c.4136_4137delCT mutations as novel putative founder mutation, accounting for 46.4% (13/28) of all BRCA mutant cases and 1.6% (13/818) of all the breast cancer cases, respectively. Moreover, BRCA 1 mutation was significantly associated with BRCA 1 protein expression loss (p = 0.0005). Our finding revealed that a substantial number of BRCA mutations were identified in clinically high risk breast cancer from Middle East region. Identification of the mutation spectrum, prevalence and founder effect in Middle Eastern population facilitates genetic counseling, risk assessment and development of cost-effective screening strategy.

  15. Homozygosity mapping and targeted sanger sequencing reveal genetic defects underlying inherited retinal disease in families from pakistan.

    Directory of Open Access Journals (Sweden)

    Maleeha Maria

    Full Text Available Homozygosity mapping has facilitated the identification of the genetic causes underlying inherited diseases, particularly in consanguineous families with multiple affected individuals. This knowledge has also resulted in a mutation dataset that can be used in a cost and time effective manner to screen frequent population-specific genetic variations associated with diseases such as inherited retinal disease (IRD.We genetically screened 13 families from a cohort of 81 Pakistani IRD families diagnosed with Leber congenital amaurosis (LCA, retinitis pigmentosa (RP, congenital stationary night blindness (CSNB, or cone dystrophy (CD. We employed genome-wide single nucleotide polymorphism (SNP array analysis to identify homozygous regions shared by affected individuals and performed Sanger sequencing of IRD-associated genes located in the sizeable homozygous regions. In addition, based on population specific mutation data we performed targeted Sanger sequencing (TSS of frequent variants in AIPL1, CEP290, CRB1, GUCY2D, LCA5, RPGRIP1 and TULP1, in probands from 28 LCA families.Homozygosity mapping and Sanger sequencing of IRD-associated genes revealed the underlying mutations in 10 families. TSS revealed causative variants in three families. In these 13 families four novel mutations were identified in CNGA1, CNGB1, GUCY2D, and RPGRIP1.Homozygosity mapping and TSS revealed the underlying genetic cause in 13 IRD families, which is useful for genetic counseling as well as therapeutic interventions that are likely to become available in the near future.

  16. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples.

    Science.gov (United States)

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D'Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues.

  17. Margaret Sanger

    Institute of Scientific and Technical Information of China (English)

    吴伟华

    2005-01-01

    Many women today have the freedom to decide when they will have children, if they want them. Until aboutfifty years ago, women spent most of their adultlives having children,year after year. This changed because of efforts by activists like Margaret Sanger. She believed that a safe and sure method of preventing pregnancy was a necessary condition for women's freedom. She also believed birth control was necessary for human progress.

  18. IROme, a new high-throughput molecular tool for the diagnosis of inherited retinal dystrophies-a price comparison with Sanger sequencing.

    Science.gov (United States)

    Schorderet, Daniel F; Bernasconi, Maude; Tiab, Leila; Favez, Tatiana; Escher, Pascal

    2014-01-01

    The molecular diagnosis of retinal dystrophies (RD) is difficult because of genetic and clinical heterogeneity. Previously, the molecular screening of genes was done one by one, sometimes in a scheme based on the frequency of sequence variants and the number of exons/length of the candidate genes. Payment for these procedures was complicated and the sequential billing of several genes created endless paperwork. We therefore evaluated the costs of generating and sequencing a hybridization-based DNA library enriched for the 64 most frequently mutated genes in RD, called IROme, and compared them to the costs of amplifying and sequencing these genes by the Sanger method. The production cost generated by the high-throughput (HT) sequencing of IROme was established at CHF 2,875.75 per case. Sanger sequencing of the same exons cost CHF 69,399.02. Turnaround time of the analysis was 3 days for IROme. For Sanger sequencing, it could only be estimated, as we never sequenced all 64 genes in one single patient. Sale cost for IROme calculated on the basis of the sale cost of one exon by Sanger sequencing is CHF 8,445.88, which corresponds to the sale price of 40 exons. In conclusion, IROme is cheaper and faster than Sanger sequencing and therefore represents a sound approach for the diagnosis of RD, both scientifically and economically. As a drop in the costs of HT sequencing is anticipated, target resequencing might become the new gold standard in the molecular diagnosis of RD.

  19. Very high resolution single pass HLA genotyping using amplicon sequencing on the 454 next generation DNA sequencers: Comparison with Sanger sequencing.

    Science.gov (United States)

    Yamamoto, F; Höglund, B; Fernandez-Vina, M; Tyan, D; Rastrou, M; Williams, T; Moonsamy, P; Goodridge, D; Anderson, M; Erlich, H A; Holcomb, C L

    2015-12-01

    Compared to Sanger sequencing, next-generation sequencing offers advantages for high resolution HLA genotyping including increased throughput, lower cost, and reduced genotype ambiguity. Here we describe an enhancement of the Roche 454 GS GType HLA genotyping assay to provide very high resolution (VHR) typing, by the addition of 8 primer pairs to the original 14, to genotype 11 HLA loci. These additional amplicons help resolve common and well-documented alleles and exclude commonly found null alleles in genotype ambiguity strings. Simplification of workflow to reduce the initial preparation effort using early pooling of amplicons or the Fluidigm Access Array™ is also described. Performance of the VHR assay was evaluated on 28 well characterized cell lines using Conexio Assign MPS software which uses genomic, rather than cDNA, reference sequence. Concordance was 98.4%; 1.6% had no genotype assignment. Of concordant calls, 53% were unambiguous. To further assess the assay, 59 clinical samples were genotyped and results compared to unambiguous allele assignments obtained by prior sequence-based typing supplemented with SSO and/or SSP. Concordance was 98.7% with 58.2% as unambiguous calls; 1.3% could not be assigned. Our results show that the amplicon-based VHR assay is robust and can replace current Sanger methodology. Together with software enhancements, it has the potential to provide even higher resolution HLA typing. Copyright © 2015. Published by Elsevier Inc.

  20. Comparison of pyrosequencing, Sanger sequencing, and melting curve analysis for detection of low-frequency macrolide-resistant mycoplasma pneumoniae quasispecies in respiratory specimens.

    Science.gov (United States)

    Chan, Kwok-Hung; To, Kelvin K W; Chan, Betsy W K; Li, Clara P Y; Chiu, Susan S; Yuen, Kwok-Yung; Ho, Pak-Leung

    2013-08-01

    Macrolide-resistant Mycoplasma pneumoniae (MRMP) is emerging worldwide and has been associated with treatment failure. In this study, we used pyrosequencing to detect low-frequency MRMP quasispecies in respiratory specimens, and we compared the findings with those obtained by Sanger sequencing and SimpleProbe PCR coupled with a melting curve analysis (SimpleProbe PCR). Sanger sequencing, SimpleProbe PCR, and pyrosequencing were successfully performed for 96.7% (88/91), 96.7% (88/91), and 93.4% (85/91) of the M. pneumoniae-positive specimens, respectively. The A-to-G transition at position 2063 was the only mutation identified. Pyrosequencing identified A2063G MRMP quasispecies populations in 78.8% (67/88) of the specimens. Only 38.8% (26/67) of these specimens with the A2063G quasispecies detected by pyrosequencing were found to be A2063G quasispecies by Sanger sequencing or SimpleProbe PCR. The specimens that could be detected by SimpleProbe PCR and Sanger sequencing had higher frequencies of MRMP quasispecies (51% to 100%) than those that could not be detected by those two methods (1% to 44%). SimpleProbe PCR correctly categorized all specimens that were identified as wild type or mutant by Sanger sequencing. The clinical characteristics of the patients were not significantly different when they were grouped by the presence or absence of MRMP quasispecies, while patients with MRMP identified by Sanger sequencing more often required a switch from macrolides to an alternative M. pneumoniae-targeted therapy. The clinical significance of mutant quasispecies should be investigated further with larger patient populations and with specimens obtained before and after macrolide therapy.

  1. Barcoding the food chain: from Sanger to high-throughput sequencing.

    Science.gov (United States)

    Littlefair, Joanne E; Clare, Elizabeth L

    2016-11-01

    Society faces the complex challenge of supporting biodiversity and ecosystem functioning, while ensuring food security by providing safe traceable food through an ever-more-complex global food chain. The increase in human mobility brings the added threat of pests, parasites, and invaders that further complicate our agro-industrial efforts. DNA barcoding technologies allow researchers to identify both individual species, and, when combined with universal primers and high-throughput sequencing techniques, the diversity within mixed samples (metabarcoding). These tools are already being employed to detect market substitutions, trace pests through the forensic evaluation of trace "environmental DNA", and to track parasitic infections in livestock. The potential of DNA barcoding to contribute to increased security of the food chain is clear, but challenges remain in regulation and the need for validation of experimental analysis. Here, we present an overview of the current uses and challenges of applied DNA barcoding in agriculture, from agro-ecosystems within farmland to the kitchen table.

  2. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases.

    Science.gov (United States)

    Tedersoo, Leho; Nilsson, R Henrik; Abarenkov, Kessy; Jairus, Teele; Sadam, Ave; Saar, Irja; Bahram, Mohammad; Bechem, Eneke; Chuyong, George; Kõljalg, Urmas

    2010-10-01

    • Compared with Sanger sequencing-based methods, pyrosequencing provides orders of magnitude more data on the diversity of organisms in their natural habitat, but its technological biases and relative accuracy remain poorly understood. • This study compares the performance of pyrosequencing and traditional sequencing for species' recovery of ectomycorrhizal fungi on root tips in a Cameroonian rain forest and addresses biases related to multi-template PCR and pyrosequencing analyses. • Pyrosequencing and the traditional method yielded qualitatively similar results, but there were slight, but significant, differences that affected the taxonomic view of the fungal community. We found that most pyrosequencing singletons were artifactual and contained a strongly elevated proportion of insertions compared with natural intra- and interspecific variation. The alternative primers, DNA extraction methods and PCR replicates strongly influenced the richness and community composition as recovered by pyrosequencing. • Pyrosequencing offers a powerful alternative for the identification of ectomycorrhizal fungi in pooled root samples, but requires careful selection of molecular tools. A well-populated backbone database facilitates the detection of biological and technical artifacts. The pyrosequencing pipeline is available at http://unite.ut.ee/454pipeline.tgz.

  3. The empirical power of rare variant association methods: results from sanger sequencing in 1,998 individuals.

    Directory of Open Access Journals (Sweden)

    Martin Ladouceur

    2012-02-01

    Full Text Available The role of rare genetic variation in the etiology of complex disease remains unclear. However, the development of next-generation sequencing technologies offers the experimental opportunity to address this question. Several novel statistical methodologies have been recently proposed to assess the contribution of rare variation to complex disease etiology. Nevertheless, no empirical estimates comparing their relative power are available. We therefore assessed the parameters that influence their statistical power in 1,998 individuals Sanger-sequenced at seven genes by modeling different distributions of effect, proportions of causal variants, and direction of the associations (deleterious, protective, or both in simulated continuous trait and case/control phenotypes. Our results demonstrate that the power of recently proposed statistical methods depend strongly on the underlying hypotheses concerning the relationship of phenotypes with each of these three factors. No method demonstrates consistently acceptable power despite this large sample size, and the performance of each method depends upon the underlying assumption of the relationship between rare variants and complex traits. Sensitivity analyses are therefore recommended to compare the stability of the results arising from different methods, and promising results should be replicated using the same method in an independent sample. These findings provide guidance in the analysis and interpretation of the role of rare base-pair variation in the etiology of complex traits and diseases.

  4. A Comprehensive Transcriptome Assembly of Pigeonpea (Cajanus cajan L.) using Sanger and Second-Generation Sequencing Platforms

    Science.gov (United States)

    Kudapa, Himabindu; Bharti, Arvind K.; Cannon, Steven B.; Farmer, Andrew D.; Mulaosmanovic, Benjamin; Kramer, Robin; Bohra, Abhishek; Weeks, Nathan T.; Crow, John A.; Tuteja, Reetu; Shah, Trushar; Dutta, Sutapa; Gupta, Deepak K.; Singh, Archana; Gaikwad, Kishor; Sharma, Tilak R.; May, Gregory D.; Singh, Nagendra K.; Varshney, Rajeev K.

    2012-01-01

    A comprehensive transcriptome assembly for pigeonpea has been developed by analyzing 128.9 million short Illumina GA IIx single end reads, 2.19 million single end FLX/454 reads, and 18 353 Sanger expressed sequenced tags from more than 16 genotypes. The resultant transcriptome assembly, referred to as CcTA v2, comprised 21 434 transcript assembly contigs (TACs) with an N50 of 1510 bp, the largest one being ∼8 kb. Of the 21 434 TACs, 16 622 (77.5%) could be mapped on to the soybean genome build 1.0.9 under fairly stringent alignment parameters. Based on knowledge of intron junctions, 10 009 primer pairs were designed from 5033 TACs for amplifying intron spanning regions (ISRs). By using in silico mapping of BAC-end-derived SSR loci of pigeonpea on the soybean genome as a reference, putative mapping positions at the chromosome level were predicted for 6284 ISR markers, covering all 11 pigeonpea chromosomes. A subset of 128 ISR markers were analyzed on a set of eight genotypes. While 116 markers were validated, 70 markers showed one to three alleles, with an average of 0.16 polymorphism information content (PIC) value. In summary, the CcTA v2 transcript assembly and ISR markers will serve as a useful resource to accelerate genetic research and breeding applications in pigeonpea. PMID:22241453

  5. A Comprehensive Transcriptome Assembly of Pigeonpea (Cajanus cajan L.) using Sanger and Second-Generation Sequencing Platforms

    Institute of Scientific and Technical Information of China (English)

    Himabindu Kudapa; Reetu Tuteja; Trushar Shah; Sutapa Dutta; Deepak K.Gupta; Archana Singh; Kishor Gaikwad; Tilak R.Sharma; Gregory D.May; Nagendra K.Singh; Rajeev K.Varshney; Arvind K.Bharti; Steven B.Cannon; Andrew D.Farmer; Benjamin Mulaosmanovic; Robin Kramer; Abhishek Bohra; Nathan T.Weeks; John A.Crow

    2012-01-01

    A comprehensive transcriptome assembly for pigeonpea has been developed by analyzing 128.9 million short Illumina GA Ⅱx single end reads,2.19 million single end FLX/454 reads,and 18353 Sanger expressed sequenced tags from more than 16 genotypes.The resultant transcriptome assembly,referred to as CcTA v2,comprised 21434 transcript assembly contigs (TACs) with an N50 of 1510 bp,the largest one being ~8 kb.Of the 21434 TACs,16622 (77.5%) could be mapped on to the soybean genome build 1.0.9 under fairly stringent alignment parameters.Based on knowledge of intron junctions,10009 primer pairs were designed from 5033 TACs for amplifying intron spanning regions (ISRs).By using in silico mapping of BAC-end-derived SSR loci of pigeonpea on the soybean genome as a reference,putative mapping positions at the chromosome level were predicted for 6284 ISR markers,covering all 11 pigeonpea chromosomes.A subset of 128 ISR markers were analyzed on a set of eight genotypes.While 116 markers were validated,70 markers showed one to three alleles,with an average of 0.16 polymorphism information content (PIC) value.In summary,the CcTA v2 transcript assembly and ISR markers will serve as a useful resource to accelerate genetic research and breeding applications in pigeonpea.

  6. Comprehensive transcriptome assembly of Chickpea (Cicer arietinum L.) using sanger and next generation sequencing platforms: development and applications.

    Science.gov (United States)

    Kudapa, Himabindu; Azam, Sarwar; Sharpe, Andrew G; Taran, Bunyamin; Li, Rong; Deonovic, Benjamin; Cameron, Connor; Farmer, Andrew D; Cannon, Steven B; Varshney, Rajeev K

    2014-01-01

    A comprehensive transcriptome assembly of chickpea has been developed using 134.95 million Illumina single-end reads, 7.12 million single-end FLX/454 reads and 139,214 Sanger expressed sequence tags (ESTs) from >17 genotypes. This hybrid transcriptome assembly, referred to as Cicer arietinumTranscriptome Assembly version 2 (CaTA v2, available at http://data.comparative-legumes.org/transcriptomes/cicar/lista_cicar-201201), comprising 46,369 transcript assembly contigs (TACs) has an N50 length of 1,726 bp and a maximum contig size of 15,644 bp. Putative functions were determined for 32,869 (70.8%) of the TACs and gene ontology assignments were determined for 21,471 (46.3%). The new transcriptome assembly was compared with the previously available chickpea transcriptome assemblies as well as to the chickpea genome. Comparative analysis of CaTA v2 against transcriptomes of three legumes - Medicago, soybean and common bean, resulted in 27,771 TACs common to all three legumes indicating strong conservation of genes across legumes. CaTA v2 was also used for identification of simple sequence repeats (SSRs) and intron spanning regions (ISRs) for developing molecular markers. ISRs were identified by aligning TACs to the Medicago genome, and their putative mapping positions at chromosomal level were identified using transcript map of chickpea. Primer pairs were designed for 4,990 ISRs, each representing a single contig for which predicted positions are inferred and distributed across eight linkage groups. A subset of randomly selected ISRs representing all eight chickpea linkage groups were validated on five chickpea genotypes and showed 20% polymorphism with average polymorphic information content (PIC) of 0.27. In summary, the hybrid transcriptome assembly developed and novel markers identified can be used for a variety of applications such as gene discovery, marker-trait association, diversity analysis etc., to advance genetics research and breeding applications in

  7. Comprehensive transcriptome assembly of Chickpea (Cicer arietinum L. using sanger and next generation sequencing platforms: development and applications.

    Directory of Open Access Journals (Sweden)

    Himabindu Kudapa

    Full Text Available A comprehensive transcriptome assembly of chickpea has been developed using 134.95 million Illumina single-end reads, 7.12 million single-end FLX/454 reads and 139,214 Sanger expressed sequence tags (ESTs from >17 genotypes. This hybrid transcriptome assembly, referred to as Cicer arietinumTranscriptome Assembly version 2 (CaTA v2, available at http://data.comparative-legumes.org/transcriptomes/cicar/lista_cicar-201201, comprising 46,369 transcript assembly contigs (TACs has an N50 length of 1,726 bp and a maximum contig size of 15,644 bp. Putative functions were determined for 32,869 (70.8% of the TACs and gene ontology assignments were determined for 21,471 (46.3%. The new transcriptome assembly was compared with the previously available chickpea transcriptome assemblies as well as to the chickpea genome. Comparative analysis of CaTA v2 against transcriptomes of three legumes - Medicago, soybean and common bean, resulted in 27,771 TACs common to all three legumes indicating strong conservation of genes across legumes. CaTA v2 was also used for identification of simple sequence repeats (SSRs and intron spanning regions (ISRs for developing molecular markers. ISRs were identified by aligning TACs to the Medicago genome, and their putative mapping positions at chromosomal level were identified using transcript map of chickpea. Primer pairs were designed for 4,990 ISRs, each representing a single contig for which predicted positions are inferred and distributed across eight linkage groups. A subset of randomly selected ISRs representing all eight chickpea linkage groups were validated on five chickpea genotypes and showed 20% polymorphism with average polymorphic information content (PIC of 0.27. In summary, the hybrid transcriptome assembly developed and novel markers identified can be used for a variety of applications such as gene discovery, marker-trait association, diversity analysis etc., to advance genetics research and breeding

  8. Expanding the mutation spectrum in 130 probands with ARPKD: identification of 62 novel PKHD1 mutations by sanger sequencing and MLPA analysis.

    Science.gov (United States)

    Melchionda, Salvatore; Palladino, Teresa; Castellana, Stefano; Giordano, Mario; Benetti, Elisa; De Bonis, Patrizia; Zelante, Leopoldo; Bisceglia, Luigi

    2016-09-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a rare severe genetic disorder arising in the perinatal period, although a late-onset presentation of the disease has been described. Pulmonary hypoplasia is the major cause of morbidity and mortality in the newborn period. ARPKD is caused by mutations in the PKHD1 (polycystic kidney and hepatic disease 1) gene that is among the largest human genes. To achieve a molecular diagnosis of the disease, a large series of Italian affected subjects were recruited. Exhaustive mutation analysis of PKHD1 gene was carried out by Sanger sequencing and multiple ligation probe amplification (MLPA) technique in 110 individuals. A total of 173 mutations resulting in a detection rate of 78.6% were identified. Additional 20 unrelated patients, in whom it was not possible to analyze the whole coding sequence, have been included in this study. Taking into account the total number (n=130) of this cohort of patients, 107 different types of mutations have been detected in 193 mutated alleles. Out of 107 mutations, 62 were novel: 11 nonsense, 6 frameshift, 7 splice site mutations, 2 in-frame deletions and 2 multiexon deletion detected by MLPA. Thirty-four were missense variants. In conclusion, our report expands the spectrum of PKHD1 mutations and confirms the heterogeneity of this disorder. The population under study represents the largest Italian ARPKD cohort reported to date. The estimated costs and the time invested for molecular screening of genes with large size and allelic heterogeneity such as PKHD1 demand the use of next-generation sequencing (NGS) technologies for a faster and cheaper screening of the affected subjects.

  9. Genetic Testing Requires NGS and Sanger Methodologies.

    Science.gov (United States)

    Jennings, Lawrence J; Kirschmann, Dawn

    2016-09-01

    Investigators from the EuroEPINOMICS rare epilepsy syndromes Dravet working group performed whole-exome sequencing on 31 trios that had been reported negative for SCN1A mutations by Sanger sequencing.

  10. A comparison of parallel pyrosequencing and sanger clone-based sequencing and its impact on the characterization of the genetic diversity of HIV-1.

    Directory of Open Access Journals (Sweden)

    Binhua Liang

    Full Text Available BACKGROUND: Pyrosequencing technology has the potential to rapidly sequence HIV-1 viral quasispecies without requiring the traditional approach of cloning. In this study, we investigated the utility of ultra-deep pyrosequencing to characterize genetic diversity of the HIV-1 gag quasispecies and assessed the possible contribution of pyrosequencing technology in studying HIV-1 biology and evolution. METHODOLOGY/PRINCIPAL FINDINGS: HIV-1 gag gene was amplified from 96 patients using nested PCR. The PCR products were cloned and sequenced using capillary based Sanger fluorescent dideoxy termination sequencing. The same PCR products were also directly sequenced using the 454 pyrosequencing technology. The two sequencing methods were evaluated for their ability to characterize quasispecies variation, and to reveal sites under host immune pressure for their putative functional significance. A total of 14,034 variations were identified by 454 pyrosequencing versus 3,632 variations by Sanger clone-based (SCB sequencing. 11,050 of these variations were detected only by pyrosequencing. These undetected variations were located in the HIV-1 Gag region which is known to contain putative cytotoxic T lymphocyte (CTL and neutralizing antibody epitopes, and sites related to virus assembly and packaging. Analysis of the positively selected sites derived by the two sequencing methods identified several differences. All of them were located within the CTL epitope regions. CONCLUSIONS/SIGNIFICANCE: Ultra-deep pyrosequencing has proven to be a powerful tool for characterization of HIV-1 genetic diversity with enhanced sensitivity, efficiency, and accuracy. It also improved reliability of downstream evolutionary and functional analysis of HIV-1 quasispecies.

  11. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    Science.gov (United States)

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections.

  12. Sanger Sequencing for BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del Mutation Screen on Pap Smear Cytology Samples.

    Science.gov (United States)

    Lee, Sin Hang; Zhou, Shaoxia; Zhou, Tianjun; Hong, Guofan

    2016-02-08

    Three sets of polymerase chain reaction (PCR) primers were designed for heminested PCR amplification of the target DNA fragments in the human genome which include the site of BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del respectively, to prepare the templates for direct Sanger sequencing screen of these three founder mutations. With a robust PCR mixture, crude proteinase K digestate of the fixed cervicovaginal cells in the liquid-based Papanicolaou (Pap) cytology specimens can be used as the sample for target DNA amplification without pre-PCR DNA extraction, purification and quantitation. The post-PCR products can be used directly as the sequencing templates without further purification or quantitation. By simplifying the frontend procedures for template preparation, the cost for screening these three founder mutations can be reduced to about US $200 per test when performed in conjunction with human papillomavirus (HPV) assays now routinely ordered for cervical cancer prevention. With this projected price structure, selective patients in a high-risk population can be tested and each provided with a set of DNA sequencing electropherograms to document the absence or presence of these founder mutations in her genome to help assess inherited susceptibility to breast and ovarian cancer in this era of precision molecular personalized medicine.

  13. Sanger Sequencing for BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del Mutation Screen on Pap Smear Cytology Samples

    Directory of Open Access Journals (Sweden)

    Sin Hang Lee

    2016-02-01

    Full Text Available Three sets of polymerase chain reaction (PCR primers were designed for heminested PCR amplification of the target DNA fragments in the human genome which include the site of BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del respectively, to prepare the templates for direct Sanger sequencing screen of these three founder mutations. With a robust PCR mixture, crude proteinase K digestate of the fixed cervicovaginal cells in the liquid-based Papanicolaou (Pap cytology specimens can be used as the sample for target DNA amplification without pre-PCR DNA extraction, purification and quantitation. The post-PCR products can be used directly as the sequencing templates without further purification or quantitation. By simplifying the frontend procedures for template preparation, the cost for screening these three founder mutations can be reduced to about US $200 per test when performed in conjunction with human papillomavirus (HPV assays now routinely ordered for cervical cancer prevention. With this projected price structure, selective patients in a high-risk population can be tested and each provided with a set of DNA sequencing electropherograms to document the absence or presence of these founder mutations in her genome to help assess inherited susceptibility to breast and ovarian cancer in this era of precision molecular personalized medicine.

  14. Highly sensitive KRAS mutation detection from formalin-fixed paraffin-embedded biopsies and circulating tumour cells using wild-type blocking polymerase chain reaction and Sanger sequencing.

    Science.gov (United States)

    Huang, Meggie Mo Chao; Leong, Sai Mun; Chua, Hui Wen; Tucker, Steven; Cheong, Wai Chye; Chiu, Lily; Li, Mo-Huang; Koay, Evelyn Siew-Chuan

    2014-08-01

    Among patients with colorectal cancer (CRC), KRAS mutations were reported to occur in 30-51 % of all cases. CRC patients with KRAS mutations were reported to be non-responsive to anti-epidermal growth factor receptor (EGFR) monoclonal antibody (MoAb) treatment in many clinical trials. Hence, accurate detection of KRAS mutations would be critical in guiding the use of anti-EGFR MoAb therapies in CRC. In this study, we carried out a detailed investigation of the efficacy of a wild-type (WT) blocking real-time polymerase chain reaction (PCR), employing WT KRAS locked nucleic acid blockers, and Sanger sequencing, for KRAS mutation detection in rare cells. Analyses were first conducted on cell lines to optimize the assay protocol which was subsequently applied to peripheral blood and tissue samples from patients with CRC. The optimized assay provided a superior sensitivity enabling detection of as little as two cells with mutated KRAS in the background of 10(4) WT cells (0.02 %). The feasibility of this assay was further investigated to assess the KRAS status of 45 colorectal tissue samples, which had been tested previously, using a conventional PCR sequencing approach. The analysis showed a mutational discordance between these two methods in 4 of 18 WT cases. Our results present a simple, effective, and robust method for KRAS mutation detection in both paraffin embedded tissues and circulating tumour cells, at single-cell level. The method greatly enhances the detection sensitivity and alleviates the need of exhaustively removing co-enriched contaminating lymphocytes.

  15. Screening for EGFR mutations in lung cancer by a novel real-time PCR with double-loop probe and Sanger DNA sequencing%特异引物双扩增实时PCR法和Sanger DNA测序法检测肺癌组织中表皮生长因子受体基因突变

    Institute of Scientific and Technical Information of China (English)

    张海萍; 阮力; 郑立谟; 白冬雨; 张海芳; 廖永强; 丁毅

    2013-01-01

    Objective To map the frequency and types of EGFR gene mutations present in lung cancer tissues.To evaluate the clinical applicability of a novel real-time double-loop probe PCR of which the ADx-EGFR kit is based,and to compare its performance with traditional Sanger DNA sequencing in the detection of somatic mutations of tumor genes.Methods A total of 208 formalin-fixed paraffin-embedded (FFPE) tumor samples were tested.Genomic DNA of the tissue samples was extracted and purified,and subjected to both traditional PCR amplification,Sanger sequencing of EGFR gene in exon 18,19,20,21,and ADx's EGFR mutation detection kit.The mutation rates for EGFR gene in exon 18,19,20,21,as well as the frequency of each mutation detected by the two methods,were analyzed.Results The traditional Sanger DNA sequencing technique was successfully performed in 196 out of 208 (94.2%) lung cancer samples,and 22 samples (11.2%) showed EGFR gene mutations.ADx-EGFR kit was successfully used in the lung cancers of all of the 208 cases (100.0%),and 40 samples (19.2%) showed mutations.In the lung cancer samples analyzed,mutations were mainly detected in the exon 19 and exon 21 L858R point mutation,i.e.4.8% (10/208) and 11.6% (23/208) of total mutations,respectively,and the remaining mutations were rare.Conclusions The success rate of ADx-EGFR real-time PCR for formalin-fixed and paraffin-embedded tissues samples is significantly higher than that of Sanger sequencing (P <0.01).There are significant differences between the two methods.ADx-EGFR real-time PCR shows a much higher successful detection rate and mutation rate of lung cancer tissues compared with that of Sanger sequencing.As a result,the real-time PCR with ADx-EGFR kit is proved to have a good clinical applicability and a strong advantage over the traditional Sanger DNA sequencing.It is an effective and reliable tool for clinical screening of somatic gene mutations in tumors.%目的 探讨特异引物双环探针扩增实

  16. Was Margaret Sanger a racist?

    Science.gov (United States)

    Valenza, C

    1985-01-01

    Margaret Sanger, as a young public health nurse, witnessed the sickness, disease and poverty caused by unwanted pregnancies. She spent the rest of her life trying to alleviate these conditions by bringing birth control to America. During the early 20th century, the idea of making contraceptives generally available was revolutionary. Contraceptive usage was considered a distinguishing feature of the 'haves.' In recent years, some revisionist biographers have portrayed Sanger as a eugenicist and a racist. This view has been widely publicized by critics of reproductive rights who have attempted to discredit Sanger's work by discrediting her personally. The basic concept of the eugenics movement in the 1920s and 1930s was that a better breed of humans would be created if the 'fit' had more children and the 'unfit' had fewer. This concept influenced a broad spectrum of thought, but there was little consensus on the definitions of fit and unfit. In theory, the movement was not racist--its message intended to cross race barriers for the overall advancement of mankind. Most eugenicists agreed that birth control would be a detriment to the human race and were opposed to it. Charges that Sanger's motives for promoting birth control were eugenic are not supported. In part of her most important work, "Pivot of Civilization," Sanger's dissent from eugenics was made clear. By examining extracts from her books, the author refutes the notion that Sanger was a eugenicist. Another unsupported argument raised by the anti-Sanger group was that Sanger, in her position as editor of "Birth Contol Review," published eugenicists' views. It would be more accurate to say that the review covered a wide range of opinions and research; the eugenicists views were included because they conferred respectability. David Kennedy, author of "Birth Control in America," does Sanger a grave injustice by falsely attributing to her the quotation: 'More children from the fit, less from the unfit--that is

  17. A genotypic test for HIV-1 tropism combining Sanger sequencing with ultradeep sequencing predicts virologic response in treatment-experienced patients.

    Directory of Open Access Journals (Sweden)

    Ron M Kagan

    Full Text Available A tropism test is required prior to initiation of CCR5 antagonist therapy in HIV-1 infected individuals, as these agents are not effective in patients harboring CXCR4 (X4 coreceptor-using viral variants. We developed a clinical laboratory-based genotypic tropism test for detection of CCR5-using (R5 or X4 variants that utilizes triplicate population sequencing (TPS followed by ultradeep sequencing (UDS for samples classified as R5. Tropism was inferred using the bioinformatic algorithms geno2pheno([coreceptor] and PSSM(x4r5. Virologic response as a function of tropism readout was retrospectively assessed using blinded samples from treatment-experienced subjects who received maraviroc (N = 327 in the MOTIVATE and A4001029 clinical trials. MOTIVATE patients were classified as R5 and A4001029 patients were classified as non-R5 by the original Trofile test. Virologic response was compared between the R5 and non-R5 groups determined by TPS, UDS alone, the reflex strategy and the Trofile Enhanced Sensitivity (TF-ES test. UDS had greater sensitivity than TPS to detect minority non-R5 variants. The median log(10 viral load change at week 8 was -2.4 for R5 subjects, regardless of the method used for classification; for subjects with non-R5 virus, median changes were -1.2 for TF-ES or the Reflex Test and -1.0 for UDS. The differences between R5 and non-R5 groups were highly significant in all 3 cases (p<0.0001. At week 8, the positive predictive value was 66% for TF-ES and 65% for both the Reflex test and UDS. Negative predictive values were 59% for TF-ES, 58% for the Reflex Test and 61% for UDS. In conclusion, genotypic tropism testing using UDS alone or a reflex strategy separated maraviroc responders and non-responders as well as a sensitive phenotypic test, and both assays showed improved performance compared to TPS alone. Genotypic tropism tests may provide an alternative to phenotypic testing with similar discriminating ability.

  18. Anaplasma phagocytophilum in Danish sheep: confirmation by DNA sequencing

    Directory of Open Access Journals (Sweden)

    Thamsborg Stig M

    2009-12-01

    Full Text Available Abstract Background The presence of Anaplasma phagocytophilum, an Ixodes ricinus transmitted bacterium, was investigated in two flocks of Danish grazing lambs. Direct PCR detection was performed on DNA extracted from blood and serum with subsequent confirmation by DNA sequencing. Methods 31 samples obtained from clinically normal lambs in 2000 from Fussingø, Jutland and 12 samples from ten lambs and two ewes from a clinical outbreak at Feddet, Zealand in 2006 were included in the study. Some of the animals from Feddet had shown clinical signs of polyarthritis and general unthriftiness prior to sampling. DNA extraction was optimized from blood and serum and detection achieved by a 16S rRNA targeted PCR with verification of the product by DNA sequencing. Results Five DNA extracts were found positive by PCR, including two samples from 2000 and three from 2006. For both series of samples the product was verified as A. phagocytophilum by DNA sequencing. Conclusions A. phagocytophilum was detected by molecular methods for the first time in Danish grazing lambs during the two seasons investigated (2000 and 2006.

  19. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis.

    Science.gov (United States)

    Grauers, Anna; Wang, Jingwen; Einarsdottir, Elisabet; Simony, Ane; Danielsson, Aina; Åkesson, Kristina; Ohlin, Acke; Halldin, Klas; Grabowski, Pawel; Tenne, Max; Laivuori, Hannele; Dahlman, Ingrid; Andersen, Mikkel; Christensen, Steen Bach; Karlsson, Magnus K; Jiao, Hong; Kere, Juha; Gerdhem, Paul

    2015-10-01

    Idiopathic scoliosis is a spinal deformity affecting approximately 3% of otherwise healthy children or adolescents. The etiology is still largely unknown but has an important genetic component. Genome-wide association studies have identified a number of common genetic variants that are significantly associated with idiopathic scoliosis in Asian and Caucasian populations, rs11190870 close to the LBX1 gene being the most replicated finding. The aim of the present study was to investigate the genetics of idiopathic scoliosis in a Scandinavian cohort by performing a candidate gene study of four variants previously shown to be associated with idiopathic scoliosis and exome sequencing of idiopathic scoliosis patients with a severe phenotype to identify possible novel scoliosis risk variants. This was a case control study. A total of 1,739 patients with idiopathic scoliosis and 1,812 controls were included. The outcome measure was idiopathic scoliosis. The variants rs10510181, rs11190870, rs12946942, and rs6570507 were genotyped in 1,739 patients with idiopathic scoliosis and 1,812 controls. Exome sequencing was performed on pooled samples from 100 surgically treated idiopathic scoliosis patients. Novel or rare missense, nonsense, or splice site variants were selected for individual genotyping in the 1,739 cases and 1,812 controls. In addition, the 5'UTR, noncoding exon and promoter regions of LBX1, not covered by exome sequencing, were Sanger sequenced in the 100 pooled samples. Of the four candidate genes, an intergenic variant, rs11190870, downstream of the LBX1 gene, showed a highly significant association to idiopathic scoliosis in 1,739 cases and 1,812 controls (p=7.0×10(-18)). We identified 20 novel variants by exome sequencing after filtration and an initial genotyping validation. However, we could not verify any association to idiopathic scoliosis in the large cohort of 1,739 cases and 1,812 controls. We did not find any variants in the 5'UTR, noncoding exon and

  20. Electrostatic Potential Maps and Natural Bond Orbital Analysis: Visualization and Conceptualization of Reactivity in Sanger's Reagent

    Science.gov (United States)

    Mottishaw, Jeffery D.; Erck, Adam R.; Kramer, Jordan H.; Sun, Haoran; Koppang, Miles

    2015-01-01

    Frederick Sanger's early work on protein sequencing through the use of colorimetric labeling combined with liquid chromatography involves an important nucleophilic aromatic substitution (S[subscript N]Ar) reaction in which the N-terminus of a protein is tagged with Sanger's reagent. Understanding the inherent differences between this S[subscript…

  1. Targeted 'Next-Generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations

    Directory of Open Access Journals (Sweden)

    Lopez Jimenez Nelson

    2011-12-01

    Full Text Available Abstract Background Anophthalmia/microphthalmia (A/M is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. Methods We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP calling software. We verified predicted sequence alterations using Sanger sequencing. Results We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15 that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp deletion and one 3 bp duplication in SOX2. Conclusions Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.

  2. Ultra-deep sequencing confirms immunohistochemistry as a highly sensitive and specific method for detecting BRAF V600E mutations in colorectal carcinoma.

    Science.gov (United States)

    Rössle, Matthias; Sigg, Michèle; Rüschoff, Jan H; Wild, Peter J; Moch, Holger; Weber, Achim; Rechsteiner, Markus P

    2013-11-01

    The activating BRAF (V600) mutation is a well-established negative prognostic biomarker in metastatic colorectal carcinoma (CRC). A recently developed monoclonal mouse antibody (clone VE1) has been shown to detect reliably BRAF (V600E) mutated protein by immunohistochemistry (IHC). In this study, we aimed to compare the detection of BRAF (V600E) mutations by IHC, Sanger sequencing (SaS), and ultra-deep sequencing (UDS) in CRC. VE1-IHC was established in a cohort of 68 KRAS wild-type CRCs. The VE1-IHC was only positive in the three patients with a known BRAF (V600E) mutation as assessed by SaS and UDS. The test cohort consisted of 265 non-selected, consecutive CRC samples. Thirty-nine out of 265 cases (14.7%) were positive by VE1-IHC. SaS of 20 randomly selected IHC negative tumors showed BRAF wild-type (20/20). Twenty-four IHC-positive cases were confirmed by SaS (24/39; 61.5%) and 15 IHC-positive cases (15/39; 38.5%) showed a BRAF wild-type by SaS. UDS detected a BRAF (V600E) mutation in 13 of these 15 discordant cases. In one tumor, the mutation frequency was below our threshold for UDS positivity, while in another case, UDS could not be performed due to low DNA amount. Statistical analysis showed sensitivities of 100% and 63% and specificities of 95 and 100% for VE1-IHC and SaS, respectively, compared to combined results of SaS and UDS. Our data suggests that there is high concordance between UDS and IHC using the anti-BRAF(V600E) (VE1) antibody. Thus, VE1 immunohistochemistry is a highly sensitive and specific method in detecting BRAF (V600E) mutations in colorectal carcinoma.

  3. A comparative study of pyrosequencing method and Sanger sequencing method for detecting the drug resistance mutation loci in hepatitis B virus%乙型肝炎病毒耐药突变的焦磷酸测序与Sanger双脱氧链终止法检测试剂的比对及临床应用

    Institute of Scientific and Technical Information of China (English)

    叶佩燕; 夏前林; 张建良

    2016-01-01

    Objective: To compare the pyrosequencing method and sanger sequencing method for detection of HBV drug resistance mutation loci. Methods: A total of 415 serum samples from hepatitis patients were collected, While 30 control serum samples were served as controls. HBV drug resistance mutation loci in the serum sample were detected in par allel with the pyrosequencing method and Sanger sequencing method. Using Sanger sequencing method as reference, the specificity, sensitivity and the total coincidence rate of pyrosequencing method were calculated. Kappa value was cal-culated for agreement analysis. Results:Taking Sanger sequencing method as reference, the specificity, sensitivity and the total coincidence rate of pyrosequencing method were 100%, 99.82% and 99.86%, respectively. Moreover, a high degree of agreement was observed (Kappa value, 0.997). Conclusions: Pyrosequencing method is a rapid, sensitive and specific method for the detection of HBV drug resistance mutation loci, and has a good prospect to be applied in clinical laboratory.%目的:将检测乙型肝炎病毒(hepatitis B virus,HBV)耐药突变位点的焦磷酸测序检测试剂与Sanger双脱氧链终止法(Sanger测序法,简称Sanger法)检测试剂进行临床比对,为临床诊断和个体化治疗提供参考。方法:分别用研制的焦磷酸测序检测试剂与Sanger法检测试剂检测415份临床慢性乙型肝炎(乙肝)患者的血清样本及30例对照血清样本,并与Sanger法检测试剂比对,计算焦磷酸测序检测试剂的特异度、灵敏度及总符合率,计算Kappa值,比较2种试剂检测结果的一致性。结果:与经典的Sanger法检测试剂比对,焦磷酸测序检测试剂的特异度为100%,灵敏度为99.82%,一致率为99.86%,受试者工作特征曲线下面积为0.9994,两者间具有较强的一致性。结论:焦磷酸测序检测试剂适合于临床对HBV样本进行耐药性诊断,其特异度、灵

  4. The Role of 16S rRNA Gene Sequencing in Confirmation of Suspected Neonatal Sepsis.

    Science.gov (United States)

    El Gawhary, Somaia; El-Anany, Mervat; Hassan, Reem; Ali, Doaa; El Gameel, El Qassem

    2016-02-01

    Different molecular assays for the detection of bacterial DNA in the peripheral blood represented a diagnostic tool for neonatal sepsis. We targeted to evaluate the role of 16S rRNA gene sequencing to screen for bacteremia to confirm suspected neonatal sepsis (NS) and compare with risk factors and septic screen testing. Sixty-two neonates with suspected NS were enrolled. White blood cells count, I/T ratio, C-reactive protein, blood culture and 16S rRNA sequencing were performed. Blood culture was positive in 26% of cases, and PCR was positive in 26% of cases. Evaluation of PCR for the diagnosis of NS showed sensitivity 62.5%, specificity 86.9%, PPV 62.5%, NPV 86.9% and accuracy of 79.7%. 16S rRNA PCR increased the sensitivity of detecting bacterial DNA in newborns with signs of sepsis from 26 to 35.4%, and its use can be limited to cases with the most significant risk factors and positive septic screen. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  6. MutAid: Sanger and NGS Based Integrated Pipeline for Mutation Identification, Validation and Annotation in Human Molecular Genetics.

    Science.gov (United States)

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2016-01-01

    Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid.

  7. Multilocus sequence typing confirms synonymy but highlights differences between Candida albicans and Candida stellatoidea.

    NARCIS (Netherlands)

    Jacobsen, M.D.; Boekhout, T.; Odds, F.C.

    2008-01-01

    We used multi-locus sequence typing (MLST) to investigate 35 yeast isolates representing the two genome-sequenced strains plus the type strain of Candida albicans, four isolates originally identified as Candida stellatoidea type I and 28 representing type strains of other species now regarded as

  8. Multilocus sequence typing confirms synonymy but highlights differences between Candida albicans and Candida stellatoidea.

    NARCIS (Netherlands)

    Jacobsen, M.D.; Boekhout, T.; Odds, F.C.

    2008-01-01

    We used multi-locus sequence typing (MLST) to investigate 35 yeast isolates representing the two genome-sequenced strains plus the type strain of Candida albicans, four isolates originally identified as Candida stellatoidea type I and 28 representing type strains of other species now regarded as syn

  9. DNase SISPA-next generation sequencing confirms Schmallenberg virus in Belgian field samples and identifies genetic variation in Europe.

    Directory of Open Access Journals (Sweden)

    Toon Rosseel

    Full Text Available In 2011, a novel Orthobunyavirus was identified in cattle and sheep in Germany and The Netherlands. This virus was named Schmallenberg virus (SBV. Later, presence of the virus was confirmed using real time RT-PCR in cases of congenital malformations of bovines and ovines in several European countries, including Belgium. In the absence of specific sequencing protocols for this novel virus we confirmed its presence in RT-qPCR positive field samples using DNase SISPA-next generation sequencing (NGS, a virus discovery method based on random amplification and next generation sequencing. An in vitro transcribed RNA was used to construct a standard curve allowing the quantification of viral RNA in the field samples. Two field samples of aborted lambs containing 7.66 and 7.64 log(10 RNA copies per µL total RNA allowed unambiguous identification of SBV. One sample yielded 192 SBV reads covering about 81% of the L segment, 56% of the M segment and 13% of the S segment. The other sample resulted in 8 reads distributed over the L and M segments. Three weak positive field samples (one from an aborted calf, two from aborted lambs containing virus quantities equivalent to 4.27-4.89 log(10 RNA copies per µL did not allow identification using DNase SISPA-NGS. This partial sequence information was compared to the whole genome sequence of SBV isolated from bovines in Germany, identifying several sequence differences. The applied viral discovery method allowed the confirmation of SBV in RT-qPCR positive brain samples. However, the failure to confirm SBV in weak PCR-positive samples illustrates the importance of the selection of properly targeted and fresh field samples in any virus discovery method. The partial sequences derived from the field samples showed several differences compared to the sequences from bovines in Germany, indicating sequence divergence within the epidemic.

  10. Comparative analysis of real-time quantitative PCR-Sanger sequencing method and TaqMan probe method for detection of KRAS/BRAF mutation in colorectal carcinomas%即时定量PCR-Sanger测序与TaqMan探针法检测结直肠癌KRAS、BRAF基因突变的对比分析

    Institute of Scientific and Technical Information of China (English)

    张汛; 王跃华; 高宁; 王晋芬

    2014-01-01

    Objective To compare the application values of real-time quantitative PCR-Sanger sequencing and TaqMan probe method in the detection of KRAS and BRAF mutations,and to correlate KRAS/BRAF mutations with the clinicopathological characteristics in colorectal carcinomas.Methods Genomic DNA of the tumor cells was extracted from formalin fixed paraffin embedded (FFPE) tissue samples of 344 colorectal carcinomas by microdissection.Real-time quantitative PCR-Sanger sequencing and TaqMan probe method were performed to detect the KRAS/BRAF mutations.The frequency and types of KRAS/BRAF mutations,clinicopathological characteristics and survival time were analyzed.Results KRAS mutations were detected in 39.8% (137/344) and 38.7% (133/344) of 344 colorectal carcinomas by using real-time quantitative PCR-Sanger sequencing and TaqMan probe method,respectively.BRAF mutation was detected in 4.7% (16/344) and 4.1% (14/344),respectively.There was no significant correlation between the two methods.The frequency of the KRAS mutation in female was higher than that in male (P <0.05).The frequency of the BRAF mutation in colon was higher than that in rectum.The frequency of the BRAF mutation in stage Ⅲ-Ⅳ cases was higher than that in stage Ⅰ-Ⅱ cases.The frequency of the BRAF mutation in signet ring cell carcinoma was higher than that in mucinous carcinoma and nonspecific adenocarcinoma had the lowest mutation rate.The frequency of the BRAF mutation in grade Ⅲ cases was higher than that in grade Ⅱ cases (P < 0.05).The overall concordance for the two methods of KRAS/BRAF mutation detection was 98.8% (kappa =0.976).There was statistic significance between BRAF and KRAS mutations for the survival time of colorectal carcinomas (P =0.039).There were no statistic significance between BRAF mutation type and BRAF/KRAS wild type (P =0.058).Conclusions (1) Compared with real-time quantitative PCR-Sanger sequencing,TaqMan probe method is better with regard to handling time

  11. Segregation of Leptatherum from Microstegium (Andropogoneae, Poaceae) confirmed by Internal Transcribed Spacer DNA sequences

    NARCIS (Netherlands)

    Chen, C.-H.; Veldkamp, J.F.; Kuoh, C.-S.; Tsai, C.-C.; Chiang, Y.-C.

    2009-01-01

    Phylogenetic analyses of Microstegium (Andropogoneae, Poaceae) and some other Andropogoneae species were conducted inferred from the ITS/5.8S sequences. As a result of this study, Microstegium is polyphyletic. There are two rather distant monophyletic clades, one with Microstegium nudum (type of

  12. Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice.

    Science.gov (United States)

    Waters, Daniel L E; Nock, Catherine J; Ishikawa, Ryuji; Rice, Nicole; Henry, Robert J

    2012-01-01

    Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis.

  13. Frederick Sanger, Erwin Chargaff, and the metamorphosis of specificity.

    Science.gov (United States)

    Judson, H F

    1993-12-15

    That a transformation of ruling ideas in genetics and biochemistry took place at the dawn of molecular biology, in the late 1940s, is a commonplace; but the nature and components of that transformation are widely misunderstood. The change is often identified with the importation into biology of new styles of thought and new rigor by the many scientists trained in physics or chemistry who came into the nascent field--notably, Max Delbrück, Max Perutz, Francis Crick, John Kendrew, Maurice Wilkins, Rosalind Franklin. Most generally, the change is supposed to be the realization that genes are made not of protein but of nucleic acid--and this change was initiated, of course, by the work of Oswald Avery and his colleagues. These changes are not mutually exclusive, and both were surely important to the genesis of molecular biology. But logically prior to them, more fundamental, was another transformation in ruling preconceptions, one that has been neglected: the revolution in understanding of the chemical structures--the sequences of subunits--of proteins and of nucleic acids which was wrought by the work of Frederick Sanger and of Erwin Chargaff. This was a metamorphosis in the understanding of biochemical specificity, and while it astonished many biochemists it set free the small groups of those who were beginning to call themselves molecular biologists, enabling them to think of the relationship between genes and proteins in entirely new ways.

  14. Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice

    OpenAIRE

    Waters, Daniel L. E.; Nock, Catherine J; Ishikawa, Ryuji; Rice, Nicole; Henry, Robert J.

    2012-01-01

    Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively pa...

  15. Analysis of the Pythium ultimum transcriptome using Sanger and Pyrosequencing approaches

    Directory of Open Access Journals (Sweden)

    André Lévesque C

    2008-11-01

    Full Text Available Abstract Background Pythium species are an agriculturally important genus of plant pathogens, yet are not understood well at the molecular, genetic, or genomic level. They are closely related to other oomycete plant pathogens such as Phytophthora species and are ubiquitous in their geographic distribution and host rage. To gain a better understanding of its gene complement, we generated Expressed Sequence Tags (ESTs from the transcriptome of Pythium ultimum DAOM BR144 (= ATCC 200006 = CBS 805.95 using two high throughput sequencing methods, Sanger-based chain termination sequencing and pyrosequencing-based sequencing-by-synthesis. Results A single half-plate pyrosequencing (454 FLX run on adapter-ligated cDNA from a normalized cDNA population generated 90,664 reads with an average read length of 190 nucleotides following cleaning and removal of sequences shorter than 100 base pairs. After clustering and assembly, a total of 35,507 unique sequences were generated. In parallel, 9,578 reads were generated from a library constructed from the same normalized cDNA population using dideoxy chain termination Sanger sequencing, which upon clustering and assembly generated 4,689 unique sequences. A hybrid assembly of both Sanger- and pyrosequencing-derived ESTs resulted in 34,495 unique sequences with 1,110 sequences (3.2% that were solely derived from Sanger sequencing alone. A high degree of similarity was seen between P. ultimum sequences and other sequenced plant pathogenic oomycetes with 91% of the hybrid assembly derived sequences > 500 bp having similarity to sequences from plant pathogenic Phytophthora species. An analysis of Gene Ontology assignments revealed a similar representation of molecular function ontologies in the hybrid assembly in comparison to the predicted proteomes of three Phytophthora species, suggesting a broad representation of the P. ultimum transcriptome was present in the normalized cDNA population. P. ultimum sequences with

  16. BAC-pool sequencing and analysis confirms growth-associated QTLs in the Asian seabass genome

    Science.gov (United States)

    Shen, Xueyan; Ngoh, Si Yan; Thevasagayam, Natascha May; Prakki, Sai Rama Sridatta; Bhandare, Pranjali; Tan, Andy Wee Kiat; Tan, Gui Quan; Singh, Siddharth; Phua, Norman Chun Han; Vij, Shubha; Orbán, László

    2016-01-01

    The Asian seabass is an important marine food fish that has been cultured for several decades in Asia Pacific. However, the lack of a high quality reference genome has hampered efforts to improve its selective breeding. A 3D BAC pool set generated in this study was screened using 22 SSR markers located on linkage group 2 which contains a growth-related QTL region. Seventy-two clones corresponding to 22 FPC contigs were sequenced by Illumina MiSeq technology. We co-assembled the MiSeq-derived scaffolds from each FPC contig with error-corrected PacBio reads, resulting in 187 sequences covering 9.7 Mb. Eleven genes annotated within this region were found to be potentially associated with growth and their tissue-specific expression was investigated. Correlation analysis demonstrated that SNPs in ctsb, skp1 and ppp2ca can be potentially used as markers for selecting fast-growing fingerlings. Conserved syntenies between seabass LG2 and five other teleosts were identified. This study i) provided a 10 Mb targeted genome assembly; ii) demonstrated NGS of BAC pools as a potential approach for mining candidates underlying QTLs of this species; iii) detected eleven genes potentially responsible for growth in the QTL region; and iv) identified useful SNP markers for selective breeding programs of Asian seabass. PMID:27821852

  17. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis

    DEFF Research Database (Denmark)

    Grauers, Anna; Wang, Jingwen; Einarsdottir, Elisabet

    2015-01-01

    BACKGROUND CONTEXT: Idiopathic scoliosis is a spinal deformity affecting approximately 3% of otherwise healthy children or adolescents. The etiology is still largely unknown but has an important genetic component. Genome-wide association studies have identified a number of common genetic variants...... that are significantly associated with idiopathic scoliosis in Asian and Caucasian populations, rs11190870 close to the LBX1 gene being the most replicated finding. PURPOSE: The aim of the present study was to investigate the genetics of idiopathic scoliosis in a Scandinavian cohort by performing a candidate gene study...... of four variants previously shown to be associated with idiopathic scoliosis and exome sequencing of idiopathic scoliosis patients with a severe phenotype to identify possible novel scoliosis risk variants. STUDY DESIGN: This was a case control study. PATIENT SAMPLE: A total of 1,739 patients...

  18. Complete mitochondrial DNA sequence of the European flat oyster Ostrea edulis confirms Ostreidae classification

    Directory of Open Access Journals (Sweden)

    Morga Benjamin

    2011-10-01

    Full Text Available Abstract Background Because of its typical architecture, inheritance and small size, mitochondrial (mt DNA is widely used for phylogenetic studies. Gene order is generally conserved in most taxa although some groups show considerable variation. This is particularly true in the phylum Mollusca, especially in the Bivalvia. During the last few years, there have been significant increases in the number of complete mitochondrial sequences available. For bivalves, 35 complete mitochondrial genomes are now available in GenBank, a number that has more than doubled in the last three years, representing 6 families and 23 genera. In the current study, we determined the complete mtDNA sequence of O. edulis, the European flat oyster. We present an analysis of features of its gene content and genome organization in comparison with other Ostrea, Saccostrea and Crassostrea species. Results The Ostrea edulis mt genome is 16 320 bp in length and codes for 37 genes (12 protein-coding genes, 2 rRNAs and 23 tRNAs on the same strand. As in other Ostreidae, O. edulis mt genome contains a split of the rrnL gene and a duplication of trnM. The tRNA gene set of O. edulis, Ostrea denselamellosa and Crassostrea virginica are identical in having 23 tRNA genes, in contrast to Asian oysters, which have 25 tRNA genes (except for C. ariakensis with 24. O. edulis and O. denselamellosa share the same gene order, but differ from other Ostreidae and are closer to Crassostrea than to Saccostrea. Phylogenetic analyses reinforce the taxonomic classification of the 3 families Ostreidae, Mytilidae and Pectinidae. Within the Ostreidae family the results also reveal a closer relationship between Ostrea and Saccostrea than between Ostrea and Crassostrea. Conclusions Ostrea edulis mitogenomic analyses show a high level of conservation within the genus Ostrea, whereas they show a high level of variation within the Ostreidae family. These features provide useful information for further

  19. Complete Genome Sequence of the Unclassified Iron-Oxidizing, Chemolithoautotrophic Burkholderiales Bacterium GJ-E10, Isolated from an Acidic River.

    Science.gov (United States)

    Fukushima, Jun; Tojo, Fuyumi; Asano, Ryoki; Kobayashi, Yayoi; Shimura, Yoichiro; Okano, Kunihiro; Miyata, Naoyuki

    2015-02-05

    Burkholderiales bacterium GJ-E10, isolated from the Tamagawa River in Akita Prefecture, Japan, is an unclassified, iron-oxidizing chemolithoautotrophic bacterium. Its single circular genome, consisting of 3,276,549 bp, was sequenced by using three types of next-generation sequencers and the sequences were then confirmed by PCR-based Sanger sequencing.

  20. Transmission of Methicillin-Resistant Staphylococcus aureus via Deceased Donor Liver Transplantation Confirmed by Whole Genome Sequencing

    Science.gov (United States)

    Altman, D. R.; Sebra, R.; Hand, J.; Attie, O.; Deikus, G.; Carpini, K. W. D.; Patel, G.; Rana, M.; Arvelakis, A.; Grewal, P.; Dutta, J.; Rose, H.; Shopsin, B.; Daefler, S.; Schadt, E.; Kasarskis, A.; van Bakel, H.; Bashir, A.; Huprikar, S.

    2015-01-01

    Donor-derived bacterial infection is a recognized complication of solid organ transplantation (SOT). The present report describes the clinical details and successful outcome in a liver transplant recipient despite transmission of methicillin-resistant Staphylococcus aureus (MRSA) from a deceased donor with MRSA endocarditis and bacteremia. We further describe whole genome sequencing (WGS) and complete de novo assembly of the donor and recipient MRSA isolate genomes, which confirms that both isolates are genetically 100% identical. We propose that similar application of WGS techniques to future investigations of donor bacterial transmission would strengthen the definition of proven bacterial transmission in SOT, particularly in the presence of highly clonal bacteria such as MRSA. WGS will further improve our understanding of the epidemiology of bacterial transmission in SOT and the risk of adverse patient outcomes when it occurs. PMID:25250641

  1. Native Valve Endocarditis due to Corynebacterium striatum confirmed by 16S Ribosomal RNA Sequencing: A Case Report and Literature Review

    Science.gov (United States)

    2016-01-01

    Corynebacterium species are non-fermentous Gram-positive bacilli that are normal flora of human skin and mucous membranes and are commonly isolated in clinical specimens. Non-diphtheriae Corynebacterium are regarded as contaminants when found in blood culture. Currently, Corynebacterium striatum is considered one of the emerging nosocomial agents implicated in endocarditis and serious infections. We report a case of native-valve infective endocarditis caused by C. striatum, which was misidentified by automated identification system but identified accurately by 16S ribosomal RNA sequencing, in a 55-year-old male patient. The patient had two mobile vegetations on his mitral valve, both of which had high embolic risk. Through surgical valve replacement and an antibiotic regimen, the patient recovered completely. In unusual clinical scenarios, C. striatum should not be simply dismissed as a contaminant when isolated from clinical specimens. The possibility of C. striatum infection should be considered even in an immunocompetent patient, and we suggest a genotypic assay, such as 16S rRNA sequencing, to confirm species identity. PMID:27659439

  2. Genotyping-By-Sequencing (GBS) Detects Genetic Structure and Confirms Behavioral QTL in Tame and Aggressive Foxes (Vulpes vulpes).

    Science.gov (United States)

    Johnson, Jennifer L; Wittgenstein, Helena; Mitchell, Sharon E; Hyma, Katie E; Temnykh, Svetlana V; Kharlamova, Anastasiya V; Gulevich, Rimma G; Vladimirova, Anastasiya V; Fong, Hiu Wa Flora; Acland, Gregory M; Trut, Lyudmila N; Kukekova, Anna V

    2015-01-01

    The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.

  3. Genotyping-By-Sequencing (GBS Detects Genetic Structure and Confirms Behavioral QTL in Tame and Aggressive Foxes (Vulpes vulpes.

    Directory of Open Access Journals (Sweden)

    Jennifer L Johnson

    Full Text Available The silver fox (Vulpes vulpes offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.

  4. Phylogenetic analyses of nucleotide sequences confirm a unique plant intercontinental disjunction between tropical Africa, the Caribbean, and the Hawaiian Islands.

    Science.gov (United States)

    Namoff, Sandra; Luke, Quentin; Jiménez, Francisco; Veloz, Alberto; Lewis, Carl E; Sosa, Victoria; Maunder, Mike; Francisco-Ortega, Javier

    2010-01-01

    Phylogenetic analyses of nucleotide sequences of the internal transcribed spacers and 5.8 regions of the nuclear ribosomal DNA and of the trnH-psbA spacer of the chloroplast genome confirm that the three taxa of the Jacquemontia ovalifolia (Choicy) Hallier f. complex (Convolvulaceae) form a monophyletic group. Levels of nucleotide divergence and morphological differentiation among these taxa support the view that each should be recognized as distinct species. These three species display unique intercontinental disjunction, with one species endemic to Hawaii (Jacquemontia sandwicensis A. Gray.), another restricted to eastern Mexico and the Antilles [Jacquemontia obcordata (Millspaugh) House], and the third confined to East and West Africa (J. ovalifolia). The Caribbean and Hawaiian species are sister taxa and are another example of a biogeographical link between the Caribbean Basin and Polynesia. We provide a brief conservation review of the three taxa based on our collective field work and investigations; it is apparent that J. obcordata is highly threatened and declining in the Caribbean.

  5. Reanalyze unassigned reads in Sanger based metagenomic data using conserved gene adjacency

    Directory of Open Access Journals (Sweden)

    Hsu Ming-Tsung

    2010-11-01

    Full Text Available Abstract Background Investigation of metagenomes provides greater insight into uncultured microbial communities. The improvement in sequencing technology, which yields a large amount of sequence data, has led to major breakthroughs in the field. However, at present, taxonomic binning tools for metagenomes discard 30-40% of Sanger sequencing data due to the stringency of BLAST cut-offs. In an attempt to provide a comprehensive overview of metagenomic data, we re-analyzed the discarded metagenomes by using less stringent cut-offs. Additionally, we introduced a new criterion, namely, the evolutionary conservation of adjacency between neighboring genes. To evaluate the feasibility of our approach, we re-analyzed discarded contigs and singletons from several environments with different levels of complexity. We also compared the consistency between our taxonomic binning and those reported in the original studies. Results Among the discarded data, we found that 23.7 ± 3.9% of singletons and 14.1 ± 1.0% of contigs were assigned to taxa. The recovery rates for singletons were higher than those for contigs. The Pearson correlation coefficient revealed a high degree of similarity (0.94 ± 0.03 at the phylum rank and 0.80 ± 0.11 at the family rank between the proposed taxonomic binning approach and those reported in original studies. In addition, an evaluation using simulated data demonstrated the reliability of the proposed approach. Conclusions Our findings suggest that taking account of conserved neighboring gene adjacency improves taxonomic assignment when analyzing metagenomes using Sanger sequencing. In other words, utilizing the conserved gene order as a criterion will reduce the amount of data discarded when analyzing metagenomes.

  6. Independent confirmation of a diagnostic sheep/goat peptide sequence through DNA analysis and further exploration of its taxonomic utility within the Bovidae

    DEFF Research Database (Denmark)

    Campana, Michael G.; Robinson, Terence; Campos, Paula F.

    2013-01-01

    Buckley et al. (2010) recently identified a Type I collagen (COL1A2) peptide sequence that discriminates between sheep and goat species. The exact location of this peptide sequence on the genome was not reported. We identified the sequence's location and developed a PCR based approach that amplif......Buckley et al. (2010) recently identified a Type I collagen (COL1A2) peptide sequence that discriminates between sheep and goat species. The exact location of this peptide sequence on the genome was not reported. We identified the sequence's location and developed a PCR based approach...... that amplifies the diagnostic sequence from exon 41 of the COL1A2 gene. Using DNA analysis, we confirmed that this COL1A2 peptide discriminates between goat and sheep species reliably, but is limited as a more general phylogenetic marker. © 2012 Elsevier Ltd....

  7. Fascioliasis transmission by Lymnaea neotropica confirmed by nuclear rDNA and mtDNA sequencing in Argentina.

    Science.gov (United States)

    Mera y Sierra, Roberto; Artigas, Patricio; Cuervo, Pablo; Deis, Erika; Sidoti, Laura; Mas-Coma, Santiago; Bargues, Maria Dolores

    2009-12-03

    Fascioliasis is widespread in livestock in Argentina. Among activities included in a long-term initiative to ascertain which are the fascioliasis areas of most concern, studies were performed in a recreational farm, including liver fluke infection in different domestic animal species, classification of the lymnaeid vector and verification of natural transmission of fascioliasis by identification of the intramolluscan trematode larval stages found in naturally infected snails. The high prevalences in the domestic animals appeared related to only one lymnaeid species present. Lymnaeid and trematode classification was verified by means of nuclear ribosomal DNA and mitochondrial DNA marker sequencing. Complete sequences of 18S rRNA gene and rDNA ITS-2 and ITS-1, and a fragment of the mtDNA cox1 gene demonstrate that the Argentinian lymnaeid belongs to the species Lymnaea neotropica. Redial larval stages found in a L. neotropica specimen were ascribed to Fasciola hepatica after analysis of the complete ITS-1 sequence. The finding of L. neotropica is the first of this lymnaeid species not only in Argentina but also in Southern Cone countries. The total absence of nucleotide differences between the sequences of specimens from Argentina and the specimens from the Peruvian type locality at the levels of rDNA 18S, ITS-2 and ITS-1, and the only one mutation at the mtDNA cox1 gene suggest a very recent spread. The ecological characteristics of this lymnaeid, living in small, superficial water collections frequented by livestock, suggest that it may be carried from one place to another by remaining in dried mud stuck to the feet of transported animals. The presence of L. neotropica adds pronounced complexity to the transmission and epidemiology of fascioliasis in Argentina, due to the great difficulties in distinguishing, by traditional malacological methods, between the three similar lymnaeid species of the controversial Galba/Fossaria group present in this country: L. viatrix

  8. Nuclear gene sequences confirm an ancient link between New Zealand's short-tailed bat and South American noctilionoid bats.

    Science.gov (United States)

    Teeling, Emma C; Madsen, Ole; Murphy, William J; Springer, Mark S; O'Brien, Stephen J

    2003-08-01

    Molecular and morphological hypotheses disagree on the phylogenetic position of New Zealand's short-tailed bat Mystacina tuberculata. Most morphological analyses place Mystacina in the superfamily Vespertilionoidea, whereas molecular studies unite Mystacina with the Neotropical noctilionoids and imply a shared Gondwanan history. To date, competing hypotheses for the placement of Mystacina have not been addressed with a large concatenation of nuclear protein sequences. We investigated this problem using 7.1kb of nuclear sequence data that included segments from five nuclear protein-coding genes for representatives of 14 bat families and six laurasiatherian outgroups. We employed the Thorne/Kishino method of molecular dating, allowing for simultaneous constraints from the fossil record and varying rates of molecular evolution on different branches on the phylogenetic tree, to estimate basal divergence times within key chiropteran clades. Maximum likelihood, minimum evolution, maximum parsimony, and Bayesian posterior probabilities all provide robust support for the association of Mystacina with the South American noctilionoids. The basal divergence within Chiroptera was estimated at 67mya and the mystacinid/noctilionoid split was calculated at 47mya. Although the mystacinid lineage is too young to have originated in New Zealand before it split from the other Gondwanan landmasses (80mya), the exact geographic origin of these lineages is still uncertain and will not be answered until more fossils are found. It is most probable that Mystacina dispersed from Australia to New Zealand while other noctilionoid bats either remained in or dispersed to South America.

  9. The first determination of DNA sequence of a specific gene.

    Science.gov (United States)

    Inouye, Masayori

    2016-05-10

    How and when the first DNA sequence of a gene was determined? In 1977, F. Sanger came up with an innovative technology to sequence DNA by using chain terminators, and determined the entire DNA sequence of the 5375-base genome of bacteriophage φX 174 (Sanger et al., 1977). While this Sanger's achievement has been recognized as the first DNA sequencing of genes, we had determined DNA sequence of a gene, albeit a partial sequence, 11 years before the Sanger's DNA sequence (Okada et al., 1966).

  10. Opisthorchis viverrini-like liver fluke in birds from Vietnam: morphological variability and rDNA/mtDNA sequence confirmation.

    Science.gov (United States)

    Dao, T H; Nguyen, T G; Victor, B; Gabriël, S; Dorny, P

    2014-12-01

    Flukes were found in the bile ducts of domestic ducks (Anas platyrhynchos), necropsied in the Binh Dinh province of Central Vietnam. Following staining, morphological characteristics of the bird flukes were compatible with Opisthorchis viverrini, although some characteristics differed from those described in specimens collected from mammal hosts. Computation of the phylogenetic trees on the partial sequences of the second internal ribosomal spacer (ITS2) of the ribosomal DNA and cytochrome c oxidase subunit I (COI) markers of the mitochondrial DNA showed close similarity of the 'bird' Opisthorchis sp. with O. viverrini. We speculate that these bird flukes are O. viverrini that show intraspecies morphological and molecular variability compared to isolates from mammals. This demonstrates the complex epidemiological situation of opisthorchiasis in Vietnam and urges investigations on the potential of birds as a reservoir host of this zoonotic fluke.

  11. A multi-country outbreak of Salmonella Newport gastroenteritis in Europe associated with watermelon from Brazil, confirmed by whole genome sequencing: October 2011 to January 2012.

    Science.gov (United States)

    Byrne, L; Fisher, I; Peters, T; Mather, A; Thomson, N; Rosner, B; Bernard, H; McKeown, P; Cormican, M; Cowden, J; Aiyedun, V; Lane, C

    2014-08-07

    In November 2011, the presence of Salmonella Newport in a ready-to-eat watermelon slice was confirmed as part of a local food survey in England. In late December 2011, cases of S. Newport were reported in England, Wales, Northern Ireland, Scotland, Ireland and Germany. During the outbreak, 63 confirmed cases of S. Newport were reported across all six countries with isolates indistinguishable by pulsed-field gel electrophoresis from the watermelon isolate.A subset of outbreak isolates were whole-genome sequenced and were identical to, or one single nucleotide polymorphism different from the watermelon isolate.In total, 46 confirmed cases were interviewed of which 27 reported watermelon consumption. Further investigations confirmed the outbreak was linked to the consumption of watermelon imported from Brazil.Although numerous Salmonella outbreaks associated with melons have been reported in the United States and elsewhere, this is the first of its kind in Europe.Expansion of the melon import market from Brazil represents a potential threat for future outbreaks. Whole genome sequencing is rapidly becoming more accessible and can provide a compelling level of evidence of linkage between human cases and sources of infection,to support public health interventions in global food markets.

  12. Implementing a genomic data management system using iRODS in the Wellcome Trust Sanger Institute

    Directory of Open Access Journals (Sweden)

    Sale Kevin

    2011-09-01

    Full Text Available Abstract Background Increasingly large amounts of DNA sequencing data are being generated within the Wellcome Trust Sanger Institute (WTSI. The traditional file system struggles to handle these increasing amounts of sequence data. A good data management system therefore needs to be implemented and integrated into the current WTSI infrastructure. Such a system enables good management of the IT infrastructure of the sequencing pipeline and allows biologists to track their data. Results We have chosen a data grid system, iRODS (Rule-Oriented Data management systems, to act as the data management system for the WTSI. iRODS provides a rule-based system management approach which makes data replication much easier and provides extra data protection. Unlike the metadata provided by traditional file systems, the metadata system of iRODS is comprehensive and allows users to customize their own application level metadata. Users and IT experts in the WTSI can then query the metadata to find and track data. The aim of this paper is to describe how we designed and used (from both system and user viewpoints iRODS as a data management system. Details are given about the problems faced and the solutions found when iRODS was implemented. A simple use case describing how users within the WTSI use iRODS is also introduced. Conclusions iRODS has been implemented and works as the production system for the sequencing pipeline of the WTSI. Both biologists and IT experts can now track and manage data, which could not previously be achieved. This novel approach allows biologists to define their own metadata and query the genomic data using those metadata.

  13. Evolution of DNA sequencing

    National Research Council Canada - National Science Library

    Tipu, Hamid Nawaz; Shabbir, Ambreen

    2015-01-01

    Sanger and coworkers introduced DNA sequencing in 1970s for the first time. It principally relied on termination of growing nucleotide chain when a dideoxythymidine triphosphate (ddTTP) was inserted...

  14. Hughes, Twain, Child, and Sanger: Four Who Locked Horns with the Censors

    Science.gov (United States)

    Meltzer, Milton

    1969-01-01

    A look at the lives and conflicts of four writers--Langston Hughes, Mark Twain, Lydia Maria Child, and Margaret Sanger--who faced public criticism and censorship because oftheir views on controversial issues. (RM)

  15. Spectroscopic Confirmation of Two Massive Red-sequence-selected Galaxy Clusters at Z Approximately Equal to 1.2 in the Sparcs-North Cluster Survey

    Science.gov (United States)

    Muzzin, Adam; Wilson, Gillian; Yee, H.K.C.; Hoekstra, Henk; Gilbank, David; Surace, Jason; Lacy, Mark; Blindert, Kris; Majumdar, Subhabrata; Demarco, Ricardo; Gardner, Jonathan P.; Gladders, Mike; Lonsdale, Carol

    2008-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a deep z -band imaging survey covering the Spitzer SWIRE Legacy fields designed to create the first large homogeneously-selected sample of massive clusters at z > 1 using an infrared adaptation of the cluster red-sequence method. We present an overview of the northern component of the survey which has been observed with CFHT/MegaCam and covers 28.3 deg(sup 2). The southern component of the survey was observed with CTIO/MOSAICII, covers 13.6 deg(sup 2), and is summarized in a companion paper by Wilson et al. (2008). We also present spectroscopic confirmation of two rich cluster candidates at z approx. 1.2. Based on Nod-and- Shuffle spectroscopy from GMOS-N on Gemini there are 17 and 28 confirmed cluster members in SpARCS J163435+402151 and SpARCS J163852+403843 which have spectroscopic redshifts of 1.1798 and 1.1963, respectively. The clusters have velocity dispersions of 490 +/- 140 km/s and 650 +/- 160 km/s, respectively which imply masses (M(sub 200)) of (1.0 +/- 0.9) x 10(exp 14) Stellar Mass and (2.4 +/- 1.8) x 10(exp 14) Stellar Mass. Confirmation of these candidates as bonafide massive clusters demonstrates that two-filter imaging is an effective, yet observationally efficient, method for selecting clusters at z > 1.

  16. SOLiD™ sequencing of genomes of clinical isolates of Leishmania donovani from India confirm leptomonas co-infection and raise some key questions.

    Directory of Open Access Journals (Sweden)

    Neeloo Singh

    Full Text Available BACKGROUND: Known as 'neglected disease' because relatively little effort has been applied to finding cures, leishmaniasis kills more than 150,000 people every year and debilitates millions more. Visceral leishmaniasis (VL, also called Kala Azar (KA or black fever in India, claims around 20,000 lives every year. Whole genome analysis presents an excellent means to identify new targets for drugs, vaccine and diagnostics development, and also provide an avenue into the biological basis of parasite virulence in the L. donovani complex prevalent in India. METHODOLOGY/PRINCIPAL FINDINGS: In our presently described study, the next generation SOLiD™ platform was successfully utilized for the first time to carry out whole genome sequencing of L. donovani clinical isolates from India. We report the exceptional occurrence of insect trypanosomatids in clinical cases of visceral leishmaniasis (Kala Azar patients in India. We confirm with whole genome sequencing analysis data that isolates which were sequenced from Kala Azar (visceral leishmaniasis cases were genetically related to Leptomonas. The co-infection in splenic aspirate of these patients with a species of Leptomonas and how likely is it that the infection might be pathogenic, are key questions which need to be investigated. We discuss our results in the context of some important probable hypothesis in this article. CONCLUSIONS/SIGNIFICANCE: Our intriguing results of unusual cases of Kala Azar found to be most similar to Leptomonas species put forth important clinical implications for the treatment of Kala Azar in India. Leptomonas have been shown to be highly susceptible to several standard leishmaniacides in vitro. There is very little divergence among these two species viz. Leishmania sp. and L. seymouri, in terms of genomic sequence and organization. A more extensive perception of the phenomenon of co-infection needs to be addressed from molecular pathogenesis and eco

  17. Hepatic patatin-like phospholipase domain-containing protein 3 sequence, single nucleotide polymorphism presence, protein confirmation, and responsiveness to energy balance in dairy cows.

    Science.gov (United States)

    McCann, Christine C; Viner, Molly E; Donkin, Shawn S; White, H M

    2014-01-01

    Patatin-like phospholipase domain-containing protein 3 (PNPLA3), commonly known as adiponutrin, is part of a novel subfamily of triglyceride lipase enzymes with potential effects on triglyceride metabolism in adipose and hepatic tissues. The predicted bovine PNPLA3 sequence has been identified, but expression of the gene had not been examined. The objectives of this study were to confirm the predicted bovine PNPLA3 gene sequence, determine expression of the bovine PNPLA3 gene in response to whole-animal energy balance, identify single nucleotide polymorphisms present in dairy cows, and verify the presence of the protein in the liver. Using liver biopsy samples collected from cows at +28d relative to calving (DRTC), RNA was isolated and used to generate a cDNA template for amplification of the entire predicted coding sequence of PNPLA3 via PCR. To determine if energy balance alters the expression of PNPLA3, RNA was isolated and mRNA expression quantified in liver samples from mid-lactation cows after a 5-d ad libitum period (n=5) and after a subsequent 5-d 50% feed restriction period (n=5), and in samples collected from cows at -14, +1, +14, and +28 DRTC (n=16). The presence of PNPLA3 protein was detected by Western blot in liver protein samples collected at +28 DRTC. Expression of hepatic PNPLA3 was decreased after a period of feed restriction (8.14 vs. 1.08±2.17 arbitrary units, ad libitum vs. fasted). Expression of PNPLA3 mRNA was decreased at +1 and +14 DRTC compared with -14 DRTC (23.35, 7.28, 10.17, and 14.5±4.9 arbitrary units, -14, +1, +14, and +28 DRTC, respectively). The presence of PNPLA3 protein was detected as a 55-kDa band in hepatic protein isolations from liver tissue collected at +28 DRTC. These data confirm the presence and sequence of the bovine hepatic PNPLA3 gene and single nucleotide polymorphisms. Furthermore, these data indicate responsiveness of bovine hepatic PNPLA3 to energy balance. Copyright © 2014 American Dairy Science Association

  18. The sequence of Methanospirillum hungatei 23S rRNA confirms the specific relationship between the extreme halophiles and the Methanomicrobiales

    Science.gov (United States)

    Burggraf, S.; Ching, A.; Stetter, K. O.; Woese, C. R.

    1991-01-01

    We have determined the sequence of the 23S rRNA from the methanogenic archaeon Methanospirillum hungatei. This is the first such sequence from a member of the Methanomicrobiales. Moreover, it brings additional evidence to bear on the possible specific relationship between this particular group of methanogens and the extreme halophiles. Such evidence is critical in that several new (and relatively untested) methods of phylogenetic inference have lead to the controversial conclusion that the extreme halophiles are either not related to the archaea, or are only peripherally so. Analysis of the Methanospirillum hungatei 23S rRNA sequence shows the Methanomicrobiales are indeed a sister group of the extreme halophiles, further strengthening the conclusions reached from analysis of 16S rRNA sequences.

  19. Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak

    Directory of Open Access Journals (Sweden)

    Léger Patrick

    2010-11-01

    Full Text Available Abstract Background The Fagaceae family comprises about 1,000 woody species worldwide. About half belong to the Quercus family. These oaks are often a source of raw material for biomass wood and fiber. Pedunculate and sessile oaks, are among the most important deciduous forest tree species in Europe. Despite their ecological and economical importance, very few genomic resources have yet been generated for these species. Here, we describe the development of an EST catalogue that will support ecosystem genomics studies, where geneticists, ecophysiologists, molecular biologists and ecologists join their efforts for understanding, monitoring and predicting functional genetic diversity. Results We generated 145,827 sequence reads from 20 cDNA libraries using the Sanger method. Unexploitable chromatograms and quality checking lead us to eliminate 19,941 sequences. Finally a total of 125,925 ESTs were retained from 111,361 cDNA clones. Pyrosequencing was also conducted for 14 libraries, generating 1,948,579 reads, from which 370,566 sequences (19.0% were eliminated, resulting in 1,578,192 sequences. Following clustering and assembly using TGICL pipeline, 1,704,117 EST sequences collapsed into 69,154 tentative contigs and 153,517 singletons, providing 222,671 non-redundant sequences (including alternative transcripts. We also assembled the sequences using MIRA and PartiGene software and compared the three unigene sets. Gene ontology annotation was then assigned to 29,303 unigene elements. Blast search against the SWISS-PROT database revealed putative homologs for 32,810 (14.7% unigene elements, but more extensive search with Pfam, Refseq_protein, Refseq_RNA and eight gene indices revealed homology for 67.4% of them. The EST catalogue was examined for putative homologs of candidate genes involved in bud phenology, cuticle formation, phenylpropanoids biosynthesis and cell wall formation. Our results suggest a good coverage of genes involved in these

  20. Apert Syndrome: Molecularly Confirmed C.758C>G (P.Pro253Arg) in FGFR2

    Energy Technology Data Exchange (ETDEWEB)

    Cha Gon, Lee, E-mail: leechagon@eulji.ac.kr [Department of Pediatrics, Eulji General Hospital, College of Medicine, Eulji University, 68 Hangeulbiseok-ro, Nowon-gu, Seoul 139-711 (Korea, Republic of)

    2016-03-21

    A 5-day-old girl was referred to our clinic for evaluation of congenital malformations. She was identified with a pathogenic mutation c.758C>G (p.Pro253Arg) in FGFR2 gene using targeted exome sequencing. The de novo mutation was confirmed with Sanger sequencing in the patient and her parents. She showed occipital plagiocephaly with frontal bossing (Figure A and B). Skull frontal and lateral radiography revealed fusion of most of the sutures except coronal suture, with convolutional markings (Figure D and E). She had complete cleft palate (Figure C). Her fused bilateral hands showed type II syndactyly with complete syndactyly between the ring and the little fingers (Figure F1-F3). Both toes were simple syndactyly with side-to-side fusion of skin (Figure G1-)

  1. Confirmation of the sequence of 'Candidatus Liberibacter asiaticus' and assessment of microbial diversity in Huanglongbing-infected citrus phloem using a metagenomic approach.

    Science.gov (United States)

    Tyler, Heather L; Roesch, Luiz F W; Gowda, Siddarame; Dawson, William O; Triplett, Eric W

    2009-12-01

    The citrus disease Huanglongbing (HLB) is highly destructive in many citrus-growing regions of the world. The putative causal agent of this disease, 'Candidatus Liberibacter asiaticus', is difficult to culture, and Koch's postulates have not yet been fulfilled. As a result, efforts have focused on obtaining the genome sequence of 'Ca. L. asiaticus' in order to give insight on the physiology of this organism. In this work, three next-generation high-throughput sequencing platforms, 454, Solexa, and SOLiD, were used to obtain metagenomic DNA sequences from phloem tissue of Florida citrus trees infected with HLB. A culture-independent, polymerase chain reaction (PCR)-independent analysis of 16S ribosomal RNA sequences showed that the only bacterium present within the phloem metagenome was 'Ca L. asiaticus'. No viral or viroid sequences were identified within the metagenome. By reference assembly, the phloem metagenome contained sequences that provided 26-fold coverage of the 'Ca. L. asiaticus' contigs in GenBank. By the same approach, phloem metagenomic data yielded less than 0.2-fold coverage of five other alphaproteobacterial genomes. Thus, phloem metagenomic DNA provided a PCR-independent means of verifying the presence of 'Ca L. asiaticus' in infected tissue and strongly suggests that no other disease agent was present in phloem. Analysis of these metagenomic data suggest that this approach has a detection limit of one 'Ca. Liberibacter' cell for every 52 phloem cells. The phloem sample sequenced here is estimated to have contained 1.7 'Ca. Liberibacter' cells per phloem cell.

  2. Integrated shotgun sequencing and bioinformatics pipeline allows ultra-fast mitogenome recovery and confirms substantial gene rearrangements in Australian freshwater crayfishes.

    Science.gov (United States)

    Gan, Han Ming; Schultz, Mark B; Austin, Christopher M

    2014-02-03

    Although it is possible to recover the complete mitogenome directly from shotgun sequencing data, currently reported methods and pipelines are still relatively time consuming and costly. Using a sample of the Australian freshwater crayfish Engaeus lengana, we demonstrate that it is possible to achieve three-day turnaround time (four hours hands-on time) from tissue sample to NCBI-ready submission file through the integration of MiSeq sequencing platform, Nextera sample preparation protocol, MITObim assembly algorithm and MITOS annotation pipeline. The complete mitochondrial genome of the parastacid freshwater crayfish, Engaeus lengana, was recovered by modest shotgun sequencing (1.2 giga bases) using the Illumina MiSeq benchtop sequencing platform. Genome assembly using the MITObim mitogenome assembler recovered the mitochondrial genome as a single contig with a 97-fold mean coverage (min. = 17; max. = 138). The mitogenome consists of 15,934 base pairs and contains the typical 37 mitochondrial genes and a non-coding AT-rich region. The genome arrangement is similar to the only other published parastacid mitogenome from the Australian genus Cherax. We infer that the gene order arrangement found in Cherax destructor is common to Australian crayfish and may be a derived feature of the southern hemisphere family Parastacidae. Further, we report to our knowledge, the simplest and fastest protocol for the recovery and assembly of complete mitochondrial genomes using the MiSeq benchtop sequencer.

  3. A secondary dengue 4 infection in a traveler returning from Haiti confirmed by virus isolation, complete genome sequencing and neutralisation assay: a brief report.

    Science.gov (United States)

    Menard, Amelie; Ninove, Laetitia; Zandotti, Christine; Leparc-Goffart, Isabelle; Klitting, Raphaelle; Baronti, Cecile; Stein, Andreas; de Lamballerie, Xavier; Charrel, Rémi N

    2015-01-01

    Here we report the clinical and laboratory findings of a dengue 4 virus (DENV) secondary infection in a patient returning from Haiti to France. The diagnostic of acute DEN-4 virus infection was demonstrated by (i) the presence of DEN-4 RNA in two successive serum samples, (ii) the isolation of a DEN-4 virus in Vero cells and subsequent identification of subtype IIb through complete genome sequencing, (iii) the presence of dengue NS1 antigen, (iv) the seroconversion with detection of dengue IgM in the second serum while negative in the first serum. The diagnosis of secondary dengue episode was demonstrated by (i) the presence of dengue IgG in the early serum, and (ii) the demonstration that neutralising antibodies against DEN-3 were present at the acute stage of the disease. Next-generation sequencing has a primary role to play in phylogeographic studies including database sequences, sequences from imported cases, and sequences from autochthonous cases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Next-generation sequencing of lung cancer EGFR exons 18-21 allows effective molecular diagnosis of small routine samples (cytology and biopsy.

    Directory of Open Access Journals (Sweden)

    Dario de Biase

    Full Text Available Selection of lung cancer patients for therapy with tyrosine kinase inhibitors directed at EGFR requires the identification of specific EGFR mutations. In most patients with advanced, inoperable lung carcinoma limited tumor samples often represent the only material available for both histologic typing and molecular analysis. We defined a next generation sequencing protocol targeted to EGFR exons 18-21 suitable for the routine diagnosis of such clinical samples. The protocol was validated in an unselected series of 80 small biopsies (n=14 and cytology (n=66 specimens representative of the material ordinarily submitted for diagnostic evaluation to three referral medical centers in Italy. Specimens were systematically evaluated for tumor cell number and proportion relative to non-neoplastic cells. They were analyzed in batches of 100-150 amplicons per run, reaching an analytical sensitivity of 1% and obtaining an adequate number of reads, to cover all exons on all samples analyzed. Next generation sequencing was compared with Sanger sequencing. The latter identified 15 EGFR mutations in 14/80 cases (17.5% but did not detected mutations when the proportion of neoplastic cells was below 40%. Next generation sequencing identified 31 EGFR mutations in 24/80 cases (30.0%. Mutations were detected with a proportion of neoplastic cells as low as 5%. All mutations identified by the Sanger method were confirmed. In 6 cases next generation sequencing identified exon 19 deletions or the L858R mutation not seen after Sanger sequencing, allowing the patient to be treated with tyrosine kinase inhibitors. In one additional case the R831H mutation associated with treatment resistance was identified in an EGFR wild type tumor after Sanger sequencing. Next generation sequencing is robust, cost-effective and greatly improves the detection of EGFR mutations. Its use should be promoted for the clinical diagnosis of mutations in specimens with unfavorable tumor cell

  5. Phylogenetic Analysis of Human Parvovirus B19 Sequences from Eleven Different Countries Confirms the Predominance of Genotype 1 and Suggests the Spread of Genotype 3b▿

    Science.gov (United States)

    Hübschen, Judith M.; Mihneva, Zefira; Mentis, Andreas F.; Schneider, François; Aboudy, Yair; Grossman, Zehava; Rudich, Hagit; Kasymbekova, Kalia; Sarv, Inna; Nedeljkovic, Jasminka; Tahita, Marc C.; Tarnagda, Zekiba; Ouedraogo, Jean-Bosco; Gerasimova, A. G.; Moskaleva, T. N.; Tikhonova, Nina T.; Chitadze, Nazibrola; Forbi, J. C.; Faneye, Adedayo O.; Otegbayo, Jesse A.; Charpentier, Emilie; Muller, Claude P.

    2009-01-01

    Phylogenetic analysis of 166 human parvovirus B19 sequences from 11 different countries attributed 91.57% to genotype 1, 5.42% to genotype 3b, and 3.01% to genotype 3a. Very similar viruses of genotype 1 circulated widely in Europe and Israel. Genotype 3b seems to show an increasing spread outside of Africa. PMID:19741071

  6. A case of Beauveria bassiana keratitis confirmed by internal transcribed spacer and LSU rDNA D1–D2 sequencing

    Directory of Open Access Journals (Sweden)

    M. Ligozzi

    2014-05-01

    Full Text Available We describe a case of fungal keratitis due to Beauveria bassiana in a farmer with Fuchs' dystrophy, treated with amphotericin B. Surgery with penetrating keratoplasty was necessary to resolve the lesions. Susceptibility testing and molecular sequencing permitted the identification and treatment of this rare aetiological agent of invasive fungal disease.

  7. A case of Beauveria bassiana keratitis confirmed by internal transcribed spacer and LSU rDNA D1-D2 sequencing.

    Science.gov (United States)

    Ligozzi, M; Maccacaro, L; Passilongo, M; Pedrotti, E; Marchini, G; Koncan, R; Cornaglia, G; Centonze, A R; Lo Cascio, G

    2014-05-01

    We describe a case of fungal keratitis due to Beauveria bassiana in a farmer with Fuchs' dystrophy, treated with amphotericin B. Surgery with penetrating keratoplasty was necessary to resolve the lesions. Susceptibility testing and molecular sequencing permitted the identification and treatment of this rare aetiological agent of invasive fungal disease.

  8. Multilocus sequences confirm the close genetic relationship of four phytoplasmas of peanut witches'-broom group 16SrII-A.

    Science.gov (United States)

    Li, Yong; Piao, Chun-gen; Tian, Guo-zhong; Liu, Zhi-xin; Guo, Min-wei; Lin, Cai-li; Wang, Xi-zhuo

    2014-08-01

    Four witches'-broom diseases associated with Arachis hypogaea (peanut), Crotalaria pallida, Tephrosia purpurea, and Cleome viscosa were observed in Hainan Province, China during field surveys in 2004, 2005, and 2007. In previously reported studies, we identified these four phytoplasmas as members of subgroup 16SrII-A, and discovered that their 16S rRNA gene sequences were 99.9-100% identical to one another. In this study, we performed extensive phylogenetic analyses to elucidate relationships among them. We analyzed sequences of the 16S rRNA gene and rplV-rpsC, rpoB, gyrB, dnaK, dnaJ, recA, and secY combined sequence data from two strains each of the four phytoplasmas from Hainan province, as well as strains of peanut witches'-broom from Taiwan (PnWB-TW), "Candidatus Phytoplasma australiense", "Ca. Phytoplasma mali AT", aster yellows witches'-broom phytoplasma AYWB, and onion yellows phytoplasma OY-M. In the 16S rRNA phylogenetic tree, the eight Hainan strains form a clade with PnWB-TW. Analysis of the seven concatenated gene regions indicated that the four phytoplasmas collected from Hainan province cluster most closely with one another, but are closely related to PnWB-TW. The results of field survey and phylogenetic analysis indicated that Cr. pallida, T. purpurea, and Cl. viscosa may be natural plant hosts of peanut witches'-broom phytoplasma.

  9. Confirmation of the "protein-traffic-hypothesis" and the "protein-localization-hypothesis" using the diabetes-mellitus-type-1-knock-in and transgenic-murine-models and the trepitope sequences.

    Science.gov (United States)

    Arneth, Borros

    2012-10-01

    As possible mechanisms to explain the emergence of autoimmune diseases, the current author has suggested in earlier papers two new pathways: the "protein localization hypothesis" and the "protein traffic hypothesis". The "protein localization hypothesis" states that an autoimmune disease develops if a protein accumulates in a previously unoccupied compartment, that did not previously contain that protein. Similarly, the "protein traffic hypothesis" states that a sudden error within the transport of a certain protein leads to the emergence of an autoimmune disease. The current article discusses the usefulness of the different commercially available transgenic murine models of diabetes mellitus type 1 to confirm the aforementioned hypotheses. This discussion shows that several transgenic murine models of diabetes mellitus type 1 are in-line and confirm the aforementioned hypotheses. Furthermore, these hypotheses are additionally inline with the occurrence of several newly discovered protein sequences, the so-called trepitope sequences. These sequences modulate the immune response to certain proteins. The current study analyzed to what extent the hypotheses are supported by the occurrence of these new sequences. Thereby the occurrence of the trepitope sequences provides additional evidence supporting the aforementioned hypotheses. Both the "protein localization hypothesis" and the "protein traffic hypothesis" have the potential to lead to new causal therapy concepts. The "protein localization hypothesis" and the "protein traffic hypothesis" provide conceptional explanations for the diabetes mouse models as well as for the newly discovered trepitope sequences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Cryptic variation in an ecological indicator organism: mitochondrial and nuclear DNA sequence data confirm distinct lineages of Baetis harrisoni Barnard (Ephemeroptera: Baetidae in southern Africa

    Directory of Open Access Journals (Sweden)

    Pereira-da-Conceicoa Lyndall L

    2012-02-01

    Full Text Available Abstract Background Baetis harrisoni Barnard is a mayfly frequently encountered in river studies across Africa, but the external morphological features used for identifying nymphs have been observed to vary subtly between different geographic locations. It has been associated with a wide range of ecological conditions, including pH extremes of pH 2.9–10.0 in polluted waters. We present a molecular study of the genetic variation within B. harrisoni across 21 rivers in its distribution range in southern Africa. Results Four gene regions were examined, two mitochondrial (cytochrome c oxidase subunit I [COI] and small subunit ribosomal 16S rDNA [16S] and two nuclear (elongation factor 1 alpha [EF1α] and phosphoenolpyruvate carboxykinase [PEPCK]. Bayesian and parsimony approaches to phylogeny reconstruction resulted in five well-supported major lineages, which were confirmed using a general mixed Yule-coalescent (GMYC model. Results from the EF1α gene were significantly incongruent with both mitochondrial and nuclear (PEPCK results, possibly due to incomplete lineage sorting of the EF1α gene. Mean between-clade distance estimated using the COI and PEPCK data was found to be an order of magnitude greater than the within-clade distance and comparable to that previously reported for other recognised Baetis species. Analysis of the Isolation by Distance (IBD between all samples showed a small but significant effect of IBD. Within each lineage the contribution of IBD was minimal. Tentative dating analyses using an uncorrelated log-normal relaxed clock and two published estimates of COI mutation rates suggest that diversification within the group occurred throughout the Pliocene and mid-Miocene (~2.4–11.5 mya. Conclusions The distinct lineages of B. harrisoni correspond to categorical environmental variation, with two lineages comprising samples from streams that flow through acidic Table Mountain Sandstone and three lineages with samples from

  11. Hybridization Capture-Based Next-Generation Sequencing to Evaluate Coding Sequence and Deep Intronic Mutations in the NF1 Gene.

    Science.gov (United States)

    Cunha, Karin Soares; Oliveira, Nathalia Silva; Fausto, Anna Karoline; de Souza, Carolina Cruz; Gros, Audrey; Bandres, Thomas; Idrissi, Yamina; Merlio, Jean-Philippe; de Moura Neto, Rodrigo Soares; Silva, Rosane; Geller, Mauro; Cappellen, David

    2016-12-17

    Neurofibromatosis 1 (NF1) is one of the most common genetic disorders and is caused by mutations in the NF1 gene. NF1 gene mutational analysis presents a considerable challenge because of its large size, existence of highly homologous pseudogenes located throughout the human genome, absence of mutational hotspots, and diversity of mutations types, including deep intronic splicing mutations. We aimed to evaluate the use of hybridization capture-based next-generation sequencing to screen coding and noncoding NF1 regions. Hybridization capture-based next-generation sequencing, with genomic DNA as starting material, was used to sequence the whole NF1 gene (exons and introns) from 11 unrelated individuals and 1 relative, who all had NF1. All of them met the NF1 clinical diagnostic criteria. We showed a mutation detection rate of 91% (10 out of 11). We identified eight recurrent and two novel mutations, which were all confirmed by Sanger methodology. In the Sanger sequencing confirmation, we also included another three relatives with NF1. Splicing alterations accounted for 50% of the mutations. One of them was caused by a deep intronic mutation (c.1260 + 1604A > G). Frameshift truncation and missense mutations corresponded to 30% and 20% of the pathogenic variants, respectively. In conclusion, we show the use of a simple and fast approach to screen, at once, the entire NF1 gene (exons and introns) for different types of pathogenic variations, including the deep intronic splicing mutations.

  12. Hybridization Capture-Based Next-Generation Sequencing to Evaluate Coding Sequence and Deep Intronic Mutations in the NF1 Gene

    Science.gov (United States)

    Cunha, Karin Soares; Oliveira, Nathalia Silva; Fausto, Anna Karoline; de Souza, Carolina Cruz; Gros, Audrey; Bandres, Thomas; Idrissi, Yamina; Merlio, Jean-Philippe; de Moura Neto, Rodrigo Soares; Silva, Rosane; Geller, Mauro; Cappellen, David

    2016-01-01

    Neurofibromatosis 1 (NF1) is one of the most common genetic disorders and is caused by mutations in the NF1 gene. NF1 gene mutational analysis presents a considerable challenge because of its large size, existence of highly homologous pseudogenes located throughout the human genome, absence of mutational hotspots, and diversity of mutations types, including deep intronic splicing mutations. We aimed to evaluate the use of hybridization capture-based next-generation sequencing to screen coding and noncoding NF1 regions. Hybridization capture-based next-generation sequencing, with genomic DNA as starting material, was used to sequence the whole NF1 gene (exons and introns) from 11 unrelated individuals and 1 relative, who all had NF1. All of them met the NF1 clinical diagnostic criteria. We showed a mutation detection rate of 91% (10 out of 11). We identified eight recurrent and two novel mutations, which were all confirmed by Sanger methodology. In the Sanger sequencing confirmation, we also included another three relatives with NF1. Splicing alterations accounted for 50% of the mutations. One of them was caused by a deep intronic mutation (c.1260 + 1604A > G). Frameshift truncation and missense mutations corresponded to 30% and 20% of the pathogenic variants, respectively. In conclusion, we show the use of a simple and fast approach to screen, at once, the entire NF1 gene (exons and introns) for different types of pathogenic variations, including the deep intronic splicing mutations. PMID:27999334

  13. Hybridization Capture-Based Next-Generation Sequencing to Evaluate Coding Sequence and Deep Intronic Mutations in the NF1 Gene

    Directory of Open Access Journals (Sweden)

    Karin Soares Cunha

    2016-12-01

    Full Text Available Neurofibromatosis 1 (NF1 is one of the most common genetic disorders and is caused by mutations in the NF1 gene. NF1 gene mutational analysis presents a considerable challenge because of its large size, existence of highly homologous pseudogenes located throughout the human genome, absence of mutational hotspots, and diversity of mutations types, including deep intronic splicing mutations. We aimed to evaluate the use of hybridization capture-based next-generation sequencing to screen coding and noncoding NF1 regions. Hybridization capture-based next-generation sequencing, with genomic DNA as starting material, was used to sequence the whole NF1 gene (exons and introns from 11 unrelated individuals and 1 relative, who all had NF1. All of them met the NF1 clinical diagnostic criteria. We showed a mutation detection rate of 91% (10 out of 11. We identified eight recurrent and two novel mutations, which were all confirmed by Sanger methodology. In the Sanger sequencing confirmation, we also included another three relatives with NF1. Splicing alterations accounted for 50% of the mutations. One of them was caused by a deep intronic mutation (c.1260 + 1604A > G. Frameshift truncation and missense mutations corresponded to 30% and 20% of the pathogenic variants, respectively. In conclusion, we show the use of a simple and fast approach to screen, at once, the entire NF1 gene (exons and introns for different types of pathogenic variations, including the deep intronic splicing mutations.

  14. Isolation of Cronobacter spp. (formerly Enterobacter sakazakii from infant food, herbs and environmental samples and the subsequent identification and confirmation of the isolates using biochemical, chromogenic assays, PCR and 16S rRNA sequencing

    Directory of Open Access Journals (Sweden)

    Samara Nawal A

    2009-10-01

    Full Text Available Abstract Background Cronobacter spp. (formerly Enterobacter sakazakii, are a group of Gram-negative pathogens that have been implicated as causative agents of meningitis and necrotizing enterocolitis in infants. The pathogens are linked to infant formula; however, they have also been isolated from a wide range of foods and environmental samples. Results In this study, 233 samples of food, infant formula and environment were screened for the presence of Cronobacter spp. in an attempt to find its source. Twenty nine strains were isolated from samples of spices, herbs, infant foods, and dust obtained from household vacuum cleaners. Among the 76 samples of infant food, infant formula, milk powder and non-milk dairy products tested, only one sample of infant food contained Cronobacter spp. (1.4%. The other Cronobacter spp. isolates recovered include two from household vacuum dust, and 26 from 67 samples of herbs and spices. Among the food categories analyzed, herbs and spices harbored the highest number of isolates, indicating plants as a possible reservoir of this pathogen. Initial screening with API 20E test strips yielded 42 presumptive isolates. Further characterization using 3 chromogenic media (α-MUG, DFI and EsPM and 8 sets of PCR primers detecting ITS (internal transcribed spacer sequences, 16S rRNA, zpx, gluA, gluB, OmpA genes followed by nucleotide sequencing of some PCR amplicons did not confirm the identity of all the isolates as none of the methods proved to be free of both false positives or false negatives. The final confirmation step was done by 16S rRNA sequence analysis identifying only 29 of the 42 isolates as Cronobacter spp. Conclusion Our studies showed that Cronobacter spp. are highly diverse and share many phenotypic traits with other Enterobacteriaceae members highlighting the need to use several methods to confirm the identity of this pathogen. None of the biochemical, chromogenic or PCR primers proved to be a reliable

  15. Next generation sequencing as a useful tool in the diagnostics of mosaicism in Alport syndrome.

    Science.gov (United States)

    Beicht, Sonja; Strobl-Wildemann, Gertrud; Rath, Sabine; Wachter, Oliver; Alberer, Martin; Kaminsky, Elke; Weber, Lutz T; Hinrichsen, Tanja; Klein, Hanns-Georg; Hoefele, Julia

    2013-09-10

    Alport syndrome (ATS) is a progressive hereditary nephropathy characterized by hematuria and/or proteinuria with structural defects of the glomerular basement membrane. It can be associated with extrarenal manifestations (high-tone sensorineural hearing loss and ocular abnormalities). Somatic mutations in COL4A5 (X-linked), COL4A3 and COL4A4 genes (both autosomal recessive and autosomal dominant) cause Alport syndrome. Somatic mosaicism in Alport patients is very rare. The reason for this may be due to the difficulty of detection. We report the case of a boy and his mother who presented with Alport syndrome. Mutational analysis showed the novel hemizygote pathogenic mutation c.2396-1G>A (IVS29-1G>A) at the splice acceptor site of the intron 29 exon 30 boundary of the COL4A5 gene in the boy. The mutation in the mother would not have been detected by Sanger sequencing without the knowledge of the mutational analysis result of her son. Further investigation of the mother using next generation sequencing showed somatic mosaicism and implied potential germ cell mosaicism. The mutation in the mother has most likely occurred during early embryogenesis. Analysis of tissue of different embryonic origin in the mother confirmed mosaicism in both mesoderm and ectoderm. Low grade mosaicism is very difficult to detect by Sanger sequencing. Next generation sequencing is increasingly used in the diagnostics and might improve the detection of mosaicism. In the case of definite clinical symptoms of ATS and missing detection of a mutation by Sanger sequencing, mutational analysis should be performed by next generation sequencing.

  16. Whole exome sequencing reveals a mutation in an osteogenesis imperfecta patient

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Ergun

    2017-02-01

    Full Text Available Osteogenesis imperfecta (OI is an autosomal dominant disorder characterized mainly by bone fragility and blue sclerae. OI is caused by mutations in type I collagen genes, COL1A1 and COL1A2. Dentinogenesis imperfecta is a common disorder for osteogenesis imperfecta patients. More than half of the OI patients have also dentinogenesis imperfecta. Whole exome sequencing (WES, involves exome capture, which limits sequencing of the protein coding regions of the genome, composed of about 20,000 genes, 180,000 exons, and constituting approximately 1% of the whole genome. A major indication for use is molecular diagnosis of patients with suspected genetic disorders or of patients with known genetic disorders with substantial genetic heterogeneity involving substantial gene complexity. In this study, we performed WES for a patient prediagnosed as Osteogenesis imperfecta. He had also dentinogenesis imperfecta. The WES results confirmed with Sanger sequencing revealed as a missense mutation at codon 560 of COL1A1 gene: c.1678G>A p.(Gly560Cys. The mutation was in exon 25 and according to the dbSNP database this mutation corresponded to rs67507747. As a conclusion, it is very important to perform WES after an algorithm. This algorithm has to include, a suspect of a mendelian disorder, multiple genetic conditions in the differential diagnosis, and even if it is available the conventional diagnosis is prohibitively expensive. Finally, Sanger sequencing in order to confirm the results is also advised.

  17. 454 sequencing put to the test using the complex genome of barley

    Science.gov (United States)

    Wicker, Thomas; Schlagenhauf, Edith; Graner, Andreas; Close, Timothy J; Keller, Beat; Stein, Nils

    2006-01-01

    Background During the past decade, Sanger sequencing has been used to completely sequence hundreds of microbial and a few higher eukaryote genomes. In recent years, a number of alternative technologies became available, among them adaptations of the pyrosequencing procedure (i.e. "454 sequencing"), promising a ~100-fold increase in throughput over Sanger technology – an advancement which is needed to make large and complex genomes more amenable to full genome sequencing at affordable costs. Although several studies have demonstrated its potential usefulness for sequencing small and compact microbial genomes, it was unclear how the new technology would perform in large and highly repetitive genomes such as those of wheat or barley. Results To study its performance in complex genomes, we used 454 technology to sequence four barley Bacterial Artificial Chromosome (BAC) clones and compared the results to those from ABI-Sanger sequencing. All gene containing regions were covered efficiently and at high quality with 454 sequencing whereas repetitive sequences were more problematic with 454 sequencing than with ABI-Sanger sequencing. 454 sequencing provided a much more even coverage of the BAC clones than ABI-Sanger sequencing, resulting in almost complete assembly of all genic sequences even at only 9 to 10-fold coverage. To obtain highly advanced working draft sequences for the BACs, we developed a strategy to assemble large parts of the BAC sequences by combining comparative genomics, detailed repeat analysis and use of low-quality reads from 454 sequencing. Additionally, we describe an approach of including small numbers of ABI-Sanger sequences to produce hybrid assemblies to partly compensate the short read length of 454 sequences. Conclusion Our data indicate that 454 pyrosequencing allows rapid and cost-effective sequencing of the gene-containing portions of large and complex genomes and that its combination with ABI-Sanger sequencing and targeted sequence

  18. 454 sequencing put to the test using the complex genome of barley

    Directory of Open Access Journals (Sweden)

    Keller Beat

    2006-10-01

    Full Text Available Abstract Background During the past decade, Sanger sequencing has been used to completely sequence hundreds of microbial and a few higher eukaryote genomes. In recent years, a number of alternative technologies became available, among them adaptations of the pyrosequencing procedure (i.e. "454 sequencing", promising a ~100-fold increase in throughput over Sanger technology – an advancement which is needed to make large and complex genomes more amenable to full genome sequencing at affordable costs. Although several studies have demonstrated its potential usefulness for sequencing small and compact microbial genomes, it was unclear how the new technology would perform in large and highly repetitive genomes such as those of wheat or barley. Results To study its performance in complex genomes, we used 454 technology to sequence four barley Bacterial Artificial Chromosome (BAC clones and compared the results to those from ABI-Sanger sequencing. All gene containing regions were covered efficiently and at high quality with 454 sequencing whereas repetitive sequences were more problematic with 454 sequencing than with ABI-Sanger sequencing. 454 sequencing provided a much more even coverage of the BAC clones than ABI-Sanger sequencing, resulting in almost complete assembly of all genic sequences even at only 9 to 10-fold coverage. To obtain highly advanced working draft sequences for the BACs, we developed a strategy to assemble large parts of the BAC sequences by combining comparative genomics, detailed repeat analysis and use of low-quality reads from 454 sequencing. Additionally, we describe an approach of including small numbers of ABI-Sanger sequences to produce hybrid assemblies to partly compensate the short read length of 454 sequences. Conclusion Our data indicate that 454 pyrosequencing allows rapid and cost-effective sequencing of the gene-containing portions of large and complex genomes and that its combination with ABI-Sanger sequencing

  19. Rare variant detection using family-based sequencing analysis.

    Science.gov (United States)

    Peng, Gang; Fan, Yu; Palculict, Timothy B; Shen, Peidong; Ruteshouser, E Cristy; Chi, Aung-Kyaw; Davis, Ronald W; Huff, Vicki; Scharfe, Curt; Wang, Wenyi

    2013-03-05

    Next-generation sequencing is revolutionizing genomic analysis, but this analysis can be compromised by high rates of missing true variants. To develop a robust statistical method capable of identifying variants that would otherwise not be called, we conducted sequence data simulations and both whole-genome and targeted sequencing data analysis of 28 families. Our method (Family-Based Sequencing Program, FamSeq) integrates Mendelian transmission information and raw sequencing reads. Sequence analysis using FamSeq reduced the number of false negative variants by 14-33% as assessed by HapMap sample genotype confirmation. In a large family affected with Wilms tumor, 84% of variants uniquely identified by FamSeq were confirmed by Sanger sequencing. In children with early-onset neurodevelopmental disorders from 26 families, de novo variant calls in disease candidate genes were corrected by FamSeq as mendelian variants, and the number of uniquely identified variants in affected individuals increased proportionally as additional family members were included in the analysis. To gain insight into maximizing variant detection, we studied factors impacting actual improvements of family-based calling, including pedigree structure, allele frequency (common vs. rare variants), prior settings of minor allele frequency, sequence signal-to-noise ratio, and coverage depth (∼20× to >200×). These data will help guide the design, analysis, and interpretation of family-based sequencing studies to improve the ability to identify new disease-associated genes.

  20. On Performance Analysis, Evaluation, and Enhancement of Reading Brain Function Using Sanger's Rule

    Directory of Open Access Journals (Sweden)

    Hassan M. H. Mustafa

    2016-08-01

    Full Text Available This piece of research adopts an interdisciplinary conceptual approach that incorporates Artificial Neural Networks (ANN with learning and cognitive sciences. Specifically, it considers modeling of associative memorization to introduce optimal analysis for development of reading brain performance. Herein, this brain performance simulated realistically using ANNs self-organized modeling paradigm. That namely: the Generalized Hebbian Algorithm (GHA, also known in the literature as Sanger's rule, is a linear feed forward neural network model for unsupervised learning with applications primarily in principal components analysis. Furthermore, it inspired by functioning of highly specialized biological neurons in reading brain based on the organization the brain's structures/substructures. In accordance with the prevailing concept of individual intrinsic characterized properties of highly specialized neurons. Presented models have been in close correspondence with set of neurons’ performance for developing reading brain in a significant way. More specifically, herein, introduced model concerned with their important role played in carrying out cognitive reading brain function's outcomes. Accordingly, the cognitive goal for reading brain is to translate that seen word (orthographic word-from into a spoken word (phonological word-form. In this context herein, the presented work illustrates via ANN simulation results: How ensembles of highly specialized neurons could be dynamically involved in performing associative memorization cognitive function for developing reading brain.

  1. Limb body wall complex, amniotic band sequence, or new syndrome caused by mutation in IQ Motif containing K (IQCK)?

    Science.gov (United States)

    Kruszka, Paul; Uwineza, Annette; Mutesa, Leon; Martinez, Ariel F; Abe, Yu; Zackai, Elaine H; Ganetzky, Rebecca; Chung, Brian; Stevenson, Roger E; Adelstein, Robert S; Ma, Xuefei; Mullikin, James C; Hong, Sung-Kook; Muenke, Maximilian

    2015-01-01

    Limb body wall complex (LBWC) and amniotic band sequence (ABS) are multiple congenital anomaly conditions with craniofacial, limb, and ventral wall defects. LBWC and ABS are considered separate entities by some, and a continuum of severity of the same condition by others. The etiology of LBWC/ABS remains unknown and multiple hypotheses have been proposed. One individual with features of LBWC and his unaffected parents were whole exome sequenced and Sanger sequenced as confirmation of the mutation. Functional studies were conducted using morpholino knockdown studies followed by human mRNA rescue experiments. Using whole exome sequencing, a de novo heterozygous mutation was found in the gene IQCK: c.667C>G; p.Q223E and confirmed by Sanger sequencing in an individual with LBWC. Morpholino knockdown of iqck mRNA in the zebrafish showed ventral defects including failure of ventral fin to develop and cardiac edema. Human wild-type IQCK mRNA rescued the zebrafish phenotype, whereas human p.Q223E IQCK mRNA did not, but worsened the phenotype of the morpholino knockdown zebrafish. This study supports a genetic etiology for LBWC/ABS, or potentially a new syndrome. PMID:26436108

  2. Improved Detection by Next-Generation Sequencing of Pyrazinamide Resistance in Mycobacterium tuberculosis Isolates.

    Science.gov (United States)

    Maningi, Nontuthuko E; Daum, Luke T; Rodriguez, John D; Mphahlele, Matsie; Peters, Remco P H; Fischer, Gerald W; Chambers, James P; Fourie, P Bernard

    2015-12-01

    The technical limitations of common tests used for detecting pyrazinamide (PZA) resistance in Mycobacterium tuberculosis isolates pose challenges for comprehensive and accurate descriptions of drug resistance in patients with multidrug-resistant tuberculosis (MDR-TB). In this study, a 606-bp fragment (comprising the pncA coding region plus the promoter) was sequenced using Ion Torrent next-generation sequencing (NGS) to detect associated PZA resistance mutations in 88 recultured MDR-TB isolates from an archived series collected in 2001. These 88 isolates were previously Sanger sequenced, with 55 (61%) designated as carrying the wild-type pncA gene and 33 (37%) showing mutations. PZA susceptibility of the isolates was also determined using the Bactec 460 TB system and the Wayne test. In this study, isolates were recultured and susceptibility testing was performed in Bactec 960 MGIT. Concordance between NGS and MGIT results was 93% (n = 88), and concordance values between the Bactec 460, the Wayne test, or pncA gene Sanger sequencing and NGS results were 82% (n = 88), 83% (n = 88), and 89% (n = 88), respectively. NGS confirmed the majority of pncA mutations detected by Sanger sequencing but revealed several new and mixed-strain mutations that resolved discordancy in other phenotypic results. Importantly, in 53% (18/34) of these isolates, pncA mutations were located in the 151 to 360 region and warrant further exploration. In these isolates, with their known resistance to rifampin, NGS of pncA improved PZA resistance detection sensitivity to 97% and specificity to 94% using NGS as the gold standard and helped to resolve discordant results from conventional methodologies.

  3. Clinical Use of Next-Generation Sequencing in the Diagnosis of Wilson's Disease.

    Science.gov (United States)

    Németh, Dániel; Árvai, Kristóf; Horváth, Péter; Kósa, János Pál; Tobiás, Bálint; Balla, Bernadett; Folhoffer, Anikó; Krolopp, Anna; Lakatos, Péter András; Szalay, Ferenc

    2016-01-01

    Objective. Wilson's disease is a disorder of copper metabolism which is fatal without treatment. The great number of disease-causing ATP7B gene mutations and the variable clinical presentation of WD may cause a real diagnostic challenge. The emergence of next-generation sequencing provides a time-saving, cost-effective method for full sequencing of the whole ATP7B gene compared to the traditional Sanger sequencing. This is the first report on the clinical use of NGS to examine ATP7B gene. Materials and Methods. We used Ion Torrent Personal Genome Machine in four heterozygous patients for the identification of the other mutations and also in two patients with no known mutation. One patient with acute on chronic liver failure was a candidate for acute liver transplantation. The results were validated by Sanger sequencing. Results. In each case, the diagnosis of Wilson's disease was confirmed by identifying the mutations in both alleles within 48 hours. One novel mutation (p.Ala1270Ile) was found beyond the eight other known ones. The rapid detection of the mutations made possible the prompt diagnosis of WD in a patient with acute liver failure. Conclusions. According to our results we found next-generation sequencing a very useful, reliable, time-saving, and cost-effective method for diagnosing Wilson's disease in selected cases.

  4. Clinical Use of Next-Generation Sequencing in the Diagnosis of Wilson’s Disease

    Directory of Open Access Journals (Sweden)

    Dániel Németh

    2016-01-01

    Full Text Available Objective. Wilson’s disease is a disorder of copper metabolism which is fatal without treatment. The great number of disease-causing ATP7B gene mutations and the variable clinical presentation of WD may cause a real diagnostic challenge. The emergence of next-generation sequencing provides a time-saving, cost-effective method for full sequencing of the whole ATP7B gene compared to the traditional Sanger sequencing. This is the first report on the clinical use of NGS to examine ATP7B gene. Materials and Methods. We used Ion Torrent Personal Genome Machine in four heterozygous patients for the identification of the other mutations and also in two patients with no known mutation. One patient with acute on chronic liver failure was a candidate for acute liver transplantation. The results were validated by Sanger sequencing. Results. In each case, the diagnosis of Wilson’s disease was confirmed by identifying the mutations in both alleles within 48 hours. One novel mutation (p.Ala1270Ile was found beyond the eight other known ones. The rapid detection of the mutations made possible the prompt diagnosis of WD in a patient with acute liver failure. Conclusions. According to our results we found next-generation sequencing a very useful, reliable, time-saving, and cost-effective method for diagnosing Wilson’s disease in selected cases.

  5. Paired tumor and normal whole genome sequencing of metastatic olfactory neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Glen J Weiss

    Full Text Available BACKGROUND: Olfactory neuroblastoma (ONB is a rare cancer of the sinonasal tract with little molecular characterization. We performed whole genome sequencing (WGS on paired normal and tumor DNA from a patient with metastatic-ONB to identify the somatic alterations that might be drivers of tumorigenesis and/or metastatic progression. METHODOLOGY/PRINCIPAL FINDINGS: Genomic DNA was isolated from fresh frozen tissue from a metastatic lesion and whole blood, followed by WGS at >30X depth, alignment and mapping, and mutation analyses. Sanger sequencing was used to confirm selected mutations. Sixty-two somatic short nucleotide variants (SNVs and five deletions were identified inside coding regions, each causing a non-synonymous DNA sequence change. We selected seven SNVs and validated them by Sanger sequencing. In the metastatic ONB samples collected several months prior to WGS, all seven mutations were present. However, in the original surgical resection specimen (prior to evidence of metastatic disease, mutations in KDR, MYC, SIN3B, and NLRC4 genes were not present, suggesting that these were acquired with disease progression and/or as a result of post-treatment effects. CONCLUSIONS/SIGNIFICANCE: This work provides insight into the evolution of ONB cancer cells and provides a window into the more complex factors, including tumor clonality and multiple driver mutations.

  6. Detection of Leishmania infantum in naturally infected Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) and Canis familiaris in Misiones, Argentina: the first report of a PCR-RFLP and sequencing-based confirmation assay.

    Science.gov (United States)

    Acardi, Soraya Alejandra; Liotta, Domingo Javier; Santini, María Soledad; Romagosa, Carlo Mariano; Salomón, Oscar Daniel

    2010-09-01

    In this study, a genotypification of Leishmania was performed using polimerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing techniques to identify species of Leishmania parasites in phlebotomine sand flies and dogs naturally infected. Between January-February of 2009, CDC light traps were used to collect insect samples from 13 capture sites in the municipality of Posadas, which is located in the province of Misiones of Argentina. Sand flies identified as Lutzomyia longipalpis were grouped into 28 separate pools for molecular biological analysis. Canine samples were taken from lymph node aspirates of two symptomatic stray animals that had been positively diagnosed with canine visceral leishmaniasis. One vector pool of 10 sand flies (1 out of the 28 pools tested) and both of the canine samples tested positively for Leishmania infantum by PCR and RFLP analysis. PCR products were confirmed by sequencing and showed a maximum identity with L. infantum. Given that infection was detected in one out of the 28 pools and that at least one infected insect was infected, it was possible to infer an infection rate at least of 0.47% for Lu. longipalpis among the analyzed samples. These results contribute to incriminate Lu. longipalpis as the vector of L. infantum in the municipality of Posadas, where cases of the disease in humans and dogs have been reported since 2005.

  7. Whole-genome sequencing overcomes pseudogene homology to diagnose autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Mallawaarachchi, Amali C; Hort, Yvonne; Cowley, Mark J; McCabe, Mark J; Minoche, André; Dinger, Marcel E; Shine, John; Furlong, Timothy J

    2016-11-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disorder and is due to disease-causing variants in PKD1 or PKD2. Strong genotype-phenotype correlation exists although diagnostic sequencing is not part of routine clinical practice. This is because PKD1 bears 97.7% sequence similarity with six pseudogenes, requiring laborious and error-prone long-range PCR and Sanger sequencing to overcome. We hypothesised that whole-genome sequencing (WGS) would be able to overcome the problem of this sequence homology, because of 150 bp, paired-end reads and avoidance of capture bias that arises from targeted sequencing. We prospectively recruited a cohort of 28 unique pedigrees with ADPKD phenotype. Standard DNA extraction, library preparation and WGS were performed using Illumina HiSeq X and variants were classified following standard guidelines. Molecular diagnosis was made in 24 patients (86%), with 100% variant confirmation by current gold standard of long-range PCR and Sanger sequencing. We demonstrated unique alignment of sequencing reads over the pseudogene-homologous region. In addition to identifying function-affecting single-nucleotide variants and indels, we identified single- and multi-exon deletions affecting PKD1 and PKD2, which would have been challenging to identify using exome sequencing. We report the first use of WGS to diagnose ADPKD. This method overcomes pseudogene homology, provides uniform coverage, detects all variant types in a single test and is less labour-intensive than current techniques. This technique is translatable to a diagnostic setting, allows clinicians to make better-informed management decisions and has implications for other disease groups that are challenged by regions of confounding sequence homology.

  8. Low diversity in the mitogenome of sperm whales revealed by next-generation sequencing.

    Science.gov (United States)

    Alexander, Alana; Steel, Debbie; Slikas, Beth; Hoekzema, Kendra; Carraher, Colm; Parks, Matthew; Cronn, Richard; Baker, C Scott

    2013-01-01

    Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20 mitogenomes from 17 sperm whales representative of worldwide diversity using Next Generation Sequencing (NGS) technologies (Illumina GAIIx, Roche 454 GS Junior). Resequencing of three individuals with both NGS platforms and partial Sanger sequencing showed low discrepancy rates (454-Illumina: 0.0071%; Sanger-Illumina: 0.0034%; and Sanger-454: 0.0023%) confirming suitability of both NGS platforms for investigating low mitogenomic diversity. Using the 17 sperm whale mitogenomes in a phylogenetic reconstruction with 41 other species, including 11 new dolphin mitogenomes, we tested two hypotheses for the low CR diversity. First, the hypothesis that CR-specific constraints have reduced diversity solely in the CR was rejected as diversity was low throughout the mitogenome, not just in the CR (overall diversity π = 0.096%; protein-coding 3rd codon = 0.22%; CR = 0.35%), and CR phylogenetic signal was congruent with protein-coding regions. Second, the hypothesis that slow substitution rates reduced diversity throughout the sperm whale mitogenome was rejected as sperm whales had significantly higher rates of CR evolution and no evidence of slow coding region evolution relative to other cetaceans. The estimated time to most recent common ancestor for sperm whale mitogenomes was 72,800 to 137,400 years ago (95% highest probability density interval), consistent with previous hypotheses of a bottleneck or selective sweep as likely causes of low mitogenome diversity.

  9. Failure to Identify Somatic Mutations in Monozygotic Twins Discordant for Schizophrenia by Whole Exome Sequencing

    Institute of Scientific and Technical Information of China (English)

    Nan Lyu; Li-Li Guan; Hong Ma; Xi-Jin Wang; Bao-Ming Wu; Fan-Hong Shang; Dan Wang

    2016-01-01

    Background:Schizophrenia (SCZ) is a severe,debilitating,and complex psychiatric disorder with multiple causative factors.An increasing number of studies have determined that rare variations play an important role in its etiology.A somatic mutation is a rare form of genetic variation that occurs at an early stage of embryonic development and is thought to contribute substantially to the development of SCZ.The aim of the study was to explore the novel pathogenic somatic single nucleotide variations (SNVs) and somatic insertions and deletions (indels) of SCZ.Methods:One Chinese family with a monozygotic (MZ) twin pair discordant for SCZ was included.Whole exome sequencing was performed in the co-twin and their parents.Rigorous filtering processes were conducted to prioritize pathogenic somatic variations,and all identified SNVs and indels were further confirmed by Sanger sequencing.Results:One somatic SNV and two somatic indels were identified after rigorous selection processes.However,none was validated by Sanger sequencing.Conclusions:This study is not alone in the failure to identify pathogenic somatic variations in MZ twins,suggesting that exonic somatic variations are extremely rare.Further efforts are warranted to explore the potential genetic mechanism of SCZ.

  10. CERN confirms LHC schedule

    CERN Multimedia

    2003-01-01

    The CERN Council held its 125th session on 20 June. Highlights of the meeting included confirmation that the LHC is on schedule for a 2007 start-up, and the announcement of a new organizational structure in 2004.

  11. Repository performance confirmation.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D.

    2011-09-01

    Repository performance confirmation links the technical bases of repository science and societal acceptance. This paper explores the myriad aspects of what has been labeled performance confirmation in U.S. programs, which involves monitoring as a collection of distinct activities combining technical and social significance in radioactive waste management. This paper is divided into four parts: (1) A distinction is drawn between performance confirmation monitoring and other testing and monitoring objectives; (2) A case study illustrates confirmation activities integrated within a long-term testing and monitoring strategy for Yucca Mountain; (3) A case study reviews compliance monitoring developed and implemented for the Waste Isolation Pilot Plant; and (4) An approach for developing, evaluating and implementing the next generation of performance confirmation monitoring is presented. International interest in repository monitoring is exhibited by the European Commission Seventh Framework Programme 'Monitoring Developments for Safe Repository Operation and Staged Closure' (MoDeRn) Project. The MoDeRn partners are considering the role of monitoring in a phased approach to the geological disposal of radioactive waste. As repository plans advance in different countries, the need to consider monitoring strategies within a controlled framework has become more apparent. The MoDeRn project pulls together technical and societal experts to assimilate a common understanding of a process that could be followed to develop a monitoring program. A fundamental consideration is the differentiation of confirmation monitoring from the many other testing and monitoring activities. Recently, the license application for Yucca Mountain provided a case study including a technical process for meeting regulatory requirements to confirm repository performance as well as considerations related to the preservation of retrievability. The performance confirmation plan developed as part

  12. Fast clinical molecular diagnosis of hyperphenylalaninemia using next-generation sequencing-based on a custom AmpliSeq™ panel and Ion Torrent PGM sequencing.

    Science.gov (United States)

    Cao, Yan-yan; Qu, Yu-jin; Song, Fang; Zhang, Ting; Bai, Jin-li; Jin, Yu-wei; Wang, Hong

    2014-12-01

    Hyperphenylalaninemia (HPA) can be classified into phenylketonuria (PKU) and tetrahydrobiopterin deficiency (BH4D), according to the defect of enzyme activity, both of which vary substantially in severity, treatment, and prognosis of the disease. To set up a fast and comprehensive assay in order to achieve early etiological diagnosis and differential diagnosis for children with HPA, we designed a custom AmpliSeq™ panel for the sequencing of coding DNA sequence (CDS), flanking introns, 5' untranslated region (UTR) and 3' UTR from five HPA-causing genes (PAH, PTS, QDPR, GCH1, and PCBD1) using the Ion Torrent Personal Genome Machine (PGM) Sequencer. A standard group of 15 samples with previously known DNA sequences and a test group of 37 HPA patients with unknown mutations were used for assay validation and application, respectively. All variations were confirmed by Sanger sequencing. In the standard group, all the known mutations were detected and were consistent with the results of previous Sanger sequencing. In the test group, we identified mutations in 71 of 74 alleles, with a mutation detection rate of 95.9%. We also found a frame shift deletion p.Ile25Metfs*13 in PAH that was previously unreported. In addition, 1 of 37 in the test group was inconsistent with either the molecular diagnosis or clinical diagnosis by traditional differential methods. In conclusion, our comprehensive assay based on a custom AmpliSeq™ panel and Ion Torrent PGM sequencing has wider coverage, higher throughput, is much faster, and more efficient when compared with the traditional molecular detection method for HPA patients, which could meet the medical need for individualized diagnosis and treatment.

  13. Identification of Genomic Insertion and Flanking Sequence of G2-EPSPS and GAT Transgenes in Soybean Using Whole Genome Sequencing Method

    Science.gov (United States)

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Qiu, Li-Juan

    2016-01-01

    Molecular characterization of sequence flanking exogenous fragment insertion is essential for safety assessment and labeling of genetically modified organism (GMO). In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS) method. More than 22.4 Gb sequence data (∼21 × coverage) for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundaries of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767–50543792 and Chr17: 7980527–7980541 in these two transgenic lines. Identification of genomic insertion sites of G2-EPSPS and GAT transgenes will facilitate the utilization of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS was a cost-effective and rapid method for identifying sites of T-DNA insertions and flanking sequences in soybean. PMID:27462336

  14. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method

    Directory of Open Access Journals (Sweden)

    Bingfu Guo

    2016-07-01

    Full Text Available Molecular characterization of sequences flanking exogenous fragment insertions is essential for safety assessment and labeling of genetically modified organisms (GMO. In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS method. About 21 Gb sequence data (~21× coverage for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundary of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of the genomic insertion site of the G2-EPSPS and GAT transgenes will facilitate the use of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS is a cost-effective and rapid method of identifying sites of T-DNA insertions and flanking sequences in soybean.

  15. BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing

    Science.gov (United States)

    Mafficini, Andrea; Simbolo, Michele; Parisi, Alice; Rusev, Borislav; Luchini, Claudio; Cataldo, Ivana; Piazzola, Elena; Sperandio, Nicola; Turri, Giona; Franchi, Massimo; Tortora, Giampaolo; Bovo, Chiara; Lawlor, Rita T.; Scarpa, Aldo

    2016-01-01

    BRCA mutated ovarian cancers respond better to platinum-based therapy and to the recently approved PARP-inhibitors. There is the need for efficient and timely methods to detect both somatic and germline mutations using formalin-fixed paraffin-embedded (FFPE) tissues and commercially available technology. We used a commercial kit exploring all exons and 50bp exon-intron junctions of BRCA1 and BRCA2 genes, and semiconductor next-generation sequencing (NGS) on DNA from 47 FFPE samples of high-grade serous ovarian cancers. Pathogenic mutations were found in 13/47 (28%) cancers: eight in BRCA1 and five in BRCA2. All BRCA1 and two BRCA2 mutations were germline; three BRCA2 mutations were somatic. All mutations were confirmed by Sanger sequencing. To evaluate the performance of the NGS panel, we assessed its capability to detect the 6,953 variants described for BRCA1 and BRCA2 in ClinVar and COSMIC databases using callability analysis. 6,059 (87.1%) variants were identified automatically by the software; 829 (12.0%) required visual verification. The remaining 65 (0.9%) variants were uncallable, and would require 15 Sanger reactions to be resolved. Thus, the sensitivity of the NGS-panel was 99.1%. In conclusion, NGS performed with a commercial kit is highly efficient for detection of germline and somatic mutations in BRCA genes using routine FFPE tissue. PMID:26745875

  16. BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing.

    Science.gov (United States)

    Mafficini, Andrea; Simbolo, Michele; Parisi, Alice; Rusev, Borislav; Luchini, Claudio; Cataldo, Ivana; Piazzola, Elena; Sperandio, Nicola; Turri, Giona; Franchi, Massimo; Tortora, Giampaolo; Bovo, Chiara; Lawlor, Rita T; Scarpa, Aldo

    2016-01-12

    BRCA mutated ovarian cancers respond better to platinum-based therapy and to the recently approved PARP-inhibitors. There is the need for efficient and timely methods to detect both somatic and germline mutations using formalin-fixed paraffin-embedded (FFPE) tissues and commercially available technology. We used a commercial kit exploring all exons and 50bp exon-intron junctions of BRCA1 and BRCA2 genes, and semiconductor next-generation sequencing (NGS) on DNA from 47 FFPE samples of high-grade serous ovarian cancers. Pathogenic mutations were found in 13/47 (28%) cancers: eight in BRCA1 and five in BRCA2. All BRCA1 and two BRCA2 mutations were germline; three BRCA2 mutations were somatic. All mutations were confirmed by Sanger sequencing. To evaluate the performance of the NGS panel, we assessed its capability to detect the 6,953 variants described for BRCA1 and BRCA2 in ClinVar and COSMIC databases using callability analysis. 6,059 (87.1%) variants were identified automatically by the software; 829 (12.0%) required visual verification. The remaining 65 (0.9%) variants were uncallable, and would require 15 Sanger reactions to be resolved. Thus, the sensitivity of the NGS-panel was 99.1%. In conclusion, NGS performed with a commercial kit is highly efficient for detection of germline and somatic mutations in BRCA genes using routine FFPE tissue.

  17. Complete Genome Sequence of Ornithogalum Mosaic Virus Infecting Gladiolus spp. in South Korea.

    Science.gov (United States)

    Cho, Sang-Yun; Lim, Seungmo; Kim, Hongsup; Yi, Seung-In; Moon, Jae Sun

    2016-08-11

    We report here the first complete genome sequence of Ornithogalum mosaic virus (OrMV) isolated from Taean, South Korea, in 2011, which was obtained by next-generation sequencing and Sanger sequencing. The sequence information provided here may serve as a potential reference for other OrMV isolates.

  18. Complete genome sequence of a new tobamovirus naturally infecting tomatoes in Mexico

    Science.gov (United States)

    The complete genomic sequence of a new tobamovirus in tomato was determined through deep sequencing and assembly of small RNAs, thenvalidated through Sanger sequencing of the overlapping RT-PCR products and rapid amplification of cDNA ends (RACE). Based on the genomic sequence identity (85%) to kn...

  19. A rapid screening with direct sequencing from blood samples for the diagnosis of Leigh syndrome

    Directory of Open Access Journals (Sweden)

    Hiroko Shimbo

    2014-01-01

    Full Text Available Large numbers of genes are responsible for Leigh syndrome (LS, making genetic confirmation of LS difficult. We screened our patients with LS using a limited set of 21 primers encompassing the frequently reported gene for the respiratory chain complexes I (ND1–ND6, and ND4L, IV(SURF1, and V(ATP6 and the pyruvate dehydrogenase E1α-subunit. Of 18 LS patients, we identified mutations in 11 patients, including 7 in mDNA (two with ATP6, 4 in nuclear (three with SURF1. Overall, we identified mutations in 61% of LS patients (11/18 individuals in this cohort. Sanger sequencing with our limited set of primers allowed us a rapid genetic confirmation of more than half of the LS patients and it appears to be efficient as a primary genetic screening in this cohort.

  20. Sequence recombination and conservation of Varroa destructor virus-1 and deformed wing virus in field collected honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available We sequenced small (s RNAs from field collected honeybees (Apis mellifera and bumblebees (Bombuspascuorum using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroadestructor virus-1 (VDV1 and Deformed wing virus (DWV genomic sequences were obtained for A. mellifera but not B. pascuorum. Further analyses suggested that the prevalent virus population was composed of VDV-1 and a chimera of 5'-DWV-VDV1-DWV-3'. The recombination junctions in the chimera genomes were confirmed by using RT-PCR, cDNA cloning and Sanger sequencing. We then focused on conserved short fragments (CSF, size > 25 nt in the virus genomes by using GenBank sequences and the deep sequencing data obtained in this study. The majority of CSF sites confirmed conservation at both between-species (GenBank sequences and within-population (dataset of this study levels. However, conserved nucleotide positions in the GenBank sequences might be variable at the within-population level. High mutation rates (Pi>10% were observed at a number of sites using the deep sequencing data, suggesting that sequence conservation might not always be maintained at the population level. Virus-host interactions and strategies for developing RNAi treatments against VDV1/DWV infections are discussed.

  1. Sequence recombination and conservation of Varroa destructor virus-1 and deformed wing virus in field collected honey bees (Apis mellifera).

    Science.gov (United States)

    Wang, Hui; Xie, Jiazheng; Shreeve, Tim G; Ma, Jinmin; Pallett, Denise W; King, Linda A; Possee, Robert D

    2013-01-01

    We sequenced small (s) RNAs from field collected honeybees (Apis mellifera) and bumblebees (Bombuspascuorum) using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroadestructor virus-1 (VDV1) and Deformed wing virus (DWV) genomic sequences were obtained for A. mellifera but not B. pascuorum. Further analyses suggested that the prevalent virus population was composed of VDV-1 and a chimera of 5'-DWV-VDV1-DWV-3'. The recombination junctions in the chimera genomes were confirmed by using RT-PCR, cDNA cloning and Sanger sequencing. We then focused on conserved short fragments (CSF, size > 25 nt) in the virus genomes by using GenBank sequences and the deep sequencing data obtained in this study. The majority of CSF sites confirmed conservation at both between-species (GenBank sequences) and within-population (dataset of this study) levels. However, conserved nucleotide positions in the GenBank sequences might be variable at the within-population level. High mutation rates (Pi>10%) were observed at a number of sites using the deep sequencing data, suggesting that sequence conservation might not always be maintained at the population level. Virus-host interactions and strategies for developing RNAi treatments against VDV1/DWV infections are discussed.

  2. Targeted high-throughput sequencing of tagged nucleic acid samples

    OpenAIRE

    M.; Meyer; Stenzel, U.; Myles, S.; Prüfer, K; Hofreiter, M.

    2007-01-01

    High-throughput 454 DNA sequencing technology allows much faster and more cost-effective sequencing than traditional Sanger sequencing. However, the technology imposes inherent limitations on the number of samples that can be processed in parallel. Here we introduce parallel tagged sequencing (PTS), a simple, inexpensive and flexible barcoding technique that can be used for parallel sequencing any number and type of double-stranded nucleic acid samples. We demonstrate that PTS is particularly...

  3. Confirmation of translatability and functionality certifies the dual endothelin1/VEGFsp receptor (DEspR) protein

    OpenAIRE

    Herrera, Victoria L. M.; Steffen, Martin; Moran, Ann Marie; Tan, Glaiza A.; Khristine A Pasion; Rivera, Keith; Pappin, Darryl J.; Ruiz-Opazo, Nelson

    2016-01-01

    Background In contrast to rat and mouse databases, the NCBI gene database lists the human dual-endothelin1/VEGFsp receptor (DEspR, formerly Dear) as a unitary transcribed pseudogene due to a stop [TGA]-codon at codon#14 in automated DNA and RNA sequences. However, re-analysis is needed given prior single gene studies detected a tryptophan [TGG]-codon#14 by manual Sanger sequencing, demonstrated DEspR translatability and functionality, and since the demonstration of actual non-translatability ...

  4. CONFIRMATION OF CIRCUMSTELLAR PHOSPHINE

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, M.; Cernicharo, J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Decin, L. [Sterrenkundig Instituut Anton Pannekoek, University of Amsterdam, Science Park 904, NL-1098 Amsterdam (Netherlands); Encrenaz, P. [LERMA, Observatoire de Paris, 61 Av. de l' Observatoire, F-75014 Paris (France); Teyssier, D. [European Space Astronomy Centre, Urb. Villafranca del Castillo, P.O. Box 50727, E-28080 Madrid (Spain)

    2014-08-01

    Phosphine (PH{sub 3}) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH{sub 3} in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH{sub 3}. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH{sub 3} in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R {sub *} from the star, with an abundance of 10{sup –8} relative to H{sub 2}. The detection of PH{sub 3} challenges chemical models, none of which offer a satisfactory formation scenario. Although PH{sub 3} holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH{sub 3} outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.

  5. Confirmation of circumstellar phosphine

    CERN Document Server

    Agundez, M; Decin, L; Encrenaz, P; Teyssier, D

    2014-01-01

    Phosphine (PH3) was tentatively identified a few years ago in the carbon star envelopes IRC+10216 and CRL2688 from observations of an emission line at 266.9 GHz attributable to the J=1-0 rotational transition. We report the detection of the J=2-1 rotational transition of PH3 in IRC+10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH3. Radiative transfer calculations indicate that infrared pumping to excited vibrational states plays an important role in the excitation of PH3 in the envelope of IRC+10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R* from the star, with an abundance of 1e-8 relative to H2. The detection of PH3 challenges chemical models, none of which offers a satisfactory formation scenario. Although PH3 locks just 2 % of the total available phosphorus in IRC+10216, it is together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggest...

  6. Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley.

    Science.gov (United States)

    Bull, Carolee T; Clarke, Christopher R; Cai, Rongman; Vinatzer, Boris A; Jardini, Teresa M; Koike, Steven T

    2011-07-01

    Since 2002, severe leaf spotting on parsley (Petroselinum crispum) has occurred in Monterey County, CA. Either of two different pathovars of Pseudomonas syringae sensu lato were isolated from diseased leaves from eight distinct outbreaks and once from the same outbreak. Fragment analysis of DNA amplified between repetitive sequence polymerase chain reaction; 16S rDNA sequence analysis; and biochemical, physiological, and host range tests identified the pathogens as Pseudomonas syringae pv. apii and P. syringae pv. coriandricola. Koch's postulates were completed for the isolates from parsley, and host range tests with parsley isolates and pathotype strains demonstrated that P. syringae pv. apii and P. syringae pv. coriandricola cause leaf spot diseases on parsley, celery, and coriander or cilantro. In a multilocus sequence typing (MLST) approach, four housekeeping gene fragments were sequenced from 10 strains isolated from parsley and 56 pathotype strains of P. syringae. Allele sequences were uploaded to the Plant-Associated Microbes Database and a phylogenetic tree was built based on concatenated sequences. Tree topology directly corresponded to P. syringae genomospecies and P. syringae pv. apii was allocated appropriately to genomospecies 3. This is the first demonstration that MLST can accurately allocate new pathogens directly to P. syringae sensu lato genomospecies. According to MLST, P. syringae pv. coriandricola is a member of genomospecies 9, P. cannabina. In a blind test, both P. syringae pv. coriandricola and P. syringae pv. apii isolates from parsley were correctly identified to pathovar. In both cases, MLST described diversity within each pathovar that was previously unknown.

  7. Genome-wide linkage, exome sequencing and functional analyses identify ABCB6 as the pathogenic gene of dyschromatosis universalis hereditaria.

    Directory of Open Access Journals (Sweden)

    Hong Liu

    Full Text Available BACKGROUND: As a genetic disorder of abnormal pigmentation, the molecular basis of dyschromatosis universalis hereditaria (DUH had remained unclear until recently when ABCB6 was reported as a causative gene of DUH. METHODOLOGY: We performed genome-wide linkage scan using Illumina Human 660W-Quad BeadChip and exome sequencing analyses using Agilent SureSelect Human All Exon Kits in a multiplex Chinese DUH family to identify the pathogenic mutations and verified the candidate mutations using Sanger sequencing. Quantitative RT-PCR and Immunohistochemistry was performed to verify the expression of the pathogenic gene, Zebrafish was also used to confirm the functional role of ABCB6 in melanocytes and pigmentation. RESULTS: Genome-wide linkage (assuming autosomal dominant inheritance mode and exome sequencing analyses identified ABCB6 as the disease candidate gene by discovering a coding mutation (c.1358C>T; p.Ala453Val that co-segregates with the disease phenotype. Further mutation analysis of ABCB6 in four other DUH families and two sporadic cases by Sanger sequencing confirmed the mutation (c.1358C>T; p.Ala453Val and discovered a second, co-segregating coding mutation (c.964A>C; p.Ser322Lys in one of the four families. Both mutations were heterozygous in DUH patients and not present in the 1000 Genome Project and dbSNP database as well as 1,516 unrelated Chinese healthy controls. Expression analysis in human skin and mutagenesis interrogation in zebrafish confirmed the functional role of ABCB6 in melanocytes and pigmentation. Given the involvement of ABCB6 mutations in coloboma, we performed ophthalmological examination of the DUH carriers of ABCB6 mutations and found ocular abnormalities in them. CONCLUSION: Our study has advanced our understanding of DUH pathogenesis and revealed the shared pathological mechanism between pigmentary DUH and ocular coloboma.

  8. Clinical and biochemical signs in Fleckvieh cattle with genetically confirmed Fanconi-Bickel syndrome (cattle homozygous for Fleckvieh haplotype 2).

    Science.gov (United States)

    Burgstaller, Johann; Url, Angelika; Pausch, Hubert; Schwarzenbacher, Hermann; Egerbacher, Monika; Wittek, Thomas

    2016-01-01

    Fanconi-Bickel Syndrome (FBS) is an autosomal recessive disorder of the carbohydrate metabolism, which has been reported in human and some animals (OMIA 000366-9913). In Fleckvieh cattle it is caused by mutations in SLC2A2, a gene encoding for glucose transporter protein 2 (GLUT2), which is primarily expressed in liver, kidney, pancreas and intestines. The causal mutation resides in a previously reported Fleckvieh Haplotype 2 (FH-2). FH-2 homozygous individuals are rare, but due to widespread use of heterozygous bulls in artificial insemination, heterozygous animals are likely to be present in a larger number in the cattle population. Two clinical cases of Fleckvieh cattle with a syndrome resembling the phenotypic appearance of FBS are presented in the present study describing the association between the clinical manifestations of FBS and the postulated frameshift mutation in bovine SLC2A2. Clinical examination showed poor growth, retarded development, polyuria, and polydipsia. Laboratory analyses showed an increased plasma glucose but normal insulin concentration and increased renal glucose excretion. Histopathological examination of kidney and liver samples revealed massively increased liver glycogen storage and nephrosis. Sires of both cases were tested positive for being heterozygous carriers for the same frameshift mutation in SLC2A2 as was originally reported in Fleckvieh cattle. DNA of both cases described was analyzed and Sanger sequencing confirmed homozygosity for the frameshift mutation in SLC2A2.

  9. Finding the needle in the haystack: differentiating "identical" twins in paternity testing and forensics by ultra-deep next generation sequencing.

    Science.gov (United States)

    Weber-Lehmann, Jacqueline; Schilling, Elmar; Gradl, Georg; Richter, Daniel C; Wiehler, Jens; Rolf, Burkhard

    2014-03-01

    Monozygotic (MZ) twins are considered being genetically identical, therefore they cannot be differentiated using standard forensic DNA testing. Here we describe how identification of extremely rare mutations by ultra-deep next generation sequencing can solve such cases. We sequenced DNA from sperm samples of two twins and from a blood sample of the child of one twin. Bioinformatics analysis revealed five single nucleotide polymorphisms (SNPs) present in the twin father and the child, but not in the twin uncle. The SNPs were confirmed by classical Sanger sequencing. Our results give experimental evidence for the hypothesis that rare mutations will occur early after the human blastocyst has split into two, the origin of twins, and that such mutations will be carried on into somatic tissue and the germline. The method provides a solution to solve paternity and forensic cases involving monozygotic twins as alleged fathers or originators of DNA traces.

  10. Next-Generation Sequencing Platforms

    Science.gov (United States)

    Mardis, Elaine R.

    2013-06-01

    Automated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.

  11. DNA Sequencing Sensors: An Overview

    Directory of Open Access Journals (Sweden)

    Jose Antonio Garrido-Cardenas

    2017-03-01

    Full Text Available The first sequencing of a complete genome was published forty years ago by the double Nobel Prize in Chemistry winner Frederick Sanger. That corresponded to the small sized genome of a bacteriophage, but since then there have been many complex organisms whose DNA have been sequenced. This was possible thanks to continuous advances in the fields of biochemistry and molecular genetics, but also in other areas such as nanotechnology and computing. Nowadays, sequencing sensors based on genetic material have little to do with those used by Sanger. The emergence of mass sequencing sensors, or new generation sequencing (NGS meant a quantitative leap both in the volume of genetic material that was able to be sequenced in each trial, as well as in the time per run and its cost. One can envisage that incoming technologies, already known as fourth generation sequencing, will continue to cheapen the trials by increasing DNA reading lengths in each run. All of this would be impossible without sensors and detection systems becoming smaller and more precise. This article provides a comprehensive overview on sensors for DNA sequencing developed within the last 40 years.

  12. Complete Genome Sequence of Rehmannia Mosaic Virus Infecting Rehmannia glutinosa in South Korea.

    Science.gov (United States)

    Lim, Seungmo; Zhao, Fumei; Yoo, Ran Hee; Igori, Davaajargal; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo; Moon, Jae Sun

    2016-01-28

    The complete genome sequence of a South Korean isolate of Rehmannia mosaic virus (ReMV) infecting Rehmannia glutinosa was determined through next-generation sequencing and Sanger sequencing. To our knowledge, this is the first report of a natural infection of R. glutinosa by ReMV in South Korea.

  13. Complete Genome Sequence of a Tomato Isolate of Parietaria Mottle Virus from Italy.

    Science.gov (United States)

    Martínez, Carolina; Aramburu, José; Rubio, Luis; Galipienso, Luis

    2015-12-17

    We report here the complete genome sequence of isolate T32 of parietaria mottle virus (PMoV) infecting tomato plants in Turin, Italy, obtained by Sanger sequencing. T32 shares 90.48 to 96.69% nucleotide identity with other two PoMV isolates, CR8 and Pe1, respectively, whose complete genome sequences are available.

  14. Introduction of the hybcell-based compact sequencing technology and comparison to state-of-the-art methodologies for KRAS mutation detection.

    Science.gov (United States)

    Zopf, Agnes; Raim, Roman; Danzer, Martin; Niklas, Norbert; Spilka, Rita; Pröll, Johannes; Gabriel, Christian; Nechansky, Andreas; Roucka, Markus

    2015-03-01

    The detection of KRAS mutations in codons 12 and 13 is critical for anti-EGFR therapy strategies; however, only those methodologies with high sensitivity, specificity, and accuracy as well as the best cost and turnaround balance are suitable for routine daily testing. Here we compared the performance of compact sequencing using the novel hybcell technology with 454 next-generation sequencing (454-NGS), Sanger sequencing, and pyrosequencing, using an evaluation panel of 35 specimens. A total of 32 mutations and 10 wild-type cases were reported using 454-NGS as the reference method. Specificity ranged from 100% for Sanger sequencing to 80% for pyrosequencing. Sanger sequencing and hybcell-based compact sequencing achieved a sensitivity of 96%, whereas pyrosequencing had a sensitivity of 88%. Accuracy was 97% for Sanger sequencing, 85% for pyrosequencing, and 94% for hybcell-based compact sequencing. Quantitative results were obtained for 454-NGS and hybcell-based compact sequencing data, resulting in a significant correlation (r = 0.914). Whereas pyrosequencing and Sanger sequencing were not able to detect multiple mutated cell clones within one tumor specimen, 454-NGS and the hybcell-based compact sequencing detected multiple mutations in two specimens. Our comparison shows that the hybcell-based compact sequencing is a valuable alternative to state-of-the-art methodologies used for detection of clinically relevant point mutations.

  15. Whole genome and transcriptome sequencing of a B3 thymoma.

    Directory of Open Access Journals (Sweden)

    Iacopo Petrini

    Full Text Available Molecular pathology of thymomas is poorly understood. Genomic aberrations are frequently identified in tumors but no extensive sequencing has been reported in thymomas. Here we present the first comprehensive view of a B3 thymoma at whole genome and transcriptome levels. A 55-year-old Caucasian female underwent complete resection of a stage IVA B3 thymoma. RNA and DNA were extracted from a snap frozen tumor sample with a fraction of cancer cells over 80%. We performed array comparative genomic hybridization using Agilent platform, transcriptome sequencing using HiSeq 2000 (Illumina and whole genome sequencing using Complete Genomics Inc platform. Whole genome sequencing determined, in tumor and normal, the sequence of both alleles in more than 95% of the reference genome (NCBI Build 37. Copy number (CN aberrations were comparable with those previously described for B3 thymomas, with CN gain of chromosome 1q, 5, 7 and X and CN loss of 3p, 6, 11q42.2-qter and q13. One translocation t(11;X was identified by whole genome sequencing and confirmed by PCR and Sanger sequencing. Ten single nucleotide variations (SNVs and 2 insertion/deletions (INDELs were identified; these mutations resulted in non-synonymous amino acid changes or affected splicing sites. The lack of common cancer-associated mutations in this patient suggests that thymomas may evolve through mechanisms distinctive from other tumor types, and supports the rationale for additional high-throughput sequencing screens to better understand the somatic genetic architecture of thymoma.

  16. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  17. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses.

    Science.gov (United States)

    Hill, Emmeline W; McGivney, Beatrice A; Gu, Jingjing; Whiston, Ronan; Machugh, David E

    2010-10-11

    Thoroughbred horses have been selected for traits contributing to speed and stamina for centuries. It is widely recognized that inherited variation in physical and physiological characteristics is responsible for variation in individual aptitude for race distance, and that muscle phenotypes in particular are important. A genome-wide SNP-association study for optimum racing distance was performed using the EquineSNP50 Bead Chip genotyping array in a cohort of n = 118 elite Thoroughbred racehorses divergent for race distance aptitude. In a cohort-based association test we evaluated genotypic variation at 40,977 SNPs between horses suited to short distance (≤ 8 f) and middle-long distance (> 8 f) races. The most significant SNP was located on chromosome 18: BIEC2-417495 ~690 kb from the gene encoding myostatin (MSTN) [P(unadj.) = 6.96 x 10⁻⁶]. Considering best race distance as a quantitative phenotype, a peak of association on chromosome 18 (chr18:65809482-67545806) comprising eight SNPs encompassing a 1.7 Mb region was observed. Again, similar to the cohort-based analysis, the most significant SNP was BIEC2-417495 (P(unadj.) = 1.61 x 10⁻⁹; P(Bonf.) = 6.58 x 10⁻⁵). In a candidate gene study we have previously reported a SNP (g.66493737C>T) in MSTN associated with best race distance in Thoroughbreds; however, its functional and genome-wide relevance were uncertain. Additional re-sequencing in the flanking regions of the MSTN gene revealed four novel 3' UTR SNPs and a 227 bp SINE insertion polymorphism in the 5' UTR promoter sequence. Linkage disequilibrium was highest between g.66493737C>T and BIEC2-417495 (r² = 0.86). Comparative association tests consistently demonstrated the g.66493737C>T SNP as the superior variant in the prediction of distance aptitude in racehorses (g.66493737C>T, P = 1.02 x 10⁻¹⁰; BIEC2-417495, P(unadj.) = 1.61 x 10⁻⁹). Functional investigations will be required to determine whether this polymorphism affects putative

  18. Exome sequencing and genetic testing for MODY.

    Directory of Open Access Journals (Sweden)

    Stefan Johansson

    Full Text Available CONTEXT: Genetic testing for monogenic diabetes is important for patient care. Given the extensive genetic and clinical heterogeneity of diabetes, exome sequencing might provide additional diagnostic potential when standard Sanger sequencing-based diagnostics is inconclusive. OBJECTIVE: The aim of the study was to examine the performance of exome sequencing for a molecular diagnosis of MODY in patients who have undergone conventional diagnostic sequencing of candidate genes with negative results. RESEARCH DESIGN AND METHODS: We performed exome enrichment followed by high-throughput sequencing in nine patients with suspected MODY. They were Sanger sequencing-negative for mutations in the HNF1A, HNF4A, GCK, HNF1B and INS genes. We excluded common, non-coding and synonymous gene variants, and performed in-depth analysis on filtered sequence variants in a pre-defined set of 111 genes implicated in glucose metabolism. RESULTS: On average, we obtained 45 X median coverage of the entire targeted exome and found 199 rare coding variants per individual. We identified 0-4 rare non-synonymous and nonsense variants per individual in our a priori list of 111 candidate genes. Three of the variants were considered pathogenic (in ABCC8, HNF4A and PPARG, respectively, thus exome sequencing led to a genetic diagnosis in at least three of the nine patients. Approximately 91% of known heterozygous SNPs in the target exomes were detected, but we also found low coverage in some key diabetes genes using our current exome sequencing approach. Novel variants in the genes ARAP1, GLIS3, MADD, NOTCH2 and WFS1 need further investigation to reveal their possible role in diabetes. CONCLUSION: Our results demonstrate that exome sequencing can improve molecular diagnostics of MODY when used as a complement to Sanger sequencing. However, improvements will be needed, especially concerning coverage, before the full potential of exome sequencing can be realized.

  19. Pleuropulmonary Blastoma: A Report on 350 Central Pathology–Confirmed Pleuropulmonary Blastoma Cases by the International Pleuropulmonary Blastoma Registry

    Science.gov (United States)

    Messinger, Yoav H.; Stewart, Douglas R.; Priest, John R.; Williams, Gretchen M.; Harris, Anne K.; Schultz, Kris Ann P.; Yang, Jiandong; Doros, Leslie; Rosenberg, Philip S.; Hill, D. Ashley; Dehner, Louis P.

    2014-01-01

    Background Pleuropulmonary blastoma (PPB) has 3 subtypes on a tumor progression pathway ranging from type I (cystic) to type II (cystic/solid) and type III (completely solid). A germline mutation in DICER1 is the genetic cause in the majority of PPB cases. Methods Patients confirmed to have PPB by central pathology review were included, and their clinical characteristics and outcomes were reported. Germline DICER1 mutations were sought with Sanger sequencing. Results There were 435 cases, and a central review confirmed 350 cases to be PPB; 85 cases (20%) were another entity. Thirty-three percent of the 350 PPB cases were type I or type I regressed (type Ir), 35% were type II, and 32% were type III or type II/III. The median ages at diagnosis for type I, type II, and type III patients were 8, 35, and 41 months, respectively. The 5-year overall survival (OS) rate for type I/Ir patients was 91%; all deaths in this group were due to progression to type II or III. OS was significantly better for type II versus type III (P=.0061); the 5-year OS rates were 71% and 53%, respectively. Disease-free survival (DFS) was also significantly better for type II versus type III (P=.0002); the 5-year DFS rates were 59% and 37%, respectively. The PPB type was the strongest predictor of outcome. Metastatic disease at the diagnosis of types II and III was also an independent unfavorable prognostic factor. Sixty-six percent of the 97 patients tested had a heterozygous germline DICER1 mutation. In this subset, the DICER1 germline mutation status was not related to the outcome. Conclusion Cystic type I/Ir PPB has a better prognosis than type II, and type II has a better outcome than type III. Surveillance of DICER1 carriers may allow the earlier detection of cystic PPB before its progression to type II or III PPB and thereby improve outcomes. PMID:25209242

  20. Detection of genomic variation by selection of a 9 mb DNA region and high throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Sergey I Nikolaev

    Full Text Available Detection of the rare polymorphisms and causative mutations of genetic diseases in a targeted genomic area has become a major goal in order to understand genomic and phenotypic variability. We have interrogated repeat-masked regions of 8.9 Mb on human chromosomes 21 (7.8 Mb and 7 (1.1 Mb from an individual from the International HapMap Project (NA12872. We have optimized a method of genomic selection for high throughput sequencing. Microarray-based selection and sequencing resulted in 260-fold enrichment, with 41% of reads mapping to the target region. 83% of SNPs in the targeted region had at least 4-fold sequence coverage and 54% at least 15-fold. When assaying HapMap SNPs in NA12872, our sequence genotypes are 91.3% concordant in regions with coverage > or = 4-fold, and 97.9% concordant in regions with coverage > or = 15-fold. About 81% of the SNPs recovered with both thresholds are listed in dbSNP. We observed that regions with low sequence coverage occur in close proximity to low-complexity DNA. Validation experiments using Sanger sequencing were performed for 46 SNPs with 15-20 fold coverage, with a confirmation rate of 96%, suggesting that DNA selection provides an accurate and cost-effective method for identifying rare genomic variants.

  1. Inferring short-range linkage information from sequencing chromatograms.

    Directory of Open Access Journals (Sweden)

    Bastian Beggel

    Full Text Available Direct Sanger sequencing of viral genome populations yields multiple ambiguous sequence positions. It is not straightforward to derive linkage information from sequencing chromatograms, which in turn hampers the correct interpretation of the sequence data. We present a method for determining the variants existing in a viral quasispecies in the case of two nearby ambiguous sequence positions by exploiting the effect of sequence context-dependent incorporation of dideoxynucleotides. The computational model was trained on data from sequencing chromatograms of clonal variants and was evaluated on two test sets of in vitro mixtures. The approach achieved high accuracies in identifying the mixture components of 97.4% on a test set in which the positions to be analyzed are only one base apart from each other, and of 84.5% on a test set in which the ambiguous positions are separated by three bases. In silico experiments suggest two major limitations of our approach in terms of accuracy. First, due to a basic limitation of Sanger sequencing, it is not possible to reliably detect minor variants with a relative frequency of no more than 10%. Second, the model cannot distinguish between mixtures of two or four clonal variants, if one of two sets of linear constraints is fulfilled. Furthermore, the approach requires repetitive sequencing of all variants that might be present in the mixture to be analyzed. Nevertheless, the effectiveness of our method on the two in vitro test sets shows that short-range linkage information of two ambiguous sequence positions can be inferred from Sanger sequencing chromatograms without any further assumptions on the mixture composition. Additionally, our model provides new insights into the established and widely used Sanger sequencing technology. The source code of our method is made available at http://bioinf.mpi-inf.mpg.de/publications/beggel/linkageinformation.zip.

  2. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers

    DEFF Research Database (Denmark)

    Varshney, Rajeev K.; Chen, Wenbin; Li, Yupeng;

    2012-01-01

    Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences...

  3. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences

    NARCIS (Netherlands)

    Poortvliet, Marloes; Olsen, Jeanine; Croll, Donald A.; Bernardi, Giacomo; Newton, Kelly; Kollias, Spyros; O'Sullivan, John; Fernando, Daniel; Stevens, Guy; Galván Magaña, Felipe; Seret, Bernard; Wintner, Sabine; Hoarau, Galice

    2015-01-01

    Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mit

  4. Charcot-Marie-Tooth disease: The development of a diagnostic platform using next generation sequencing

    DEFF Research Database (Denmark)

    Christensen, Rikke; Væth, Signe; Thorsen, Kasper

    Background: Charcot-Marie-Tooth Disease (CMT) is one of the most common inherited neurological diseases. Today, more than 70 CMT related genes are known to cause inherited neuropathy. The diagnostic strategy in most laboratories is based on Sanger-sequencing of few genes. In our patient cohort...... previously analyzed using Sanger sequencing without identification of a disease causing mutation. Materials and Methods: Libraries for 200 patient samples obtained for CMT diagnostics were prepared using Illumina Truseq and target enrichment using SeqCap EZ Choise Library (Nimblegen). The libraries were...

  5. DEVELOPMENT OF NEW SEQUENCING TECHNOLOGIES AND THEIR APPLICATION IN GENOME ANALYSIS OF DOMESTIC ANIMALS

    Directory of Open Access Journals (Sweden)

    Kristina Gvozdanović

    2015-12-01

    Full Text Available Sequencing and detailed study of the genom of domestic animals began in the middle of the last century. It was primarily referred to development of the first generation sequencing methods, i.e. Sanger sequencing method. Next generation sequencing methods are currently the most common methods in the analysis of domestic animals genom. The application of these methods gave us up to 100 time more data in comparison with Sanger method. Analyses including RNA sequencing, genotyping of whole genome, immunoprecipitation associated with DNA microarrays, detection ofmutations and inherited diseases, sequencing ofthemitochondrial genome and many others have been conducted with development and application of new sequencing methods since 2005 until today. Application of new sequencing methods in the analysis ofdomestic animal genome provides better understanding of the genetic basis for important production traits which could help in improving the livestock production.

  6. Detection of the cytochrome b mutation G143A in Irish Rhynchosporium commune populations using targeted 454 sequencing.

    Science.gov (United States)

    Phelan, Sinead; Barthe, Marie-Sophie; Tobie, Camille; Kildea, Steven

    2017-06-01

    Rhynchosporium commune is a major fungal pathogen of barley crops, and the application of fungicides, such as quinone outside inhibitors (QoIs), plays an important role in crop disease control. The genetic mechanisms linked to QoI resistance have been identified in the cytochrome b gene, with QoI resistance conferred by the G143A substitution. The objective of this study was to develop a high-throughput molecular assay to detect and identify mutations associated with QoI resistance within the Irish R. commune population. Leaf lesions of R. commune sampled from 74 sites during 2009-2014 and isolates from 2006 and 2007 were screened for non-synonymous mutations of the cytochrome b gene using 454 targeted sequencing. The presence of the G143A substitution was confirmed in R. commune samples at one site in 2013 and at four sites in 2014; however, the frequency of the substitution in these samples was low (2-18%). The 454 sequencing results were confirmed by PCR-RFLP and Sanger sequencing. The molecular assay that has been applied to this monitoring programme has shown that the application of 454 next-generation sequencing offers the potential for high throughput and accurate characterisation of non-synonymous mutations associated with fungicide resistance in a crop pathogen. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Wolbachia Sequence Typing in Butterflies Using Pyrosequencing.

    Science.gov (United States)

    Choi, Sungmi; Shin, Su-Kyoung; Jeong, Gilsang; Yi, Hana

    2015-09-01

    Wolbachia is an obligate symbiotic bacteria that is ubiquitous in arthropods, with 25-70% of insect species estimated to be infected. Wolbachia species can interact with their insect hosts in a mutualistic or parasitic manner. Sequence types (ST) of Wolbachia are determined by multilocus sequence typing (MLST) of housekeeping genes. However, there are some limitations to MLST with respect to the generation of clone libraries and the Sanger sequencing method when a host is infected with multiple STs of Wolbachia. To assess the feasibility of massive parallel sequencing, also known as next-generation sequencing, we used pyrosequencing for sequence typing of Wolbachia in butterflies. We collected three species of butterflies (Eurema hecabe, Eurema laeta, and Tongeia fischeri) common to Korea and screened them for Wolbachia STs. We found that T. fischeri was infected with a single ST of Wolbachia, ST41. In contrast, E. hecabe and E. laeta were each infected with two STs of Wolbachia, ST41 and ST40. Our results clearly demonstrate that pyrosequencing-based MLST has a higher sensitivity than cloning and Sanger sequencing methods for the detection of minor alleles. Considering the high prevalence of infection with multiple Wolbachia STs, next-generation sequencing with improved analysis would assist with scaling up approaches to Wolbachia MLST.

  8. Identification of Genetic Alterations, as Causative Genetic Defects in Long QT Syndrome, Using Next Generation Sequencing Technology.

    Directory of Open Access Journals (Sweden)

    Oscar Campuzano

    Full Text Available Long QT Syndrome is an inherited channelopathy leading to sudden cardiac death due to ventricular arrhythmias. Despite that several genes have been associated with the disease, nearly 20% of cases remain without an identified genetic cause. Other genetic alterations such as copy number variations have been recently related to Long QT Syndrome. Our aim was to take advantage of current genetic technologies in a family affected by Long QT Syndrome in order to identify the cause of the disease.Complete clinical evaluation was performed in all family members. In the index case, a Next Generation Sequencing custom-built panel, including 55 sudden cardiac death-related genes, was used both for detection of sequence and copy number variants. Next Generation Sequencing variants were confirmed by Sanger method. Copy number variations variants were confirmed by Multiplex Ligation dependent Probe Amplification method and at the mRNA level. Confirmed variants and copy number variations identified in the index case were also analyzed in relatives.In the index case, Next Generation Sequencing revealed a novel variant in TTN and a large deletion in KCNQ1, involving exons 7 and 8. Both variants were confirmed by alternative techniques. The mother and the brother of the index case were also affected by Long QT Syndrome, and family cosegregation was observed for the KCNQ1 deletion, but not for the TTN variant.Next Generation Sequencing technology allows a comprehensive genetic analysis of arrhythmogenic diseases. We report a copy number variation identified using Next Generation Sequencing analysis in Long QT Syndrome. Clinical and familiar correlation is crucial to elucidate the role of genetic variants identified to distinguish the pathogenic ones from genetic noise.

  9. The application of next-generation sequencing in the autozygosity mapping of human recessive diseases.

    Science.gov (United States)

    Alkuraya, Fowzan S

    2013-11-01

    Autozygosity, or the inheritance of two copies of an ancestral allele, has the potential to not only reveal phenotypes caused by biallelic mutations in autosomal recessive genes, but to also facilitate the mapping of such mutations by flagging the surrounding haplotypes as tractable runs of homozygosity (ROH), a process known as autozygosity mapping. Since SNPs replaced microsatellites as markers for the purpose of genomewide identification of ROH, autozygosity mapping of Mendelian genes has witnessed a significant acceleration. Historically, successful mapping traditionally required favorable family structure that permits the identification of an autozygous interval that is amenable to candidate gene selection and confirmation by Sanger sequencing. This requirement presented a major bottleneck that hindered the utilization of simplex cases and many multiplex families with autosomal recessive phenotypes. However, the advent of next-generation sequencing that enables massively parallel sequencing of DNA has largely bypassed this bottleneck and thus ushered in an era of unprecedented pace of Mendelian disease gene discovery. The ability to identify a single causal mutation among a massive number of variants that are uncovered by next-generation sequencing can be challenging, but applying autozygosity as a filter can greatly enhance the enrichment process and its throughput. This review will discuss the power of combining the best of both techniques in the mapping of recessive disease genes and offer some tips to troubleshoot potential limitations.

  10. Comparison of microarray-predicted closest genomes to sequencing for poliovirus vaccine strain similarity and influenza A phylogeny.

    Science.gov (United States)

    Maurer-Stroh, Sebastian; Lee, Charlie W H; Patel, Champa; Lucero, Marilla; Nohynek, Hanna; Sung, Wing-Kin; Murad, Chrysanti; Ma, Jianmin; Hibberd, Martin L; Wong, Christopher W; Simões, Eric A F

    2016-03-01

    We evaluate sequence data from the PathChip high-density hybridization array for epidemiological interpretation of detected pathogens. For influenza A, we derive similar relative outbreak clustering in phylogenetic trees from PathChip-derived compared to classical Sanger-derived sequences. For a positive polio detection, recent infection could be excluded based on vaccine strain similarity.

  11. Advantage of whole exome sequencing over allele-specific and targeted segment sequencing in detection of novel TULP1 mutation in leber congenital amaurosis

    DEFF Research Database (Denmark)

    Guo, Yiran; Prokudin, Ivan; Yu, Cong

    2015-01-01

    Background: Leber congenital amaurosis (LCA) is a severe form of retinal dystrophy with marked underlying genetic heterogeneity. Until recently, allele-specific assays and Sanger sequencing of targeted segments were the only available approaches for attempted genetic diagnosis in this condition. ...

  12. [A safe an easy method for building consensus HIV sequences from 454 massively parallel sequencing data].

    Science.gov (United States)

    Fernández-Caballero Rico, Jose Ángel; Chueca Porcuna, Natalia; Álvarez Estévez, Marta; Mosquera Gutiérrez, María Del Mar; Marcos Maeso, María Ángeles; García, Federico

    2016-10-03

    To show how to generate a consensus sequence from the information of massive parallel sequences data obtained from routine HIV anti-retroviral resistance studies, and that may be suitable for molecular epidemiology studies. Paired Sanger (Trugene-Siemens) and next-generation sequencing (NGS) (454 GSJunior-Roche) HIV RT and protease sequences from 62 patients were studied. NGS consensus sequences were generated using Mesquite, using 10%, 15%, and 20% thresholds. Molecular evolutionary genetics analysis (MEGA) was used for phylogenetic studies. At a 10% threshold, NGS-Sanger sequences from 17/62 patients were phylogenetically related, with a median bootstrap-value of 88% (IQR83.5-95.5). Association increased to 36/62 sequences, median bootstrap 94% (IQR85.5-98)], using a 15% threshold. Maximum association was at the 20% threshold, with 61/62 sequences associated, and a median bootstrap value of 99% (IQR98-100). A safe method is presented to generate consensus sequences from HIV-NGS data at 20% threshold, which will prove useful for molecular epidemiological studies. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  13. Performance Characteristics and Validation of Next-Generation Sequencing for Human Leucocyte Antigen Typing.

    Science.gov (United States)

    Weimer, Eric T; Montgomery, Maureen; Petraroia, Rosanne; Crawford, John; Schmitz, John L

    2016-09-01

    High-resolution human leukocyte antigen (HLA) matching reduces graft-versus-host disease and improves overall patient survival after hematopoietic stem cell transplant. Sanger sequencing has been the gold standard for HLA typing since 1996. However, given the increasing number of new HLA alleles identified and the complexity of the HLA genes, clinical HLA typing by Sanger sequencing requires several rounds of additional testing to provide allele-level resolution. Although next-generation sequencing (NGS) is routinely used in molecular genetics, few clinical HLA laboratories use the technology. The performance characteristics of NGS HLA typing using TruSight HLA were determined using Sanger sequencing as the reference method. In total, 211 samples were analyzed with an overall accuracy of 99.8% (2954/2961) and 46 samples were analyzed for precision with 100% (368/368) reproducibility. Most discordant alleles were because of technical error rather than assay performance. More important, the ambiguity rate was 3.5% (103/2961). Seventy-four percentage of the ambiguities were within the DRB1 and DRB4 loci. HLA typing by NGS saves approximately $6000 per run when compared to Sanger sequencing. Thus, TruSight HLA assay enables high-throughput HLA typing with an accuracy, precision, ambiguity rate, and cost savings that should facilitate adoption of NGS technology in clinical HLA laboratories.

  14. Opinion Dynamics with Confirmation Bias

    CERN Document Server

    Allahverdyan, A E

    2014-01-01

    Background: Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science. Methodology/Principal Findings: We formulate a (non-Bayesian) model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect|when consecutively exposed to two opinions, the preferenc...

  15. Whole genome and exome sequencing of monozygotic twins with trisomy 21, discordant for a congenital heart defect and epilepsy.

    Directory of Open Access Journals (Sweden)

    Pongsathorn Chaiyasap

    Full Text Available Congenital heart defects (CHD occur in 40% of patients with trisomy 21, while the other 60% have a structurally normal heart. This suggests that the increased dosage of genes on chromosome 21 is a risk factor for abnormal heart development. Interaction of genes on chromosome 21 or their gene products with certain alleles of genes on other chromosomes could contribute to CHD. Here, we identified a pair of monozygotic twins with trisomy 21 but discordant for a ventricular septal defect and epilepsy. Twin-zygosity was confirmed by microsatellite genotyping. We hypothesized that some genetic differences from post-twinning mutations caused the discordant phenotypes. Thus, next generation sequencing (NGS technologies were applied to sequence both whole genome and exome of their leukocytes. The post-analyses of the sequencing data revealed 21 putative discordant exonic variants between the twins from either genome or exome data. However, of the 15 variants chosen for validation with conventional Sanger sequencing, these candidate variants showed no differences in both twins. The fact that no discordant DNA variants were found suggests that sequence differences of DNA from leukocytes of monozygotic twins might be extremely rare. It also emphasizes the limitation of the current NGS technology in identifying causative genes for discordant phenotypes in monozygotic twins.

  16. Performance Confirmation Data Aquisition System

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Markman

    2000-10-27

    The purpose of this analysis is to identify and analyze concepts for the acquisition of data in support of the Performance Confirmation (PC) program at the potential subsurface nuclear waste repository at Yucca Mountain. The scope and primary objectives of this analysis are to: (1) Review the criteria for design as presented in the Performance Confirmation Data Acquisition/Monitoring System Description Document, by way of the Input Transmittal, Performance Confirmation Input Criteria (CRWMS M&O 1999c). (2) Identify and describe existing and potential new trends in data acquisition system software and hardware that would support the PC plan. The data acquisition software and hardware will support the field instruments and equipment that will be installed for the observation and perimeter drift borehole monitoring, and in-situ monitoring within the emplacement drifts. The exhaust air monitoring requirements will be supported by a data communication network interface with the ventilation monitoring system database. (3) Identify the concepts and features that a data acquisition system should have in order to support the PC process and its activities. (4) Based on PC monitoring needs and available technologies, further develop concepts of a potential data acquisition system network in support of the PC program and the Site Recommendation and License Application.

  17. Opinion dynamics with confirmation bias.

    Science.gov (United States)

    Allahverdyan, Armen E; Galstyan, Aram

    2014-01-01

    Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science. We formulate a (non-Bayesian) model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect-when consecutively exposed to two opinions, the preference is given to the last opinion (recency) or the first opinion (primacy) -and relates recency to confirmation bias. Finally, we study the model in the case of repeated persuasion and analyze its convergence properties. The standard Bayesian approach to probabilistic opinion revision is inadequate for describing the observed phenomenology of persuasion process. The simple non-Bayesian model proposed here does agree with this phenomenology and is capable of reproducing a spectrum of effects observed in psychology: primacy-recency phenomenon, boomerang effect and cognitive dissonance. We point out several limitations of the model that should motivate its future development.

  18. Opinion dynamics with confirmation bias.

    Directory of Open Access Journals (Sweden)

    Armen E Allahverdyan

    Full Text Available Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science.We formulate a (non-Bayesian model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect-when consecutively exposed to two opinions, the preference is given to the last opinion (recency or the first opinion (primacy -and relates recency to confirmation bias. Finally, we study the model in the case of repeated persuasion and analyze its convergence properties.The standard Bayesian approach to probabilistic opinion revision is inadequate for describing the observed phenomenology of persuasion process. The simple non-Bayesian model proposed here does agree with this phenomenology and is capable of reproducing a spectrum of effects observed in psychology: primacy-recency phenomenon, boomerang effect and cognitive dissonance. We point out several limitations of the model that should motivate its future development.

  19. Use of whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis during an outbreak.

    Directory of Open Access Journals (Sweden)

    Midori Kato-Maeda

    Full Text Available RATIONALE: Current tools available to study the molecular epidemiology of tuberculosis do not provide information about the directionality and sequence of transmission for tuberculosis cases occurring over a short period of time, such as during an outbreak. Recently, whole genome sequencing has been used to study molecular epidemiology of Mycobacterium tuberculosis over short time periods. OBJECTIVE: To describe the microevolution of M. tuberculosis during an outbreak caused by one drug-susceptible strain. METHOD AND MEASUREMENTS: We included 9 patients with tuberculosis diagnosed during a period of 22 months, from a population-based study of the molecular epidemiology in San Francisco. Whole genome sequencing was performed using Illumina's sequencing by synthesis technology. A custom program written in Python was used to determine single nucleotide polymorphisms which were confirmed by PCR product Sanger sequencing. MAIN RESULTS: We obtained an average of 95.7% (94.1-96.9% coverage for each isolate and an average fold read depth of 73 (1 to 250. We found 7 single nucleotide polymorphisms among the 9 isolates. The single nucleotide polymorphisms data confirmed all except one known epidemiological link. The outbreak strain resulted in 5 bacterial variants originating from the index case A1 with 0-2 mutations per transmission event that resulted in a secondary case. CONCLUSIONS: Whole genome sequencing analysis from a recent outbreak of tuberculosis enabled us to identify microevolutionary events observable during transmission, to determine 0-2 single nucleotide polymorphisms per transmission event that resulted in a secondary case, and to identify new epidemiologic links in the chain of transmission.

  20. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    Science.gov (United States)

    Bertolini, Francesca; Ghionda, Marco Ciro; D'Alessandro, Enrico; Geraci, Claudia; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.

  1. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    Directory of Open Access Journals (Sweden)

    Francesca Bertolini

    Full Text Available The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43% in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97 and lower for avian species (0.70. PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.

  2. Combined Targeted DNA Sequencing in Non-Small Cell Lung Cancer (NSCLC Using UNCseq and NGScopy, and RNA Sequencing Using UNCqeR for the Detection of Genetic Aberrations in NSCLC.

    Directory of Open Access Journals (Sweden)

    Xiaobei Zhao

    Full Text Available The recent FDA approval of the MiSeqDx platform provides a unique opportunity to develop targeted next generation sequencing (NGS panels for human disease, including cancer. We have developed a scalable, targeted panel-based assay termed UNCseq, which involves a NGS panel of over 200 cancer-associated genes and a standardized downstream bioinformatics pipeline for detection of single nucleotide variations (SNV as well as small insertions and deletions (indel. In addition, we developed a novel algorithm, NGScopy, designed for samples with sparse sequencing coverage to detect large-scale copy number variations (CNV, similar to human SNP Array 6.0 as well as small-scale intragenic CNV. Overall, we applied this assay to 100 snap-frozen lung cancer specimens lacking same-patient germline DNA (07-0120 tissue cohort and validated our results against Sanger sequencing, SNP Array, and our recently published integrated DNA-seq/RNA-seq assay, UNCqeR, where RNA-seq of same-patient tumor specimens confirmed SNV detected by DNA-seq, if RNA-seq coverage depth was adequate. In addition, we applied the UNCseq assay on an independent lung cancer tumor tissue collection with available same-patient germline DNA (11-1115 tissue cohort and confirmed mutations using assays performed in a CLIA-certified laboratory. We conclude that UNCseq can identify SNV, indel, and CNV in tumor specimens lacking germline DNA in a cost-efficient fashion.

  3. Opinion Dynamics with Confirmation Bias

    Science.gov (United States)

    Allahverdyan, Armen E.; Galstyan, Aram

    2014-01-01

    Background Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science. Methodology/Principal Findings We formulate a (non-Bayesian) model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect–when consecutively exposed to two opinions, the preference is given to the last opinion (recency) or the first opinion (primacy) –and relates recency to confirmation bias. Finally, we study the model in the case of repeated persuasion and analyze its convergence properties. Conclusions The standard Bayesian approach to probabilistic opinion revision is inadequate for describing the observed phenomenology of persuasion process. The simple non-Bayesian model proposed here does agree with this phenomenology and is capable of reproducing a spectrum of effects observed in psychology: primacy-recency phenomenon, boomerang effect and cognitive dissonance. We point out several limitations of the model that should motivate its future development. PMID:25007078

  4. Model confirmation in climate economics.

    Science.gov (United States)

    Millner, Antony; McDermott, Thomas K J

    2016-08-01

    Benefit-cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth-one of its most important economic components-had questionable predictive power over the 20th century.

  5. Confirmation of shutdown cooling effects

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kotaro, E-mail: ksato@nelted.co.jp; Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro [Nuclear Engineering, Limited, 1-3-7 Tosabori Nishi-ku, Osaka-shi, Osaka 550-0001 (Japan)

    2015-12-31

    After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO{sub 2} fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO{sub 2} and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.

  6. Identification of Novel and Recurrent Disease-Causing Mutations in Retinal Dystrophies Using Whole Exome Sequencing (WES: Benefits and Limitations.

    Directory of Open Access Journals (Sweden)

    Amit Tiwari

    Full Text Available Inherited retinal dystrophies (IRDs are Mendelian diseases with tremendous genetic and phenotypic heterogeneity. Identification of the underlying genetic basis of these dystrophies is therefore challenging. In this study we employed whole exome sequencing (WES in 11 families with IRDs and identified disease-causing variants in 8 of them. Sequence analysis of about 250 IRD-associated genes revealed 3 previously reported disease-associated variants in RHO, BEST1 and RP1. We further identified 5 novel pathogenic variants in RPGRIP1 (p.Ser964Profs*37, PRPF8 (p.Tyr2334Leufs*51, CDHR1 (p.Pro133Arg and c.439-17G>A and PRPF31 (p.Glu183_Met193dup. In addition to confirming the power of WES in genetic diagnosis of IRDs, we document challenges in data analysis and show cases where the underlying genetic causes of IRDs were missed by WES and required additional techniques. For example, the mutation c.439-17G>A in CDHR1 would be rated unlikely applying the standard WES analysis. Only transcript analysis in patient fibroblasts confirmed the pathogenic nature of this variant that affected splicing of CDHR1 by activating a cryptic splice-acceptor site. In another example, a 33-base pair duplication in PRPF31 missed by WES could be identified only via targeted analysis by Sanger sequencing. We discuss the advantages and challenges of using WES to identify mutations in heterogeneous diseases like IRDs.

  7. Genome and exome sequencing in the clinic: unbiased genomic approaches with a high diagnostic yield

    NARCIS (Netherlands)

    Nelen, M.; Veltman, J.A.

    2012-01-01

    For the reasons discussed here, we think whole-genome- or exome-based approaches are currently most suited for diagnostic implementation in genetically heterogeneous diseases, initially to complement and later to replace Sanger sequencing, qPCR and genomic microarrays. Patients do need to be counsel

  8. Complete genome sequence of a novel Plum pox virus strain W isolate determined by 454 pyrosequencing.

    Science.gov (United States)

    Sheveleva, Anna; Kudryavtseva, Anna; Speranskaya, Anna; Belenikin, Maxim; Melnikova, Natalia; Chirkov, Sergei

    2013-10-01

    The near-complete (99.7 %) genome sequence of a novel Russian Plum pox virus (PPV) isolate Pk, belonging to the strain Winona (W), has been determined by 454 pyrosequencing with the exception of the thirty-one 5'-terminal nucleotides. This region was amplified using 5'RACE kit and sequenced by the Sanger method. Genomic RNA released from immunocaptured PPV particles was employed for generation of cDNA library using TransPlex Whole transcriptome amplification kit (WTA2, Sigma-Aldrich). The entire Pk genome has identity level of 92.8-94.5 % when compared to the complete nucleotide sequences of other PPV-W isolates (W3174, LV-141pl, LV-145bt, and UKR 44189), confirming a high degree of variability within the PPV-W strain. The isolates Pk and LV-141pl are most closely related. The Pk has been found in a wild plum (Prunus domestica) in a new region of Russia indicating widespread dissemination of the PPV-W strain in the European part of the former USSR.

  9. Genetic profile for suspected dysferlinopathy identified by targeted next-generation sequencing

    Science.gov (United States)

    Izumi, Rumiko; Niihori, Tetsuya; Takahashi, Toshiaki; Suzuki, Naoki; Tateyama, Maki; Watanabe, Chigusa; Sugie, Kazuma; Nakanishi, Hirotaka; Sobue, Gen; Kato, Masaaki; Warita, Hitoshi; Aoki, Yoko

    2015-01-01

    Objective: To investigate the genetic causes of suspected dysferlinopathy and to reveal the genetic profile for myopathies with dysferlin deficiency. Methods: Using next-generation sequencing, we analyzed 42 myopathy-associated genes, including DYSF, in 64 patients who were clinically or pathologically suspected of having dysferlinopathy. Putative pathogenic mutations were confirmed by Sanger sequencing. In addition, copy-number variations in DYSF were investigated using multiplex ligation-dependent probe amplification. We also analyzed the genetic profile for 90 patients with myopathy with dysferlin deficiency, as indicated by muscle specimen immunohistochemistry, including patients from a previous cohort. Results: We identified putative pathogenic mutations in 38 patients (59% of all investigated patients). Twenty-three patients had DYSF mutations, including 6 novel mutations. The remaining 16 patients, including a single patient who also carried the DYSF mutation, harbored putative pathogenic mutations in other genes. The genetic profile for 90 patients with dysferlin deficiency revealed that 70% had DYSF mutations (n = 63), 10% had CAPN3 mutations (n = 9), 2% had CAV3 mutations (n = 2), 3% had mutations in other genes (in single patients), and 16% did not have any identified mutations (n = 14). Conclusions: This study clarified the heterogeneous genetic profile for myopathies with dysferlin deficiency. Our results demonstrate the importance of a comprehensive analysis of related genes in improving the genetic diagnosis of dysferlinopathy as one of the most common subtypes of limb-girdle muscular dystrophy. Unresolved diagnoses should be investigated using whole-genome or whole-exome sequencing. PMID:27066573

  10. Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2.

    Science.gov (United States)

    Maksemous, Neven; Roy, Bishakha; Smith, Robert A; Griffiths, Lyn R

    2016-03-01

    Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo, and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type 1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilized next-generation sequencing (NGS) to screen the coding sequence, exon-intron boundaries, and Untranslated Regions (UTRs) of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which nine were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening.

  11. Modeling confirmation bias and polarization

    CERN Document Server

    Del Vicario, Michela; Caldarelli, Guido; Stanley, H Eugene; Quattrociocchi, Walter

    2016-01-01

    Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide availability of content on the web fosters the aggregation of likeminded people where debates tend to enforce group polarization. Such a configuration might alter the public debate and thus the formation of the public opinion. In this paper we provide a mathematical model to study online social debates and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, under which the interaction among discordant pairs of users is allowed even with a negative feedback, either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that the new models (UCM...

  12. Genetic diagnosis of autosomal dominant polycystic kidney disease by targeted capture and next-generation sequencing: utility and limitations.

    Science.gov (United States)

    Qi, Xiao-Ping; Du, Zhen-Fang; Ma, Ju-Ming; Chen, Xiao-Ling; Zhang, Qing; Fei, Jun; Wei, Xiao-Ming; Chen, Dong; Ke, Hai-Ping; Liu, Xuan-Zhu; Li, Feng; Chen, Zhen-Guang; Su, Zheng; Jin, Hang-Yang; Liu, Wen-Ting; Zhao, Yan; Jiang, Hu-Ling; Lan, Zhang-Zhang; Li, Peng-Fei; Fang, Ming-Yan; Dong, Wei; Zhang, Xian-Ning

    2013-03-01

    Mutation-based molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) is complicated by genetic and allelic heterogeneity, large multi-exon genes, and duplication sequences of PKD1. Recently, targeted resequencing by pooling long-range polymerase chain reaction (LR-PCR) amplicons has been used in the identification of mutations in ADPKD. Despite its high sensitivity, specificity and accuracy, LR-PCR is still complicated. We performed whole-exome sequencing on two unrelated typical Chinese ADPKD probands and evaluated the effectiveness of this approach compared with Sanger sequencing. Meanwhile, we performed targeted gene and next-generation sequencing (targeted DNA-HiSeq) on 8 individuals (1 patient from one family, 5 patients and 2 normal individuals from another family). Both whole-exome sequencing and targeted DNA-HiSeq confirmed c.11364delC (p.H3788QfsX37) within the unduplicated region of PKD1 in one proband; in the other family, targeted DNA-HiSeq identified a small insertion, c.401_402insG (p.V134VfsX79), in PKD2. These methods do not overcome the screening complexity of homology. However, the true positives of variants confirmed by targeted gene and next-generation sequencing were 69.4%, 50% and 100% without a false positive in the whole coding region and the duplicated and unduplicated regions, which indicated that the screening accuracy of PKD1 and PKD2 can be largely improved by using a greater sequencing depth and elaborate design of the capture probe.

  13. Combinatorial analysis and algorithms for quasispecies reconstruction using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Vincenti Donatella

    2011-01-01

    Full Text Available Abstract Background Next-generation sequencing (NGS offers a unique opportunity for high-throughput genomics and has potential to replace Sanger sequencing in many fields, including de-novo sequencing, re-sequencing, meta-genomics, and characterisation of infectious pathogens, such as viral quasispecies. Although methodologies and software for whole genome assembly and genome variation analysis have been developed and refined for NGS data, reconstructing a viral quasispecies using NGS data remains a challenge. This application would be useful for analysing intra-host evolutionary pathways in relation to immune responses and antiretroviral therapy exposures. Here we introduce a set of formulae for the combinatorial analysis of a quasispecies, given a NGS re-sequencing experiment and an algorithm for quasispecies reconstruction. We require that sequenced fragments are aligned against a reference genome, and that the reference genome is partitioned into a set of sliding windows (amplicons. The reconstruction algorithm is based on combinations of multinomial distributions and is designed to minimise the reconstruction of false variants, called in-silico recombinants. Results The reconstruction algorithm was applied to error-free simulated data and reconstructed a high percentage of true variants, even at a low genetic diversity, where the chance to obtain in-silico recombinants is high. Results on empirical NGS data from patients infected with hepatitis B virus, confirmed its ability to characterise different viral variants from distinct patients. Conclusions The combinatorial analysis provided a description of the difficulty to reconstruct a quasispecies, given a determined amplicon partition and a measure of population diversity. The reconstruction algorithm showed good performance both considering simulated data and real data, even in presence of sequencing errors.

  14. Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy.

    Science.gov (United States)

    Couthouis, Julien; Raphael, Alya R; Siskind, Carly; Findlay, Andrew R; Buenrostro, Jason D; Greenleaf, William J; Vogel, Hannes; Day, John W; Flanigan, Kevin M; Gitler, Aaron D

    2014-05-01

    Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D.

  15. Modeling confirmation bias and polarization

    Science.gov (United States)

    Del Vicario, Michela; Scala, Antonio; Caldarelli, Guido; Stanley, H. Eugene; Quattrociocchi, Walter

    2017-01-01

    Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide availability of content on the web fosters the aggregation of likeminded people where debates tend to enforce group polarization. Such a configuration might alter the public debate and thus the formation of the public opinion. In this paper we provide a mathematical model to study online social debates and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, under which the interaction among discordant pairs of users is allowed even with a negative feedback, either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that the new models (UCM and RUCM), unlike the BCM, are able to explain the coexistence of two stable final opinions, often observed in reality. Lastly, we present a mean field approximation of the newly introduced models. PMID:28074874

  16. Modeling confirmation bias and polarization

    Science.gov (United States)

    Del Vicario, Michela; Scala, Antonio; Caldarelli, Guido; Stanley, H. Eugene; Quattrociocchi, Walter

    2017-01-01

    Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide availability of content on the web fosters the aggregation of likeminded people where debates tend to enforce group polarization. Such a configuration might alter the public debate and thus the formation of the public opinion. In this paper we provide a mathematical model to study online social debates and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, under which the interaction among discordant pairs of users is allowed even with a negative feedback, either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that the new models (UCM and RUCM), unlike the BCM, are able to explain the coexistence of two stable final opinions, often observed in reality. Lastly, we present a mean field approximation of the newly introduced models.

  17. Performance confirmation data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    McAffee, D.A.; Raczka, N.T. [Yucca Mountain Project, Las Vegas, NV (United States)

    1997-12-31

    As part of the Viability Assessment (VA) work, this QAP-3-9 document presents and evaluates a comprehensive set of viable concepts for collecting Performance Confirmation (PC) related data. The concepts include: monitoring subsurface repository air temperatures, humidity levels and gaseous emissions via the subsurface ventilation systems, and monitoring the repository geo-technical parameters and rock mass from bore-holes located along the perimeter main drifts and throughout a series of human-rated Observation Drifts to be located in a plane 25 meters above the plane of the emplacement drifts. A key element of this document is the development and analysis of a purposed multi-purpose Remote Inspection Gantry that would provide direct, real-time visual, thermal, and radiological monitoring of conditions inside operational emplacement drifts and close-up observations of in-situ Waste Packages. Preliminary finite-element analyses are presented that indicate the technological feasibility of operating an inspection gantry inside the operational emplacement drifts for short inspection missions lasting 2--3 hours. Overall reliability, availability, and maintainability of the PC data collection concepts are discussed. Preliminary concepts for PC data collection network are also provided.

  18. The genetic basis of DOORS syndrome: an exome-sequencing study

    Science.gov (United States)

    Campeau, Philippe M; Kasperaviciute, Dalia; Lu, James T; Burrage, Lindsay C; Kim, Choel; Hori, Mutsuki; Powell, Berkley R; Stewart, Fiona; Félix, Têmis Maria; van den Ende, Jenneke; Wisniewska, Marzena; Kayserili, Hülya; Rump, Patrick; Nampoothiri, Sheela; Aftimos, Salim; Mey, Antje; Nair, Lal D V; Begleiter, Michael L; De Bie, Isabelle; Meenakshi, Girish; Murray, Mitzi L; Repetto, Gabriela M; Golabi, Mahin; Blair, Edward; Male, Alison; Giuliano, Fabienne; Kariminejad, Ariana; Newman, William G; Bhaskar, Sanjeev S; Dickerson, Jonathan E; Kerr, Bronwyn; Banka, Siddharth; Giltay, Jacques C; Wieczorek, Dagmar; Tostevin, Anna; Wiszniewska, Joanna; Cheung, Sau Wai; Hennekam, Raoul C; Gibbs, Richard A; Lee, Brendan H; Sisodiya, Sanjay M

    2014-01-01

    Summary Background Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome is a rare autosomal recessive disorder of unknown cause. We aimed to identify the genetic basis of this syndrome by sequencing most coding exons in affected individuals. Methods Through a search of available case studies and communication with collaborators, we identified families that included at least one individual with at least three of the five main features of the DOORS syndrome: deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures. Participants were recruited from 26 centres in 17 countries. Families described in this study were enrolled between Dec 1, 2010, and March 1, 2013. Collaborating physicians enrolling participants obtained clinical information and DNA samples from the affected child and both parents if possible. We did whole-exome sequencing in affected individuals as they were enrolled, until we identified a candidate gene, and Sanger sequencing to confirm mutations. We did expression studies in human fibroblasts from one individual by real-time PCR and western blot analysis, and in mouse tissues by immunohistochemistry and real-time PCR. Findings 26 families were included in the study. We did exome sequencing in the first 17 enrolled families; we screened for TBC1D24 by Sanger sequencing in subsequent families. We identified TBC1D24 mutations in 11 individuals from nine families (by exome sequencing in seven families, and Sanger sequencing in two families). 18 families had individuals with all five main features of DOORS syndrome, and TBC1D24 mutations were identified in half of these families. The seizure types in individuals with TBC1D24 mutations included generalised tonic-clonic, complex partial, focal clonic, and infantile spasms. Of the 18 individuals with DOORS syndrome from 17 families without TBC1D24 mutations, eight did not have seizures and three did not have deafness. In expression studies, some

  19. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens.

    Science.gov (United States)

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-09-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content.

  20. Pleuropulmonary blastoma: a report on 350 central pathology-confirmed pleuropulmonary blastoma cases by the International Pleuropulmonary Blastoma Registry.

    Science.gov (United States)

    Messinger, Yoav H; Stewart, Douglas R; Priest, John R; Williams, Gretchen M; Harris, Anne K; Schultz, Kris Ann P; Yang, Jiandong; Doros, Leslie; Rosenberg, Philip S; Hill, D Ashley; Dehner, Louis P

    2015-01-15

    Pleuropulmonary blastoma (PPB) has 3 subtypes on a tumor progression pathway ranging from type I (cystic) to type II (cystic/solid) and type III (completely solid). A germline mutation in DICER1 is the genetic cause in the majority of PPB cases. Patients confirmed to have PPB by central pathology review were included, and their clinical characteristics and outcomes were reported. Germline DICER1 mutations were sought with Sanger sequencing. There were 435 cases, and a central review confirmed 350 cases to be PPB; 85 cases (20%) were another entity. Thirty-three percent of the 350 PPB cases were type I or type I regressed (type Ir), 35% were type II, and 32% were type III or type II/III. The median ages at diagnosis for type I, type II, and type III patients were 8, 35, and 41 months, respectively. The 5-year overall survival (OS) rate for type I/Ir patients was 91%; all deaths in this group were due to progression to type II or III. OS was significantly better for type II versus type III (P = .0061); the 5-year OS rates were 71% and 53%, respectively. Disease-free survival (DFS) was also significantly better for type II versus type III (P = .0002); the 5-year DFS rates were 59% and 37%, respectively. The PPB type was the strongest predictor of outcome. Metastatic disease at the diagnosis of types II and III was also an independent unfavorable prognostic factor. Sixty-six percent of the 97 patients tested had a heterozygous germline DICER1 mutation. In this subset, the DICER1 germline mutation status was not related to the outcome. Cystic type I/Ir PPB has a better prognosis than type II, and type II has a better outcome than type III. Surveillance of DICER1 carriers may allow the earlier detection of cystic PPB before its progression to type II or III PPB and thereby improve outcomes. © 2014 American Cancer Society.

  1. Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death.

    Science.gov (United States)

    Zaragoza, Michael V; Fung, Lianna; Jensen, Ember; Oh, Frances; Cung, Katherine; McCarthy, Linda A; Tran, Christine K; Hoang, Van; Hakim, Simin A; Grosberg, Anna

    2016-01-01

    The goals are to understand the primary genetic mechanisms that cause Sick Sinus Syndrome and to identify potential modifiers that may result in intrafamilial variability within a multigenerational family. The proband is a 63-year-old male with a family history of individuals (>10) with sinus node dysfunction, ventricular arrhythmia, cardiomyopathy, heart failure, and sudden death. We used exome sequencing of a single individual to identify a novel LMNA mutation and demonstrated the importance of Sanger validation and family studies when evaluating candidates. After initial single-gene studies were negative, we conducted exome sequencing for the proband which produced 9 gigabases of sequencing data. Bioinformatics analysis showed 94% of the reads mapped to the reference and identified 128,563 unique variants with 108,795 (85%) located in 16,319 genes of 19,056 target genes. We discovered multiple variants in known arrhythmia, cardiomyopathy, or ion channel associated genes that may serve as potential modifiers in disease expression. To identify candidate mutations, we focused on ~2,000 variants located in 237 genes of 283 known arrhythmia, cardiomyopathy, or ion channel associated genes. We filtered the candidates to 41 variants in 33 genes using zygosity, protein impact, database searches, and clinical association. Only 21 of 41 (51%) variants were validated by Sanger sequencing. We selected nine confirmed variants with minor allele frequencies G, a novel heterozygous splice-site mutation as the primary mutation with rare or novel variants in HCN4, MYBPC3, PKP4, TMPO, TTN, DMPK and KCNJ10 as potential modifiers and a mechanism consistent with haploinsufficiency.

  2. Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death.

    Directory of Open Access Journals (Sweden)

    Michael V Zaragoza

    Full Text Available The goals are to understand the primary genetic mechanisms that cause Sick Sinus Syndrome and to identify potential modifiers that may result in intrafamilial variability within a multigenerational family. The proband is a 63-year-old male with a family history of individuals (>10 with sinus node dysfunction, ventricular arrhythmia, cardiomyopathy, heart failure, and sudden death. We used exome sequencing of a single individual to identify a novel LMNA mutation and demonstrated the importance of Sanger validation and family studies when evaluating candidates. After initial single-gene studies were negative, we conducted exome sequencing for the proband which produced 9 gigabases of sequencing data. Bioinformatics analysis showed 94% of the reads mapped to the reference and identified 128,563 unique variants with 108,795 (85% located in 16,319 genes of 19,056 target genes. We discovered multiple variants in known arrhythmia, cardiomyopathy, or ion channel associated genes that may serve as potential modifiers in disease expression. To identify candidate mutations, we focused on ~2,000 variants located in 237 genes of 283 known arrhythmia, cardiomyopathy, or ion channel associated genes. We filtered the candidates to 41 variants in 33 genes using zygosity, protein impact, database searches, and clinical association. Only 21 of 41 (51% variants were validated by Sanger sequencing. We selected nine confirmed variants with minor allele frequencies G, a novel heterozygous splice-site mutation as the primary mutation with rare or novel variants in HCN4, MYBPC3, PKP4, TMPO, TTN, DMPK and KCNJ10 as potential modifiers and a mechanism consistent with haploinsufficiency.

  3. Authentication of Herbal Supplements Using Next-Generation Sequencing

    OpenAIRE

    Ivanova, Natalia V.; Kuzmina, Maria L.; Thomas W A Braukmann; Borisenko, Alex V.; Zakharov, Evgeny V.

    2016-01-01

    Background DNA-based testing has been gaining acceptance as a tool for authentication of a wide range of food products; however, its applicability for testing of herbal supplements remains contentious. Methods We utilized Sanger and Next-Generation Sequencing (NGS) for taxonomic authentication of fifteen herbal supplements representing three different producers from five medicinal plants: Echinacea purpurea, Valeriana officinalis, Ginkgo biloba, Hypericum perforatum and Trigonella foenum-grae...

  4. Separation and confirmation of showers

    Science.gov (United States)

    Neslušan, L.; Hajduková, M.

    2017-01-01

    Aims: Using IAU MDC photographic, IAU MDC CAMS video, SonotaCo video, and EDMOND video databases, we aim to separate all provable annual meteor showers from each of these databases. We intend to reveal the problems inherent in this procedure and answer the question whether the databases are complete and the methods of separation used are reliable. We aim to evaluate the statistical significance of each separated shower. In this respect, we intend to give a list of reliably separated showers rather than a list of the maximum possible number of showers. Methods: To separate the showers, we simultaneously used two methods. The use of two methods enables us to compare their results, and this can indicate the reliability of the methods. To evaluate the statistical significance, we suggest a new method based on the ideas of the break-point method. Results: We give a compilation of the showers from all four databases using both methods. Using the first (second) method, we separated 107 (133) showers, which are in at least one of the databases used. These relatively low numbers are a consequence of discarding any candidate shower with a poor statistical significance. Most of the separated showers were identified as meteor showers from the IAU MDC list of all showers. Many of them were identified as several of the showers in the list. This proves that many showers have been named multiple times with different names. Conclusions: At present, a prevailing share of existing annual showers can be found in the data and confirmed when we use a combination of results from large databases. However, to gain a complete list of showers, we need more-complete meteor databases than the most extensive databases currently are. We also still need a more sophisticated method to separate showers and evaluate their statistical significance. Tables A.1 and A.2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  5. Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy

    Directory of Open Access Journals (Sweden)

    Garcia-Mas Jordi

    2010-11-01

    Full Text Available Abstract Background Cucumis melo (melon belongs to the Cucurbitaceae family, whose economic importance among horticulture crops is second only to Solanaceae. Melon has a high intra-specific genetic variation, morphologic diversity and a small genome size (454 Mb, which make it suitable for a great variety of molecular and genetic studies. A number of genetic and genomic resources have already been developed, such as several genetic maps, BAC genomic libraries, a BAC-based physical map and EST collections. Sequence information would be invaluable to complete the picture of the melon genomic landscape, furthering our understanding of this species' evolution from its relatives and providing an important genetic tool. However, to this day there is little sequence data available, only a few melon genes and genomic regions are deposited in public databases. The development of massively parallel sequencing methods allows envisaging new strategies to obtain long fragments of genomic sequence at higher speed and lower cost than previous Sanger-based methods. Results In order to gain insight into the structure of a significant portion of the melon genome we set out to perform massive sequencing of pools of BAC clones. For this, a set of 57 BAC clones from a double haploid line was sequenced in two pools with the 454 system using both shotgun and paired-end approaches. The final assembly consists of an estimated 95% of the actual size of the melon BAC clones, with most likely complete sequences for 50 of the BACs, and a total sequence coverage of 39x. The accuracy of the assembly was assessed by comparing the previously available Sanger sequence of one of the BACs against its 454 sequence, and the polymorphisms found involved only 1.7 differences every 10,000 bp that were localized in 15 homopolymeric regions and two dinucleotide tandem repeats. Overall, the study provides approximately 6.7 Mb or 1.5% of the melon genome. The analysis of this new data has

  6. DNA Sequencing Diagnosis of Off-Season Spirochetemia with Low Bacterial Density in Borrelia burgdorferi and Borrelia miyamotoi Infections

    Directory of Open Access Journals (Sweden)

    Sin Hang Lee

    2014-06-01

    Full Text Available A highly conserved 357-bp segment of the 16S ribosomal RNA gene (16S rDNA of Borrelia burgdorferi sensu lato and the correspondent 358-bp segment of the Borrelia miyamotoi gene were amplified by a single pair of nested polymerase chain reaction (PCR primers for detection, and the amplicons were used as the templates for direct Sanger DNA sequencing. Reliable molecular diagnosis of these borreliae was confirmed by sequence alignment analysis of the hypervariable regions of the PCR amplicon, using the Basic Local Alignment Search Tool (BLAST provided by the GenBank. This methodology can detect and confirm B. burgdorferi and B. miyamotoi in blood samples of patients with off-season spirochetemia of low bacterial density. We found four B. miyamotoi infections among 14 patients with spirochetemia, including one patient co-infected by both B. miyamotoi and B. burgdorferi in a winter month when human exposure to tick bites is very limited in the Northeast of the U.S.A. We conclude that sensitive and reliable tests for these two Borrelia species should be implemented in the microbiology laboratory of hospitals located in the disease-endemic areas, for timely diagnosis and appropriate treatment of the patients at an early stage of the infection to prevent potential tissue damages.

  7. Mitochondrial DNA variant discovery and evaluation in human Cardiomyopathies through next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Michael V Zaragoza

    Full Text Available Mutations in mitochondrial DNA (mtDNA may cause maternally-inherited cardiomyopathy and heart failure. In homoplasmy all mtDNA copies contain the mutation. In heteroplasmy there is a mixture of normal and mutant copies of mtDNA. The clinical phenotype of an affected individual depends on the type of genetic defect and the ratios of mutant and normal mtDNA in affected tissues. We aimed at determining the sensitivity of next-generation sequencing compared to Sanger sequencing for mutation detection in patients with mitochondrial cardiomyopathy. We studied 18 patients with mitochondrial cardiomyopathy and two with suspected mitochondrial disease. We "shotgun" sequenced PCR-amplified mtDNA and multiplexed using a single run on Roche's 454 Genome Sequencer. By mapping to the reference sequence, we obtained 1,300x average coverage per case and identified high-confidence variants. By comparing these to >400 mtDNA substitution variants detected by Sanger, we found 98% concordance in variant detection. Simulation studies showed that >95% of the homoplasmic variants were detected at a minimum sequence coverage of 20x while heteroplasmic variants required >200x coverage. Several Sanger "misses" were detected by 454 sequencing. These included the novel heteroplasmic 7501T>C in tRNA serine 1 in a patient with sudden cardiac death. These results support a potential role of next-generation sequencing in the discovery of novel mtDNA variants with heteroplasmy below the level reliably detected with Sanger sequencing. We hope that this will assist in the identification of mtDNA mutations and key genetic determinants for cardiomyopathy and mitochondrial disease.

  8. Genomic libraries: II. Subcloning, sequencing, and assembling large-insert genomic DNA clones.

    Science.gov (United States)

    Quail, Mike A; Matthews, Lucy; Sims, Sarah; Lloyd, Christine; Beasley, Helen; Baxter, Simon W

    2011-01-01

    Sequencing large insert clones to completion is useful for characterizing specific genomic regions, identifying haplotypes, and closing gaps in whole genome sequencing projects. Despite being a standard technique in molecular laboratories, DNA sequencing using the Sanger method can be highly problematic when complex secondary structures or sequence repeats are encountered in genomic clones. Here, we describe methods to isolate DNA from a large insert clone (fosmid or BAC), subclone the sample, and sequence the region to the highest industry standard. Troubleshooting solutions for sequencing difficult templates are discussed.

  9. Quick genetic screening using targeted next-generation sequencing in patients with tuberous sclerosis.

    Science.gov (United States)

    Liu, Qing; Huang, Yan; Zhang, Mingrong; Wang, Lian Qing; Guo, Xia Nan; Si, Nuo; Qi, Zhan; Zhou, Xiang Qin; Cui, Li-ying

    2015-04-01

    Tuberous sclerosis complex is an autosomal dominant disorder characterized by hamartomas in multiple organ systems. Mutations in the 2 large genes TSC1 and TSC2 have been demonstrated to be associated with tuberous sclerosis complex by various mutation screening methods. Targeted next-generation sequencing for genetic analysis is performed in the current study and is proved to be less cost, labor, and time consuming compared with Sanger sequencing. Two de novo and 1 recurrent TSC2 mutation in patients with tuberous sclerosis complex were revealed. Clinical details of patients were described and the underlying mechanism of the 2 novel TSC2 mutations, c.245G>A(p.W82X) and c.5405_5408dupACTT(p.P1803Lfs*25), were discussed. These results added to variability of TSC mutation spectrum and suggest that targeted next-generation sequencing could be the primary choice over Sanger sequencing in future tuberous sclerosis complex genetic counseling.

  10. Identification of Korean-specific SNP markers from whole-exome sequencing data.

    Science.gov (United States)

    Kim, Sung Min; Yoo, Seong Yeon; Nam, Soo Hyun; Lee, Jae Moon; Chung, Ki Wha

    2016-05-01

    Analysis of large numbers of single-nucleotide polymorphisms (SNPs) can increase individual discrimination power, and, particularly, it can supply important evidence for kinship or ethnic identification. We identified 300 Korean-specific SNPs from 306 Korean whole-exome sequencing (WES) data. Functionally significant SNPs (variants in splicing site, missense, nonsense, and exonic indels) were filtered out from the variant pool, and SNPs with minor allele frequencies (MAFs) of 0.3 in the Korean population were selected. Genotypes obtained from WES were confirmed by the Sanger sequencing method. The identified markers were evenly distributed throughout the autosomal chromosomes. All the SNPs were in the Hardy-Weinberg equilibrium with a mean MAF of 0.415 (0.161 in 1000G). The mean heterozygosities were 0.476 (observed) and 0.470 (experimental). The combined power of discrimination was very high. Korean MAFs in most SNPs were similar to those for the Chinese and Japanese populations, but were significantly higher than those for several other ethnic populations. These selected SNPs will be used to develop forensic markers and are expected to be widely used for additional individual identification, ethnic discrimination, and linkage analysis for kinship tests.

  11. Transcriptome sequencing, and rapid development and application of SNP markers for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae)

    Science.gov (United States)

    The legume pod borer, Maruca vitrata (Lepidoptera: Crambidae), is an insect pest species that is destructive to crops grown by subsistence farmers in tropical regions of West Africa. We present the de novo assembly of 3729 contigs from 454- and Sanger-derived sequencing reads for midgut, salivary, ...

  12. Clinical utility of a next generation sequencing panel assay for Marfan and Marfan-like syndromes featuring aortopathy.

    Science.gov (United States)

    Wooderchak-Donahue, Whitney; VanSant-Webb, Chad; Tvrdik, Tatiana; Plant, Parker; Lewis, Tracey; Stocks, Jennifer; Raney, Joshua A; Meyers, Lindsay; Berg, Alizabeth; Rope, Alan F; Yetman, Anji T; Bleyl, Steven B; Mesley, Rebecca; Bull, David A; Collins, R Thomas; Ojeda, Mayra Martinez; Roberts, Amy; Lacro, Ronald; Woerner, Audrey; Stoler, Joan; Bayrak-Toydemir, Pinar

    2015-08-01

    Aortopathy can be defined as aortic dilation, aneurysm, dissection, and tortuosity. Familial aortopathy may occur secondary to fibrillin-1 (FBN1) mutations in the setting of Marfan syndrome, or may occur as a result of other genetic defects with different, but occasionally overlapping, phenotypes. Because of the phenotypic overlap and genetic heterogeneity of disorders featuring aortopathy, we developed a next generation sequencing (NGS) assay and comparative genomic hybridization (CGH) array to detect mutations in 10 genes that cause thoracic aortic aneurysms (TAAs). Here, we report on the clinical and molecular findings in 175 individuals submitted for aortopathy panel testing at ARUP laboratories. Ten genes associated with heritable aortopathies were targeted using hybridization capture prior to sequencing. NGS results were analyzed, and variants were confirmed using Sanger sequencing. Array CGH was used to detect copy-number variation. Of 175 individuals, 18 had a pathogenic mutation and 32 had a variant of uncertain significance (VUS). Most pathogenic mutations (72%) were identified in FBN1. A novel large SMAD3 duplication and FBN1 deletion were identified. Over half who had TAAs or other aortic involvement tested negative for a mutation, suggesting that additional aortopathy genes exist. We anticipate that the clinical sensitivity of at least 10.3% will rise with VUS reclassification and as additional genes are identified and included in the panel. The aortopathy NGS panel aids in the timely molecular diagnosis of individuals with disorders featuring aortopathy and guides proper treatment.

  13. Whole exome sequencing identifies a novel frameshift mutation in GPC3 gene in a patient with overgrowth syndrome.

    Science.gov (United States)

    Das Bhowmik, Aneek; Dalal, Ashwin

    2015-11-10

    Overgrowth syndromes are a heterogeneous group of diseases characterized by focal or generalized overgrowth. Many of the syndromes have overlapping clinical features and it is difficult to diagnose the condition based on clinical features alone. In the present study we report on a patient with overgrowth syndrome where extensive investigation did not reveal the cause of disease. Finally exome sequencing revealed a novel hemizygous single base pair deletion in exon 8 of GPC3 gene (chrX:132670203delA) resulting in a frameshift and creating a new stop codon at 62 amino acids downstream to codon 564 (c.1692delT; p.Leu565SerfsTer63) of the protein. The mutation was confirmed by Sanger sequencing. The mother was found to be heterozygous for the mutation. This variation is not reported in the 1000 Genomes, Exome Variant Server (EVS), Exome Aggregation Consortium (ExAC) and dbSNP databases and the region is conserved across primates. Exome sequencing was helpful in establishing diagnosis of Simpson-Golabi-Behmel syndrome type 1 (SGBS1) in a patient with unknown overgrowth syndrome.

  14. Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen.

    Science.gov (United States)

    Giacani, Lorenzo; Chattopadhyay, Sujay; Centurion-Lara, Arturo; Jeffrey, Brendan M; Le, Hoavan T; Molini, Barbara J; Lukehart, Sheila A; Sokurenko, Evgeni V; Rockey, Daniel D

    2012-01-01

    In the rabbit model of syphilis, infection phenotypes associated with the Nichols and Chicago strains of Treponema pallidum (T. pallidum), though similar, are not identical. Between these strains, significant differences are found in expression of, and antibody responses to some candidate virulence factors, suggesting the existence of functional genetic differences between isolates. The Chicago strain genome was therefore sequenced and compared to the Nichols genome, available since 1998. Initial comparative analysis suggested the presence of 44 single nucleotide polymorphisms (SNPs), 103 small (≤3 nucleotides) indels, and 1 large (1204 bp) insertion in the Chicago genome with respect to the Nichols genome. To confirm the above findings, Sanger sequencing was performed on most loci carrying differences using DNA from Chicago and the Nichols strain used in the original T. pallidum genome project. A majority of the previously identified differences were found to be due to errors in the published Nichols genome, while the accuracy of the Chicago genome was confirmed. However, 20 SNPs were confirmed between the two genomes, and 16 (80.0%) were found in coding regions, with all being of non-synonymous nature, strongly indicating action of positive selection. Sequencing of 16 genomic loci harboring SNPs in 12 additional T. pallidum strains, (SS14, Bal 3, Bal 7, Bal 9, Sea 81-3, Sea 81-8, Sea 86-1, Sea 87-1, Mexico A, UW231B, UW236B, and UW249C), was used to identify "Chicago-" or "Nichols -specific" differences. All but one of the 16 SNPs were "Nichols-specific", with Chicago having identical sequences at these positions to almost all of the additional strains examined. These mutations could reflect differential adaptation of the Nichols strain to the rabbit host or pathoadaptive mutations acquired during human infection. Our findings indicate that SNPs among T. pallidum strains emerge under positive selection and, therefore, are likely to be functional in nature.

  15. Nanopore DNA sequencing using kinetic proofreading

    Science.gov (United States)

    Ling, Xinsheng

    We propose a method of DNA sequencing by combining the physical method of nanopore electrical measurements and Southern's sequencing-by-hybridization. The new key ingredient, essential to both lowering the costs and increasing the precision, is an asymmetric nanopore sandwich device capable of measuring the DNA hybridization probe twice separated by a designed waiting time. Those incorrect probes appearing only once in nanopore ionic current traces are discriminated from the correct ones that appear twice. This method of discrimination is similar to the principle of kinetic proofreading proposed by Hopfield and Ninio in gene transcription and translation processes. An error analysis is of this nanopore kinetic proofreading (nKP) technique for DNA sequencing is carried out in comparison with the most precise 3' dideoxy termination method developed by Sanger. Nanopore DNA sequencing using kinetic proofreading.

  16. Novel pathogenic variant (c.3178G>A) in the SMC1A gene in a family with Cornelia de Lange syndrome identified by exome sequencing.

    Science.gov (United States)

    Jang, Mi Ae; Lee, Chang Woo; Kim, Jin Kyung; Ki, Chang Seok

    2015-11-01

    Cornelia de Lange syndrome (CdLS) is a clinically and genetically heterogeneous congenital anomaly. Mutations in the NIPBL gene account for a half of the affected individuals. We describe a family with CdLS carrying a novel pathogenic variant of the SMC1A gene identified by exome sequencing. The proband was a 3-yr-old boy presenting with a developmental delay. He had distinctive facial features without major structural anomalies and tested negative for the NIPBL gene. His younger sister, mother, and maternal grandmother presented with mild mental retardation. By exome sequencing of the proband, a novel SMC1A variant, c.3178G>A, was identified, which was expected to cause an amino acid substitution (p.Glu1060Lys) in the highly conserved coiled-coil domain of the SMC1A protein. Sanger sequencing confirmed that the three female relatives with mental retardation also carry this variant. Our results reveal that SMC1A gene defects are associated with milder phenotypes of CdLS. Furthermore, we showed that exome sequencing could be a useful tool to identify pathogenic variants in patients with CdLS.

  17. Use of targeted next-generation sequencing for molecular diagnosis of craniosynostosis: Identification of a novel de novo mutation of EFNB1.

    Science.gov (United States)

    Yamamoto, Toshiyuki; Igarashi, Naru; Shimojima, Keiko; Sangu, Noriko; Sakamoto, Yuko; Shimoji, Kazuaki; Niijima, Shinichi

    2016-03-01

    Craniofrontonasal syndrome (CFNS; MIM#304110) is characterized by asymmetric facial features with hypertelorism and a broad bifid nose due to synostosis of the coronal suture. CFNS shows a unique X-linked inheritance pattern (most affected patients are female and obligate male carriers exhibit a mild manifestation or no typical features at all) associated with the ephrin-B1 gene (EFNB1) located in the Xq13.1 region. In this study, we performed targeted, massively parallel sequencing using a next-generation sequencer, and identified a novel EFNB1 mutation, c.270_271delCA, in a Japanese female patient with craniosynostosis. Because subsequent Sanger sequencing identified no mutation in either parent, this mutation was determined to be de novo in origin. After obtaining molecular diagnosis, a retrospective clinical evaluation confirmed the clinical diagnosis of CFNS in this patient. Comprehensive molecular diagnosis using a next-generation sequencer would be beneficial for early diagnosis of the patients with undiagnosed craniosynostosis.

  18. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    Science.gov (United States)

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  19. Deep sequencing: becoming a critical tool in clinical virology.

    Science.gov (United States)

    Quiñones-Mateu, Miguel E; Avila, Santiago; Reyes-Teran, Gustavo; Martinez, Miguel A

    2014-09-01

    Population (Sanger) sequencing has been the standard method in basic and clinical DNA sequencing for almost 40 years; however, next-generation (deep) sequencing methodologies are now revolutionizing the field of genomics, and clinical virology is no exception. Deep sequencing is highly efficient, producing an enormous amount of information at low cost in a relatively short period of time. High-throughput sequencing techniques have enabled significant contributions to multiples areas in virology, including virus discovery and metagenomics (viromes), molecular epidemiology, pathogenesis, and studies of how viruses to escape the host immune system and antiviral pressures. In addition, new and more affordable deep sequencing-based assays are now being implemented in clinical laboratories. Here, we review the use of the current deep sequencing platforms in virology, focusing on three of the most studied viruses: human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Investigating microbial eukaryotic diversity from a global census: insights from a comparison of pyrotag and full-length sequences of 18S rRNA genes.

    Science.gov (United States)

    Lie, Alle A Y; Liu, Zhenfeng; Hu, Sarah K; Jones, Adriane C; Kim, Diane Y; Countway, Peter D; Amaral-Zettler, Linda A; Cary, S Craig; Sherr, Evelyn B; Sherr, Barry F; Gast, Rebecca J; Caron, David A

    2014-07-01

    Next-generation DNA sequencing (NGS) approaches are rapidly surpassing Sanger sequencing for characterizing the diversity of natural microbial communities. Despite this rapid transition, few comparisons exist between Sanger sequences and the generally much shorter reads of NGS. Operational taxonomic units (OTUs) derived from full-length (Sanger sequencing) and pyrotag (454 sequencing of the V9 hypervariable region) sequences of 18S rRNA genes from 10 global samples were analyzed in order to compare the resulting protistan community structures and species richness. Pyrotag OTUs called at 98% sequence similarity yielded numbers of OTUs that were similar overall to those for full-length sequences when the latter were called at 97% similarity. Singleton OTUs strongly influenced estimates of species richness but not the higher-level taxonomic composition of the community. The pyrotag and full-length sequence data sets had slightly different taxonomic compositions of rhizarians, stramenopiles, cryptophytes, and haptophytes, but the two data sets had similarly high compositions of alveolates. Pyrotag-based OTUs were often derived from sequences that mapped to multiple full-length OTUs at 100% similarity. Thus, pyrotags sequenced from a single hypervariable region might not be appropriate for establishing protistan species-level OTUs. However, nonmetric multidimensional scaling plots constructed with the two data sets yielded similar clusters, indicating that beta diversity analysis results were similar for the Sanger and NGS sequences. Short pyrotag sequences can provide holistic assessments of protistan communities, although care must be taken in interpreting the results. The longer reads (>500 bp) that are now becoming available through NGS should provide powerful tools for assessing the diversity of microbial eukaryotic assemblages.

  1. The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny.

    Directory of Open Access Journals (Sweden)

    Eva Hřibová

    Full Text Available Genes coding for 45S ribosomal RNA are organized in tandem arrays of up to several thousand copies and contain 18S, 5.8S and 26S rRNA units separated by internal transcribed spacers ITS1 and ITS2. While the rRNA units are evolutionary conserved, ITS show high level of interspecific divergence and have been used frequently in genetic diversity and phylogenetic studies. In this work we report on the structure and diversity of the ITS region in 87 representatives of the family Musaceae. We provide the first detailed information on ITS sequence diversity in the genus Musa and describe the presence of more than one type of ITS sequence within individual species. Both Sanger sequencing of amplified ITS regions and whole genome 454 sequencing lead to similar phylogenetic inferences. We show that it is necessary to identify putative pseudogenic ITS sequences, which may have negative effect on phylogenetic reconstruction at lower taxonomic levels. Phylogenetic reconstruction based on ITS sequence showed that the genus Musa is divided into two distinct clades--Callimusa and Australimusa and Eumusa and Rhodochlamys. Most of the intraspecific banana hybrids analyzed contain conserved parental ITS sequences, indicating incomplete concerted evolution of rDNA loci. Independent evolution of parental rDNA in hybrids enables determination of genomic constitution of hybrids using ITS. The observation of only one type of ITS sequence in some of the presumed interspecific hybrid clones warrants further study to confirm their hybrid origin and to unravel processes leading to evolution of their genomes.

  2. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system.

    Science.gov (United States)

    Schloss, Patrick D; Jenior, Matthew L; Koumpouras, Charles C; Westcott, Sarah L; Highlander, Sarah K

    2016-01-01

    Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina's MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina's MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.

  3. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system

    Directory of Open Access Journals (Sweden)

    Patrick D. Schloss

    2016-03-01

    Full Text Available Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina’s MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3–V5, V1–V3, V1–V5, V1–V6, and V1–V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1–V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina’s MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.

  4. Development of microsatellite markers in Caryophyllaeus laticeps (Cestoda: Caryophyllidea), monozoic fish tapeworm, using next-generation sequencing approach.

    Science.gov (United States)

    Králová-Hromadová, Ivica; Minárik, Gabriel; Bazsalovicsová, Eva; Mikulíček, Peter; Oravcová, Alexandra; Pálková, Lenka; Hanzelová, Vladimíra

    2015-02-01

    Caryophyllaeus laticeps (Pallas 1781) (Cestoda: Caryophyllidea) is a monozoic tapeworm of cyprinid fishes with a distribution area that includes Europe, most of the Palaearctic Asia and northern Africa. Broad geographic distribution, wide range of definitive fish hosts and recently revealed high morphological plasticity of the parasite, which is not in an agreement with molecular findings, make this species to be an interesting model for population biology studies. Microsatellites (short tandem repeat (STR) markers), as predominant markers for population genetics, were designed for C. laticeps using a next-generation sequencing (NGS) approach. Out of 165 marker candidates, 61 yielded PCR products of the expected size and in 25 of the candidates a declared repetitive motif was confirmed by Sanger sequencing. After the fragment analysis, six loci were proved to be polymorphic and tested for heterozygosity, Hardy-Weinberg equilibrium and the presence of null alleles on 59 individuals coming from three geographically widely separated populations (Slovakia, Russia and UK). The number of alleles in particular loci and populations ranged from two to five. Significant deficit of heterozygotes and the presence of null alleles were found in one locus in all three populations. Other loci showed deviations from Hardy-Weinberg equilibrium and the presence of null alleles only in some populations. In spite of relatively low polymorphism and the potential presence of null alleles, newly developed microsatellites may be applied as suitable markers in population genetic studies of C. laticeps.

  5. Whole exome sequencing identifies the first STRADA point mutation in a patient with polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE).

    Science.gov (United States)

    Bi, Weimin; Glass, Ian A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Yang, Yaping; Sun, Angela

    2016-08-01

    Polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE) is an ultra rare neurodevelopmental disorder characterized by severe, infantile-onset intractable epilepsy, neurocognitive delay, macrocephaly, and craniofacial dysmorphism. The molecular diagnosis of this condition has thus far only been made in 16 Old Order Mennonite patients carrying a homozygous 7 kb founder deletion of exons 9-13 of STRADA. We performed clinical whole exome sequencing (WES) on a 4-year-old Indian male with global developmental delay, history of failure to thrive, infantile spasms, repetitive behaviors, hypotonia, low muscle mass, marked joint laxity, and dysmorphic facial features including tall forehead, long face, arched eyebrows, small chin, wide mouth, and tented upper lip. A homozygous single nucleotide duplication, c.842dupA (p.D281fs), in exon 10 of STRADA was identified. Sanger sequencing confirmed the mutation in the individual and identified both parents as carriers. In light of the molecular discoveries, the patient's clinical phenotype was considered to be a good fit for PMSE. We identified for the first time a homozygous point mutation in STRADA causing PMSE. Additional bi-allelic mutations related to PMSE thus far have not been observed in Baylor ∼6,000 consecutive clinical WES cases, supporting the rarity of this disorder. Our findings may have treatment implications for the patient since previous studies have shown rapamycin as a potential therapeutic agent for the seizures and cognitive problems in PMSE patients. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Simultaneous detection of human mitochondrial DNA and nuclear-inserted mitochondrial-origin sequences (NumtS) using forensic mtDNA amplification strategies and pyrosequencing technology.

    Science.gov (United States)

    Bintz, Brittania J; Dixon, Groves B; Wilson, Mark R

    2014-07-01

    Next-generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior(®) instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611-bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer-binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep-sequencing methods in casework.

  7. Multiplexed microsatellite recovery using massively parallel sequencing.

    Science.gov (United States)

    Jennings, T N; Knaus, B J; Mullins, T D; Haig, S M; Cronn, R C

    2011-11-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356,958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5 M (USD).

  8. Next-generation phylogeography: a targeted approach for multilocus sequencing of non-model organisms.

    Directory of Open Access Journals (Sweden)

    Jonathan B Puritz

    Full Text Available The field of phylogeography has long since realized the need and utility of incorporating nuclear DNA (nDNA sequences into analyses. However, the use of nDNA sequence data, at the population level, has been hindered by technical laboratory difficulty, sequencing costs, and problematic analytical methods dealing with genotypic sequence data, especially in non-model organisms. Here, we present a method utilizing the 454 GS-FLX Titanium pyrosequencing platform with the capacity to simultaneously sequence two species of sea star (Meridiastra calcar and Parvulastra exigua at five different nDNA loci across 16 different populations of 20 individuals each per species. We compare results from 3 populations with traditional Sanger sequencing based methods, and demonstrate that this next-generation sequencing platform is more time and cost effective and more sensitive to rare variants than Sanger based sequencing. A crucial advantage is that the high coverage of clonally amplified sequences simplifies haplotype determination, even in highly polymorphic species. This targeted next-generation approach can greatly increase the use of nDNA sequence loci in phylogeographic and population genetic studies by mitigating many of the time, cost, and analytical issues associated with highly polymorphic, diploid sequence markers.

  9. Next-Generation Phylogeography: A Targeted Approach for Multilocus Sequencing of Non-Model Organisms

    Science.gov (United States)

    Puritz, Jonathan B.; Addison, Jason A.; Toonen, Robert J.

    2012-01-01

    The field of phylogeography has long since realized the need and utility of incorporating nuclear DNA (nDNA) sequences into analyses. However, the use of nDNA sequence data, at the population level, has been hindered by technical laboratory difficulty, sequencing costs, and problematic analytical methods dealing with genotypic sequence data, especially in non-model organisms. Here, we present a method utilizing the 454 GS-FLX Titanium pyrosequencing platform with the capacity to simultaneously sequence two species of sea star (Meridiastra calcar and Parvulastra exigua) at five different nDNA loci across 16 different populations of 20 individuals each per species. We compare results from 3 populations with traditional Sanger sequencing based methods, and demonstrate that this next-generation sequencing platform is more time and cost effective and more sensitive to rare variants than Sanger based sequencing. A crucial advantage is that the high coverage of clonally amplified sequences simplifies haplotype determination, even in highly polymorphic species. This targeted next-generation approach can greatly increase the use of nDNA sequence loci in phylogeographic and population genetic studies by mitigating many of the time, cost, and analytical issues associated with highly polymorphic, diploid sequence markers. PMID:22470543

  10. Falsification or Confirmation: From Logic to Psychology

    CERN Document Server

    Lukyanenko, Roman

    2015-01-01

    Corroboration or confirmation is a prominent philosophical debate of the 20th century. Many philosophers have been involved in this debate most notably the proponents of confirmation led by Hempel and its most powerful criticism by the falsificationists led by Popper. In both cases however the debates were primarily based on the arguments from logic. In this paper we review these debates and suggest that a different perspective on falsification versus confirmation can be taken by grounding arguments in cognitive psychology.

  11. Next-Generation Sequencing Reveals Deep Intronic Cryptic ABCC8 and HADH Splicing Founder Mutations Causing Hyperinsulinism by Pseudoexon Activation

    Science.gov (United States)

    Flanagan, Sarah E.; Xie, Weijia; Caswell, Richard; Damhuis, Annet; Vianey-Saban, Christine; Akcay, Teoman; Darendeliler, Feyza; Bas, Firdevs; Guven, Ayla; Siklar, Zeynep; Ocal, Gonul; Berberoglu, Merih; Murphy, Nuala; O’Sullivan, Maureen; Green, Andrew; Clayton, Peter E.; Banerjee, Indraneel; Clayton, Peter T.; Hussain, Khalid; Weedon, Michael N.; Ellard, Sian

    2013-01-01

    Next-generation sequencing (NGS) enables analysis of the human genome on a scale previously unachievable by Sanger sequencing. Exome sequencing of the coding regions and conserved splice sites has been very successful in the identification of disease-causing mutations, and targeting of these regions has extended clinical diagnostic testing from analysis of fewer than ten genes per phenotype to more than 100. Noncoding mutations have been less extensively studied despite evidence from mRNA analysis for the existence of deep intronic mutations in >20 genes. We investigated individuals with hyperinsulinaemic hypoglycaemia and biochemical or genetic evidence to suggest noncoding mutations by using NGS to analyze the entire genomic regions of ABCC8 (117 kb) and HADH (94 kb) from overlapping ∼10 kb PCR amplicons. Two deep intronic mutations, c.1333-1013A>G in ABCC8 and c.636+471G>T HADH, were identified. Both are predicted to create a cryptic splice donor site and an out-of-frame pseudoexon. Sequence analysis of mRNA from affected individuals’ fibroblasts or lymphoblastoid cells confirmed mutant transcripts with pseudoexon inclusion and premature termination codons. Testing of additional individuals showed that these are founder mutations in the Irish and Turkish populations, accounting for 14% of focal hyperinsulinism cases and 32% of subjects with HADH mutations in our cohort. The identification of deep intronic mutations has previously focused on the detection of aberrant mRNA transcripts in a subset of disorders for which RNA is readily obtained from the target tissue or ectopically expressed at sufficient levels. Our approach of using NGS to analyze the entire genomic DNA sequence is applicable to any disease. PMID:23273570

  12. DNA sequencing with capillary electrophoresis and single cell analysis with mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fung, N.

    1998-03-27

    Since the first demonstration of the laser in the 1960`s, lasers have found numerous applications in analytical chemistry. In this work, two different applications are described, namely, DNA sequencing with capillary gel electrophoresis and single cell analysis with mass spectrometry. Two projects are described in which high-speed DNA separations with capillary gel electrophoresis were demonstrated. In the third project, flow cytometry and mass spectrometry were coupled via a laser vaporization/ionization interface and individual mammalian cells were analyzed. First, DNA Sanger fragments were separated by capillary gel electrophoresis. A separation speed of 20 basepairs per minute was demonstrated with a mixed poly(ethylene oxide) (PEO) sieving solution. In addition, a new capillary wall treatment protocol was developed in which bare (or uncoated) capillaries can be used in DNA sequencing. Second, a temperature programming scheme was used to separate DNA Sanger fragments. Third, flow cytometry and mass spectrometry were coupled with a laser vaporization/ionization interface.

  13. Molecular confirmation of an adenovirus in brushtail possums (Trichosurus vulpecula).

    Science.gov (United States)

    Thomson, Darelle; Meers, Joanne; Harrach, Balázs

    2002-02-26

    Partial genome characterisation of a non-cultivable marsupial adenovirus is described. Adenovirus-like particles were found by electron microscopy (EM) in the intestinal contents of brushtail possums (Trichosurus vulpecula) in New Zealand. Using degenerate PCR primers complementary to the most conserved genome regions of adenoviruses, the complete nucleotide sequence of the penton base gene, and partial nucleotide sequences of the DNA polymerase, hexon, and pVII genes were obtained. Phylogenetic analysis of the penton base gene strongly suggested that the brushtail possum adenovirus (candidate PoAdV-1) belongs to the recently proposed genus Atadenovirus. Sequence analysis of the PCR products amplified from the intestinal contents of brushtail possums originating from different geographical regions of New Zealand identified a single genotype. This is the first report of molecular confirmation of an adenovirus in a marsupial.

  14. Towards Decrypting Cryptobiosis—Analyzing Anhydrobiosis in the Tardigrade Milnesium tardigradum Using Transcriptome Sequencing

    OpenAIRE

    Chong Wang; Grohme, Markus A.; Brahim Mali; Schill, Ralph O.; Marcus Frohme

    2014-01-01

    BACKGROUND: Many tardigrade species are capable of anhydrobiosis; however, mechanisms underlying their extreme desiccation resistance remain elusive. This study attempts to quantify the anhydrobiotic transcriptome of the limno-terrestrial tardigrade Milnesium tardigradum. RESULTS: A prerequisite for differential gene expression analysis was the generation of a reference hybrid transcriptome atlas by assembly of Sanger, 454 and Illumina sequence data. The final assembly yielded 79,064 contigs ...

  15. Transcriptome sequencing for SNP discovery across Cucumis melo

    OpenAIRE

    2012-01-01

    Background: Melon (Cucumis melo L.) is a highly diverse species that is cultivated worldwide. Recent advances in massively parallel sequencing have begun to allow the study of nucleotide diversity in this species. The Sanger method combined with medium-throughput 454 technology were used in a previous study to analyze the genetic diversity of germplasm representing 3 botanical varieties, yielding a collection of about 40,000 SNPs distributed in 14,000 unigenes. However, the usefulness of this...

  16. Pooled deep sequencing of Plasmodium falciparum isolates: an efficient and scalable tool to quantify prevailing malaria drug-resistance genotypes.

    Science.gov (United States)

    Taylor, Steve M; Parobek, Christian M; Aragam, Nash; Ngasala, Billy E; Mårtensson, Andreas; Meshnick, Steven R; Juliano, Jonathan J

    2013-12-15

    Molecular surveillance for drug-resistant malaria parasites requires reliable, timely, and scalable methods. These data may be efficiently produced by genotyping parasite populations using second-generation sequencing (SGS). We designed and validated a SGS protocol to quantify mutant allele frequencies in the Plasmodium falciparum genes dhfr and dhps in mixed isolates. We applied this new protocol to field isolates from children and compared it to standard genotyping using Sanger sequencing. The SGS protocol accurately quantified dhfr and dhps allele frequencies in a mixture of parasite strains. Using SGS of DNA that was extracted and then pooled from individual isolates, we estimated mutant allele frequencies that were closely correlated to those estimated by Sanger sequencing (correlations, >0.98). The SGS protocol obviated most molecular steps in conventional methods and is cost saving for parasite populations >50. This SGS genotyping method efficiently and reproducibly estimates parasite allele frequencies within populations of P. falciparum for molecular epidemiologic studies.

  17. Implementation of Targeted Next Generation Sequencing in Clinical Diagnostics

    DEFF Research Database (Denmark)

    Larsen, Martin Jakob; Burton, Mark; Thomassen, Mads;

    Accurate mutation detection is essential in clinical genetic diagnostics of monogenic hereditary diseases. Targeted next generation sequencing (NGS) provides a promising and cost-effective alternative to Sanger sequencing and MLPA analysis currently used in most diagnostic laboratories. One...... advantage of targeted NGS is that multiple disease-specific genes can easily be sequenced simultaneously, which is favorable in genetic heterogeneous diseases. Prior to implementation in our diagnostic setting, we aimed to assess the sensitivity and specificity of targeted NGS by sequencing a collection......, respectively. For diagnostics, the sequencing coverage is essential, wherefore a minimum coverage of 30x per nucleotide in the coding regions was used as our primary quality criterion. For the majority of the included genes, we obtained adequate gene coverage, in which we were able to detect 100% of the known...

  18. Transverse Electronic Signature of DNA for Electronic Sequencing

    Science.gov (United States)

    Xu, Mingsheng; Endres, Robert G.; Arakawa, Yasuhiko

    In recent years, the proliferation of large-scale DNA sequencing projects for applications in clinical medicine and health care has driven the search for new methods that could reduce the time and cost. The commonly used Sanger sequencing method relies on the chemistry to read the bases in DNA and is far too slow and expensive for reading personal genetic codes. There were earlier attempts to sequence DNA by directly visualizing the nucleotide composition of the DNA molecules by scanning tunneling microscopy (STM). However, sequencing DNA based on directly imaging DNA's atomic structure has not yet been successful. In Chap. 9, Xu, Endres, and Arakawa report a potential physical alternative by detecting unique transverse electronic signatures of DNA bases using ultrahigh vacuum STM. Supported by the principles, calculations and statistical analyses, these authors argue that it would be possible to directly sequence DNA by the STM-based technology without any modification of the DNA.

  19. Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis

    Science.gov (United States)

    Salvi, Alessandro; Giacopuzzi, Edoardo; Bardellini, Elena; Amadori, Francesca; Ferrari, Lia; De Petro, Giuseppina; Borsani, Giuseppe; Majorana, Alessandra

    2016-01-01

    Dental agenesis is one of the most common congenital craniofacial abnormalities. Dental agenesis can be classified, relative to the number of missing teeth (excluding third molars), as hypodontia (1 to 5 missing teeth), oligodontia (6 or more missing teeth), or anodontia (lack of all teeth). Tooth agenesis may occur either in association with genetic syndromes, based on the presence of other inherited abnormalities, or as a non-syndromic trait, with both familiar and sporadic cases reported. In this study, we enrolled 16 individuals affected by tooth agenesis, prevalently hypodontia, and we carried out direct Sanger sequencing of paired box 9 (PAX9) and Msh homeobox 1 (MSX1) genes in 9 subjects. Since no mutations were identified, we performed whole exome sequencing (WES) in the members of 5 families to identify causative gene mutations either novel or previously described. Three individuals carried a known homozygous disease mutation in the Wnt family member 10A (WNT10A) gene (rs121908120). Interestingly, two of these individuals were siblings and also carried a heterozygous functional variant in EDAR-associated death domain (EDARADD) (rs114632254), another disease causing gene, generating a combination of genetic variants never described until now. The analysis of exome sequencing data in the members of other 3 families highlighted new candidate genes potentially involved in tooth agenesis and considered suitable for future studies. Overall, our study confirmed the major role played by WNT10A in tooth agenesis and the genetic heterogeneity of this disease. Moreover, as more genes are shown to be involved in tooth agenesis, WES analysis may be an effective approach to search for genetic variants in familiar or sporadic tooth agenesis, at least in more severe clinical manifestations. PMID:27665865

  20. The complete nucleotide sequence and genomic characterization of grapevine asteroid mosaic associated virus.

    Science.gov (United States)

    Vargas-Asencio, José; Wojciechowska, Klaudia; Baskerville, Maia; Gomez, Annika L; Perry, Keith L; Thompson, Jeremy R

    2017-01-02

    In analyzing grapevine clones infected with grapevine red blotch associated virus, we identified a small number of isometric particles of approximately 30nm in diameter from an enriched fraction of leaf extract. A dominant protein of 25kDa was isolated from this fraction using SDS-PAGE and was identified by mass spectrometry as belonging to grapevine asteroid mosaic associated virus (GAMaV). Using a combination of three methods RNA-Seq, sRNA-Seq, and Sanger sequencing of RT- and RACE-PCR products, we obtained a full-length genome sequence consisting of 6719 nucleotides without the poly(A) tail. The virus possesses all of the typical conserved functional domains concordant with the genus Marafivirus and lies evolutionarily between citrus sudden death associated virus and oat blue dwarf virus. A large shift in RNA-Seq coverage coincided with the predicted location of the subgenomic RNA involved in coat protein (CP) expression. Genus wide sequence alignments confirmed the cleavage motif LxG(G/A) to be dominant between the helicase and RNA dependent RNA polymerase (RdRp), and the RdRp and CP domains. A putative overlapping protein (OP) ORF lacking a canonical translational start codon was identified with a reading frame context more consistent with the putative OPs of tymoviruses and fig fleck associated virus than with those of marafiviruses. BLAST analysis of the predicted GAMaV OP showed a unique relatedness to the OPs of members of the genus Tymovirus. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Case Report: Whole exome sequencing identifies a novel frameshift insertion c.1325dupT (p.F442fsX2 in the tyrosine kinase domain of BTK gene in a young Indian individual with X-linked agammaglobulinemia [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Amit Rawat

    2017-08-01

    Full Text Available X-linked agammaglobulinemia (XLA is an extremely rare inherited primary immunodeficiency characterized by recurrent bacterial infections, decrease in number of mature B cells and low serum immunoglobulins. XLA is caused by mutations in the gene encoding Bruton's tyrosine kinase. We report a case of a young Indian boy suspected to have XLA. Immunophenotyping was performed for the affected child using CD20, CD19 and CD3 antibodies. Whole exome sequencing was performed using trio-based approach. The variants were further analyzed using capillary sequencing in the trio as well as maternal grandmother. Initial immunophenotyping in the affected child showed decreased count of CD19+ B cells. To strengthen the clinical findings and confirm the diagnosis of XLA, we performed whole exome sequencing. Our analysis identified a novel frameshift insertion (c.1325dupT in the BTK gene, which was further validated by Sanger sequencing. Our approach shows the potential in using whole exome sequencing to pinpoint the molecular lesion, enabling timely diagnosis and genetic counseling, and potentially offering prenatal genetic testing for the family.

  2. Longer Addiction Treatment Is Better, Study Confirms

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_163911.html Longer Addiction Treatment Is Better, Study Confirms Success rate goes up ... 3, 2017 (HealthDay News) -- The longer patients receive treatment for addiction, the greater their chances of success, a new ...

  3. Genome sequence of vibrio cholerae G4222, a South African clinical isolate

    CSIR Research Space (South Africa)

    Le Rouw, Wouter J

    2013-03-01

    Full Text Available sequences of V. cholerae MJ-1236 (7) and V. cholerae O1 biovar El Tor strain N16961 (8) with the NCBI Genomic (NG) Aligner tool of the NCBI Genome Workbench v2.5.5. A further 38 gaps were closed by PCR ampli- fication and Sanger sequencing. This resulted.... 2013. Genome sequence of Vibrio cholerae G4222, a South African clinical isolate. Genome Announc. 1(2):e00040-13. doi:10.1128/genomeA.00040-13. Copyright © 2013 le Roux et al. This is an open-access article distributed under the terms of the Creative...

  4. Identification of a Novel Heterozygous Missense Mutation in the CACNA1F Gene in a Chinese Family with Retinitis Pigmentosa by Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2015-01-01

    Full Text Available Background. Retinitis pigmentosa (RP is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP in a Chinese family. Methods. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS. Results. The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. Conclusion. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family.

  5. Bioinformatic Challenges in Clinical Diagnostic Application of Targeted Next Generation Sequencing: Experience from Pheochromocytoma.

    Directory of Open Access Journals (Sweden)

    Joakim Crona

    Full Text Available Recent studies have demonstrated equal quality of targeted next generation sequencing (NGS compared to Sanger Sequencing. Whereas these novel sequencing processes have a validated robust performance, choice of enrichment method and different available bioinformatic software as reliable analysis tool needs to be further investigated in a diagnostic setting.DNA from 21 patients with genetic variants in SDHB, VHL, EPAS1, RET, (n=17 or clinical criteria of NF1 syndrome (n=4 were included. Targeted NGS was performed using Truseq custom amplicon enrichment sequenced on an Illumina MiSEQ instrument. Results were analysed in parallel using three different bioinformatics pipelines; (1 Commercially available MiSEQ Reporter, fully automatized and integrated software, (2 CLC Genomics Workbench, graphical interface based software, also commercially available, and ICP (3 an in-house scripted custom bioinformatic tool.A tenfold read coverage was achieved in between 95-98% of targeted bases. All workflows had alignment of reads to SDHA and NF1 pseudogenes. Compared to Sanger sequencing, variant calling revealed a sensitivity ranging from 83 to 100% and a specificity of 99.9-100%. Only MiSEQ reporter identified all pathogenic variants in both sequencing runs.We conclude that targeted next generation sequencing have equal quality compared to Sanger sequencing. Enrichment specificity and the bioinformatic performance need to be carefully assessed in a diagnostic setting. As acceptable accuracy was noted for a fully automated bioinformatic workflow, we suggest that processing of NGS data could be performed without expert bioinformatics skills utilizing already existing commercially available bioinformatics tools.

  6. A New Way to Confirm Planet Candidates

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    What was the big deal behind the Kepler news conference yesterday? Its not just that the number of confirmed planets found by Kepler has more than doubled (though thats certainly exciting news!). Whats especially interesting is the way in which these new planets were confirmed.Number of planet discoveries by year since 1995, including previous non-Kepler discoveries (blue), previous Kepler discoveries (light blue) and the newly validated Kepler planets (orange). [NASA Ames/W. Stenzel; Princeton University/T. Morton]No Need for Follow-UpBefore Kepler, the way we confirmed planet candidates was with follow-up observations. The candidate could be validated either by directly imaging (which is rare) or obtaining a large number radial-velocity measurements of the wobble of the planets host star due to the planets orbit. But once Kepler started producing planet candidates, these approaches to validation became less feasible. A lot of Kepler candidates are small and orbit faint stars, making follow-up observations difficult or impossible.This problem is what inspired the development of whats known as probabilistic validation, an analysis technique that involves assessing the likelihood that the candidates signal is caused by various false-positive scenarios. Using this technique allows astronomers to estimate the likelihood of a candidate signal being a true planet detection; if that likelihood is high enough, the planet candidate can be confirmed without the need for follow-up observations.A breakdown of the catalog of Kepler Objects of Interest. Just over half had previously been identified as false positives or confirmed as candidates. 1284 are newly validated, and another 455 have FPP of1090%. [Morton et al. 2016]Probabilistic validation has been used in the past to confirm individual planet candidates in Kepler data, but now Timothy Morton (Princeton University) and collaborators have taken this to a new level: they developed the first code thats designed to do fully

  7. Sequence and expression analysis of gaps in human chromosome 20

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan;

    2012-01-01

    The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and....../or overlap disease-associated loci, including the DLGAP4 locus. In this study, we sequenced ~99% of all three unfinished gaps on human chr 20, determined their complete genomic sizes and assessed epigenetic profiles using a combination of Sanger sequencing, mate pair paired-end high-throughput sequencing...... and chromatin, methylation and expression analyses. We found histone 3 trimethylated at Lysine 27 to be distributed across all three gaps in immortalized B-lymphocytes. In one gap, five novel CpG islands were predominantly hypermethylated in genomic DNA from peripheral blood lymphocytes and human cerebellum...

  8. High-throughput sequencing in veterinary infection biology and diagnostics.

    Science.gov (United States)

    Belák, S; Karlsson, O E; Leijon, M; Granberg, F

    2013-12-01

    Sequencing methods have improved rapidly since the first versions of the Sanger techniques, facilitating the development of very powerful tools for detecting and identifying various pathogens, such as viruses, bacteria and other microbes. The ongoing development of high-throughput sequencing (HTS; also known as next-generation sequencing) technologies has resulted in a dramatic reduction in DNA sequencing costs, making the technology more accessible to the average laboratory. In this White Paper of the World Organisation for Animal Health (OIE) Collaborating Centre for the Biotechnology-based Diagnosis of Infectious Diseases in Veterinary Medicine (Uppsala, Sweden), several approaches and examples of HTS are summarised, and their diagnostic applicability is briefly discussed. Selected future aspects of HTS are outlined, including the need for bioinformatic resources, with a focus on improving the diagnosis and control of infectious diseases in veterinary medicine.

  9. Application of next generation sequencing technology in Mendelian movement disorders.

    Science.gov (United States)

    Wang, Yumin; Pan, Xuya; Xue, Dan; Li, Yuwei; Zhang, Xueying; Kuang, Biao; Zheng, Jiabo; Deng, Hao; Li, Xiaoling; Xiong, Wei; Zeng, Zhaoyang; Li, Guiyuan

    2016-02-01

    Next generation sequencing (NGS) has developed very rapidly in the last decade. Compared with Sanger sequencing, NGS has the advantages of high sensitivity and high throughput. Movement disorders are a common type of neurological disease. Although traditional linkage analysis has become a standard method to identify the pathogenic genes in diseases, it is getting difficult to find new pathogenic genes in rare Mendelian disorders, such as movement disorders, due to a lack of appropriate families with high penetrance or enough affected individuals. Thus, NGS is an ideal approach to identify the causal alleles for inherited disorders. NGS is used to identify genes in several diseases and new mutant sites in Mendelian movement disorders. This article reviewed the recent progress in NGS and the use of NGS in Mendelian movement disorders from genome sequencing and transcriptome sequencing. A perspective on how NGS could be employed in rare Mendelian disorders is also provided.

  10. Sequencing of Ebola Virus Genomes Using Nanopore Technology

    Science.gov (United States)

    Hoenen, Thomas

    2017-01-01

    Sequencing of virus genomes during disease outbreaks can provide valuable information for diagnostics, epidemiology, and evaluation of potential countermeasures. However, particularly in remote areas logistical and technical challenges can be significant. Nanopore sequencing provides an alternative to classical Sanger and next-generation sequencing methods, and was successfully used under outbreak conditions (Hoenen et al., 2016; Quick et al., 2016). Here we describe a protocol used for sequencing of Ebola virus under outbreak conditions using Nanopore technology, which we successfully implemented at the CDC/NIH diagnostic laboratory (de Wit et al., 2016) located at the ELWA-3 Ebola virus Treatment Unit in Monrovia, Liberia, during the recent Ebola virus outbreak in West Africa.

  11. Ion Torrent PGMTM测序仪检测苯丙酮尿症患儿苯丙氨酸羟化酶基因突变%Analysis of phenylalanine hydroxylase gene mutations by Ion Torrent PGMTM sequencing in phenylketonuria patients

    Institute of Scientific and Technical Information of China (English)

    周保成; 穆原; 尹婷; 汤欣欣; 许天龙; 郑安舜; 毛华芬; 顾莹

    2014-01-01

    Objective To evaluate the feasibility of Ion Torrent PGMTM sequencing technology for analysis of phenylalanine hydroxylase (PAH) gene mutations in phenylketonuria (PKU) children patients.Methods The DNA samples were extracted from peripheral blood of 15 PKU children patient as well as their parents.All the exons including intron-exon boundaries of PAH gene were amplified by PCR and sequenced using Ion Torrent PGMTM.The samples with mutated PAH were validated by Sanger sequencing.Results The mean depth of coverage for the PAH gene (13 exons) in all the samples sequenced by Ion Torrent PGMTM was 1 465-fold and the mean percentage of coverage was 99.3%.Twenty-nine mutation alleles which were classified into 17 types including one novel mutation (p.P292L) were confirmed by Sanger sequencing.Conclusion This study should be a paradigm for PAH gene mutation of PKU children by Ion Torrent PGMTM application.The detection provided a potent platform for clinical diagnosis of PKU and would be easy-to-use.%目的 评价Ion Torrent PGMTM测序仪检测苯丙酮尿症(PKU)患儿苯丙氨酸羟化酶基因(PAH)突变的可行性.方法 提取15例确诊为经典型PKU的患儿及其父母外周血DNA,对PAH全部外显子及外显子-内含子交界区进行PCR反应,用IonTorrent PGMTM测序仪测序,再对检出突变的样本进行Sanger法验证.结果 Ion Torrent PGMTM平均覆盖深度为1 465倍,平均覆盖率为99.3%;共检出29个突变位点,分属17种突变,其中p.P292L为新发突变,所有检测结果均与Sanger法相一致.结论 用Ion Torrent PGMTM测序仪可快速简便检测PKU患儿PAH基因突变.

  12. Confirmed and Potential Sources of Legionella Reviewed.

    Science.gov (United States)

    van Heijnsbergen, Eri; Schalk, Johanna A C; Euser, Sjoerd M; Brandsema, Petra S; den Boer, Jeroen W; de Roda Husman, Ana Maria

    2015-04-21

    Legionella bacteria are ubiquitous in natural matrices and man-made systems. However, it is not always clear if these reservoirs can act as source of infection resulting in cases of Legionnaires' disease. This review provides an overview of reservoirs of Legionella reported in the literature, other than drinking water distribution systems. Levels of evidence were developed to discriminate between potential and confirmed sources of Legionella. A total of 17 systems and matrices could be classified as confirmed sources of Legionella. Many other man-made systems or natural matrices were not classified as a confirmed source, since either no patients were linked to these reservoirs or the supporting evidence was weak. However, these systems or matrices could play an important role in the transmission of infectious Legionella bacteria; they might not yet be considered in source investigations, resulting in an underestimation of their importance. To optimize source investigations it is important to have knowledge about all the (potential) sources of Legionella. Further research is needed to unravel what the contribution is of each confirmed source, and possibly also potential sources, to the LD disease burden.

  13. The composition of Io - a late confirmation

    CERN Document Server

    Celebonovic, V

    1996-01-01

    Nine years ago,working within the framework of theoretical dense matter physics,the present author has determined the chemical composition of the Galileian satellites of Jupiter.A few months ago,in the flyby of the GA- LILEO spaceprobe,some of the theoretical predictions were confirmed.

  14. Unlocking short read sequencing for metagenomics.

    Directory of Open Access Journals (Sweden)

    Sébastien Rodrigue

    Full Text Available BACKGROUND: Different high-throughput nucleic acid sequencing platforms are currently available but a trade-off currently exists between the cost and number of reads that can be generated versus the read length that can be achieved. METHODOLOGY/PRINCIPAL FINDINGS: We describe an experimental and computational pipeline yielding millions of reads that can exceed 200 bp with quality scores approaching that of traditional Sanger sequencing. The method combines an automatable gel-less library construction step with paired-end sequencing on a short-read instrument. With appropriately sized library inserts, mate-pair sequences can overlap, and we describe the SHERA software package that joins them to form a longer composite read. CONCLUSIONS/SIGNIFICANCE: This strategy is broadly applicable to sequencing applications that benefit from low-cost high-throughput sequencing, but require longer read lengths. We demonstrate that our approach enables metagenomic analyses using the Illumina Genome Analyzer, with low error rates, and at a fraction of the cost of pyrosequencing.

  15. Authentication of Herbal Supplements Using Next-Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Natalia V Ivanova

    Full Text Available DNA-based testing has been gaining acceptance as a tool for authentication of a wide range of food products; however, its applicability for testing of herbal supplements remains contentious.We utilized Sanger and Next-Generation Sequencing (NGS for taxonomic authentication of fifteen herbal supplements representing three different producers from five medicinal plants: Echinacea purpurea, Valeriana officinalis, Ginkgo biloba, Hypericum perforatum and Trigonella foenum-graecum. Experimental design included three modifications of DNA extraction, two lysate dilutions, Internal Amplification Control, and multiple negative controls to exclude background contamination. Ginkgo supplements were also analyzed using HPLC-MS for the presence of active medicinal components.All supplements yielded DNA from multiple species, rendering Sanger sequencing results for rbcL and ITS2 regions either uninterpretable or non-reproducible between the experimental replicates. Overall, DNA from the manufacturer-listed medicinal plants was successfully detected in seven out of eight dry herb form supplements; however, low or poor DNA recovery due to degradation was observed in most plant extracts (none detected by Sanger; three out of seven-by NGS. NGS also revealed a diverse community of fungi, known to be associated with live plant material and/or the fermentation process used in the production of plant extracts. HPLC-MS testing demonstrated that Ginkgo supplements with degraded DNA contained ten key medicinal components.Quality control of herbal supplements should utilize a synergetic approach targeting both DNA and bioactive components, especially for standardized extracts with degraded DNA. The NGS workflow developed in this study enables reliable detection of plant and fungal DNA and can be utilized by manufacturers for quality assurance of raw plant materials, contamination control during the production process, and the final product. Interpretation of results should

  16. Confirmation via Analogue Simulation: A Bayesian Analysis

    CERN Document Server

    Dardashti, Radin; Thebault, Karim P Y; Winsberg, Eric

    2016-01-01

    Analogue simulation is a novel mode of scientific inference found increasingly within modern physics, and yet all but neglected in the philosophical literature. Experiments conducted upon a table-top 'source system' are taken to provide insight into features of an inaccessible 'target system', based upon a syntactic isomorphism between the relevant modelling frameworks. An important example is the use of acoustic 'dumb hole' systems to simulate gravitational black holes. In a recent paper it was argued that there exists circumstances in which confirmation via analogue simulation can obtain; in particular when the robustness of the isomorphism is established via universality arguments. The current paper supports these claims via an analysis in terms of Bayesian confirmation theory.

  17. Diffuse panbronchiolitis with histopathological confirmation among Chinese

    Institute of Scientific and Technical Information of China (English)

    谢广顺; 李龙芸; 刘鸿瑞; 张伟宏; 朱元珏

    2004-01-01

    Background Diffuse panbronchiolitis (DPB) was originally and is still primarily reported in Japan, rarely in other countries. As macrolide therapy is effective for this disease with once dismal prognosis, familiarity with its clinical features is urgently needed, especially for clinicians outside Japan. The objectives of this study were to investigate the clinical features of DPB in a Chinese population and propose diagnostic procedures that will lead to increased awareness of this treatable disease among clinicians, ultimately allowing for more rapid diagnosis. Methods After a literature review, the clinical features of DPB were histopathologically confirmed in a series of 9 cases either by open lung biopsy or video-assisted thoracic surgical biopsy, resulting in the largest series of confirmed DPB cases in a non-Japanese population. Here, the cases are retrospectively described and diagnostic procedures are discussed.Conclusions Although its clinical features may vary with disease course and ethnic populations, most cases of DPB can be diagnosed or suggested according to clinical diagnostic criteria. However, underdiagnosis as a result of unfamiliarity with its clinical features and diagnostic criteria prevails. If difficulty in diagnosis arises, the diagnosis should be based on clinicopathological features and the exclusion of other diseases. Few cases can be confirmed by transbronchial biopsies; in these cases, either an open-lung biopsy or a video-assisted thoracic surgical lung biopsy should be recommended.

  18. HTS-PEG: a method for high throughput sequencing of the paired-ends of genomic libraries.

    Science.gov (United States)

    Zhou, Sisi; Fu, Yonggui; Li, Jie; He, Lingyu; Cai, Xingsheng; Yan, Qingyu; Rao, Xingqiang; Huang, Shengfeng; Li, Guang; Wang, Yiquan; Xu, Anlong

    2012-01-01

    Second generation sequencing has been widely used to sequence whole genomes. Though various paired-end sequencing methods have been developed to construct the long scaffold from contigs derived from shotgun sequencing, the classical paired-end sequencing of the Bacteria Artificial Chromosome (BAC) or fosmid libraries by the Sanger method still plays an important role in genome assembly. However, sequencing libraries with the Sanger method is expensive and time-consuming. Here we report a new strategy to sequence the paired-ends of genomic libraries with parallel pyrosequencing, using a Chinese amphioxus (Branchiostoma belcheri) BAC library as an example. In total, approximately 12,670 non-redundant paired-end sequences were generated. Mapping them to the primary scaffolds of Chinese amphioxus, we obtained 413 ultra-scaffolds from 1,182 primary scaffolds, and the N50 scaffold length was increased approximately 55 kb, which is about a 10% improvement. We provide a universal and cost-effective method for sequencing the ultra-long paired-ends of genomic libraries. This method can be very easily implemented in other second generation sequencing platforms.

  19. HTS-PEG: a method for high throughput sequencing of the paired-ends of genomic libraries.

    Directory of Open Access Journals (Sweden)

    Sisi Zhou

    Full Text Available Second generation sequencing has been widely used to sequence whole genomes. Though various paired-end sequencing methods have been developed to construct the long scaffold from contigs derived from shotgun sequencing, the classical paired-end sequencing of the Bacteria Artificial Chromosome (BAC or fosmid libraries by the Sanger method still plays an important role in genome assembly. However, sequencing libraries with the Sanger method is expensive and time-consuming. Here we report a new strategy to sequence the paired-ends of genomic libraries with parallel pyrosequencing, using a Chinese amphioxus (Branchiostoma belcheri BAC library as an example. In total, approximately 12,670 non-redundant paired-end sequences were generated. Mapping them to the primary scaffolds of Chinese amphioxus, we obtained 413 ultra-scaffolds from 1,182 primary scaffolds, and the N50 scaffold length was increased approximately 55 kb, which is about a 10% improvement. We provide a universal and cost-effective method for sequencing the ultra-long paired-ends of genomic libraries. This method can be very easily implemented in other second generation sequencing platforms.

  20. A Chromosome 7 Pericentric Inversion Defined at Single-Nucleotide Resolution Using Diagnostic Whole Genome Sequencing in a Patient with Hand-Foot-Genital Syndrome.

    Directory of Open Access Journals (Sweden)

    Christopher M Watson

    Full Text Available Next generation sequencing methodologies are facilitating the rapid characterisation of novel structural variants at nucleotide resolution. These approaches are particularly applicable to variants initially identified using alternative molecular methods. We report a child born with bilateral postaxial syndactyly of the feet and bilateral fifth finger clinodactyly. This was presumed to be an autosomal recessive syndrome, due to the family history of consanguinity. Karyotype analysis revealed a homozygous pericentric inversion of chromosome 7 (46,XX,inv(7(p15q21x2 which was confirmed to be heterozygous in both unaffected parents. Since the resolution of the karyotype was insufficient to identify any putatively causative gene, we undertook medium-coverage whole genome sequencing using paired-end reads, in order to elucidate the molecular breakpoints. In a two-step analysis, we first narrowed down the region by identifying discordant read-pairs, and then determined the precise molecular breakpoint by analysing the mapping locations of "soft-clipped" breakpoint-spanning reads. PCR and Sanger sequencing confirmed the identified breakpoints, both of which were located in intergenic regions. Significantly, the 7p15 breakpoint was located 523 kb upstream of HOXA13, the locus for hand-foot-genital syndrome. By inference from studies of HOXA locus control in the mouse, we suggest that the inversion has delocalised a HOXA13 enhancer to produce the phenotype observed in our patient. This study demonstrates how modern genetic diagnostic approach can characterise structural variants at nucleotide resolution and provide potential insights into functional regulation.

  1. Validation of an Ion Torrent Sequencing Platform for the Detection of Gene Mutations in Biopsy Specimens from Patients with Non-Small-Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Shiro Fujita

    Full Text Available Treatment for patients with advanced non-small cell lung cancer (NSCLC is often determined by the presence of biomarkers that predict the response to agents targeting specific molecular pathways. Demands for multiplex analysis of the genes involved in the pathogenesis of NSCLC are increasing.We validated the Ion Torrent Personal Genome Machine (PGM system using the Ion AmpliSeq Cancer Hotspot Panel and compared the results with those obtained using the gold standard methods, conventional PCR and Sanger sequencing. The cycleave PCR method was used to verify the results.The Ion Torrent PGM resulted in a similar level of accuracy in identifying multiple genetic mutations in parallel, compared with conventional PCR and Sanger sequencing; however, the Ion Torrent PGM was superior to the other sequencing methods in terms of increased ease of use, even when taking into account the small amount of DNA that was obtained from formalin-fixed paraffin embedded (FFPE biopsy specimens.

  2. Discovery of Escherichia coli CRISPR sequences in an undergraduate laboratory.

    Science.gov (United States)

    Militello, Kevin T; Lazatin, Justine C

    2017-05-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) represent a novel type of adaptive immune system found in eubacteria and archaebacteria. CRISPRs have recently generated a lot of attention due to their unique ability to catalog foreign nucleic acids, their ability to destroy foreign nucleic acids in a mechanism that shares some similarity to RNA interference, and the ability to utilize reconstituted CRISPR systems for genome editing in numerous organisms. In order to introduce CRISPR biology into an undergraduate upper-level laboratory, a five-week set of exercises was designed to allow students to examine the CRISPR status of uncharacterized Escherichia coli strains and to allow the discovery of new repeats and spacers. Students started the project by isolating genomic DNA from E. coli and amplifying the iap CRISPR locus using the polymerase chain reaction (PCR). The PCR products were analyzed by Sanger DNA sequencing, and the sequences were examined for the presence of CRISPR repeat sequences. The regions between the repeats, the spacers, were extracted and analyzed with BLASTN searches. Overall, CRISPR loci were sequenced from several previously uncharacterized E. coli strains and one E. coli K-12 strain. Sanger DNA sequencing resulted in the discovery of 36 spacer sequences and their corresponding surrounding repeat sequences. Five of the spacers were homologous to foreign (non-E. coli) DNA. Assessment of the laboratory indicates that improvements were made in the ability of students to answer questions relating to the structure and function of CRISPRs. Future directions of the laboratory are presented and discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):262-269, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  3. ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using Next Generation Sequence

    Directory of Open Access Journals (Sweden)

    Cañizares Joaquin

    2011-06-01

    Full Text Available Abstract Background The possibilities offered by next generation sequencing (NGS platforms are revolutionizing biotechnological laboratories. Moreover, the combination of NGS sequencing and affordable high-throughput genotyping technologies is facilitating the rapid discovery and use of SNPs in non-model species. However, this abundance of sequences and polymorphisms creates new software needs. To fulfill these needs, we have developed a powerful, yet easy-to-use application. Results The ngs_backbone software is a parallel pipeline capable of analyzing Sanger, 454, Illumina and SOLiD (Sequencing by Oligonucleotide Ligation and Detection sequence reads. Its main supported analyses are: read cleaning, transcriptome assembly and annotation, read mapping and single nucleotide polymorphism (SNP calling and selection. In order to build a truly useful tool, the software development was paired with a laboratory experiment. All public tomato Sanger EST reads plus 14.2 million Illumina reads were employed to test the tool and predict polymorphism in tomato. The cleaned reads were mapped to the SGN tomato transcriptome obtaining a coverage of 4.2 for Sanger and 8.5 for Illumina. 23,360 single nucleotide variations (SNVs were predicted. A total of 76 SNVs were experimentally validated, and 85% were found to be real. Conclusions ngs_backbone is a new software package capable of analyzing sequences produced by NGS technologies and predicting SNVs with great accuracy. In our tomato example, we created a highly polymorphic collection of SNVs that will be a useful resource for tomato researchers and breeders. The software developed along with its documentation is freely available under the AGPL license and can be downloaded from http://bioinf.comav.upv.es/ngs_backbone/ or http://github.com/JoseBlanca/franklin.

  4. Troubleshooting Requests e-mail Confirmation

    CERN Multimedia

    TS Department

    2004-01-01

    In an ongoing effort to improve quality of the repair requests, a new e-mail confirmation automatic system will be implemented starting from the 21st October. All repair requests transmitted to the TCR (72201) or the FM Helpdesk (77777) will be confirmed in an e-mail to the requestor, provided that the latter has a valid e-mail address in the HR database. The e-mail will contain a reference number, a brief description of the problem, the location and a contact where more information can be obtained. A second e-mail will be sent when the processing of the repair request is finished. We hope that this initiative will improve the transparency and quality of our service. Helpdesk Troubleshooting Requests (reminder) We remind you that all the repair requests and other communication concerning the CERN machine buildings have to be transmitted to the TCR via 72201, whereas the ones concerning tertiary buildings are handled directly by the FM helpdesk under the phone number 77777, i.e. problems on systems and equ...

  5. [Cutaneous gnathostomiasis, first confirmed case in Colombia].

    Science.gov (United States)

    Jurado, Leonardo F; Palacios, Diana M; López, Rocío; Baldión, Margarita; Matijasevic, Eugenio

    2015-01-01

    Gnathostomiasis is a parasitic zoonosis caused by some species of helminthes belonging to the genus Gnathostoma . It has a wide clinical presentation and its diagnosis is a challenge. Tropical and subtropical countries are endemic, and its transmission is associated with eating raw or undercooked meat from fresh water animals. Increasing global tourism and consuming exotic foods have produced a noticeable rise in cases of the disease in the last decades. However, in our country, there has not been any confirmed case of gnathostomiasis previously reported. We present the case of a 63-year-old Colombian man with an international travel history, who presented with gastrointestinal symptoms. During the hospital stay, he developed a cutaneous lesion on the upper right abdominal quadrant, where later, a larva was found. A morphological study allowed us to identify it as Gnathostoma spinigerum . As such, this is the first report of an imported case of gnathostomiasis confirmed in Colombia. This article describes the principles, etiology, pathogenic cycle and treatment of this disease with special considerations to our patient´s particular features.

  6. Gap5—editing the billion fragment sequence assembly

    Science.gov (United States)

    Bonfield, James K.; Whitwham, Andrew

    2010-01-01

    Motivation: Existing sequence assembly editors struggle with the volumes of data now readily available from the latest generation of DNA sequencing instruments. Results: We describe the Gap5 software along with the data structures and algorithms used that allow it to be scalable. We demonstrate this with an assembly of 1.1 billion sequence fragments and compare the performance with several other programs. We analyse the memory, CPU, I/O usage and file sizes used by Gap5. Availability and Implementation: Gap5 is part of the Staden Package and is available under an Open Source licence from http://staden.sourceforge.net. It is implemented in C and Tcl/Tk. Currently it works on Unix systems only. Contact: jkb@sanger.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20513662

  7. Identification of minority resistance mutations in the HIV-1 integrase coding region using next generation sequencing

    DEFF Research Database (Denmark)

    Fonager, Jannik; Larsson, Jonas T; Hussing, Christian

    2015-01-01

    BACKGROUND: The current widely applied standard method to screen for HIV-1 genotypic resistance is based on Sanger population sequencing (Sseq), which does not allow for the identification of minority variants (MVs) below the limit of detection for the Sseq-method in patients receiving integrase......: raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG). STUDY DESIGN: NGS and Sseq were used to analyze RT-PCR products of the HIV-1 integrase coding region from six patients and in serial samples from two patients. NGS sequences were assembled and analyzed using the low frequency variant detection...

  8. The complete mitochondrial genome sequence of Xingkai topmouth culter (Culter alburnus).

    Science.gov (United States)

    Liu, Yu; Yang, Jun

    2014-12-01

    The complete sequence of the mitochondrial genome of Culter alburnus was determined to be 16,622 bp in length by Sanger sequencing technology, and to contain 13 protein-coding genes (PCGs), 22 tRNA genes and 2 ribosomal genes. Its total A + T content is 55.99%. 6 CSBs (CSB-1, CSB-2, CSB-3, CSB-D, CSB-E and CSB-F) and 1TAS were identified in the control region; the control region also included a 2 bp tandem repeat with 8 repeat times.

  9. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era

    Science.gov (United States)

    d’Avila-Levy, Claudia Masini; Boucinha, Carolina; Kostygov, Alexei; Santos, Helena Lúcia Carneiro; Morelli, Karina Alessandra; Grybchuk-Ieremenko, Anastasiia; Duval, Linda; Votýpka, Jan; Yurchenko, Vyacheslav; Grellier, Philippe; Lukeš, Julius

    2015-01-01

    The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists. PMID:26602872

  10. Whole-exome sequencing of DNA from peripheral blood mononuclear cells (PBMC and EBV-transformed lymphocytes from the same donor

    Directory of Open Access Journals (Sweden)

    Delgrosso Kathleen

    2011-09-01

    Full Text Available Abstract Background The creation of lymphoblastoid cell lines (LCLs through Epstein-Barr virus (EBV transformation of B-lymphocytes can result in a valuable biomaterial for cell biology research and a renewable source of DNA. While LCLs have been used extensively in cellular and genetic studies, the process of cell transformation and expansion during culturing may introduce genomic changes that may impact their use and the interpretation of subsequent genetic findings. Results We performed whole exome sequencing on a tetrad family using DNA derived from peripheral blood mononuclear cells (PBMCs and LCLs from each individual. We generated over 4.7 GB of mappable sequence to a 125X read coverage per sample. An average of 19,354 genetic variants were identified. Comparison of the two DNA sources from each individual showed an average concordance rate of 95.69%. By lowering the variant calling parameters, the concordance rate between the paired samples increased to 99.82%. Sanger sequencing of a subset of the remaining discordant variants did confirm the presence of de novo mutations arising in LCLs. Conclusions By varying software stringency parameters, we identified 99% concordance between DNA sequences derived from the two different sources from the same donors. These results suggest that LCLs are an appropriate representation of the genetic material of the donor and suggest that EBV transformation can result in low-level generation of de novo mutations. Therefore, use of PBMC or early passage EBV-transformed cells is recommended. These findings have broad-reaching implications, as there are thousands of LCLs in public biorepositories and individual laboratories.

  11. Can weak lensing surveys confirm BICEP2 ?

    CERN Document Server

    Chisari, Nora Elisa; Schmidt, Fabian

    2014-01-01

    The detection of B-modes in the Cosmic Microwave Background (CMB) polarization by the BICEP2 experiment, if interpreted as evidence for a primordial gravitational wave background, has enormous ramifications for cosmology and physics. It is crucial to test this hypothesis with independent measurements. A gravitational wave background leads to B-modes in galaxy shape correlations (shear) both through lensing and tidal alignment effects. Since the systematics and foregrounds of galaxy shapes and CMB polarization are entirely different, a detection of a cross-correlation between the two observables would provide conclusive proof for the existence of a primordial gravitational wave background. We find that upcoming weak lensing surveys will be able to detect the cross-correlation between B-modes of the CMB and galaxy shapes. However, this detection is not sufficient to confirm or falsify the hypothesis of a primordial origin for CMB B-mode polarization.

  12. Efficacy of ibandronate: a long term confirmation.

    Science.gov (United States)

    Di Munno, Ombretta; Delle Sedie, Andrea

    2010-01-01

    Data deriving from randomized clinical trials, observational studies and meta-analyses, including treatment regimens unlicensed for use in clinical practice, clearly support that 150 mg once-monthly oral and 3 mg quarterly i.v. doses of ibandronate are associated with efficacy, safety and tolerability; notably both these marketed regimens, which largely correspond to ACE ≥10.8 mg, may in addition provide a significant efficacy on non-vertebral and clinical fracture (Fx) efficacy. The MOBILE and the DIVA LTE studies confirmed a sustained efficacy of monthly oral and quarterly i.v. regimens respectively, over 5 years. Furthermore, improved adherence rates with monthly ibandronate, deriving from studies evaluating large prescription databases, promise to enhance fracture protection and decrease the social and economic burden of postmenopausal osteoporosis.

  13. Automatic earthquake confirmation for early warning system

    Science.gov (United States)

    Kuyuk, H. S.; Colombelli, S.; Zollo, A.; Allen, R. M.; Erdik, M. O.

    2015-07-01

    Earthquake early warning studies are shifting real-time seismology in earthquake science. They provide methods to rapidly assess earthquakes to predict damaging ground shaking. Preventing false alarms from these systems is key. Here we developed a simple, robust algorithm, Authorizing GRound shaking for Earthquake Early warning Systems (AGREEs), to reduce falsely issued alarms. This is a network threshold-based algorithm, which differs from existing approaches based on apparent velocity of P and S waves. AGREEs is designed to function as an external module to support existing earthquake early warning systems (EEWSs) and filters out the false events, by evaluating actual shaking near the epicenter. Our retrospective analyses of the 2009 L'Aquila and 2012 Emilia earthquakes show that AGREEs could help an EEWS by confirming the epicentral intensity. Furthermore, AGREEs is able to effectively identify three false events due to a storm, a teleseismic earthquake, and broken sensors in Irpinia Seismic Network, Italy.

  14. Spectroscopic Confirmation of the Pisces Overdensity

    CERN Document Server

    Kollmeier, Juna A; Shectman, Stephen; Thompson, Ian B; Preston, George W; Simon, Joshua D; Crane, Jeffrey D; Ivezić, Željko; Sesar, Branimir

    2009-01-01

    We present spectroscopic confirmation of the "Pisces Overdensity", also known as "Structure J", a photometric overdensity of RR Lyrae stars discovered by the Sloan Digital Sky Survey (SDSS) at an estimated photometric distance of ~85kpc. We measure radial velocities for 8 RR Lyrae stars within Pisces. We find that 5 of the 8 stars have heliocentric radial velocities within a narrow range of -87 km/s < v < -67 km/s, suggesting that the photometric overdensity is mainly due to a physically associated system, probably a dwarf galaxy or a disrupted galaxy. Two of the remaining 3 stars differ from one another by only 9 km/s, but it would be premature to identify them as a second system.

  15. Sequence assembly using next generation sequencing data--challenges and solutions.

    Science.gov (United States)

    Chin, Francis Y L; Leung, Henry C M; Yiu, S M

    2014-11-01

    Sequence assembling is an important step for bioinformatics study. With the help of next generation sequencing (NGS) technology, high throughput DNA fragment (reads) can be randomly sampled from DNA or RNA molecular sequence. However, as the positions of reads being sampled are unknown, assembling process is required for combining overlapped reads to reconstruct the original DNA or RNA sequence. Compared with traditional Sanger sequencing methods, although the throughput of NGS reads increases, the read length is shorter and the error rate is higher. It introduces several problems in assembling. Moreover, paired-end reads instead of single-end reads can be sampled which contain more information. The existing assemblers cannot fully utilize this information and fails to assemble longer contigs. In this article, we will revisit the major problems of assembling NGS reads on genomic, transcriptomic, metagenomic and metatranscriptomic data. We will also describe our IDBA package for solving these problems. IDBA package has adopted several novel ideas in assembling, including using multiple k, local assembling and progressive depth removal. Compared with existence assemblers, IDBA has better performance on many simulated and real sequencing datasets.

  16. Novel TNS3-MAP3K3 and ZFPM2-ELF5 fusion genes identified by RNA sequencing in multicystic mesothelioma with t(7;17)(p12;q23) and t(8;11)(q23;p13).

    Science.gov (United States)

    Panagopoulos, Ioannis; Gorunova, Ludmila; Davidson, Ben; Heim, Sverre

    2015-02-28

    Multicystic mesothelioma is a rare disease of unknown etiology and pathogenesis. Nothing has been known about the cytogenetic and molecular genetic features of these tumors. Here we present the first cytogenetically analyzed multicystic mesothelioma with the karyotype 46,XX,t(7;17)(p13;q23),t(8;11)(q23;p13). RNA-sequencing showed that the t(7;17)(p13;q23) generated a chimeric TNS3-MAP3K3 gene, which codes for a chimeric protein kinase, as well as the reciprocal MAP3K3-TNS3 in which the region of TNS3 coding for the SH2_Tensin_like region and the tensin phosphotyrosine-binding domain is under the control of the MAP3K3 promoter. The other translocation, t(8;11)(q23;p13), generated a chimeric ZFPM2-ELF5 gene which codes for a chimeric transcription factor in which the first 40 amino acids of ELF5 are replaced by the first 100 amino acids of ZFPM2. RT-PCR together with Sanger sequencing verified the presence of the above-mentioned fusion transcripts. The finding of acquired clonal chromosome abnormalities in cells cultured from the lesion and the presence of the TNS3-MAP3K3 chimeric protein kinase and the ZFPM2-ELF5 chimeric transcription factor confirm the neoplastic nature of multicystic mesothelioma. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Computational methods for the analysis of tag sequences in metagenomics studies.

    Science.gov (United States)

    Chang, Qin; Luan, Yihui; Chen, Ting; Fuhrman, Jed A; Sun, Fengzhu

    2012-06-01

    Metagenomics commonly refers to the study of genetic materials directly derived from environments without culturing. Several ongoing large-scale metagenomics projects related to human and marine life, as well as pedology studies, have generated enormous amounts of data, posing a key challenge for efficient analysis, as we try to 1) understand microbial organism assemblage under different conditions, 2) compare different communities, and 3) understand how microbial organisms associate with each other and the environment.To address such questions, investigators are using new sequencing technologies, including Sanger, Illumina Solexa, and Roche 454, to sequence either particular genes, called tag sequences, mostly 16S or 18S ribosomal RNA sequences or other conserved genes, or whole metagenome shotgun sequences of all the genetic materials in a given community. In this paper, we review computational methods used for the analysis of tag sequences.

  18. A fast Boyer-Moore type pattern matching algorithm for highly similar sequences.

    Science.gov (United States)

    Ben Nsira, Nadia; Lecroq, Thierry; Elloumi, Mourad

    2015-01-01

    In the last decade, biology and medicine have undergone a fundamental change: next generation sequencing (NGS) technologies have enabled to obtain genomic sequences very quickly and at small costs compared to the traditional Sanger method. These NGS technologies have thus permitted to collect genomic sequences (genes, exomes or even full genomes) of individuals of the same species. These latter sequences are identical to more than 99%. There is thus a strong need for efficient algorithms for indexing and performing fast pattern matching in such specific sets of sequences. In this paper we propose a very efficient algorithm that solves the exact pattern matching problem in a set of highly similar DNA sequences where only the pattern can be pre-processed. This new algorithm extends variants of the Boyer-Moore exact string matching algorithm. Experimental results show that it exhibits the best performances in practice.

  19. TANK 50 BATCH 0 SALTSTONE FORMULATION CONFIRMATION

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.

    2006-06-05

    Savannah River National Laboratory (SRNL) personnel were requested to confirm the Tank 50 Batch 0 grout formulation per Technical Task Request, SSF-TTR-2006-0001 (task 1 of 2) [1]. Earlier Batch 0 formulation testing used a Tank 50 sample collected in September 2005 and is described elsewhere [2]. The current testing was performed using a sample of Tank 50 waste collected in May 2006. This work was performed according to the Technical Task and Quality Assurance Plan (TT/QAP), WSRC-RP-2006-00594 [3]. The salt solution collected from Tank 50 in May 2006 contained approximately 3 weight percent more solids than the sample collected in September 2005. The insoluble solids took longer to settle in the new sample which was interpreted as indicating finer particles in the current sample. The saltstone formulation developed for the September 2005 Tank 50 Batch 0 sample was confirmed for the May 2006 sample with one minor exception. Saltstone prepared with the Tank 50 sample collected in May 2006 required 1.5 times more Daratard 17 set retarding admixture than the saltstone prepared with the September In addition, a sample prepared with lower shear mixing (stirring with a spatula) had a higher plastic viscosity (57 cP) than samples made with higher shear mixing in a blender (23cP). The static gel times of the saltstone slurries made with low shear mixing were also shorter ({approx}32 minutes) than those for comparable samples made in the blender ({approx}47 minutes). The addition of the various waste streams (ETP, HEU-HCAN, and GPE-HCAN) to Tank 50 from September 2005 to May 2006 has increased the amount of set retarder, Daratard 17, required for processing saltstone slurries through the Saltstone facility. If these streams are continued to be added to Tank 50, the quantity of admixtures required to maintain the same processing conditions for the Saltstone facility will probably change and additional testing is recommended to reconfirm the Tank 50 Saltstone formulation.

  20. Observational Confirmations of Spiral Density Wave Theory

    Science.gov (United States)

    Kennefick, Julia D.; Kennefick, Daniel; Shameer Abdeen, Mohamed; Berrier, Joel; Davis, Benjamin; Fusco, Michael; Pour Imani, Hamed; Shields, Doug; DMS, SINGS

    2017-01-01

    Using two techniques to reliably and accurately measure the pitch angles of spiral arms in late-type galaxies, we have compared pitch angles to directly measured black hole masses in local galaxies and demonstrated a strong correlation between them. Using the relation thus established we have developed a pitch angle distribution function of a statistically complete volume limited sample of nearby galaxies and developed a central black hole mass function for nearby spiral galaxies.We have further shown that density wave theory leads us to a three-way correlation between bulge mass, pitch angle, and disk gas density, and have used data from the Galaxy Disk Mass Survey to confirm this possible fundamental plane. Density wave theory also predicts that the pitch angle of spiral arms should change with observed waveband as each waveband is sampling a different stage in stellar population formation and evolution. We present evidence that this is indeed the case using a sample of galaxies from the Spitzer Infrared Nearby Galaxy Survey. Furthermore, the evolved spiral arms cross at the galaxy co-rotation radius. This gives a new method for determining the co-rotation radius of spiral galaxies that is found to agree with those found using previous methods.

  1. DSAP: deep-sequencing small RNA analysis pipeline.

    Science.gov (United States)

    Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus

    2010-07-01

    DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.

  2. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Rama R Gullapalli

    2012-01-01

    Full Text Available The Human Genome Project (HGP provided the initial draft of mankind′s DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized. [7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it′s hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future.

  3. Performance evaluation of the next-generation sequencing approach for molecular diagnosis of hereditary hearing loss.

    Science.gov (United States)

    Sivakumaran, Theru A; Husami, Ammar; Kissell, Diane; Zhang, Wenying; Keddache, Mehdi; Black, Angela P; Tinkle, Brad T; Greinwald, John H; Zhang, Kejian

    2013-06-01

    To evaluate the performance of a next-generation sequencing (NGS)-based targeted resequencing genetic test, OtoSeq, to identify the sequence variants in the genes causing sensorineural hearing loss (SNHL). Retrospective study. Tertiary children's hospital. A total of 8 individuals presenting with prelingual hearing loss were used in this study. The coding and flanking intronic regions of 24 well-studied SNHL genes were enriched using microdroplet polymerase chain reaction and sequenced on an Illumina HiSeq 2000 sequencer. The filtered high-quality sequence reads were mapped to reference sequence, and variants were detected using NextGENe software. A total of 1148 sequence variants were detected in 8 samples in 24 genes. Using in-house developed NGS data analysis criteria, we classified 810 (~71%) of these variants as potential true variants that include previously detected pathogenic mutations in 5 patients. To validate our strategy, we Sanger sequenced the target regions of 5 of the 24 genes, accounting for about 29.2% of all target sequence. Our results showed >99.99% concordance between NGS and Sanger sequencing in these 5 genes, resulting in an analytical sensitivity and specificity of 100% and 99.997%, respectively. We were able to successfully detect single base substitutions, small deletions, and insertions of up to 22 nucleotides. This study demonstrated that our NGS-based mutation screening strategy is highly sensitive and specific in detecting sequence variants in the SNHL genes. Therefore, we propose that this NGS-based targeted sequencing method would be an alternative to current technologies for identifying the multiple genetic causes of SNHL.

  4. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius).

    LENUS (Irish Health Repository)

    Edwards, Ceiridwen J

    2010-01-01

    BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+\\/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified

  5. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger

    2011-05-09

    application papers of sequencing up to this level were also published in the mid 1990's. A major interest of the sequencing community has always been read length. The longer the sequence read per run the more efficient the process as well as the ability to read repeat sequences. We therefore devoted a great deal of time to studying the factors influencing read length in capillary electrophoresis, including polymer type and molecule weight, capillary column temperature, applied electric field, etc. In our initial optimization, we were able to demonstrate, for the first time, the sequencing of over 1000 bases with 90% accuracy. The run required 80 minutes for separation. Sequencing of 1000 bases per column was next demonstrated on a multiple capillary instrument. Our studies revealed that linear polyacrylamide produced the longest read lengths because the hydrophilic single strand DNA had minimal interaction with the very hydrophilic linear polyacrylamide. Any interaction of the DNA with the polymer would lead to broader peaks and lower read length. Another important parameter was the molecular weight of the linear chains. High molecular weight (> 1 MDA) was important to allow the long single strand DNA to reptate through the entangled polymer matrix. In an important paper, we showed an inverse emulsion method to prepare reproducibility linear polyacrylamide polymer with an average MWT of 9MDa. This approach was used in the polymer for sequencing the human genome. Another critical factor in the successful use of capillary electrophoresis for sequencing was the sample preparation method. In the Sanger sequencing reaction, high concentration of salts and dideoxynucleotide remained. Since the sample was introduced to the capillary column by electrokinetic injection, these salt ions would be favorably injected into the column over the sequencing fragments, thus reducing the signal for longer fragments and hence reading read length. In two papers, we examined the role of

  6. The Quest for Rare Variants: Pooled Multiplexed Next Generation Sequencing in Plants

    Directory of Open Access Journals (Sweden)

    Fabio eMarroni

    2012-06-01

    Full Text Available Next generation sequencing (NGS instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, only three research groups working in plant sciences have exploited this potentiality. They showed that pooled NGS can provide results in excellent agreement with those obtained by individual Sanger sequencing. Aim of this review is to convey to the reader the general ideas underlying the use of pooled NGS for the identification of rare variants. To facilitate a thorough understanding of the possibilities of the method we will explain in detail the variations in study design and discuss their advantages and disadvantages. We will show that information on allele frequency obtained by pooled next generation sequencing can be used to accurately compute basic population genetics indexes such as allele frequency, nucleotide diversity and Tajima’s D. Finally we will discuss applications and future perspectives of the multiplexed NGS approach.

  7. Genetic testing in hereditary breast and ovarian cancer using massive parallel sequencing.

    Science.gov (United States)

    Ruiz, Anna; Llort, Gemma; Yagüe, Carmen; Baena, Neus; Viñas, Marina; Torra, Montse; Brunet, Anna; Seguí, Miquel A; Saigí, Eugeni; Guitart, Miriam

    2014-01-01

    High throughput methods such as next generation sequencing are increasingly used in molecular diagnosis. The aim of this study was to develop a workflow for the detection of BRCA1 and BRCA2 mutations using massive parallel sequencing in a 454 GS Junior bench top sequencer. Our approach was first validated in a panel of 23 patients containing 62 unique variants that had been previously Sanger sequenced. Subsequently, 101 patients with familial breast and ovarian cancer were studied. BRCA1 and BRCA2 exon enrichment has been performed by PCR amplification using the BRCA MASTR kit (Multiplicom). Bioinformatic analysis of reads is performed with the AVA software v2.7 (Roche). In total, all 62 variants were detected resulting in a sensitivity of 100%. 71 false positives were called resulting in a specificity of 97.35%. All of them correspond to deletions located in homopolymeric stretches. The analysis of the homopolymers stretches of 6 bp or longer using the BRCA HP kit (Multiplicom) increased the specificity of the detection of BRCA1 and BRCA2 mutations to 99.99%. We show here that massive parallel pyrosequencing can be used as a diagnostic strategy to test for BRCA1 and BRCA2 mutations meeting very stringent sensitivity and specificity parameters replacing traditional Sanger sequencing with a lower cost.

  8. Automatic sequences

    CERN Document Server

    Haeseler, Friedrich

    2003-01-01

    Automatic sequences are sequences which are produced by a finite automaton. Although they are not random they may look as being random. They are complicated, in the sense of not being not ultimately periodic, they may look rather complicated, in the sense that it may not be easy to name the rule by which the sequence is generated, however there exists a rule which generates the sequence. The concept automatic sequences has special applications in algebra, number theory, finite automata and formal languages, combinatorics on words. The text deals with different aspects of automatic sequences, in particular:· a general introduction to automatic sequences· the basic (combinatorial) properties of automatic sequences· the algebraic approach to automatic sequences· geometric objects related to automatic sequences.

  9. Molecular confirmation of Lassa fever imported into Ghana

    Directory of Open Access Journals (Sweden)

    Joseph H.K. Bonney

    2016-02-01

    Full Text Available Background: Recent reports have shown an expansion of Lassa virus from the area where it was first isolated in Nigeria to other areas of West Africa. Two Ghanaian soldiers on a United Nations peacekeeping mission in Liberia were taken ill with viral haemorrhagic fever syndrome following the death of a sick colleague and were referred to a military hospital in Accra, Ghana, in May 2013. Blood samples from the soldiers and five asymptomatic close contacts were subjected to laboratory investigations.Objective: We report the results of these investigations to highlight the importance of molecular diagnostic applications and the need for heightened awareness about Lassa fever in West Africa.Methods: We used molecular assays on sera from the two patients to identify the causativeorganism. Upon detection of positive signals for Lassa virus ribonucleic material by two differentpolymerase chain reaction assays, sequencing and phylogenetic analyses were performed.Results: The presence of Lassa virus in the soldiers’ blood samples was shown by L-gene segment homology to be the Macenta and las803792 strains previously isolated in Liberia, with close relationships then confirmed by phylogenetic tree construction. The five asymptomatic close contacts were negative for Lassa virus.Conclusions: The Lassa virus strains identified in the two Ghanaian soldiers had molecular epidemiological links to strains from Liberia. Lassa virus was probably responsible for the outbreak of viral haemorrhagic fever in the military camp. These data confirm Lassa fever endemicity in West Africa.

  10. Manned in Situ Confirmation of Lunar Ice

    Science.gov (United States)

    Gerené, S. P. B.; Hummeling, R. W. J.; Ockels, W. J.

    A study is performed to investigate the feasibility of a manned expedition to the Moon using the European Ariane-5 launcher. The primary objective of this lunar mission is to confirm the presence of water at the South-Pole craters. It is believed that these permanently shadowed craters contain water in the form of ice. Secondary objective is to perform lunar surface science and making a first step towards a lunar outpost. Early results show that a minimum of two Ariane-5 launches is required. In this `two Ariane' scenario the first launch will bring a Lunar Landing Vehicle (LLV) into low lunar orbit. The second will launch two astronauts in a Crew Transfer Vehicle into a rendez- vous trajectory with the LLV. Arrived at the Moon, the astronauts will enter the LLV, undock from the CTV and land at the designated site located near the rim of the South-Pole Shackleton crater. The transfer strategy for both spacecraft will be the so-called direct transfer, taking about four days. At arrival the LLV will start mapping the landing site at a ground resolution of one meter. As a consequence of the polar orbit, the CTV has to arrive fourteen days later and surface operations can take about twelve days, accumulating in a total mission-duration of 36 days. 32 days for the CTV and 22 days for the LLV. In case a `two Ariane' flight does not posses sufficient capabilities also a `three Ariane' scenario is developed, in which the LLV is split-up into two stages and launched separately. These two will dock at the Moon forming a descent stage and an ascent stage. The third launch will be a CTV. During surface operations, astronauts will set up a solar power unit, install the sample retrieval system and carry out surface science. Samples of the crater floor will be retrieved by means of a probe or robot guided along a cable suspended over the crater rim. Also, this paper shows the way in which European astronauts can be brought to the Moon for other future missions, like the

  11. Improved Efficiency and Reliability of NGS Amplicon Sequencing Data Analysis for Genetic Diagnostic Procedures Using AGSA Software.

    Science.gov (United States)

    Poulet, Axel; Privat, Maud; Ponelle, Flora; Viala, Sandrine; Decousus, Stephanie; Perin, Axel; Lafarge, Laurence; Ollier, Marie; El Saghir, Nagi S; Uhrhammer, Nancy; Bignon, Yves-Jean; Bidet, Yannick

    Screening for BRCA mutations in women with familial risk of breast or ovarian cancer is an ideal situation for high-throughput sequencing, providing large amounts of low cost data. However, 454, Roche, and Ion Torrent, Thermo Fisher, technologies produce homopolymer-associated indel errors, complicating their use in routine diagnostics. We developed software, named AGSA, which helps to detect false positive mutations in homopolymeric sequences. Seventy-two familial breast cancer cases were analysed in parallel by amplicon 454 pyrosequencing and Sanger dideoxy sequencing for genetic variations of the BRCA genes. All 565 variants detected by dideoxy sequencing were also detected by pyrosequencing. Furthermore, pyrosequencing detected 42 variants that were missed with Sanger technique. Six amplicons contained homopolymer tracts in the coding sequence that were systematically misread by the software supplied by Roche. Read data plotted as histograms by AGSA software aided the analysis considerably and allowed validation of the majority of homopolymers. As an optimisation, additional 250 patients were analysed using microfluidic amplification of regions of interest (Access Array Fluidigm) of the BRCA genes, followed by 454 sequencing and AGSA analysis. AGSA complements a complete line of high-throughput diagnostic sequence analysis, reducing time and costs while increasing reliability, notably for homopolymer tracts.

  12. Improved Efficiency and Reliability of NGS Amplicon Sequencing Data Analysis for Genetic Diagnostic Procedures Using AGSA Software

    Directory of Open Access Journals (Sweden)

    Axel Poulet

    2016-01-01

    Full Text Available Screening for BRCA mutations in women with familial risk of breast or ovarian cancer is an ideal situation for high-throughput sequencing, providing large amounts of low cost data. However, 454, Roche, and Ion Torrent, Thermo Fisher, technologies produce homopolymer-associated indel errors, complicating their use in routine diagnostics. We developed software, named AGSA, which helps to detect false positive mutations in homopolymeric sequences. Seventy-two familial breast cancer cases were analysed in parallel by amplicon 454 pyrosequencing and Sanger dideoxy sequencing for genetic variations of the BRCA genes. All 565 variants detected by dideoxy sequencing were also detected by pyrosequencing. Furthermore, pyrosequencing detected 42 variants that were missed with Sanger technique. Six amplicons contained homopolymer tracts in the coding sequence that were systematically misread by the software supplied by Roche. Read data plotted as histograms by AGSA software aided the analysis considerably and allowed validation of the majority of homopolymers. As an optimisation, additional 250 patients were analysed using microfluidic amplification of regions of interest (Access Array Fluidigm of the BRCA genes, followed by 454 sequencing and AGSA analysis. AGSA complements a complete line of high-throughput diagnostic sequence analysis, reducing time and costs while increasing reliability, notably for homopolymer tracts.

  13. BAC-pool sequencing and analysis of large segments of A12 and D12 homoeologous chromosomes in upland cotton.

    Directory of Open Access Journals (Sweden)

    Ramesh Buyyarapu

    Full Text Available Although new and emerging next-generation sequencing (NGS technologies have reduced sequencing costs significantly, much work remains to implement them for de novo sequencing of complex and highly repetitive genomes such as the tetraploid genome of Upland cotton (Gossypium hirsutum L.. Herein we report the results from implementing a novel, hybrid Sanger/454-based BAC-pool sequencing strategy using minimum tiling path (MTP BACs from Ctg-3301 and Ctg-465, two large genomic segments in A12 and D12 homoeologous chromosomes (Ctg. To enable generation of longer contig sequences in assembly, we implemented a hybrid assembly method to process ~35x data from 454 technology and 2.8-3x data from Sanger method. Hybrid assemblies offered higher sequence coverage and better sequence assemblies. Homology studies revealed the presence of retrotransposon regions like Copia and Gypsy elements in these contigs and also helped in identifying new genomic SSRs. Unigenes were anchored to the sequences in Ctg-3301 and Ctg-465 to support the physical map. Gene density, gene structure and protein sequence information derived from protein prediction programs were used to obtain the functional annotation of these genes. Comparative analysis of both contigs with Arabidopsis genome exhibited synteny and microcollinearity with a conserved gene order in both genomes. This study provides insight about use of MTP-based BAC-pool sequencing approach for sequencing complex polyploid genomes with limited constraints in generating better sequence assemblies to build reference scaffold sequences. Combining the utilities of MTP-based BAC-pool sequencing with current longer and short read NGS technologies in multiplexed format would provide a new direction to cost-effectively and precisely sequence complex plant genomes.

  14. Evaluation of a pooled strategy for high-throughput sequencing of cosmid clones from metagenomic libraries.

    Directory of Open Access Journals (Sweden)

    Kathy N Lam

    Full Text Available High-throughput sequencing methods have been instrumental in the growing field of metagenomics, with technological improvements enabling greater throughput at decreased costs. Nonetheless, the economy of high-throughput sequencing cannot be fully leveraged in the subdiscipline of functional metagenomics. In this area of research, environmental DNA is typically cloned to generate large-insert libraries from which individual clones are isolated, based on specific activities of interest. Sequence data are required for complete characterization of such clones, but the sequencing of a large set of clones requires individual barcode-based sample preparation; this can become costly, as the cost of clone barcoding scales linearly with the number of clones processed, and thus sequencing a large number of metagenomic clones often remains cost-prohibitive. We investigated a hybrid Sanger/Illumina pooled sequencing strategy that omits barcoding altogether, and we evaluated this strategy by comparing the pooled sequencing results to reference sequence data obtained from traditional barcode-based sequencing of the same set of clones. Using identity and coverage metrics in our evaluation, we show that pooled sequencing can generate high-quality sequence data, without producing problematic chimeras. Though caveats of a pooled strategy exist and further optimization of the method is required to improve recovery of complete clone sequences and to avoid circumstances that generate unrecoverable clone sequences, our results demonstrate that pooled sequencing represents an effective and low-cost alternative for sequencing large sets of metagenomic clones.

  15. Evaluation of a pooled strategy for high-throughput sequencing of cosmid clones from metagenomic libraries.

    Science.gov (United States)

    Lam, Kathy N; Hall, Michael W; Engel, Katja; Vey, Gregory; Cheng, Jiujun; Neufeld, Josh D; Charles, Trevor C

    2014-01-01

    High-throughput sequencing methods have been instrumental in the growing field of metagenomics, with technological improvements enabling greater throughput at decreased costs. Nonetheless, the economy of high-throughput sequencing cannot be fully leveraged in the subdiscipline of functional metagenomics. In this area of research, environmental DNA is typically cloned to generate large-insert libraries from which individual clones are isolated, based on specific activities of interest. Sequence data are required for complete characterization of such clones, but the sequencing of a large set of clones requires individual barcode-based sample preparation; this can become costly, as the cost of clone barcoding scales linearly with the number of clones processed, and thus sequencing a large number of metagenomic clones often remains cost-prohibitive. We investigated a hybrid Sanger/Illumina pooled sequencing strategy that omits barcoding altogether, and we evaluated this strategy by comparing the pooled sequencing results to reference sequence data obtained from traditional barcode-based sequencing of the same set of clones. Using identity and coverage metrics in our evaluation, we show that pooled sequencing can generate high-quality sequence data, without producing problematic chimeras. Though caveats of a pooled strategy exist and further optimization of the method is required to improve recovery of complete clone sequences and to avoid circumstances that generate unrecoverable clone sequences, our results demonstrate that pooled sequencing represents an effective and low-cost alternative for sequencing large sets of metagenomic clones.

  16. Parallel tagged amplicon sequencing of relatively long PCR products using the Illumina HiSeq platform and transcriptome assembly.

    Science.gov (United States)

    Feng, Yan-Jie; Liu, Qing-Feng; Chen, Meng-Yun; Liang, Dan; Zhang, Peng

    2016-01-01

    In phylogenetics and population genetics, a large number of loci are often needed to accurately resolve species relationships. Normally, loci are enriched by PCR and sequenced by Sanger sequencing, which is expensive when the number of amplicons is large. Next-generation sequencing (NGS) techniques are increasingly used for parallel amplicon sequencing, which reduces sequencing costs tremendously, but has not reduced preparation costs very much. Moreover, for most current NGS methods, amplicons need to be purified and quantified before sequencing and their lengths are also restricted (normally HiSeq paired-end 90-bp data. Overall, we validate a rapid, cost-effective and scalable approach to sequence a large number of targeted loci from a large number of samples that is particularly suitable for both phylogenetics and population genetics studies that require a modest scale of data.

  17. Determination of RET Sequence Variation in an MEN2 Unaffected Cohort Using Multiple-Sample Pooling and Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    R. L. Margraf

    2012-01-01

    Full Text Available Multisample, nonindexed pooling combined with next-generation sequencing (NGS was used to discover RET proto-oncogene sequence variation within a cohort known to be unaffected by multiple endocrine neoplasia type 2 (MEN2. DNA samples (113 Caucasians, 23 persons of other ethnicities were amplified for RET intron 9 to intron 16 and then divided into 5 pools of <30 samples each before library prep and NGS. Two controls were included in this study, a single sample and a pool of 50 samples that had been previously sequenced by the same NGS methods. All 59 variants previously detected in the 50-pool control were present. Of the 61 variants detected in the unaffected cohort, 20 variants were novel changes. Several variants were validated by high-resolution melting analysis and Sanger sequencing, and their allelic frequencies correlated well with those determined by NGS. The results from this unaffected cohort will be added to the RET MEN2 database.

  18. Comparative analysis of human mitochondrial DNA from World War I bone samples by DNA sequencing and ESI-TOF mass spectrometry.

    Science.gov (United States)

    Howard, Rebecca; Encheva, Vesela; Thomson, Jim; Bache, Katherine; Chan, Yuen-Ting; Cowen, Simon; Debenham, Paul; Dixon, Alan; Krause, Jens-Uwe; Krishan, Elaina; Moore, Daniel; Moore, Victoria; Ojo, Michael; Rodrigues, Sid; Stokes, Peter; Walker, James; Zimmermann, Wolfgang; Barallon, Rita

    2013-01-01

    Mitochondrial DNA is commonly used in identity testing for the analysis of old or degraded samples or to give evidence of familial links. The Abbott T5000 mass spectrometry platform provides an alternative to the more commonly used Sanger sequencing for the analysis of human mitochondrial DNA. The robustness of the T5000 system has previously been demonstrated using DNA extracted from volunteer buccal swabs but the system has not been tested using more challenging sample types. For mass spectrometry to be considered as a valid alternative to Sanger sequencing it must also be demonstrated to be suitable for use with more limiting sample types such as old teeth, bone fragments, and hair shafts. In 2009 the Commonwealth War Graves Commission launched a project to identify the remains of 250 World War I soldiers discovered in a mass grave in Fromelles, France. This study characterises the performance of both Sanger sequencing and the T5000 platform for the analysis of the mitochondrial DNA extracted from 225 of these remains, both in terms of the ability to amplify and characterise DNA regions of interest and the relative information content and ease-of-use associated with each method.

  19. Whole exome sequencing identifies recessive PKHD1 mutations in a Chinese twin family with Caroli disease.

    Directory of Open Access Journals (Sweden)

    Xiwei Hao

    Full Text Available BACKGROUND: Mutations in PKHD1 cause autosomal recessive Caroli disease, which is a rare congenital disorder involving cystic dilatation of the intrahepatic bile ducts. However, the mutational spectrum of PKHD1 and the phenotype-genotype correlations have not yet been fully established. METHODS: Whole exome sequencing (WES was performed on one twin sample with Caroli disease from a Chinese family from Shandong province. Routine Sanger sequencing was used to validate the WES and to carry out segregation studies. We also described the PKHD1 mutation associated with the genotype-phenotype of this twin. RESULTS: A combination of WES and Sanger sequencing revealed the genetic defect to be a novel compound heterozygous genotype in PKHD1, including the missense mutation c.2507 T>C, predicted to cause a valine to alanine substitution at codon 836 (c.2507T>C, p.Val836Ala, and the nonsense mutation c.2341C>T, which is predicted to result in an arginine to stop codon at codon 781 (c.2341C>T, p.Arg781*. This compound heterozygous genotype co-segregates with the Caroli disease-affected pedigree members, but is absent in 200 normal chromosomes. CONCLUSIONS: Our findings indicate exome sequencing can be useful in the diagnosis of Caroli disease patients and associate a compound heterozygous genotype in PKHD1 with Caroli disease, which further increases our understanding of the mutation spectrum of PKHD1 in association with Caroli disease.

  20. Next-Generation Sequencing of Aquatic Oligochaetes: Comparison of Experimental Communities

    Science.gov (United States)

    Vivien, Régis; Lejzerowicz, Franck; Pawlowski, Jan

    2016-01-01

    Aquatic oligochaetes are a common group of freshwater benthic invertebrates known to be very sensitive to environmental changes and currently used as bioindicators in some countries. However, more extensive application of oligochaetes for assessing the ecological quality of sediments in watercourses and lakes would require overcoming the difficulties related to morphology-based identification of oligochaetes species. This study tested the Next-Generation Sequencing (NGS) of a standard cytochrome c oxydase I (COI) barcode as a tool for the rapid assessment of oligochaete diversity in environmental samples, based on mixed specimen samples. To know the composition of each sample we Sanger sequenced every specimen present in these samples. Our study showed that a large majority of OTUs (Operational Taxonomic Unit) could be detected by NGS analyses. We also observed congruence between the NGS and specimen abundance data for several but not all OTUs. Because the differences in sequence abundance data were consistent across samples, we exploited these variations to empirically design correction factors. We showed that such factors increased the congruence between the values of oligochaetes-based indices inferred from the NGS and the Sanger-sequenced specimen data. The validation of these correction factors by further experimental studies will be needed for the adaptation and use of NGS technology in biomonitoring studies based on oligochaete communities. PMID:26866802

  1. CHILD: a new tool for detecting low-abundance insertions and deletions in standard sequence traces.

    Science.gov (United States)

    Zhidkov, Ilia; Cohen, Raphael; Geifman, Nophar; Mishmar, Dan; Rubin, Eitan

    2011-04-01

    Several methods have been proposed for detecting insertion/deletions (indels) from chromatograms generated by Sanger sequencing. However, most such methods are unsuitable when the mutated and normal variants occur at unequal ratios, such as is expected to be the case in cancer, with organellar DNA or with alternatively spliced RNAs. In addition, the current methods do not provide robust estimates of the statistical confidence of their results, and the sensitivity of this approach has not been rigorously evaluated. Here, we present CHILD, a tool specifically designed for indel detection in mixtures where one variant is rare. CHILD makes use of standard sequence alignment statistics to evaluate the significance of the results. The sensitivity of CHILD was tested by sequencing controlled mixtures of deleted and undeleted plasmids at various ratios. Our results indicate that CHILD can identify deleted molecules present as just 5% of the mixture. Notably, the results were plasmid/primer-specific; for some primers and/or plasmids, the deleted molecule was only detected when it comprised 10% or more of the mixture. The false positive rate was estimated to be lower than 0.4%. CHILD was implemented as a user-oriented web site, providing a sensitive and experimentally validated method for the detection of rare indel-carrying molecules in common Sanger sequence reads.

  2. Next-Generation Sequencing of Aquatic Oligochaetes: Comparison of Experimental Communities.

    Science.gov (United States)

    Vivien, Régis; Lejzerowicz, Franck; Pawlowski, Jan

    2016-01-01

    Aquatic oligochaetes are a common group of freshwater benthic invertebrates known to be very sensitive to environmental changes and currently used as bioindicators in some countries. However, more extensive application of oligochaetes for assessing the ecological quality of sediments in watercourses and lakes would require overcoming the difficulties related to morphology-based identification of oligochaetes species. This study tested the Next-Generation Sequencing (NGS) of a standard cytochrome c oxydase I (COI) barcode as a tool for the rapid assessment of oligochaete diversity in environmental samples, based on mixed specimen samples. To know the composition of each sample we Sanger sequenced every specimen present in these samples. Our study showed that a large majority of OTUs (Operational Taxonomic Unit) could be detected by NGS analyses. We also observed congruence between the NGS and specimen abundance data for several but not all OTUs. Because the differences in sequence abundance data were consistent across samples, we exploited these variations to empirically design correction factors. We showed that such factors increased the congruence between the values of oligochaetes-based indices inferred from the NGS and the Sanger-sequenced specimen data. The validation of these correction factors by further experimental studies will be needed for the adaptation and use of NGS technology in biomonitoring studies based on oligochaete communities.

  3. Next-Generation Sequencing of Aquatic Oligochaetes: Comparison of Experimental Communities.

    Directory of Open Access Journals (Sweden)

    Régis Vivien

    Full Text Available Aquatic oligochaetes are a common group of freshwater benthic invertebrates known to be very sensitive to environmental changes and currently used as bioindicators in some countries. However, more extensive application of oligochaetes for assessing the ecological quality of sediments in watercourses and lakes would require overcoming the difficulties related to morphology-based identification of oligochaetes species. This study tested the Next-Generation Sequencing (NGS of a standard cytochrome c oxydase I (COI barcode as a tool for the rapid assessment of oligochaete diversity in environmental samples, based on mixed specimen samples. To know the composition of each sample we Sanger sequenced every specimen present in these samples. Our study showed that a large majority of OTUs (Operational Taxonomic Unit could be detected by NGS analyses. We also observed congruence between the NGS and specimen abundance data for several but not all OTUs. Because the differences in sequence abundance data were consistent across samples, we exploited these variations to empirically design correction factors. We showed that such factors increased the congruence between the values of oligochaetes-based indices inferred from the NGS and the Sanger-sequenced specimen data. The validation of these correction factors by further experimental studies will be needed for the adaptation and use of NGS technology in biomonitoring studies based on oligochaete communities.

  4. Deep sequencing analysis of HBV genotype shift and correlation with antiviral efficiency during adefovir dipivoxil therapy.

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    Full Text Available Viral genotype shift in chronic hepatitis B (CHB patients during antiviral therapy has been reported, but the underlying mechanism remains elusive.38 CHB patients treated with ADV for one year were selected for studying genotype shift by both deep sequencing and Sanger sequencing method.Sanger sequencing method found that 7.9% patients showed mixed genotype before ADV therapy. In contrast, all 38 patients showed mixed genotype before ADV treatment by deep sequencing. 95.5% mixed genotype rate was also obtained from additional 200 treatment-naïve CHB patients. Of the 13 patients with genotype shift, the fraction of the minor genotype in 5 patients (38% increased gradually during the course of ADV treatment. Furthermore, responses to ADV and HBeAg seroconversion were associated with the high rate of genotype shift, suggesting drug and immune pressure may be key factors to induce genotype shift. Interestingly, patients with genotype C had a significantly higher rate of genotype shift than genotype B. In genotype shift group, ADV treatment induced a marked enhancement of genotype B ratio accompanied by a reduction of genotype C ratio, suggesting genotype C may be more sensitive to ADV than genotype B. Moreover, patients with dominant genotype C may have a better therapeutic effect. Finally, genotype shifts was correlated with clinical improvement in terms of ALT.Our findings provided a rational explanation for genotype shift among ADV-treated CHB patients. The genotype and genotype shift might be associated with antiviral efficiency.

  5. Next generation sequencing for molecular confirmation of hereditary sudden cardiac death syndromes.

    Science.gov (United States)

    Márquez, Manlio F; Cruz-Robles, David; Ines-Real, Selene; Vargas-Alarcón, Gilberto; Cárdenas, Manuel

    2015-01-01

    Hereditary sudden cardiac death syndromes comprise a wide range of diseases resulting from alteration in cardiac ion channels. Genes involved in these syndromes represent diverse mutations that cause the altered encoding of the diverse proteins constituting these channels, thus affecting directly the currents of the corresponding ions. In the present article we will briefly review how to arrive to a clinical diagnosis and we will present the results of molecular genetic studies made in Mexican subjects attending the SCD Syndromes Clinic of the National Institute of Cardiology of Mexico City. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  6. Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification.

    Science.gov (United States)

    Since 2002, severe leaf spotting on parsley (Petroselinum crispum L.) has occurred in Monterey County, California. One of two different pathovars of Pseudomonas syringae sensu lato were isolated from diseased leaves from seven distinct outbreaks and twice from the same outbreak (2002 and 2009). Frag...

  7. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies...

  8. Development of primers for sequencing the NSP1, NSP3, and VP6 genes of the group A porcine rotavirus

    Directory of Open Access Journals (Sweden)

    Fernanda Dornelas Florentino Silva

    2014-02-01

    Full Text Available Rotavirus is the causative pathogen of diarrhea in humans and in several animal species. Eight pairs of primers were developed and used for Sanger sequencing of the coding region of the NSP1, NSP3, and VP6 genes based on the conserved regions of the genome of the group A porcine rotavirus. Three samples previously screened as positive for group A rotaviruses were subjected to gene amplification and sequencing to characterize the pathogen. The information generated from this study is crucial for the understanding of the epidemiology of the disease.

  9. A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome

    Directory of Open Access Journals (Sweden)

    Scoté-Blachon Céline

    2008-09-01

    Full Text Available Abstract Background "Open" transcriptome analysis methods allow to study gene expression without a priori knowledge of the transcript sequences. As of now, SAGE (Serial Analysis of Gene Expression, LongSAGE and MPSS (Massively Parallel Signature Sequencing are the mostly used methods for "open" transcriptome analysis. Both LongSAGE and MPSS rely on the isolation of 21 pb tag sequences from each transcript. In contrast to LongSAGE, the high throughput sequencing method used in MPSS enables the rapid sequencing of very large libraries containing several millions of tags, allowing deep transcriptome analysis. However, a bias in the complexity of the transcriptome representation obtained by MPSS was recently uncovered. Results In order to make a deep analysis of mouse hypothalamus transcriptome avoiding the limitation introduced by MPSS, we combined LongSAGE with the Solexa sequencing technology and obtained a library of more than 11 millions of tags. We then compared it to a LongSAGE library of mouse hypothalamus sequenced with the Sanger method. Conclusion We found that Solexa sequencing technology combined with LongSAGE is perfectly suited for deep transcriptome analysis. In contrast to MPSS, it gives a complex representation of transcriptome as reliable as a LongSAGE library sequenced by the Sanger method.

  10. Genetic diagnosis of Duchenne/Becker muscular dystrophy using next-generation sequencing: validation analysis of DMD mutations

    Science.gov (United States)

    Okubo, Mariko; Minami, Narihiro; Goto, Kanako; Goto, Yuichi; Noguchi, Satoru; Mitsuhashi, Satomi; Nishino, Ichizo

    2016-01-01

    Duchenne and Becker muscular dystrophies (DMD/BMD) are the most common inherited neuromuscular disease. The genetic diagnosis is not easily made because of the large size of the dystrophin gene, complex mutational spectrum and high number of tests patients undergo for diagnosis. Multiplex ligation-dependent probe amplification (MLPA) has been used as the initial diagnostic test of choice. Although MLPA can diagnose 70% of DMD/BMD patients having deletions/duplications, the remaining 30% of patients with small mutations require further analysis, such as Sanger sequencing. We applied a high-throughput method using Ion Torrent next-generation sequencing technology and diagnosed 92% of patients with DMD/BMD in a single analysis. We designed a multiplex primer pool for DMD and sequenced 67 cases having different mutations: 37 with deletions/duplications and 30 with small mutations or short insertions/deletions in DMD, using an Ion PGM sequencer. The results were compared with those from MLPA or Sanger sequencing. All deletions were detected. In contrast, 50% of duplications were correctly identified compared with the MLPA method. Small insertions in consecutive bases could not be detected. We estimated that Ion Torrent sequencing could diagnose ~92% of DMD/BMD patients according to the mutational spectrum of our cohort. Our results clearly indicate that this method is suitable for routine clinical practice providing novel insights into comprehensive genetic information for future molecular therapy. PMID:26911353

  11. Next-generation sequencing as a powerful motor for advances in the biological and environmental sciences.

    Science.gov (United States)

    Faure, Denis; Joly, Dominique

    2015-04-01

    Next-generation sequencing (NGS) provides unprecedented insight into (meta)genomes, (meta)transcriptomes (cDNA) and (meta)barcodes of individuals, populations and communities of Archaea, Bacteria and Eukarya, as well as viruses. This special issue combines reviews and original papers reporting technical and scientific advances in genomics and transcriptomics of non-model species, as well as quantification and functional analyses of biodiversity using NGS technologies of the second and third generations. In addition, certain papers also exemplify the transition from Sanger to NGS barcodes in molecular taxonomy.

  12. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons.

    Science.gov (United States)

    Olson, Nathan D; Lund, Steven P; Zook, Justin M; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B

    2015-03-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing(®), or Ion Torrent PGM(®). The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies.

  13. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    Science.gov (United States)

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  14. The JCVI standard operating procedure for annotating prokaryotic metagenomic shotgun sequencing data.

    Science.gov (United States)

    Tanenbaum, David M; Goll, Johannes; Murphy, Sean; Kumar, Prateek; Zafar, Nikhat; Thiagarajan, Mathangi; Madupu, Ramana; Davidsen, Tanja; Kagan, Leonid; Kravitz, Saul; Rusch, Douglas B; Yooseph, Shibu

    2010-03-30

    The JCVI metagenomics analysis pipeline provides for the efficient and consistent annotation of shotgun metagenomics sequencing data for sampling communities of prokaryotic organisms. The process can be equally applied to individual sequence reads from traditional Sanger capillary electrophoresis sequences, newer technologies such as 454 pyrosequencing, or sequence assemblies derived from one or more of these data types. It includes the analysis of both coding and non-coding genes, whether full-length or, as is often the case for shotgun metagenomics, fragmentary. The system is designed to provide the best-supported conservative functional annotation based on a combination of trusted homology-based scientific evidence and computational assertions and an annotation value hierarchy established through extensive manual curation. The functional annotation attributes assigned by this system include gene name, gene symbol, GO terms, EC numbers, and JCVI functional role categories.

  15. Hepatitis C virus whole genome sequencing: Current methods/issues and future challenges.

    Science.gov (United States)

    Trémeaux, Pauline; Caporossi, Alban; Thélu, Marie-Ange; Blum, Michael; Leroy, Vincent; Morand, Patrice; Larrat, Sylvie

    2016-10-01

    Therapy for hepatitis C is currently undergoing a revolution. The arrival of new antiviral agents targeting viral proteins reinforces the need for a better knowledge of the viral strains infecting each patient. Hepatitis C virus (HCV) whole genome sequencing provides essential information for precise typing, study of the viral natural history or identification of resistance-associated variants. First performed with Sanger sequencing, the arrival of next-generation sequencing (NGS) has simplified the technical process and provided more detailed data on the nature and evolution of viral quasi-species. We will review the different techniques used for HCV complete genome sequencing and their applications, both before and after the apparition of NGS. The progress brought by new and future technologies will also be discussed, as well as the remaining difficulties, largely due to the genomic variability.

  16. The complete nucleotide sequence and genome organization of a novel betaflexivirus infecting Citrullus lanatus.

    Science.gov (United States)

    Xin, Min; Zhang, Peipei; Liu, Wenwen; Ren, Yingdang; Cao, Mengji; Wang, Xifeng

    2017-07-05

    The complete nucleotide sequence of a novel positive single-stranded (+ss) RNA virus, tentatively named watermelon virus A (WVA), was determined using a combination of three methods: RNA sequencing, small RNA sequencing, and Sanger sequencing. The full genome of WVA is comprised of 8,372 nucleotides (nt), excluding the poly (A) tail, and contains four open reading frames (ORFs). The largest ORF, ORF1 encodes a putative replication-associated polyprotein (RP) with three conserved domains. ORF2 and ORF4 encode a movement protein (MP) and coat protein (CP), respectively. The putative product encoded by ORF3, of an estimated molecular mass of 25 kDa, has no significant similarity with other proteins. Identity and phylogenetic analysis indicate that WVA is a new virus, closely related to members of the family Betaflexiviridae. However, the final taxonomic allocation of WVA within the family is yet to be determined.

  17. Complete genome sequence of a sapovirus from a child in Zhejiang, China.

    Science.gov (United States)

    Zhou, Xiaohong; Sun, Yi; Shang, Xiaochun; Gao, Jian; Zhao, Xueqin; Shuai, Huiqun; Zhang, Rui; Zhang, Yanjun

    2016-10-01

    Although Sapovirus (Caliciviridae) has been accepted as one of the causes of acute gastroenteritis worldwide, little is known about the genetic characteristics of the whole genome of sapoviruses in China, especially those that infect humans. Here we report the complete genome sequence of a sapovirus strain, Human/Zhejiang1/2015/China, obtained from a child with acute gastroenteritis in Hangzhou, Zhejiang Province, China. Samples were collected and delivered to the CDC laboratories and were detected by RT-PCR. Sanger sequencing was used to obtain the full genome and molecular characterization of the genome was determined. A phylogenetic analysis of the genome was also performed. The results indicated that Human/Zhejiang1/2015/China belongs to Genogroup I. No recombination events were detected. This is the first complete sequence from a child to be reported in China. The sequence information is important for surveillance of this emerging gastrointestinal infection.

  18. Next-generation sequencing technology for genetics and genomics of sorghum

    DEFF Research Database (Denmark)

    Luo, Hong; Mocoeur, Anne Raymonde Joelle; Jing, Hai-Chun

    2014-01-01

    NGS platforms, comparing their working theories and reveiwing their advantages and disavantages. We also discuss the future of NGS development and point out that single molecular sequencing would push the technology to the next level for biological sciences. Much of the chapter focuses on the use......The invention and application of Next-Generation Sequencing (NGS) technologies have revolutionized the study of genetics and genomics. Much research which would not even be considered are nowdays being excuted in many laboratories as routine. In this chapter, we introduce the currently available...... of NGS technologies in sorghum. Although the acquisition of the first whole-genome sequence in sorghum was carried out primarily using Sanger sequencing, the use of NGS for examining the genome-wide variation was almost synchronized with other work. Interesting genomic variation was found between sweet...

  19. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  20. Next generation sequencing (NGS): a golden tool in forensic toolkit.

    Science.gov (United States)

    Aly, S M; Sabri, D M

    2015-01-01

    The DNA analysis is a cornerstone in contemporary forensic sciences. DNA sequencing technologies are powerful tools that enrich molecular sciences in the past based on Sanger sequencing and continue to glowing these sciences based on Next generation sequencing (NGS). Next generation sequencing has excellent potential to flourish and increase the molecular applications in forensic sciences by jumping over the pitfalls of the conventional method of sequencing. The main advantages of NGS compared to conventional method that it utilizes simultaneously a large number of genetic markers with high-resolution of genetic data. These advantages will help in solving several challenges such as mixture analysis and dealing with minute degraded samples. Based on these new technologies, many markers could be examined to get important biological data such as age, geographical origins, tissue type determination, external visible traits and monozygotic twins identification. It also could get data related to microbes, insects, plants and soil which are of great medico-legal importance. Despite the dozens of forensic research involving NGS, there are requirements before using this technology routinely in forensic cases. Thus, there is a great need to more studies that address robustness of these techniques. Therefore, this work highlights the applications of forensic sciences in the era of massively parallel sequencing.

  1. Characterization of promoter sequence of toll-like receptor genes in Vechur cattle

    Directory of Open Access Journals (Sweden)

    R. Lakshmi

    2016-06-01

    Full Text Available Aim: To analyze the promoter sequence of toll-like receptor (TLR genes in Vechur cattle, an indigenous breed of Kerala with the sequence of Bos taurus and access the differences that could be attributed to innate immune responses against bovine mastitis. Materials and Methods: Blood samples were collected from Jugular vein of Vechur cattle, maintained at Vechur cattle conservation center of Kerala Veterinary and Animal Sciences University, using an acid-citrate-dextrose anticoagulant. The genomic DNA was extracted, and polymerase chain reaction was carried out to amplify the promoter region of TLRs. The amplified product of TLR2, 4, and 9 promoter regions was sequenced by Sanger enzymatic DNA sequencing technique. Results: The sequence of promoter region of TLR2 of Vechur cattle with the B. taurus sequence present in GenBank showed 98% similarity and revealed variants for four sequence motifs. The sequence of the promoter region of TLR4 of Vechur cattle revealed 99% similarity with that of B. taurus sequence but not reveals significant variant in motifregions. However, two heterozygous loci were observed from the chromatogram. Promoter sequence of TLR9 gene also showed 99% similarity to B. taurus sequence and revealed variants for four sequence motifs. Conclusion: The results of this study indicate that significant variation in the promoter of TLR2 and 9 genes in Vechur cattle breed and may potentially link the influence the innate immunity response against mastitis diseases.

  2. NRAS germline variant G138R and multiple rare somatic mutations on APC in colorectal cancer patients in Taiwan by next generation sequencing.

    Science.gov (United States)

    Chang, Pi-Yueh; Chen, Jinn-Shiun; Chang, Nai-Chung; Chang, Shih-Cheng; Wang, Mei-Chia; Tsai, Shu-Hui; Wen, Ying-Hao; Tsai, Wen-Sy; Chan, Err-Cheng; Lu, Jang-Jih

    2016-06-21

    Colorectal cancer (CRC) arises from mutations in a subset of genes. We investigated the germline and somatic mutation spectrum of patients with CRC in Taiwan by using the AmpliSeq Cancer Hotspot Panel V2. Fifty paired freshly frozen stage 0-IV CRC tumors and adjacent normal tissue were collected. Blood DNA from 20 healthy donors were used for comparison of germline mutations. Variants were identified using an ion-torrent personal genomic machine and subsequently confirmed by Sanger sequencing or pyrosequencing. Five nonsynonymous germline variants on 4 cancer susceptible genes, CDH1, APC, MLH1, and NRAS, were observed in 6 patients with CRC (12%). Among them, oncogene NRAS G138R variant was identified as having a predicted damaging effect on protein function, which has never been reported by other laboratories. CDH1 T340A variants were presented in 3 patients. The germline variants in the cancer patients differed completely from those found in asymptomatic controls. Furthermore, a total of 56 COSMIC and 21 novel somatic variants distributed in 20 genes were detected in 44 (88%) of the CRC samples. High inter- and intra-tumor heterogeneity levels were observed. Nine rare variants located in the β-catenin binding region of the APC gene were discovered, 7 of which could cause amino acid frameshift and might have a pathogenic effect. In conclusion, panel-based mutation detection by using a high-throughput sequencing platform can elucidate race-dependent cancer genomes. This approach facilitates identifying individuals at high risk and aiding the recognition of novel mutations as targets for drug development.

  3. Diagnosis for choroideremia in a large Chinese pedigree by next-generation sequencing (NGS) and non-invasive prenatal testing (NIPT)

    Science.gov (United States)

    Zhu, Li; Cheng, Jingliang; Zhou, Boxu; Wei, Chunli; Yang, Weichan; Jiang, Dong; Ijaz, Iqra; Tan, Xiaojun; Chen, Rui; Fu, Junjiang

    2017-01-01

    To develop an effective strategy to isolate and use cell-free fetal DNA (cffDNA) for the combined use of next-generation sequencing (NGS) for diagnosing choroideremia and non-invasive prenatal testing (NIPT) for Y chromosome determination, a large Chinese family with an X-linked recessive disease, choroideremia, was recruited. Cell-free DNA was extracted from maternal plasma, and SRY polymerase chain reaction amplification was performed using NIPT. Sanger sequencing was subsequently used for fetal amniotic fluid DNA verification. A nonsense mutation (c.C799T:p.R267X) of the CHM gene on the X chromosome of the proband (IV:7) and another 5 males with choroideremia were detected, while 3 female carriers with no symptoms were also identified. The fetus (VI:7) was identified as female from the cffDNA, and the same heterozygous nonsense mutation present in her mother was also confirmed. At one and a half years of age, the female baby did not present with any associated symptoms of choroideremia. Therefore, cffDNA was successfully used for the combined use of NGS for diagnosing choroideremia in a large Chinese pedigree, and NIPT for Y chromosome determination. This approach should result in a markedly increased use of prenatal diagnosis and improvement, and more sophisticated clinical management of diseases in China and other developing countries. The establishment of a highly accurate method for prenatal gene diagnosis will allow for more reliable gene diagnosis, improved genetic counseling, and personalized clinical management of our patients. PMID:28098911

  4. Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money.

    Science.gov (United States)

    Vincent, Antony T; Derome, Nicolas; Boyle, Brian; Culley, Alexander I; Charette, Steve J

    2017-07-01

    The Sanger sequencing method produces relatively long DNA sequences of unmatched quality and has been considered for long time as the gold standard for sequencing DNA. Many improvements of the Sanger method that culminated with fluorescent dyes coupled with automated capillary electrophoresis enabled the sequencing of the first genomes. Nevertheless, using this technology to sequence whole genomes was costly, laborious and time consuming even for genomes that are relatively small in size. A major technological advance was the introduction of next-generation sequencing (NGS) pioneered by 454 Life Sciences in the early part of the 21th century. NGS allowed scientists to sequence thousands to millions of DNA molecules in a single machine run. Since then, new NGS technologies have emerged and existing NGS platforms have been improved, enabling the production of genome sequences at an unprecedented rate as well as broadening the spectrum of NGS applications. The current affordability of generating genomic information, especially with microbial samples, has resulted in a false sense of simplicity that belies the fact that many researchers still consider these technologies a black box. In this review, our objective is to identify and discuss four steps that we consider crucial to the success of any NGS-related project. These steps are: (1) the definition of the research objectives beyond sequencing and appropriate experimental planning, (2) library preparation, (3) sequencing and (4) data analysis. The goal of this review is to give an overview of the process, from sample to analysis, and discuss how to optimize your resources to achieve the most from your NGS-based research. Regardless of the evolution and improvement of the sequencing technologies, these four steps will remain relevant. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Sequencing of GJB2 in Cameroonians and Black South Africans and comparison to 1000 Genomes Project Data Support Need to Revise Strategy for Discovery of Nonsyndromic Deafness Genes in Africans.

    Science.gov (United States)

    Bosch, Jason; Noubiap, Jean Jacques N; Dandara, Collet; Makubalo, Nomlindo; Wright, Galen; Entfellner, Jean-Baka Domelevo; Tiffin, Nicki; Wonkam, Ambroise

    2014-11-01

    Mutations in the GJB2 gene, encoding connexin 26, could account for 50% of congenital, nonsyndromic, recessive deafness cases in some Caucasian/Asian populations. There is a scarcity of published data in sub-Saharan Africans. We Sanger sequenced the coding region of the GJB2 gene in 205 Cameroonian and Xhosa South Africans with congenital, nonsyndromic deafness; and performed bioinformatic analysis of variations in the GJB2 gene, incorporating data from the 1000 Genomes Project. Amongst Cameroonian patients, 26.1% were familial. The majority of patients (70%) suffered from sensorineural hearing loss. Ten GJB2 genetic variants were detected by sequencing. A previously reported pathogenic mutation, g.3741_3743delTTC (p.F142del), and a putative pathogenic mutation, g.3816G>A (p.V167M), were identified in single heterozygous samples. Amongst eight the remaining variants, two novel variants, g.3318-41G>A and g.3332G>A, were reported. There were no statistically significant differences in allele frequencies between cases and controls. Principal Components Analyses differentiated between Africans, Asians, and Europeans, but only explained 40% of the variation. The present study is the first to compare African GJB2 sequences with the data from the 1000 Genomes Project and have revealed the low variation between population groups. This finding has emphasized the hypothesis that the prevalence of mutations in GJB2 in nonsyndromic deafness amongst European and Asian populations is due to founder effects arising after these individuals migrated out of Africa, and not to a putative "protective" variant in the genomic structure of GJB2 in Africans. Our results confirm that mutations in GJB2 are not associated with nonsyndromic deafness in Africans.

  6. Next-generation sequencing for high-throughput molecular ecology: a step-by-step protocol for targeted multilocus genotyping by pyrosequencing.

    Science.gov (United States)

    Puritz, Jonathan B; Toonen, Robert J

    2013-01-01

    Next-generation sequencing technology can now provide population biologists and phylogeographers with information at the genomic scale; however, many pertinent questions in population genetics and phylogeography can be answered effectively with modest levels of genomic information. For the past two decades, most population-level studies have lacked nuclear DNA (nDNA) sequence data due to the complications and cost of amplifying and sequencing diploid loci. However, pyrosequencing of emulsion PCR reactions, amplifying from only one molecule at a time, can generate megabases of clonally amplified loci at high coverage, thereby greatly simplifying allelic sequence determination. Here, we present a step-by-step methodology for utilizing the 454 GS FLX Titanium pyrosequencing platform to simultaneously sequence 16 populations (at 20 individuals per population) at 10 different nDNA loci (3,200 loci in total) in one plate of sequencing for less than the cost of traditional Sanger sequencing.

  7. Confirmation and Disconfirmation in Nurse/Physician Communication.

    Science.gov (United States)

    Garvin, Bonnie J.; Kennedy, Carol W.

    1986-01-01

    In an attempt to better understand the quality of interprofessional relationships, research used a confirmation/disconfirmation framework to analyze communication in nurse-physician dyads. Results indicated that nurses and physicians were primarily confirming in their interaction. (SRT)

  8. Dna Sequencing

    Science.gov (United States)

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  9. 42 CFR 32.87 - Confirmation of diagnosis.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Confirmation of diagnosis. 32.87 Section 32.87... Hansen's Disease § 32.87 Confirmation of diagnosis. At the earliest practicable date, after the arrival... the medical staff shall confirm or disprove the diagnosis of Hansen's disease. If the diagnosis...

  10. Impact of Next Generation Sequencing Techniques in Food Microbiology

    Science.gov (United States)

    Mayo, Baltasar; Rachid, Caio T. C. C; Alegría, Ángel; Leite, Analy M. O; Peixoto, Raquel S; Delgado, Susana

    2014-01-01

    Understanding the Maxam-Gilbert and Sanger sequencing as the first generation, in recent years there has been an explosion of newly-developed sequencing strategies, which are usually referred to as next generation sequencing (NGS) techniques. NGS techniques have high-throughputs and produce thousands or even millions of sequences at the same time. These sequences allow for the accurate identification of microbial taxa, including uncultivable organisms and those present in small numbers. In specific applications, NGS provides a complete inventory of all microbial operons and genes present or being expressed under different study conditions. NGS techniques are revolutionizing the field of microbial ecology and have recently been used to examine several food ecosystems. After a short introduction to the most common NGS systems and platforms, this review addresses how NGS techniques have been employed in the study of food microbiota and food fermentations, and discusses their limits and perspectives. The most important findings are reviewed, including those made in the study of the microbiota of milk, fermented dairy products, and plant-, meat- and fish-derived fermented foods. The knowledge that can be gained on microbial diversity, population structure and population dynamics via the use of these technologies could be vital in improving the monitoring and manipulation of foods and fermented food products. They should also improve their safety. PMID:25132799

  11. A general sequence processing and analysis program for protein engineering.

    Science.gov (United States)

    Stafford, Ryan L; Zimmerman, Erik S; Hallam, Trevor J; Sato, Aaron K

    2014-10-27

    Protein engineering projects often amass numerous raw DNA sequences, but no readily available software combines sequence processing and activity correlation required for efficient lead identification. XLibraryDisplay is an open source program integrated into Microsoft Excel for Windows that automates batch sequence processing via a simple step-by-step, menu-driven graphical user interface. XLibraryDisplay accepts any DNA template which is used as a basis for trimming, filtering, translating, and aligning hundreds to thousands of sequences (raw, FASTA, or Phred PHD file formats). Key steps for library characterization through lead discovery are available including library composition analysis, filtering by experimental data, graphing and correlating to experimental data, alignment to structural data extracted from PDB files, and generation of PyMOL visualization scripts. Though larger data sets can be handled, the program is best suited for analyzing approximately 10 000 or fewer leads or naïve clones which have been characterized using Sanger sequencing and other experimental approaches. XLibraryDisplay can be downloaded for free from sourceforge.net/projects/xlibrarydisplay/ .

  12. A novel CRX mutation by whole-exome sequencing in an autosomal dominant cone-rod dystrophy pedigree

    Directory of Open Access Journals (Sweden)

    Qin-Kang Lu

    2015-12-01

    Full Text Available AIM: To identify the disease-causing gene mutation in a Chinese pedigree with autosomal dominant cone-rod dystrophy (adCORD. METHODS: A southern Chinese adCORD pedigree including 9 affected individuals was studied. Whole-exome sequencing (WES, coupling the Agilent whole-exome capture system to the Illumina HiSeq 2000 DNA sequencing platform was used to search the specific gene mutation in 3 affected family members and 1 unaffected member. After a suggested variant was found through the data analysis, the putative mutation was validated by Sanger DNA sequencing of samples from all available family members. RESULTS: The results of both WES and Sanger sequencing revealed a novel nonsense mutation c.C766T (p.Q256X within exon 5 of CRX gene which was pathogenic for adCORD in this family. The mutation could affect photoreceptor-specific gene expression with a dominant-negative effect and resulted in loss of the OTX tail, thus the mutant protein occupies the CRX-binding site in target promoters without establishing an interaction and, consequently, may block transactivation. CONCLUSION: All modes of Mendelian inheritance in CORD have been observed, and genetic heterogeneity is a hallmark of CORD. Therefore, conventional genetic diagnosis of CORD would be time-consuming and labor-intensive. Our study indicated the robustness and cost-effectiveness of WES in the genetic diagnosis of CORD.

  13. PLS3 sequencing in childhood-onset primary osteoporosis identifies two novel disease-causing variants.

    Science.gov (United States)

    Kämpe, A J; Costantini, A; Mäkitie, R E; Jäntti, N; Valta, H; Mäyränpää, M; Kröger, H; Pekkinen, M; Taylan, F; Jiao, H; Mäkitie, O

    2017-07-26

    Altogether 95 children with primary bone fragility were screened for variants in PLS3, the gene underlying X-linked osteoporosis. Two children with multiple peripheral and spinal fractures and low BMD had novel disease-causing PLS3 variants. Children with milder phenotypes had no pathogenic variants. PLS3 screening is indicated in childhood-onset primary osteoporosis. The study aimed to determine the role of pathogenic PLS3 variants in children's bone fragility and to elucidate the associated phenotypic features. Two cohorts of children with bone fragility were screened for variants in PLS3, the gene underlying X-linked osteoporosis. Cohort I comprised 31 patients with childhood-onset primary osteoporosis of unknown etiology. Cohort II comprised 64 children who had sustained multiple fractures but were otherwise healthy. Clinical and radiological data were reviewed. Peripheral blood DNA was Sanger sequenced for coding exons and flanking intronic regions of PLS3. In two patients of cohort I, where other common genetic causes had been excluded, we identified two novel disease-causing PLS3 variants. Patient 1 was a male with bilateral femoral fractures at 10 years, low BMD (Z-score -4.1; 18 years), and multiple vertebral compression fractures. He had a novel nonsense variant in PLS3. Patient 2 was a girl with multiple long bone and vertebral fractures and low BMD (Z-score -6.6 at 6 years). She had a de novo missense variant in PLS3; whole exome sequencing and array-CGH identified no other genetic causes. Iliac crest bone biopsies confirmed low-turnover osteoporosis in both patients. In cohort II, no pathogenic PLS3 variants were identified in any of the subjects. Two novel disease-causing variants in PLS3 were identified in a boy and a girl with multiple peripheral and spinal fractures and very low BMD while no pathogenic variants were identified in children with less severe skeletal fragility. PLS3 screening is warranted in male and female patients with childhood

  14. Towards a higher-level Ensifera phylogeny inferred from mitogenome sequences.

    Science.gov (United States)

    Zhou, Zhijun; Zhao, Ling; Liu, Nian; Guo, Huifang; Guan, Bei; Di, Juanxia; Shi, Fuming

    2017-03-01

    Although mitogenomes are useful tools for inferring evolutionary history, only a few representative ones can be used for most Ensifera lineages. Thirty-two ensiferan mitogenomes were determined using ABI Sanger sequencing and standard primer walking of 2-3 overlapping Long-PCR fragments, or Illumina® HiSeq2000 for "shotgun" sequenced long-PCR-amplified mitochondrial or total genomic DNA. Six patterns of gene arrangements, including the novel trnR-trnS(AGN)-trnA-trnN-trnG-nad3 in Lipotactes tripyrga (Lipotactinae), were identified from 59 ensiferan mitogenomes. The results suggest that trnM-trnI-trnQ and trnA-trnR-trnE-trnS(AGN)-trnN-trnF rearrangements might be a shared derived character in Pseudophyllinae and Gryllidae, respectively. We found base composition biases in our dataset, which potentially complicate the inference of higher-level ensiferan phylogeny. Site-heterogeneous Bayesian inference (BI) and site-homogeneous maximum likelihood (ML) analyses recovered all ensiferan superfamilies as monophyletic. The site-homogeneous BI analysis failed to recover the monophyly of Stenopelmatoidea. As Schizodactyloidea was only represented by Comicus campestris, its monophyly could not be tested. In the Triassic/Jurassic boundary, Ensifera diverged into grylloid and non-grylloid clades. All analyses confirmed Grylloidea and Gryllotalpoidea as sister groups. Site-heterogeneous BI analysis found Schizodactyloidea as the most basal lineage and sister to the clade formed by Grylloidea and Gryllotalpoidea, but the site-homogeneous analyses placed it basally to the non-grylloid clade and recovered a sister relationship between Tettigonioidea and (Hagloidea, Rhaphidophoroidea, Stenopelmatoidea), although this clade had a low support. The site-heterogeneous BI analysis found Tettigonioidea and Hagloidea were sister groups (posterior probability (PP)=0.99), Stenopelmatoidea was sister to (Tettigonioidea, Hagloidea) (PP>0.91), and Rhaphidophoroidea was basal to the non

  15. Determination and analysis of the complete mitochondrial genome sequence of Taoyuan chicken.

    Science.gov (United States)

    Liu, Li-Li; Xie, Hong-Bing; Yu, Qi-Fang; He, Shao-Ping; He, Jian-Hua

    2016-01-01

    Taoyuan chicken is excellent native breeds in China. This study firstly determined the complete mitochondrial genome sequence of Taoyuan chicken using PCR-based amplification and Sanger sequencing. The characteristic of the entire mitochondrial genome was analyzed in detail, with the base composition of 30.26% A, 23.79% T, 32.44% C, 13.50% G in the Taoyuan chicken (16,784 bp in length). It contained 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and a major non-coding control region (D-loop region). The complete mitochondrial genome sequence of Taoyuan chicken will be useful for the phylogenetics of poultry, and be available as basic data for the genetics and breeding.

  16. Whole Genome Sequencing of Enterovirus species C Isolates by High-throughput Sequencing: Development of Generic Primers

    Directory of Open Access Journals (Sweden)

    Maël Bessaud

    2016-08-01

    Full Text Available Enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Enterovirus species C (EV-C consists of more than 20 types, among which the 3 serotypes of polioviruses, the etiological agents of poliomyelitis, are included. Biodiversity and evolution of EV-C genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating EV-C strains require the sequencing of different genomic regions.A simple method was developed to sequence quickly the entire genome of EV-C isolates. Four overlapping fragments were produced separately by RT-PCR performed with generic primers. The four amplicons were then pooled and purified prior to be sequenced by high-throughput technique.The method was assessed on a panel of EV-Cs belonging to a wide-range of types. It can be used to determine full-length genome sequences through de novo assembly of thousands of reads. It was also able to discriminate reads from closely related viruses in mixtures.By decreasing the workload compared to classical Sanger-based techniques, this method will serve as a precious tool for sequencing large panels of EV-Cs isolated in cell cultures during environmental surveillance or from patients, including vaccine-derived polioviruses.

  17. Whole Genome Sequencing of Enterovirus species C Isolates by High-Throughput Sequencing: Development of Generic Primers

    Science.gov (United States)

    Bessaud, Maël; Sadeuh-Mba, Serge A.; Joffret, Marie-Line; Razafindratsimandresy, Richter; Polston, Patsy; Volle, Romain; Rakoto-Andrianarivelo, Mala; Blondel, Bruno; Njouom, Richard; Delpeyroux, Francis

    2016-01-01

    Enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Enterovirus species C (EV-C) consists of more than 20 types, among which the three serotypes of polioviruses, the etiological agents of poliomyelitis, are included. Biodiversity and evolution of EV-C genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating EV-C strains require the sequencing of different genomic regions. A simple method was developed to quickly sequence the entire genome of EV-C isolates. Four overlapping fragments were produced separately by RT-PCR performed with generic primers. The four amplicons were then pooled and purified prior to being sequenced by a high-throughput technique. The method was assessed on a panel of EV-Cs belonging to a wide-range of types. It can be used to determine full-length genome sequences through de novo assembly of thousands of reads. It was also able to discriminate reads from closely related viruses in mixtures. By decreasing the workload compared to classical Sanger-based techniques, this method will serve as a precious tool for sequencing large panels of EV-Cs isolated in cell cultures during environmental surveillance or from patients, including vaccine-derived polioviruses. PMID:27617004

  18. Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing.

    Science.gov (United States)

    Liang, Chanjuan; van Dijk, Jeroen P; Scholtens, Ingrid M J; Staats, Martijn; Prins, Theo W; Voorhuijzen, Marleen M; da Silva, Andrea M; Arisi, Ana Carolina Maisonnave; den Dunnen, Johan T; Kok, Esther J

    2014-04-01

    The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.

  19. Whole-exome sequencing reveals a novel frameshift mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in the Indian population.

    Science.gov (United States)

    Zhou, Yu; Saikia, Bibhuti B; Jiang, Zhilin; Zhu, Xiong; Liu, Yuqing; Huang, Lulin; Kim, Ramasamy; Yang, Yin; Qu, Chao; Hao, Fang; Gong, Bo; Tai, Zhengfu; Niu, Lihong; Yang, Zhenglin; Sundaresan, Periasamy; Zhu, Xianjun

    2015-10-01

    Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 50 genes. To identify genetic mutations underlying autosomal recessive RP (arRP), we performed whole-exome sequencing study on two consanguineous marriage Indian families (RP-252 and RP-182) and 100 sporadic RP patients. Here we reported novel mutation in FAM161A in RP-252 and RP-182 with two patients affected with RP in each family. The FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. By whole-exome sequencing we identified several homozygous genomic regions, one of which included the recently identified FAM161A gene mutated in RP28-linked arRP. Sequencing analysis revealed the presence of a novel homozygous frameshift mutation p.R592FsX2 in both patients of family RP-252 and family RP-182. In 100 sporadic Indian RP patients, this novel homozygous frameshift mutation p.R592FsX2 was identified in one sporadic patient ARRP-S-I-46 by whole-exome sequencing and validated by Sanger sequencing. Meanwhile, this homozygous frameshift mutation was absent in 1000 ethnicity-matched control samples screened by direct Sanger sequencing. In conclusion, we identified a novel homozygous frameshift mutations of RP28-linked RP gene FAM161A in Indian population.

  20. Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics.

    Science.gov (United States)

    Bybee, Seth M; Bracken-Grissom, Heather; Haynes, Benjamin D; Hermansen, Russell A; Byers, Robert L; Clement, Mark J; Udall, Joshua A; Wilcox, Edward R; Crandall, Keith A

    2011-01-01

    Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach.

  1. Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences

    Directory of Open Access Journals (Sweden)

    R. Henrik Nilsson

    2012-09-01

    Full Text Available Molecular data form an important research tool in most branches of mycology. A non-trivial proportion of the public fungal DNA sequences are, however, compromised in terms of quality and reliability, contributing noise and bias to sequence-borne inferences such as phylogenetic analysis, diversity assessment, and barcoding. In this paper we discuss various aspects and pitfalls of sequence quality assessment. Based on our observations, we provide a set of guidelines to assist in manual quality management of newly generated, near-full-length (Sanger-derived fungal ITS sequences and to some extent also sequences of shorter read lengths, other genes or markers, and groups of organisms. The guidelines are intentionally non-technical and do not require substantial bioinformatics skills or significant computational power. Despite their simple nature, we feel they would have caught the vast majority of the severely compromised ITS sequences in the public corpus. Our guidelines are nevertheless not infallible, and common sense and intuition remain important elements in the pursuit of compromised sequence data. The guidelines focus on basic sequence authenticity and reliability of the newly generated sequences, and the user may want to consider additional resources and steps to accomplish the best possible quality control. A discussion on the technical resources for further sequence quality management is therefore provided in the supplementary material.

  2. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  3. Fragment Merger: An Online Tool to Merge Overlapping Long Sequence Fragments

    Directory of Open Access Journals (Sweden)

    Anna Kramvis

    2013-03-01

    Full Text Available While PCR amplicons extend to a few thousand bases, the length of sequences from direct Sanger sequencing is limited to 500–800 nucleotides. Therefore, several fragments may be required to cover an amplicon, a gene or an entire genome. These fragments are typically sequenced in an overlapping fashion and assembled by manually sliding and aligning the sequences visually. This is time-consuming, repetitive and error-prone, and further complicated by circular genomes. An online tool merging two to twelve long overlapping sequence fragments was developed. Either chromatograms or FASTA files are submitted to the tool, which trims poor quality ends of chromatograms according to user-specified parameters. Fragments are assembled into a single sequence by repeatedly calling the EMBOSS merger tool in a consecutive manner. Output includes the number of trimmed nucleotides, details of each merge, and an optional alignment to a reference sequence. The final merge sequence is displayed and can be downloaded in FASTA format. All output files can be downloaded as a ZIP archive. This tool allows for easy and automated assembly of overlapping sequences and is aimed at researchers without specialist computer skills. The tool is genome- and organism-agnostic and has been developed using hepatitis B virus sequence data.

  4. Controlled processing during sequencing.

    Science.gov (United States)

    Thothathiri, Malathi; Rattinger, Michelle

    2015-01-01

    Longstanding evidence has identified a role for the frontal cortex in sequencing within both linguistic and non-linguistic domains. More recently, neuropsychological studies have suggested a specific role for the left premotor-prefrontal junction (BA 44/6) in selection between competing alternatives during sequencing. In this study, we used neuroimaging with healthy adults to confirm and extend knowledge about the neural correlates of sequencing. Participants reproduced visually presented sequences of syllables and words using manual button presses. Items in the sequence were presented either consecutively or concurrently. Concurrent presentation is known to trigger the planning of multiple responses, which might compete with one another. Therefore, we hypothesized that regions involved in controlled processing would show greater recruitment during the concurrent than the consecutive condition. Whole-brain analysis showed concurrent > consecutive activation in sensory, motor and somatosensory cortices and notably also in rostral-dorsal anterior cingulate cortex. Region of interest analyses showed increased activation within left BA 44/6 and correlation between this region's activation and behavioral response times. Functional connectivity analysis revealed increased connectivity between left BA 44/6 and the posterior lobe of the cerebellum during the concurrent than the consecutive condition. These results corroborate recent evidence and demonstrate the involvement of BA 44/6 and other control regions when ordering co-activated representations.

  5. Controlled processing during sequencing

    Directory of Open Access Journals (Sweden)

    Malathi eThothathiri

    2015-10-01

    Full Text Available Longstanding evidence has identified a role for the frontal cortex in sequencing within both linguistic and non-linguistic domains. More recently, neuropsychological studies have suggested a specific role for the left premotor-prefrontal junction (BA 44/6 in selection between competing alternatives during sequencing. In this study, we used neuroimaging with healthy adults to confirm and extend knowledge about the neural correlates of sequencing. Participants reproduced visually presented sequences of syllables and words using manual button presses. Items in the sequence were presented either consecutively or concurrently. Concurrent presentation is known to trigger the planning of multiple responses, which might compete with one another. Therefore, we hypothesized that regions involved in controlled processing would show greater recruitment during the concurrent than the consecutive condition. Whole-brain analysis showed concurrent > consecutive activation in sensory, motor and somatosensory cortices and notably also in rostral-dorsal anterior cingulate cortex (ACC. Region of interest analyses showed increased activation within left BA 44/6 and correlation between this region’s activation and behavioral response times. Functional connectivity analysis revealed increased connectivity between left BA 44/6 and the posterior lobe of the cerebellum during the concurrent than the consecutive condition. These results corroborate recent evidence and demonstrate the involvement of BA 44/6 and other control regions when ordering co-activated representations.

  6. Advanced sequencing technologies and their wider impact in microbiology.

    Science.gov (United States)

    Hall, Neil

    2007-05-01

    In the past 10 years, microbiology has undergone a revolution that has been driven by access to cheap high-throughput DNA sequencing. It was not long ago that the cloning and sequencing of a target gene could take months or years, whereas now this entire process has been replaced by a 10 min Internet search of a public genome database. There has been no single innovation that has initiated this rapid technological change; in fact, the core chemistry of DNA sequencing is the same as it was 30 years ago. Instead, progress has been driven by large sequencing centers that have incrementally industrialized the Sanger sequencing method. A side effect of this industrialization is that large-scale sequencing has moved out of small research labs, and the vast majority of sequence data is now generated by large genome centers. Recently, there have been advances in technology that will enable high-throughput genome sequencing to be established in research labs using bench-top instrumentation. These new technologies are already being used to explore the vast microbial diversity in the natural environment and the untapped genetic variation that can occur in bacterial species. It is expected that these powerful new methods will open up new questions to genomic investigation and will also allow high-throughput sequencing to be more than just a discovery exercise but also a routine assay for hypothesis testing. While this review will concentrate on microorganisms, many of the important arguments about the need to measure and understand variation at the species, population and ecosystem level will hold true for many other biological systems.

  7. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger

    2011-05-09

    application papers of sequencing up to this level were also published in the mid 1990's. A major interest of the sequencing community has always been read length. The longer the sequence read per run the more efficient the process as well as the ability to read repeat sequences. We therefore devoted a great deal of time to studying the factors influencing read length in capillary electrophoresis, including polymer type and molecule weight, capillary column temperature, applied electric field, etc. In our initial optimization, we were able to demonstrate, for the first time, the sequencing of over 1000 bases with 90% accuracy. The run required 80 minutes for separation. Sequencing of 1000 bases per column was next demonstrated on a multiple capillary instrument. Our studies revealed that linear polyacrylamide produced the longest read lengths because the hydrophilic single strand DNA had minimal interaction with the very hydrophilic linear polyacrylamide. Any interaction of the DNA with the polymer would lead to broader peaks and lower read length. Another important parameter was the molecular weight of the linear chains. High molecular weight (> 1 MDA) was important to allow the long single strand DNA to reptate through the entangled polymer matrix. In an important paper, we showed an inverse emulsion method to prepare reproducibility linear polyacrylamide polymer with an average MWT of 9MDa. This approach was used in the polymer for sequencing the human genome. Another critical factor in the successful use of capillary electrophoresis for sequencing was the sample preparation method. In the Sanger sequencing reaction, high concentration of salts and dideoxynucleotide remained. Since the sample was introduced to the capillary column by electrokinetic injection, these salt ions would be favorably injected into the column over the sequencing fragments, thus reducing the signal for longer fragments and hence reading read length. In two papers, we examined the role of

  8. Development of the performance confirmation program at YUCCA mountain, nevada

    Science.gov (United States)

    LeCain, G.D.; Barr, D.; Weaver, D.; Snell, R.; Goodin, S.W.; Hansen, F.D.

    2006-01-01

    The Yucca Mountain Performance Confirmation program consists of tests, monitoring activities, experiments, and analyses to evaluate the adequacy of assumptions, data, and analyses that form the basis of the conceptual and numerical models of flow and transport associated with a proposed radioactive waste repository at Yucca Mountain, Nevada. The Performance Confirmation program uses an eight-stage risk-informed, performance-based approach. Selection of the Performance Confirmation activities for inclusion in the Performance Confirmation program was done using a risk-informed performance-based decision analysis. The result of this analysis was a Performance Confirmation base portfolio that consists of 20 activities. The 20 Performance Confirmation activities include geologic, hydrologie, and construction/engineering testing. Some of the activities began during site characterization, and others will begin during construction, or post emplacement, and continue until repository closure.

  9. Development of the Performance Confirmation Program at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G.D. LeCain; R. Snell; D. Barr; S.W. Goodin; D. Weaver; F.D. Hansen

    2006-03-17

    The Yucca Mountain Performance Confirmation program consists of tests, monitoring activities, experiments, and analyses to evaluate the adequacy of assumptions, data, and analyses that form the basis of the conceptual and numerical models of flow and transport associated with a proposed radioactive waste repository at Yucca Mountain, Nevada. The Performance Confirmation program uses an eight-stage risk-informed, performance-based approach. Selection of the Performance Confirmation activities (a parameter and a test method) for inclusion in the Performance Confirmation program was done using a risk-informed performance-based decision analysis. The result of this analysis and review was a Performance Confirmation base portfolio that consists of 20 activities. The 20 Performance Confirmation activities include geologic, hydrologic, and construction/engineering testing. Several of the activities were initiated during site characterization and are ongoing. Others activities will commence during construction and/or post emplacement and will continue until repository closure.

  10. FAST: FAST Analysis of Sequences Toolbox.

    Science.gov (United States)

    Lawrence, Travis J; Kauffman, Kyle T; Amrine, Katherine C H; Carper, Dana L; Lee, Raymond S; Becich, Peter J; Canales, Claudia J; Ardell, David H

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  11. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  12. Genomic analyses confirm close relatedness between Rhodococcus defluvii and Rhodococcus equi (Rhodococcus hoagii)

    OpenAIRE

    Sangal, Vartul; Jones, Amanda; GOODFELLOW, Michael; Hoskisson, Paul; Kämpfer, Peter; Sutcliffe, Iain

    2015-01-01

    Rhodococcus defluvii strain Ca11T was isolated from a bioreactor involved in extensive phosphorus removal. We have sequenced the whole genome of this strain and our comparative genomic and phylogenetic analyses confirm its close relatedness with Rhodococcus equi (Rhodococcus hoagii) strains, which share >80% of the gene content. The R. equi virulence plasmid is absent though most of the chromosomal R. equi virulence-associated genes are present in R. defluvii Ca11T. These data suggest that al...

  13. Functionalized nanopore-embedded electrodes for rapid DNA sequencing

    CERN Document Server

    He, Haiying; Pandey, Ravindra; Rocha, Alexandre Reily; Sanvito, Stefano; Grigoriev, Anton; Ahuja, Rajeev; Karna, Shashi P

    2007-01-01

    The determination of a patient's DNA sequence can, in principle, reveal an increased risk to fall ill with particular diseases [1,2] and help to design "personalized medicine" [3]. Moreover, statistical studies and comparison of genomes [4] of a large number of individuals are crucial for the analysis of mutations [5] and hereditary diseases, paving the way to preventive medicine [6]. DNA sequencing is, however, currently still a vastly time-consuming and very expensive task [4], consisting of pre-processing steps, the actual sequencing using the Sanger method, and post-processing in the form of data analysis [7]. Here we propose a new approach that relies on functionalized nanopore-embedded electrodes to achieve an unambiguous distinction of the four nucleic acid bases in the DNA sequencing process. This represents a significant improvement over previously studied designs [8,9] which cannot reliably distinguish all four bases of DNA. The transport properties of the setup investigated by us, employing state-o...

  14. Probing the SELEX process with next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Tatjana Schütze

    Full Text Available BACKGROUND: SELEX is an iterative process in which highly diverse synthetic nucleic acid libraries are selected over many rounds to finally identify aptamers with desired properties. However, little is understood as how binders are enriched during the selection course. Next-generation sequencing offers the opportunity to open the black box and observe a large part of the population dynamics during the selection process. METHODOLOGY: We have performed a semi-automated SELEX procedure on the model target streptavidin starting with a synthetic DNA oligonucleotide library and compared results obtained by the conventional analysis via cloning and Sanger sequencing with next-generation sequencing. In order to follow the population dynamics during the selection, pools from all selection rounds were barcoded and sequenced in parallel. CONCLUSIONS: High affinity aptamers can be readily identified simply by copy number enrichment in the first selection rounds. Based on our results, we suggest a new selection scheme that avoids a high number of iterative selection rounds while reducing time, PCR bias, and artifacts.

  15. Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry

    DEFF Research Database (Denmark)

    Inskeep, William P; Jay, Zackary J; Herrgard, Markus

    2013-01-01

    from the sequence data. Analysis of protein family occurrence, particularly of those involved in energy conservation, electron transport, and autotrophic metabolism, revealed significant differences in metabolic strategies across sites consistent with differences in major geochemical attributes (e.......4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (∼40-45 Mb Sanger sequencing per site) was obtained from environmental DNA extracted from high-temperature sediments and....../or microbial mats and subjected to numerous phylogenetic and functional analyses. Analysis of individual sequences (e.g., MEGAN and G + C content) and assemblies from each habitat type revealed the presence of dominant archaeal populations in all environments, 10 of whose genomes were largely reconstructed...

  16. Analysis of metagenomics next generation sequence data for fungal ITS barcoding: Do you need advance bioinformatics experience?

    Directory of Open Access Journals (Sweden)

    Abdalla Osman Abdalla Ahmed

    2016-07-01

    Full Text Available During the last few decades, most of microbiology laboratories have become familiar in analyzing Sanger sequence data for ITS barcoding. However, with the availability of next-generation sequencing platforms in many centers, it has become important for medical mycologists to know how to make sense of the massive sequence data generated by these new sequencing technologies. In many reference laboratories, the analysis of such data is not a big deal, since suitable IT infrastructure and well-trained bioinformatics scientists are always available. However, in small research laboratories and clinical microbiology laboratories the availability of such resources are always lacking. In this report, simple and user-friendly bioinformatics work-flow is suggested for fast and reproducible ITS barcoding of fungi.

  17. ReRep: Computational detection of repetitive sequences in genome survey sequences (GSS

    Directory of Open Access Journals (Sweden)

    Alves-Ferreira Marcelo

    2008-09-01

    Full Text Available Abstract Background Genome survey sequences (GSS offer a preliminary global view of a genome since, unlike ESTs, they cover coding as well as non-coding DNA and include repetitive regions of the genome. A more precise estimation of the nature, quantity and variability of repetitive sequences very early in a genome sequencing project is of considerable importance, as such data strongly influence the estimation of genome coverage, library quality and progress in scaffold construction. Also, the elimination of repetitive sequences from the initial assembly process is important to avoid errors and unnecessary complexity. Repetitive sequences are also of interest in a variety of other studies, for instance as molecular markers. Results We designed and implemented a straightforward pipeline called ReRep, which combines bioinformatics tools for identifying repetitive structures in a GSS dataset. In a case study, we first applied the pipeline to a set of 970 GSSs, sequenced in our laboratory from the human pathogen Leishmania braziliensis, the causative agent of leishmaniosis, an important public health problem in Brazil. We also verified the applicability of ReRep to new sequencing technologies using a set of 454-reads of an Escheria coli. The behaviour of several parameters in the algorithm is evaluated and suggestions are made for tuning of the analysis. Conclusion The ReRep approach for identification of repetitive elements in GSS datasets proved to be straightforward and efficient. Several potential repetitive sequences were found in a L. braziliensis GSS dataset generated in our laboratory, and further validated by the analysis of a more complete genomic dataset from the EMBL and Sanger Centre databases. ReRep also identified most of the E. coli K12 repeats prior to assembly in an example dataset obtained by automated sequencing using 454 technology. The parameters controlling the algorithm behaved consistently and may be tuned to the properties

  18. Main: Sequences [KOME

    Lifescience Database Archive (English)

    Full Text Available Sequences Nucleotide Sequence Nucleotide sequence of full length cDNA (trimmed sequence) kome_ine_full_seq...uence_db.fasta.zip kome_ine_full_sequence_db.zip kome_ine_full_sequence_db ...

  19. Molecular comparison of topotypic specimens confirms Anopheles (Nyssorhynchus dunhami Causey (Diptera: Culicidae in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    Freddy Ruiz

    2010-11-01

    Full Text Available The presence of Anopheles (Nyssorhynchus dunhami Causey in Colombia (Department of Amazonas is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI barcodes and nuclear rDNA second internal transcribed spacer (ITS2 sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America.

  20. Experimental confirmation of a new reversed butterfly-shaped attractor

    Institute of Scientific and Technical Information of China (English)

    Liu Ling; Su Yan-Chen; Liu Chong-Xin

    2007-01-01

    This paper reports a new reverse butterfly-shaped chaotic attractor and its experimental confirmation. Some basic dynamical properties, and chaotic behaviours of this new reverse butterfly attractor are studied. Simulation results support brief theoretical derivations. Furthermore, the system is experimentally confirmed by a simple electronic circuit.

  1. 17 CFR 1.33 - Monthly and confirmation statements.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Monthly and confirmation statements. 1.33 Section 1.33 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION GENERAL REGULATIONS UNDER THE COMMODITY EXCHANGE ACT Recordkeeping § 1.33 Monthly and confirmation statements. (a...

  2. New Mutations in NEB Gene Discovered by Targeted Next-Generation Sequencing in Nemaline Myopathy Italian Patients.

    Science.gov (United States)

    Piga, Daniela; Magri, Francesca; Ronchi, Dario; Corti, Stefania; Cassandrini, Denise; Mercuri, Eugenio; Tasca, Giorgio; Bertini, Enrico; Fattori, Fabiana; Toscano, Antonio; Messina, Sonia; Moroni, Isabella; Mora, Marina; Moggio, Maurizio; Colombo, Irene; Giugliano, Teresa; Pane, Marika; Fiorillo, Chiara; D'Amico, Adele; Bruno, Claudio; Nigro, Vincenzo; Bresolin, Nereo; Comi, Giacomo Pietro

    2016-07-01

    Nemaline myopathy represents a group of clinically and genetically heterogeneous neuromuscular disorders. Different clinical-genetic entities have been characterized in the last few years, with implications for diagnostics and genetic counseling. Fifty percent of nemaline myopathy forms are due to NEB mutations, but genetic analysis of this large and complex gene by Sanger sequencing is time consuming and expensive. We selected 10 Italian patients with clinical and biopsy features suggestive for nemaline myopathy and negative for ACTA1, TPM2 and TPM3 mutations. We applied a targeted next-generation sequencing strategy designed to analyse NEB coding regions, the relative full introns and the promoter. We also evaluated copy number variations (by CGH array) and transcriptional changes by RNA Sanger sequencing, whenever possible. This combined strategy revealed 11 likely pathogenic variants in 8 of 10 patients. The molecular diagnosis was fully achieved in 3 of 8 patients, while only one heterozygous mutation was observed in 5 subjects. This approach revealed to be a fast and cost-effective way to analyse the large NEB gene in a small group of patients and might be promising for the detection of pathological variants of other genes featuring large coding regions and lacking mutational hotspots.

  3. Molecular Confirmation of Trypanosoma evansi and Babesia bigemina in Cattle from Lower Egypt

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Elhaig, Abdelfattah Selim, Mohamed M. Mahmoud and Eman K El-Gayar

    2016-11-01

    Full Text Available Trypanosomosis and babesiosis are economically important vector-borne diseases for animal health and productivity in developing countries. In Egypt, molecular epidemiological surveys on such diseases are scarce. In the present study, we examined 475 healthy and 25 clinically diagnosed cattle from three provinces in Lower Egypt, for Trypanosoma (T. and Babesia (B. infections using an ITS1 PCR assay that confirmed Trypanosoma species presence and an 18S rRNA assay that detected B. bigemina. Results confirmed Trypanosoma spp. and B. bigemina presence in 30.4% and 11% individuals, respectively, with eight animals (1.6% being co-infected with both hemoparasites. Subsequent type-specific PCRs revealed that all Trypanosoma PCR positive samples corresponded to T. evansi and that none of the animals harboured T. brucei gambiense or T. brucei rhodesiense. Nucleotide sequencing of the variable surface glycoprotein revealed the T. evansi cattle strain to be most closely related (99% nucleotide sequence identity to strains previously detected in dromedary camels in Egypt, while the 18S rRNA gene phylogeny confirmed the presence of a unique B. bigemina haplotype closely related to strains from Turkey and Brazil. Statistically significant differences in PCR prevalence were noted with respect to gender, clinical status and locality. These results confirm the presence of high numbers of carrier animals and signal the need for expanded surveillance and control efforts.

  4. Genetic confirmation of mungbean (Vigna radiata and mashbean (Vigna mungo interspecific recombinants using molecular markers

    Directory of Open Access Journals (Sweden)

    Ghulam eAbbas

    2015-12-01

    Full Text Available The present study was conducted with the aim to investigate recombination between mungbean (female and mashbean (male interspecific crosses using molecular markers i.e., URP (Universal Rice Primers, RAPD (Random Amplified Polymorphic DNA and SSR (Simple Sequence Repeats. As a first step parental screening was performed and polymorphic markers differentiating parent genotypes were identified. Recombinations were then confirmed through polymorphic DNA markers in many of the hybrids. The NM 2006 × Mash 88 was found to be most successful interspecific cross as many of true recombinants, confirmed by molecular markers, belonged to this cross combination. The SSR markers were more efficient in detecting genetic variability and recombinations with reference to specific chromosomes and particular loci, while SSR (RIS and RAPD identified variability dispersed throughout the genome. The DNA based marker assisted approach provided evidence for genetic confirmation of mungbean and mashbean interspecific recombinants and escalated the authenticity of selection in mungbean improvement programme.

  5. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM)☆

    Science.gov (United States)

    Parson, Walther; Strobl, Christina; Huber, Gabriela; Zimmermann, Bettina; Gomes, Sibylle M.; Souto, Luis; Fendt, Liane; Delport, Rhena; Langit, Reina; Wootton, Sharon; Lagacé, Robert; Irwin, Jodi

    2013-01-01

    Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics. PMID:23948325

  6. Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers.

    Directory of Open Access Journals (Sweden)

    Xinzhong Li

    Full Text Available Molecular genetic testing is recommended for diagnosis of inherited cardiac disease, to guide prognosis and treatment, but access is often limited by cost and availability. Recently introduced high-throughput bench-top DNA sequencing platforms have the potential to overcome these limitations.We evaluated two next-generation sequencing (NGS platforms for molecular diagnostics. The protein-coding regions of six genes associated with inherited arrhythmia syndromes were amplified from 15 human samples using parallelised multiplex PCR (Access Array, Fluidigm, and sequenced on the MiSeq (Illumina and Ion Torrent PGM (Life Technologies. Overall, 97.9% of the target was sequenced adequately for variant calling on the MiSeq, and 96.8% on the Ion Torrent PGM. Regions missed tended to be of high GC-content, and most were problematic for both platforms. Variant calling was assessed using 107 variants detected using Sanger sequencing: within adequately sequenced regions, variant calling on both platforms was highly accurate (Sensitivity: MiSeq 100%, PGM 99.1%. Positive predictive value: MiSeq 95.9%, PGM 95.5%. At the time of the study the Ion Torrent PGM had a lower capital cost and individual runs were cheaper and faster. The MiSeq had a higher capacity (requiring fewer runs, with reduced hands-on time and simpler laboratory workflows. Both provide significant cost and time savings over conventional methods, even allowing for adjunct Sanger sequencing to validate findings and sequence exons missed by NGS.MiSeq and Ion Torrent PGM both provide accurate variant detection as part of a PCR-based molecular diagnostic workflow, and provide alternative platforms for molecular diagnosis of inherited cardiac conditions. Though there were performance differences at this throughput, platforms differed primarily in terms of cost, scalability, protocol stability and ease of use. Compared with current molecular genetic diagnostic tests for inherited cardiac arrhythmias

  7. Sanger法检测分析非小细胞肺癌患者组织EGFR%Sanger method for detecting tissue EGFR in patients with non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    王金龙; 李宝锋; 罗凯

    2011-01-01

    patiens with EGFB mutation.Conclusions Sanger method for detecting gene mutations in NSCLC can provide technical support for the targeted therapy.

  8. Validation of Next-Generation Sequencing of Entire Mitochondrial Genomes and the Diversity of Mitochondrial DNA Mutations in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Anita Kloss-Brandstätter

    Full Text Available Oral squamous cell carcinoma (OSCC is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA mutations in primary oral tumors, recurrences and metastases.We performed an in-depth validation of mtDNA next-generation sequencing (NGS on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base.We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases.We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared mutations between primary tumors, recurrences and metastasis indicates a clonal origin of malignant cells in oral cancer.

  9. The origin of biased sequence depth in sequence-independent nucleic acid amplification and optimization for efficient massive parallel sequencing.

    Directory of Open Access Journals (Sweden)

    Toon Rosseel

    Full Text Available Sequence Independent Single Primer Amplification is one of the most widely used random amplification approaches in virology for sequencing template preparation. This technique relies on oligonucleotides consisting of a 3' random part used to prime complementary DNA synthesis and a 5' defined tag sequence for subsequent amplification. Recently, this amplification method was combined with next generation sequencing to obtain viral sequences. However, these studies showed a biased distribution of the resulting sequence reads over the analyzed genomes. The aim of this study was to elucidate the mechanisms that lead to biased sequence depth when using random amplification. Avian paramyxovirus type 8 was used as a model RNA virus to investigate these mechanisms. We showed, based on in silico analysis of the sequence depth in relation to GC-content, predicted RNA secondary structure and sequence complementarity to the 3' part of the tag sequence, that the tag sequence has the main contribution to the observed bias in sequence depth. We confirmed this finding experimentally using both fragmented and non-fragmented viral RNAs as well as primers differing in random oligomer length (6 or 12 nucleotides and in the sequence of the amplification tag. The observed oligonucleotide annealing bias can be reduced by extending the random oligomer sequence and by in silico combining sequence data from SISPA experiments using different 5' defined tag sequences. These findings contribute to the optimization of random nucleic acid amplification protocols that are currently required for downstream applications such as viral metagenomics and microarray analysis.

  10. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius.

    Directory of Open Access Journals (Sweden)

    Ceiridwen J Edwards

    Full Text Available BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer. In total, 289.9 megabases (22.48% of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously

  11. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era

    Directory of Open Access Journals (Sweden)

    Claudia Masini d’Avila-Levy

    2015-01-01

    Full Text Available The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma.Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.

  12. Next-generation sequencing technology for genetics and genomics of sorghum

    DEFF Research Database (Denmark)

    Luo, Hong; Mocoeur, Anne Raymonde Joelle; Jing, Hai-Chun

    2014-01-01

    of NGS technologies in sorghum. Although the acquisition of the first whole-genome sequence in sorghum was carried out primarily using Sanger sequencing, the use of NGS for examining the genome-wide variation was almost synchronized with other work. Interesting genomic variation was found between sweet...... and grain sorghum. NGS has also been used to examine the transcriptomes of sorghum under various stress conditions. Besides identifying interesting transcriptonal adpatation to stress conditions, these study show that sugar could potentially act as an osmitic adjusting factor via transcriptional regulation....... Furthermore, miRNAs are found to be important adaptation to both biotic and abiotic stresses in sorghum. We discuss the use of NGS for further genetic improvement and breeding in sorghum....

  13. Screening of BRCA1 sequence variants within exon 11 by heteroduplex analysis

    Directory of Open Access Journals (Sweden)

    Lucian Negura

    2013-03-01

    Full Text Available Germ-line mutations of either BRCA1 or BRCA2 represents the major hereditary risk to breast and ovariancancer. Screening for mutations in these genes is now standard practice in molecular diagnosis, opening the way tooncogenetic counselling and follow-up. Because mutations in both BRCA1 and BRCA2 are distributed throughout theloci, accepted clinical protocols involve screening their entire coding regions. Systematic Sanger sequencing is time andmoney consuming. Therefore, a lot of pre-screening techniques evolved over time in order to identify anomalousamplicons prior to sequencing. Because BRCA mutations are always heterozygous, heteroduplex analysis proved to be asuitable pre-screening step. We previously implemented mismatch specific endonuclease heteroduplex analysis forBRCA1 exon7. Here we show the utility of the same method for mutations and SNPs found in BRCA1 exon 11

  14. Viral Metagenomics: Analysis of Begomoviruses by Illumina High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Ali Idris

    2014-03-01

    Full Text Available Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant begomoviral genomes and their associated beta- and alpha-satellite molecules (virus-satellite complexes (genus, Begomovirus; family, Geminiviridae were enriched from total nucleic acids isolated from symptomatic, field-infected plants, using rolling circle amplification (RCA. Enriched virus-satellite complexes were subjected to Illumina-Next Generation Sequencing (NGS. CASAVA and SeqMan NGen programs were implemented, respectively, for quality control and for de novo and reference-guided contig assembly of viral-satellite sequences. The authenticity of the begomoviral sequences, and the reproducibility of the Illumina-NGS approach for begomoviral deep sequencing projects, were validated by comparing NGS results with those obtained using traditional molecular cloning and Sanger sequencing of viral components and satellite DNAs, also enriched by RCA or amplified by polymerase chain reaction. As the use of NGS approaches, together with advances in software development, make possible deep sequence coverage at a lower cost; the approach described herein will streamline the exploration of begomovirus diversity and population structure from naturally infected plants, irrespective of viral abundance. This is the first report of the implementation of Illumina-NGS to explore the diversity and identify begomoviral-satellite SNPs directly from plants naturally-infected with begomoviruses under field conditions.

  15. Viral metagenomics: Analysis of begomoviruses by illumina high-throughput sequencing

    KAUST Repository

    Idris, Ali

    2014-03-12

    Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant begomoviral genomes and their associated beta- and alpha-satellite molecules (virus-satellite complexes) (genus, Begomovirus; family, Geminiviridae) were enriched from total nucleic acids isolated from symptomatic, field-infected plants, using rolling circle amplification (RCA). Enriched virus-satellite complexes were subjected to Illumina-Next Generation Sequencing (NGS). CASAVA and SeqMan NGen programs were implemented, respectively, for quality control and for de novo and reference-guided contig assembly of viral-satellite sequences. The authenticity of the begomoviral sequences, and the reproducibility of the Illumina-NGS approach for begomoviral deep sequencing projects, were validated by comparing NGS results with those obtained using traditional molecular cloning and Sanger sequencing of viral components and satellite DNAs, also enriched by RCA or amplified by polymerase chain reaction. As the use of NGS approaches, together with advances in software development, make possible deep sequence coverage at a lower cost; the approach described herein will streamline the exploration of begomovirus diversity and population structure from naturally infected plants, irrespective of viral abundance. This is the first report of the implementation of Illumina-NGS to explore the diversity and identify begomoviral-satellite SNPs directly from plants naturally-infected with begomoviruses under field conditions. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  16. Viral metagenomics: analysis of begomoviruses by illumina high-throughput sequencing.

    Science.gov (United States)

    Idris, Ali; Al-Saleh, Mohammed; Piatek, Marek J; Al-Shahwan, Ibrahim; Ali, Shahjahan; Brown, Judith K

    2014-03-12

    Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant begomoviral genomes and their associated beta- and alpha-satellite molecules (virus-satellite complexes) (genus, Begomovirus; family, Geminiviridae) were enriched from total nucleic acids isolated from symptomatic, field-infected plants, using rolling circle amplification (RCA). Enriched virus-satellite complexes were subjected to Illumina-Next Generation Sequencing (NGS). CASAVA and SeqMan NGen programs were implemented, respectively, for quality control and for de novo and reference-guided contig assembly of viral-satellite sequences. The authenticity of the begomoviral sequences, and the reproducibility of the Illumina-NGS approach for begomoviral deep sequencing projects, were validated by comparing NGS results with those obtained using traditional molecular cloning and Sanger sequencing of viral components and satellite DNAs, also enriched by RCA or amplified by polymerase chain reaction. As the use of NGS approaches, together with advances in software development, make possible deep sequence coverage at a lower cost; the approach described herein will streamline the exploration of begomovirus diversity and population structure from naturally infected plants, irrespective of viral abundance. This is the first report of the implementation of Illumina-NGS to explore the diversity and identify begomoviral-satellite SNPs directly from plants naturally-infected with begomoviruses under field conditions.

  17. CERN confirms goal of 2007 start-up for LHC

    CERN Multimedia

    2005-01-01

    Speaking at the 131st session of CERN Council on 17 December 2004, the Director-General, Robert Aymar, confirmed that the top priority is to maintain the goal of starting up the Large Hadron Collider (LHC) in 2007.

  18. Confirming psychogenic nonepileptic seizures with video-EEG: sex matters.

    Science.gov (United States)

    Noe, Katherine H; Grade, Madeline; Stonnington, Cynthia M; Driver-Dunckley, Erika; Locke, Dona E C

    2012-03-01

    The influence of gender on psychogenic nonepileptic seizures (PNES) diagnosis was examined retrospectively in 439 subjects undergoing video-EEG (vEEG) for spell classification, of whom 142 women and 42 men had confirmed PNES. The epileptologist's predicted diagnosis was correct in 72% overall. Confirmed epilepsy was correctly predicted in 94% men and 88% women. In contrast, confirmed PNES was accurately predicted in 86% women versus 61% men (p=0.003). Sex-based differences in likelihood of an indeterminate admission were not observed for predicted epilepsy or physiologic events, but were for predicted PNES (39% men, 12% women, p=0.0002). More frequent failure to record spells in men than women with predicted PNES was not explained by spell frequency, duration of monitoring, age, medication use, or personality profile. PNES are not only less common in men, but also more challenging to recognize in the clinic, and even when suspected more difficult to confirm with vEEG.

  19. NIH study confirms risk factors for male breast cancer

    Science.gov (United States)

    Pooled data from studies of about 2,400 men with breast cancer and 52,000 men without breast cancer confirmed that risk factors for male breast cancer include obesity, a rare genetic condition called Klinefelter syndrome, and gynecomastia.

  20. Theory-led confirmation bias and experimental persona

    Science.gov (United States)

    Allen, Michael

    2011-04-01

    Questionnaire and interview findings from a survey of three Year 8 (ages 12-13 years) science practical lessons (n = 52) demonstrate how pupils' data collection and inference making were sometimes biased by desires to confirm a personal theory. A variety of behaviours are described where learners knowingly rejected anomalies, manipulated apparatus, invented results or carried out other improper operations to either collect data which they believed were scientifically correct, or achieve social conformity. It is proposed that confirmation bias was a consequence of the degree to which individuals were laden by theory, and driven by this, experimenters assumed one of three different personas: becoming right answer confirmers; good scientists; or indifferent spectators. These personas have parallels with historical instances of scientific behaviour. Implications of a continued teacher-tolerance of pupil confirmation bias include the promotion of unscientific experimenting, and the persistence of unchallenged science misconceptions. Solutions are offered in the way of practical strategies that might reduce experimenters' theory-ladeness.

  1. Consumer satisfaction and confirmation of habits of comprehension

    DEFF Research Database (Denmark)

    Sørensen, Bent; Andersen, Christian; Andersen, Morten Purup

    2014-01-01

    The purpose of this article is twofold: First, within a Peircean framework it shall be demonstrated how there is a relation between the compositional structure of certain types of print advertisements and their bringing about inductive comprehension, and how the consumer can be understood...... as a bundle of habits. It is the assumption that advertising that supports an inductive effect particularly appeals to the cognitive tendency of habit formation in the consumer. Second, it is asked whether advertisements that predominantly invite inductive processes of comprehension also influence...... the formation of consumer satisfaction; the perspective is that of the confirmation paradigm within advertisement research. Inductive advertisements support cognitive habit formation through confirmation, and the confirmation paradigm explains exactly consumer satisfaction with reference to confirmation. Hence...

  2. Imaging Study Confirms Brain Differences in People with ADHD

    Science.gov (United States)

    ... Imaging Study Confirms Brain Differences in People With ADHD Attention-deficit/hyperactivity should be considered a brain ... Researchers who pinpointed brain differences in people with attention-deficit/hyperactivity disorder (ADHD) say their findings show the condition should ...

  3. Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities

    Directory of Open Access Journals (Sweden)

    Chistoserdov Andrei

    2009-11-01

    Full Text Available Abstract Background Recent advances in sequencing strategies make possible unprecedented depth and scale of sampling for molecular detection of microbial diversity. Two major paradigm-shifting discoveries include the detection of bacterial diversity that is one to two orders of magnitude greater than previous estimates, and the discovery of an exciting 'rare biosphere' of molecular signatures ('species' of poorly understood ecological significance. We applied a high-throughput parallel tag sequencing (454 sequencing protocol adopted for eukaryotes to investigate protistan community complexity in two contrasting anoxic marine ecosystems (Framvaren Fjord, Norway; Cariaco deep-sea basin, Venezuela. Both sampling sites have previously been scrutinized for protistan diversity by traditional clone library construction and Sanger sequencing. By comparing these clone library data with 454 amplicon library data, we assess the efficiency of high-throughput tag sequencing strategies. We here present a novel, highly conservative bioinformatic analysis pipeline for the processing of large tag sequence data sets. Results The analyses of ca. 250,000 sequence reads revealed that the number of detected Operational Taxonomic Units (OTUs far exceeded previous richness estimates from the same sites based on clone libraries and Sanger sequencing. More than 90% of this diversity was represented by OTUs with less than 10 sequence tags. We detected a substantial number of taxonomic groups like Apusozoa, Chrysomerophytes, Centroheliozoa, Eustigmatophytes, hyphochytriomycetes, Ichthyosporea, Oikomonads, Phaeothamniophytes, and rhodophytes which remained undetected by previous clone library-based diversity surveys of the sampling sites. The most important innovations in our newly developed bioinformatics pipeline employ (i BLASTN with query parameters adjusted for highly variable domains and a complete database of public ribosomal RNA (rRNA gene sequences for taxonomic

  4. The Fast Changing Landscape of Sequencing Technologies and Their Impact on Microbial Genome Assemblies and Annotation

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Brettin, Thomas S [ORNL; Quest, Daniel J [ORNL; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Clum, Alicia [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Cottingham, Robert W [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2012-01-01

    Background: The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. Methodology/Principal Findings: In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. Conclusion: These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).

  5. Molecular confirmation of ovine herpesvirus 2-induced malignant catarrhal fever lesions in cattle from Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Selwyn A. Headley

    2012-12-01

    Full Text Available Molecular findings that confirmed the participation of ovine herpesvirus 2 (OVH-2 in the lesions that were consistent with those observed in malignant catarrhal fever of cattle are described. Three mixed-breed cattle from Rio Grande do Norte state demonstrated clinical manifestations that included mucopurulent nasal discharge, corneal opacity and motor incoordination. Routine necropsy examination demonstrated ulcerations and hemorrhage of the oral cavity, corneal opacity, and lymph node enlargement. Significant histopathological findings included widespread necrotizing vasculitis, non-suppurative meningoencephalitis, lymphocytic interstitial nephritis and hepatitis, and thrombosis. PCR assay performed on DNA extracted from kidney and mesenteric lymph node of one animal amplified a product of 423 base pairs corresponding to a target sequence within the ovine herpesvirus 2 (OVH-2 tegument protein gene. Direct sequencing of the PCR products, from extracted DNA of the kidney and mesenteric lymph node of one cow, amplified the partial nucleotide sequences (423 base pairs of OVH-2 tegument protein gene. Blast analysis confirmed that these sequences have 98-100% identity with similar OVH-2 sequences deposited in GenBank. Phylogenetic analyses, based on the deduced amino acid sequences, demonstrated that the strain of OVH-2 circulating in ruminants from the Brazilian states of Rio Grande do Norte and Minas Gerais are similar to that identified in other geographical locations. These findings confirmed the active participation of OVH-2 in the classical manifestations of sheep associated malignant catarrhal fever.

  6. Preliminary Analysis of Remote Monitoring & Robotic Concepts for Performance Confirmation

    Energy Technology Data Exchange (ETDEWEB)

    D.A. McAffee

    1997-02-18

    As defined in 10 CFR Part 60.2, Performance Confirmation is the ''program of tests, experiments and analyses which is conducted to evaluate the accuracy and adequacy of the information used to determine with reasonable assurance that the performance objectives for the period after permanent closure will be met''. The overall Performance Confirmation program begins during site characterization and continues up to repository closure. The main purpose of this document is to develop, explore and analyze initial concepts for using remotely operated and robotic systems in gathering repository performance information during Performance Confirmation. This analysis focuses primarily on possible Performance Confirmation related applications within the emplacement drifts after waste packages have been emplaced (post-emplacement) and before permanent closure of the repository (preclosure). This will be a period of time lasting approximately 100 years and basically coincides with the Caretaker phase of the project. This analysis also examines, to a lesser extent, some applications related to Caretaker operations. A previous report examined remote handling and robotic technologies that could be employed during the waste package emplacement phase of the project (Reference 5.1). This analysis is being prepared to provide an early investigation of possible design concepts and technical challenges associated with developing remote systems for monitoring and inspecting activities during Performance Confirmation. The writing of this analysis preceded formal development of Performance Confirmation functional requirements and program plans and therefore examines, in part, the fundamental Performance Confirmation monitoring needs and operating conditions. The scope and primary objectives of this analysis are to: (1) Describe the operating environment and conditions expected in the emplacement drifts during the preclosure period. (Presented in Section 7.2). (2

  7. Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry

    DEFF Research Database (Denmark)

    Inskeep, William P; Jay, Zackary J; Herrgard, Markus;

    2013-01-01

    Geothermal habitats in Yellowstone National Park (YNP) provide an unparalleled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze, and synthesize metagenomic and geochemical data collected from seven high......-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.......4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (∼40-45 Mb Sanger sequencing per site) was obtained from environmental DNA extracted from high-temperature sediments and...

  8. Microfluidic assay without blocking for rapid HIV screening and confirmation.

    Science.gov (United States)

    Song, Lusheng; Zhang, Yi; Wang, Wenjun; Ma, Liying; Liu, Yong; Hao, Yanlin; Shao, Yiming; Zhang, Wei; Jiang, Xingyu

    2012-08-01

    The essential step for HIV spreading limitation is the screening tests. However, there are multiple disadvantages in current screening assays which need further confirmation test. Herein we developed a rapid HIV assay combining screening and confirmation test by using the microfluidic network assay. Meanwhile, the assay is accelerated by bypassing the step of blocking. We call this method as microfluidic assay without blocking (MAWB). Both the limit of detection and reagent incubation time of MAWB are determined by screening of one model protein pair: ovalbumin and its antibody. The assay time is accelerated about 25% while the limit of detection (LOD) is well kept. Formatting the method in for both HIV screening (testing 8 HIV-related samples) and confirmation (assaying 6 kinds of HIV antibodies of each sample) within 30 min was successful. Fast HIV screening and confirmation of 20 plasma samples were also demonstrated by this method. MAWB improved the assay speed while keeping the LOD of conventional ELISA. Meanwhile, both the accuracy and throughput of MAWB were well improved, which made it an excellent candidate for a quick HIV test for both screening and confirmation. Methods like this one will find wide applications in clinical diagnosis and biochemical analysis based on the interactions between pairs of molecules.

  9. Development of a control region-based mtDNA SNaPshot™ selection tool, integrated into a mini amplicon sequencing method.

    Science.gov (United States)

    Weiler, Natalie E C; de Vries, Gerda; Sijen, Titia

    2016-03-01

    Mitochondrial DNA (mtDNA) analysis is regularly applied to forensic DNA samples with limited amounts of nuclear DNA (nDNA), such as hair shafts and bones. Generally, this mtDNA analysis involves examination of the hypervariable control region by Sanger sequencing of amplified products. When samples are severely degraded, small-sized amplicons can be applied and an earlier described mini-mtDNA method by Eichmann et al. [1] that accommodates ten mini amplicons in two multiplexes is found to be a very robust approach. However, in cases with large numbers of samples, like when searching for hairs with an mtDNA profile deviant from that of the victim, the method is time (and cost) consuming. Previously, Chemale et al. [2] described a SNaPshot™-based screening tool for a Brazilian population that uses standard-size amplicons for HVS-I and HVS-II. Here, we describe a similar tool adapted to the full control region and compatible with mini-mtDNA amplicons. Eighteen single nucleotide polymorphisms (SNPs) were selected based on their relative frequencies in a European population. They showed a high discriminatory power in a Dutch population (97.2%). The 18 SNPs are assessed in two SNaPshot™ multiplexes that pair to the two mini-mtDNA amplification multiplexes. Degenerate bases are included to limit allele dropout due to SNPs at primer binding site positions. Three SNPs provide haplogroup information. Reliability testing showed no differences with Sanger sequencing results. Since mini-mtSNaPshot screening uses only a small portion of the same PCR products used for Sanger sequencing, no additional DNA extract is consumed, which is forensically advantageous.

  10. Second generation sequencing of the mesothelioma tumor genome.

    Directory of Open Access Journals (Sweden)

    Raphael Bueno

    Full Text Available The current paradigm for elucidating the molecular etiology of cancers relies on the interrogation of small numbers of genes, which limits the scope of investigation. Emerging second-generation massively parallel DNA sequencing technologies have enabled more precise definition of the cancer genome on a global scale. We examined the genome of a human primary malignant pleural mesothelioma (MPM tumor and matched normal tissue by using a combination of sequencing-by-synthesis and pyrosequencing methodologies to a 9.6X depth of coverage. Read density analysis uncovered significant aneuploidy and numerous rearrangements. Method-dependent informatics rules, which combined the results of different sequencing platforms, were developed to identify and validate candidate mutations of multiple types. Many more tumor-specific rearrangements than point mutations were uncovered at this depth of sequencing, resulting in novel, large-scale, inter- and intra-chromosomal deletions, inversions, and translocations. Nearly all candidate point mutations appeared to be previously unknown SNPs. Thirty tumor-specific fusions/translocations were independently validated with PCR and Sanger sequencing. Of these, 15 represented disrupted gene-encoding regions, including kinases, transcription factors, and growth factors. One large deletion in DPP10 resulted in altered transcription and expression of DPP10 transcripts in a set of 53 additional MPM tumors correlated with survival. Additionally, three point mutations were observed in the coding regions of NKX6-2, a transcription regulator, and NFRKB, a DNA-binding protein involved in modulating NFKB1. Several regions containing genes such as PCBD2 and DHFR, which are involved in growth factor signaling and nucleotide synthesis, respectively, were selectively amplified in the tumor. Second-generation sequencing uncovered all types of mutations in this MPM tumor, with DNA rearrangements representing the dominant type.

  11. Reliable in silico identification of sequence polymorphisms and their application for extending the genetic map of sugar beet (Beta vulgaris).

    Science.gov (United States)

    Holtgräwe, Daniela; Sörensen, Thomas Rosleff; Viehöver, Prisca; Schneider, Jessica; Schulz, Britta; Borchardt, Dietrich; Kraft, Thomas; Himmelbauer, Heinz; Weisshaar, Bernd

    2014-01-01

    Molecular markers are a highly valuable tool for creating genetic maps. Like in many other crops, sugar beet (Beta vulgaris L.) breeding is increasingly supported by the application of such genetic markers. Single nucleotide polymorphism (SNP) based markers have a high potential for automated analysis and high-throughput genotyping. We developed a bioinformatics workflow that uses Sanger and 2nd-generation sequence data for detection, evaluation and verification of new transcript-associated SNPs from sugar beet. RNAseq data from one parent of an established mapping population were produced by 454-FLX sequencing and compared to Sanger ESTs derived from the other parent. The workflow established for SNP detection considers the quality values of both types of reads, provides polymorphic alignments as well as selection criteria for reliable SNP detection and allows painless generation of new genetic markers within genes. We obtained a total of 14,323 genic SNPs and InDels. According to empirically optimised settings for the quality parameters, we classified these SNPs into four usability categories. Validation of a subset of the in silico detected SNPs by genotyping the mapping population indicated a high success rate of the SNP detection. Finally, a total of 307 new markers were integrated with existing data into a new genetic map of sugar beet which offers improved resolution and the integration of terminal markers.

  12. Reliable In Silico Identification of Sequence Polymorphisms and Their Application for Extending the Genetic Map of Sugar Beet (Beta vulgaris)

    Science.gov (United States)

    Holtgräwe, Daniela; Sörensen, Thomas Rosleff; Viehöver, Prisca; Schneider, Jessica; Schulz, Britta; Borchardt, Dietrich; Kraft, Thomas; Himmelbauer, Heinz; Weisshaar, Bernd

    2014-01-01

    Molecular markers are a highly valuable tool for creating genetic maps. Like in many other crops, sugar beet (Beta vulgaris L.) breeding is increasingly supported by the application of such genetic markers. Single nucleotide polymorphism (SNP) based markers have a high potential for automated analysis and high-throughput genotyping. We developed a bioinformatics workflow that uses Sanger and 2nd-generation sequence data for detection, evaluation and verification of new transcript-associated SNPs from sugar beet. RNAseq data from one parent of an established mapping population were produced by 454-FLX sequencing and compared to Sanger ESTs derived from the other parent. The workflow established for SNP detection considers the quality values of both types of reads, provides polymorphic alignments as well as selection criteria for reliable SNP detection and allows painless generation of new genetic markers within genes. We obtained a total of 14,323 genic SNPs and InDels. According to empirically optimised settings for the quality parameters, we classified these SNPs into four usability categories. Validation of a subset of the in silico detected SNPs by genotyping the mapping population indicated a high success rate of the SNP detection. Finally, a total of 307 new markers were integrated with existing data into a new genetic map of sugar beet which offers improved resolution and the integration of terminal markers. PMID:25302600

  13. Genomic and Functional Characteristics of Human Cytomegalovirus Revealed by Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Steven Sijmons

    2014-03-01

    Full Text Available The complete genome of human cytomegalovirus (HCMV was elucidated almost 25 years ago using a traditional cloning and Sanger sequencing approach. Analysis of the genetic content of additional laboratory and clinical isolates has lead to a better, albeit still incomplete, definition of the coding potential and diversity of wild-type HCMV strains. The introduction of a new generation of massively parallel sequencing technologies, collectively called next-generation sequencing, has profoundly increased the throughput and resolution of the genomics field. These increased possibilities are already leading to a better understanding of the circulating diversity of HCMV clinical isolates. The higher resolution of next-generation sequencing provides new opportunities in the study of intrahost viral population structures. Furthermore, deep sequencing enables novel diagnostic applications for sensitive drug resistance mutation detection. RNA-seq applications have changed the picture of the HCMV transcriptome, which resulted in proof of a vast amount of splicing events and alternative transcripts. This review discusses the application of next-generation sequencing technologies, which has provided a clearer picture of the intricate nature of the HCMV genome. The continuing development and application of novel sequencing technologies will further augment our understanding of this ubiquitous, but elusive, herpesvirus.

  14. KRAS, BRAF, and TP53 deep sequencing for colorectal carcinoma patient diagnostics.

    Science.gov (United States)

    Rechsteiner, Markus; von Teichman, Adriana; Rüschoff, Jan H; Fankhauser, Niklaus; Pestalozzi, Bernhard; Schraml, Peter; Weber, Achim; Wild, Peter; Zimmermann, Dieter; Moch, Holger

    2013-05-01

    In colorectal carcinoma, KRAS (alias Ki-ras) and BRAF mutations have emerged as predictors of resistance to anti-epidermal growth factor receptor antibody treatment and worse patient outcome, respectively. In this study, we aimed to establish a high-throughput deep sequencing workflow according to 454 pyrosequencing technology to cope with the increasing demand for sequence information at medical institutions. A cohort of 81 patients with known KRAS mutation status detected by Sanger sequencing was chosen for deep sequencing. The workflow allowed us to analyze seven amplicons (one BRAF, two KRAS, and four TP53 exons) of nine patients in parallel in one deep sequencing run. Target amplification and variant calling showed reproducible results with input DNA derived from FFPE tissue that ranged from 0.4 to 50 ng with the use of different targets and multiplex identifiers. Equimolar pooling of each amplicon in a deep sequencing run was necessary to counterbalance differences in patient tissue quality. Five BRAF and 49 TP53 mutations with functional consequences were detected. The lowest mutation frequency detected in a patient tumor population was 5% in TP53 exon 5. This low-frequency mutation was successfully verified in a second PCR and deep sequencing run. In summary, our workflow allows us to process 315 targets a week and provides the quality, flexibility, and speed needed to be integrated as standard procedure for mutational analysis in diagnostics.

  15. Quality Control of the Traditional Patent Medicine Yimu Wan Based on SMRT Sequencing and DNA Barcoding.

    Science.gov (United States)

    Jia, Jing; Xu, Zhichao; Xin, Tianyi; Shi, Linchun; Song, Jingyuan

    2017-01-01

    Substandard traditional patent medicines may lead to global safety-related issues. Protecting consumers from the health risks associated with the integrity and authenticity of herbal preparations is of great concern. Of particular concern is quality control for traditional patent medicines. Here, we establish an effective approach for verifying the biological composition of traditional patent medicines based on single-molecule real-time (SMRT) sequencing and DNA barcoding. Yimu Wan (YMW), a classical herbal prescription recorded in the Chinese Pharmacopoeia, was chosen to test the method. Two reference YMW samples were used to establish a standard method for analysis, which was then applied to three different batches of commercial YMW samples. A total of 3703 and 4810 circular-consensus sequencing (CCS) reads from two reference and three commercial YMW samples were mapped to the ITS2 and psbA-trnH regions, respectively. Moreover, comparison of intraspecific genetic distances based on SMRT sequencing data with reference data from Sanger sequencing revealed an ITS2 and psbA-trnH intergenic spacer that exhibited high intraspecific divergence, with the sites of variation showing significant differences within species. Using the CCS strategy for SMRT sequencing analysis was adequate to guarantee the accuracy of identification. This study demonstrates the application of SMRT sequencing to detect the biological ingredients of herbal preparations. SMRT sequencing provides an affordable way to monitor the legality and safety of traditional patent medicines.

  16. Racial athletic stereotype confirmation in college football recruiting.

    Science.gov (United States)

    Thomas, Grant; Good, Jessica J; Gross, Alexi R

    2015-01-01

    The present study tested real-world racial stereotype use in the context of college athletic recruiting. Stereotype confirmation suggests that observers use stereotypes as hypotheses and interpret relevant evidence in a biased way that confirms their stereotypes. Shifting standards suggest that the evaluative standard to which we hold a target changes as a function of their group membership. We examined whether stereotype confirmation and shifting standards effects would be seen in college football coaches during recruiting. College football coaches evaluated a Black or White player on several attributes and made both zero- and non-zero-sum allocations. Results suggested that coaches used the evidence presented to develop biased subjective evaluations of the players based on race while still maintaining equivalent objective evaluations. Coaches also allocated greater overall resources to the Black recruit than the White recruit.

  17. Apnoea testing to confirm brain death in clinical practice.

    Science.gov (United States)

    van Donselaar, C A; Meerwaldt, J D; van Gijn, J

    1986-09-01

    In six patients an apnoea test was carried out to confirm brain death according to a protocol recommended in the USA. After ten minutes' apnoea the pCO2 did not reach the target value of 7.98 kPa (60 mm Hg) in any of these patients. This was caused by the low initial value and the slow increase of the pCO2. Moreover, we could not confirm the belief that the necessary duration of the apnoea test can be predicted by assuming a rise of the pCO2 of 0.33 kPa (2.5 mm Hg) per minute.

  18. Apnoea testing to confirm brain death in clinical practice.

    Science.gov (United States)

    van Donselaar, C A; Meerwaldt, J D; van Gijn, J

    1986-01-01

    In six patients an apnoea test was carried out to confirm brain death according to a protocol recommended in the USA. After ten minutes' apnoea the pCO2 did not reach the target value of 7.98 kPa (60 mm Hg) in any of these patients. This was caused by the low initial value and the slow increase of the pCO2. Moreover, we could not confirm the belief that the necessary duration of the apnoea test can be predicted by assuming a rise of the pCO2 of 0.33 kPa (2.5 mm Hg) per minute. PMID:3093640

  19. Apnoea testing to confirm brain death in clinical practice.

    OpenAIRE

    van Donselaar, C. A.; Meerwaldt, J D; van Gijn, J

    1986-01-01

    In six patients an apnoea test was carried out to confirm brain death according to a protocol recommended in the USA. After ten minutes' apnoea the pCO2 did not reach the target value of 7.98 kPa (60 mm Hg) in any of these patients. This was caused by the low initial value and the slow increase of the pCO2. Moreover, we could not confirm the belief that the necessary duration of the apnoea test can be predicted by assuming a rise of the pCO2 of 0.33 kPa (2.5 mm Hg) per minute.

  20. Confirmation of the absolute configuration of (−)-aurantioclavine

    KAUST Repository

    Behenna, Douglas C.

    2011-04-01

    We confirm our previous assignment of the absolute configuration of (-)-aurantioclavine as 7R by crystallographically characterizing an advanced 3-bromoindole intermediate reported in our previous synthesis. This analysis also provides additional support for our model of enantioinduction in the palladium(II)-catalyzed oxidative kinetic resolution of secondary alcohols. © 2010 Elsevier Ltd. All rights reserved.

  1. Ticks Carrying Lyme Disease Confirmed in Eastern National Parks

    Science.gov (United States)

    ... html Ticks Carrying Lyme Disease Confirmed in Eastern National Parks U.S. National Park Service and CDC advise using insect repellents on ... Planning a hiking trip in an eastern U.S. national park? Better pack tick repellent -- a new study found ...

  2. Theory-Led Confirmation Bias and Experimental Persona

    Science.gov (United States)

    Allen, Michael

    2011-01-01

    Questionnaire and interview findings from a survey of three Year 8 (ages 12-13 years) science practical lessons (n = 52) demonstrate how pupils' data collection and inference making were sometimes biased by desires to confirm a personal theory. A variety of behaviours are described where learners knowingly rejected anomalies, manipulated…

  3. Confirmation and justification. A commentary on Shogenji's measure

    NARCIS (Netherlands)

    Atkinson, David

    2012-01-01

    So far no known measure of confirmation of a hypothesis by evidence has satisfied a minimal requirement concerning thresholds of acceptance. In contrast, Shogenji's new measure of justification (Shogenji, Synthese, this number 2009) does the trick. As we show, it is ordinally equivalent to the most

  4. Objectivity in confirmation: post hoc monsters and novel predictions.

    Science.gov (United States)

    Votsis, Ioannis

    2014-03-01

    The aim of this paper is to put in place some cornerstones in the foundations for an objective theory of confirmation by considering lessons from the failures of predictivism. Discussion begins with a widely accepted challenge, to find out what is needed in addition to the right kind of inferential-semantical relations between hypothesis and evidence to have a complete account of confirmation, one that gives a definitive answer to the question whether hypotheses branded as "post hoc monsters" can be confirmed. The predictivist view is then presented as a way to meet this challenge. Particular attention is paid to Worrall's version of predictivism, as it appears to be the most sophisticated of the lot. It is argued that, despite its faults, his view turns our heads in the right direction by attempting to remove contingent considerations from confirmational matters. The demand to remove such considerations becomes the first of four cornerstones. Each cornerstone is put in place with the aim to steer clear of the sort of failures that plague various kinds of predictivism. In the process, it becomes obvious that the original challenge is wrongheaded and in need of revision. The paper ends with just such a revision.

  5. The influence of stimulus valence on confirmation bias in children

    NARCIS (Netherlands)

    Dibbets, Pauline; Meesters, Cor

    2016-01-01

    BACKGROUND AND OBJECTIVES: The aim of the present study was to replicate our previous study and to further examine the relation between fear and positive and negative confirmation bias in children. METHODS: Fifty-three non-clinical children (9-13 years) were shown pictures of a kindly-perceived (quo

  6. Confirmation of Solar-Like Oscillations in eta Bootis

    CERN Document Server

    Kjeldsen, H; Baldry, I K; Frandsen, S; Bruntt, H; Grundahl, F; Lang, K; Butler, R P; Fischer, D A; Marcy, G W; Misch, A A; Vogt, S S

    2002-01-01

    We report observations of the G0 subgiant eta Boo made in 1998, in Balmer-line equivalent width with the 2.5-m Nordic Optical Telescope and in velocity with the 24-inch Lick CAT. In both data sets we see an excess in the power spectrum, with oscillation frequencies that confirm the earlier observations by Kjeldsen et al. (1995).

  7. Genomic analyses confirm close relatedness between Rhodococcus defluvii and Rhodococcus equi (Rhodococcus hoagii).

    Science.gov (United States)

    Sangal, Vartul; Jones, Amanda L; Goodfellow, Michael; Hoskisson, Paul A; Kämpfer, Peter; Sutcliffe, Iain C

    2015-01-01

    Rhodococcus defluvii strain Ca11(T) was isolated from a bioreactor involved in extensive phosphorus removal. We have sequenced the whole genome of this strain, and our comparative genomic and phylogenetic analyses confirm its close relatedness with Rhodococcus equi (Rhodococcus hoagii) strains, which share >80 % of the gene content. The R. equi virulence plasmid is absent though most of the chromosomal R. equi virulence-associated genes are present in R. defluvii Ca11(T). These data suggest that although R. defluvii is an environmental organism, it has the potential to colonize animal hosts.

  8. Laboratory confirmation of rubella infection in suspected measles cases.

    Science.gov (United States)

    Vaidya, Sunil R; Raut, Chandrashekhar G; Jadhav, Santoshkumar M

    2016-10-01

    As a part of measles outbreak based surveillance undertaken by the World Health Organization India, suspected measles cases were referred for the laboratory diagnosis at National Institute of Virology (NIV) Pune and NIV Unit Bengaluru. Altogether, 4,592 serum samples were referred during 2010-2015 from the States of Karnataka (n = 1,173), Kerala (n = 559), and Maharashtra (n = 2,860). Initially, serum samples were tested in measles IgM antibody EIA and samples with measles negative and equivocal results (n = 1,954) were subjected to rubella IgM antibody detection. Overall, 62.9% (2,889/4,592) samples were laboratory confirmed measles, 27.7% (542/1,954) were laboratory confirmed rubella and remaining 25.2% (1,161/4,592) were negative for measles and rubella. The measles vaccination status was available for 1,206 cases. Among the vaccinated individuals, 50.7% (612/1,206) were laboratory confirmed measles. The contribution of laboratory confirmed measles was 493 (40.8%) from Maharashtra, 90 (7.5%) from Karnataka, and 29 (2.4%) from Kerala. Since, 1/3rd of suspected measles cases were laboratory confirmed rubella, an urgent attention needed to build rubella surveillance in India. Additional efforts are required to rule out other exanthematous disease including Dengue and Chikungunya in measles and rubella negatives. J. Med. Virol. 88:1685-1689, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Overview of NRC's Regulatory Perspective on Performance Confirmation

    Science.gov (United States)

    Fedors, R. W.; Pohle, J. A.

    2007-12-01

    Regulations governing the disposal of high-level radioactive waste at 10 CFR Part 63, Subpart F, require the implementation of a Performance Confirmation Program for a geologic repository at Yucca Mountain, Nevada. The goals of the Performance Confirmation Program are to confirm that the (i) actual subsurface conditions and potential changes in these conditions during construction and waste emplacement operations are within the limits assumed during the licensing review, and (ii) natural and engineered barriers are functioning as intended and anticipated. For a license application for construction authorization, only a plan is required by the regulations. Proposed activities might include (i) monitoring the repository environment, both engineered and natural components, (ii) field and laboratory investigations under more controlled conditions to better understand processes, and (iii) scientific and programmatic evaluation of the data to support operational decisionmaking and guide adaptive design alterations. NRC review of vadose zone monitoring methods revealed limitations in current technological solutions such that many presently available hydro-environmental sensors would likely not be suitable for long- term, deep-subsurface, fractured rock monitoring activities, particularly with respect to the temperatures and radiation environment that will occur near or within waste emplacement drifts. Sensor deployment strategies will also have to be developed considering the repository environment. Thus, achieving the goals of the performance confirmation program could be affected by limits on sensor capabilities or on an as yet to be proposed sensor deployment strategy. A performance confirmation program implemented over a lengthy operational period allows for future evolution and development of sensors and strategies to further advance the collection of information relevant to processes important for performance of the potential repository at Yucca Mountain. The NRC

  10. Confirming the Lanchestrian linear-logarithmic model of attrition

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III.

    1990-12-01

    This paper is the fourth in a series of reports on the breakthrough research in historical validation of attrition in conflict. Significant defense policy decisions, including weapons acquisition and arms reduction, are based in part on models of conflict. Most of these models are driven by their attrition algorithms, usually forms of the Lanchester square and linear laws. None of these algorithms have been validated. The results of this paper confirm the results of earlier papers, using a large database of historical results. The homogeneous linear-logarithmic Lanchestrian attrition model is validated to the extent possible with current initial and final force size data and is consistent with the Iwo Jima data. A particular differential linear-logarithmic model is described that fits the data very well. A version of Helmbold's victory predicting parameter is also confirmed, with an associated probability function. The implications of these findings are potentially far-reaching. Two-sided daily attrition data on a large number of battles is needed to absolutely confirm these results. Such a confirmation will require that numerous computer conflict models containing square and linear law based attrition algorithms be reexamined. It is conceivable that complex mixed, heterogeneous, square plus linear law algorithms may produce the same results as a homogeneous mixed linear-logarithmic law algorithm; however, such an occurrence is by no means assured. Even without such absolute confirmation, the results of this research allow the analysis of combat data for the effects of training, weather, leadership, and other human factors, unencumbered by the force size effects.

  11. Novel ZEB2-BCL11B Fusion Gene Identified by RNA-Sequencing in Acute Myeloid Leukemia with t(2;14(q22;q32.

    Directory of Open Access Journals (Sweden)

    Synne Torkildsen

    Full Text Available RNA-sequencing of a case of acute myeloid leukemia with the bone marrow karyotype 46,XY,t(2;14(q22;q32[5]/47,XY,idem,+?4,del(6(q13q21[cp6]/46,XY[4] showed that the t(2;14 generated a ZEB2-BCL11B chimera in which exon 2 of ZEB2 (nucleotide 595 in the sequence with accession number NM_014795.3 was fused to exon 2 of BCL11B (nucleotide 554 in the sequence with accession number NM_022898.2. RT-PCR together with Sanger sequencing verified the presence of the above-mentioned fusion transcript. All functional domains of BCL11B are retained in the chimeric protein. Abnormal expression of BCL11B coding regions subjected to control by the ZEB2 promoter seems to be the leukemogenic mechanism behind the translocation.

  12. Sequencing the hypervariable regions of human mitochondrial DNA using massively parallel sequencing: Enhanced data acquisition for DNA samples encountered in forensic testing.

    Science.gov (United States)

    Davis, Carey; Peters, Dixie; Warshauer, David; King, Jonathan; Budowle, Bruce

    2015-03-01

    Mitochondrial DNA testing is a useful tool in the analysis of forensic biological evidence. In cases where nuclear DNA is damaged or limited in quantity, the higher copy number of mitochondrial genomes available in a sample can provide information about the source of a sample. Currently, Sanger-type sequencing (STS) is the primary method to develop mitochondrial DNA profiles. This method is laborious and time consuming. Massively parallel sequencing (MPS) can increase the amount of information obtained from mitochondrial DNA samples while improving turnaround time by decreasing the numbers of manipulations and more so by exploiting high throughput analyses to obtain interpretable results. In this study 18 buccal swabs, three different tissue samples from five individuals, and four bones samples from casework were sequenced at hypervariable regions I and II using STS and MPS. Sample enrichment for STS and MPS was PCR-based. Library preparation for MPS was performed using Nextera® XT DNA Sample Preparation Kit and sequencing was performed on the MiSeq™ (Illumina, Inc.). MPS yielded full concordance of base calls with STS results, and the newer methodology was able to resolve length heteroplasmy in homopolymeric regions. This study demonstrates short amplicon MPS of mitochondrial DNA is feasible, can provide information not possible with STS, and lays the groundwork for development of a whole genome sequencing strategy for degraded samples.

  13. Haplotyping and copy number estimation of the highly polymorphic human beta-defensin locus on 8p23 by 454 amplicon sequencing

    Directory of Open Access Journals (Sweden)

    Rosenstiel Philip

    2010-04-01

    Full Text Available Abstract Background The beta-defensin gene cluster (DEFB at chromosome 8p23.1 is one of the most copy number (CN variable regions of the human genome. Whereas individual DEFB CNs have been suggested as independent genetic risk factors for several diseases (e.g. psoriasis and Crohn's disease, the role of multisite sequence variations (MSV is less well understood and to date has only been reported for prostate cancer. Simultaneous assessment of MSVs and CNs can be achieved by PCR, cloning and Sanger sequencing, however, these methods are labour and cost intensive as well as prone to methodological bias introduced by bacterial cloning. Here, we demonstrate that amplicon sequencing of pooled individual PCR products by the 454 technology allows in-depth determination of MSV haplotypes and estimation of DEFB CNs in parallel. Results Six PCR products spread over ~87 kb of DEFB and harbouring 24 known MSVs were amplified from 11 DNA samples, pooled and sequenced on a Roche 454 GS FLX sequencer. From ~142,000 reads, ~120,000 haplotype calls (HC were inferred that identified 22 haplotypes ranging from 2 to 7 per amplicon. In addition to the 24 known MSVs, two additional sequence variations were detected. Minimal CNs were estimated from the ratio of HCs and compared to absolute CNs determined by alternative methods. Concordance in CNs was found for 7 samples, the CNs differed by one in 2 samples and the estimated minimal CN was half of the absolute in one sample. For 7 samples and 2 amplicons, the 454 haplotyping results were compared to those by cloning/Sanger sequencing. Intrinsic problems related to chimera formation during PCR and differences between haplotyping by 454 and cloning/Sanger sequencing are discussed. Conclusion Deep amplicon sequencing using the 454 technology yield thousands of HCs per amplicon for an affordable price and may represent an effective method for parallel haplotyping and CN estimation in small to medium-sized cohorts. The

  14. Deep sequencing analysis of phage libraries using Illumina platform.

    Science.gov (United States)

    Matochko, Wadim L; Chu, Kiki; Jin, Bingjie; Lee, Sam W; Whitesides, George M; Derda, Ratmir

    2012-09-01

    This paper presents an analysis of phage-displayed libraries of peptides using Illumina. We describe steps for the preparation of short DNA fragments for deep sequencing and MatLab software for the analysis of the results. Screening of peptide libraries displayed on the surface of bacteriophage (phage display) can be used to discover peptides that bind to any target. The key step in this discovery is the analysis of peptide sequences present in the library. This analysis is usually performed by Sanger sequencing, which is labor intensive and limited to examination of a few hundred phage clones. On the other hand, Illumina deep-sequencing technology can characterize over 10(7) reads in a single run. We applied Illumina sequencing to analyze phage libraries. Using PCR, we isolated the variable regions from M13KE phage vectors from a phage display library. The PCR primers contained (i) sequences flanking the variable region, (ii) barcodes, and (iii) variable 5'-terminal region. We used this approach to examine how diversity of peptides in phage display libraries changes as a result of amplification of libraries in bacteria. Using HiSeq single-end Illumina sequencing of these fragments, we acquired over 2×10(7) reads, 57 base pairs (bp) in length. Each read contained information about the barcode (6bp), one complimentary region (12bp) and a variable region (36bp). We applied this sequencing to a model library of 10(6) unique clones and observed that amplification enriches ∼150 clones, which dominate ∼20% of the library. Deep sequencing, for the first time, characterized the collapse of diversity in phage libraries. The results suggest that screens based on repeated amplification and small-scale sequencing identify a few binding clones and miss thousands of useful clones. The deep sequencing approach described here could identify under-represented clones in phage screens. It could also be instrumental in developing new screening strategies, which can preserve

  15. Targeted sequencing identifies a novel SH2D1A pathogenic variant in a Chinese family: Carrier screening and prenatal genetic testing

    Science.gov (United States)

    Chen, Yi-Yao; Li, Shu-Yuan; Zhang, Lan-Lan; Shen, Ying-Hua; Chang, Chun-Xin; Xiang, Yu-Qian; Huang, He-Feng; Xu, Chen-Ming

    2017-01-01

    X-linked lymphoproliferative disease type 1 (XLP1) is a rare primary immunodeficiency characterized by a clinical triad consisting of severe EBV-induced hemophagocytic lymphohistiocytosis, B-cell lymphoma, and dysgammaglobulinemia. Mutations in SH2D1A gene have been revealed as the cause of XLP1. In this study, a pregnant woman with recurrence history of birthing immunodeficiency was screened for pathogenic variant because the proband sample was unavailable. We aimed to clarify the genetic diagnosis and provide prenatal testing for the family. Next-generation sequencing (NGS)-based multigene panel was used in carrier screening of the pregnant woman. Variants of immunodeficiency related genes were analyzed and prioritized. Candidate variant was verified by using Sanger sequencing. The possible influence of the identified variant was evaluated through RNA assay. Amniocentesis, karyotyping, and Sanger sequencing were performed for prenatal testing. We identified a novel de novo frameshift SH2D1A pathogenic variant (c.251_255delTTTCA) in the pregnant carrier. Peripheral blood RNA assay indicated that the mutant transcript could escape nonsense-mediated mRNA decay (NMD) and might encode a C-terminal truncated protein. Information of the variant led to success prenatal diagnosis of the fetus. In conclusion, our study clarified the genetic diagnosis and altered disease prevention for a pregnant carrier of XLP1. PMID:28231257

  16. Illumina Production Sequencing at the DOE Joint Genome Institute - Workflow and Optimizations

    Energy Technology Data Exchange (ETDEWEB)

    Tarver, Angela; Fern, Alison; Diego, Matthew San; Kennedy, Megan; Zane, Matthew; Daum, Christopher; Hack, Christopher; Tang, Eric; Deshpande, Shweta; Cheng, Jan-Fang; Roberts, Simon; Alexandre, Melanie; Harmon-Smith, Miranda; Lucas, Susan

    2010-06-18

    The U.S. Department of Energy (DOE) Joint Genome Institute?s (JGI) Production Sequencing group is committed to the generation of high-quality genomic DNA sequence to support the DOE mission areas of renewable energy generation, global carbon management, and environmental characterization and clean-up. Within the JGI?s Production Sequencing group, the Illumina Genome Analyzer pipeline has been established as one of three sequencing platforms, along with Roche/454 and ABI/Sanger. Optimization of the Illumina pipeline has been ongoing with the aim of continual process improvement of the laboratory workflow. These process improvement projects are being led by the JGI?s Process Optimization, Sequencing Technologies, Instrumentation& Engineering, and the New Technology Production groups. Primary focus has been on improving the procedural ergonomics and the technicians? operating environment, reducing manually intensive technician operations with different tools, reducing associated production costs, and improving the overall process and generated sequence quality. The U.S. DOE JGI was established in 1997 in Walnut Creek, CA, to unite the expertise and resources of five national laboratories? Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest ? along with HudsonAlpha Institute for Biotechnology. JGI is operated by the University of California for the U.S. DOE.

  17. On the optimal trimming of high-throughput mRNA sequence data

    Directory of Open Access Journals (Sweden)

    Matthew D MacManes

    2014-01-01

    Full Text Available The widespread and rapid adoption of high-throughput sequencing technologies has afforded researchers the opportunity to gain a deep understanding of genome level processes that underlie evolutionary change, and perhaps more importantly, the links between genotype and phenotype. In particular, researchers interested in functional biology and adaptation have used these technologies to sequence mRNA transcriptomes of specific tissues, which in turn are often compared to other tissues, or other individuals with different phenotypes. While these techniques are extremely powerful, careful attention to data quality is required. In particular, because high-throughput sequencing is more error-prone than traditional Sanger sequencing, quality trimming of sequence reads should be an important step in all data processing pipelines. While several software packages for quality trimming exist, no general guidelines for the specifics of trimming have been developed. Here, using empirically derived sequence data, I provide general recommendations regarding the optimal strength of trimming, specifically in mRNA-Seq studies. Although very aggressive quality trimming is common, this study suggests that a more gentle trimming, specifically of those nucleotides whose Phred score < 2 or < 5, is optimal for most studies across a wide variety of metrics.

  18. jMOTU and Taxonerator: turning DNA Barcode sequences into annotated operational taxonomic units.

    Directory of Open Access Journals (Sweden)

    Martin Jones

    Full Text Available BACKGROUND: DNA barcoding and other DNA sequence-based techniques for investigating and estimating biodiversity require explicit methods for associating individual sequences with taxa, as it is at the taxon level that biodiversity is assessed. For many projects, the bioinformatic analyses required pose problems for laboratories whose prime expertise is not in bioinformatics. User-friendly tools are required for both clustering sequences into molecular operational taxonomic units (MOTU and for associating these MOTU with known organismal taxonomies. RESULTS: Here we present jMOTU, a Java program for the analysis of DNA barcode datasets that uses an explicit, determinate algorithm to define MOTU. We demonstrate its usefulness for both individual specimen-based Sanger sequencing surveys and bulk-environment metagenetic surveys using long-read next-generation sequencing data. jMOTU is driven through a graphical user interface, and can analyse tens of thousands of sequences in a short time on a desktop computer. A companion program, Taxonerator, that adds traditional taxonomic annotation to MOTU, is also presented. Clustering and taxonomic annotation data are stored in a relational database, and are thus amenable to subsequent data mining and web presentation. CONCLUSIONS: jMOTU efficiently and robustly identifies the molecular taxa present in survey datasets, and Taxonerator decorates the MOTU with putative identifications. jMOTU and Taxonerator are freely available from http://www.nematodes.org/.

  19. Sequencing, annotation and comparative analysis of nine BACs of giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Zheng, Yang; Cai, Jing; Li, JianWen; Li, Bo; Lin, RunMao; Tian, Feng; Wang, XiaoLing; Wang, Jun

    2010-01-01

    A 10-fold BAC library for giant panda was constructed and nine BACs were selected to generate finish sequences. These BACs could be used as a validation resource for the de novo assembly accuracy of the whole genome shotgun sequencing reads of giant panda newly generated by the Illumina GA sequencing technology. Complete sanger sequencing, assembly, annotation and comparative analysis were carried out on the selected BACs of a joint length 878 kb. Homologue search and de novo prediction methods were used to annotate genes and repeats. Twelve protein coding genes were predicted, seven of which could be functionally annotated. The seven genes have an average gene size of about 41 kb, an average coding size of about 1.2 kb and an average exon number of 6 per gene. Besides, seven tRNA genes were found. About 27 percent of the BAC sequence is composed of repeats. A phylogenetic tree was constructed using neighbor-join algorithm across five species, including giant panda, human, dog, cat and mouse, which reconfirms dog as the most related species to giant panda. Our results provide detailed sequence and structure information for new genes and repeats of giant panda, which will be helpful for further studies on the giant panda.

  20. Sequencing,annotation and comparative analysis of nine BACs of the giant panda(Ailuropoda melanoleuca)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A 10-fold BAC library for the giant panda was constructed and nine BACs were selected to generate finish sequences.These BACs could be used as a validation resource for the de novo assembly accuracy of the whole genome shotgun sequencing reads of the giant panda newly generated by Illumina GA sequencing technology.Complete Sanger sequencing,assembly,annotation and comparative analysis were carried out on the selected BACs of a joint length 878 kb.Homologue search and de novo prediction methods were used to annotate genes and repeats.Twelve protein coding genes were predicted,seven of which could be functionally annotated.The seven genes have an average gene size of about 41 kb,an average coding size of about 1.2 kb and an average exon number of 6 per gene.Besides,seven tRNA genes were found.About 27 percent of the BAC sequence is composed of repeats.A phylogenetic tree was constructed using a neighbor-join algorithm across five species,including the giant panda,human,dog,cat and mouse,which reconfirms dog as the most closely related species to the giant panda.Our results provide detailed sequence and structure information for new genes and repeats of the giant panda,which will be helpful for further studies about the giant panda.

  1. Using Next Generation RAD Sequencing to Isolate Multispecies Microsatellites for Pilosocereus (Cactaceae).

    Science.gov (United States)

    Bonatelli, Isabel A S; Carstens, Bryan C; Moraes, Evandro M

    2015-01-01

    Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.

  2. Using Next Generation RAD Sequencing to Isolate Multispecies Microsatellites for Pilosocereus (Cactaceae.

    Directory of Open Access Journals (Sweden)

    Isabel A S Bonatelli

    Full Text Available Microsatellite markers (also known as SSRs, Simple Sequence Repeats are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.

  3. Analysis of quality raw data of second generation sequencers with Quality Assessment Software

    Directory of Open Access Journals (Sweden)

    Schneider Maria PC

    2011-04-01

    Full Text Available Abstract Background Second generation technologies have advantages over Sanger; however, they have resulted in new challenges for the genome construction process, especially because of the small size of the reads, despite the high degree of coverage. Independent of the program chosen for the construction process, DNA sequences are superimposed, based on identity, to extend the reads, generating contigs; mismatches indicate a lack of homology and are not included. This process improves our confidence in the sequences that are generated. Findings We developed Quality Assessment Software, with which one can review graphs showing the distribution of quality values from the sequencing reads. This software allow us to adopt more stringent quality standards for sequence data, based on quality-graph analysis and estimated coverage after applying the quality filter, providing acceptable sequence coverage for genome construction from short reads. Conclusions Quality filtering is a fundamental step in the process of constructing genomes, as it reduces the frequency of incorrect alignments that are caused by measuring errors, which can occur during the construction process due to the size of the reads, provoking misassemblies. Application of quality filters to sequence data, using the software Quality Assessment, along with graphing analyses, provided greater precision in the definition of cutoff parameters, which increased the accuracy of genome construction.

  4. Confirming the Lanchestrian linear-logarithmic model of attrition

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III.

    1990-12-01

    This paper is the fourth in a series of reports on the breakthrough research in historical validation of attrition in conflict. Significant defense policy decisions, including weapons acquisition and arms reduction, are based in part on models of conflict. Most of these models are driven by their attrition algorithms, usually forms of the Lanchester square and linear laws. None of these algorithms have been validated. The results of this paper confirm the results of earlier papers, using a large database of historical results. The homogeneous linear-logarithmic Lanchestrian attrition model is validated to the extent possible with current initial and final force size data and is consistent with the Iwo Jima data. A particular differential linear-logarithmic model is described that fits the data very well. A version of Helmbold's victory predicting parameter is also confirmed, with an associated probability function. 37 refs., 73 figs., 68 tabs.

  5. Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Mark A.

    2013-04-25

    The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour

  6. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.

    Science.gov (United States)

    Ma, Chao; Meyers, Stephen R; Sageman, Bradley B

    2017-02-22

    Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  7. Cardiac MRI-confirmed mesalamine-induced myocarditis.

    Science.gov (United States)

    Baker, William L; Saulsberry, Whitney J; Elliott, Kaitlyn; Parker, Matthew W

    2015-09-04

    A 38-year-old Caucasian man with a medical history significant for inflammatory bowel disease (IBD) and mesalamine use presented to the emergency department with stabbing, pleuritic, substernal chest pain over the previous 2 days. Findings of leucocytosis, elevated cardiac enzymes and inflammatory markers, T-wave or ST-segment abnormalities and left ventricular systolic dysfunction suggested mesalamine-induced myocarditis. However, a cardiac MRI confirmed the diagnosis. Signs and symptoms improved within days of withdrawal of mesalamine, and initiation of corticosteroids and follow-up studies within the next year were unremarkable. Importantly, the diagnosis of mesalamine-induced myocarditis confirmed via cardiac MRI is a step rarely performed in published cases.

  8. An Anonymous Voting Scheme based on Confirmation Numbers

    Science.gov (United States)

    Alam, Kazi Md. Rokibul; Tamura, Shinsuke; Taniguchi, Shuji; Yanase, Tatsuro

    This paper proposes a new electronic voting (e-voting) scheme that fulfills all the security requirements of e-voting i.e. privacy, accuracy, universal verifiability, fairness, receipt-freeness, incoercibility, dispute-freeness, robustness, practicality and scalability; usually some of which are found to be traded. When compared with other existing schemes, this scheme requires much more simple computations and weaker assumptions about trustworthiness of individual election authorities. The key mechanism is the one that uses confirmation numbers involved in individual votes to make votes verifiable while disabling all entities including voters themselves to know the linkages between voters and their votes. Many existing e-voting schemes extensively deploy zero-knowledge proof (ZKP) to achieve verifiability. However, ZKP is expensive and complicated. The confirmation numbers attain the verifiability requirement in a much more simple and intuitive way, then the scheme becomes scalable and practical.

  9. Repeated use of request for confirmation in atypical interaction

    Science.gov (United States)

    Rasmussen, Gitte

    2016-01-01

    ABSTRACT This study investigates a specific method for making possible the participation of participants with cognitive and communicative impairments in social face-to-face interaction. Non-impaired co-participants design close-ended questions that project who the next speaker is, i.e. the impaired co-participant. The questions also project what kind of response amongst alternatives the impaired co-participant is supposed to produce. Upon answers to these questions, the non-impaired co-participant requests the impaired participant to confirm the answer twice. Using conversation analytic (CA) methods, the study scrutinises what is achieved by requesting a confirmation of the provided answer – repeatedly so. The study argues that the practice may put the (deficit) competence of the participant with impairments in focus if the initial close-ended question works to establish an understanding of a prior action by the participant with impairments. PMID:27610755

  10. Histopathology confirms white-nose syndrome in bats in Europe

    Science.gov (United States)

    Pikula, J.; Bandouchova, H.; Novotny, L.; Meteyer, C.U.; Zukal, J.; Irwin, N.R.; Zima, J.; Martinkova, N.

    2012-01-01

    White-nose syndrome, associated with the fungal skin infection geomycosis, caused regional population collapse in bats in North America. Our results, based on histopathology, show the presence of white-nose syndrome in Europe. Dermatohistopathology on two bats (Myotis myotis) found dead in March 2010 with geomycosis in the Czech Republic had characteristics resembling Geomyces destructans infection in bats confirmed with white-nose syndrome in US hibernacula. In addition, a live M. myotis, biopsied for histopathology during hibernation in April 2011, had typical fungal infection with cupping erosion and invasion of muzzle skin diagnostic for white-nose syndrome and conidiospores identical to G. destructans that were genetically confirmed as G. destructans. ?? Wildlife Disease Association 2012.

  11. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence

    Science.gov (United States)

    Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.

    2017-02-01

    Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  12. [Implantable loop recorder of the Confirm family (St. Jude Medical)].

    Science.gov (United States)

    Pujdak, Krzysztof

    2016-12-01

    St. Jude Medical produces the implantable loop recorder (ILR) Confirm AF DM2102 which offers subcutaneous electrodes on both sides of the device, a specific sensing algorithm and extensive storage capacity for up to 147 episodes. The reliability of detection of atrial fibrillation (AF) has been evaluated in the DETECT-AF study. The device is MR-conditional and allows patients an interrogation at home. The data are transferred to the follow-up centre via telephone by the patient activator, although this process is currently rather complex and slow. Therefore, remote monitoring of the Confirm AF DM2102 is rarely an option for elderly patients. St. Jude medical announced the introduction of a new, substantially smaller ILR using more modern technology by the end of 2016.

  13. Hindsight and confirmation biases in an exercise in telepathy.

    Science.gov (United States)

    Rudski, Jeffrey M

    2002-12-01

    Belief in the paranormal or claims of paranormal experiences may be, at least in part, associated with systematic cognitive biases. 48 undergraduate college students engaged in an exercise in telepathy in which the color of cards was 'sent' to them by the experimenter under two conditions. In a Hindsight-possible condition, participants recorded whether their choice was correct following the revelation of the color. In the Control condition participants committed to a particular response by writing it down before receiving feedback, thus eliminating ability to alter retrospectively what 'was known all along'. Consistent with a hindsight bias, participants performed significantly better under the Hindsight-possible condition. Moreover, a statisically significant correlation was found between paranormal belief assessed on Tobacyk's 1988 Revised Paranormal Belief Scale in the Hindsight-possible but not in the Control condition, suggesting a confirmation bias. Results are discussed in terms of interactions between hindsight and confirmation biases and how they might relate to paranormal beliefs.

  14. Earthquake Model Confirms Traffic Jams Caused by Tiredness

    CERN Document Server

    Jarai-Szabo, Ferenc

    2011-01-01

    A simple one-dimensional spring-block model elaborated for the idealized single-lane highway traffic reveals the causes for the emergence of traffic jams. Based on the stop-time statistics of one car in the row, an order parameter is defined and studied. By extensive computer simulations, the parameter space of the model is explored, analyzed and interpreted. Existence of a free a and congested flow phases is confirmed and the transition between them is analyzed.

  15. Optimization of Regression Models of Experimental Data Using Confirmation Points

    Science.gov (United States)

    Ulbrich, N.

    2010-01-01

    A new search metric is discussed that may be used to better assess the predictive capability of different math term combinations during the optimization of a regression model of experimental data. The new search metric can be determined for each tested math term combination if the given experimental data set is split into two subsets. The first subset consists of data points that are only used to determine the coefficients of the regression model. The second subset consists of confirmation points that are exclusively used to test the regression model. The new search metric value is assigned after comparing two values that describe the quality of the fit of each subset. The first value is the standard deviation of the PRESS residuals of the data points. The second value is the standard deviation of the response residuals of the confirmation points. The greater of the two values is used as the new search metric value. This choice guarantees that both standard deviations are always less or equal to the value that is used during the optimization. Experimental data from the calibration of a wind tunnel strain-gage balance is used to illustrate the application of the new search metric. The new search metric ultimately generates an optimized regression model that was already tested at regression model independent confirmation points before it is ever used to predict an unknown response from a set of regressors.

  16. Clinical confirmation of trichothecene mycotoxicosis in patient urine.

    Science.gov (United States)

    Croft, William A; Jastromski, Bonnie M; Croft, Amanda L; Peters, Henry A

    2002-07-01

    The investigations of four Cases involving mold-contaminated buildings and human reaction to exposure, documents tests of extracted urine containing trichothecene mycotoxins confirming exposure and the diagnosis of mycotoxicosis in humans. In each of four Cases, the urine demonstrated antibiotic activity, sulfuric acid charring, and protein release. Urine was extracted using ethyl acetate 40V/60V[EA]. Extracted mycotoxin spotted on (TLC) displayed color and a range of (rf) between 0.2-0.6 using various solvents. Extract was re-suspended using 50% ethanol V/V to inject mycotoxins into weanling female Sprague-Dawley rats. Degeneration and necrosis of the rat's tissue followed. Koch's Postulates conditions were fulfilled by isolation of the causative agent, the trichothecene mycotoxins and the reproduction of disease. Examination of human tissue within the urine extraction group confirms Koch's Postulates and comparative pathology confirms inhalation Mycotoxicosis, with severe necrosis of the central nervous system and severe scarring within the lungs. Extraction of mycotoxins from human patient urine is a very useful confirmatory test to demonstrate exposure and identify mycotoxicosis. Low concentrations (6%) of sodium hypochlorite were ineffective against the activity of trichothecene mycotoxin. The severity or stages of disease directly correlates the level of exposure or poisoning (Patent Pending).

  17. Method for Confirming Cytoplasmic Delivery of RNA Aptamers

    Science.gov (United States)

    Dickey, David D; Dassie, Justin P; Giangrande, Paloma H

    2016-01-01

    RNA aptamers are single-stranded RNA oligos that represent a powerful emerging technology with potential for treating numerous diseases. More recently, cell-targeted RNA aptamers have been developed for delivering RNA interference (RNAi) modulators (siRNAs and miRNAs) to specific diseased cells (e.g., cancer cells or HIV infected cells) in vitro and in vivo. However, despite initial promising reports, the broad application of this aptamer delivery technology awaits the development of methods that can verify and confirm delivery of aptamers to the cytoplasm of target cells where the RNAi machinery resides. We recently developed a functional assay (RIP assay) to confirm cellular uptake and subsequent cytoplasmic release of an RNA aptamer which binds to a cell surface receptor expressed on prostate cancer cells (PSMA). To assess cytoplasmic delivery, the aptamer was chemically conjugated to saporin, a ribosome inactivating protein toxin that is toxic to cells only when delivered to the cytoplasm (where it inhibits the ribosome) by a cell-targeting ligand (e.g., aptamer). Here, we describe the chemistry used to conjugate the aptamer to saporin and discuss a gel-based method to verify conjugation efficiency. We also detail an in vitro functional assay to confirm that the aptamer retains function following conjugation to saporin and describe a cellular assay to measure aptamer-mediated saporin-induced cytotoxicity. PMID:26472453

  18. The first case of laboratory-confirmed dengue virus infection in Mimika, Papua province, Indonesia

    Directory of Open Access Journals (Sweden)

    Agustiningsih Agustiningsih

    2016-07-01

    Full Text Available Abstrak Latar belakang: Dengue merupakan penyakit bersumber vektor yang berkontribusi cukup besar dalam menyebabkan masalah kesehatan baik di negara tropis maupun subtropis. Hingga saat ini virus dengue telah menyebar ke seluruh provinsi di Indonesia sejak pertama kali ditemukan di Surabaya pada tahun 1968. Kabupaten Mimika di propinsi Papua, Indonesia, merupakan daerah non-endemis dengue dan tidak pernah melaporkan munculnya kasus dengue. Walau begitu, pada tahun 2012 ditemukan 13 kasus tersangka dengue yang dirawat di Rumah Sakit Umum di Mimika. Studi ini bertujuan memberi gambaran karakteristik genetik virus dengue dari kasus terkonfirmasi (laboratory-confirmed pertama di kabupaten Mimika, propinsi Papua, Indonesia. Metode: Isolasi virus pada sel nyamuk C6/36, RT-PCR dan penentuan serotipe dilakukan untuk mengkonfirmasi adanya virus dengue (DENV di dalam serum pasien tersangka dengue dari kabupaten Mimika, propinsi Papua, Indonesia. Sekuensing dan analisis pohon filogenetik terhadap complete-coding sequence (CDS gen E dilakukan terhadap sampel yang telah positif DENV untuk penentuan genotipe virus. Hasil: Sebanyak 4 kasus tersangka dengue terkonfirmasi positif DENV berdasarkan pemeriksaan RT-PCR, sedangkan 2 sampel berhasil dilakukan kultur pada sel C6/36. Hasil penentuan serotipe menunjukkan bahwa virus DENV dari kabupaten Mimika, propinsi Papua, Indonesia, termasuk ke dalam serotipe DENV 3.  Analisis CDS gen E menunjukkan DENV 3 termasuk ke dalam genotipe I. Kesimpulan: Studi ini melaporkan kasus pertama dengue yang terkonfirmasi secara laboratorium dari kabupaten Mimika, propinsi Papua, Indonesia, yang merupakan daerah non-endemis dengue. Kata Kunci: dengue, penentuan serotipe, penentuan genotipe, kabupaten Mimika Abstract Background: Dengue is the most important vector-borne disease that poses serious health problem both in tropical and subtropical countries. Since the first outbreak in Surabaya in 1968, dengue infection has spread in

  19. Development of expressed sequence tag and expressed sequence tag–simple sequence repeat marker resources for Musa acuminata

    Science.gov (United States)

    Passos, Marco A. N.; de Oliveira Cruz, Viviane; Emediato, Flavia L.; de Camargo Teixeira, Cristiane; Souza, Manoel T.; Matsumoto, Takashi; Rennó Azevedo, Vânia C.; Ferreira, Claudia F.; Amorim, Edson P.; de Alencar Figueiredo, Lucio Flavio; Martins, Natalia F.; de Jesus Barbosa Cavalcante, Maria; Baurens, Franc-Christophe; da Silva, Orzenil Bonfim; Pappas, Georgios J.; Pignolet, Luc; Abadie, Catherine; Ciampi, Ana Y.; Piffanelli, Pietro; Miller, Robert N. G.

    2012-01-01

    Background and aims Banana (Musa acuminata) is a crop contributing to global food security. Many varieties lack resistance to biotic stresses, due to sterility and narrow genetic background. The objective of this study was to develop an expressed sequence tag (EST) database of transcripts expressed during compatible and incompatible banana–Mycosphaerella fijiensis (Mf) interactions. Black leaf streak disease (BLSD), caused by Mf, is a destructive disease of banana. Microsatellite markers were developed as a resource for crop improvement. Methodology cDNA libraries were constructed from in vitro-infected leaves from BLSD-resistant M. acuminata ssp. burmaniccoides Calcutta 4 (MAC4) and susceptible M. acuminata cv. Cavendish Grande Naine (MACV). Clones were 5′-end Sanger sequenced, ESTs assembled with TGICL and unigenes annotated using BLAST, Blast2GO and InterProScan. Mreps was used to screen for simple sequence repeats (SSRs), with markers evaluated for polymorphism using 20 diploid (AA) M. acuminata accessions contrasting in resistance to Mycosphaerella leaf spot diseases. Principal results A total of 9333 high-quality ESTs were obtained for MAC4 and 3964 for MACV, which assembled into 3995 unigenes. Of these, 2592 displayed homology to genes encoding proteins with known or putative function, and 266 to genes encoding proteins with unknown function. Gene ontology (GO) classification identified 543 GO terms, 2300 unigenes were assigned to EuKaryotic orthologous group categories and 312 mapped to Kyoto Encyclopedia of Genes and Genomes pathways. A total of 624 SSR loci were identified, with trinucleotide repeat motifs the most abundant in MAC4 (54.1 %) and MACV (57.6 %). Polymorphism across M. acuminata accessions was observed with 75 markers. Alleles per polymorphic locus ranged from 2 to 8, totalling 289. The polymorphism information content ranged from 0.08 to 0.81. Conclusions This EST collection offers a resource for studying functional genes, including

  20. First fungal genome sequence from Africa: A preliminary analysis

    Directory of Open Access Journals (Sweden)

    Rene Sutherland

    2012-01-01

    Full Text Available Some of the most significant breakthroughs in the biological sciences this century will emerge from the development of next generation sequencing technologies. The ease of availability of DNA sequence made possible through these new technologies has given researchers opportunities to study organisms in a manner that was not possible with Sanger sequencing. Scientists will, therefore, need to embrace genomics, as well as develop and nurture the human capacity to sequence genomes and utilise the ’tsunami‘ of data that emerge from genome sequencing. In response to these challenges, we sequenced the genome of Fusarium circinatum, a fungal pathogen of pine that causes pitch canker, a disease of great concern to the South African forestry industry. The sequencing work was conducted in South Africa, making F. circinatum the first eukaryotic organism for which the complete genome has been sequenced locally. Here we report on the process that was followed to sequence, assemble and perform a preliminary characterisation of the genome. Furthermore, details of the computer annotation and manual curation of this genome are presented. The F. circinatum genome was found to be nearly 44 million bases in size, which is similar to that of four other Fusarium genomes that have been sequenced elsewhere. The genome contains just over 15 000 open reading frames, which is less than that of the related species, Fusarium oxysporum, but more than that for Fusarium verticillioides. Amongst the various putative gene clusters identified in F. circinatum, those encoding the secondary metabolites fumosin and fusarin appeared to harbour evidence of gene translocation. It is anticipated that similar comparisons of other loci will provide insights into the genetic basis for pathogenicity of the pitch canker pathogen. Perhaps more importantly, this project has engaged a relatively large group of scientists

  1. Failure to Confirm the Macrophage Electrophoretic Mobility Test in Cancer

    Science.gov (United States)

    Forrester, J. A.; Dando, P. M.; Smith, W. J.; Turberville, C.

    1977-01-01

    A series of patients with a variety of histopathologically confirmed cancers have been examined using the MOD-MEM test as described by Pritchard et al. (1973). Despite the closest possible adherence to the experimental protocols recommended by these authors, no positive reactions to the test were observed in this series: neither were we able to demonstrate the release of a “macrophage-slowing factor” by a panel of normal donors when challenged with tubercle PPD. We conclude that the test has no present application to the diagnosis of cancer.

  2. The Problem of Confirmation in the Everett Interpretation

    CERN Document Server

    Adlam, Emily

    2015-01-01

    I argue that the Oxford school Everett interpretation is internally incoherent, because we cannot claim that in an Everettian universe the kinds of reasoning we have used to arrive at our beliefs about quantum mechanics would lead us to form true beliefs. I show that in an Everettian context, the experimental evidence that we have available could not provide empirical confirmation for quantum mechanics, and moreover that we would not even be able to establish reference to the theoretical entities of quantum mechanics. I then consider a range of existing Everettian approaches to the probability problem and show that they do not succeed in overcoming this incoherence.

  3. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation.

    Science.gov (United States)

    Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria

    2014-01-02

    Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA.

  4. Using next-generation sequencing as a genetic diagnostic tool in rare autosomal recessive neurologic Mendelian disorders.

    Science.gov (United States)

    Chen, Zhao; Wang, Jun-Ling; Tang, Bei-Sha; Sun, Zhan-Fang; Shi, Yu-Ting; Shen, Lu; Lei, Li-Fang; Wei, Xiao-Ming; Xiao, Jing-Jing; Hu, Zheng-Mao; Pan, Qian; Xia, Kun; Zhang, Qing-Yan; Dai, Mei-Zhi; Liu, Yu; Ashizawa, Tetsuo; Jiang, Hong

    2013-10-01

    Next-generation sequencing was used to investigate 9 rare Chinese pedigrees with rare autosomal recessive neurologic Mendelian disorders. Five probands with ataxia-telangectasia and 1 proband with chorea-acanthocytosis were analyzed by targeted gene sequencing. Whole-exome sequencing was used to investigate 3 affected individuals with Joubert syndrome, nemaline myopathy, or spastic ataxia Charlevoix-Saguenay type. A list of known and novel candidate variants was identified for each causative gene. All variants were genetically verified by Sanger sequencing or quantitative polymerase chain reaction with the strategy of disease segregation in related pedigrees and healthy controls. The advantages of using next-generation sequencing to diagnose rare autosomal recessive neurologic Mendelian disorders characterized by genetic and phenotypic heterogeneity are demonstrated. A genetic diagnostic strategy combining the use of targeted gene sequencing and whole-exome sequencing with the aid of next-generation sequencing platforms has shown great promise for improving the diagnosis of neurologic Mendelian disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The Swift AGN and Cluster Survey. II. Cluster Confirmation with SDSS Data

    CERN Document Server

    Griffin, Rhiannon D; Kochanek, Christopher S; Bregman, Joel N

    2015-01-01

    We study 203 extended X-ray sources in the Swift GRB fields that are located within the Sloan Digital Sky Survey (SDSS) DR8 footprint. We search for galaxy over-densities in three-dimensional space using SDSS galaxies and their photometric redshifts near the Swift cluster candidates. We find 103 Swift clusters with a >3 sigma over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in almost half of the 103 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distri...

  6. Confirmation of root-knot nematode resistant gene Rmi1 using SSR markers

    Directory of Open Access Journals (Sweden)

    Musarrat Ramzan

    2017-02-01

    Full Text Available Background: The Root Knot Nematode (RKN is a serious economic threat to various cultivated crops worldwide. It is a devastating pest of soybean and responsible to cause severe yield loss in Pakistan. The cultivation of resistant soybean varieties against this pest is the sustainable strategy to manage the heavy loss and increase yield. There is an utmost need to identify RKN resistant varieties of soybean against cultivated in Pakistan. The presented study is an attempt to identify and confirm the presence of resistant gene Rmi1 in soybean. Method: Molecular studies have been done using Simple Sequence Repeat (SSR marker system to identify resistant soybean varieties against Root Knot Nematode (RKN using fifteen (15 indigenous cultivars and four (4 US cultivars. DNA was isolated, purified, quantified and then used to employ various SSR markers. The amplified product is observed using gel documentation system after electrophoresis. Results: Diagnostic SSR markers Satt-358 and Satt-492 have shown the presence of Rmi1 gene in all resistance carrying genotypes. Satt-358 amplified the fragment of 200 bp and Satt-492 generated 232 bp bands in all resistant genotypes. This study confirmed the Rmi gene locus (G248A-1 in all internationally confirmed resistant including six (6 native varieties. Conclusion: These investigations have identified six (6 resistant cultivars revealing the effective and informative sources that can be utilized in breeding programs for the selection of RKN resistance soybean genotypes in Pakistan.

  7. Catapult current sheet relaxation model confirmed by THEMIS observations

    Science.gov (United States)

    Machida, S.; Miyashita, Y.; Ieda, A.; Nose, M.; Angelopoulos, V.; McFadden, J. P.

    2014-12-01

    In this study, we show the result of superposed epoch analysis on the THEMIS probe data during the period from November, 2007 to April, 2009 by setting the origin of time axis to the substorm onset determined by Nishimura with THEMIS all sky imager (THEMS/ASI) data (http://www.atmos.ucla.edu/~toshi/files/paper/Toshi_THEMIS_GBO_list_distribution.xls). We confirmed the presence of earthward flows which can be associated with north-south auroral streamers during the substorm growth phase. At around X = -12 Earth radii (Re), the northward magnetic field and its elevation angle decreased markedly approximately 4 min before substorm onset. A northward magnetic-field increase associated with pre-onset earthward flows was found at around X = -17Re. This variation indicates the occurrence of the local depolarization. Interestingly, in the region earthwards of X = -18Re, earthward flows in the central plasma sheet (CPS) reduced significantly about 3min before substorm onset. However, the earthward flows enhanced again at t = -60 sec in the region around X = -14 Re, and they moved toward the Earth. At t = 0, the dipolarization of the magnetic field started at X ~ -10 Re, and simultaneously the magnetic reconnection started at X ~ -20 Re. Synthesizing these results, we can confirm the validity of our catapult current sheet relaxation model.

  8. Structural confirmation of oligosaccharides newly isolated from sugar beet molasses

    Directory of Open Access Journals (Sweden)

    Abe Tatsuya

    2012-08-01

    Full Text Available Abstract Background Sugar beet molasses is a viscous by-product of the processing of sugar beets into sugar. The molasses is known to contain sucrose and raffinose, a typical trisaccharide, with a well-established structure. Although sugar beet molasses contains various other oligosaccharides as well, the structures of those oligosaccharides have not been examined in detail. The purpose of this study was isolation and structural confirmation of these other oligosaccharides found in sugar beet molasses. Results Four oligosaccharides were newly isolated from sugar beet molasses using high-performance liquid chromatography (HPLC and carbon-Celite column chromatography. Structural confirmation of the saccharides was provided by methylation analysis, matrix-assisted laser desorption/ionaization time of flight mass spectrometry (MALDI-TOF-MS, and nuclear magnetic resonance (NMR measurements. Conclusion The following oligosaccharides were identified in sugar beet molasses: β-D-galactopyranosyl-(1- > 6-β-D-fructofuranosyl-(2 1-α-D-glucopyranoside (named β-planteose, α-D-galactopyranosyl-(1- > 1-β-D-fructofuranosyl-(2 1-α-D-glucopyranoside (named1-planteose, α-D-glucopyranosyl-(1- > 6-α-D-glucopyranosyl-(1 2-β-D-fructofuranoside (theanderose, and β-D-glucopyranosyl-(1- > 3-α-D-glucopyranosyl-(1 2-β-D-fructofuranoside (laminaribiofructose. 1-planteose and laminaribiofructose were isolated from natural sources for the first time.

  9. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  10. Identification of Novel Variants in LTBP2 and PXDN Using Whole-Exome Sequencing in Developmental and Congenital Glaucoma.

    Directory of Open Access Journals (Sweden)

    Shazia Micheal

    Full Text Available Primary congenital glaucoma (PCG is the most common form of glaucoma in children. PCG occurs due to the developmental defects in the trabecular meshwork and anterior chamber of the eye. The purpose of this study is to identify the causative genetic variants in three families with developmental and primary congenital glaucoma (PCG with a recessive inheritance pattern.DNA samples were obtained from consanguineous families of Pakistani ancestry. The CYP1B1 gene was sequenced in the affected probands by conventional Sanger DNA sequencing. Whole exome sequencing (WES was performed in DNA samples of four individuals belonging to three different CYP1B1-negative families. Variants identified by WES were validated by Sanger sequencing.WES identified potentially causative novel mutations in the latent transforming growth factor beta binding protein 2 (LTBP2 gene in two PCG families. In the first family a novel missense mutation (c.4934G>A; p.Arg1645Glu co-segregates with the disease phenotype, and in the second family a novel frameshift mutation (c.4031_4032insA; p.Asp1345Glyfs*6 was identified. In a third family with developmental glaucoma a novel mutation (c.3496G>A; p.Gly1166Arg was identified in the PXDN gene, which segregates with the disease.We identified three novel mutations in glaucoma families using WES; two in the LTBP2 gene and one in the PXDN gene. The results will not only enhance our current understanding of the genetic basis of glaucoma, but may also contribute to a better understanding of the diverse phenotypic consequences caused by mutations in these genes.

  11. Discovery of a divergent HPIV4 from respiratory secretions using second and third generation metagenomic sequencing.

    Science.gov (United States)

    Alquezar-Planas, David E; Mourier, Tobias; Bruhn, Christian A W; Hansen, Anders J; Vitcetz, Sarah Nathalie; Mørk, Søren; Gorodkin, Jan; Nielsen, Hanne Abel; Guo, Yan; Sethuraman, Anand; Paxinos, Ellen E; Shan, Tongling; Delwart, Eric L; Nielsen, Lars P

    2013-01-01

    Molecular detection of viruses has been aided by high-throughput sequencing, permitting the genomic characterization of emerging strains. In this study, we comprehensively screened 500 respiratory secretions from children with upper and/or lower respiratory tract infections for viral pathogens. The viruses detected are described, including a divergent human parainfluenza virus type 4 from GS FLX pyrosequencing of 92 specimens. Complete full-genome characterization of the virus followed, using Single Molecule, Real-Time (SMRT) sequencing. Subsequent "primer walking" combined with Sanger sequencing validated the RS platform's utility in viral sequencing from complex clinical samples. Comparative genomics reveals the divergent strain clusters with the only completely sequenced HPIV4a subtype. However, it also exhibits various structural features present in one of the HPIV4b reference strains, opening questions regarding their lifecycle and evolutionary relationships among these viruses. Clinical data from patients infected with the strain, as well as viral prevalence estimates using real-time PCR, is also described.

  12. The Littorina sequence database (LSD)--an online resource for genomic data.

    Science.gov (United States)

    Canbäck, Björn; André, Carl; Galindo, Juan; Johannesson, Kerstin; Johansson, Tomas; Panova, Marina; Tunlid, Anders; Butlin, Roger

    2012-01-01

    We present an interactive, searchable expressed sequence tag database for the periwinkle snail Littorina saxatilis, an upcoming model species in evolutionary biology. The database is the result of a hybrid assembly between Sanger and 454 sequences, 1290 and 147,491 sequences respectively. Normalized and non-normalized cDNA was obtained from different ecotypes of L. saxatilis collected in the UK and Sweden. The Littorina sequence database (LSD) contains 26,537 different contigs, of which 2453 showed similarity with annotated proteins in UniProt. Querying the LSD permits the selection of the taxonomic origin of blast hits for each contig, and the search can be restricted to particular taxonomic groups. The database allows access to UniProt annotations, blast output, protein family domains (PFAM) and Gene Ontology. The database will allow users to search for genetic markers and identifying candidate genes or genes for expression analyses. It is open for additional deposition of sequence information for L. saxatilis and other species of the genus Littorina. The LSD is available at http://mbio-serv2.mbioekol.lu.se/Littorina/.

  13. Cloning and Sequence Analysis of Light Variable Region Gene of Anti-human Retinoblastoma Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Zhong; Yongping Li; Shuqi Huang; Bo Ning; Chunyan Zhang; Jianliang Zheng; Guanguang Feng

    2002-01-01

    Purpose: To clone the variable region gene of light chain of monoclonal antibody against human retinoblastoma and to analyze the characterization of its nucleotide sequence as well as amino acid sequence.Methods: Total RNA was extracted from 3C6 hybridoma cells secreting specific monoclonal antibody(McAb)against human retinoblastoma(RB), then transcripted reversely into cDNA with olig-dT primers.The variable region of the light chain (VL) gene fragments was amplified using polymeerase chain reaction(PCR) and further cloned into pGEM(R) -T Easy vector. Then, 3C6 VL cDNA was sequenced by Sanger's method.Homologous analysis was done by NCBI BLAST.Results: The complete nucleotide sequence of 3C6 VL cDNA consisted of 321 bp encoding 107 amino acid residues, containing four workframe regions(FRs)and three complementarity-determining regions (CDRs) as well as the typical structure of two cys residues. The sequence is most homological to a member of the Vk9 gene family, and its chain utilizes the Jkl gene segment.Conclusion: The light chain variable region gene of the McAb against human RB was amplified successfully , which belongs to the Vk9 gene family and utilizes Vk-Jk1 gene rearrangement. This study lays a good basis for constructing a recombinant antibody and for making a new targeted therapeutic agents against retinoblastoma.

  14. Can abundance of protists be inferred from sequence data: a case study of foraminifera.

    Directory of Open Access Journals (Sweden)

    Alexandra A-T Weber

    Full Text Available Protists are key players in microbial communities, yet our understanding of their role in ecosystem functioning is seriously impeded by difficulties in identification of protistan species and their quantification. Current microscopy-based methods used for determining the abundance of protists are tedious and often show a low taxonomic resolution. Recent development of next-generation sequencing technologies offered a very powerful tool for studying the richness of protistan communities. Still, the relationship between abundance of species and number of sequences remains subjected to various technical and biological biases. Here, we test the impact of some of these biological biases on sequence abundance of SSU rRNA gene in foraminifera. First, we quantified the rDNA copy number and rRNA expression level of three species of foraminifera by qPCR. Then, we prepared five mock communities with these species, two in equal proportions and three with one species ten times more abundant. The libraries of rDNA and cDNA of the mock communities were constructed, Sanger sequenced and the sequence abundance was calculated. The initial species proportions were compared to the raw sequence proportions as well as to the sequence abundance normalized by rDNA copy number and rRNA expression level per species. Our results showed that without normalization, all sequence data differed significantly from the initial proportions. After normalization, the congruence between the number of sequences and number of specimens was much better. We conclude that without normalization, species abundance determination based on sequence data was not possible because of the effect of biological biases. Nevertheless, by taking into account the variation of rDNA copy number and rRNA expression level we were able to infer species abundance, suggesting that our approach can be successful in controlled conditions.

  15. Successful Recovery of Nuclear Protein-Coding Genes from Small Insects in Museums Using Illumina Sequencing.

    Science.gov (United States)

    Kanda, Kojun; Pflug, James M; Sproul, John S; Dasenko, Mark A; Maddison, David R

    2015-01-01

    In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles

  16. Visible periodicity of strong nucleosome DNA sequences.

    Science.gov (United States)

    Salih, Bilal; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Fifteen years ago, Lowary and Widom assembled nucleosomes on synthetic random sequence DNA molecules, selected the strongest nucleosomes and discovered that the TA dinucleotides in these strong nucleosome sequences often appear at 10-11 bases from one another or at distances which are multiples of this period. We repeated this experiment computationally, on large ensembles of natural genomic sequences, by selecting the strongest nucleosomes--i.e. those with such distances between like-named dinucleotides, multiples of 10.4 bases, the structural and sequence period of nucleosome DNA. The analysis confirmed the periodicity of TA dinucleotides in the strong nucleosomes, and revealed as well other periodic sequence elements, notably classical AA and TT dinucleotides. The matrices of DNA bendability and their simple linear forms--nucleosome positioning motifs--are calculated from the strong nucleosome DNA sequences. The motifs are in full accord with nucleosome positioning sequences derived earlier, thus confirming that the new technique, indeed, detects strong nucleosomes. Species- and isochore-specific variations of the matrices and of the positioning motifs are demonstrated. The strong nucleosome DNA sequences manifest the highest hitherto nucleosome positioning sequence signals, showing the dinucleotide periodicities in directly observable rather than in hidden form.

  17. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    Science.gov (United States)

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

  18. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    Science.gov (United States)

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

  19. Confirmation of artificial endophyte inoculation in maize and tomato by scanning electron microscopy and PCR amplification in it sequences

    Science.gov (United States)

    Demand for drought tolerant plants is increasing because of water shortages and water quality. Many plant-microbe symbioses have been shown to increase drought resistance in multiple crops with few to no negative effects. Novel, artificially created plant-microbe crosses are being sought to increa...

  20. Evaluation of GS Junior and MiSeq next-generation sequencing technologies as an alternative to Trugene population sequencing in the clinical HIV laboratory.

    Science.gov (United States)

    Ram, Daniela; Leshkowitz, Dena; Gonzalez, Dimitri; Forer, Relly; Levy, Itzchak; Chowers, Michal; Lorber, Margalit; Hindiyeh, Musa; Mendelson, Ella; Mor, Orna

    2015-02-01

    Population HIV-1 sequencing is currently the method of choice for the identification and follow-up of HIV-1 antiretroviral drug resistance. It has limited sensitivity and results in a consensus sequence showing the most prevalent nucleotide per position. Moreover concomitant sequencing and interpretation of the results for several samples together is laborious and time consuming. In this study, the practical use of GS Junior and MiSeq bench-top next generation sequencing (NGS) platforms as an alternative to Trugene Sanger-based population sequencing in the clinical HIV laboratory was assessed. DeepChek(®)-HIV TherapyEdge software was used for processing all the protease and reverse transcriptase sequences and for resistance interpretation. Plasma samples from nine HIV-1 carriers, representing the major HIV-1 subtypes in Israel, were compared. The total number of amino acid substitutions identified in the nine samples by GS Junior (232 substitutions) and MiSeq (243 substitutions) was similar and higher than Trugene (181 substitutions), emphasizing the advantage of deep sequencing on population sequencing. More than 80% of the identified substitutions were identical between the GS Junior and MiSeq platforms, most of which (184 of 199) at similar frequency. Low abundance substitutions accounted for 20.9% of the MiSeq and 21.9% of the GS Junior output, the majority of which were not detected by Trugene. More drug resistance mutations were identified by both the NGS platforms, primarily, but not only, at low abundance. In conclusion, in combination with DeepChek, both GS Junior and MiSeq were found to be more sensitive than Trugene and adequate for HIV-1 resistance analysis in the clinical HIV laboratory.

  1. Comparison of high-resolution melting analysis with direct sequencing for the detection of recurrent mutations in DNA methyltransferase 3A and isocitrate dehydrogenase 1 and 2 genes in acute myeloid leukemia patients.

    Science.gov (United States)

    Gorniak, Patryk; Ejduk, Anna; Borg, Katarzyna; Makuch-Lasica, Hanna; Nowak, Grazyna; Lech-Maranda, Ewa; Prochorec-Sobieszek, Monika; Warzocha, Krzysztof; Juszczynski, Przemyslaw

    2016-02-01

    Acute myeloid leukemia (AML) cells harbor frequent mutations in genes responsible for epigenetic modifications. Increasing evidence of clinical role of DNMT3A and IDH1/2 mutations highlights the need for a robust and inexpensive test to identify these mutations in routine diagnostic work-up. Herein, we compared routinely used direct sequencing method with high-resolution melting (HRM) assay for screening DNMT3A and IDH1/2 mutations in patients with AML. We show very high concordance between HRM and Sanger sequencing (100% samples for IDH2-R140 and DNMT3-R882 mutations, 99% samples for IDH1-R132 and IDH2-R172 mutations). HRM method reported no false-negative results, suggesting that it can be used for mutations screening. Moreover, HRM displayed much higher sensitivity in comparison with DNA sequencing in all assessed loci. With Sanger sequencing, robust calls were observed when the sample contained 50% of mutant DNA in the background of wild-type DNA. In marked contrast, the detection limit of HRM improved down to 10% of mutated DNA. Given the ubiquitous presence of wild-type DNA background in bone marrow aspirates and clonal variations regarding mutant allele burden, these results favor HRM as a sensitive, specific, labor-, and cost-effective tool for screening and detection of mutations in IDH1/2 and DNMT3A genes in patients with AML.

  2. Confirmation of the Y(4260) Resonance Production in ISR

    CERN Document Server

    He, Q; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Coan, T E; Gao, Y S; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Chen, J; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Patel, R; Potlia, V; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z V; Seth, K K; Tomaradze, A G; Ernst, J; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; Li, Z; López, A; Mehrabyan, S S; Méndez, H; Ramírez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; al., et

    2006-01-01

    Using 13.3 fb^-1 of e+e- collision data taken in the Upsilon(1S-4S) region with the CLEO III detector at the CESR collider, a search has been made for the new resonance Y(4260) recently reported by the BaBar Collaboration. The production of Y(4260) in initial state radiation (ISR), and its decay into pi+pi-J/psi are confirmed. A good quality fit to our data is obtained with a single resonance. We determine M(Y(4260))=(4284+17-16(stat)+-4(syst)) MeV/c^2, Gamma(Y(4260))=(73+39-25(stat)+-5(syst)) MeV/c^2, and Gamma_ee(Y(4260))xBr(Y(4260)->pi+pi-J/psi)=(8.9+3.9-3.1(stat)+-1.9(syst)) eV/c^2.

  3. Improved statistical confirmation of margins for setpoints and transients

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.T. [Framatome ANP Richland, INC., WA (United States)

    2001-07-01

    Framatome ANP Richland, Inc. has developed an integrated, automated, statistical methodology for Pressurized Water Reactors (PWRs). Margins for transients and calculated trips are confirmed using several new applications of probability theory. The methods used for combining statistics reduces the conservatisms inherent in conventional methods and avoids the numerical limitations and time constraints imposed by Monte Carlo techniques. The new methodology represents the state of the art in the treatment of uncertainties for reactor protection systems. It all but eliminates concerns with the calculated trips for PWRs and by improving the margin for all transients will allow for far more aggressive peaking limits and fuel management schemes. The automated nature of the bulk of this process saves Framatome ANP time and effort, minimizes the potential for errors and makes the analysis for all cycles and plants consistent. The enhanced margins remove analytical limitations from the customer and allow for more economical operation of the plant. (authors)

  4. Model-independent confirmation of the $Z(4430)^-$ state

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jezabek, Marek; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spinella, Franco; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-01-01

    The decay $B^0\\to \\psi(2S) K^+\\pi^-$ is analyzed using $\\rm 3~fb^{-1}$ of $pp$ collision data collected with the LHCb detector. A model-independent description of the $\\psi(2S) \\pi$ mass spectrum is obtained, using as input the $K\\pi$ mass spectrum and angular distribution derived directly from data, without requiring a theoretical description of resonance shapes or their interference. The hypothesis that the $\\psi(2S)\\pi$ mass spectrum can be described in terms of $K\\pi$ reflections alone is rejected with more than 8$\\sigma$ significance. This provides confirmation, in a model-independent way, of the need for an additional resonant component in the mass region of the $Z(4430)^-$ exotic state.

  5. The first confirmed case of Diphyllobothrium latum in Brazil

    Directory of Open Access Journals (Sweden)

    FLN Santos

    2005-10-01

    Full Text Available Diphyllobothriasis is an infection of the small intestine by the broad tapeworm Diphyllobothrium sp. The associated symptomatology is nonspecific, but megaloblastic anemia is a well-described complication. Although the infection is common in temperate regions, descriptions in South America have so far been limited to Chile, Peru, and a few cases in Argentina. This paper presents the first confirmed Brazilian case of diphyllobothriasis. A 29-years-old woman living in Salvador (state of Bahia apparently acquired the infection from eating sushi. The diagnosis was based on fecal examination that revealed a large quantity of operculated eggs. A single dose of praziquantel (600 mg was sufficient to cure the infection.

  6. A Photometrically and Spectroscopically Confirmed Population of Passive Spiral Galaxies

    CERN Document Server

    Fraser-McKelvie, Amelia; Pimbblet, Kevin A; Dolley, Tim; Crossett, Jacob P; Bonne, Nicolas J

    2016-01-01

    We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z<0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph (WiFeS) to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000\\AA\\ breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and IFU spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.

  7. Exploring nurses' confirmed expectations regarding health IT: a phenomenological study.

    Science.gov (United States)

    Zadvinskis, Inga M; Chipps, Esther; Yen, Po-Yin

    2014-02-01

    Health information technology (IT) benefits both patients and providers with respect to health care quality and perceived usefulness. Although existing research provides a preliminary understanding of nurses' perception of health IT, perceptions do not guide actions. This phenomenological study explored nurses' perceptions regarding electronic health records and bar code medication administration four months post implementation on a medical-surgical unit in an academic medical center. Ten staff nurses (8 females and 2 males) participated. We categorized the results into five themes from personal-level to organizational-level confirmed expectations: (1) nurses' interaction with computer, (2) nursing performance regarding task accomplishment, (3) unit-specific teamwork, (4) interdisciplinary teamwork, and (5) quality of care. We discovered that effective health IT must be congruent with nursing expectations. IT professionals, nursing and organizational leaders may use findings to structure an environment supportive of effective health IT in nursing practice.

  8. Capabilities for identification and confirmation of bacterial biological agents

    Directory of Open Access Journals (Sweden)

    Diana M. Popescu

    2016-12-01

    Full Text Available Military Medical Service is able for detection, identification and confirmation of biological agents; it is part of medical protection against CBRN weapons. We are specialized capabilities for in vitro tests, under construction, the maximum containment laboratory designed for work with Risk Group Microorganisms. An efficient primary containment system must be in place, consisting of one or a combination of the following: Class III safety cabinet laboratory, passage of two doors, suit laboratory, controlled access, controlled air system. Negative pressure in the facility, supply and exhaust air must be HEPA-filtered, decontamination of effluents, sterilization of waste and materials, airlock entry ports for specimens, materials and animals must be provided etc. Complementary is an Animal facility for in vivo tests. This is suitable for work with animals that are deliberately inoculated with microorganisms in Risk Group.

  9. Experimenter Confirmation Bias and the Correction of Science Misconceptions

    Science.gov (United States)

    Allen, Michael; Coole, Hilary

    2012-06-01

    This paper describes a randomised educational experiment ( n = 47) that examined two different teaching methods and compared their effectiveness at correcting one science misconception using a sample of trainee primary school teachers. The treatment was designed to promote engagement with the scientific concept by eliciting emotional responses from learners that were triggered by their own confirmation biases. The treatment group showed superior learning gains to control at post-test immediately after the lesson, although benefits had dissipated after 6 weeks. Findings are discussed with reference to the conceptual change paradigm and to the importance of feeling emotion during a learning experience, having implications for the teaching of pedagogies to adults that have been previously shown to be successful with children.

  10. Confirmation of prenatal diagnosis of sex chromosome mosaicism.

    Science.gov (United States)

    McFadden, D E; Kalousek, D K

    1989-04-01

    Prenatal diagnosis of mosaicism causes problems in interpretation and in genetic counselling. Part of the difficulty with any prenatal diagnosis of mosaicism is interpretation of results without knowing the exact origin, embryonic or extraembryonic, of the abnormal cell line. To confuse the issue in cases of prenatal diagnosis of 45,X/46,XY mosaicism is the recent demonstration that a diagnosis of 45,X/46,XY made prenatally is not necessarily associated with the same phenotype as when diagnosed postnatally. We present two cases of prenatal diagnosis of sex chromosome mosaicism (45,X/46,XY and 45,X/47,XYY). Posttermination examination of the phenotypically normal male fetuses and their placentas established that the placenta was the most likely source of the 45,X cell line. An approach to confirming the prenatal diagnosis of sex chromosome mosaicism and establishing its origin utilizing detailed cytogenetic examination of both fetus and placenta is suggested.

  11. Validity of quasilinear theory: refutations and new numerical confirmation

    Energy Technology Data Exchange (ETDEWEB)

    Besse, Nicolas; Bertrand, Pierre [UMR 7198 CNRS-Nancy Universites, Universite Henri Poincare, Bd des Aiguillettes, BP 70239, FR-54506 Vandoeuvre-les-Nancy Cedex (France); Elskens, Yves; Escande, D F, E-mail: nicolas.besse@iecn.u-nancy.fr, E-mail: yves.elskens@univ-provence.fr, E-mail: dominique.escande@univ-provence.fr [UMR 6633 CNRS-Universite de Provence, Faculte de St Jerome, Case 321, Av. Normandie Niemen, FR-13397 Marseille Cedex 20 (France)

    2011-02-15

    The validity of quasilinear (QL) theory describing the weak warm beam-plasma instability has been a controversial topic for several decades. This issue is tackled anew, both analytically and by numerical simulations which benefit from the power of modern computers and from the development in the last decade of Vlasov codes endowed with both accuracy and weak numerical diffusion. Self-consistent numerical simulations within the Vlasov-wave description show that QL theory remains valid in the strong chaotic diffusion regime. However, there is a non-QL regime before saturation, which confirms previous analytical work and numerical simulation, but contradicts another analytical work. We show analytically the absence of mode coupling in the saturation regime of the instability where a plateau is present in the tail of the particle distribution function. This invalidates several analytical works trying to prove or to contradict the validity of QL theory in the strongly nonlinear regime of the weak warm beam-plasma instability.

  12. Confirmation of some formulas related to spin coherence time

    CERN Document Server

    Orlov, Yuri

    2015-01-01

    This paper considers two sets of formulas related to a Spin Coherence Time (SCT) case with only vertical oscillations in a purely electric ring, the first derived by the author for the field index m > 0 and the second by Ivan Koop for the field index m = 0. I argue that a continuous transition can exist from one set to the other (contrary to appearances), and assume that a necessary condition for the transition is that both sets of formulas follow from the same equation. I demonstrate that they do follow when one takes into account that the first set of formulas holds only for times much larger than the period of the vertical oscillations. This demonstration confirms the correctness of the formulas and the equation.

  13. Neuroimaging findings in children with retinopathy-confirmed cerebral malaria

    Energy Technology Data Exchange (ETDEWEB)

    Potchen, Michael J. [Michigan State University, Department of Radiology, 184 Radiology Building, East Lansing, MI 48824-1303 (United States)], E-mail: mjp@rad.msu.edu; Birbeck, Gretchen L. [Michigan State University, International Neurologic and Psychiatric Epidemiology Program, 324 West Fee Hall, East Lansing, MI 48824 (United States)], E-mail: Gretchen.Birbeck@ht.msu.edu; DeMarco, J. Kevin [Michigan State University, Department of Radiology, 184 Radiology Building, East Lansing, MI 48824-1303 (United States)], E-mail: jkd@rad.msu.edu; Kampondeni, Sam D. [University of Malawi, Department of Radiology, Queen Elizabeth Central Hospital, Blantyre (Malawi)], E-mail: kamponde@msu.edu; Beare, Nicholas [St. Paul' s Eye Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP (United Kingdom)], E-mail: nbeare@btinternet.com; Molyneux, Malcolm E. [Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine (Malawi); School of Tropical Medicine, University of Liverpool, Liverpool (United Kingdom)], E-mail: mmolyneux999@google.com; Taylor, Terrie E. [Michigan State University, College of Osteopathic Medicine, B309-B West Fee Hall, East Lansing, MI 48824 (United States); University of Malawi, College of Medicine, Blantyre Malaria Project, Blantyre (Malawi)], E-mail: taylort@msu.edu

    2010-04-15

    Purpose: To describe brain CT findings in retinopathy-confirmed, paediatric cerebral malaria. Materials and methods: In this outcomes study of paediatric cerebral malaria, a subset of children with protracted coma during initial presentation was scanned acutely. Survivors experiencing adverse neurological outcomes also underwent a head CT. All children had ophthalmological examination to confirm the presence of the retinopathy specific for cerebral malaria. Independent interpretation of CT images was provided by two neuroradiologists. Results: Acute brain CT findings in three children included diffuse oedema with obstructive hydrocephalus (2), acute cerebral infarctions in multiple large vessel distributions with secondary oedema and herniation (1), and oedema of thalamic grey matter (1). One child who was reportedly normal prior to admission had parenchymal atrophy suggestive of pre-existing CNS injury. Among 56 survivors (9-84 months old), 15 had adverse neurologic outcomes-11/15 had a follow-up head CT, 3/15 died and 1/15 refused CT. Follow-up head CTs obtained 7-18 months after the acute infection revealed focal and multifocal lobar atrophy correlating to regions affected by focal seizures during the acute infection (5/11). Other findings were communicating hydrocephalus (2/11), vermian atrophy (1/11) and normal studies (3/11). Conclusions: The identification of pre-existing imaging abnormalities in acute cerebral malaria suggests that population-based studies are required to establish the rate and nature of incidental imaging abnormalities in Malawi. Children with focal seizures during acute cerebral malaria developed focal cortical atrophy in these regions at follow-up. Longitudinal studies are needed to further elucidate mechanisms of CNS injury and death in this common fatal disease.

  14. Utility of a next-generation sequencing-based gene panel investigation in German patients with genetically unclassified limb-girdle muscular dystrophy.

    Science.gov (United States)

    Kuhn, Marius; Gläser, Dieter; Joshi, Pushpa Raj; Zierz, Stephan; Wenninger, Stephan; Schoser, Benedikt; Deschauer, Marcus

    2016-04-01

    Limb-girdle muscular dystrophies (LGMDs) are genetically heterogeneous and the diagnostic work-up including conventional genetic testing using Sanger sequencing remains complex and often unsatisfactory. We performed targeted sequencing of 23 LGMD-related genes and 15 genes in which alterations result in a similar phenotype in 58 patients with genetically unclassified LGMDs. A genetic diagnosis was possible in 19 of 58 patients (33 %). LGMD2A was the most common form, followed by LGMD2L and LGMD2I. In two patients, pathogenic mutations were identified in genes that are not classified as LGMD genes (glycogen branching enzyme and valosin-containing protein). Thus, a focused next-generation sequencing-based gene panel is a rather satisfactory tool for the diagnosis in unclassified LGMDs.

  15. THE SWIFT AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Rhiannon D.; Dai, Xinyu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Kochanek, Christopher S. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Bregman, Joel N., E-mail: Rhiannon.D.Griffin-1@ou.edu, E-mail: xdai@ou.edu, E-mail: ckochanek@astronomy.ohio-state.edu, E-mail: jbregman@umich.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-01-15

    We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ∼85% of the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev–Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections.

  16. Classifying Genomic Sequences by Sequence Feature Analysis

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Liu; Dian Jiao; Xiao Sun

    2005-01-01

    Traditional sequence analysis depends on sequence alignment. In this study, we analyzed various functional regions of the human genome based on sequence features, including word frequency, dinucleotide relative abundance, and base-base correlation. We analyzed the human chromosome 22 and classified the upstream,exon, intron, downstream, and intergenic regions by principal component analysis and discriminant analysis of these features. The results show that we could classify the functional regions of genome based on sequence feature and discriminant analysis.

  17. Main: Sequences [KOME

    Lifescience Database Archive (English)

    Full Text Available Sequences Amino Acid Sequence Amino Acid sequence of full length cDNA (Longest ORF) kome_ine_full_seq...uence_amino_db.fasta.zip kome_ine_full_sequence_amino_db.zip kome_ine_full_sequence_amino_db ...

  18. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  19. Application of next-generation sequencing in detection of mutation gene in a Chinese pedigree with congenital cataract%第二代测序技术在一中国先天性白内障家系致病基因检测中的应用

    Institute of Scientific and Technical Information of China (English)

    肖海; 张卉; 李涛; 吴东; 张朝阳; 时伟丽; 秦利涛; 廖世秀

    2015-01-01

    Background Due to the genetic heterogeneity of many diseases,the Sanger sequencing technology is far from satisfying the needs of scientific research and clinical applications.The next-generation sequencing (NGS) technology is being widely used in relevant studies because of its lower cost and much higher throughput.Objective This study was to explore the feasibility of NGS technology for the detection of genetic cause of congenital cataract.Methods A Chinese congenital cataract pedigree was collected from Luoyang city in Medical Genetic Institute of Henan Province in January,2013.The peripheral blood of 2 ml was obtained from each 3 patients with congenital cataract (Ⅱ 2,Ⅲ 3,Ⅲ 4) and 3 subjects with normal phenotype (Ⅱ 3,Ⅲ 1,Ⅲ 2) in this pedigree respectively using EDTA anticoagulant tube.The mutant gene of proband was detected by NGS,and the result was verified by Sanger sequencing.Sanger sequencing was employed to determine the mutation sites of other subjects in this pedigree and further to perform the prenatal diagnosis.The research followed the Declaration of Helsinki,and the protocol was approved by the Medical Ethics Committee of Henan Provincial People's Hospital.Written informed consent was obtained from each subject prior to any medical examination.Results Total 5 patients were found in 14 family members of 4 generations in this pedigree,including 2 males and 3 females in generation of Ⅰ,Ⅱ,Ⅲ,and the other family members showed normal phenotype,which followed autosomal dominant inheritance pattern.NGS revealed that the proband occurred a heterozygous mutation of c.682 (p.S228P) in the exon 6 of CRYYB1 gene,and the outcome was further confirmed by Sanger sequencing.In addition,this heterozygous mutant gene was also found in other patients of this pedigree.However,the genotype of c.682 in the exon 6 of CRYYB1 gene was T/T wild type in the subjects with normal phenotype in this pedigree.The genotype of CRYYB1 gene was T/T wild type in the

  20. De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley

    Directory of Open Access Journals (Sweden)

    Scholz Uwe

    2009-11-01

    Full Text Available Abstract Background De novo sequencing the entire genome of a large complex plant genome like the one of barley (Hordeum vulgare L. is a major challenge both in terms of experimental feasibility and costs. The emergence and breathtaking progress of next generation sequencing technologies has put this goal into focus and a clone based strategy combined with the 454/Roche technology is conceivable. Results To test the feasibility, we sequenced 91 barcoded, pooled, gene containing barley BACs using the GS FLX platform and assembled the sequences under iterative change of parameters. The BAC assemblies were characterized by N50 of ~50 kb (N80 ~31 kb, N90 ~21 kb and a Q40 of 94%. For ~80% of the clones, the best assemblies consisted of less than 10 contigs at 24-fold mean sequence coverage. Moreover we show that gene containing regions seem to assemble completely and uninterrupted thus making the approach suitable for detecting complete and positionally anchored genes. By comparing the assemblies of four clones to their complete reference sequences generated by the Sanger method, we evaluated the distribution, quality and representativeness of the 454 sequences as well as the consistency and reliability of the assemblies. Conclusion The described multiplex 454 sequencing of barcoded BACs leads to sequence consensi highly representative for the clones. Assemblies are correct for the majority of contigs. Though the resolution of complex repetitive structures requires additional experimental efforts, our approach paves the way for a clone based strategy of sequencing the barley genome.

  1. Sequence-dependent nucleosome positioning.

    Science.gov (United States)

    Chung, Ho-Ryun; Vingron, Martin

    2009-03-13

    Eukaryotic DNA is organized into a macromolecular structure called chromatin. The basic repeating unit of chromatin is the nucleosome, which consists of two copies of each of the four core histones and DNA. The nucleosomal organization and the positions of nucleosomes have profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is therefore of general interest. Among the many determinants of nucleosome positioning, the DNA sequence has been proposed to have a major role. Here, we analyzed more than 860,000 nucleosomal DNA sequences to identify sequence features that guide the formation of nucleosomes in vivo. We found that both a periodic enrichment of AT base pairs and an out-of-phase oscillating enrichment of GC base pairs as well as the overall preference for GC base pairs are determinants of nucleosome positioning. The preference for GC pairs can be related to a lower energetic cost required for deformation of the DNA to wrap around the histones. In line with this idea, we found that only incorporation of both signal components into a sequence model for nucleosome formation results in maximal predictive performance on a genome-wide scale. In this manner, one achieves greater predictive power than published approaches. Our results confirm the hypothesis that the DNA sequence has a major role in nucleosome positioning in vivo.

  2. Brucella microti: the genome sequence of an emerging pathogen

    Directory of Open Access Journals (Sweden)

    Scholz Holger C

    2009-08-01

    Full Text Available Abstract Background Using a combination of pyrosequencing and conventional Sanger sequencing, the complete genome sequence of the recently described novel Brucella species, Brucella microti, was determined. B. microti is a member of the genus Brucella within the Alphaproteobacteria, which consists of medically important highly pathogenic facultative intracellular bacteria. In contrast to all other Brucella species, B. microti is a fast growing and biochemically very active microorganism with a phenotype more similar to that of Ochrobactrum, a facultative human pathogen. The atypical phenotype of B. microti prompted us to look for genomic differences compared to other Brucella species and to look for similarities with Ochrobactrum. Results The genome is composed of two circular chromosomes of 2,117,050 and 1,220,319 base pairs. Unexpectedly, we found that the genome sequence of B. microti is almost identical to that of Brucella suis 1330 with an overall sequence identity of 99.84% in aligned regions. The most significant structural difference between the two genomes is a bacteriophage-related 11,742 base pairs insert only present in B. microti. However, this insert is unlikely to have any phenotypical consequence. Only four protein coding genes are shared between B. microti and Ochrobactrum anthropi but impaired in other sequenced Brucella. The most noticeable difference between B. microti and other Brucella species was found in the sequence of the 23S ribosomal RNA gene. This unusual variation could have pleiotropic effects and explain the fast growth of B. microti. Conclusion Contrary to expectations from the phenotypic analysis, the genome sequence of B. microti is highly similar to that of known Brucella species, and is remotely related to the one of O. anthropi. How the few differences in gene content between B. microti and B. suis 1330 could result in vastly different phenotypes remains to be elucidated. This unexpected finding will

  3. Managing a duopolistic water market with confirmed proposals. An experiment

    Directory of Open Access Journals (Sweden)

    García-Gallego, Aurora

    2012-03-01

    Full Text Available We report results from experimental water markets in which owners of two different sources of water supply water to households and farmers. The final water quality consumed by each type of consumer is determined through mixing of qualities from two different resources. We compare the standard duopolistic market structure with an alternative market clearing mechanism inspired by games with confirmed strategies (which have been shown to yield collusive outcomes. As in the static case, complex dynamic markets operating under a confirmed proposals protocol yield less efficient outcomes because coordination among independent suppliers has the usual effects of restricting output and increasing prices to the users. Our results suggest that, when market mechanisms are used to allocate water to its users, the rule of thumb used by competition authorities can also serve as a guide towards water market regulation.

    Se presentan resultados de un experimento con mercados acuíferos en el que los propietarios de agua de distinta calidad la ofrecen a hogares y agricultores. La calidad finalmente consumida por cada tipo de consumidor se determina a partir de una mezcla de las dos calidades. Se compara el duopolio estándar con una forma alternativa de cerrar el mercado que está inspirada en los juegos con propuestas confirmadas, que consiguen resultados relativamente más colusivos. Como en el caso estático, los mercados dinámicos y complejos que operan bajo un protocolo de propuestas confirmadas son menos eficientes porque la coordinación entre oferentes independientes tiene los efectos de restringir el output y de provocar un crecimiento de los precios. Nuestros resultados sugieren que cuando los mecanismos de mercado se utilizan para distribuir el agua a sus usuarios, la regla utilizada por parte de las autoridades de la competencia puede servir también como guía para la regulación de los mercados acuíferos.

  4. Characterization of a transcriptome from a non-model organism, Cladonia rangiferina, the grey reindeer lichen, using high-throughput next generation sequencing and EST sequence data.

    Science.gov (United States)

    Junttila, Sini; Rudd, Stephen

    2012-10-30

    Lichens are symbiotic organisms that have a remarkable ability to survive in some of the most extreme terrestrial climates on earth. Lichens can endure frequent desiccation and wetting cycles and are able to survive in a dehydrated molecular dormant state for decades at a time. Genetic resources have been established in lichen species for the study of molecular systematics and their taxonomic classification. No lichen species have been characterised yet using genomics and the molecular mechanisms underlying the lichen symbiosis and the fundamentals of desiccation tolerance remain undescribed. We report the characterisation of a transcriptome of the grey reindeer lichen, Cladonia rangiferina, using high-throughput next-generation transcriptome sequencing and traditional Sanger EST sequencing data. Altogether 243,729 high quality sequence reads were de novo assembled into 16,204 contigs and 49,587 singletons. The genome of origin for the sequences produced was predicted using Eclat with sequences derived from the axenically grown symbiotic partners used as training sequences for the classification model. 62.8% of the sequences were classified as being of fungal origin while the remaining 37.2% were predicted as being of algal origin. The assembled sequences were annotated by BLASTX comparison against a non-redundant protein sequence database with 34.4% of the sequences having a BLAST match. 29.3% of the sequences had a Gene Ontology term match and 27.9% of the sequences had a domain or structural match following an InterPro search. 60 KEGG pathways with more than 10 associated sequences were identified. Our results present a first transcriptome sequencing and de novo assembly for a lichen species and describe the ongoing molecular processes and the most active pathways in C. rangiferina. This brings a meaningful contribution to publicly available lichen sequence information. These data provide a first glimpse into the molecular nature of the lichen symbiosis and

  5. Characterization of a transcriptome from a non-model organism, Cladonia rangiferina, the grey reindeer lichen, using high-throughput next generation sequencing and EST sequence data

    Directory of Open Access Journals (Sweden)

    Junttila Sini

    2012-10-01