WorldWideScience

Sample records for sandy-clay loam soil

  1. Assessment of structural stability of a degraded sandy clay loam soil ...

    African Journals Online (AJOL)

    The effects of bare, two legumes and four grasses cover treatments on the structural stability of a sandy clay loam Ultisol were studied within a two year period. The experiment was of a randomised complete block design with seven treatments. The legume treatments were Centrosema pubescens (Ce) and Pueraria ...

  2. Empirical Models for Power and Energy Requirements II : A Powered Implement Operation in Serdang Sandy Clay Loam, Malaysia

    Directory of Open Access Journals (Sweden)

    A. F. Kheiralla

    2017-12-01

    Full Text Available Power and energy requirements were measured with an instrumented tractor for rotary tilling in Serdang sandy clay loam soil.  The effects of travel speed and rotor speed upon the measured data were investigated.  Power model from orthogonal regression analysis was formulated based on linear and quadratic functions of travel speed and bite length.  Fuel consumption model from regression analysis was formulated based on linear tractor PTO power as well as linear equivalent tractor PTO power.  Fuel consumption rates predicted by ASAE D497.3 were found to be 25% to 28% overestimates of the values predicted by the model developed.  However, fuel consumption rates reported by OECD Tractor Test were found to be 1% to 9% lower than the fuel consumption rates predicted by the model developed.  A comparison of power and energy requirements for both powered and draught implements showed that the disk harrow was the most energy efficient implement in terms of fuel consumption and specific energy followed by the rotary tiller, disk plough and mouldboard.  Finally, average PTO power, fuel consumption, wheel slip, wheel power and specific energy for a powered implement are presented.

  3. Effects of leachate on geotechnical characteristics of sandy clay soil

    Science.gov (United States)

    Harun, N. S.; Ali, Z. Rahman; Rahim, A. S.; Lihan, T.; Idris, R. M. W.

    2013-11-01

    Leachate is a hazardous liquid that poses negative impacts if leaks out into environments such as soil and ground water systems. The impact of leachate on the downgraded quality in terms of chemical characteristic is more concern rather than the physical or mechanical aspect. The effect of leachate on mechanical behaviour of contaminated soil is not well established and should be investigated. This paper presents the preliminary results of the effects of leachate on the Atterberg limit, compaction and shear strength of leachate-contaminated soil. The contaminated soil samples were prepared by mixing the leachate at ratiosbetween 0% and 20% leachate contents with soil samples. Base soil used was residual soil originated from granitic rock and classified as sandy clay soil (CS). Its specific gravity ranged between 2.5 and 2.64 with clay minerals of kaolinite, muscovite and quartz. The field strength of the studied soil ranged between 156 and 207 kN/m2. The effects of leachate on the Atterberg limit clearly indicated by the decrease in liquid and plastic limit values with the increase in the leachate content. Compaction tests on leachate-contaminated soil caused the dropped in maximum dry density, ρdry and increased in optimum moisture content, wopt when the amount of leachate was increased between 0% and 20%. The results suggested that leachate contamination capable to modify some geotechnical properties of the studied residual soils.

  4. Escoamento superficial e desagregação do solo em entressulcos em solo franco-argilo-arenoso com resíduos vegetais Interrill surface runoff and soil detachment on a sandy clay loam soil with residue cover

    Directory of Open Access Journals (Sweden)

    Elemar Antonino Cassol

    2004-07-01

    Full Text Available A presença de resíduos vegetais sobre a superfície do solo altera as características do escoamento superficial gerado pela chuva e a desagregação e transporte de sedimento resultantes do processo erosivo. O objetivo deste trabalho foi avaliar as condições hidráulicas e as relações de desagregação do solo e de resistência ao escoamento com a presença de resíduos vegetais na erosão em entressulcos. O experimento foi realizado no laboratório, com um Argissolo Vermelho distrófico típico, em parcelas com 0,10 m m-1 de declive sob chuva simulada. O solo foi coberto por resíduos vegetais de palha de soja, nas doses de 0, 0,05, 0,1, 0,2, 0,4 e 0,8 kg m-2. O aumento na cobertura do solo (CS com resíduos vegetais elevou a altura da lâmina de escoamento e a rugosidade hidráulica e reduziu a velocidade média do escoamento, provocada pelo aumento das forças viscosas promovida pela interposição física dos resíduos ao escoamento. O resultado é a redução na taxa de desagregação do solo (Di. A Di foi de 5,35x10-4 kg m-2 s-1 para solo descoberto e 1,50x10-5 kg m-2 s-1 em solo com 100% de cobertura na maior dose de palha. Os modelos de Laflen e potencial foram adequados para estimar o coeficiente de cobertura para resíduo em contato direto com a superfície do solo em função da cobertura do solo.Soil surface cover with crop residue modifies surface flow characteristics, generated by excess rainfall, and soil detachment and sediment transport resulting from the erosion process. The objective of this study was to evaluate the hydraulic conditions, detachment and flow resistance on interrill erosion on soil covered with residue. The experiment was conducted in the laboratory, on a Hapludult soil at a slope of 0.10 m m-1, under simulated rainfall and soil surface covered with soybean residue at the rates of 0, 0.05, 0.1, 0.2, 0.4, and 0.8 kg m-2. The increase in soil surface cover (SC with residue, caused an increase in water flow

  5. Suitability of soils of the university of Nigeria, Nsukka for the ...

    African Journals Online (AJOL)

    The Nkpologu series of valley bottom, plain and gentle slopes (0-6%) are suitable due to favorable topography, moderately heavy soil textures (sandy clay loam to sandy loam at the topsoil, and sandy clay at the subsoil), and relative soil fertility (with average topsoil % base sat. on the basis of ECEC of 45.08% and O.M. ...

  6. Influence of salinity on bioremediation of oil in soil

    International Nuclear Information System (INIS)

    Rhykerd, R.L.; Weaver, R.W.; McInnes, K.J.

    1995-01-01

    Spills from oil production and processing result in soils being contaminated with oil and salt. The effect of NaCl on degradation of oil in a sandy-clay loam and a clay loam soil was determined. Soils were treated with 50 g kg -1 non-detergent motor oil (30 SAE). Salt treatments included NaCl amendments to adjust the soil solution electrical conductivities to 40, 120, and 200 dS m -1 . Soils were amended with nutrients and incubated at 25 o C. Oil degradation was estimated from the quantities of CO 2 evolved and from gravimetric determinations of remaining oil. Salt concentrations of 200 dS m -1 in oil amended soils resulted in a decrease in oil mineralized by 44% for a clay loam and 20% for a sandy-clay loam soil. A salt concentration of 40 dS m -1 reduced oil mineralization by about 10% in both soils. Oil mineralized in the oil amended clay-loam soil was 2-3 times greater than for comparable treatments of the sandy-clay loam soil. Amending the sandy-clay loam soil with 5% by weight of the clay-loam soil enhanced oil mineralization by 40%. Removal of salts from oil and salt contaminated soils before undertaking bioremediation may reduce the time required for bioremediation. (author)

  7. effect of tractor forward speed on sandy loam soil physical ...

    African Journals Online (AJOL)

    Dr Obe

    Ilorin on a sandy loam soil to evaluate the effect of the imposition of different .... of the blade is 10.5cm. ... arranged in an inverted cone shape with ... replicates were taken for each speed run. The ..... Thakur, T. C; A. Yadav; B. P. Varshney and.

  8. Impact of tillage intensity on clay loam soil structure

    DEFF Research Database (Denmark)

    Daraghmeh, Omar; Petersen, Carsten; Munkholm, Lars Juhl

    Soil structure and structural stability are key parameters in sustainable soil management and optimum cropping practices. Locally and temporally adapted precision tillage may improve crop performance while at the same time reduce environmental impacts. The main objective of this study...... was to improve the knowledge of precision tillage practices through characterizing the effect of varied tillage intensities on structural properties of a clay loam soil. A field experiment was conducted using a randomized complete block design with two main factors, i.e. operational speed (OS, 2 levels......) and rotovating speed (RS, 3 levels). The tillage was conducted using a PTO-driven rotovator equipped to measure angular velocity. The effect of traffic compaction, made directly after tillage, was measured on soil taken from wheel track (WT) compared with soil outside wheel track (NWT). Soil samples from 0-3 cm...

  9. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Plauborg, Finn; Jacobsen, Sven-Erik

    2012-01-01

    Quinoa (Chenopodium quinoa Willd.) is believed to be tolerant to abiotic stress including salinity, drought and poor soil quality. To investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (cv. Titicaca) was grown...... in field lysimeters with sand, sandy loam and sandy clay loam soil. Despite application of the same amount of nitrogen (120 kg N ha−1) to all plots, there were large differences in crop nitrogen-uptake for sandy clay loam (134 kg ha−1), sandy loam (102 kg ha−1) and sand (77 kg ha−1) under full irrigation....... This lead to higher interception of photosynthetic active radiation and higher seed yield on sandy clay loam (3.3 Mg ha−1) and sandy loam (3.0 Mg ha−1) than on sand (2.3 Mg ha−1). The soil with higher clay content had also the highest transpiration, crop evapotranspiration and yield due to the higher uptake...

  10. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  11. Transport of atrazine and dicamba through silt and loam soils

    Science.gov (United States)

    Tindall, James A.; Friedel, Michael J.

    2016-01-01

    The objectives of this research were to determine the role of preferential flow paths in the transport of atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) and dicamba (3-6-dichloro-2-methoxybenzoic acid) through silt and loam soils overlying the High Plains aquifer in Nebraska. In a previous study, 3 of 6 study areas demonstrated high percentages of macropores; those three areas were used in this study for analysis of chemical transport. As a subsequent part of the study, 12 intact soil cores (30-cm diameter by 40-cm height), were excavated sequentially, two from each of the following depths: 0-40cm and 40-80cm. These cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties. Two undisturbed experimental field plots, each with a 3-m2 surface area, were installed in three study areas in Nebraska. Each was instrumented with suction lysimeters and tensiometers at depths of 10cm to 80cm in 10-cm increments. Additionally, each plot was planted with corn (Zea mays). A neutron probe access tube was installed in each plot to determine soil w ater content at 15-cm intervals. All plots were enclosed w ith a raised frame (of 8-cm height) to prevent surface runoff. All suction lysimeters were purged monthly for three months and were sampled immediately prior to pre-plant herbicide application to obtain background chemical concentrations. Atrazine and dicamba moved rapidly through the soil, but only after a heavy rainfall event, probably owing to the presence of preferential flow paths and lack of microbial degradation in these soil areas. Staining of laboratory cores showed a positive correlation between the percent area stained by depth and the subsequent breakthrough of Br- in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater

  12. Effect of Tractor Forward Speed on Sandy Loam Soil Physical ...

    African Journals Online (AJOL)

    Results indicate significant differences in soil physical conditions arising from different levels of tractor forward speed. A forward speed of approximately 7km/h resulted in appreciable amelioration of soil structure as reflected in improvements in the soil strength properties and maximum reduction in clod mean weight ...

  13. Enhanced isoproturon mineralisation in a clay silt loam agricultural soil

    OpenAIRE

    El-Sebai , T.; Lagacherie , B.; Cooper , J.F.; Soulas , G.; Martin-Laurent , F.

    2005-01-01

    International audience; 14C-ring-labelled isoproturon mineralisation was investigated in a French agricultural soil previously exposed to isoproturon. 50 different soil samples collected every 2 m along a transect of 100 m in length were treated one or two times with isoproturon under laboratory conditions and analysed by radiorespirometry. 94% of the soil samples showed a high ability to mineralise isoproturon with a relatively low variability in the cumulative percentage of mineralisation r...

  14. Advance of Wetting Front in Silt Loam Soil

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmood

    2013-04-01

    Full Text Available Under drip irrigation , the plant's root is concentrated inside the wetted bulb (region. Thus, the development of these roots and the plant production are greatly affected by the wetting pattern. Therefore, the wetting pattern of soil under drip irrigation must be taken into consideration in the design of drip irrigation system for both single dripping source or multi-overlapping wetting patterns of dripping water sources.2The aim of this study is to evaluate the effect of initial water content of the soil and spacing between two adjacent dripping sources with different flow rate on the movement of the wetting front.This study included 16 tests for monitoring the advancement of the wetting front with time during and after the water application phase. The water advance and water distribution measurement are carried out for two cases of the soil profile: for the first case with initial volumetric water content of 4.08% and for the second case with initial volumetric water content of 12.24%. Two spacing between the emitter were tested 25cm and 50 cm using application flow rates of 0.606, 1.212, 1.818, and 2.424 cm3 /min/cm to show the combined effect of spacing and flow rate on the performance of two adjacent emitter.The study proposed a method for determining the spacing between the two emitting sources , the water application rate and watering time. The proposed method depends on a wetted zone whose depth is equal to the root zone depth with a values equals to the maximum vertical advance of the wetting front underneath the drip line at time when this depth is equal to the depth of wetting at mid­point between the drip line. the study revealed that both the vertical water advance in soil underneath the emitter and the horizontal advance of the wetting front is larger than those in the case of single emitter.Furthermore, the vertical water advance increases with the decrease spacing between the two drip lines. Also, the horizontal advance of the

  15. Soil nitrogen dynamics and Capsicum Annuum sp. plant response to biochar amendment in silt loam soil

    Science.gov (United States)

    Horel, Agota; Gelybo, Gyorgyi; Dencso, Marton; Toth, Eszter; Farkas, Csilla; Kasa, Ilona; Pokovai, Klara

    2017-04-01

    The present study investigated the growth of Capsicum Annuum sp. (pepper) in small-scale experiment to observe changes in plant growth and health as reflected by leaf area, plant height, yield, root density, and nitrogen usage. Based on field conditions, part of the study aimed to examine the photosynthetic and photochemical responses of plants to treatments resulting from different plant growth rates. During the 12.5 week long study, four treatments were investigated with biochar amount of 0, 0.5%, 2.5%, and 5.0% (by weight) added to silt loam soil. The plants were placed under natural environmental conditions, such that photosynthetic activities from photosynthetically active radiation (PAR) and the plants photochemical reflectance index (PRI) could be continuously measured after exposure to sunlight. In this study we found that benefits from biochar addition to silt loam soil most distinguishable occurred in the BC2.5 treatments, where the highest plant yield, highest root density, and highest leaf areas were observed compared to other treatments. Furthermore, data showed that too low (0.5%) or too high (5.0%) biochar addition to the soil had diminishing effects on Capsicum Annuum sp. growth and yield over time. At the end of the 12th week, BC2.5 had 22.2%, while BC0.5 and BC5.0 showed 17.4% and 15.7% increase in yield dry weight respectively compared to controls. The collected data also showed that the PRI values of plants growing on biochar treated soils were generally lower compared to control treatments, which could relate to leaf nitrogen levels. Total nitrogen amount showed marginal changes over time in all treatments. The total nitrogen concentration showed 28.6% and 17.7% increase after the 6th week of the experiment for BC2.5 and BC5.0, respectively, while inorganic nutrients of NO3-N and NH4+-N showed a continuous decrease during the course of the study, with a substantial drop during the first few weeks. The present study provides evidence for impact

  16. Determination of Selenium Toxicity for Survival and Reproduction of Enchytraeid Worms in a Sandy Loam Soil

    Science.gov (United States)

    2016-07-01

    LOAM SOIL ECBC-TR-1388 Roman G. Kuperman Ronald T. Checkai Michael Simini Carlton T. Phillips RESEARCH AND TECHNOLOGY DIRECTORATE Richard M...plastic wrap was stretched over the top of each container and secured with a rubber band. Three pinholes were made in the plastic wrap to 6...172–178. Glover, J.; Levander, O.; Parizek, J.; Vouk, V. Selenium. In Handbook on the Toxicology of Metals; Friberg, L., Norberg, G.F., Vouk, V.B

  17. Degradation of roxarsone in a silt loam soil and its toxicity assessment.

    Science.gov (United States)

    Liang, Tengfang; Ke, Zhengchen; Chen, Qing; Liu, Li; Chen, Guowei

    2014-10-01

    The land application of poultry or swine litter, containing large amounts of roxarsone, causes serious arsenic pollution in soil. Understanding biotransformation process of roxarsone and its potential risks favors proper disposal of roxarsone-contaminated animal litter, yet remains not achieved. We report an experimental study of biotransformation process of roxarsone in a silt loam soil under various soil moisture and temperature conditions, and the toxicity of roxarsone and its products from degradation. Results showed that soil moisture and higher temperature promoted roxarsone degradation, associating with emergent pentavalent arsenic. Analysis of fluorescein diacetate (FDA) hydrolysis activity revealed that roxarsone does not exert acute toxic on soil microbes. With the release of inorganic arsenic, FDA hydrolysis activity was inhibited gradually, as evidenced by ecotoxicological assessment using Photobacterium leiognathi. The results shade new lights on the dynamic roxarsone biotransformation processes in soil, which is important for guiding appropriate disposal of poultry or swine litter in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cadmium phytoextraction from loam soil in tropical southern China by Sorghum bicolor.

    Science.gov (United States)

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-06-03

    The cadmium (Cd) uptake characteristics by Sorghum bicolor cv. Nengsi 2# and Cowley from the acidic sandy loam soil (pH = 6.1) during the entire growth period (100 days) were investigated in pot outdoors in a tropical district of southern China, Hainan Island. The Cd-spiked levels in soil were set as 3 and 15 mg/kg. Correspondingly, the available Cd levels in soil extracted by Mehlich III solution were 2.71 and 9.41 mg/kg, respectively. Basically, two varieties in a full growth period (100 days) did not show a significant difference in their growth and Cd uptake. Under high Cd stress, the plant growth was inhibited and its biomass weight and height decreased by 38.7-51.5% and 27.6-28.5%, respectively. However, S. bicolor showed higher bioaccumulation capability of Cd from soil to plant [bioconcentration factor (BCF)>4], and higher transfer capability of Cd from roots to shoots [translocation factor (TF)>1] under high Cd stress; Cd contents in the roots, stems, and leaves of S. bicolor reached 43.79-46.07, 63.28-70.60, and 63.10-66.06 mg/kg, respectively. S. bicolor exhibited the potential phytoextraction capability for low or moderate Cd-contamination in acidic sandy loam soil.

  19. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects...... of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field...... plots with or without biochar (20 Mg ha−1); however, in the same plots, volumetric water contents increased by 7.5 % due to biochar (P = 0.007). Crop yields (oat) were not significantly different in the first year after biochar application, but in the second year, total yields of spring barley increased...

  20. Neutron Gauge Calibration Curve as Affected by Chloride Concentration and Bulk Density of Loam Soil

    International Nuclear Information System (INIS)

    AL-Hasani, A.A.; Fahad, A.A.; Shihab, R.M.

    2010-01-01

    chloride concentration and bulk density are considered among important factors affecting calibration curve of neutron gauge in the soil.The aim of this study was to investigate the effect of chloride concentration and bulk density of a loam soil on neutron gauge calibration curve.Sufficient amount of loam soil was air dried screened through a 2 mm sieve,and divided into three equal portions.Sodium chloride of 2.5 and 6.6g kg'-1 soil was added to the first and second portions,respectively.The third portion was left as a control.The soil then moistened and mixed well to make volumetric water content within the range of 0.01 to 0.24 cm 3 cm - 3. The moist soil was packed into an iron drum 0.80 m diameter and 1.00 m height to obtain bulk densities of 1.10 and 1.30 to 1.60 Mg m - 3 for uncompacted soil,respectively.Access tube 0.05 m inner diameter was installed in the center of the drum.Three readings from CPN 503 neutron gauge were taken at each 0.15,0.30, 0.45,and 0.75 m depth.Results indicated that the count (counts/standard count) for an aqueous solution decreased with the increase in chloride concentration.Similarly, the slope of the linear calibration curves of the investigated soil decreased with the increase in chloride concentration.Shifting of the curves was 9 to 10%for the uncompacted soil, whereas it was 12 to 14 % for the compacted of low and high concentration of chloride, respectively . Results of changing bulk density always reduced the slope value as compared with the uncorrected count ratio.

  1. Interaction of the Bored Sand and Gravel Drain Pile with the Surrounding Compacted Loam Soil and Foundation Raft Taking into Account Rheological Properties of the Loam Soil and Non-Linear Properties of the Drain Pile

    Science.gov (United States)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Anzhelo, G. O.; Buslov, A. S.

    2018-01-01

    The task of the interaction of the sand and gravel drain pile with the surrounding loam soil after its preliminary deep compaction and formation of the composite ground cylinder from the drain pile and surrounding compacted loam soil (cells) is considered in the article. It is seen that the subsidence and carrying capacity of such cell considerably depends on physical and mechanical properties of the compacted drain piles and surrounding loam soil as well as their diameter and intercellular distance. The strain-stress state of the cell is considered not taking into account its component elements, but taking into account linear and elastic-plastic properties of the drain pile and creep flow of the surrounding loam soil. It is stated that depending on these properties the distribution and redistribution of the load on a cell takes place from the foundation raft between the drain pile and surrounding soil. Based on the results of task solving the formulas and charts are given demonstrating the ratio of the load between the drain pile and surrounding loam soil in time.

  2. Effect of biochar amendment on nitrate retention in a silty clay loam soil

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2016-08-01

    Full Text Available Biochar incorporation into agricultural soils has been proposed as a strategy to decrease nutrient leaching. The present study was designed to assess the effect of biochar on nitrate retention in a silty clay loam soil. Biochar obtained from the pyrogasification of fir wood chips was applied to soil and tested in a range of laboratory sorption experiments. Four soil treatments were considered: soil only (control, soil with 2, 4 and 8% of biochar by mass. The Freundlich sorption isotherm model was used to fit the adsorbed amount of nitrate in the soil-biochar mixtures. The model performed very well in interpreting the experimental data according to a general linear regression (analysis of co-variance statistical approach. Nitrate retention in the soilbiochar mixtures was always higher than control, regardless the NO3 – concentration in the range of 0-400 mg L–1. Different sorption capacities and intensities were detected depending on the biochar application rate. The highest adsorption capacity was observed in the soils added with 2 and 4% of biochar, respectively. From the results obtained is possible to infer that nitrate retention is higher at lower biochar addition rate to soil (2 and 4% and at lower nitrate concentration in the soil water solution. These preliminary laboratory results suggest that biochar addition to a typical Mediterranean agricultural soil could be an effective management option to mitigate nitrate leaching.

  3. Migration of Co and Cs radionuclides through a loam soil column

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma bin Syed Ahmad; Shimooka, K.

    1990-01-01

    A soil column experiment was conducted to determine the migration of Co and Cs radionuclides through a loam soil. The different migration rates of the radionuclides at low and high concentrations were determined at pH 7. Retardation factor (Rf) both the radionuclides at low and high concentrations were determined by fitting adsorbed concentration distribution equations to observed values. The calculation shows that the Rf1=500 and Rf2=3 for Co at high and low concentrations, respectively. For Cs, the Rf1=600 and Rf2=5 at high and low concentrations, respectively. The results shows that major portions of both the radionuclides were adsorbed onto the soil layer at the top by ion exchange mechanism which resulted in the high retardation factor values. Minor portions had migrated downwards as insoluble cations, pseudocolloids and very fine silt particles resulting in the low retardation factor

  4. Changes in labile soil organic matter fractions following land use change from monocropping to poplar-based agroforestry systems in a semiarid region of Northeast China.

    Science.gov (United States)

    Mao, Rong; Zeng, De-Hui; Li, Lu-Jun; Hu, Ya-Lin

    2012-11-01

    Labile fractions of soil organic matter (SOM) respond rapidly to land management practices and can be used as a sensitive indicator of changes in SOM. However, there is little information about the effect of agroforestry practices on labile SOM fractions in semiarid regions of China. In order to test the effects of land use change from monocropping to agroforestry systems on labile SOM fractions, we investigated soil microbial biomass C (MBC) and N, particulate organic matter C (POMC) and N (POMN), as well as total organic C (TOC) and total N (TN) in the 0- to 15-cm and the 15- to 30-cm layers in 4-year-old poplar-based agroforestry systems and adjoining monocropping systems with two different soil textures (sandy loam and sandy clay loam) in a semiarid region of Northeast China. Our results showed that poplar-based agroforestry practices affected soil MBC, POMC, and POMN, albeit there was no significant difference in TOC and TN. Agroforestry practices increased MBC, POMC, and POMN in sandy clay loam soils. However, in sandy loam soils, agroforestry practices only increased MBC and even decreased POMC and POMN at the 0- to 15-cm layer. Our results suggest that labile SOM fractions respond sensitively to poplar-based agroforestry practices and can provide early information about the changes in SOM in semiarid regions of Northeast China and highlight that the effects of agroforestry practices on labile SOM fractions vary with soil texture.

  5. Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils

    Energy Technology Data Exchange (ETDEWEB)

    Wick, A.F.; Stahl, P.D.; Ingram, L.J. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2009-11-15

    Minimal research has been conducted on aggregate, C, and N in coarse-textured soils used to reclaim surface coal mine lands. Furthermore, little is known about the contribution different plant communities make to the recovery of aggregation in these soils. Two chronosequences of semiarid reclaimed sites with sandy loam soils were sampled under shrub- and grass-dominated communities. Aggregation, aggregate fractions, and associated C and N were measured. No definitive trends of increasing macroaggregates between sites were observed undershrubs; however, macro- and microaggregation was greater in the 16-yr-old (0.20 and 0.23 kg aggregate kg{sup -1} soil, respectively) than in the 5-yr-old soils (0.02 and 0.08 kg aggregate kg{sup -1} soil, respectively) under grasses. Although C and N concentrations were drastically reduced (50-75%) with mining activity between the <1-yr-old and native soils, aggregate C and N concentrations tinder shrubs and grasses were similar to each other and to the native soils in the 5-yr-old site. Sods under grass in the 16-yr-old site had lower available and aggregate-occluded C and N concentrations than the 5-yr-old site, while C and N concentrations did not change between 5- and 16-yr-old soils under shrubs. Conversely, aggregate C and N pool sizes under shrubs and grasses both increased with site age to conditions similar to those observed in the native soil. Reclaimed shrub site soils had consistently higher C concentrations in the older reclaimed sites (10 and 16 yr old) than the soils under grasses, indicating greater accumulation and retention of C and N in organic material under shrub than grass communities in semiarid reclaimed sites.

  6. The behavior and bioactivity of imazaquin in soils

    International Nuclear Information System (INIS)

    McKinnon, E.J.

    1989-01-01

    Laboratory studies were conducted to determine the adsorption and relative mobility of 14 C-labelled imazaquin (2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imadazol-2-yl]-3-quinolinecarboxylic acid) and 14 C labelled metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide) on Norfolk sand loan (Typic Paleudult), Rion sandy clay loam (Typic Hapludult), Cape Fear sandy clay loam (Typic Umbraquult) and Webster clay loam (Typic Hapluquoll). Imazaquin was more mobile than metolachlor on all four soils. Soils high in humic matter content retained between 45 and 48% of the applied imazaquin and 93 and 97% of the applied metolachlor. The relative order of mobility of imazaquin in the soils was Rion = Norfolk > Cape Fear = Webster. The order for metolachlor in the soils was Rion > Norfolk > Cape Fear > Webster. Adsorption of imazaquin and metolachlor was inversely related to their mobility in the soil columns. Adsorption of imazaquin increased as the suspension pH decreased

  7. ELASTOPLASTICIDAD DE UN SUELO FRANCO ARENOSO DE SABANA I SANDY LOAM SAVANNA SOIL ELASTOPLASTICITY

    Directory of Open Access Journals (Sweden)

    Américo Hossne García

    2018-04-01

    Full Text Available The knowledge of elastoplastic properties is important for calculating soil elastic and plastic deformations experienced by static or dynamic loads generated, for example, by farm implements and root growth. The objective of this study was to determine the soil elastoplastic parameters: Young’s modulus (E, the shear modulus (G, bulk modulus (K and Poisson’s ratio (υ of a sandy-loam soil from a savanna in Monagas State, Venezuela. Triaxial tests and regression analyses were used to interpret the variance between them. The results show that E varied from 4693.39 to 36669.35 kPa; G from 700 to 5000 kPa; K from 500 to 2000 kPa and υ had a value of 0.50. It is concluded that these soils are incompressible under plastic conditions, i.e. easily deformable. The Poisson’s ratio varied significantly with soil water content. The Young modulus, bulk modulus and the shear modulus showed high variation with respect to water content. Both the Young’s modulus and Poisson’s ratio increased, at low soil water content, with the rise in chamber pressure .

  8. Depth distribution of preferential flow patterns in a sandy loam soil as affected by tillage

    Directory of Open Access Journals (Sweden)

    C. T. Petersen

    1997-01-01

    Full Text Available Dye-tracer studies using the anionic dye Brilliant Blue FCF were conducted on a structured sandy loam soil (Typic Agrudalf. 25 mm of dye solution was applied to the surface of 11 1.6 x 1.6 m field plots, some of which had been subjected to conventional seed bed preparation (harrowing while others had been rotovated to either 5 or 15 cm depth before sowing. The soil was excavated to about 160 cm depth one or two days after dye application. Flow patterns and structural features appearing on vertical or horizontal cross sections were examined and photographed. The flow patterns were digitized, and depth functions for the number of activated flow pathways and the degree of dye coverage were calculated. Dye was found below 100 cm depth on 26 out of 33 vertical cross sections made in conventionally tilled plots showing that preferential flow was a prevailing phenomenon. The depth-averaged number of stained flow pathways in the 25-100 cm layer was significantly smaller in a plot rotovated to 5 cm depth than in a conventionally tilled plot, both under relatively dry initial soil conditions and when the entire soil profiles were initially at field capacity. There were no examples of dye penetration below 25 cm depth one month after deep rotovation. Distinct horizontal structures in flow patterns appearing at 20-40 cm depth coupled with changes in flow domains indicated soil layering with abrupt changes in soil structure and hydraulic properties.

  9. Inhibition effect of zinc in wastewater on the N2O emission from coastal loam soils.

    Science.gov (United States)

    Huang, Yan; Ou, Danyun; Chen, Shunyang; Chen, Bin; Liu, Wenhua; Bai, Renao; Chen, Guangcheng

    2017-03-15

    The effects of zinc (Zn) on nitrous oxide (N 2 O) fluxes from coastal loam soil and the abundances of soil nitrifier and denitrifier were studied in a tidal microcosm receiving livestock wastewater with different Zn levels. Soil N 2 O emission significantly increased due to discharge of wastewater rich in ammonia (NH 4 + -N) while the continuous measurements of gas flux showed a durative reduction in N 2 O flux by high Zn input (40mgL -1 ) during the low tide period. Soil inorganic nitrogen concentrations increased at the end of the experiment and even more soil NH 4 + -N was measured in the high-Zn-level treatment, indicating an inhibition of ammonia oxidation by Zn input. Quantitative PCR of soil amoA, narG and nirK genes encoding ammonia monooxygenase, nitrate reductase and nitrite reductase, respectively, showed that the microbial abundances involved in these metabolisms were neither affected by wastewater discharge nor Zn contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore...... characteristics of two Danish sandy loams. Rotation R2 is a rotation of winter crops (mainly cereals) with residues retained, rotation R3 a mix of winter and spring crops (mainly cereals) with residues removed, and rotation R4 the same mix of winter and spring crops, but with residues retained. Each rotation...... included the tillage treatments: moldboard plowing to 20-cm depth (MP), harrowing to 8- to 10-cm depth (H) and direct drilling (D). Soil cores were taken from the topsoil (4–8, 12–16, 18–27 cm) in mid-autumn 2013 and early spring 2014. Water retention, air permeability, and gas diffusivity was determined...

  11. Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan.

    Science.gov (United States)

    Tariq, Muhammad Ilyas; Afzal, Shahzad; Hussain, Ishtiaq

    2006-02-01

    The present study evaluated the influence of temperature, moisture, and microbial activity on the degradation and persistence of commonly used cotton pesticides, i.e., carbosulfan, carbofuran, lambda-cyhalothrin, endosulfan, and monocrotophos, with the help of laboratory incubation and lysimeter studies on sandy loam soil (Typic Ustocurepts) in Pakistan. Drainage from the lysimeters was sampled on days 49, 52, 59, 73, 100, 113, and 119 against the pesticide application on days 37, 63, 82, 108, and 137 after the sowing of cotton. Carbofuran, monocrotophos, and nitrate were detected in the drainage samples, with an average value, respectively, of 2.34, 2.6 microg/L, and 15.6 mg/L for no-tillage and 2.16, 2.3 microg/L, and 13.4 mg/L for tillage. In the laboratory, pesticide disappearance kinetics were measured with sterile and nonsterile soils from 0 to 10 cm in depth at 15, 25, and 35 degrees C and 50% and 90% field water capacities. Monocrotophos and carbosulfan dissipation followed first-order kinetics while others followed second-order kinetics. The results of incubation studies showed that temperature and moisture contents significantly reduced the t(1/2) (half-life) values of pesticides in sterile and nonsterile soil, but the effect of microbial activity was nearly significant that might be due to less organic carbon (0.3%). The presence of carbofuran and monocrotophos in the soil profile (0-10, 10-30, 30-60, 60-90, 90-150 cm) and the higher concentrations of endosulfan and lambda-cyhalothrin in the top layer (0-10 cm) showed the persistence of the pesticides. The detection of endosulfan and lambda-cyhalothrin in the 10-30 cm soil layer might be due to preferential flow. The data generated from this study could be helpful for risk assessment studies of pesticides and for validating pesticide transport models for sandy loam soils in cotton-growing areas of Pakistan.

  12. Plant uptake and soil retention of phthalic acid applied to Norfolk sandy loam

    International Nuclear Information System (INIS)

    Dorney, J.R.; Weber, J.B.; Overcash, M.R.; Strek, H.J.

    1985-01-01

    Plant uptake and soil retention of 14 C carboxyl-labeled phthalic acid were studied at application rates of 0.6, 6.0, 60.0, and 600.0 ppm (soil dry weight) to Norfolk sandy loam (Typic Paleudult, fine loamy, kaolinitic, thermic). Height and dry weight of corn (Zea mays L. Pioneer 3368A) (21 day), tall fescue (Festuca arundinacea Schreb. Kentucky 31) (45 day) immature soybean (Glycine max (L.) Merr. Altoona) (21 day) plant, mature soybean plant, and mature wheat (Triticum aestivum L. Butte) straw were not affected by phthalic acid applied to soil. In addition, soybean seed and wheat seed dry weight were unaffected. Immature wheat (40 day) height decreased at the 600 ppm rate. Plant uptake of phthalic acid ranged from 0 to 23 ppm and was significantly above background for all plants and plant materials except soybean pods. Fescue and immature plants exhibited the highest concentration of phthalic acid while mature wheat plants and wheat seeds exhibited the least. Most of the phthalic acid volatilized or was decomposed from the soil by the end of the study; an average of only 5.7% of the originally applied chemical was recovered in both soil or plants. An average of 0.02% of the originally applied phthalic acid leached out of the treated zone. Considering the low toxicity of phthalic acid and its relatively rapid disappearance from soil, it is unlikely to become a health hazard from contaminated plants. However, plant uptake of other toxic organics could potentially become a hazard on soils treated with sludge containing significant quantities of these substances

  13. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils.

    Science.gov (United States)

    Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David

    2011-07-01

    To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in

  14. Comparison of neutron scattering, gravimetric and tensiometric methods for measuring soil water content in the field

    International Nuclear Information System (INIS)

    Jat, R.L.; Das, D.K.; Naskar, G.C.

    1975-01-01

    Water content of a sandy clay loam soil was measured by neutron scattering, gravimetric and tensiometric methods. Tensiometric measurement based on laboratory moisture retention curve gave comparatively higher moisture content than those obtained by other methods. No significant differences were observed among neutron meter, gravimetric and tensiometric measurement based on field calibration curve. Though for irrigation purposes all the methods can be used equally, use of tensiometric method with field calibration curve is suggested for easy and more accurate soil water content measurement where neutron meter is not available. (author)

  15. Influence of diaphragm wall installation in overconsolidated sandy clays on in situ stress disturbance and resulting wall deformations

    Directory of Open Access Journals (Sweden)

    Truty Andrzej Adam

    2016-09-01

    Full Text Available Numerical modeling of deep excavations becomes a standard practice in modern geotechnical engineering. A detailed numerical model for a given case is able to reproduce major effects of soil-structure interaction by taking into account any kind of drainage conditions, strong stiffness variation due to effective stress and strain changes, creep and cracking, when reinforced concrete is used as a structural material, but also interface effects between subsoil and structure. Calibrating soil constitutive models is one of the most difficult tasks and due to several sources of uncertainty there is no one unique set of the data that should be used in numerical predictions. Lack or incompleteness of experimental data, significant mismatch between laboratory and field tests is an another source of difficulty. Contrary to several simplified methods, that are usually limited to two dimensions, numerical models allow a full 3D analysis in which many simplifications can be eliminated. This paper is devoted to the problem of in situ stress disturbance caused by diaphragm wall installation in overconsolidated quaternary sandy clays and its influence on final wall deformations.

  16. IMPACT OF THE REPEATED TRACTOR PASSES ON SOME PHYSICAL PROPERTIES OF SILTY LOAM SOIL

    Directory of Open Access Journals (Sweden)

    Dubravko Filipović

    2011-12-01

    Full Text Available The aim of this paper was to quantify soil compaction induced by tractor traffic on untilled wet silty loam soil (Mollic Fluvisol. Changes in penetration resistance, bulk density and total porosity were measured for detecting the soil compaction. Treatments include ten passes of a four-wheel drive tractor with the engine power of 54.0 kW and weight of 3560 kg (1580 kg on the front axle and 1980 kg on the rear axle, 2.41 m distance between axles. The tyres on the tractor were cross-ply, front 11.2-24 and rear 16.9-30, with the inflation pressure of 160 kPa and 100 kPa, respectively. The speed of tractor during passes over experimental plots was 5.0 km h-1. In comparison to control, each tractor pass induced an increase in soil penetration resistance at all depths, and the average increment ratios, determined as the average of all layers, were 9.8, 18.5 and 26.1% after one, five and ten passes, respectively. The bulk density also increased with number of tractor passes, but with less percentage increasing. The increment ratios comparison to the control were 3.6, 9.5 and 12.9% after one, five and ten passes, respectively. The total porosity decreased with the number of passes, and the decrement ratios were 4.5, 16.5 and 20.8% after one, five and ten passes, respectively.

  17. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D

    2017-01-01

    Soil structure is a key soil physical property that affects soil water balance, gas transport, plant growth and development, and ultimately plant yield. Biochar has received global recognition as a soil amendment with the potential to ameliorate the structure of degraded soils. We investigated how...... corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... to significant increase in soil water retention compared to the CT and BC-10 as a result of increased microporosity (pores biochar had minimal impact. No significant influence of biochar was observed for ka and Dp/D0 for the BC treatments compared to the CT despite...

  18. Uncertainty of Deardorff’s soil moisture model based on continuous TDR measurements for sandy loam soil

    Directory of Open Access Journals (Sweden)

    Brandyk Andrzej

    2016-03-01

    Full Text Available Knowledge on soil moisture is indispensable for a range of hydrological models, since it exerts a considerable influence on runoff conditions. Proper tools are nowadays applied in order to gain in-sight into soil moisture status, especially of uppermost soil layers, which are prone to weather changes and land use practices. In order to establish relationships between meteorological conditions and topsoil moisture, a simple model would be required, characterized by low computational effort, simple structure and low number of identified and calibrated parameters. We demonstrated, that existing model for shallow soils, considering mass exchange between two layers (the upper and the lower, as well as with the atmosphere and subsoil, worked well for sandy loam with deep ground water table in Warsaw conurbation. GLUE (Generalized Likelihood Uncertainty Estimation linked with GSA (Global Sensitivity Analysis provided for final determination of parameter values and model confidence ranges. Including the uncertainty in a model structure, caused that the median soil moisture solution of the GLUE was shifted from the one optimal in deterministic sense. From the point of view of practical model application, the main shortcoming were the underestimated water exchange rates between the lower soil layer (ranging from the depth of 0.1 to 0.2 m below ground level and subsoil. General model quality was found to be satisfactory and promising for its utilization for establishing measures to regain retention in urbanized conditions.

  19. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  20. Phosphorus application to cotton enhances growth, yield, and quality characteristics on a sandy loam soil

    International Nuclear Information System (INIS)

    Ahmad, M.; Ranjha, A.M.

    2009-01-01

    Phosphorus (P) is the second most limiting nutrient in cotton (Gossypium hirsutum L.) production after nitrogen. Under wheat-cotton cropping system of Pakistan most of the farmers apply P fertilizer only to wheat crop. A field experiment was conducted to evaluate the effect of fertilizer P on the growth, yield and fibre quality of cotton on a sandy loam calcareous soil at farmer's field in cotton growing area of district Khanewal, Punjab. Five levels of P (0, 17, 26, 34 and 43 kg P ha /sup -1/) along with 120 kg N and 53 kg K ha/sup -1/ were applied. The response of cotton growth parameters was greater than quality components to P addition in calcareous soil. There was significant increase in the growth and yield parameters with each additional rate of P. The response of number of bolls per plant, boll weight and seed cotton yield was to the tune of 88.23, 16.82 and 42%, respectively at P application rate of 34 kg ha/sup -1/. Cotton quality components (lint %age, fiber length and fiber strength) improved from 2 to 5% where 43 kg P ha/sup -1/ was added. The lint and seed P concentration was little affected by P application as compared to stem and leaves showing its essentiality for cell division and development of meristematic tissue. Phosphorus use, thus not only valuable for wheat crop but also its application to cotton crop is of vital importance in improving both lint yield and quality. (author)

  1. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2012-01-01

    carbon (CCCsoils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile strength...... the compression index and a proposed functional index,was significantly greater for theMFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles immediately after......To improve our understanding of how clay-organic carbon dynamics affect soil aggregate strength and physical resilience, we selected three nearby soils (MFC,Mixed Forage Cropping; MCC,Mixed Cash Cropping; CCC, Cereal Cash Cropping)with identical clay content and increasing contents of organic...

  3. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  4. Field Performance of Nine Soil Water Content Sensors on a Sandy Loam Soil in New Brunswick, Maritime Region, Canada

    Directory of Open Access Journals (Sweden)

    Lionel Stevens

    2009-11-01

    Full Text Available An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE of 15.78, 16.93, and 17.65%, and a r2 of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917, and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r2 of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region.

  5. Mobility and retention of micronutrients in soil : Part III. Investigation on the influence of various external factors, NPK-fertilizers and soil amending agents on the mobility and retention of manganese

    International Nuclear Information System (INIS)

    Das, S.K.; Santikari, A.K.; Banerji, K.C.

    1980-01-01

    Investigations on the mobility and retention of manganese through Sindri red sandy clay loam of pH 7.4 and Ranchi clay loam of pH 5.6 have been carried out using the radiotracer 54 Mn. The vertical distribution of manganese in these soils showed almost sharp fall upto a depth of 12 to 14 cm and thereafter it tended to attain the saturation. Variations have been marked in the degrees of manganese retention at the top surface layers of the concerned soils. Influence of various NPK fertilizers and soil amending agents, at various application levels, have been studied on the mobility, retention and leaching loss of manganese in the prementioned soils. Marked variations have been recorded and discussed. (author)

  6. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    Science.gov (United States)

    2006-05-01

    high bioavailability of organic compounds. However, amended SSL soil was analyzed for presence of metabolic transformation products from nitroaromatic...Phillips, C.; Checkai, R. 1999. Comparison of malathion toxicity using enchytraeid reproduction test and earthworm toxicity test in different soil ...OF TNT IN AMENDED SANDY LOAM SOIL ON TOXICITY TO THE ENCHYTRAEID WORM, ENCHYTRAEUS CRYPTICUS Roman G. Kuperman Ronald T. Checkai Michael Simini

  7. Weeds of cereal stubble-fields on various soils in the Kielce region. P. 1. Podzolic and brown soils developed from sands and loams

    Directory of Open Access Journals (Sweden)

    Franciszek Pawłowski

    2013-12-01

    Full Text Available Occupying cereal stubble-fields weed flora is the most characteristic of the environmental (especially soil conditions. Because of its developing and accomplishing the reproductive stages there it can threatens cultivated plants. They are considered to complete the seed store in a soil by 393 min per ha. The results presented in the paper concern the species composition, number and constancy (S and indice of coverage (D of the cereal stubble-field weed species on various soils in the Kielce region (the central part of Poland. The report was based upon 885 phytosociological records collected in the 268 stands. The records were carried out after the crop harvest, in the latter part of September, in 1976-1980. Soil were chosen on the base of soil maps. The analyse of soil samples, taken at the investigation process, were done in order to confirm the soil quality. The worked out material was divided into three parts. The first part, including 369 phytosociological records collected in the 112 stands (in 90 localities concerns stubble-field weeds on podzolic and brown soils developed from sands (loose, weakly loamy and loamy and loams (light and medium. It was found that these soils were grown by 108 (loamy sands to 132 (weakly loamy sands weed species. Among them 66 species were common for all of the soils. Species composition was not differentiated by the soil type (brown, podzolic within kind of the. soil (sand or loams. Among soil examined, the brown loams was the most abundant with species of high constancy degree (30 species but brown loose sands and podzolic loamy sands was the poorest one with (16 species.

  8. Investigation of the transport of actinide-bearing soil colloids in the soil-aquatic environment

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Campbell, M.J.; Kittrick, J.; Cheng, T.

    1980-04-01

    Uranium-233 particle size dependent distribution ratios for the 10 to 60 range were determined for muscatine silt loam, Burbank loamy sand, Ritzville silt loam, Fuquay sand, and Idaho sandy clay. A mathematical method for the analysis of centrifuge data was developed to determine particle size dependent distribution ratio for the 10 to 60 nm range. Comparison of the distribution ratio data for the 0 to 60 nm particle size range strongly suggests that particles in the 1 to 10 nm (8000 to 50,000 MW) range play a dominate role. Since these particles are probably humic acid polymers, future research should be focused on humic acid complexing of radionuclides. A mathematical analysis is given to demonstrate the role of humic acid complexing in the transport of radionuclides in the soil-aquatic environment

  9. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1996-01-01

    The fate of nitrogen from N-15-labelled sheep urine and urea applied to two soils was studied under field conditions. Labelled and stored urine equivalent to 204 kg N ha(-1) was either incorporated in soil or applied to the soil surface prior to sowing of Italian ryegrass (Lolium multiflorum L...... and soil was not significantly different for incorporated urine and urea. Almost all the supplied labelled N was accounted for in soil and herbage in the sandy loam soil, whereas 33-34% of the labelled N was unaccounted for in the sandy soil. When the stored urine was applied to the soil surface, 20...... was applied to growing ryegrass at the sandy loam soil, the immobilization of urine-derived N was significantly reduced compared to application prior to sowing. The results indicated that the net mineralization of urine N was similar to that of urea in the sandy soil, but only about 75% of the urine N was net...

  10. Influence of Long-term Application of Feedlot Manure Amendments on Water Repellency of a Clay Loam Soil.

    Science.gov (United States)

    Miller, Jim J; Beasley, Bruce W; Hazendonk, Paul; Drury, Craig F; Chanasyk, David S

    2017-05-01

    Long-term application of feedlot manure to cropland may increase the quantity of soil organic carbon (C) and change its quality, which may influence soil water repellency. The objective was to determine the influence of feedlot manure type (stockpiled vs. composted), bedding material (straw [ST] vs. woodchips [WD]), and application rate (13, 39, or 77 Mg ha) on repellency of a clay loam soil after 17 annual applications. The repellency was determined on all 14 treatments using the water repellency index ( index), the water drop penetration time (WDPT) method, and molarity of ethanol (MED) test. The C composition of particulate organic matter in soil of five selected treatments after 16 annual applications was also determined using C nuclear magnetic resonance-direct polarization with magic-angle spinning (NMR-DPMAS). Manure type had no significant ( > 0.05) effect on index and WDPT, and MED classification was similar. Mean index and WDPT values were significantly greater and MED classification more hydrophobic for WD than ST. Application rate had no effect on the index, but WDPT was significantly greater and MED classification more hydrophobic with increasing application rate. Strong ( > 0.7) but nonsignificant positive correlations were found between index and WDPT versus hydrophobic (alkyl + aromatic) C, lignin at 74 ppm (O-alkyl), and unspecified aromatic compounds at 144 ppm. Specific aromatic compounds also contributed more to repellency than alkyl, O-alkyl, and carbonyl compounds. Overall, all three methods consistently showed that repellency was greater for WD- than ST-amended clay loam soil, but manure type had no effect. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Combined mild soil washing and compost-assisted phytoremediation in treatment of silt loams contaminated with copper, nickel, and chromium.

    Science.gov (United States)

    Sung, Menghau; Lee, Chi-Yi; Lee, Suen-Zone

    2011-06-15

    A new soil remediation option, combining the soil washing process using pure water followed by the compost-assisted phytoextraction, is evaluated using silt loams contaminated with plating wastewater containing Cu, Ni, and Cr. Plants utilized in this study are the rapeseeds, sunflowers, tomatoes, and soapworts. Phytoextraction operation was carried out in pot experiments over a period of 4 months. Metal concentrations in roots and shoots of plants were analyzed upon completion of each pot experiment. Hypothesis testing was employed in assessing the significance of difference in the experimental data. Results indicated that the rapeseed, a hyperaccumulator, is most effective in extracting metals from the compost-amended silt loams. The fast-growing sunflowers and tomatoes are comparable to rapeseeds in accumulating metals despite their relatively low metal concentrations in tissues. Bioaccumulation coefficients obtained for all plants are less than one, indicating that phytostabilization rather than phytoextraction is the dominant mechanism at this simulated final-phase condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Apparent soil electrical conductivity in two different soil types

    Directory of Open Access Journals (Sweden)

    Wilker Nunes Medeiros

    Full Text Available ABSTRACT Mapping the apparent soil electrical conductivity (ECa has become important for the characterization of the soil variability in precision agriculture systems. Could the ECa be used to locate the soil sampling points for mapping the chemical and physical soil attributes? The objective of this work was to examine the relations between ECa and soil attributes in two fields presenting different soil textures. In each field, 50 sampling points were chosen using a path that presented a high variability of ECa obtained from a preliminary ECa map. At each sampling point, the ECa was measured in soil depths of 0-20, 0-40 and 0-60 cm. In addition, at each point, soil samples were collected for the determination of physical and chemical attributes in the laboratory. The ECa data obtained for different soil depths was very similar. A large number of significant correlations between ECa and the soil attributes were found. In the sandy clay loam texture field there was no correlation between ECa and organic matter or between ECa and soil clay and sand content. However, a significant positive correlation was shown for the remaining phosphorus. In the sandy loam texture field the ECa had a significant positive correlation with clay content and a significant negative correlation with sand content. The results suggest that the mapping of apparent soil electrical conductivity does not replace traditional soil sampling, however, it can be used as information to delimit regions in a field that have similar soil attributes.

  13. Changes to soil water content and biomass yield under combined maize and maize-weed vegetation with different fertilization treatments in loam soil

    Directory of Open Access Journals (Sweden)

    Lehoczky Éva

    2016-06-01

    Full Text Available Especially during early developmental stages, competition with weeds can reduce crop growth and have a serious effect on productivity. Here, the effects of interactions between soil water content (SWC, nutrient availability, and competition from weeds on early stage crop growth were investigated, to better understand this problem. Field experiments were conducted in 2013 and 2014 using long-term study plots on loam soil in Hungary. Plots of maize (Zea mays L. and a weed-maize combination were exposed to five fertilization treatments. SWC was observed along the 0–80 cm depth soil profile and harvested aboveground biomass (HAB was measured.

  14. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    .e. visual evaluation of soil structure (VESS), overall visual structure (OVS) and overall soil structure (OSS)) were employed to differentiate the effects of these alternative management practices on soil structural quality and relative crop yield (RY). A Pearson correlation was also employed to find...... the correlation between the soil quality indices and relative crop yield. Relevant soil properties for calculating the soil quality indices were measured or obtained from previous publications. Crop rotation affected the soil structure and RY. The winter-dominated crop rotation (R2) resulted in the poorest soil...... correlations were found in most cases between soil quality indices (including M-SQR) and RY. This highlights the influence of soil quality (as measured by the selected indicators) – and soil structure in particular – on crop yield potential....

  15. Evaluation of Diuron Tolerance and Biotransformation by Fungi from a Sugar Cane Plantation Sandy-Loam Soil.

    Science.gov (United States)

    Perissini-Lopes, Bruna; Egea, Tássia Chiachio; Monteiro, Diego Alves; Vici, Ana Cláudia; Da Silva, Danilo Grünig Humberto; Lisboa, Daniela Correa de Oliveira; de Almeida, Eduardo Alves; Parsons, John Robert; Da Silva, Roberto; Gomes, Eleni

    2016-12-14

    Microorganisms capable of degrading herbicides are essential to minimize the amount of chemical compounds that may leach into other environments. This work aimed to study the potential of sandy-loam soil fungi to tolerate the herbicide Herburon (50% diuron) and to degrade the active ingredient diuron. Verticillium sp. F04, Trichoderma virens F28, and Cunninghamella elegans B06 showed the highest growth in the presence of the herbicide. The evaluation of biotransformation showed that Aspergillus brasiliensis G08, Aspergillus sp. G25, and Cunninghamella elegans B06 had the greatest potential to degrade diuron. Statistical analysis demonstrated that glucose positively influences the potential of the microorganism to degrade diuron, indicating a cometabolic process. Due to metabolites founded by diuron biotransformation, it is indicated that the fungi are relevant in reducing the herbicide concentration in runoff, minimizing the environmental impact on surrounding ecosystems.

  16. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition.

    Science.gov (United States)

    Kumar, Anjani; Nayak, A K; Shukla, Arvind K; Panda, B B; Raja, R; Shahid, Mohammad; Tripathi, Rahul; Mohanty, Sangita; Rath, P C

    2012-04-01

    A laboratory study was conducted with four pesticides, viz. a fungicide (carbendazim), two insecticides (chlorpyrifos and cartap hydrochloride) and an herbicide (pretilachlor) applied to a sandy clay loam soil at a field rate to determine their effect on microbial biomass carbon (MBC) and carbon mineralization (C(min)). The MBC content of soil increased with time up to 30 days in cartap hydrochloride as well as chlorpyrifos treated soil. Thereafter, it decreased and reached close to the initial level by 90th day. However, in carbendazim treated soil, the MBC showed a decreasing trend up to 45 days and subsequently increased up to 90 days. In pretilachlor treated soil, MBC increased through the first 15 days, and thereafter decreased to the initial level. Application of carbendazim, chlorpyrifos and cartap hydrochloride decreased C(min) for the first 30 days and then increased afterwards, while pretilachlor treated soil showed an increasing trend.

  17. Soil structure and earthworm activity in an marine silt loam under pasture versus arable land

    NARCIS (Netherlands)

    Jongmans, A.G.; Pulleman, M.M.; Marinissen, J.C.Y.

    2001-01-01

    Agricultural management influences soil organic matter (SOM) and earthworm activity which interact with soil structure. We aimed to describe the change in earthworm activity and related soil (micro)structure and SOM in a loamy Eutrodept as affected by permanent pasture (PP) and conventional arable

  18. Seasonal dynamics in wheel load-carrying capacity of a loam soil in the Swiss Plateau

    DEFF Research Database (Denmark)

    Gut, S.; Chervet, A.; Stettler, Matthias

    2015-01-01

    on in situ measurements of h, measurements of precompression stress at various h and simulations of soil stress. In this work, we concentrated on prevention of subsoil compaction. Calculations were made for different tyres (standard and low-pressure top tyres) and for soil under different tillage......Subsoil compaction is a major problem in modern agriculture caused by the intensification of agricultural production and the increase in weight of agricultural machinery. Compaction in the subsoil is highly persistent and leads to deterioration of soil functions. Wheel load-carrying capacity (WLCC......) is defined as the maximum wheel load for a specific tyre and inflation pressure that does not result in soil stress in excess of soil strength. The soil strength and hence WLCC is strongly influenced by soil matric potential (h). The aim of this study was to estimate the seasonal dynamics in WLCC based...

  19. Persistence of bifenthrin in sandy loam soil as affected by microbial community.

    Science.gov (United States)

    Sharma, Divya; Singh, Shashi Bala

    2012-06-01

    Soil was fortified with bifenthrin at the level of 10 μg g(-1) soil. Soil samples were drawn at regular intervals of 0, 10, 20, 30 and 40 days. For extraction of bifenthrin, soil was extracted with acetone. Clean up was done by liquid-liquid partitioning with dichloromethane after diluting with brine solution. Quantification of bifenthrin residues was done by GC using mega bore column and ECD detector. Recovery of bifenthrin in soil ranged between 92.6 % and 93.8 % at 0.5 and 1.0 μg g(-1). The instrumental limit of detection of bifenthrin was 0.005 μg mL(-1) and LOQ for soil by this method was found to be 0.05 μg g(-1). The calibration curve was found to be linear within range the range of 0.01 and 0.10 μg mL(-1) concentration. The DT(50) (disappearance time for 50 % loss) of bifenthrin at the level of 10 μg g(-1) in sterile and non sterile soil were found to be 330 and 147 days, respectively. A vast difference in the half life of sterile and non sterile soil indicated the presence of potential microbes for bifenthrin degradation.

  20. Estimating Infiltration Rates for a Loessal Silt Loam Using Soil Properties

    Science.gov (United States)

    M. Dean Knighton

    1978-01-01

    Soil properties were related to infiltration rates as measured by single-ringsteady-head infiltometers. The properties showing strong simple correlations were identified. Regression models were developed to estimate infiltration rate from several soil properties. The best model gave fair agreement to measured rates at another location.

  1. Research Note:Determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin, Turkey

    Directory of Open Access Journals (Sweden)

    M. Tombul

    2004-01-01

    Full Text Available Spatial and temporal variations in soil hydraulic properties such as soil moisture q(h and hydraulic conductivity K(q or K(h, may affect the performance of hydrological models. Moreover, the cost of determining soil hydraulic properties by field or laboratory methods makes alternative indirect methods desirable. In this paper, various pedotransfer functions (PTFs are used to estimate soil hydraulic properties for a small semi-arid basin (Kurukavak in the north-west of Turkey. The field measurements were a good fit with the retention curve derived using Rosetta SSC-BD for a loamy soil. To predict parameters to describe soil hydraulic characteristics, continuous PTFs such as Rosetta SSC-BD (Model H3 and SSC-BD-q33q1500 (Model H5 have been applied. Using soil hydraulic properties that vary in time and space, the characteristic curves for three soil types, loam, sandy clay loam and sandy loam have been developed. Spatial and temporal variations in soil moisture have been demonstrated on a plot and catchment scale for loamy soil. It is concluded that accurate site-specific measurements of the soil hydraulic characteristics are the only and probably the most promising method to progress in the future. Keywords: soil hydraulic properties, soil characteristic curves, PTFs

  2. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study.

    Directory of Open Access Journals (Sweden)

    Weiwei Lu

    Full Text Available This study examined the effect of nitrogen (N on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant straw in absence (BC0 and presence (BCN of N and monitored for dynamics of carbon dioxide (CO2 flux, phospholipid fatty acids (PLFAs profile and dissolved organic carbon (DOC content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05, and the proportions of decomposed biochar carbon (C were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05 higher than DOC in biochar (1.75% and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05 increased the proportion of gram-positive (G+ bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G- bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil.

  3. Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar.

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Harchegani, Mahboobeh Kiani

    2016-01-15

    Many different amendments, stabilizers, and conditioners are usually applied for soil and water conservation. Biochar is a carbon-enriched substance produced by thermal decomposition of organic material in the absence of oxygen with the goal to be used as a soil amendment. Biochar can be produced from a wide range of biomass sources including straw, wood, manure, and other organic wastes. Biochar has been demonstrated to restore soil fertility and crop production under many conditions, but less is known about the effects of its application on soil erosion and runoff control. Therefore, a rainfall simulation study, as a pioneer research, was conducted to evaluate the performance of the application of vinasse-produced biochar on the soil erosion control of a sandy clay loam soil packed in small-sized runoff 0.25-m(2) plots with 3 replicates. The treatments were (i) no biochar (control), (ii) biochar (8 tha(-1)) application at 24h before the rainfall simulation and (iii) biochar (8 tha(-1)) application at 48 h before the rainfall simulation. Rainfall was applied at 50 mm h(-1) for 15 min. The mean change of effectiveness in time to runoff could be found in biochar application at 24 and 48 h before simulation treatment with rate of +55.10% and +71.73%, respectively. In addition, the mean runoff volume 24 and 48 h before simulation treatments decreased by 98.46% and 46.39%, respectively. The least soil loss (1.12 ± 0.57 g) and sediment concentration (1.44 ± 0.48 gl(-1)) occurred in the biochar-amended soil treated 48 h before the rainfall simulation. In conclusion, the application of vinasse-produced biochar could effectively control runoff and soil loss. This study provided a new insight into the effects of biochar on runoff, soil loss, and sediment control due to water erosion in sandy clay loam soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of industrial, municipal and agricultural wastes on peanut in lateritic sandy loam soil

    International Nuclear Information System (INIS)

    Sarkar, S.; Khan, A.R.

    2002-06-01

    Modern agriculture, worldwide, depends upon the external application of plant nutrients supplied mostly through chemical fertilizer to meet the crop needs. The natural recycling cannot provide the very large amount of nutrients needed year after year in an intensive cropping system and nutrients being a major constraint harvesting the nutrient energy from biological and industrial waste are of prime importance for maximizing the food grain production in the world. A number of industrial wastes like fly ash from thermal power plants, paper factory sludge from paper factory, sewage sludge from municipal source and farmyard manure from livestock farming are the important waste resources, having potentiality in recycling in agricultural land. When these wastes are recycled through soil for crop production, due to the degradative and assimilative capacity of soil, the pollution hazards of these wastes can be minimized to a greater extent as compared to direct disposing of at the site. Fly ash is a waste product residue resulting from the combustion of pulverised coal in coal-fired power generating station. Physico - chemical analysis of fly ash has revealed the presence of both macro-micro nutrients, which can sustain plant growth. Its application in the agricultural land acts as a liming material and improves crop growth by neutralizing the soil acidity, increasing the water availability for the plants and supplement of nutrients (Adriano et al, 1980, Molliner and Street, 1982, Schnappinger et al, 1975). Application of paper factory sludge has been reported to increase the organic carbon content in soil and nutrient content like P, K, Ca, Mg and micronutrients (Guerini et al, 1994, Muse and Mitchell, 1995). Sludge application also improves the organic carbon content of the soil and availability of nutrients like Ca, K and Mg besides improvement of physical properties (Pitchel and Hayes, 1990). Much is known regarding crop performance and changes in physical and

  5. Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the Loess Plateau.

    Science.gov (United States)

    Zhu, Li-Xia; Xiao, Qian; Shen, Yu-Fang; Li, Shi-Qing

    2017-10-01

    The structure and function of soil microbial communities have been widely used as indicators of soil quality and fertility. The effect of biochar application on carbon sequestration has been studied, but the effect on soil microbial functional diversity has received little attention. We evaluated effects of biochar application on the functional diversities of microbes in a loam soil. The effects of biochar on microbial activities and related processes in the 0-10 and 10-20cm soil layers were determined in a two-year experiment in maize field on the Loess Plateau in China. Low-pyrolysis biochar produced from maize straw was applied into soils at rates of 0 (BC0), 10 (BC10) and 30 (BC30)tha -1 . Chemical analysis indicated that the biochar did not change the pH, significantly increased the amounts of organic carbon and nitrogen, and decreased the amount of mineral nitrogen and the microbial quotient. The biochar significantly decreased average well colour development (AWCD) values in Biolog EcoPlates™ for both layers, particularly for the rate of 10tha -1 . Biochar addition significantly decreased substrate richness (S) except for BC30 in the 0-10cm layer. Effects of biochar on the Shannon-Wiener index (H) and Simpson's dominance (D) were not significant, except for a significant increase in evenness index (E) in BC10 in the 10-20cm layer. A principal component analysis clearly differentiated the treatments, and microbial use of six categories of substrates significantly decreased in both layers after biochar addition, although the use of amines and amides did not differ amongst the three treatments in the deeper layer. Maize above ground dry biomass and height did not differ significantly amongst the treatments, and biochar had no significant effect on nitrogen uptake by maize seedlings. H was positively correlated with AWCD, and negatively with pH. AWCD was positively correlated with mineral N and negatively with pH. Our results indicated that shifts in soil

  6. Determining photon energy absorption parameters for different soil samples

    International Nuclear Information System (INIS)

    Kucuk, Nil; Cakir, Merve; Tumsavas, Zeynal

    2013-01-01

    The mass attenuation coefficients (μ s ) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137 Cs and 60 Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ x 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137 Cs. The effective atomic numbers (Z eff ) and the effective electron densities (N eff ) were determined experimentally and theoretically using the obtained μ s values for the soil samples. Furthermore, the Z eff and N eff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. (author)

  7. Crop uptake and leaching losses of 15N labelled fertilizer nitrogen in relation to waterlogging of clay and sandy loam soils

    International Nuclear Information System (INIS)

    Webster, C.P.; Belford, R.K.; Cannell, R.Q.

    1986-01-01

    Ammonium nitrate fertilizer, labelled with 15 N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha -1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freely drained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheater at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1-2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer

  8. Clinoptilolite zeolite influence on inorganic nitrogen in silt loam and sandy agricultural soils

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral Clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4...

  9. Effect of Calcium Levels on Strontium Uptake by Canola Plants Grown on Different Texture Soils

    International Nuclear Information System (INIS)

    El-Shazly, A.A.; Rezk, M. A.; Abdel-Sabour, M.F.; Mousa, E.A.; Mostafa, M.A.Z.; Lotfy, S.M.; Farid, I.M.; Abbas, M.H.H.; Abbas, H.H.

    2016-01-01

    Canola is considered aphytoremediator where, it can remove adequate quantities of heavy metals when grown on polluted soils.This study aimed to investigate growth performance of canola plants grown on clayey non-calcareous, sandy non-calcareous and sandy clay loam calcareous soils with different CaCO 3 contents. These soils were artificially contaminated with 100 mg Sr kg -1 and cultivated with canola plants under three levels of applied calcium i.e. 0, 60 and 85 mg Ca kg -1 in the form of CaCl 2 . The grown plants were kept under the green house conditions until (pot experiment) maturity. Afterwards, plants were harvested, separated into shoots, roots and seeds, and analyzed for their contents of calcium and strontium. Application of calcium to the sandy soil increased Ca uptake by canola plants whereas, Sr uptake, plant growth and seed yield were reduced. In the other soils, Ca and Sr uptake values were increased with minimized Ca rate. Such increases were associated with significant increases in the plant biomass and crop yield in the clayey soil; whereas, in the sandy clay loam calcareous soil, such increases were insignificant. Increasing the dose of the applied Ca (its higher rate) was associated with significant reduction in the plant growth and seed yield in these two soils. Both the biological concentration factor and the biological accumulation factors were relatively high (>1). The biological transfer factor was also high indicating high translocation of Sr from root to shoot. However, Sr translocation decreased with Ca applications. Accordingly canola plants are highly recommended for phytoextraction of Sr from polluted soils

  10. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Over the last few years, the application of biochar (BC) as a soil amendment to sequester carbon and mitigate global climate change has received considerable attention. While positive effects of biochar on plant nutrition are well documented, little is known about potential impacts on the physical....... Hysteresis of the water vapor sorption isotherms increased with increasing BC application rates. Biochar age did not significantly affect vapor sorption and SSA....

  11. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    Science.gov (United States)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    particles are dispersed, and the suspension is stabilized supported by our SEM observations. In alkaline water, kaolinite reveals a lower degree of consolidation. While, alkaline water has no measurable effect on illite and chlorite surface properties due to the absence of modifications in charge. Illite and chlorite form with other clasts clusters or aggregate structures in suspension when the particle interactions are dominated by attractive energies were formed. The aggregate structure plays a major part in the flow behavior of clay suspensions. Flocs will immobilize the suspending medium, and give rise to increasing viscosity and yield strength of the suspension. S. Hage, A. Hubert-Ferrari, L. Lamair, U. Avşar, M. El Ouahabi, M. Van Daele, F. Boulvain, M.A. Bahri, A. Seret, Al. Plenevaux. Flow dynamics at the origin of thin sandy clay-rich lacustrine turbidites: Examples from Lake Hazar, Turkey, submitted to Sedimentology, in revision.

  12. Crop residues as driver for N2O emissions from a sandy loam soil

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Petersen, Søren O.; Chirinda, Ngonidzashe

    2017-01-01

    -term experiment on a loamy sand soil at Foulum in Denmark. All cropping systems included winter wheat, a leguminous crop (faba bean or grass-clover), potato and spring barley grown in different 4-crop rotations varying in strategies for N supply (fertilizer/manure type and rate, use of catch crops and green......-N leaching losses ranged from 39 to 56 kg N ha−1 y−1 and were lowest in rotations with catch crops; leaching was not correlated with N surplus or N input in fertilizer or manure. Crop yields of the organic rotations were 25 to 37% lower than in identical conventional rotations. As a consequence, yield...

  13. Effect of organic amendments on nitrate leaching mitigation in a sandy loam soil of Shkodra district, Albania

    Directory of Open Access Journals (Sweden)

    Erdona Demiraj

    2018-03-01

    Full Text Available European lacustrine systems are frequently exposed to nitrate (NO3– pollution causing eutrophication processes. An example of these lakes is Shkodra Lake, a large, shallow lake shared by Albania and Montenegro, in the Balkans Peninsula. Shkodra Lake is a natural sink that collects NO3– from agricultural activities, widely diffused in the surrounding area. The additions of wheat straw and biochar have been suggested to increase soil NO3– retention of agricultural lands. To better understand the role of these two organic soil amendments in mitigating NO3– leaching from arable lands, a pot experiment using a representative sandy loam soil of the Skodra Lake basin was performed. More specifically, a greenhouse experiment with Lolium multiflorum L. and Zea mays L., was carried out for three months, to evaluate the concentrations of NO3–-N in leachate and the cumulative leaching losses of NO3–-N, after wheat straw (10 Mg ha–1 and biochar (10 Mg ha–1 soil addition, under the same rate of NPK fertiliser (300 kg ha–1. The effect of the two organic amendments on nitrate retention, was evaluated according to two methods: i Soil NO3–-N leaching with distilled water; and ii Soil NO3–-N extraction with 2M KCl. The leached NO3–-N and the Potentially Leachable NO3–-N (2M KCl extraction were respectively determined. N uptake by plants, as well as the Nitrogen Use Efficiency were also calculated. A retention effect on nitrate was found in Lolium multiflorum L. and wheat straw treatments compared to control, by reducing leached NO3–-N almost to 35%. In SBFL (soil+biochar+fertiliser+Lolium treatment, biochar effectively reduced the total amount of nitrate in leachate of 27% and 26% compared to SFL (soil+fertiliser+Lolium and SSFL (soil+straw+fertiliser+Lolium treatments, respectively. The potentially leachable NO3–-N was two to four times higher than the leached NO3–-N. The amount of potentially leachable NO3–-N per hectare ranged

  14. Biodegradation of polyethylene glycol (PEG) in three tropical soils using radio labelled PEG

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, A.L. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil)]. E-mail: abdalla@cena.usp.br; Regitano, J.B.; Tornisielo, V.L.; Marchese, L. [Laboratory of Ecotoxicology, Piracicaba SP (Brazil); Pecanha, M.R.S.R.; Vitti, D.M.S.S. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil); Smith, T. [School of Agriculture, Policy and Development, University of Reading, Reading (United Kingdom)

    2005-08-19

    Polyethylene glycol (PEG) may be added to forage based diets rich in tannins for ruminant feeding because it binds to tannins and thus prevent the formation of potentially indigestible tannin-protein complexes. The objective of this work was to determine the in vitro biodegradation (mineralization, i.e., complete breakdown of PEG to CO{sub 2}) rate of PEG. {sup 14}C-Polyethylene glycol ({sup 14}C-PEG) was added to three different tropical soils (a sandy clay loam soil, SaCL; a sandy clay soil, SaC; and a sandy loam soil, SaL) and was incubated in Bartha flasks. Free PEG and PEG bound to tannins from a tannin rich local shrub were incubated under aerobic conditions for up to 70 days. The biodegradation assay monitored the {sup 14}CO{sub 2} evolved after degradation of the labelled PEG in the soils. After incubation, the amount of {sup 14}CO{sub 2} evolved from the {sup 14}C-PEG application was low. Higher PEG mineralization values were found for the soils with higher organic matter contents (20.1 and 18.6 g organic matter/kg for SaCL and SaC, respectively) than for the SaL soil (11.9 g organic matter/kg) (P < 0.05). The extent of mineralization of PEG after 70 days of incubation in the soil was significantly lower (P < 0.05) when it was added as bound to the browse tannin than in the free form (0.040 and 0.079, respectively). (author)

  15. Improving the Bearing Strength of Sandy Loam Soil Compressed Earth Block Bricks Using Sugercane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Ramadhan W. Salim

    2014-06-01

    Full Text Available The need for affordable and sustainable alternative construction materials to cement in developing countries cannot be underemphasized. Compressed Earth Bricks have gained acceptability as an affordable and sustainable construction material. There is however a need to boost its bearing capacity. Previous research show that Sugarcane Bagasse Ash as a soil stabilizer has yielded positive results. However, there is limited research on its effect on the mechanical property of Compressed Earth Brick. This current research investigated the effect of adding 3%, 5%, 8% and 10% Sugarcane Bagasse Ash on the compressive strength of compressed earth brick. The result showed improvement in its compressive strength by 65% with the addition of 10% Sugarcane Bagasse Ash.

  16. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties.

    Science.gov (United States)

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-03-01

    The present study was carried out to evaluate the impact of the effluents and the solid wastes generated by a giant pulp and paper mill in the northeastern part of India on soil mineralogy of the area. The impacts were monitored by analysis of soil samples from seven sites located in the potential impact zone and a control site where any kind of effluent discharge or solid waste dumping was absent. The soil belonged to medium texture type (sandy clay loam, sandy loam, loamy sand, and silt loam), and the soil aggregate analysis indicated higher levels of organic carbon, pH, electrical conductivity, effective cation exchange capacity, and mean weight diameter at sites receiving effluents and solid wastes from the pulp and paper mill. Depletion in soil silica level and in feldspar and quartz contents and rise in iron and calcium contents at the sites receiving effluents from the pulp and paper mill indicated significant influence on soil mineralogy. The soil contained a mixture of minerals consisting of tectosilicates (with silicate frameworks as in quartz or feldspar), phylosilicates (layered clays like kaolinite, smectite, chlorite, illite, etc.), and carbonates. Absence of pure clay minerals indicated a state of heterogeneous intermediate soil clay transformation. The significance of the mixed mineralogy in relation to the disposal of effluents and dumping of solid wastes is discussed in details.

  17. Effect of bovine manure on fecal coliform attachment to soil and soil particles of different sizes.

    Science.gov (United States)

    Guber, Andrey K; Pachepsky, Yakov A; Shelton, Daniel R; Yu, Olivia

    2007-05-01

    Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.

  18. Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Munkholm, Lars Juhl

    2016-01-01

    . Undisturbed soil cores were used for quantifying the precompression stress (spc) of non-compacted soil. Tractor-trailer combinations for slurry application with wheel loads of 3, 6 and 8 Mg (treatments M3, M6, M8) were used for the experimental traffic in the spring at field-capacity. For one additional...

  19. Cultivos de cobertura: efectos sobre la macroporosidad y la estabilidad estructural de un suelo franco-limoso Cover crops: effects on soil macroporosity and soil structural stability in a silt loam soil

    Directory of Open Access Journals (Sweden)

    María Florencia Varela

    2011-07-01

    Full Text Available Los suelos franco-limosos manejados con siembra directa a menudo poseen porosidad estructural baja e inestable. Con el objetivo de determinar la capacidad de los cultivos de cobertura (CC de mejorar la porosidad y estabilidad estructural de estos suelos se llevaron a cabo experimentos de campo y de invernáculo. Ambos tuvieron tratamientos con y sin CC (avena, Avena sativa L., en rotación con soja (Glicine max L. Merr.. Luego de los CC se midieron densidad aparente (DA, el índice de inestabilidad estructural (IE y en el ensayo de invernáculo además, se midió la evolución de la distribución de tamaño de poros (DTP. En ambos ensayos la introducción de CC no disminuyó la DA, aunque incrementó la estabilidad del suelo (PNo- till (NT silt loam topsoils have often a low and unstable structural porosity. The objective of this study was to determine the capability of cover crops (CC of improving the structural porosity and stability of silt loam soils under NT. Greenhouse and field experiments were carried out on a silt loam soil (Typic Argiudoll with and without CC (oat, Avena sativa L. in crop sequences with soybean (Glicine max L. Merr.. Soil bulk density (DA and aggregate instability index (IE were measured after the CC in both experiments. In the greenhouse experiment, soil pore size distribution (DTP was measured. The use of CC did not change DA, but soil IE was significantly lower in crop sequences with CC (P < 0.05 both under field and greenhouse conditions. Stability increases were likely due to the effect of CC residues and root mass. No differences in DTP were found between treatments, although a significant effect of sampling date was observed (P<0.05. Changes in DTP were due to significant increases in mesopore (517.5% and macropore (52.7% volumes. Such changes occurred in all the treatments, probably due to the soil wetting-drying cycles. The results found in this study agree with other studies carried out on silt loams in the

  20. HPLC Analysis to Determine the Half-life and Bioavailability of the Termiticides Bifenthrin and Fipronil in Soil.

    Science.gov (United States)

    Manzoor, F; Pervez, M

    2017-12-05

    The aim of this study was to test the bioavailability and degradation in soil of the termiticides bifenthrin and fipronil, which are used to treat subterranean termites (Heterotermes indicola, Wasmann). Soil collected from different areas of Lahore was categorized as sandy clay loam (SCL) or sandy loam (SL). Laboratory bioassays were conducted to determine the bioavailability ratio of bifenthrin and fipronil in each type of soil after different periods of time. LT50 values were determined posttreatment at different time intervals. Regarding soil type, both termiticides were more effective in SL soil, compared with SCL soil posttreatment. There were significant differences in termite mortality in treated compared with untreated control samples (P bifenthrin (maximum, 1,002 and 1,262 d in SCL soil and SL soil, respectively) indicated that it persisted in both soil types at all concentrations. The maximum calculated half-life values of fipronil were 270 and 555 d in SCL and SL soil, respectively. At lower concentrations and over longer periods of time, fipronil completely degraded in SL soil, while a negligible amount was detected in SCL soil. Termiticide concentration decreased over time, as did the termiticide recovery rate. Overall, bifenthrin was more persistent than fipronil under all treatment conditions tested. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic

  2. Sorção do imazapyr em solos com diferentes texturas Imazapyr sorption in soils with different textures

    Directory of Open Access Journals (Sweden)

    L.E. Firmino

    2008-06-01

    Full Text Available O conhecimento do comportamento de herbicidas no ambiente, sobretudo no solo, permite a predição de possíveis impactos do seu uso em sistemas agrícolas. Com o intuito de avaliar a sorção do herbicida imazapyr no solo, foi realizado um experimento, utilizando sorgo (Sorghum bicolor como planta bioindicadora. A sorção do imazapyr foi avaliada em areia lavada e em três solos, com as seguintes texturas: muito argilosa, franco-argilo-arenosa e areia-franca, provenientes, respectivamente, das cidades de Sete Lagoas, João Pinheiro e Rio Casca, em Minas Gerais. Foram determinados: o valor de I50 (dose que inibiu 50% no acúmulo de massa seca da planta-teste e a relação de sorção [RS = (I50 solo -I 50 areia/I50 areia]. Os valores de I50 observados foram: 29,41; 10,20 e 7,33 mg kg-1, e a relação de sorção (RS: 9,77; 2,73 e 1,68, respectivamente para os solos muito argiloso, franco-argilo-arenoso e areia franca. O herbicida imazapyr apresentou a seguinte ordem de sorção nos substratos: muito argiloso > franco-argilo-arenoso > areia-franca > areia lavada. Em solos arenosos e com baixos teores de matéria orgânica, a baixa sorção do imazapyr predispõe o produto à lixiviação no perfil do solo, podendo contaminar mananciais de águas subterrâneas.Knowledge about herbicide behavior in the environment, especially in soil, allows predicting possible impacts caused by its use in agricultural systems. An experiment using Sorghum bicolor as a bio-indicator was carried out to evaluate imazapyr sorption in soil. Sorption was evaluated in washed sand and in soils of 3 different textures: very clayed, sandy clayed loam and sandy loam, respectively from Sete Lagoas, João Pinheiro and Rio Casca - Minas Gerais. The value of I50, which inhibits 50% of dry biomass accumulation of the test-plant, and sorption relation (SR = I50 soil - I50 sand/I50 sand were determined. I50 values observed were 29.41, 10.20 and 7.33 mg kg-1 and SR values were 9

  3. Physical-hydraulic properties of a sandy loam typic paleudalf soil under organic cultivation of 'montenegrina' mandarin (Citrus deliciosa Tenore¹

    Directory of Open Access Journals (Sweden)

    Caroline Valverde dos Santos

    2014-12-01

    Full Text Available Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina' under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT, between the wheel tracks (BWT, and in the area under the line projection of the canopy (CLP, with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT, which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

  4. Effects of a novel poly (AA-co-AAm)/AlZnFe₂O₄/potassium humate superabsorbent hydrogel nanocomposite on water retention of sandy loam soil and wheat seedling growth.

    Science.gov (United States)

    Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer

    2012-10-25

    A novel poly(acrylic acid-co-acrylamide)AlZnFe₂O₄/potassium humate( )superabsorbent hydrogel nanocomposite (PHNC) was synthesized and its physical properties characterized using SEM, Energy Dispersive X-ray (EDX) and FTIR spectroscopic techniques. Air dried sandy loam soil was amended with 0.1 to 0.4 w/w% of PHNC to evaluate its soil moisture retention attributes. Effect of PHNC amendment on pH, electrical conductivity (EC), porosity, bulk density and hydraulic conductivity of sandy loam soil was also studied. The soil amendment with 0.1 to 0.4 w/w% of PHNC remarkably enhanced the moisture retention at field capacity as compared to the un-amended soils. Seed germination and seedling growth of wheat (Triticum aestivum L.) was considerably increased and a delay by 6-9 days in wilting of seedlings was observed in the soil amended with PHNC, resulting in improved wheat plant establishment and growth.

  5. USE OF THE “ROTHC” MODEL TO SIMULATE SOIL ORGANIC CARBON DYNAMICS ON A SILTY-LOAM INCEPTISOL IN NORTHERN ITALY UNDER DIFFERENT FERTILIZATION PRACTICES

    Directory of Open Access Journals (Sweden)

    Rosa Francaviglia

    2014-01-01

    Full Text Available We evaluated the efficiency of the RothC model to simulate Soil Organic Carbon (SOC dynamics after 12 years of organic and mineral fertilization practices in a study area located in northern Italy, on a silty-loam Inceptisol with a rotation including tomato, maize and alfalfa. The model performance was assessed by RMSE and EF coefficients. RothC simulated well observed SOC decreases in 71 samples (RMSE=7.42; EF=0.79, while performed with less accuracy when considering all samples (96 samples; RMSE=12.37; EF=0.58, due to the fact that the model failed in case of measured SOC increases (25 samples; RMSE=20.77; EF=-0.038. The model was used to forecast the SOC dynamics over a 50 year period under the same pedoclimatic conditions. Only clay contents >15% allowed to predict increasing levels of SOC respect to the starting values.

  6. Influence of N,K and CaSO4 on utilisation of sulfur by rice in red sandy loam soil

    International Nuclear Information System (INIS)

    Patnaik, M.C.; Sathe, Arun

    1993-01-01

    A greenhouse study with rice on red sandy loam soil showed that uptake of sulphur increased from both native as well as applied source with increase in the application of sulphur from 20-60 kg S ha -1 through gypsum. The grain yields were influenced by nitrogen application but there was only relative increase with the application of potassium and sulphur. There was positive effect of applied nitrogen and sulphur for the total sulphur removal by the rice crop. The per cent sulphur utilisation decreased with increase in sulphur application from 20-60 kg S ha -1 through gypsum but increased with increase in the application of nitrogen from 0-150 kg N ha -1 . Sulphur utilization by rice crop was more in potassium treated pots compared to that without its application. (author). 7 refs., 3 tabs

  7. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.

    Science.gov (United States)

    Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad

    2015-04-01

    Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured. Copyright © 2015. Published by Elsevier B.V.

  8. Study and Estimation of the Ratio of 137CS and 40K Specific Activities in Sandy and Loam Soils

    Directory of Open Access Journals (Sweden)

    Renata Mikalauskienė

    2011-12-01

    Full Text Available The present article describes changes in specific activities and fluctuations in the ratio of natural 40K and artificial 137Cs radionuclides in soil samples taken from different places of Lithuanian territory. The samples of soil have been selected from the districts polluted after the accident in Chernobyl nuclear plant performing nuclear testing operations. The study has established the main physical and chemical properties of soil samples and their impact on the concentration of 40K activities. 137Cs/40K specific activities in soil have been observed under the dry weight of the sample that varied from 0.0034 to 0.0240. The results of the study could be used for establishing and estimating 137Cs and 40K transfer in the system “soil-plant”.Article in Lithuanian

  9. Eleven years' effect of conservation practices for temperate sandy loams: I. Soil physical properties and topsoil carbon content

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl

    2017-01-01

    (D) and harrowing to a depth of 8 to 10 cm (H). Soil sampling and in-field measurements were performed in autumn 2013 and spring 2014. In the field, soil structure was visually evaluated and penetration resistance (PR) measured. Soil C, wet stability (clay dispersion and wet aggregate stability....... However, H and D in combination with residue retention gave the best structural stability. Residue retention alleviated negative effects of reduced tillage on PR and improved wet stability in the MP treatment at the Foulum site. Clay and SOC correlated well with soil physical parameters, confirming...... their important role in soil structure formation and stabilization. Our study showed benefits of combining key CA elements, although longer-term studies are most likely needed to reveal the full potential....

  10. Enzyme Sorption onto Soil and Biocarbon Amendments Alters Catalytic Capacity and Depends on the Specific Protein and pH

    Science.gov (United States)

    Foster, E.; Fogle, E. J.; Cotrufo, M. F.

    2017-12-01

    Enzymes catalyze biogeochemical reactions in soils and play a key role in nutrient cycling in agricultural systems. Often, to increase soil nutrients, agricultural managers add organic amendments and have recently experimented with charcoal-like biocarbon products. These amendments can enhance soil water and nutrient holding capacity through increasing porosity. However, the large surface area of the biocarbon has the potential to sorb nutrients and other organic molecules. Does the biocarbon decrease nutrient cycling through sorption of enzymes? In a laboratory setting, we compared the interaction of two purified enzymes β-glucosidase and acid phosphatase with a sandy clay loam and two biocarbons. We quantified the sorbed enzymes at three different pHs using a Bradford protein assay and then measured the activity of the sorbed enzyme via high-throughput fluorometric analysis. Both sorption and activity depended upon the solid phase, pH, and specific enzyme. Overall the high surface area biocarbon impacted the catalytic capacity of the enzymes more than the loam soil, which may have implications for soil nutrient management with these organic amendments.

  11. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil

    Science.gov (United States)

    2015-04-01

    these tests. Acetone (CAS: 67-64-1; high-performance liquid chromatography [HPLC] grade) was used for preparing EM solutions during the soil amendments... chromatography grade, purity: 99.9%) was used in the HPLC determinations. Certified standards of the energetics (AccuStandard, Inc., New Haven, CT) were used...H.; Van Gestel, C.A.M. Handbook of Soil Invertebrate Toxicity Tests; John Wiley & Sons: Hoboken, NJ, 1998. McLellan, W.L.; Hartley, W.R.; Brower

  12. Pupal development of Ceratitis capitata (Diptera: Tephritidae) and Diachasmimorpha longicaudata (Hymenoptera: Braconidae) at different moisture values in four soil types.

    Science.gov (United States)

    Bento, F de M M; Marques, R N; Costa, M L Z; Walder, J M M; Silva, A P; Parra, J R P

    2010-08-01

    This study aimed to evaluate adult emergence and duration of the pupal stage of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and emergence of the fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead), under different moisture conditions in four soil types, using soil water matric potential. Pupal stage duration in C. capitata was influenced differently for males and females. In females, only soil type affected pupal stage duration, which was longer in a clay soil. In males, pupal stage duration was individually influenced by moisture and soil type, with a reduction in pupal stage duration in a heavy clay soil and in a sandy clay, with longer duration in the clay soil. As matric potential decreased, duration of the pupal stage of C. capitata males increased, regardless of soil type. C. capitata emergence was affected by moisture, regardless of soil type, and was higher in drier soils. The emergence of D. longicaudata adults was individually influenced by soil type and moisture factors, and the number of emerged D. longicaudata adults was three times higher in sandy loam and lower in a heavy clay soil. Always, the number of emerged adults was higher at higher moisture conditions. C. capitata and D. longicaudata pupal development was affected by moisture and soil type, which may facilitate pest sampling and allow release areas for the parasitoid to be defined under field conditions.

  13. Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil

    NARCIS (Netherlands)

    Prima, Di Simone; Bagarello, Vincenzo; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Bautista, Inmaculada; Burguet, Maria; Cerda Bolinches, Artemio; Iovino, Massimo; Prosdocimi, Massimo

    2017-01-01

    Saturated soil hydraulic conductivity, Ks, data collected by ponding infiltrometer methods and usual experimental procedures could be unusable for interpreting field hydrological processes and particularly rainfall infiltration. The Ks values determined by an infiltrometer

  14. [Characteristics of N2, N2O, NO, CO2 and CH4 Emissions in Anaerobic Condition from Sandy Loam Paddy Soil].

    Science.gov (United States)

    Cao, Na; Wang, Rui; Liao, Ting-ting; Chen, Nuo; Zheng, Xun-hua; Yao, Zhi-sheng; Zhang, Hai; Butterbach-Bahl, Klaus

    2015-09-01

    Understanding the characteristics of the production of nitrogen gases (N2, N2O and NO), CO2 and CH4 in anaerobic paddy soils is not only a prerequisite for an improved mechanistic understanding of key microbial processes involved in the production of atmospheric greenhouse gases (GHG), but might also provide the basis for designing greenhouse gas mitigation strategies. Moreover, quantifying the composition fractions of denitrification gaseous products is of key importance for improving parameterization schemes of microbial processes in process-oriented models which are increasingly used for assessing soil GHG emissions at site and national scales. In our experiments we investigated two sandy loam soils from two paddy fields. The initial concentrations of soil nitrate and dissolved organic carbon (DOC) were set at approximately 50 mg.kg-1 and mg.kg-1, respectively, by adding a mixture solution of KNO3 and glucose. The emissions of N2, N2O NO, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each soil sample were measured simultaneously, using a gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that the accumulative emissions of N2, N2O and NO of the two soil samples for the entire incubation period were 6 - 8, 20, and 15 - 18 mg.kg-1, respectively. By measuring the cumulative emissions of denitrification gases (N, = N2 + N2O + NO) we were able to explain 95% to 98% of observed changes in s1ifr nilrate concentrations. The mass fractions of N2, N2O and NO emissions to Nt were approximately 15% -19%, 47% -49%, and 34% -36%, respectively. Thus, in our experiments N2O and NO were the main products of denitrification for the entire incubation period. However, as the temporal courses of hourly or daily production of the denitrification gases showed, NO production dominated and peaked firstly, and then N2O, before finally N2 became the dominant product. Our results show the high temporal dynamic of

  15. The Effects of Land Configuration and Wood-Shavings Mulch on the Properties of a Sandy Loam Soil in Northeast Nigeria. 2. Changes in Physical Properties

    Directory of Open Access Journals (Sweden)

    Chiroma, AM.

    2006-01-01

    Full Text Available Mulching and ridge tillage are proven technologies for improving soil productivity in semi-arid regions. Yet data quantifying the combined influences of these practices are limited. Our objectives were to determine the changes in selected physical properties of a sandy loam after 4-years of annual tillage and wood-shavings mulching. The tillage and wood-shavings treatments consisted of: Flat bed (FB, Open ridge (OR, Tiedridge (TR, FBM, ORM and TRM were same as FB, OR and TR, respectively except that wood-shavings at a rate of 10 t/ha were surface applied ≈ 2 weeks after sowing each year to serve as both a mulch and an organic amendment. At the end of the trial in 2002, bulk density, penetration resistance, total porosity and soil water content from each of 0-0.075, 0.075-0.15 and 0.15-0.30 m depths were determined. Composite samples from the surface (0.075 and 0.075-0.15 m layers from 3 replicates of each treatment were also collected for the determination of wet aggregate stability and from 0-0.15 m and 0.15-0.30 m layers for determination of saturated hydraulic conductivity (Ksat. After 4 years of annual tillage and addition of woodshavings, soil bulk density and penetration resistance were consistently lower and total porosity higher in the FBM, ORM and TRM treatments than in the FB, OR and TR treatments. Penetration resistance in all treatments was strongly related to soil water content. A 'hoe pan' was established below 0.15 m depth beneath the furrows of the ridged treatments. This could be attributed to human traffic during field operations and ponding of water, which occurred in the furrows following heavy rains. Wet aggregate stability estimated as the proportion of aggregates of size > 0.25 mm (macro-aggregates in the 0-0.15 m layer were significantly (P< 0.05 higher under FBM, ORM and TRM than under FB, OR or TR treatments. Ksat was not influenced by either tillage or wood-shavings treatments but were higher for the mulched plots

  16. Fuel consumption of tractor for different soil types in semi-arid regions; Consumo de combustivel de um trator agricola para diferentes tipos de solo em regioes semi-aridas

    Energy Technology Data Exchange (ETDEWEB)

    Montanha, Gustavo K. [Universidade Estadual Paulista (FAC/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], E-mail: gmontanha@fca.unesp.br; Guerra, Saulo P.S. [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Dept. de Gestao e Tecnologia Agroindustrial; Andrade-Sanchez, Pedro; Heun, John [The University of Arizona, Maricopa, AZ (United States); Monteiro, Leonardo A. [The University of Arizona (MAC/UA), Maricopa, AZ (United States). Maricopa Agricultural Center

    2010-07-01

    The appropriate use of agricultural machinery enables greater operational efficiency and higher productivity for the farmer. Some factors such as soil type can influence the fuel consumption, one of the biggest costs. This study aimed to compare the fuel consumption of a tractor operating in two different conditions of soil in semi-arid regions. The area used for testing is located in the city of Maricopa, in Arizona, belonging to 'The University of Arizona'. The area 1 is classified as sandy clay loam soil (52% sand, 35% clay, 13% silt). The area 2 is classified as a sandy loam soil (71% sand, 12% clay and 17% silt). The tractor 4 x 2 TDA, with 88 kw (120 hp) engine power equipped with auto pilot system and an implement for tillage were used in the experiment. A data acquisition system was installed in the tractor to collect the data generated by the GPS and fuel consumption sensor. The results showed significant statistical difference in fuel consumption between soil textures. (author)

  17. Carbonate-silicate ratio for soil correction and influence on nutrition, biomass production and quality of palisade grass

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2011-10-01

    Full Text Available Silicates can be used as soil correctives, with the advantage of being a source of silicon, a beneficial element to the grasses. However, high concentrations of silicon in the plant would affect the digestibility of the forage. To evaluate the influence of the substitution of the calcium carbonate by calcium silicate on the nutrition, biomass production and the feed quality of the palisade grass [Urochloa brizantha (C. Hochstetter ex A. Rich. R. Webster], three greenhouse experiments were conducted in completely randomized designs with four replications. Experimental units (pots contained a clayey dystrophic Rhodic Haplustox, a sandy clay loam dystrophic Typic Haplustox and a sandy loam dystrophic Typic Haplustox. Each soil received substitution proportions (0, 25, 50, 75 and 100 % of the carbonate by calcium silicate. The increase in the proportion of calcium silicate elevated the concentrations and accumulations of Si, Ca, Mg, and B, reduced Zn and did not alter P in the shoot of plants. The effects of the treatments on the other nutrients were influenced by the soil type. Inclusion of calcium silicate also increased the relative nutritional value and the digestibility and ingestion of the forage, while the concentration and accumulation of crude protein and the neutral detergent and acid detergent fibers decreased. Biomass production and feed quality of the palisade grass were generally higher with the 50 % calcium silicate treatment.

  18. Radiological aspects of choice of a system of cultivation of sod-podzolic sandy loam soils with different degree of humidity on lands of Mogilev region contaminated with 137Cs

    International Nuclear Information System (INIS)

    Lazarevich, S.S.; Ermolenko, A.V.; Shapsheeva, T.P.

    2010-01-01

    In the conditions of the Republic of Belarus there were presented data about the influence of technological factors on entry of 137Cs into plant products (grain and green mass). In course of the study there were analyzed the following variants of soil cultivation: moldboard plowing; subsurface chisel soil tillage; subsurface surface soil tillage; minimal tillage. There were presented data on specific activity of 137Cs in plant product samples of oat (Avena sativa) grain; field pea (Pisum arvense L.) and oat mixture grain and green mass; wheat (Triticum aestivum) grain. There were determined the main principles of influence of cultivation systems of sod-podzolic sandy loam soil with different degree of humidity on transition of 137Cs into plants depending on the degree of soil and crop humidity. On the automorphic soil there was revealed a tendency of increased transition of 137Cs into grain and green mass after application of subsurface surface soil tillage system

  19. Field dissipation of oxyfluorfen in onion and its dynamics in soil under Indian tropical conditions.

    Science.gov (United States)

    Janaki, P; Sathya Priya, R; Chinnusamy, C

    2013-01-01

    Oxyfluorfen, a diphenyl-ether herbicide is being used to control annual and perennial broad-leaved weeds and sedges in a variety of field crops including onion. The present study was aimed to investigate the dynamics and field persistence of oxyfluorfen in onion plant, bulb and soil under Indian tropical conditions. Application of four rates of oxyfluorfen viz., 200, 250, 300 and 400 g AI ha(-1) as pre-emergence gave good weed control in field experiment with onion. The oxyfluorfen residue dissipated faster in plant than in soil respectively, with a mean half-life of 6.1 and 11.2 days. Dissipation followed first-order kinetics. In laboratory column leaching experiments, 17 percent of the applied oxyfluorfen was recovered from the soil and indicates its solubility in water and mobility in sandy clay loam soil was low. A sorption study revealed that the adsorption of oxyfluorfen to the soil was highly influenced by the soil organic carbon with the Koc value of 5450. The study concludes that the dissipation of oxyfluorfen in soil and onion was dependent on the physico-chemical properties of the soil and environmental conditions.

  20. Transport of contaminants from energy-process-waste leachates through subsurface soils and soil components: laboratory experiments

    International Nuclear Information System (INIS)

    Wangen, L.E.; Stallings, E.A.; Walker, R.D.

    1982-08-01

    The subsurface transport and attenuation of inorganic contaminants common to a variety of energy process waste leachates are being studied using laboratory column methods. Anionic species currently being emphasized are As, B, Mo, and Se. Transport of the cations Cd and Ni is also being studied. The solid adsorbents consist of three soil mineral components (silica sand, kaolinite, and goethite), and four subsurface soils (a dunal sand, an oxidic sandy clay loam, an acidic clay loam, and an alkaline clay loam). Breakthrough patterns of these species from packed soil columns are followed by monitoring eluent concentrations vs time under carefully controlled laboratory conditions. This report describes the experimental methods being used, the results of preliminary batch adsorption studies, and the results of column experiments completed through calendar year 1981. Using column influent concentrations of about 10 mg/l, adsorption (mmoles/100 g) has been determined from the eluent volume corresponding to 50% breakthrough. On silica sand, kaolinite, dunal sand, and goethite, respectively, these are 2.0 x 10 -4 , 0.020, 0.013, and 0.31 for cadmium, 4.4 x 10 -4 , 0.039, 0.020, and 0.98 for nickel. On kaolinite, dunal sand, and goethite, respectively, adsorption values (mmoles/100 g) are As (0.24, 0.019, and 20.5), B (0.041, 0.0019, and 1.77), Mo (0.048, 0.0010, and 5.93), and Se (0.029, 0.00048, and 1.30). Arsenic is the most highly adsorbed contaminant species and goethite has the largest adsorption capacity of the adsorbents

  1. Development of a low-cost soil moisture sensor for in-situ data collection by citizen scientists

    Science.gov (United States)

    Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Das, N.; Podest, E.; Hovhannesian, H.; Fairbanks, G.

    2017-12-01

    Soil moisture (SM) is identified as an Essential Climate Variable and it exerts a strong influence on agriculture, hydrology and land-atmosphere interaction. The aim of this project is to develop an affordable (low-cost), durable, and user-friendly, sensor and an associated mobile app to measure in-situ soil moisture by the citizen scientists or any K-12 students. The sensor essentially measures the electrical resistance between two metallic rods and the resistance is converted into SM based on soil specific calibration equations. The sensor is controlled by a micro-controller (Arduino) and a mobile app (available both for iOS and Android) reads the resistance from the micro-controller and converts it into SM for the soil type selected by the user. Extensive laboratory tests are currently being carried out to standardize the sensor and to calibrate the sensor for various soil types. The sensor will also be tested during field campaigns and recalibrated for field conditions. In addition to the development of the sensor and the mobile app, supporting documentation and videos are also being developed that show the step-by-step process of building the sensor from scratch and measurement protocols. Initial laboratory calibration and validation of the prototype suggested that the sensor is able to satisfactorily measure SM for sand, loam, sandy loam, sandy clay loam type of soils. The affordable and simple sensor will help citizen scientists to understand the dynamics of SM at their site and the in-situ data will further be utilized for validation of the satellite observations from the SMAP mission.

  2. Mechanical impedance of soil crusts and water content in loamy soils

    Science.gov (United States)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  3. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions

    Directory of Open Access Journals (Sweden)

    F.Sh.F. Badawi

    2011-06-01

    Full Text Available The ability of tested rhizomicrobial isolates (Serratia marcescens and Trichoderma harzianum along with a strain of root nodule bacteria (Bradyrhizobium spp. to exhibit some PGP-properties was evaluated in vitro conditions. The main PGP-properties, namely the ability to solubilize-P and production of IAA, as well as production of siderophores and HCN were examined. Additionally, field trials were conducted on sandy loam soil at El-Tahrir Province during two successive summer seasons to study the effect of co-inoculation with Bradyrhizobium either individually or together with S. marcescens and/or T. harzianum on nodulation, some plant growth characters, peanut yield and its yield components. The in vitro experiment revealed that all of the tested microorganisms were apparently able to trigger PGP-properties. Phosphate solubilization was the common feature of the employed microorganisms. However, T. harzianum appeared to be superior to other microorganisms, and Bradyrhizobium displayed the lowest capacity. The ability of the microorganisms to produce indole compounds showed that S. marcescens was more effective in IAA production and followed by Bradyrhizobium. Capacity of S. marcescens and T. harzianum to excrete ferric-specific ligands (siderophores and HCN was detected, while Bradyrhizobium failed to produce such compounds. Results of field trials showed that the uninoculated peanut had the least nodulation status, N2-ase activity and all vegetative growth characters in both studied seasons. Bacterization of peanut seeds with bradyrhizobia exerted considerable improvement in number and mass of root nodules, increased the rate of acetylene reduction and all growth characters in comparison to the uninoculated control. The synergy inoculation between bradyrhizobia and any of the tested microorganisms led to further increases of all mentioned characters and strengthened the stimulating effect of the bacterial inoculation. However, the promotive

  4. Soil bulk electrical resistivity and forage ground cover: nonlinear models in an alfalfa (Medicago sativa L. case study

    Directory of Open Access Journals (Sweden)

    Roberta Rossi

    2015-12-01

    Full Text Available Alfalfa is a highly productive and fertility-building forage crop; its performance, can be highly variable as influenced by within-field soil spatial variability. Characterising the relations between soil and forage- variation is important for optimal management. The aim of this work was to model the relationship between soil electrical resistivity (ER and plant productivity in an alfalfa (Medicago sativa L. field in Southern Italy. ER mapping was accomplished by a multi-depth automatic resistivity profiler. Plant productivity was assessed through normalised difference vegetation index (NDVI at 2 dates. A non-linear relationship between NDVI and deep soil ER was modelled within the framework of generalised additive models. The best model explained 70% of the total variability. Soil profiles at six locations selected along a gradient of ER showed differences related to texture (ranging from clay to sandy-clay loam, gravel content (0 to 55% and to the presence of a petrocalcic horizon. Our results prove that multi-depth ER can be used to localise permanent soil features that drive plant productivity.

  5. Field Performance of the Disk Harrow, Power Harrow and Rotary Tiller at Different Soil Moisture Contents on a Clay Loam Soil in Mazandaran

    Directory of Open Access Journals (Sweden)

    M Rajabi Vandechali

    2015-03-01

    Full Text Available About 60% of the mechanical energy consumed in mechanized agriculture is used for tillage operations and seedbed preparation. On the other hand, unsuitable tillage system resulted in soil degradation, affecting soil physical properties and destroying soil structure. The objective of this research was to compare the effects of three types of secondary tillage machines on soil physical properties and their field performances. An experiment was conducted in a wheat farm in Jouybar area of Mazandaran as split plots based on randomized complete block design with three replications. The main independent variable (plot was soil moisture with three levels (23.6-25, 22.2-23.6 and 20.8-22.2 percent based on dry weight and the subplot was three types of machine (two-disk perpendicular passing harrow, Power harrow and Rotary tiller. The measured parameters included: clod mean weight diameter, soil bulk density, specific fuel consumption, machine efficiency and machine capacity. The effects of treatments and their interactions on the specific fuel consumption, machine efficiency and machine capacity and also the effects of treatments on bulk density were significant (P

  6. Impact of soil organic carbon on monosodium methyl arsenate (MSMA) sorption and species transformation.

    Science.gov (United States)

    Ou, Ling; Gannon, Travis W; Polizzotto, Matthew L

    2017-11-01

    Monosodium methyl arsenate (MSMA), a common arsenical herbicide, is a major contributor of anthropogenic arsenic (As) to the environment. Uncertainty about controls on MSMA fate and the rates and products of MSMA species transformation limits effective MSMA regulation and management. The main objectives of this research were to quantify the kinetics and mechanistic drivers of MSMA species transformation and removal from solution by soil. Laboratory MSMA incubation studies with two soils and varying soil organic carbon (SOC) levels were conducted. Arsenic removal from solution was more extensive and faster in sandy clay loam incubations than sand incubations, but for both systems, As removal was biphasic, with initially fast removal governed by sorption, followed by slower As removal limited by species transformation. Dimethylarsinic acid was the dominant product of species transformation at first, but inorganic As(V) was the ultimate transformation product by experiment ends. SOC decreased As removal and enhanced As species transformation, and SOC content had linear relationships with As removal rates (R 2  = 0.59-0.95) for each soil and reaction phase. These results reveal the importance of edaphic conditions on inorganic As production and overall mobility of As following MSMA use, and such information should be considered in MSMA management and regulatory decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Influência do período de restrição hídrica na atividade residual de isoxaflutole no solo Influence of drought periods on the residual activity of isoxaflutole in soil

    Directory of Open Access Journals (Sweden)

    R.S. Oliveira Jr.

    2006-12-01

    Full Text Available O objetivo deste trabalho foi estudar a atividade residual do isoxaflutole (IFT no controle de Brachiaria decumbens sob diferentes períodos de seca, após a aplicação do herbicida, em dois solos. Para isso, foram realizados seis ensaios simultâneos, sendo utilizadas doses de 0, 230 e 270 g ha-1 de isoxaflutole em amostras de Latossolo Vermelho Distroférrico nitossólico (textura argilosa e doses de 0, 180 e 200 g ha-1 em amostras de Latossolo Vermelho distrófico (textura franco-argilo-arenosa. Em cada ensaio, foram combinados em esquema fatorial doses e períodos de seca após as aplicações do herbicida, utilizando-se B. decumbens como bioindicador da atividade residual do herbicida no solo. As avaliações de controle foram feitas aos 15, 30, 45 e 60 dias após a semeadura do bioindicador. O IFT apresentou alta estabilidade no solo de textura argilosa mesmo após três chuvas simuladas de 20 mm, espaçadas de 30 dias e seguidas de 120 dias de seca após sua aplicação. No solo de textura franco-arenosa a estabilidade foi menor, e o efeito residual (80% de controle persistiu entre 0 e 110 dias para B. decumbens, conforme dose, períodos de seca e data de avaliação após a semeadura. Esse fato evidenciou que, à medida que aumenta o tempo e o número de irrigações entre a aplicação do herbicida e a semeadura do bioindicador, há redução no potencial efetivo de controle de IFT no Latossolo Vermelho distrófico.This work was carried out to evaluate the residual activity of isoxaflutole (IFT in Brachiaria decumbens control after different simulated drought conditions following herbicide application in two soils. Six simultaneous experiments were performed, using rates of 0, 230 and 270 g ha-1 of IFT in samples of a heavy clay soil and of 0, 180 and 200 g ha-1 in samples of a sandy clay loam soil. In each experiment, rates of IFT were combined in a factorial scheme with drought periods after herbicide application. B. decumbens was

  8. Macroaggregation and soil organic carbon restoration in a highly weathered Brazilian Oxisol after two decades under no-till.

    Science.gov (United States)

    de Oliveira Ferreira, Ademir; de Moraes Sá, João Carlos; Lal, Rattan; Tivet, Florent; Briedis, Clever; Inagaki, Thiago Massao; Gonçalves, Daniel Ruiz Potma; Romaniw, Jucimare

    2018-04-15

    Conclusions based on studies of the impacts of soil organic carbon (SOC) fractions and soil texture on macroaggregation and SOC stabilization in long-term (>20years) no-till (NT) fields remain debatable. This study was based on the hypothesis that the amount and frequency of biomass-C input associated with NT can be a pathway to formation of macroaggregates and to SOC buildup. The objectives were to: 1) assess the macroaggregate distribution (proportional mass, class mass) and the SOC and particulate organic carbon (POC) stocks of extra-large (8-19mm), large (2-8mm) and small (0.25-2mm) macroaggregate size classes managed for two decades by NT, and 2) assess the recovery of SOC stocks in extra-large macroaggregates compared to adjacent native vegetation (Andropogon sp., Aristida sp., Paspalum sp., and Panicum sp.). The crop rotation systems were: soybean (Glycine max L.), maize (Zea mays L.) and beans (Phaseolus vulgaris L.) in summer; and black oat (Avena strigosa Schreb), white oat (Avena sativa), vetch (Vicia sativa L.), black oat.+vetch (Avena strigosa Schreb+vetch) and wheat (Triticum aestivum L.) in winter. The experimental was laid out as 2×2 randomized block factorial with 12 replicates of a NT experiment established in 1997 on two highly weathered Oxisols. The factors comprised of: (a) two soil textural types: clay loam and sandy clay, and (b) two sampling depths: 0-5 and 5-20cm. The three classes of macroaggregates were obtained by wet sieving, and the SOC content was determined by the dry combustion method. The extra-large macroaggregate classes in 0-20cm depth for sandy clay (SdC) and clay loam (CL) Oxisol represented 75.2 and 72.4% of proportional mass, respectively. The SOC and POC stocks among macroaggregate classes in 0-5 and 5-20cm depths decreased in the order: 8-19mm>2-8mm ≈ 0.25-2mm. The SdC plots under soybean/maize at 3:1 ratio recovered 58.3%, while those at 1:1 ratio (high maize frequency) in CL recovered 73.1% of SOC stock in the extra

  9. Response of Sorghum bicolor L. to Residual Phosphate on Two Contrasting Soils Previously Planted to Cowpea or Maize

    Directory of Open Access Journals (Sweden)

    Tola Omolayo Olasunkanmi

    2016-01-01

    Full Text Available Proper fertilizer nutrient management through adequate utilization of the residual value coupled with healthy crop rotation contributes significantly to sustainable crop production. This study was conducted to evaluate the direct and residual effects of two rock phosphate (RP materials on two contrasting soils previously planted with either the cereal crop or the leguminous crop. The effectiveness of the RP materials as substitute for the conventional P fertilizers was evaluated using single superphosphate as reference at the Department of Agronomy, University of Ibadan, Ibadan, Nigeria. The experiments were 2 × 2 × 4 factorial in completely randomized design. The test crops in the first cropping performed better on the slightly acidic loamy sand than on the strongly acidic sandy clay loam. Performance of each crop was improved by P supply in the first and second cropping. Single superphosphate proved to be more efficient than the RPs in the first cropping but not as effective as MRP in the second cropping. In the second cropping, sorghum performed better on the soil previously cropped to cowpea while Morocco RP had the highest residual effect among the P-fertilizer sources. It is evident that rock phosphates are better substitutes to the conventional phosphorus fertilizers due to their long term residual effect in soils. The positive effects of healthy rotation of crops as well as the negative effects of low soil pH are also quite obvious.

  10. Assessment of Napropamide Dissipation and its Effect on Soil Enzymatic Activity

    Directory of Open Access Journals (Sweden)

    Mirosław Onyszko

    2017-11-01

    Full Text Available This paper assesses the dissipation of napropamide and its impact on the activity of dehydrogenases, alkaline phosphatase, acid phosphatase, and urease in sandy clay loam. The experiment was carried out on soil samples with organic carbon content of 12.08 g·kg-1, total nitrogen content of 0.97 g·kg-1, and pH 5.24 with the following variable factors: (a dose of Devrinol 450 SC formation (containing 450 g of napropamide in dm3: 0 (control, 0.5, 1, 2, 4, 8, and 16-fold hold of field dose; (b day of experiment: 1, 7, 14, 28, 56, and 112. The half-life of napropamide ranged from 33.50 to 71.42 days. The use of napropamide at the dose recommended by the manufacturer and at the dose reduced by half appeared to exhibit low toxicity in relation to enzymes determined. In contrast, the application of elevated napropamide doses decreased the values of biochemical parameters of the soil in most cases. The Pearson correlation coefficients showed statistically significant negative correlation between the content of napropamide residues and the enzymatic activity of the soil.

  11. Adsorption-desorption and leaching of pyraclostrobin in Indian soils.

    Science.gov (United States)

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T

    2013-01-01

    Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL(-1). The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL(-1). Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1-25.3%, 9.4-20.7% and 8.1-13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow

  12. Uptake of three isotopes of plutonium from soil by sweet corn grown in a growth chamber

    International Nuclear Information System (INIS)

    Hersloff, L.W.; Corey, J.C.

    1978-01-01

    The use of 237 Pu as a tracer for 238 Pu and 239 Pu was studied in a plant--soil system. Sandy clay--loam soil was spiked with approx. 240 pCi/g of 237 Pu, 14.3 pCi/g of 238 Pu, and 33 pCi/g of 239 Pu in the form of Pu(NO 3 ) 4 . The uptake of these three isotopes of plutonium was measured in the standing vegetation of sweet corn (Zea mays L. var. Silver Queen) after 30 and 50 days of growth. The mean concentrations in the standing crop and the concentration ratios of each isotope decreased from 30 to 50 days. There was an apparent differential availability of the three isotopes: 237 Pu was more available than 238 Pu, which was more available than 239 Pu. The quantity of 237 Pu in the standing crop, on a mass basis, closely approximated that of 238 Pu for both sampling times. Factors influencing these results are discussed

  13. Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material.

    Science.gov (United States)

    Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer

    2012-08-03

    The use of some novel and efficient crop nutrient-based superabsorbent hydrogel nanocomposites (SHNCs), is currently becoming increasingly important to improve the crop yield and productivity, due to their water retention properties. In the present study a poly(Acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite was synthesized and its physical properties characterized using Energy Dispersive X-ray (EDX), FE-SEM and FTIR spectroscopic techniques. The effects of different levels of SHNC were studied to evaluate the moisture retention properties of sandy loam soil (sand 59%, silt 21%, clay 19%, pH 7.4, EC 1.92 dS/m). The soil amendment with 0.1, 0.2, 0.3 and 0.4 w/w% of SHNC enhanced the moisture retention significantly at field capacity compared to the untreated soil. Besides, in a separate experiment, seed germination and seedling growth of wheat was found to be notably improved with the application of SHNC. A delay in wilting of seedlings by 5-8 days was observed for SHNC-amended soil, thereby improving wheat plant growth and establishment.

  14. Toxicity of RDX, HMX, TNB, 2,4-DNT, and 2,6-DNT to the Earthworm, Eisenia Fetida, in a Sandy Loam Soil

    National Research Council Canada - National Science Library

    Simini, Michael; Checkai, Ronald T; Kuperman, Roman G; Phillips, Carlton T; Kolakowski, Jan E; Kurnas, Carl W; Sunahara, Geoffrey I

    2006-01-01

    ...), and 1,3,5-trinitrobenzene (TNB) to fill the data gaps. Tests were conducted in freshly amended and in amended soils subjected to a weathering/aging process to better reflect exposure conditions in field soils...

  15. Toxicity of RDX, HMX, TNB, 2,4-DNT, and 2,6-DNT to the Earthworm, Eisenia Fetida, in a Sandy Loam Soil

    National Research Council Canada - National Science Library

    Simini, Michael; Checkai, Ronald T; Kuperman, Roman G; Phillips, Carlton T; Kolakowski, Jan E; Kurnas, Carl W; Sunahara, Geoffrey I

    2006-01-01

    ...) for ecological risk assessment of soil contaminants at Superfund sites. Insufficient information existed to generate Eco-SSLs for explosives and related materials in soil. The earthworm (Eisenia fetida...

  16. Effects of organic versus conventional arable farming on soil structure and organic matter dynamics in a marine loam in the Netherlands

    NARCIS (Netherlands)

    Pulleman, M.M.; Jongmans, A.G.; Marinissen, J.C.Y.; Bouma, J.

    2003-01-01

    We compared the effects of conventional and organic arable farming on soil organic matter (SOM) content, soil structure, aggregate stability and C and N mineralization, which are considered important factors in defining sustainable land management. Within one soil series, three different farming

  17. Vegetation pattern and soil characteristics of the polluted industrial area of Karachi

    International Nuclear Information System (INIS)

    Kabir, M.; Iqbal, M.Z.; Farooqi, M.Z.; Shafiq, M.

    2010-01-01

    A quantitative phyto sociological survey was conducted around the industrial areas of Sindh Industrial Trading Estate (S.I.T.E.) of Karachi. The herbaceous, shrubs vegetation was predominantly disturbed in nature. Fifteen plant communities based on Importance Value Index (IVI) of species were recognized. Eighty plant species were recorded in industrial areas. Abutilon fruticosum L., attained the highest importance value index (823.25) followed by Prosopis juliflora DC. (662.62), Corchorus trilocularis L. (467.20), Aerva javanica Burm.f. (419.97), Amaranthus viridis L. (397.65) and Senna holosericea L. (387.22), respectively. P. juliflora and A. fruticosum showed leading first dominant in five and four stands, respectively. Whereas, A. javanica, A. viridis, S. holosericea, Launaea nudicaulis L., Crochorus depressus L. and Salvadora L., attained the presence class III. Zygophyllum simplex L., Suaeda fruticosa L., Convolvulus glomeratus Choisky, Cressa cretica L., Cleome viscosa L., Calotropis procera Willd, Blepharis sindica T. Anderson, Rhynchosia pulverulenta L., Abutilon pakistanicum Jafri and Ali, Chenopodium album L., Capparis decidua Forssk and Digera muricata L. Mart showed the presence of class II. Whereas, rest of 58 species showed presence of class I. The soil characteristics of the polluted industrial area were also analyzed and related with the vegetation of the polluted areas. The Industrial area soil was coarse in texture and ranged from sandy clay loam to sandy loam. The soil was acidic to alkaline in nature. Maximum water holding capacity, bulk density, porosity, CaCO/sub 3/, pH, organic matter, total organic carbon, chloride, electrical conductivity, total dissolved salt, available sulphur contents, exchangeable sodium and potassium were recorded in wide range. It was concluded that certain edaphic factors due to industrial activities and induction of pollutants were responsible for variation in vegetation composition of the study area. (author)

  18. Investigating the Effect of Soil Texture and Fertility on Evapotranspiration and Crop Coefficient of Maize Forage

    Directory of Open Access Journals (Sweden)

    M. Ghorbanian Kerdabadi

    2017-02-01

    Full Text Available Introduction: Crop coefficient varies in different environmental conditions, such as deficit irrigation, salinity and intercropping. The effect of soil fertility and texture of crop coefficient and evapotranspiration of maize was investigated in this study. Low soil fertility and food shortages as a stressful environment for plants that makes it different evapotranspiration rates of evapotranspiration calculation is based on the FAO publication 56. Razzaghi et al. (2012 investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (CV. Titicaca was grown in field lysimeters with sand, sandy loam and sandy clay loam soil. Zhang et al (2014 were investigated the Effect of adding different amounts of nitrogen during three years (from 2010 to 2012 on water use efficiency and crop evapotranspiration two varieties of winter wheat. The results of their study showed. The results indicated the following: (1 in this dry land farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic. Materials and Methods: The study was a factorial experiment in a completely randomized design with three soil texture treatment, including silty clay loam, loam and sandy-loam soil and three fertility treatment, including without fertilizer, one and two percent fertilizer( It was conducted at the experimental farm in

  19. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Directory of Open Access Journals (Sweden)

    Leila Esmaeelnejad

    2016-06-01

    Full Text Available In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C from two feedstocks (rice husk and apple wood chips. Produced biochars were prepared at two diameters (1-2 mm and <1 mm and mixed with soil at a rate of 2% (w/w. Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks.

  20. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeelnejad, L.; Shorafa, M.; Gorji, M.; Hosseini, S.M.

    2016-11-01

    In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C) from two feedstocks (rice husk and apple wood chips). Produced biochars were prepared at two diameters (1-2 mm and <1 mm) and mixed with soil at a rate of 2% (w/w). Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks) was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks. (Author)

  1. Final Environmental Assessment for Establishment of a New C-130 Landing Zone for 58 SOW

    Science.gov (United States)

    2013-10-01

    sand about 10 inches thick. The subsoil is brown light sandy clay loam about 12 inches thick. The substratum is pink loam and sandy loam that has a...Madurez series soils is light brown loamy fine sand approximately 10 inches thick, with a brown light sandy clay loam subsoil about 12 inches thick...Closure Opening/Comments Count Sanitary Can w/folded seam 3” dia. x 4” ht. 1 Potted meat cans w/solder 2” dia. x 1 5/8” ht. ”Est-20-A” on base 2

  2. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types.

    Directory of Open Access Journals (Sweden)

    Sammy Frenk

    Full Text Available Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials. Engineered nanoparticles (ENPs may thus find their way into the soil environment via wastewater, dumpsters and other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by measuring bacterial community activity, composition and size following exposure to copper oxide (CuO and magnetite (Fe3O4 nanosized (<50 nm particles. Two different soil types were examined: a sandy loam (Bet-Dagan and a sandy clay loam (Yatir, under two ENP concentrations (1%, 0.1%. Results indicate that the bacterial community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil. More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a significant decreased oxidative potential and changes to community composition. Fe3O4 changed the hydrolytic activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community. Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO. Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore, it is suggested that the clay fraction and organic matter in

  3. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.

    Science.gov (United States)

    Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C

    2015-01-01

    Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.

  4. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    National Research Council Canada - National Science Library

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Phillips, Carlton T; Kolakowski, Jan E; Kurnas, Carl W

    2006-01-01

    ...) for the ecological risk assessment of contaminants at Superfund sites. Insufficient information for TNT to generate Eco-SSL for soil invertebrates has necessitated standardized toxicity testing to fill the data gap...

  5. Microbial activities in boreal soils: Biodegradation of organic contaminants at low temperature and ammonia oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kurola, J. (University of Helsinki, Faculty of Biosciences, Department of Ecological and Environmental Sciences, Lahti (FI))

    2006-07-01

    This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 - 50 mug cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 deg C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and beta-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 deg C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence

  6. South. Afr.J. Educ.Sci.Technol.2(1) (2007)

    African Journals Online (AJOL)

    PNR841, Pennisetum purpureum cvv. Napier SDPP 19 and Bana, Chloris gayana ... Bana, Napier, Sorghum bicolor, Chloris gayana and Cynodon inlemfluensis on the sandy, sandy loam and sandy clay loam soils. On the clay soil, the .... of experimental plots, which included seedbed preparation, planting, weeding and ...

  7. Pedological ~cterization, Clay Mine:at~ and .~cation of,

    African Journals Online (AJOL)

    namely, very deep, well drained, dark reddish brown to dark brown, sandy clay loams and sandy clays on the steep convex slopes; very deep, well drained, dark brown to dark red, sandy clay loams and; sandy clays on the linear slopes; and very ...

  8. influence of some types of Algerian soil on the development of rot-knot nematodes Meloidogyne incognita, M. javanica and M. arenaria (Tylenchida,Meloidogynidae)

    International Nuclear Information System (INIS)

    Hammach, M.

    2010-01-01

    Crops under greenhouses offer the possibility of vegetables production of high added value by focusing on earliness. They help to spread the availability timing of vegetables and fruits in the market throughout the year. However, these crops are subject to numerous attacks entailing heavy losses of yield quantity and quality. The plant parasitic nematodes especially rot-knot nematodes of the genus Meloidogyne are considered dangerous enemies of these cultures. The evolution study of these nematodes in different soil types allows one to compare the migration and movement of these nematodes in sandy soils considered as light soils, in clay soils heavy and intermediate silty clay soils. These soils have also rates of organic matter and a percentage of magnesium and calcium that might provide better conditions to the survival and migration of second stage larvae inoculated at a rate of 650 juveniles per pot of 24 cm in diameter where plants of melon Cucumis melo var. (Charentais) known to be susceptible to Meloidogyne was cultivated. The results for the population development of Meloidogyne, after a growing period of 3 months show an increase in the number of eggs, juvenile stages, inflated, swollen females and males in the 3 types of soil and that independently of clay fraction although clay soil may asphyxiate Meloidogyne. The development of the three species of Meloidogyne studied in these soils, the parameters taken into consideration (index of galls, which were 1.58, 1.75 and 1.5 for the sandy clay and the middle ground soils, vigour index and the evolution of populations of Meloidogyne and roots and soil as well as parameters related to production reveal the adaptation of these root-knot nematodes to the clay and sandy loam soils. At the end of culture, the final populations are important in the soils studied; 2680 for soil S. (sandy), 2272 for soil A (clay) and 2327 for soil I (intermediate) with a multiplication rate almost similar ( 4.12, 3.49 and 3

  9. Analysis of some parameters related to the hydraulic infiltration of a silty-loam soil subjected to organic and mineral fertilizer systems in Southern Italy

    Directory of Open Access Journals (Sweden)

    Antonietta Napolitano

    2011-05-01

    Full Text Available This experiment was carried out to detect the most linear process to calculate the hydraulic conductivity, with the aim to classify the soil of experimental station of the Unit for Research in Cultivations Alternative to Tobacco (CAT, locate in South Italy (Scafati, Province of Salerno, subject to different types of manure: compost and mineral fertilizer. The field tests were made by a system measuring infiltration by double, inner and outer ring, inserted into the ground. Each ring was supplied with a constant level of water from external bottle (3 cm, and hydraulic conductivity is determined when the water flow rate in the inner ring is constant. Four areas, two fertilized by mineral fertilizer (areas I and III and two amended with compost (areas II and IV at two depths, 5 and 10 cm (H1-H2, were analysed. The parameters were recorded at the following dates: on 18th and 19th September 2009, respectively, at 5 and 10 cm of depth (H1-H2 in area I; on 7th and 8th October 2009 in area II; on 13th and 14th October 2009 in area III; on 16th and 17th October 2009 in area IV. The effect of compost, used one time only, is present in all parameters, even if with a low statistical significance (P<0.01-0.05. This biomass stores a better water reserve [g (100 g–1-Δθ] and causes a lower avidity for water (bibacity and a better speed of percolation (Ks of exceeding water. The organic matter decreased the variability of soil along field. The studied soil showed to be almost permeable and not having any serious problem concerning rain intensity.

  10. KC-46A Formal Training Unit (FTU) and First Main Operating Base (MOB 1) Beddown EIS. Volume 1

    Science.gov (United States)

    2014-03-01

    discharged into the sanitary sewer system. Most of the sanitary sewer system at Altus AFB is over 45 years old and constructed of vitrified clay ...drained (USDA 2002a, 2003). The textures of the Tillman-Hollister soils range from clay loam to clay , with the Hollister subsurface soils being more clayey...range from sandy to sandy loam to sandy clay loam, with the Nobscot soils having a more sandy nature, especially in the surface soils (Altus AFB 2009a

  11. Final KC-46A Formal Training Unit (FTU) and First Main Operating Base (MOB 1) Beddown EIS

    Science.gov (United States)

    2014-03-01

    years old and constructed of vitrified clay pipe or concrete. Of the sanitary sewer lines field surveyed in 2004 and 2007, approximately 85 percent...Hollister soils are very deep and well-drained (USDA 2002a, 2003). The textures of the Tillman-Hollister soils range from clay loam to clay , with...The textures of the Miles-Nobscot soils range from sandy to sandy loam to sandy clay loam, with the Nobscot soils having a more sandy nature

  12. Environmental Assessment for Proposed Demolition and Consolidation, Maxwell Air Force Base, Montgomery County, Alabama

    Science.gov (United States)

    2013-09-01

    51 3.11.2.2 SANITARY SEWER ...............................................................51 3.11.2.3 ELECTRICITY...72 4.2.11.2 SANITARY SEWER ...............................................................73 4.2.11.3...loam or sandy clay soils. The majority of the installation consists of the Amite-Cahaba association which is deep, well-drained, fine sandy loam

  13. Growth and yield response of hybrid maize (Zea mays L. to phosphorus levels in sandy loam soil of Chitwan Valley, Nepal

    Directory of Open Access Journals (Sweden)

    Bandhu Raj Baral

    2015-06-01

    Full Text Available To evaluate the phosphorus response on winter hybrid maize, a field experiment was conducted at farm land of National Maize Research Program, Rampur, Chitwan, Nepal on 2012 and 2013. Seven levels of Phosphorus i.e. 0, 20, 40, 60, 80, 100 and 120 kg P2O5 ha-1 were applied along with 160:40 kg N:K2O ha-1. The experiment was laid out in randomized complete block design with three replications. Hybrid maize RML 32 × RML 17 was used for this study. Analysis of variance showed that plant height (cm, dry matter accumulation (g, number of kernels per row, 1000 grain weight (g and grain yield (ton ha-1 were significantly affected with Phosphorus level. The results showed that the trend of increment was positive for grain yield with increased P level from 0 to 80 kg P2O5 ha-1. The highest grain yield (10.77 ton ha-1 was measured when 120 kg P2O5 ha-1 is applied. It is concluded that 80 kg P2O5 ha-1 can be applied in winter season for hybrid maize RML-32 × RML-17 in Chitwan valley low land irrigated condition. Further studies are necessary on different soil types, seasons, management system and varieties to get more information about the most proper addition of P on maize. DOI: http://dx.doi.org/10.3126/ije.v4i2.12634 International Journal of Environment Vol.4(2 2015: 147-156

  14. Common bean growth, N uptake and seed production in sandy loam soil as affected by application of plant residues, nitrogen and irrigation level

    International Nuclear Information System (INIS)

    Abdallah, A.A.G.

    2002-01-01

    Field experiment was conducted at the experimental farm, Inshas, atomic energy authority, egypt. Common bean seeds e.v. Nebrasks were cultivated in sandy loan soil using drip irrigation system prepared for this purpose. Two water regimes, i.e., 100% (793.0 m 3 /fed.) and 65% (513.0 m 3 /fed.) of maximum available water were used in main plots. Where in sub plots two fertilizers types were applied i.e., soybean plant residues which contains N 15 labelled as an organic matter without any addition of any fertilizer and nitrogen as chemical fertilizer without using organic matter. The obtained results indicated that, application of plant residues was superior for total seed yield comparing to nitrogen fertilization treatments. This N source with irrigation level of 793.33 m 3 /fed. had a slight increase in total seed yield comparing with (513.0 m 3 /fed.). Irrigation level of 513.0 m 3 /fed. (65% MAW) as well as application of soybean plant residues showed the highest value of water use efficiency. The highest value of N seed percentage was obtained irrigation level with (513.0 m 3 /fed.). Soybean plant residues improved and increased seeds N content, and total seeds protein content. Both N chemical and irrigation level (65% Maw) recorded highest values with N 15 % atom excess. This result has been obtained at two growth stages and seed yield. The same trend of N 15 % atom excess reflected N utilized with both growth stages and seed yield

  15. influence of tillage practices on physical properties of a sandy loam

    African Journals Online (AJOL)

    DR. AMINU

    many regions of the world if the mechanics of tillage effects on soil physical properties is to be well understood. Thus, the ... tillage systems on water storage of a sandy loam soil after 22 years of ..... Soil infiltration ... and processes. Academy ...

  16. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  17. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    2013-04-01

    Full Text Available Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06 and 352% ± 139% (p = 0.1 of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site with growth of 142% ± 42% (p > 0.2 and 131% ± 62% (p > 0.2 of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC, no significant effects on maize yields were observed (p > 0.2. In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination

  18. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  19. Pore structure characteristics after two years biochar application to a sandy loam field

    DEFF Research Database (Denmark)

    Sun, Zhencai; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2015-01-01

    the effects of birch wood biochar (20, 40, and 100 Mg ha−1) applied to a sandy loam on soil total porosity and pore structure indices. Bulk and intact soil samples were collected for physicochemical analyses and water retention and gas diffusivity measurements between pF 1.0 and pF 3.0. Biochar application...

  20. A Physically-based Model for Predicting Soil Moisture Dynamics in Wetlands

    Science.gov (United States)

    Kalin, L.; Rezaeianzadeh, M.; Hantush, M. M.

    2017-12-01

    Wetlands are promoted as green infrastructures because of their characteristics in retaining and filtering water. In wetlands going through wetting/drying cycles, simulation of nutrient processes and biogeochemical reactions in both ponded and unsaturated wetland zones are needed for an improved understanding of wetland functioning for water quality improvement. The physically-based WetQual model can simulate the hydrology and nutrient and sediment cycles in natural and constructed wetlands. WetQual can be used in continuously flooded environments or in wetlands going through wetting/drying cycles. Currently, WetQual relies on 1-D Richards' Equation (RE) to simulate soil moisture dynamics in unponded parts of the wetlands. This is unnecessarily complex because as a lumped model, WetQual only requires average moisture contents. In this paper, we present a depth-averaged solution to the 1-D RE, called DARE, to simulate the average moisture content of the root zone and the layer below it in unsaturated parts of wetlands. DARE converts the PDE of the RE into ODEs; thus it is computationally more efficient. This method takes into account the plant uptake and groundwater table fluctuations, which are commonly overlooked in hydrologic models dealing with wetlands undergoing wetting and drying cycles. For verification purposes, DARE solutions were compared to Hydrus-1D model, which uses full RE, under gravity drainage only assumption and full-term equations. Model verifications were carried out under various top boundary conditions: no ponding at all, ponding at some point, and no rain. Through hypothetical scenarios and actual atmospheric data, the utility of DARE was demonstrated. Gravity drainage version of DARE worked well in comparison to Hydrus-1D, under all the assigned atmospheric boundary conditions of varying fluxes for all examined soil types (sandy loam, loam, sandy clay loam, and sand). The full-term version of DARE offers reasonable accuracy compared to the

  1. Soil Carbon and Nitrogen Stocks of Different Hawaiian Sugarcane Cultivars

    Directory of Open Access Journals (Sweden)

    Rebecca Tirado-Corbalá

    2015-06-01

    Full Text Available Sugarcane has been widely used as a biofuel crop due to its high biological productivity, ease of conversion to ethanol, and its relatively high potential for greenhouse gas reduction and lower environmental impacts relative to other derived biofuels from traditional agronomic crops. In this investigation, we studied four sugarcane cultivars (H-65-7052, H-78-3567, H-86-3792 and H-87-4319 grown on a Hawaiian commercial sugarcane plantation to determine their ability to store and accumulate soil carbon (C and nitrogen (N across a 24-month growth cycle on contrasting soil types. The main study objective establish baseline parameters for biofuel production life cycle analyses; sub-objectives included (1 determining which of four main sugarcane cultivars sequestered the most soil C and (2 assessing how soil C sequestration varies among two common Hawaiian soil series (Pulehu-sandy clay loam and Molokai-clay. Soil samples were collected at 20 cm increments to depths of up to 120 cm using hand augers at the three main growth stages (tillering, grand growth, and maturity from two experimental plots at to observe total carbon (TC, total nitrogen (TN, dissolved organic carbon (DOC and nitrates (NO−3 using laboratory flash combustion for TC and TN and solution filtering and analysis for DOC and NO−3. Aboveground plant biomass was collected and subsampled to determine lignin and C and N content. This study determined that there was an increase of TC with the advancement of growing stages in the studied four sugarcane cultivars at both soil types (increase in TC of 15–35 kg·m2. Nitrogen accumulation was more variable, and NO−3 (<5 ppm were insignificant. The C and N accumulation varies in the whole profile based on the ability of the sugarcane cultivar’s roots to explore and grow in the different soil types. For the purpose of storing C in the soil, cultivar H-65-7052 (TC accumulation of ~30 kg·m−2 and H-86-3792 (25 kg·m−2 rather H-78

  2. Soil Nutrient Dynamics under Old and Young Cocoa, Coffee and Cashew Plantations at Uhonmora, Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Rotimi Rufus Ipinmoroti

    2014-06-01

    Full Text Available A study was conducted to assess nutrient dynamics of soils under old and young cocoa, coffee and cashew plantations and the leaf nutrient contents of the crops at Uhonmora, Edo State, Nigeria for proper cultural and soil fertility management of the plantations. Soil and crop leaf samples were collected from each plantation using a random sampling technique. The samples were analyzed using standard procedures for sand, silt, clay, pH (H2O, electrical conductivity (EC, total N, available P, K, Ca, Mg, Na, and Effective Cation Exchange Capacity (ECEC. Leaf samples were analyzed for N, P, K, Ca, Mg and Na. Data were compared with the corresponding soil and foliar critical nutrient values for each crop. Results indicated that the soils were texturally sandy clay loam and acidic. The soils varied in their nutrient contents, with soil P for the old cocoa, young coffee and cashew plantations far below critical values. The young cashew plot was low in N content but adequate for other plots. However, the soil ECEC increased with the increasing of calcium contents. Leaf N was below critical for all the crops. Leaf K was low for cocoa and coffee plants, leaf Ca was low for the young cashew plants, while leaf Mg was low for the young cocoa and old cashew. The high soil Mg/K ratio of 8.7- 22.3 as against the established value of 2.0 might have resulted in gross nutrient imbalance which must have affected the absorption and utilization of other nutrients. Hence, adequate soil N did not translate the same availability to the crops. The ECEC showed that the soil needs to be improved upon for sustainable productivity. Soil nutrient content variation across the plantations with age of establishment will necessitate the need for consistent routine soil nutrient assessment for proper and balanced soil nutrient supply to the crops, for healthy crop growth and optimum yield. Management practices of soil surface mulching using organic wastes and cover crops under

  3. Growth and desiccation of Themeda triandra and Sporobolus ...

    African Journals Online (AJOL)

    Leaf extension growth ceased after about 40% soil water depletion in both species on the sandy clay loam used in the trial. Thereafter, leaves and growing points senesced progressively with increasing evaporative demand, despite a relatively small drop in soil moisture content. The tentative conclusion is that active leaf ...

  4. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    , bare soil and open water surfaces. The result of this study also shows that runoff is high in the clay, clay loam and sandy-clay loam due to the lack of infiltration process in clay soil from capping or crusting or sealing of the soil pores, therefore this situation will aid runoff. The application of the WetSpass model shows that precipitation, soil texture and land use / land cover are three controlling factors affecting the water balance in the LCB. Key words: Groundwater recharge, surface runoff, evapotranspiration, water balance, meteorological, draught, Landuse changes, climate changes, WetSpass, GIS.

  5. Phosphorus extracted by ion exchange resins and mehlich-1 from oxisols (latosols treated with different phosphorus rates and sources for varied soil-source contact periods

    Directory of Open Access Journals (Sweden)

    Irio Fernando de Freitas

    2013-06-01

    Full Text Available Despite the large number of studies addressing the quantification of phosphorus (P availability by different extraction methods, many questions remain unanswered. The aim of this paper was to compare the effectiveness of the extractors Mehlich-1, Anionic Resin (AR and Mixed Resin (MR, to determine the availability of P under different experimental conditions. The laboratory study was arranged in randomized blocks in a [(3 x 3 x 2 + 3] x 4 factorial design, with four replications, testing the response of three soils with different texture: a very clayey Red Latosol (LV, a sandy clay loam Red Yellow Latosol (LVA, and a sandy loam Yellow Latosol (LA, to three sources (triple superphosphate, reactive phosphate rock from Gafsa-Tunisia; and natural phosphate from Araxá-Minas Gerais at two P rates (75 and 150 mg dm-3, plus three control treatments (each soil without P application after four contact periods (15, 30, 60, and 120 days of the P sources with soil. The soil acidity of LV and LVA was adjusted by raising base saturation to 60 % with the application of CaCO3 and MgCO3 at a 4:1 molar ratio (LA required no correction. These samples were maintained at field moisture capacity for 30 days. After the contact periods, the samples were collected to quantify the available P concentrations by the three extractants. In general, all three indicated that the available P-content in soils was reduced after longer contact periods with the P sources. Of the three sources, this reduction was most pronounced for triple superphosphate, intermediate for reactive phosphate, while Araxá phosphate was least sensitive to the effect of time. It was observed that AR extracted lower P levels from all three soils when the sources were phosphate rocks, while MR extracted values close to Mehlich-1 in LV (clay and LVA (medium texture for reactive phosphate. For Araxá phosphate, much higher P values were determined by Mehlich-1 than by the resins, because of the acidity of

  6. Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions.

    Directory of Open Access Journals (Sweden)

    Antonio C A Carmeis Filho

    Full Text Available Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively. Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010. Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m. Consequently, both soil amendments applied together increased the mean weight diameter (MWD and geometric mean diameter (GMD in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical

  7. Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions.

    Science.gov (United States)

    Carmeis Filho, Antonio C A; Crusciol, Carlos A C; Guimarães, Tiara M; Calonego, Juliano C; Mooney, Sacha J

    2016-01-01

    Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management

  8. Distribución de la porosidad de un suelo franco arcilloso (alfisol en condiciones semiáridas después de 15 años bajo siembra directa Soil porosity distribution of a clay loam soil (alfisol in semi-arid conditions after 15 years under direct drilling

    Directory of Open Access Journals (Sweden)

    Cecilia Isabel Cerisola

    2005-12-01

    Full Text Available A partir de un estudio más amplio sobre evolución de las propiedades físicas de un suelo sometido a tres sistemas de labranza, se realizó, en dos campañas consecutivas, un seguimiento de la distribución de la porosidad del suelo según su origen, en parcelas cultivadas bajo siembra directa continua durante 15 años. En el ensayo se consideró un trayecto de 2 metros de longitud, perpendicular a la dirección de las labores, donde se realizaron mediciones de densidad aparente seca y contenido de humedad. El cultivo extensivo de secano (cereal, en cada una de las dos campañas, fue cebada de ciclo corto y de ciclo largo. El calendario de la toma de datos de las variables medidas se fijó en 5 fechas por campaña. La porosidad estructural del suelo, debida principalmente a la alternancia de ciclos de humectación - desecación, fue calculada cada 5 cm y hasta 35 cm de profundidad. Este proceso de fisuración natural resulta suficiente para asegurar un buen drenaje y facilitar el desarrollo radicular de las plantas, siempre y cuando el contenido de humedad se mantenga dentro de la capacidad de retención de agua.On a long-term essay under direct drilling, the evolution of the physical properties of a clay loam soil, such as distribution by origin of soil porosity, has been assessed during two growing seasons. The cereal crops in each growing seasons were spring barley and winter barley, respectively. Soil physical properties were measured on a 2 m length transect located in a perpendicular line to the direction of vehicular traffic for field operations. Five sampling opportunities, within crop cycle, were used to measure the variables. Structural soil porosity, due principally to shrinkage and swelling cycles, was assessed in the 0 to 35 cm depth soil profile. This natural process seemed to be sufficient to guarantee good drainage and normal crop development, unless in the moisture content range included in field capacity.

  9. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    Science.gov (United States)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an

  10. Linear Shrinkage Behaviour of Compacted Loam Masonry Blocks

    Directory of Open Access Journals (Sweden)

    NAWAB ALI LAKHO

    2017-04-01

    Full Text Available Walls of wet loam, used in earthen houses, generally experience more shrinkage which results in cracks and less compressive strength. This paper presents a technique of producing loam masonry blocks that are compacted in drained state during casting process in order to minimize shrinkage. For this purpose, loam masonry blocks were cast and compacted at a pressure of 6 MPa and then dried in shade by covering them in plastic sheet. The results show that linear shrinkage of 2% occurred which is smaller when compared to un-compacted wet loam walls. This implies that the loam masonry blocks compacted in drained state is expected to perform better than un-compacted wet loam walls.

  11. Interaction of radionuclides with diluvium loams

    International Nuclear Information System (INIS)

    Martyanov, V.V.; Guskov, A.V.; Tkachenko, A.V.; Prozorov, L.B.; Karlina, O.K.

    2005-01-01

    Full text of publication follows: Primary goal of this research was to study the interaction of radioactive liquid waste with diluvium loams. A geology-hydro-geological characterisation of the RADON-site facility, located in the Southern Region of Russia, is given. According to the results of laboratory and field studies, the hydro-geological parameters of diluvium loams were designed, and their mineral and grain structures were investigated. It was established, that loams have low filtration properties. Definition of filtration coefficients (Kf) under laboratory conditions has shown low values (hydraulic gradient J=10, Kf = 8.10 -4 m/day). But the field experiment has shown, that Kf values vary from 0.1 up to 0.04 m/day with a gradient of J=1! (It is important to point at the selection of the initial data for modelling migration). Mineral structure: quartz - 43 %, montmorillonite - 28 %, hydro-micas - 17 %, iron hydroxides - 5 %, feldspar - 3,7 %, kaolinite - 2 %, carbonates - 1 %, organics - 0,3 %. The content of minerals known as good sorbents, makes up to 52 %. Laboratory experiments dedicated to the determination of sorption isotherms for various radionuclides were carried out. As a result, distribution coefficients (Kd) for 90 Sr, 137 Cs, 60 Co, 238 Pu were determined. Geology-hydro-geological and radiochemical data were used for the schematization of the system. Then, the mathematical modelling and forecasting of radionuclide migration was carried out. Two conservative scenarios were considered - full destruction of the waste matrices + water flow (lateral and vertical direction). As migrating components 90 Sr, 137 Cs, 60 Co, 238 Pu were considered. 90 Sr, 137 Cs, 60 Co, 238 Pu have different mobility due to their Kd ranging from tens and hundreds up to thousand ml/g depending on the properties of the diluvium loams. Initial radionuclide concentrations were as follow: 137 Cs -1.32.10 8 Bq/l, 60 Co - 2.52.10 7 Bq/l, 90 Sr - 1.81.10 7 Bq/l, 238 Pu - 7.78.10 6

  12. Field performance of three real-time moisture sensors in sandy loam and clay loam soils

    Science.gov (United States)

    The study was conducted to evaluate HydraProbe (HyP), Campbell Time Domain Reflectometry (TDR) and Watermarks (WM) moisture sensors for their ability to estimate water content based on calibrated neutron probe measurements. The three sensors were in-situ tested under natural weather conditions over ...

  13. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    Science.gov (United States)

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  14. The Role of Teak Leaves (Tectona grandis), Rhizobium, and Vesicular-Arbuscular Mycorrhizae on Improving Soil Structure and Soil Nutrition

    Science.gov (United States)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.

  15. Shadow analysis of soil surface roughness compared to the chain set method and direct measurement of micro-relief

    Directory of Open Access Journals (Sweden)

    R. García Moreno

    2010-08-01

    Full Text Available Soil surface roughness (SSR expresses soil susceptibility to wind and water erosion and plays an important role in the development and the maintenance of soil biota. Several methods have been developed to characterise SSR based on different methods of acquiring data. Because the main problems related to these methods involve the use and handling of equipment in the field, the present study aims to fill the need for a method for measuring SSR that is more reliable, low-cost and convenient in the field than traditional field methods. Shadow analysis, which interprets micro-topographic shadows, is based on the principle that there is a direct relationship between the soil surface roughness and the shadows cast by soil structures under fixed sunlight conditions. SSR was calculated with shadows analysis in the laboratory using hemispheres of different diameter with a diverse distribution of known altitudes and a surface area of 1 m2.

    Data obtained from the shadow analysis were compared to data obtained with the chain method and simulation of the micro-relief. The results show a relationship among the SSR calculated using the different methods. To further improve the method, shadow analysis was used to measure the SSR in a sandy clay loam field using different tillage tools (chisel, tiller and roller and in a control of 4 m2 surface plots divided into subplots of 1 m2. The measurements were compared to the data obtained using the chain set and pin meter methods. The SSR measured was the highest when the chisel was used, followed by the tiller and the roller, and finally the control, for each of the three methods. Shadow analysis is shown to be a reliable method that does not disturb the measured surface, is easy to handle and analyse, and shortens the time involved in field operations by a factor ranging from 4 to 20 compared to well known techniques such as the chain set and pin meter methods.

  16. Biomassa microbiana do solo em sistema de plantio direto na região de Campos Gerais - Tibagi, PR Soil microbial biomass in no-tillage system in the Campos Gerais region - Tibagi, PR (Brazil

    Directory of Open Access Journals (Sweden)

    Solismar de Paiva Venzke Filho

    2008-04-01

    under NT at the "Santa Branca" farm, Tibagi, Paraná State, Brazil (50 ° 23 ' W, 24 ° 36 ' N. The experiment was installed at four sites, three of which had been NT cultivated in the previous 12 years, with the following textures: clay (PD12-TmuA; sandy-clay (PD12-TmeA, and sandy-clay-loam (PD12-TA; and one site 22 years under NT with texture class sandy-clay-loam (PD22-TA. During an 18 months period soils were sampled nine times in four layers (0-2.5; 2.5-5; 5-10 and 10-20 cm. Microbial C was different in PD12-TA and PD22-TA in the deepest soil layers, due to the time of NT implantation. The microbial N level in the PD22-TA averaged 30.8 kg ha-1 higher than in PD12-TA, while the variations in microbial N in the 0-20 cm layer were smaller. No significant differences were observed in the amounts of microbial C and N among the crop sequences. Regarding soil texture, the averages of microbial C and N in the 0-20 cm layer were higher for PD12-TmuA, except 20 days after wheat sowing (Jun/01. Contrasting to the 5-10 and 10-20 cm layers, in PD12-TA and PD12-TmeA the differences between microbial C levels were not significant in the 0-5 cm layer. Our results indicate that the amount of microbial C and N is favored by long-term NT and the clayey soil texture.

  17. Designing a Physical Model for the Interaction between Displacement Piles and Soil

    Directory of Open Access Journals (Sweden)

    Arūnas Jankauskas

    2011-04-01

    Full Text Available The article deals with the interaction between piles installed in dusty sandy clay and the base. The paper reviews experimental and theoretical work, presents a geological litological structure of soil and looks at the methods of composing a model. The article also describes the model of the carried out experiment and analyzes directions towards soil movement. Field and laboratory studies as well as soil analysis, including its distribution scheme are provided. Ground elevation around the piles has been calculated. A new physical model has been created on the basis of the before examined physical model and its reasoning.Article in Lithuanian

  18. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    Science.gov (United States)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  19. Gas transport and subsoil pore characteristics

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Keller, Thomas

    2013-01-01

    Arrangements of elementary soil particles during soil deposition and subsequent biological and physical processes in long-term pedogenesis are expected to lead to anisotropy of the non-tilled subsoil pore system. Soil compaction by agricultural machinery is known to affect soil pore characteristics...... were sampled in vertical and horizontal directions from 0.3, 0.5, 0.7 and 0.9 m depth (the two lower depths only in Sweden). In the laboratory, water retention, air permeability (ka) and gas diffusivity (Ds/D0) were determined. For the sandy clay loam, morphological characteristics of pores (effective......). In the sandy clay loam soil, dB and nB displayed significant anisotropy (FAcharacteristics because of its origin...

  20. Examination of Technetium Transport Through Soils Under Contrasting Redox Conditions: Batch and Column Work

    Science.gov (United States)

    Dozier, R.; Montgomery, D.; Wylie, E. M.; Dogan, M.; Moysey, S. M.; Powell, B. A.; Martinez, N. E.

    2015-12-01

    Experiments were performed under various reducing conditions to evaluate the transport behavior of technetium-99 (99Tc) in the presence of sandy clay loam soil from the Savannah River Site (SRS) and goethite, magnetite, and iron sulfide, which were selected for their increasing reducing potential. The experiments were conducted to investigate how redox reaction equilibria and rates affect the overall mobility of 99Tc as it transitions between the mobile Tc(VII) and immobile Tc(IV). Under oxygen-rich conditions, batch sorption isotherms measured for TcO4- across the concentration range 0.5 to 50 μg/L were linear with distribution coefficients (Kd) of 0.78 mL/g or lower, with decreasing sorption for goethite, magnetite, and iron sulfide, respectively. Addition of Na2S resulted in a marked increase in apparent 99Tc sorption to the solid phase, with Kd of 43 mL/g, 35 mL/g, and 29 mL/g, following the same mineral trend as previously. The increased Kd values are possibly due to reduction of Tc(VII) to Tc(IV), resulting in the formation of TcO2(s). SRS soil batch sorption isotherms measured for TcO4- across the same concentration range were also linear, with Kd of 0.7 mL/g for unadjusted pH, 5.1 mL/g for pH of around 6, and 6.7 mL/g for pH of around 4. Kinetic batch sorption tests showed less than 10% 99Tc sorption in an oxidizing environment and greater than 95% sorption in a reducing environment, with both reactions occurring on the order of minutes. In contrast, desorption experiments initiated by transferring the samples from a reducing environment (0.1% H2(g)/99.9% N2(g)) to atmospheric conditions resulted in a slow desorption step on the order of days. Column experiments conducted with the SRS sands indicate a retardation factor of 1.17 for 99Tc under oxygen rich conditions. Additional column experiments are being conducted to evaluate 99Tc transport dependencies on transitions between oxygen rich and poor conditions.

  1. Comparison of estimation methods of soil strength in five soils Aplicação de diferentes métodos para estimar a resistência de cinco solos

    Directory of Open Access Journals (Sweden)

    Ayodele Ebenezer Ajayi

    2009-06-01

    Full Text Available In agriculture, the soil strength is used to describe the susceptibility to deformation by pressure caused by agricultural machine. The purpose of this study was to compare different methods for estimating the inherent soil strength and to identify their suitability for the evaluation of load support capacity, compaction susceptibility and root growth. The physical, chemical, mineralogical and intrinsic strength properties of seven soil samples, collected from five sampling pits at different locations in Brazil, were measured. Four clay (CS and three sandy clay loam (SCL soils were used. The clay soils were collected on a farm in Santo Ângelo, RS (28 º 16 ' 16 '' S; 54 º 13 ' 11 '' W 290 m; A and B horizons at the Universidade Federal de Lavras, Lavras, MG (21 º 13 ' 47 '' S; 44 º 58 ' 6'' W; 918 m and on the farm Sygenta, in Uberlandia, MG (18 º 58 ' 37 '' S; 48 º 12 ' 05 '' W 866 m. The sandy clay loam soils were collected in Aracruz, ES (19 º 47 ' 10 '' S; 40 º 16 ' 29 '' W 81 m, and on the farm Xavier, Lavras, MG (21 º 13 ' 24 '' S; 45 º 05 ' 00 '' W; 844 m. Soil strength was estimated based on measurements of: (a a pneumatic consolidometer, (b manual pocket (non-rotating penetrometer; and (c automatic (rotating penetrometer. The results of soil strength properties were similar by the three methods. The soil structure had a significant influence on soil strength. Results of measurements with both the manual pocket and the electric penetrometer were similar, emphasizing the influence of soil texture. The data showed that, to enhance the reliability of predictions of preconsolidation pressure by penetrometers, it is better to separate the soils into the different classes, rather than analyze them jointly. It can be concluded that the consolidometer method, although expensive, is the best when evaluations of load support capacity and compaction susceptibility of soil samples are desired.Na agricultura, a resistência do solo é usada

  2. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    Science.gov (United States)

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Soil fertility and {sup 137} Cs redistribution as related to land use, landscape and texture in a watershed of Paraiba State; Fertilidade do solo e redistribuicao de {sup 137} Cs em funcao da cobertura vegetal, relevo, e classes texturais, em uma microbacia hidrografica do Estado da Paraiba

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio Clementino dos

    2004-03-15

    , whereas soil chemical analyses were total C and N, extractable P (Mehlich-1), pH (water, exchangeable acidity and cations). The soils of the watershed generally exhibited low fertility, regardless of their landscape position (p<0.05). However, land use and texture contributed significantly to the soil fertility (p<0.05). The contents of C, N, Ca, Mg, and ECEC were significantly higher (p<0.05) for the forest soils, whereas P, K, and exchangeable acidity were higher (p<0,05) in the cultivated soils. Forest soils were classified as sandy clay and sandy clay loam (65%), whereas cultivated soils were identified as sand and sandy loam (64%). Particle size distribution and topography were interrelated as sand contents decreased with the increase in slope. Overall, soils with finer texture showed higher fertility levels, regardless of the landscape position. Catchment sites were not discriminated as areas of significant gain of nutrients. It was observed a strong P deficiency, regardless of the landscape position, land use or particle size distribution. The catena segmentation, based on landform elements, land use and soil depths, was an efficient tool to understand the erosion/sedimentation processes by using the {sup 137} Cs redistribution approach. Soils of the topossequences under native forest (n 2) and pasture (n = 3) were sampled for this purpose. It was observed a significant correlation between clay content and {sup 137} Cs activity in the soil (r = 0.75, p<0.01). At the summit positions of the forest soil, the average {sup 137} Cs stock down to a depth of 28 cm was 38,7 Bq m{sup -2}. At the backslope positions the {sup 137} Cs stock was similar for the same depth range. On the other hand, the average {sup 137} Cs stock in soils under pasture at the summit landscape position was 58,0 Bq m{sup -2}, with a maximum of 74,9 Bq m{sup -2}. Levels of {sup 137} Cs were below detection limit (0,03 Bq kg{sup -1}) on soils under pasture from the shoulder and backslope positions

  4. Soils of the Eastern mountainsides of the southern Sikhote-Alin (on the example of Lazovsky nature reserve, Russia)

    Science.gov (United States)

    Tregubova, Valentina; Semal, Victoria; Nesterova, Olga; Yaroslavtsev, Alexis

    2017-04-01

    The most common soils of the southern Far East are Brownzems under Russian classification (Cambisols), which are the zonal ones, emerging on the steep slopes and tops of hills, on high river terraces under broad-leaved and cedar-broad-leaved forests. Those soils formed due to two processes: organic matter metamorphism and clayization by siallite, leading to the formation of clay-metamorphic horizon Bw. The main morphological features of Cambisols are not deep soil profile (50 - 70 cm), weak horizons differentiation, with lots of cobble. Chemically those soils are low saturated, even in the humus horizon. Distribution of total absorbed bases is mostly accumulative, which is related to the distribution of humus in these soils, and the predominant type of clay fraction distribution of. The only exception are Humic Cambisols and Humic Cambisols Calcic which were formed on redeposited products of limestone rock weathering. Fine-grained deposits are mainly loams with a low content of silt. Silt distribution has an accumulative character with a gradual decrease in the content of silt down from the top of the profile. Layer of fresh leaf fall is very common for the Humic Cambisols surfaces, and under it there is the litter of plant residues with different degrees of decomposition. Accumulative humus horizon is dark gray with brownish tint, thin, from 10 to 15 cm in depth, loose, crumbly, highly penetrated by roots, with a strong granular structure, with aggregates tightly attached to the root hairs, sandy loam or sandy clay loam. The middle horizon is brown, yellowish-brown, divided into sub-horizons, with different color intensity, density, soil texture and amount of cobble. Dystric Cambisols are acidic or strongly acidic with low saturation of soil absorbing complex. Due to amount and distribution of organic matter these soils can be divided into two groups. The first group is soils with accumulative humus distribution: with a low depth humus-accumulative horizon (11

  5. Performance of neutron scattering relative to Diviner2000 for estimating soil water content in salt affected soils

    International Nuclear Information System (INIS)

    Al-Ain, F.; Attar, J.; Hussein, F.

    2007-05-01

    A field experiment was conducted on sandy clay and clayey soils at Deir Ezzor to compare the performance of Neutron Scattering (NS) relative to a capacitance probe (CP), Diviner2000, in our local conditions under saline soils. The effect of soil electrical conductivity (ECe) and bulk density (?b) on the precession, accuracy and sensitivity of the tested equipment s were evaluated. Also, the ability to improve the calibration equation for these equipment s, by including ECe and ?b as independent variables in the equation formula, was studied. The study showed that, Diviner2000 was very sensitive to soil bulk density and electrical conductivity of the soil (i.e. soil salinity) compared to the NS. Multiple non-linear regressions improved the fitting when both parameters (?b and ECe) were included in the equation, even though the correlation coefficient (R2) remained low in the case of Diviner2000.(author)

  6. Degradation of zearalenone and ochratoxin A in three Danish agricultural soils

    DEFF Research Database (Denmark)

    Mortensen, G.K.; Strobel, B.W.; Hansen, H.C.B.

    2006-01-01

    Degradation of two mycotoxins: zearalenone (ZON) produced by species of Fusarium and ochratoxin A (OTA) produced by species of Penicillium were followed in pot experiments using agricultural topsoils from Danish experimental farms: a sandy soil, a sandy clay soil and a gyttja soil with a high...... content of silt. Experiments with unplanted soil and pots planted with barley were included. Soil samples were withdrawn during a period of 225 days and analysed for the content of OTA and ZON. The degradation of both toxins consisted of an initial fast degradation followed by a slower transformation step......, whereas the half-lives for OTA were about 0.2-1 day. The slowest degradation was measured in soil rich in clay. After 225 days, neither OTA nor ZON was detected in any of the soil types. Generally, the degradation of ZON and OTA was faster in planted soil than in unplanted soil, probably due to higher...

  7. Direct and Indirect Short-term Effects of Biochar on Physical Characteristics of an Arable Sandy Loam

    DEFF Research Database (Denmark)

    Sun, Zhencai; Moldrup, Per; Elsgaard, Lars

    2013-01-01

    Biochar addition to agricultural soil is reported in several studies to reduce climate gas emissions, boost carbon storage, and improve soil fertility and crop productivity. These effects may be partly related to soil physical changes resulting from biochar amendment, but knowledge of how biochar...... application mechanistically affects soil physical characteristics is limited. This study investigated the effect of biochar application on soil structural and functional properties, including specific surface area, water retention, and gas transport parameters. Intact soil cores were taken from a field...... experiment on an arable sandy loam that included four reference plots without biochar and four plots with 20 tons ha(-1) biochar incorporated into the upper 20 cm 7 months before sampling. Water retention was measured at matric potentials ranging from wet (pF 1.0) to extremely dry conditions (pF similar to 6...

  8. Effect of Injecting Hydrogen Peroxide into Heavy Clay Loam Soil on Plant Water Status, NET CO2 Assimilation, Biomass, and Vascular Anatomy of Avocado Trees Efecto de la Inyección de Peróxido de Hidrógeno en Suelo Franco Arcilloso Pesado, sobre el Estado Hídrico, Asimilación Neta de CO2, Biomasa y Anatomía Vascular de Paltos

    Directory of Open Access Journals (Sweden)

    Pilar M Gil M

    2009-03-01

    Full Text Available In Chile, avocado (Persea americana Mill. orchards are often located in poorly drained, low-oxygen soils, situation which limits fruit production and quality. The objective of this study was to evaluate the effect of injecting soil with hydrogen peroxide (H2O2 as a source of molecular oxygen, on plant water status, net CO2 assimilation, biomass and anatomy of avocado trees set in clay loam soil with water content maintained at field capacity. Three-year-old ‘Hass’ avocado trees were planted outdoors in containers filled with heavy loam clay soil with moisture content sustained at field capacity. Plants were divided into two treatments, (a H2O2 injected into the soil through subsurface drip irrigation and (b soil with no H2O2 added (control. Stem and root vascular anatomical characteristics were determined for plants in each treatment in addition to physical soil characteristics, net CO2 assimilation (A, transpiration (T, stomatal conductance (gs, stem water potential (SWP, shoot and root biomass, water use efficiency (plant biomass per water applied [WUEb]. Injecting H2O2 into the soil significantly increased the biomass of the aerial portions of the plant and WUEb, but had no significant effect on measured A, T, gs, or SWP. Xylem vessel diameter and xylem/phloem ratio tended to be greater for trees in soil injected with H2O2 than for controls. The increased biomass of the aerial portions of plants in treated soil indicates that injecting H2O2 into heavy loam clay soils may be a useful management tool in poorly aerated soil.En Chile, los huertos de palto (Persea americana Mill. se ubican comúnmente en suelos pobremente drenados con bajo contenido de oxígeno, lo que limita producción y calidad de fruta. El objetivo de este estudio fue evaluar el efecto de la inyección de peróxido de hidrógeno (H2O2 al suelo como fuente de O2, sobre el estado hídrico, asimilación de CO2, biomasa y anatomía de paltos en suelo franco arcilloso con

  9. Passive Microwave Observation of Soil Water Infiltration

    Science.gov (United States)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  10. The influence of reduced tillage on water regime and nutrient leaching in a loamy soil

    OpenAIRE

    Baigys, Giedrius; Gaigalis, Kazimieras; Kutra, Ginutis

    2006-01-01

    The effect of tillage technologies and terms on soil moisture regime and nitrate leaching was studied in field trials carried out on 0.76-1.36-ha fields. The study site was arranged in Pikeliai village (Kėdainiai district). The soil prevailing in the study site is Endocalcari - Endohypogleic Cambisol, sandy light loam and sandy loam on deeper layers of sandy loam and sandy light loam. The arable horizon contains sandy light loam, which is characteristic of the soils prevailing in the Middle L...

  11. Sorption of thiabendazole in sub-tropical Brazilian soils.

    Science.gov (United States)

    de Oliveira Neto, Odilon França; Arenas, Alejandro Yopasa; Fostier, Anne Hélène

    2017-07-01

    Thiabendazole (TBZ) is an ionizable anthelmintic agent that belongs to the class of benzimidazoles. It is widely used in veterinary medicine and as a fungicide in agriculture. Sorption and desorption are important processes influencing transport, transformation, and bioavailability of xenobiotic compounds in soils; data related to sorption capacity are therefore needed for environmental risk assessments. The aim of this work was to assess the sorption potential of TBZ in four Brazilians soils (sandy, sandy-clay, and clay soils), using batch equilibrium experiments at three pH ranges (2.3-3.0, 3.8-4.2, and 5.5-5.7). The Freundlich sorption coefficient (K F ) ranged from 9.0 to 58 μg 1-1/n  (mL) 1/n  g -1 , with higher values generally observed at the lower pH ranges (2.3-3.0 and 3.8-4.2) and for clay soils. The highest organic carbon-normalized sorption coefficients (K OC ) obtained at pH 3.8-5.7 (around the natural pH range of 4.1-5.0) for both clay soils and sandy-clay soil were 3255 and 2015 mL g -1 , respectively. The highest correlations K F vs SOM (r = 0.70) and K F vs clay content (r = 0.91) were observed at pH 3.8-4.2. Our results suggest that TBZ sorption/desorption is strongly pH dependent and that its mobility could be higher in the studied soils than previously reported in soils from temperate regions.

  12. Soil physical effects on longleaf pine performance in the West Gulf Coastal Plain

    Science.gov (United States)

    Mary Anne S. Sayer; James D. Haywood; Shi-Jean Susana Sung

    2015-01-01

    We summarize 8 years of soil physical property responses to herbicide manipulation of the understory in two young longleaf pine stands growing on either Ruston fine sandy loam or Beauregard silt loam soils. We also describe relationships between pine sapling vigor and the soil physical environment across a 3-year period on the Ruston soil and a 2-year period on the...

  13. The Influence Of Loam Type And Cement Content On The Compressive Strength Of Rammed Earth

    Directory of Open Access Journals (Sweden)

    Narloch P. L.

    2015-03-01

    Full Text Available Currently, a worldwide dynamic rise of interest in using soil as a construction material can be observed. This trend is evident in the rapid rise of the amount of standards that deal with soil techniques. In 2012 the number of standards was larger by one third than five years prior. To create a full standardization of the rammed earth technique it is necessary to take into account the diversity of used soil and stabilizing additives. The proportion of the components, the process of element production and the research methods must also be made uniform. The article describes the results of research on the compressive strength of rammed earth samples that differed from each other with regards to the type of loam used for the mixture and the amount of the stabilizer. The stabilizer used was Portland cement CEM I 42.5R. The research and the analysis of the results were based on foreign publications, the New Zealand standard NZS 4298:1998, the American Standard NMAC14.7.4 and archival Polish Standards from the 1960’s that dealt with earth material.

  14. THE EFFECT OF SALINITY-SODICITY AND GLYPHOSATE FORMULATIONS – AVANS PREMIUM 360 SL ON PHOSPHOMONOESTERASE ACTIVITIES IN SANDY LOAM

    Directory of Open Access Journals (Sweden)

    Maciej Płatkowski

    2016-01-01

    Full Text Available The aim of study was to determine the influence of NaCl and glyphosate-based herbicide Avans Premium 360 SL on acid and alkaline phosphomonoesterase activities in sandy loam. The experiment was carried out in laboratory conditions on sandy loam with Corg content 10.90 g/kg. Soil was divided into half kilogram samples and adjusted to 60% of maximum water holding capacity. In the experiment dependent variables were: I – dosages of Avans Premium 360 SL (0, a recommended field dosage – FD, a tenfold higher dosage – 10 FD and hundredfold higher dosage – 100 FD, II – amount of NaCl (0, 3% and 6%, III – day of experiment (1, 7, 14, 28 and 56. On days of experiment the activity of alkaline and acid phosphomonoesterase activity was assayed spectrophotometrically. The obtained result showed that the application of Avans Premium 360 SL decreased in acid and alkaline phosphomonoesterase activity in clay soil. Significant interaction effect between the dosage of Avans Premium 360 SL, NaCl amount and day of experiment was reported in the experiment. The inhibitory effect of Avans Premium 360 SL was the highest in soil with NaCl at the amount of 6%.

  15. Comparing of Normal Stress Distribution in Static and Dynamic Soil-Structure Interaction Analyses

    International Nuclear Information System (INIS)

    Kholdebarin, Alireza; Massumi, Ali; Davoodi, Mohammad; Tabatabaiefar, Hamid Reza

    2008-01-01

    It is important to consider the vertical component of earthquake loading and inertia force in soil-structure interaction analyses. In most circumstances, design engineers are primarily concerned about the analysis of behavior of foundations subjected to earthquake-induced forces transmitted from the bedrock. In this research, a single rigid foundation with designated geometrical parameters located on sandy-clay soil has been modeled in FLAC software with Finite Different Method and subjected to three different vertical components of earthquake records. In these cases, it is important to evaluate effect of footing on underlying soil and to consider normal stress in soil with and without footing. The distribution of normal stress under the footing in static and dynamic states has been studied and compared. This Comparison indicated that, increasing in normal stress under the footing caused by vertical component of ground excitations, has decreased dynamic vertical settlement in comparison with static state

  16. Processing Uranium-Bearing Materials Containing Coal and Loam

    Energy Technology Data Exchange (ETDEWEB)

    Civin, V; Prochazka, J [Research and Development Laboratory No. 3 of the Uranium Industry, Prague, Czechoslovakia (Czech Republic)

    1967-06-15

    Among the ores which are classified as low-grade in the CSSR are mixtures of coal and bentonitic loam of tertiary origin, containing approximately 0.1% U and with a moisture content at times well above 20-30%. The uranium is held mainly by the carbonaceous component. Conventional processing of these materials presents various difficulties which are not easily overcome. During leaching the pulp thickens and frequently becomes pasty, due to the presence of montmorillonites. Further complications arise from the high sorption capacity of the materials (again primarily due to montmorillonites) and poor sedimentation of the viscous pulps. In addition, the materials are highly refractory to the leaching agents. The paper presents experience gained in solving the problems of processing these ores. The following basic routes were explored: (1) separation of the carbonaceous and loamy components: The organic component appears to be the main activity carrier. Processing the concentrated material upon separation of the inactive or less active loam may not only remove the thixotropic behaviour but also substantially reduce the cost of the ore treatment; (2) 'liquifying' the pulps or preventing the thickening of the pulp by addition of suitable agents; (3) joint acid or carbonate processing of the materials in question with current ore types; (4) removal or suppression of thixotropic behaviour by thermal pretreatment of the material; and (5) application of the 'acid cure' method. The first method appears to be the most effective, but it presents considerable difficulties due to the extreme dispersion of the carbonaceous phase and further research is being carried out. Methods 2 and 3 proved to be unacceptable. Method 4, which includes roasting at 300-400{sup o}C, is now being operated on an industrial scale. The final method has also shown definite advantages for particular deposits of high montmorillonite content material. (author)

  17. Surface Runoff of Pesticides from a Clay Loam Field in Sweden.

    Science.gov (United States)

    Larsbo, Mats; Sandin, Maria; Jarvis, Nick; Etana, Ararso; Kreuger, Jenny

    2016-07-01

    Pesticides stored at or close to the soil surface after field application can be mobilized and transported off the field when surface runoff occurs. The objective of our study was to quantify the potential pesticide losses in surface runoff from a conventionally managed agricultural field in a Swedish climate. This was achieved by measuring surface runoff volumes and concentrations in runoff of six spring-applied pesticides and autumn-applied glyphosate and its metabolite aminomethylphosphonic acid (AMPA). Measurements were performed for 3 yr both during the growing seasons and during intervening winter snowmelt periods on a clay loam field close to Uppsala. During growing seasons, surface runoff was generated on only five occasions during one 25-d period in 2012 when the infiltration capacity of the soil may have been reduced by structural degradation due to large cumulative rainfall amounts after harrowing. Concentrations in surface runoff exceeded Swedish water quality standards in all samples during this growing season for diflufenican and pirimicarb. Surface runoff was generated during three snowmelt periods during the winter of 2012-2013. All of the applied pesticides were found in snowmelt samples despite incorporation of residues by autumn plowing, degradation, and leaching into the soil profile during the period between spraying and sampling. Concentrations of glyphosate ranged from 0.12 to 7.4 μg L, and concentrations of AMPA ranged from 0 to 2.7 μg L. Our results indicate that temporal changes in hydraulic properties during the growing season and when the soil freezes during winter affect pesticide losses through surface runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Studyof Wastewater and Compost Effects on Some of Soil Physical and Chemical Characteristics

    Directory of Open Access Journals (Sweden)

    M. Shakarami

    2016-09-01

    had three layers: the upper layer (Clay texture, the middle layer (clay loam and the bottom layer (sandy clay loam. After beds preparation, basil (Ocimum Basilicum was planted in them. Due to the lack of an active wastewater treatment plant in the region, raw and treated wastewaters were transported from Kermanshah, the nearest city to Hamedan. Also, municipal compost was prepared from Kermanshah Compost Company.At the end of cultivation period, the soil samples (from 0-15 cm were collected and the amount of physical (hydraulic conductivity, bulk and particle density and porosityand chemical (nitrogen, phosphorus and potassium properties were measured. Results and Discussion: The results showed that the water quality has a significant effect on all parameters and the amount of compost has significant effect on all parameters except bulk density. But, the amount of all parameters (except hydraulic conductivity was not influenced by interaction between water quality and compost levels. In all treatments, the range of hydraulic conductivity, bulk density, particle density and total porosity were varied between 23.82 to 35.61 mmh-1, 1.41 to 1.43 grcm-3, 2.51 to 2.57 grcm-3 and 42.88 to 45.19 %, respectively. Also the range of nitrogen, phosphorus, and potassium were varied between 0.06 to0.08 %, 14.64 to232.28mgkg-1,and 393.22 to519.84mgkg-1,respectively.Overall, the results indicated that using compost and wastewater increased hydraulic conductivity, porosity, nitrogen, phosphorus, and potassium of the soil in comparison to the control. Whereasbulk and particle density of soil decresed by using compost and wastewater (as a mixed material. Conclusion: In this study, we investigated the effect of wastewater and compost on some of soil physical properties (hydraulic conductivity, bulk density, particle density and total porosity and also some of chemical properties of soil nitrogen, phosphorus and potassium.The results showed that the use of wastewater and compost on soil

  19. SOIL PROPERTIES OF EIGHT FOREST STANDS RESULTED FROM REHABILITATION OF DEGRADED LAND ON THE TROPICAL AREA FOR ALMOST A HALF CENTURY (Sifat-sifat Tanah Delapan Tegakan Hutan Hasil Rehabilitasi Lahan Terdegradasi pada Daerah Tropika Selama Setengah Abad

    Directory of Open Access Journals (Sweden)

    Haryono Supriyo

    2013-11-01

    Full Text Available ABSTRACT Physical, chemical and biological properties of soil are influenced by vegetation types which grow above it. Different tree species of stands will produce difference litter quantity, litter quality and also plants’ root system. Therefore quantifying physical and chemical soil properties in several stands after rehabilitation of degraded land will increase the understanding of forest soil characteristics. The research was conducted in 8 forest stands in Wanagama I, Gunungkidul, Yogyakarta. Collection of soil samples was done at the depth of 0-10, 10-30 and 30-50 cm by making soil profile. The result showed that the textural classes were from sandy clay loam to clay. The content of clay increased with increasing soil depth. Bulk density did not differ much among the profiles and soil depth, ranging from 0.90 to 1.28 g/cm3, and so were particle density ranged from 2.19 to 2.55 g/cm3 and pore space ranged from 47.89 to 58.08 %. pH H2O ranging from 5.81 to 7.49 (slightly acid to neutral, meanwhile  pH KCl ranging from 4.44 to 6.37. C-organic content varied widely among the vegetations and soil depth ranged between 0.11 and 5.17 %. Available P and total P varied widely from 1 to 104 ppm and from 20 to 390 ppm, respectively. CEC were not much different among the profiles and soil depths, ranging from 19.80 to 38.06 cmol (+/kg and base saturation in all samples were very high i.e. > 100 %.   ABSTRAK Sifat-sifat fisik, kimia dan biologi tanah dipengaruhi oleh tipe vegetasi yang tumbuh di atasnya. Perbedaan spesies pohon suatu tegakan akan menghasilkan perbedaan jumlah seresah, kualitas seresah dan juga sistem perakaran. Kuantifikasi sifat-sifat fisik dan kimia tanah pada beberapa tegakan hutan pada lahan terdegradasi setelah direhabilitasi akan meningkatkan pemahaman mengenai sifat-sifat tanah hutan. Penelitian dilakukan pada I jenis tegakan hutan di Hutan Pendidikan Wanagama, Gunungkidul, Yogyakarta. Pengambilan sampel tanah dilakukan pada

  20. Application of porous ceramic as soil moisture sensor in controlled environment

    International Nuclear Information System (INIS)

    Oliveira, R.M.; Nono, M.C.A.; Mineiro, S.L.

    2009-01-01

    In this work, the behavior of ZrO 2 -TiO 2 porous ceramic as soil water content sensor element at different climatic conditions is presented. The analysis of the sensor element was carried out correlating the results of electrical properties, through the measurement of capacitance and impedance variation in function of the soil water content, with the microstructure of the ZrO 2 -TiO 2 ceramic. The ceramic sensor was studied in a sandy clay soil type at different climatic conditions characterized by temperature and relative humidity. The microstructural characterization of the ceramic sensor included scanning electron microscopy observations, X-ray diffraction patterns and pore size distribution using mercury porosimetry. (author)

  1. Calagem e adubação orgânica: influência na adsorção de fósforo em solos Liming and organic fertilizer: influence on phosphorus adsorption in soils

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2006-12-01

    replications, in a greenhouse. The treatments consisted of four liming levels (0; 0,5; 1 and 2 times the recommended dose to reach V = 60% and five doses of cattle manure (0; 2,5; 5,0; 7,5 and 10% of the total soil volume, applied in samples of four dm³ of orthic Quartzarenic Neosol sand texture, dystrophic Red-Yellow Latosol sandy clay texture, dystrophic Red-Yellow Latosol sandy clay loam texture and dystrophic Red Latosol clay texture soils; each soil represented an experiment. The values of equilibrium phosphorus (P-rem, maximum P adsorption capacity (MPAC and the soil P buffering index (PBI were evaluated and subjected to fitting of multiple regression models as a function of the applied lime and cattle (bovine manure. Liming and manure fertilizer caused a reduction of MPAC and increase in P-rem and PBI. The alterations of these values was associated to soil mineralogy and texture; P adsorption increased with the oxidic character of the soils. Results evidenced the importance of soil management systems that contemplate acidity correction and increase in organic matter levels to optimize the P use by crops.

  2. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 μm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam...... physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil...

  3. Critical evaluation of the use of the hydroxyapatite as a stabilizing agent to reduce the mobility of Zn and Ni in sewage sludge amended soils.

    Science.gov (United States)

    Zupancic, Marija; Bukovec, Peter; Milacic, Radmila; Scancar, Janez

    2006-01-01

    The leachability of zinc (Zn) and nickel (Ni) was investigated in various soil types amended with sewage sludge and sewage sludge treated with hydroxyapatite. Sandy, clay and peat soils were investigated. For leachability tests, plastic columns (diameter 9 cm, height 50 cm) were filled with moist samples up to a height of 25 cm. Sewage sludge (1 kg) was mixed with 4.6 kg of clay and sandy soils and with 6.7 kg of peat soil. For sewage sludge mixtures treated with hydroxyapatite, 0.5 kg of the hydroxyapatite was added to 1 kg of the sewage sludge. Neutral (pH 7) and acid precipitation (pH 3.5) were applied. Acid precipitation was prepared from concentrated HNO(3), H(2)SO(4) and fresh doubly distilled water. The amount of precipitation corresponded to the average annual precipitation for the city of Ljubljana, Slovenia. It was divided into eight equal portions and applied sequentially on the top of the columns. The results indicated that the leachabilities of Zn in sewage sludge amended peat and clay soils were low (below 0.3% of total Zn content) and of Ni in sewage sludge amended sandy, clay and peat soil below 1.9% of total Ni content. In sewage sludge amended sandy soil, the leachability of Zn was higher (11% of Zn content). The pH of precipitation had no influence on the leachability of either metal. Treatment of sewage sludge with hydroxyapatite efficiently reduced the leachability of Zn in sewage sludge amended sandy soil (from 11% to 0.2% of total Zn content). In clay and peat sewage sludge amended soils, soil characteristics rather than hydroxyapatite treatment dominate Zn mobility.

  4. soil failure crescent radii measurement for draft in tillage study

    African Journals Online (AJOL)

    user

    1986-09-01

    Sep 1, 1986 ... SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY. FEDERAL UNIVERSITY OF TECHNOLOGY. OWERRI. ABSTRACT. Field clay loam and sandy loam soils were tilled with a chisel .... modified earth moving equation proposed by Mckyes and All was: ... applications of analytical mechanics.

  5. Studies on uptake and translocation of some nutrient elements in plant

    International Nuclear Information System (INIS)

    Aly, S.S.M.

    1985-01-01

    The main objective of this work is to study the uptake and translocation of some nutrients. In this respect, two experiments, dealing with 3 2 P and 6 5 Zn, were conducted using a sandy clay loam soil where corn plants were grown to study such influence on the uptake and translocation of P, Zn, N and K.The utilization of P and Zn fertilizers by corn plants as well as the production of dry matter yield were considered. Chemical analysis of some mineral components and assay of radioactive materials 3 2 P and 6 5 Zn of both plant and soil and the dry weight of corn plants were estimated

  6. Runoff and Sediment Production under the Similar Rainfall Events in Different Aggregate Sizes of an Agricultural Soil

    Directory of Open Access Journals (Sweden)

    S. F. Eslami

    2016-09-01

    Full Text Available Introduction: Soil erosion by water is the most serious form of land degradation throughout the world, particularly in arid and semi-arid regions. In these areas, soils are weakly structured and are easily disrupted by raindrop impacts. Soil erosion is strongly affected by different factors such as rainfall characteristics, slope properties, vegetation cover, conservation practices, and soil erodibility. Different physicochemical soil properties such texture, structure, infiltration rate, organic matter, lime and exchangeable sodium percentage can affect the soil erodibility as well as soil erosion. Soil structure is one of the most important properties influencing runoff and soil loss because it determines the susceptibility of the aggregates to detach by either raindrop impacts or runoff shear stress. Many soil properties such as particle size distribution, organic matter, lime, gypsum, and exchangeable sodium percentage (ESP can affect the soil aggregation and the stability. Aggregates size distribution and their stability can be changed considerably because of agricultural practices. Information about variations of runoff and sediment in the rainfall events can be effective in modeling runoff as well as sediment. Thus, the study was conducted to determine runoff and sediment production of different aggregate sizes in the rainfall event scales. Materials and Methods: Toward the objective of the study, five aggregate classes consist of 0.25-2, 2-4.75, 4.75-5.6, 5.6-9.75, and 9.75-12.7 mm were collected from an agricultural sandy clay loam (0-30 cm using the related sieves in the field. Physicochemical soil analyses were performed in the aggregate samples using conventional methods in the lab. The aggregate samples were separately filed into fifteen flumes with a dimension of 50 cm × 100 cm and 15-cm in depth. The aggregate flumes were fixed on a steel plate with 9% slope and were exposed to the simulated rainfalls for investigating runoff and

  7. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  8. Jatropha curcas L. root structure and growth in diverse soils.

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  9. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2013-01-01

    Full Text Available Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots. The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14±5% (mean ± standard deviation. Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  10. Plasticity and density-moisture-resistance relations of soils amended with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mapfuno, E.; Chanasyk, D.S. [University of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources

    1998-06-01

    The objective of this study was to investigate the impact of fly ash amendments on the plasticity, water retention and penetration resistance-density-moisture relationships of three soils of sandy loam, loam and clay loam textures in order to determine the potential compaction of these soil/fly ash mixtures if they were worked at different moisture ranges. For all three soils the addition of fly ash decreased the plasticity index, but slightly increased the Proctor maximum density. This implies that fly ash amendments reduce the range of moisture within which soils are most susceptible to compaction. However, for the sandy loam and loam textured soils amended with fly ash, cultivation must be avoided at moisture contents close to field capacity since maximum densification occurs at these moisture contents. In all three soils the addition of fly ash increased water retention, especially in the sandy loam. Fly ash amendments increased penetration resistance of the clay loam, but increased penetration resistance of the sandy loam.

  11. Toxicity of Fipronil in Mississippi Soil Types Against Reticulitermes flavipes (Isoptera: Rhinotermitidae)

    Science.gov (United States)

    J. E. Mulrooney; P. D. Gerard

    2007-01-01

    Three soils (a silt loam, loamy sand, sandy loam) found in Mississippi and pure silica sand were treated with fipronil and bioassayed using eastern subterranean termites, Reticulitermes flavipes. Soils were treated with aqueous solutions of Termidor (fipronil) at concentrations of 0, 0.12, 0.25,2.5, 5.0 and 20.0 ppm (wt AI: wt soil) that brought the soils to 15%...

  12. Mucilage from seeds of chia (Salvia hispanica L.) used as soil conditioner; effects on the sorption-desorption of four herbicides in three different soils.

    Science.gov (United States)

    Di Marsico, A; Scrano, L; Amato, M; Gàmiz, B; Real, M; Cox, L

    2018-06-01

    The objective of this work was to determine the effect of the mucilage extracted from Chia seeds (Salvia hispanica L.) as soil amendment on soil physical properties and on the sorption-desorption behaviour of four herbicides (MCPA, Diuron, Clomazone and Terbuthylazine) used in cereal crops. Three soils of different texture (sandy-loam, loam and clay-loam) were selected, and mercury intrusion porosimetry and surface area analysis were used to examine changes in the microstructural characteristics caused by the reactions that occur between the mucilage and soil particles. Laboratory studies were conducted to characterise the selected herbicides with regard their sorption on tested soils added or not with the mucilage. Mucilage amendment resulted in a reduction in soil porosity, basically due to a reduction in larger pores (radius>10μm) and an important increase in finer pores (radius<10μm) and in partcles' surface. A higher herbicide sorption in the amended soils was ascertained when compared to unamended soils. The sorption percentage of herbicides in soils treated with mucilage increased in the order; sandy-loam. The increase in the organic carbon content upon amendment and the natural clay content of the soils are revealed to be responsible for the higher adsorption of Diuron when compared with Terbuthylazine, Clomazone and MCPA. Desorption of the herbicides was highly inhibited in the soils treated with mucilage; only Terbuthylazine showed a slight desorption in the case of loam and clay loam-soils. This study leads to the conclusion that mucilage from Chia seeds used as soil conditioner can reduce the mobility of herbicides tested in agricultural soils with different physico-chemical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. INFLUENCE OF VERMICOMPOST ON THE PHYSICO-CHEMICAL AND BIOLOGICAL PROPERTIES IN DIFFERENT TYPES OF SOIL ALONG WITH YIELD AND QUALITY OF THE PULSE CROP-BLACKGRAM

    Directory of Open Access Journals (Sweden)

    K. Parthasarathi, M. Balamurugan, L. S. Ranganathan

    2008-01-01

    Full Text Available Field experiments were conducted during 2002-2003 on clay loam, sandy loam and red loam soil at Sivapuri, Chidambaram, Tamil Nadu, to evaluate the efficacy of vermicompost on the physico-chemical and biological characteristics of the soils and on the yield and nutrient content of blackgram - Vigna mungo, in comparison to inorganic fertilizers nitrogen, phosphorous, potassium. Vermicompost had increased the pore space, reduced particle and bulk density, increased water holding capacity, cation exchange capacity, reduced pH and electrical conductivity, increased organic carbon content, available nitrogen, phosphorous, potassium and microbial population and activity in all the soil types, particularly clay loam. The yield and quality (protein and sugar content in seed of blackgram was enhanced in soils, particularly clay loam soil. On the contrary, the application of inorganic fertilizers has resulted in reduced porosity, compaction of soil, reduced carbon and reduced microbial activity.

  14. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field.

    Science.gov (United States)

    Tavares, Uilka Elisa; Rolim, Mário Monteiro; de Oliveira, Veronildo Souza; Pedrosa, Elvira Maria Regis; Siqueira, Glécio Machado; Magalhães, Adriana Guedes

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground.

  15. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils

    Science.gov (United States)

    Alice W. Ratcliff; Matt D. Busse; Carol J. Shestak

    2006-01-01

    Glyphosate applied at the recommended field rate to a clay loam and a sandy loam forest soil resulted in few changes in microbial community structure. Total and culturable bacteria, fungal hyphal length, bacterial:fungal biomass, carbon utilization profiles (BIOLOG), and bacterial and fungal phospholipid fatty acids (PLFA) were unaffected 1, 3, 7, or 30 days...

  16. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    Science.gov (United States)

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  17. Effects of soil physical properties on erodibility and infiltration ...

    African Journals Online (AJOL)

    The soil moisture count for plot A ranged between 9.54% to 14.56% while that of plot B range between 10.64% to 11.26%. The particle sizes analysis indicated that the soil type in plot A is mainly medium loam and predominantly sand clay loam in plot B. It is therefore concluded that, the study area is susceptible to erosion ...

  18. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability

    Science.gov (United States)

    A.M. Weitza; E. Linderb; S. Frolkingc; P.M. Crillc; M. Keller

    2001-01-01

    We studied soil moisture dynamics and nitrous oxide (N2O) ¯uxes from agricultural soils in the humid tropics of Costa Rica. Using a splitplot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter...

  19. Interaction Among Machine Traffic, Soil Physical Properties and Loblolly Pine Root Prolifereation in a Piedmont Soil

    Science.gov (United States)

    Emily A. Carter; Timothy P. McDonald

    1997-01-01

    The impact of forwarder traffic on soil physical properties was evaluated on a Gwinnett sandy loam, a commonly found soil of the Piedmont. Soil strength and saturated hydraulic conductivity were significantly altered by forwarder traffic, but reductions in air-filled porosity also occurred. Bulk density did not increase significantly in trafficked treatments. The...

  20. Effect of Aggregate Structure on VOC Gas Adsorption onto Volcanic Ash Soil

    OpenAIRE

    濱本, 昌一郎

    2008-01-01

    The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the fir...

  1. Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils

    Science.gov (United States)

    Ahmed, Ahmed S. F.; Raghavan, Vijaya

    2018-01-01

    Amendment of soil with biochar has been shown to enhance fertility and increase crop productivity, but the specific influence of biochar on soil workability remains unclear. Select physico-mechanical and chemical properties of clay loam and sandy loam soils were measured after amendment with wood-derived biochar of two particle size ranges (0.5-425 and 425-850 µm) at five dosages ranging from 0.5 to 10% dry weight. Whereas the clay loam soil workability decreased when the finer wood-derived biochar was applied at rates of 6 or 10%, soil fertility was not enhanced. The sandy loam soil, due to Proctor compaction, significantly decreased in bulk density with 6 and 10% wood-derived biochar amendments indicating higher soil resistance to compaction.

  2. A discrete element model for soil-sweep interaction in three different soils

    DEFF Research Database (Denmark)

    Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs

    2013-01-01

    . To serve the model development, the sweep was tested in three different soils (coarse sand, loamy sand, and sandy loam). In the tests, soil cutting forces (draught and vertical forces) and soil disturbance characteristics (soil cross-section disturbance and surface deformation) resulting from the sweep...... were measured. The measured draught and vertical forces were used in calibrations of the most sensitive model parameter, particle stiffness. The calibrated particle stiffness was 0.75 × 103 N m−1 for the coarse sand, 2.75 × 103 N m−1 for the loamy sand, and 6 × 103 N m−1 for the sandy loam...

  3. Transformation of the herbicide [14C]glufosinate in soils

    International Nuclear Information System (INIS)

    Smith, A.E.

    1989-01-01

    The degradation of 2 μg/g [ 14 C]glufosinate (DL-homoalan-4-ylmethylphosphinic acid) was studied in clay, clay loam, and sandy loam soils at 85% field capacity and at 20 degree C. Over a 4-week period the soils were extracted and analyzed for transformation products by radiochemical and gas chromatographic techniques. In all soils there was release of [ 14 C]carbon dioxide and formation of [ 14 C]-3-(hydroxymethylphosphinyl)propionic acid (MPPA) as major degradation products. Within 21 days, about 55% of the applied 14 C herbicide had been transformed to MPPA in the sandy loam and 19% to [ 14 C]carbon dioxide. After 28 days, approximately 45% of the 14 C herbicide had been transformed to MPPA in the clay and clay loam and 10% released as [ 14 C]carbon dioxide. At all samplings, other 14 C transformation products appeared to be insignificant

  4. Migration of 137Cs and 90Sr in undisturbed soil profiles under controlled and close-to-real conditions

    International Nuclear Information System (INIS)

    Forsberg, S.; Rosen, K.; Fernandez, V.; Juhan, H.

    2000-01-01

    Migration of 137 Cs and 90 Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil-plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30-40 cm depth in 1997 and 1998. The total deposition of 137 Cs ranged from 24 to 45 MBq/m 2 , and of 90 Sr from 23 to 52 MBq/m 2 . It was shown that migration of 137 Cs was fastest in sandy loam, and of 90 Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137 Cs and 90 Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137 Cs and 90 Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137 Cs and 90 Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils

  5. Metrological assessment of TDR performance for measurement of potassium concentration in soil solution

    Directory of Open Access Journals (Sweden)

    Isaac de M. Ponciano

    2016-04-01

    Full Text Available ABSTRACT Despite the growing use of the time domain reflectometry (TDR technique to monitoring ions in the soil solution, there are few studies that provide insight into measurement error. To overcome this lack of information, a methodology, based on the central limit theorem error, was used to quantify the uncertainty associated with using the technique to estimate potassium ion concentration in two soil types. Mathematical models based on electrical conductivity and soil moisture derived from TDR readings were used to estimate potassium concentration, and the results were compared to potassium concentration determined by flame spectrophotometry. It was possible to correct for random and systematic errors associated with TDR readings, significantly increasing the accuracy of the potassium estimation methodology. However, a single TDR reading can lead to an error of up to ± 18.84 mg L-1 K+ in soil solution (0 to 3 dS m-1, with a 95.42% degree of confidence, for a loamy sand soil; and an error of up to ± 12.50 mg L-1 of K+ (0 to 2.5 dS m-1 in soil solution, with a 95.06% degree of confidence, for a sandy clay soil.

  6. Anisotropy of the porosity in a silty loam soil under continuous no tillage management

    OpenAIRE

    Soracco, Carlos Germán; Lozano, Luis A.; Gelati, Pablo R.; Sarli, Guillermo O.; Filgueira, Roberto R.

    2008-01-01

    La superficie bajo siembra directa (SD) se incrementa continuamente en la Republica Argentina. Existen trabajos que muestran una orientación preferencial de los poros en sentido horizontal cerca de la superficie de suelos bajo SD. El objetivo específico de este trabajo fue evaluar la conductividad hidráulica saturada del horizonte superficial en sentido vertical y horizontal en SD continua con descompactación (SDCD) respecto de un testigo de SD sin descompactacion (SDSD) para determinar la ex...

  7. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    International Nuclear Information System (INIS)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R.; Topp, Edward

    2010-01-01

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. 14 C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable 14 C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  8. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa ON, Canada K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada)

    2010-12-01

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. {sup 14}C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable {sup 14}C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  9. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    Science.gov (United States)

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  10. The impact of the age of vines on soil hydraulic conductivity in vineyards in eastern Spain

    NARCIS (Netherlands)

    Alagna, Vincenzo; Prima, Di Simone; Rodrigo-Comino, Jesús; Iovino, Massimo; Pirastru, Mario; Keesstra, Saskia D.; Novara, Agata; Cerdà, Artemio

    2017-01-01

    Soil infiltration processes manage runoff generation, which in turn affects soil erosion. There is limited information on infiltration rates. In this study, the impact of vine age on soil bulk density (BD) and hydraulic conductivity (Ks) was assessed on a loam soil tilled by chisel plough. Soil

  11. Termite Infestation Associated with Type of Soil in Pulau Pinang, Malaysia (Isoptera: Rhinotermitidae)

    OpenAIRE

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-01-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  12. Termite infestation associated with type of soil in pulau pinang, malaysia (isoptera: rhinotermitidae).

    Science.gov (United States)

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-12-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  13. Soil mineral concentrations and soil microbial activity in grapevine inoculated with arbuscular mycorrhizal (AM fungus in Chile

    Directory of Open Access Journals (Sweden)

    Eduardo von Bennewitz

    2008-01-01

    Full Text Available A two year-experiment was carried out to study an effect of root inoculation with arbuscular mycorrhizal (AM fungus on soil mineral concentrations and soil microbial activity in grapevine (Vitis vi­ni­fe­ra cv. “Cabernet Sauvignon” cultivated in Chile. Plants were inoculated with a commercial granular inoculant (Mycosym Tri-ton® and cultivated in 20 L plastic pots filled with an unsterilized sandy clay soil from the Vertisols class under climatic conditions of Curicó (34°58´ S; 71°14´ W; 228 m ASL, Chile.Soil analyses were carried out at the beginning of the study and after two years (four samples of rhizospheric soil for each treatment to assess the effects of mycorrhizal infection on soil mineral concentration and physical properties. Soil microbial activity was measured by quantifying the soil production of CO2 in ten replications of 50 g of soil from each treatment. Root mycorrhizal infection was assessed through samples of fresh roots collected during 2005 and 2006. Fifty samples for each treatment were analyzed and the percentage of root length containing arbuscules and vesicles was assessed.During both years (2005 and 2006 all treatments showed mycorrhizal infection, even the Control treatment where no AM was applied. Mycorrhizal colonization did not affect the soil concentrations of N, P, K, Ca, Mg, K, Ca, Mg, Mn, Zn, Cu, Fe, B, organic matter, pH/KCl and ECe. Soil CO2-C in vitro production markedly decreased during the period of the study. No significant differences where detected among treatments in most cases.

  14. Antibiotic resistance of microorganisms in agricultural soils in Russia

    Science.gov (United States)

    Danilova, Natasha; Galitskaya, Polina; Selivanovskaya, Svetlana

    2017-04-01

    Antibiotics are medicines widely used to treat and prevent bacterial infections not only in human medicine but also in veterinary. Besides, in animal husbandry antibiotics are often used in for stimulation of animal's growth. Many antibiotics used for veterinary purposes are weakly absorbed in the animal's gut. So up to 90% of the administered antibiotics are excreted with manure and urine. Therefore use of manure as an organic fertilizer leads to formation and spreading of antibiotic resistance among soil microbes. Another reason of such spreading is the horizontal transfer of genes encoding antibiotic resistance from manure to soil microflora. The level of antibiotic resistance genes pollution of soils has not been properly studied yet. The aim of this study was to estimate the contamination of agricultural soils by antibiotic resistant genes. 30 samples of agricultural soils were selected around of Kazan city (Tatarstan Republic) with 1.3 Mio citizens. Since tetracycline is reported to be the most wide spread veterinary antibiotic in Russia, we estimated the level of soil contamination by tet(X) gene encoding tetracycline decomposition in microbial cell. Real time PCR method with specific primers was used as a method of investigation. Particle size type distribution of 31% of soil samples was estimated to be sandy clay, and 69% of soil samples - to silty clay. Content of dissoluble organic carbon ranged from 0,02 mg g -1 (sample 20) to 0,46 mg g -1 (sample 16). Respiration activity and microbial biomass of soils were estimated to be 0,80-5,28 CO2 C mg g -1 h-1 and 263,51-935,77 µg kg - 1 respectively. The values presented are typical for soils of Tatarstan Republic. In terms of the antibiotic resistant gene content, 27 of 30 samples investigated contained tet(X) gene, while 52% of the samples were highly contaminated, 34% of samples were middle contaminated and 14% of samples - weakly contaminated.

  15. Response of Some Bread Wheat Cultivars to Foliar Application of Zn and Fe Different Forms in Two Locations with Different Soil Properties

    Directory of Open Access Journals (Sweden)

    E Arazmjoo

    2018-05-01

    Research Farm of Birjand University located in Amirabad region which the soil texture was sandy clay loam, with 8.1 pH, 0.15% organic matter, 30 ppm available P and 184 ppm available K. The second experiment was conducted at the South Khorasan Agricultural and Natural Resources Research and Education Center located in Mohammadieh region which the soil texture was loam, with 7.6 pH, 0.54% organic matter, 30 ppm available P and 140 ppm available K. At the end of growth stage wheat traits included days to heading, days to physiological maturity, grain filing period, plant height, spike length, peduncle length, number of grain per spike, 1000 grains weight, grain yield, biomass and harvest index were measured. Data analyses were performed using two-way analysis of variance (ANOVA with SAS 9.1. Means of treatments were compared between locations, cultivars and foliar application of zinc and iron according to protected Least Significance Differences (LSD test at the 5% level. Results and Discussion Results showed that location had a significant effect on all traits except for number of grains per spike. Grain yield and yield components were higher in soil of Mohammadieh against Amirabad. Investigated cultivars also were significantly different in all traits but days to heading and biomass. The higher number of grain per spike, grain yield and harvest index and relatively lower 1000 grains weight were related to new wheat cultivars. New cultivars also possessed less height and peduncle length and more grain filling period and spike length. Zinc foliar application significantly increased plant height, spike length, number of grain per spike, 1000 grains weight, grain yield and biomass but no significant effects were observed on days to heading and maturity, grain filing period, peduncle length and harvest index. Zinc sulfate treatment increased grain yield and biomass by 9.6 and 8.2 percent and chelated zinc increased these traits by 6.7 and 4.1 percent compared to control

  16. Adsorption behavior of endosulfan on alluvial soil

    International Nuclear Information System (INIS)

    Ashraf, M.; Sherazi, S.T.H.; Nizamani, S.M.; Bhanger, M.I.

    2012-01-01

    The present study was carried out to assess the behavior of endosulfan pesticide in alluvial soil under laboratory conditions. Sandy loam soil was studied to evaluate the fate of applied endosulfan with respect to soil properties. Known amount of endosulfan was added on alluvial soil in PVC column and eluted with 1000 ml of water. Eluents were collected in 10 parts, each of 100 ml. The soil in the column was divided in to three equal parts, each of 10 cm. Each part of the soil and eluents were analyzed for the determination of Endosulfan level using GC- mu ECD and GC-MS techniques. The kinetic and equilibrium adsorption characteristics of endosulfan on sandy loam soil was also studied and found that it follows Ho's pseudo second order and Freundlich isotherm. The present study revealed that a-and beta-Endosulfan was determined efficiently with their degraded products in alluvial soil under laboratory conditions with above mentioned instruments. (author)

  17. Forecasting the compressive strength of soil-concretedepending on ...

    African Journals Online (AJOL)

    One of the most important physical and mechanical properties of soil-concrete is the compressive strength. To this end we carried out a study of soil-concrete strength depending on its curing conditions and percentage of cement. For our study we used loam soil with the plasticity index of Ip = 12.3, Portland cement of type I, ...

  18. Volatilization of gasoline from soil

    International Nuclear Information System (INIS)

    Arthus, P.

    1993-05-01

    Gasoline contaminated soil threatens water resources and air quality. The extent of the threat depends on gasoline behavior in soil, which is affected by various mechanisms such as volatilization. To quantify volatilization, gasoline spills were simulated in the laboratory using a synthetic gasoline and three dry soils. Total gasoline and individual gasoline compound concentrations in soil were monitored as a function of depth and time. The time to reduce overall gasoline concentration in coarse sand, sandy loam, and silt loam to 40% of initial concentration, averaged between surface and a 200-mm depth, ranged from 0.25 d to 10 d. A wicking phenomenon which contributed to gasoline flux toward the atmosphere was indicated by behavior of a low-volatility gasoline compound. Based on separate wicking experiments, this bulk immiscible movement was estimated at an upward velocity of 0.09 m/d for Delhi sandy loam and 0.05 m/d for Elora silt loam. 70 refs., 24 figs., 34 tabs

  19. Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils

    Directory of Open Access Journals (Sweden)

    Yunhe Zhang

    2016-03-01

    Full Text Available A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a lab-scale pyrolyzer operated at 450 °C under a nitrogen environment and slow pyrolysis conditions. Two local arid soils used for crop production, a sandy loam and a clay loam, were amended with these biochars at a rate of 45 Mg·ha−1 and incubated for three weeks in a growth chamber. The soils were analyzed for multiple soil quality indicators including soil organic matter content, pH, electrical conductivity (EC, and available nutrients. Results showed that amendment with cotton gin trash biochar has the greatest impact on both soils, significantly increasing SOM and plant nutrient (P, K, Ca, Mn contents, as well as increasing the electrical conductivity, which creates concerns about soil salinity. Other biochar treatments significantly elevated soil salinity in clay loam soil, except for pecan shell biochar amended soil, which was not statistically different in EC from the control treatment. Generally, the effects of the biochar amendments were minimal for many soil measurements and varied with soil texture. Effects of biochars on soil salinity and pH/nutrient availability will be important considerations for research on biochar application to arid soils.

  20. Use of in-situ Dual Vacuum Extraction trademark for remediation of soil and ground water

    International Nuclear Information System (INIS)

    Dodson, M.E.; Trowbridge, B.E.; Ott, D.

    1994-01-01

    Dual Vacuum Extraction trademark provides a rapid and cost-effective method of remediating soil and ground water contaminated with volatile organic compounds. The system involves the removal of both water and vapors through the same borehole by use of entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an underground storage tank was responsible for a hydrocarbon plume spreading over approximately 50,000 ft 2 . The release produced vadose-zone contamination in the silty and sandy clays from 10 to 30 ft below ground surface (bgs) with total petroleum hydrocarbon (TPH) concentrations up to 1,400 mg/kg. In addition, a layer of free-floating liquid hydrocarbon was present on a shallow aquifer located at 25 ft bgs in thicknesses ranging from 0.5 to 3.0 ft. An in-situ dual-extraction system was installed to remediate the soils and ground water to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hr a day, with an operating efficiency of over 99%. After 196 days (28 weeks), over 17,000 lb of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings in the area of highest initial hydrocarbon concentrations indicated that TPH and benzene, toluene, ethylbenzene, xylene (BTEX) concentrations had decreased over 99% from initial soil concentrations

  1. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  2. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  3. The impacts of pyrolysis temperature and feedstock type on biochar properties and the effects of biochar application on the properties of a sandy loam

    Science.gov (United States)

    Aston, Steve; Doerr, Stefan; Street-Perrott, Alayne

    2013-04-01

    The production of biochar and its application to soil has the potential to make a significant contribution to climate change mitigation whilst simultaneously improving soil fertility, crop yield and soil water-holding capacity. Biochar is produced from various biomass feedstock materials at varying pyrolysis temperatures, but relatively little is known about how these parameters affect the properties of the resultant biochars and their impact on the properties of the soils to which they are subsequently applied. Salix viminalis, M. giganteus and Picea sitchensis feedstocks were chipped then sieved to 2 - 5 mm, oven dried to constant weight, then pyrolyzed at 350, 500, 600 and 800° C in a nitrogen-purged tube furnace. Biochar yields were measured by weighing the mass of each sample before and after pyrolysis. Biochar hydrophobicity was assessed by using a goniometer to measure water-droplet contact-angles. Cation-exchange-capacity (CEC) was measured using the ammonium acetate method. Biochars were also produced in a rotary kiln from softwood pellets at 400, 500, 600 and 700° C then ground to 0.4 - 1 mm and applied to a sandy loam at a rate of 50 g kg-1. Bulk densities of these soil-biochar mixtures were measured on a tapped, dry, basis. The water-holding-capacity (WHC) of each mixture was measured gravimetrically following saturation and free-draining. The filter paper method was used to assess how pyrolysis temperature influences the effect of biochar application on matric suction. For all feedstocks, large decreases in biochar yield were observed between the pyrolysis temperatures of 350° C and 500° C. For Salix viminalis and M. giganteus feedstocks, subsequent reductions in the yield with increasing pyrolysis temperature were much lower. There were significant differences in hydrophobicity between biochars produced from different biomass and mean biochar hydrophobicity decreased with increasing pyrolysis temperature for all feedstocks. Results for CEC and WHC

  4. The antihistamine diphenhydramine is extremely persistent in agricultural soil

    International Nuclear Information System (INIS)

    Topp, Edward; Sumarah, Mark W.; Sabourin, Lyne

    2012-01-01

    The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT 50 ) of 14 C-diphenhydramine residues at 30 °C ranged from 88 ± 28 days in the clay loam to 335 ± 145 days in the loam soil. Mineralization of 14 C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation. -- Highlights: ► Diphenhydramine is a widely used antihistamine drug, is found in biosolids, and in runoff from biosolids-fertilized fields. ► The persistence of 14 C-diphenhydramine was evaluated in soils. ► Half lives ranged from 88 to 335 days. Diphenhydramine-N-oxide was the only detected transformation product. ► Soil-bound residues was a major sink.

  5. The antihistamine diphenhydramine is extremely persistent in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Edward, E-mail: ed.topp@agr.gc.ca; Sumarah, Mark W.; Sabourin, Lyne

    2012-11-15

    The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT{sub 50}) of {sup 14}C-diphenhydramine residues at 30 Degree-Sign C ranged from 88 {+-} 28 days in the clay loam to 335 {+-} 145 days in the loam soil. Mineralization of {sup 14}C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation. -- Highlights: Black-Right-Pointing-Pointer Diphenhydramine is a widely used antihistamine drug, is found in biosolids, and in runoff from biosolids-fertilized fields. Black-Right-Pointing-Pointer The persistence of {sup 14}C-diphenhydramine was evaluated in soils. Black-Right-Pointing-Pointer Half lives ranged from 88 to 335 days. Diphenhydramine-N-oxide was the only detected transformation product. Black-Right-Pointing-Pointer Soil-bound residues was a major sink.

  6. Atributos químicos de solos influenciados pela substituição do carbonato por silicato de cálcio Soil chemical properties influenced by the substitution of calcium carbonate by calcium silicate

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2008-08-01

    ácia do silicato de Ca foi inferior à de carbonato de Ca na melhoria das condições químicas do solo.The application of silicates to soils can result in increased soil cation exchange capacity (CEC, displace anions, especially H2PO4- (diacid phosphate, neutralize the pH and Al toxicity and, in general, increase the nutrient availability to plants. However, calcium silicates may be less efficient than calcium carbonates. To evaluate the effect of calcium carbonate substitution by calcium silicate on the soil chemical properties, especially on phosphorus availability, four experiments were conducted in an entirely randomized design with four replications, in a greenhouse. The treatments consisted of five levels (0, 25, 50, 75, and 100 % of calcium carbonate substitution by calcium silicate, with a 4:1 Ca:Mg stoichiometric and the same amount of CaO, enough to reach a 60 % base saturation. The treatments were applied to 4 dm³ samples of a sandy orthic Quartzarenic Neosol (Quartzpsament, a sandy loam dystrophic Red-Yellow Latosol (Oxisol, sandy clay loam dystrophic Red-Yellow Latosol (Oxisol and a clayey dystrophic Red Latosol (Oxisol; each soil represented one experiment. The pH values in H2O, P, phosphorus in the equilibrium solution (P-rem, K, Ca, Mg, Si, Al, H + Al, organic matter (OM, Cu, Mn, Zn and B, sum of bases (S, effective (t ant total (T CEC, base saturation (V and Al saturation (m were submitted to analysis of variance and simple regression models fitted as a function of CaCO3 substitution by CaSiO3 levels. It was observed that carbonate substitution by silicate promoted significant increases in the values of Si, Al, H + Al and m and reduction in the values of P-rem, pH, S, t and V. The values of Mehlich 1 P, K, Mg, OM, T, Mn, Cu, and B were not influenced significantly. A reduction in Zn availability was verified in the dystrophic orthic Quartzarenic Neosol only. Calcium silicate was less efficient than calcium carbonate in the improvement of soil chemical

  7. Adsorption-Desorption of Hexaconazole in Soils with Respect to Soil Properties, Temperature, and pH

    Directory of Open Access Journals (Sweden)

    Maznah Zainol

    2016-06-01

    Full Text Available The effect of temperature and pH on adsorption-desorption of fungicide hexaconazole was studied in two Malaysian soil types; namely clay loam and sandy loam. The adsorption-desorption experiment was conducted using the batch equilibration technique and the residues of hexaconazole were analysed using the GC-ECD. The results showed that the adsorption-desorption isotherms of hexaconazole can be described with Freundlich equation. The Freundlich sorption coefficient (Kd values were positively correlated to the clay and organic matter content in the soils. Hexaconazole attained the equilibrium phase within 24 h in both soil types studied. The adsorption coefficient (Kd values obtained for clay loam soil and sandy loam soil were 2.54 mL/g and 2.27 mL/g, respectively, indicating that hexaconazole was weakly sorbed onto the soils due to the low organic content of the soils. Regarding thermodynamic parameters, the Gibb’s free energy change (ΔG analysis showed that hexaconazole adsorption onto soil was spontaneous and exothermic, plus it exhibited positive hysteresis. A strong correlation was observed between the adsorption of hexaconazole and pH of the soil solution. However, temperature was found to have no effect on the adsorption of hexaconazole onto the soils; for the range tested.

  8. Hydrogen peroxide treatment of TCE contaminated soil

    International Nuclear Information System (INIS)

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-01-01

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil

  9. Chemical properties of soils treated with biological sludge from gelatin industry

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Melo Guimarães

    2012-04-01

    Full Text Available The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay and an Oxisol (clay. The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1, with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

  10. Irrigated cotton grown on sierozem soils in South Kazakhstan

    Science.gov (United States)

    The Gloldnaya steppe has large areas of fertile sierozem soils that are important for crop production and its accompanying economic development. The soils are fertile loams but because of the steppe’s dry environment, they need to be irrigated. Our objective was to study irrigation management of cot...

  11. Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2014-04-01

    Full Text Available Segmented mesocosms (n = 3 packed with sand, sandy loam or clay loam soil were used to determine the effect of soil texture and depth on transport of two septic tank effluent (STE-borne microbial pathogen surrogates—green fluorescent protein-labeled E. coli (GFPE and MS-2 coliphage—in soil treatment units. HYDRUS 2D/3D software was used to model the transport of these microbes from the infiltrative surface. Mesocosms were spiked with GFPE and MS-2 coliphage at 105 cfu/mL STE and 105–106 pfu/mL STE, respectively. In all soils, removal rates were >99.99% at 25 cm. The transport simulation compared (1 optimization; and (2 trial-and-error modeling approaches. Only slight differences between the transport parameters were observed between these approaches. Treating both the die-off rates and attachment/detachment rates as variables resulted in an overall better model fit, particularly for the tailing phase of the experiments. Independent of the fitting procedure, attachment rates computed by the model were higher in sandy and sandy loam soils than clay, which was attributed to unsaturated flow conditions at lower water content in the coarser-textured soils. Early breakthrough of the bacteria and virus indicated the presence of preferential flow in the system in the structured clay loam soil, resulting in faster movement of water and microbes through the soil relative to a conservative tracer (bromide.

  12. Effect of biosolids application on soil chemical properties and uptake ...

    African Journals Online (AJOL)

    Effect of biosolids application on soil chemical properties and uptake of some heavy metals by Cercis siliquastrum. ... and municipal solid waste compost (50% CM + 50% MC) at three levels of 0, 2.5 and 5 kg/shrub and three replicates in calcareous sandy loam soil at the botanical garden of Mobarekeh steel company.

  13. Distribution of nitrogen ammonium sulfate (15N) soil-plant system in a no-tillage crop succession

    International Nuclear Information System (INIS)

    Fernandes, Flavia Carvalho da Silva; Libardi, Paulo Leonel

    2012-01-01

    the n use by maize (Zea mays, l.) is affected by n-fertilizer levels. this study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of n use by maize in a crop succession, based on 15 N labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signal grass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of n rates of 60, 120 and 180 kg ha -1 in the form of labeled 15 N ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated n; fertilizer-derived n in corn plants and pasture; fertilizer-derived n in the soil; and recovery of fertilizer-n by plants and soil were evaluated.The highest uptake of fertilizer n by corn was observed after application of 120 kg ha -1 N and the residual effect of n fertilizer on subsequent corn and brachiaria was highest after application of 180 kg ha -1 N. After the crop succession, soil n recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha -1 N. (author)

  14. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  15. Role of amino acid metabolites in the formation of soil organic matter

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1972-01-01

    Carbon-14 labelled cellulose or glucose were added to a medium loam and two sandy soils. The soils were incubated at 20°C for about 6 yr under laboratory conditions. Six to 12 per cent of the labelled carbon added to the soils was transformed into metabolites hydrolysable to amino acids during th...

  16. Impact of chemical leaching on permeability and cadmium removal from fine-grained soils.

    Science.gov (United States)

    Lin, Zhongbing; Zhang, Renduo; Huang, Shuang; Wang, Kang

    2017-08-01

    The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl 2 , FeCl 3 , citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl 3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl 3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl 3 , Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.

  17. Hydraulic conductivity in sugar cane cultivated in soils previous vin aza application

    International Nuclear Information System (INIS)

    Musso, M.; Pereira, S.; Fajardo, L.

    2012-01-01

    This work analyzes the hydraulic conductivity in soil clay loams developed in Libertad formation in Bella Union where grows sugar cane with vinaza. In the agricultural activities are used different chemical additives such as organic and inorganic fertilizers, herbicides and pesticides, which interact with the biotic (roots, soil microbiology) and abiotic (clay, soil solution, etc.) elements

  18. Dynamic chemical characteristics of soil solution after pig manure application: a column study.

    Science.gov (United States)

    Hao, Xiuzhen; Zhou, Dongmei; Sun, Lei; Li, Lianzhen; Zhang, Hailin

    2008-06-01

    When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.

  19. CORRELATIONS BETWEEN PESTICIDE TRANSFORMATION RATE AND MICROBIAL RESPIRATION ACTIVITY IN SOIL OF DIFFERENT ECOSYSTEMS

    Science.gov (United States)

    Cecil sandy loam soils (ultisol) from forest (coniferous and deciduous), pasture, and arable ecosystems were sampled (0-10 cm) in the vicinity of Athens, GA, USA. Soil from each site was subdivided into three portions, consisting of untreated soil (control) as well as live and s...

  20. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  1. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  2. Effects of Conventional and Conservation Tillage on Soil Hydraulic Properties of a Silty-loamy Soil

    DEFF Research Database (Denmark)

    Wahl, Niels Arne; Bens, O.; Buczko, U.

    2004-01-01

    Infiltration into soils is strongly correlated with macroporosity. Under agricultural land use, the properties of the macropore network are governed by the applied management and tillage system. On an experimental site with a silt loam soil partly under conventional and conservation tillage, the ......, conservation tillage could possibly offer a means to reduce surface runoff and flood generation in agricultural landscapes dominated by silty-loamy soils. d 2...

  3. Proceedings of the International Symposium on Frozen Soil Impacts on Agricultural, Range, and Forest Lands Held at Spokane, Washington on March 21-22, 1990

    Science.gov (United States)

    1990-03-01

    the United States. The soils were: a Cecil sandy loam (clayey, kaolinitic, thermic Typic Hapludult) from Watkinsville, GA ; a Barnes loam (fine loamy...1987). GLEAMS user manual. Lab Note South East Watershed Research Laboratory 110 187 WGK, Tifton , Ge, 1987. Lane, L.J., and V. A. Ferreira, (1980...as caps for processed uranium mill tailings in the western United States. The purpose of these barriers is to control radon gas release. The soil

  4. Fate of the antiretroviral drug tenofovir in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)

    2010-10-15

    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  5. Adsorption and desorption study of 14C-Chloropyrifos in two Malaysian agricultural soils

    International Nuclear Information System (INIS)

    Halimah Muhammad; Nashriyah Mat; Tan Yew Ai; Ismail, B.S.

    2004-01-01

    The adsorption equilibrium time and effects of pH and concentration of 14 C-labeled chloropyrifos 0,0-diethyl 0-(3, 5, 6 tricloro-2-pyridyl)-phosphorothiote in soil were investigated. Two types of Malaysian soil under oil palm were used in this study; namely clay loam and clay soil obtained from the Sungai Sedu and Kuala Lumpur International Airport (KLIA) Estates, respectively. Equilibrium studies of chloropyrifos between the agricultural soil and the pesticide solution were conducted. Adsorption equilibrium time was achieved within 6 and 24 hours for clay loam and clay soil, respectively. It was found that chloropyrifos adsorbed by the soil samples was characterized by an initial rapid adsorption after which adsorption remained approximately constant. The percentage of 14 C-labeled chloropyrifos adsorption on soil was found to be higher in clay loam than in clay soils. Results of the study demonstrated that pH affected the adsorption of chloropyrifos on both clay loam and clay soils. The adsorption of chloropyrifos on both types of soil was higher at low pH with the adsorption reduced as the pH increased. Results also suggest that chloropyrifos sorption by soil is concentration dependent. (Author)

  6. Effect of successive cauliflower plantings and Rhizoctonia solani AG 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil

    NARCIS (Netherlands)

    Postma, J.; Scheper, R.W.A.; Schilder, M.T.

    2010-01-01

    Disease suppressiveness against Rhizoctonia solani AG 2-1 in cauliflower was studied in two marine clay soils with a sandy loam texture. The soils had a different cropping history. One soil had a long-term (40 years) cauliflower history and was suppressive, the other soil was conducive and came from

  7. Effects of soil type, moisture content, redox potential and methyl bromide fumigation on Kd values of radio-selenium in soil

    International Nuclear Information System (INIS)

    Ashworth, D.J.; Moore, J.; Shaw, G.

    2008-01-01

    Understanding the processes that determine the solid-liquid partitioning (K d value) of Se is of fundamental importance in assessing the risk associated with the disposal of radio-selenium-containing waste. Using a mini-column (rather than batch) approach, K d values for 75 Se were determined over time in relation to soil moisture content (field capacity or saturated), redox potential and methyl bromide fumigation (used to disrupt the soil microbial population) in three contrasting soil types: clay loam, organic and sandy loam. The K d values were generally in the range 50-500 L kg -1 , with mean soil K d increasing with increasing organic matter content. Saturation with water lowered the measured redox potentials in the soils. However, only in the sandy loam soil did redox potential become negative, and this led to an increase in 75 Se K d value in this soil. Comparison of the data with the Eh-pH stability diagram for Se suggested that such strong reduction may have been consistent with the formation of the insoluble Se species, selenide. These findings, coupled with the fact that methyl bromide fumigation had no discernible effect on 75 Se K d value in the sandy loam soil, suggest that geochemical, rather than microbial, processes controlled 75 Se partitioning. The inter-relations between soil moisture content, redox potential and Se speciation should be considered in the modelling and assessment of radioactive Se fate and transport in the environment

  8. Modeling Phytoremediation of Cadmium Contaminated Soil with Sunflower (Helianthus annus) Under Salinity Stress

    International Nuclear Information System (INIS)

    Motesharezadeh, B.; Navabzadeh, M.; Liyaghat, A. M.

    2016-01-01

    This study was carried out as a factorial experiment with 5 levels of cadmium (Cd) (o, 25, 50, 75, and 100 mg/kg), 5 levels of salinity (Control, 4, 5, 6, and 7 dS/m), and two soil textures (sandy loam and clay loam). The results showed that the amount of Cd in root and shoot of sunflower increased as soil salinity and Cd concentration increased. The best concentrations for Cd phytoremediation were 75 mg/kg in sandy loam and 100 mg/kg in clay loam. Mass-Hoffman model in simulating transpiration Cd stress as well as Homaee model in simulating salt stress indicated the best results in light soils. By multiplying the salinity stress model by Cd stress model, the simultaneous model for each soil was calculated. These models in light soil (r2=0.68) and heavy soil (r2=0.81) were compatible with measured values. In the heavy soil, absorbed Cd by plant along with increased salinity reflected low changes, but changes in Cd absorbed by plants in the heavy soil were more uniform than in the light soil. In conclusion, for estimating the Cd uptake, the model had a better performance in the heavy soil (under salt stress).

  9. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study.

    Science.gov (United States)

    Jin, Yi; Liang, Xinqiang; He, Miaomiao; Liu, Yu; Tian, Guangming; Shi, Jiyan

    2016-01-01

    Using manure-derived-biochar as an alternative phosphorus (P) source has bright future prospects to improve soil P status. A 98-day microcosm incubation experiment was set up for two soils which were amended with manure biochar at proportions of 0, 0.5% and 1.5%. Swine manure samples were air-dried and manure biochar was prepared by pyrolysis at 400 °C for 4 h. As determined by P-31 nuclear magnetic resonance ((31)P NMR) spectroscopy, manure biochar mainly increased the contents and fractions of orthophosphate and pyrophosphate in two soils, while decreased those of monoesters (P<0.05). At the end of incubation, 1.5% of manure biochar raised soil pH by 0.5 and 0.6 units, cation exchange capacity by 16.9% and 32.2%, and soil total P by 82.1% and 81.1% for silt loam and clay loam soils, respectively, as compared with those soils without biochar. Simultaneously, 1.5% of manure biochar decreased acid phosphomonoesterase activities by 18.6% and 34.0% for clay loam and silt loam, respectively; while it increased alkaline phosphomonoesterase activities by 28.5% and 95.1% for clay loam and silt loam, respectively. The enhancement of soil P availability after manure biochar addition was firstly due to the orthophosphate and pyrophosphate as the major P species in manure biochar which directly increased contents of soil inorganic P, and also attributed to the decomposition of some organic P like monoesters by enhanced alkaline phosphomonoesterase activities from manure biochar addition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations.

    Science.gov (United States)

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2017-07-01

    Olive mill waste water (OMWW) is an acidic (pH 4-5), saline (EC ∼ 5-10 mS cm -1 ), blackish-red aqueous byproduct of the three phase olive oil production process, with a high chemical oxygen demand (COD) of up to 220,000 mg L -1 . OMWW is conventionally disposed of by uncontrolled dumping into the environment or by semi-controlled spreading on agricultural soils. It was hypothesized that spreading such liquids on agricultural soils could result in the release and mobilization of indigenous soil metals. The effect of OMWW spreading on leaching of metal cations (Na, K, Mg, Mn, Fe, Cu, Zn) was tested in four non-contaminated agricultural soils having different textures (sand, clay loam, clay, and loam) and chemical properties. While the OMWW contributed metals to the soil solution, it also mobilized indigenous soil metals as a function of soil clay content, cation exchange capacity (CEC), and soil pH-buffer capacity. Leaching of soil-originated metals from the sandy soil was substantially greater than from the loam and clay soils, while the clay loam was enriched with metals derived from the OMWW. These trends were attributed to cation exchange and organic-metal complex formation. The organic matter fraction of OMWW forms complexes with metal cations; these complexes may be mobile or precipitate, depending on the soil chemical and physical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mineralization of carbon and nitrogen from fresh and anaerobically stored sheep manure in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1995-01-01

    A sandy loam soil was mixed with three different amounts of quartz sand and incubated with ((NH4)-N-15)(2)SO4 (60 mu g N g(-1) soil) and fresh or anaerobically stored sheep manure (60 mu g g(-1) soil). The mineralization-immobilization of N and the mineralization of C were studied during 84 days...

  12. Vertical movement of Azospirillum brasilense in soil

    International Nuclear Information System (INIS)

    Singh, Mohan; Lal, B.; Shrivastava, A.K.

    1993-01-01

    Plant growth promoting rhizobacteria like Azospirillum brasilense have considerable potential in increasing crop productivity. The success of bacterial inoculation in fields however, depends on their root colonizing ability. These bacteria, applied either through seed pelleting or directly to the soil are distributed along roots through active or passive movements. 32 P labelled A.brasilense has been used to study their movements in sandy loam soils. (author). 5 refs., 2 figs

  13. Structural-functional concept of thermophysical condition of the soils of Altai Region

    OpenAIRE

    Makarychev, Sergey; Bolotov, Andrey

    2016-01-01

    The goal of this study was to reveal the quantitative interrelations between the thermophysical indices (thermal conductivity and thermal diffusivity) and physical soil properties such as; moisture content, density and detachability. According to the research targets, the soil samples including different genesis and soil particle size distribution were taken in different soil and climatic zones of the Altai Region. These were the sod-podzolic sandy loam soils of the dry steppes, chernozems an...

  14. Comparison of germination and seed vigor of sunflower in two contaminated soils of different texture

    Science.gov (United States)

    Zhao, Xin; Han, Jaemaro; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Phytoremediation as an emerging low-cost and ecologically friendly alternative to the conventional soil remediation technologies has gained a great deal of attention and into lots of research. As a kind of the methods that use of green plants to remediate heavy metals contaminated soils, the early growth status of plant seeds in the contaminated environmental directly affects the effect of phytoremediation. Germination test in the water (aqueous solution of heavy metal) is generally used for assessing heavy metal phytotoxicity and possibility of plant growth, but there is a limit. Because soil is commonly main target of phytoremediation, not the water. The bioavailability of heavy metals in the soil also depends on the texture. So soil texture is an important factor of phytoremediation effect. Sunflower is the representative species which have good tolerance to various heavy metals; furthermore, the seeds of sunflower can be used as the raw-material for producing bio-diesel. The objectives of this research were to investigate germination rate of sunflowers in various heavy metal contaminated soils and to compare the seedling vigor index (SVI) of sunflower in two contaminated soils of different texture. Sunflower (Helianthusannuus L.) seeds were obtained from a commercial market. In order to prove the soil texture effect on heavy metal contaminated soil, germination tests in soil were conducted with two different types of soil texture (i.e., loam soil and sandy loam soil) classified by soil textural triangle (defined by USDA) including representative soil texture of Korea. Germination tests in soil were conducted using KS I ISO 11260-1 (2005) for reference that sunflower seeds were incubated for 7 days in dark at 25 ± 1 Celsius degree. The target heavy metals are Nickel (Ni) and Zinc (Zn). The Ni and Zn concentrations were 0, 10, 50, 100, 200, 300, 500 mg-Ni/kg-dry soil, and 0, 10, 50, 100, 300, 500, 900 mg-Zn/kg-dry soil, respectively. After germination test for 7

  15. A Comparative Study of the Persistence, Movement and Metabolism of Six Insecticides in Soils and Plants

    International Nuclear Information System (INIS)

    Fuhremann, T.W.; Lichtenstein, E.P.

    1981-01-01

    Full text: Two soil types and oat plants grown in these soils were incubated under identical environmental conditions. The insecticides used in order to increase the water solubility were 14 C-DDT, 14 C-lindane, 14 C-fonofos, 14 C-parathion, 14 C-phorate and 14 C-carbofuran. Total amounts of 14 C-residues recovered from insecticide-treated loam soils plus oats grown in these soils were similar with DDT and oarbofuran. They were also higher than those observed with the other insecticides. While most of the 14 C-DDT residues remained in the soils, most of the 14 C-carbofuran residues were recovered from oat leaves in the form of carbofuran and 3-hydroxycarbofuran. 14 C-residues of all insecticides were more persistent in loam than in sandy soil and sand-grown oats took up more 14 C-insecticide residues than loamgrown oats. The more water-soluble insecticides, 14 C-phorate and Ccarbofuran were more mobile and were metabolized to a greater extent than insecticides of lower water solubilities. Unextractable (bound) 14 C-residues in loam soil ranged from 2.8% to 29.1% of the applied doses of 14 C-DDT and 14 C-parathion, respectively. Bound 14 C-residues were lower in the sandy soil than in the loam soil, however, plant-bound 14 C-residues were higher in oats grown in the sandy soil than in loam grown oats. Insecticide metabolites recovered from soils and plants were identified and quantitated whenever possible. The oxygen analog metabolites of the organophosphorus insecticides were most abundant in the sandy soil and in oats grown therein. Data illustrate the importance of chemical structure, water solubility and soil type in predicting the comparative environmental behaviour of pesticides. (author)

  16. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    Science.gov (United States)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  17. Interrill sediment enrichment of P and C from organically and conventionally farmed silty loams

    Science.gov (United States)

    Kuhn, N. J.

    2012-04-01

    Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomen on involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P)and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows

  18. prerequisites for biocrops up-scaling ii: an assessment of the ...

    African Journals Online (AJOL)

    nb

    potting media i.e. forest top soil, sandy, clay and loamy soil. ... chemical properties and thereby increasing the penetrating capacity of ... resulted in the luxurious growth of plants. (Neelam ..... Eucalyptus camaldulensis Seedlings to. Different ...

  19. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    Several studies have identified optima in soil water content for aerobic microbial activity, and this has been ascribed to a balance between gas and solute diffusivity as limiting processes. We investigated the role of soil structure, as created by different tillage practices (moldboard ploughing......, MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...... content to a maximum and then decreased. This relationship was modelled with a second order polynomium. Model parameters did not show any tillage effect on the optimum water content, but the optimum coincided with a lower matric potential in ST (SAND: − 140 to –197 hPa; LOAM: − 37 to − 65 hPa) than in MP...

  20. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  1. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Directory of Open Access Journals (Sweden)

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  2. Soil microbial and physical properties and their relations along a steep copper gradient

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    2012-01-01

    years; from background concentrations up to 3837 mg Cu kg–1) on soil microbial enzyme activity, physical properties and resilience to compression. Soil samples and cores were taken from a fallow sandy loam field in Denmark. Microbial activity was quantified using fluorescein diacetate (FDA...

  3. Effects Of Palm Oil Mill Effluents (Pome) On Soil Bacterial Flora And ...

    African Journals Online (AJOL)

    Sandy loam soil in Egbema, Rivers State was impacted with POME at different levels and analyzed for bacteriological quality and soil enzyme activities. Light application caused significant increase in total heterotrophic, phosphate solibilizing, nitrifying and lipolytic bacterial counts while heavy application caused a decrease ...

  4. the effects of 4 ratios of organic to inorganic manures on soil ...

    African Journals Online (AJOL)

    nkechi

    2011-05-02

    May 2, 2011 ... ON SOIL PHYSICOCHEMICAL PROPERTIES AND MAIZE YIELD. ... fertilizers with the uncombined ones were used for field ... ferallitic sandy loam classified as an ultisol. ... The pots were kept in the field moisture capacity ... the data fitted in the soil textural triangle to obtain ... Equivalent in t/ha pig manure.

  5. Effects of exchangeable Ca:Mg ratio on the dispersion of soils some ...

    African Journals Online (AJOL)

    The soils studied were acidic, low in nutrient level, showed high dispersion rate, high water- dispersible clay content and the textural class were loamy sand and sandy loam. The exchangeable Ca2+ and Mg2+ contents of the soils dominated the exchange complex. The cation exchange capacity (CEC) ranges between 4 ...

  6. Influence of Soil Based Growing Media on Vegetative Propagation of Selected Cultivars of Olea Europaea

    International Nuclear Information System (INIS)

    Ahmed, M. I.; Ashraf, M. I.; Malik, S. U.; Husaain, Q.

    2016-01-01

    Pothwar region of Pakistan is a natural habitat of Olea spp. There is a high demand of certified olive plants to establish olive orchids in the region, because native wild species are non-fruit bearing. Plants of certified fruit bearing olive (Olea europaea L.) cultivars are rarely available. Vegetative propagation of olive is highly responsive to texture of soil based growing media. This study examined the effect of growing media composition (soil texture and nutrients) on vegetative propagation of five cultivars of olive. The experiment was carried out in randomized complete block design (RCBD) with two factors factorial having 25 repeats of each four treatments. Plant growth and survival data were collected and analyzed for the influence of soil attributes. In sandy loam soil, cv. Bari-1 had 82 percent plant survival, highest number of roots per plant (3.5), and longest root length (13.01 cm). Highest number of shoots per plant (4.25) and maximum shoot length (15.64 cm) were also recorded for Bari-1 with sandy loam growing media. Silt loam soil is least suitable growing media for vegetative propagation of olive. In the silt loam soil, plants survival rate was 59 percent for cv. Gemlik, number of roots per plant was 1.5 for cv. Ottobrattica, minimum root length 5.65 cm, minimum number of shoots per plant one, and minimum shoot length 7.42 cm were recorded for cv. Pendolino with silt loam soil. Results suggested that sandy loam growing media is better than the others for vegetative propagation of olive. Cultivar Bari-1 performed better than the others examined in this study by indicating highest (1) survival percentage, (2) root and shoot length, and (3) number of roots and shoots produced within a specific period of time. (author)

  7. Soil preparation and nutrient losses by erosion in the culture cucumber

    Directory of Open Access Journals (Sweden)

    Amaral Sobrinho Nelson Moura Brasil do

    2005-01-01

    Full Text Available Minimum tillage reportedly reduce erosion, avoid soil degradation and improve crop productivity. This study aimed to determine how tillage operations may affect either nutrient accumulation or nutrient losses by erosion. The study was, carried out from December, 2000 to March, 2001, in the watershed of the Caetés River, in Rio de Janeiro State, Brazil (22º25'43"S, 43º25'07"W. The experiment was set up in sandy clay Kandiudult soil, 60% slope, under cucumber (Cucumis sativus L. crop. Soil samples were collected before planting and after harvest, on 22.0 X 4.0 m Greeoff plots. After each rainfall, fine sediments carried by runoff were deposited into two collecting tanks in a row, installed at the end of each plot, and were later dried, weighed and stored for analyses. Treatments (n = 4 were characterized by different tillage systems: (i downhill plowing followed by the burning of crop residues (DPB; (ii downhill plowing with no burning of the crop residues (DPNB; (iii animal traction contour plowing, with strips of guinea grass planted at a spacing of 7.0 m (AT; and (iv minimum tillage (MT. Samples of the soil-plowed layer were collected before planting and after harvest, between the rows and from the plants. Total concentration of Ca, Mg, K and P were determined after extraction with nitric perchloride digestion. Labile P and exchangeable K were extracted with the Mehlich 1 extractant solution. The MT system reduced losses of both exchangeable bases (15% and P (8%, and affected the distribution of labile and organic P. Crop residues left on soil surface in the MT system, resulted in increased organic matter content. Downhill plowing, the most used tillage operation in the region, resulted in the greatest losses of Ca, Mg, K, and P.

  8. Fate of Pharmaceuticals and Personal Care Products (PPCPs) in Saturated Soil Under Various Redox Conditions

    Science.gov (United States)

    Dror, I.; Menahem, A.; Berkowitz, B.

    2014-12-01

    The growing use of PPCPs results in their increasing release to the aquatic environment. Consequently, understanding the fate of PPCPs under environmentally relevant conditions that account for dynamic flow and varying redox states is critical. In this study, the transport of two organometallic PPCPs, Gd-DTPA and Roxarsone (As complex) and their metal salts (Gd(NO3)3, AsNaO2), is investigated. The former is used widely as a contrasting agent for MRI, while the latter is applied extensively as a food additive in the broiler poultry industry. Both of these compounds are excreted from the body, almost unchanged chemically. Gadolinium complexes are not fully eliminated in wastewater treatment and can reach groundwater via irrigation with treated wastewater; Roxarsone can enter groundwater via leaching from manure used as fertilizer. Studies have shown that the transport of PPCPs in groundwater is affected by environmental conditions such as redox states, pH, and soil type. For this study, column experiments using sand or Mediterranean red sandy clay soil were performed under several redox conditions: aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, methanogenic, and very strongly chemical reducing. Batch experiments to determine adsorption isotherms were also performed for the complexes and metal salts. We found that Gd-DTPA transport was affected by the soil type and was not affected by the redox conditions. In contrast, Roxarsone transport was affected mainly by the different redox conditions, showing delayed breakthrough curves as the conditions became more biologically reduced (strong chemical reducing conditions did not affect the transport). We also observed that the metal salts show essentially no transport while the organic complexes display much faster breakthrough. The results suggest that transport of these PPCPs through soil and groundwater is determined by the redox conditions, as well as by soil type and the form of the applied metal (as salt

  9. The use of in-situ dual vacuum extraction for remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Trowbridge, B.E.; Ott, D.E.

    1992-01-01

    Dual Extraction provides a rapid and cost-effective method of remediating soil and groundwater impacted by volatile organic compounds (VOC's). Dual Extraction is the removal of both water and vapors through the same borehole using entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an Underground Storage Tank (UST) was responsible for a hydrocarbon plume spreading over approximately 50,000 square feet. The release produced vadose zone contamination in the silty and sandy clays from 10 - 30 feet below ground surface with TPH concentrations up to 1,400 mg/kg. A layer of free floating liquid hydrocarbon was present on a shallow aquifer located at 30 feet bgs in thicknesses ranging from 0.5 feet to 3.0 feet. An in-situ dual-extraction system was installed to remediate the soils and groundwater to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hours/day for 196 days with an operating efficiency of over 99%. After 196 days, over 17,000 pounds of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings were advanced in the area of highest initial hydrocarbon concentrations and indicated that TPH and BTEX concentrations had decreased over 99% from initial soil concentrations. Three confirmatory groundwater samples were obtained from monitoring wells initially exhibiting up to 3 feet of floating product. Confirmatory samples exhibited non-detectable (ND) concentrations of TPH and BTEX. Based upon the positive confirmatory results, site closure was obtained from the RWQCB in May of 1991. In only 28 weeks of operation, the groundwater contamination was reduced from free floating product to non-detectable concentrations of TPH using Dual Vacuum Extraction

  10. Microbial Ecology of Soil Aggregation in Agroecosystems

    Science.gov (United States)

    Hofmockel, K. S.; Bell, S.; Tfailly, M.; Thompson, A.; Callister, S.

    2017-12-01

    in the abundance of chemical classes in clay loams compared to sandy loams. Together our data demonstrate that the potential for aggregation and C storage is strongly influenced by soil mineralogy with important implications for plant-microbe interactions that mediate C biogeochemistry.

  11. Evaluation of the ecotoxicological impact of the organochlorine chlordecone on soil microbial community structure, abundance, and function.

    Science.gov (United States)

    Merlin, Chloé; Devers, Marion; Béguet, Jérémie; Boggio, Baptiste; Rouard, Nadine; Martin-Laurent, Fabrice

    2016-03-01

    The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring (14)C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and (14)C-compounds mineralizing activity). Mineralization of (14)C-chlordecone was inferior below 1 % of initial (14)C-activity. Less than 2 % of (14)C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial (14)C-activity). Only 23 % of the remaining (14)C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of (14)C-sodium acetate and (14)C-2,4-D was insensitive to chlordecone exposure in silty loam soil. However, mineralization of (14)C-sodium acetate was significantly reduced in soil

  12. Nitrate leaching from sandy loam soils under a double-cropping forage system estimated from suction-probe measurements.

    NARCIS (Netherlands)

    Trindade, H.; Coutinho, J.; Beusichem, van M.L.; Scholefield, D.; Moreira, N.

    1997-01-01

    Nitrate leaching from a double-cropping forage system was measured over a 2-year period (June 1994–May 1996) in the Northwest region of Portugal using ceramic cup samplers. The crops were grown for silage making and include maize (from May to September) and a winter crop (rest of the year)

  13. Impact of macropores and gravel outcrops on phosphorus leaching at the plot scale in silt loam soils

    Science.gov (United States)

    In response to increased nutrient loads in surface waters, scientists and engineers need to identify critical nutrient source areas and transport mechanisms within a catchment to protect beneficial uses of aquatic systems in a cost effective manner. It was hypothesized that hydrologic heterogeneitie...

  14. Long-term effects of fallow, tillage and manure application on soil organic matter and nitrogen fractions and on sorghum yield under Sudano-Sahelian conditions

    NARCIS (Netherlands)

    Mando, A.; Ouattara, B.; Somado, A.E.; Wopereis, M.C.S.; Stroosnijder, L.; Breman, H.

    2005-01-01

    Soil organic matter (SOM) controls the physical, chemical and biological properties of soil and is a key factor in soil productivity. Data on SOM quantity and quality are therefore important for agricultural sustainability. In 1990, an experiment was set up at Saria, Burkina Faso on a sandy loam

  15. Amounts of mercury in soil of some golf course sites

    Energy Technology Data Exchange (ETDEWEB)

    MacLean, A J; Stone, B; Cordukes, W E

    1973-01-01

    Mercurial compounds are widely used for controlling diseases of turfgrass of golf courses, but the fungicides are usually confined to the greens. Composite soil samples were obtained from three golf courses in the Ottawa and Ontario region of Canada. Samples from the turf and surface layer of soil were analyzed and high amounts of mercury were found. The soil of No.I course was a sand; No.II was a sandy loam in the surface and a loam below; and No. III was a loam in the surface layer and a clay loam below. The pH of the surface layer was 6.4 in No. I, 7.5 in No. II, and 6.0 in No. III. The amounts of Hg in the turf were high near the green but they decreased with distance. Fairway III contained the highest amounts of Hg and there was evidence of it leaching to a depth of 90 cm at the edge of the green. The particularly high amounts of Hg in no III were in accord with the liberal use of mercurial fungicides on this course in the period 1912-64. The leaching of Hg depends on amounts of organic matter and the clay in the soil.

  16. Nitrogen Fertilization Increases Cottonwood Growth on Old-Field Soil

    Science.gov (United States)

    B. G. Blackmon; E. H. White

    1972-01-01

    Nitrogen (150 lb ./acre as NH4N03 ) applied to a 6-year-old eastern cottonwood plantation in an old field on Commerce silt loam soil increased diameter, basal area, and volume growth by 200 percent over untreated controls. The plantation did not respond to 100 pounds P per acre from concentrated superphosphate.

  17. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  18. Atividade residual de herbicidas aplicados ao solo em relação ao controle de quatro espécies de Amaranthus Residual activity of herbicides applied to the soil in relation to control of four Amaranthus Species

    Directory of Open Access Journals (Sweden)

    M.A. Raimondi

    2010-01-01

    -metolachlor foram eficientes para todas as espécies até 30 DAA, em ambas as doses, demonstrando atividade residual consistente para o solo estudado.Herbicides applied at pre-emergence normally present residual activity in the soil, controlling the first weed germinations, and preventing initial weed competition. The aim of this study was to determine the period of residual activity provided by sufficient herbicide rates for 95% (C95 control of the species Amaranthus hybridus, A. lividus, A. spinosus and A. viridis, and to assess the recommended rates of these herbicides. The study was conducted under greenhouse conditions in soils of sandy clay loam texture (20% clay and 1.9 of organic matter, with rates of alachlor, diuron, oxyfluorfen, pendimethalin, prometryne, oxyfluorfen, S-metolachlor, trifluralin 450 and trifluralin 600 being applied at 30, 20, 10 and 0 days before weed sowing. Weed control was evaluated after herbicide permanence in soil for 0, 10, 20 and 30 days after application (DAA. The residual activity of alachlor and prometryne at a rate C95 was not sufficient for the efficient control (>80% of the species for up to 30 DAA. For alachlor, the use of the recommended rate did not provide considerable increase in residual activity, except for A. viridis. The recommended rate of prometryn promoted efficient control of the species for up to 30 DAA, except for A. hybridus. The recommended rate of oxyfluorfen provided an efficient control of A. hybridus and A. spinosus up to 30 DAA. These species had not been effectively controlled by the rate C95. Trifluralin 450 promoted efficient residual control for up to 30 DAA only compared with A. hybridus. Trifluralin 600 was effective in controlling A. hybridus and A. viridis up to 30 DAA and 29 and 28 DAA for A. lividus and A. spinosus, respectively. Clomazone did not promote efficient control of the species for 30 DAA, except for A. viridis. Diuron, pendimethalin and S-metolachlor were effective in controlling the species for up

  19. Dynamics of mineral N, water-soluble carbon and potential nitrification in band-steamed arable soil

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2010-01-01

    the effect of band-steaming on N and C dynamics in a sandy loam soil that was steamed in situ to maximal temperatures of 70-90°C using a prototype band-steamer. Soil samples (0-5 cm depth) were collected during 90 days from band-steamed soil, undisturbed control soil, and control soil treated just...

  20. Kajian Teknik Aplikasi Drainase Bawah Tanah dengan Menggunakan Bahan Baku Lokal

    Directory of Open Access Journals (Sweden)

    Momon Sodik Imanudin

    2016-02-01

    Full Text Available Problems crop cultivation on rain fed land after rice is still too wet for crops, while for rice crop will experience drought on the generative phase. The technology was required to decrease the moisture content of the soil so that crops can be planted after rice. The study aims to examine the application of the use of the underground drainage system to lower the water logging. Local raw materials were used in order to easily adopted by farmers, because common uses of the pipe is still too expensive. The drainage material was made of a collection of coconut husk and wood twigs. As a test medium performed using texture medium sandy clay loam soil and sand. The test results showed that the ability of the drainage flow on coconut fiber, lower than that of wood sticks consecutive 0.37 and 0.48 liters / sec. And the maximum flow capability was shown in the sandy soil of 0.75 and 1.93 liters / sec. Condition of the land with drainage modulus 10mm / day and the structure of materials was used in the field of wood sticks with inter-channel spacing is 10 m, then there is a 10 in 1 ha pipeline, so the ability to discharge to 69 m3 / h. Therefore, it took time for water discharge at 100/69 = 1.45 This means that the potential of using systematically drainage disposal is fit for use primarily in the light texture such as sandy clay loam.

  1. Sustainable agriculture and soil conservation

    DEFF Research Database (Denmark)

    Olsen, Preben; Dubgaard, Alex

    , sandy soils in the West, (that had not been covered by ice) from more fertile soils being mostly sandy loams and finer textured soils covering the Eastern part of the study area. Several geological features such as pitting due to dead ice formation, smaller, terminal moraines in association with melt......, separate the moraine plateau. From the plateau several, minor erosion valleys, formed at the end of the glaciation some 10,000 years ago, feed into the two valleys. Very accurate soil type information is available for the area as intensive measurements within the area has formed the basis for a new...... methodology for soil classification in Denmark. The soil survey included a detailed mapping at field level, using the electromagnetic sensor, EM38. A high-resolution digital elevation model, obtained by use of laser scanning, is available for the study area. The original scanning has a horizontal resolution...

  2. Effect of Biochar on Soil Physical Characteristics

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C...... and B plots were placed in a mixed sequence (C-B-C-B-C-B-C-B) and at the same time the eight plots formed a natural pH gradient ranging from pH 7.7 to 6.3. We determined bulk density, saturated hydraulic conductivity (K-sat), soil water retention characteristics, soil-air permeability, and soil...

  3. Nitrous oxide production from soils amended with biogas residues and cattle slurry.

    Science.gov (United States)

    Abubaker, J; Odlare, M; Pell, M

    2013-07-01

    The amount of residues generated from biogas production has increased dramatically due to the worldwide interest in renewable energy. A common way to handle the residues is to use them as fertilizers in crop production. Application of biogas residues to agricultural soils may be accompanied with environmental risks, such as increased NO emission. In 24-d laboratory experiments, NO dynamics and total production were studied in arable soils (sandy, clay, and organic) amended with one of two types of anaerobically digested biogas residues (BR-A and BR-B) generated from urban and agricultural waste and nondigested cattle slurry (CS) applied at rates corresponding to 70 kg NH-N ha. Total NO-N losses from the sandy soil were higher after amendment with BR-B (0.32 g NO-N m) than BR-A or CS (0.02 and 0.18 g NO-N m, respectively). In the clay soil, NO-N losses were very low for CS (0.02 g NO-N m) but higher for BR-A and BR-B (0.25 and 0.15 g NO-N m, respectively). In the organic soil, CS gave higher total NO-N losses (0.31 g NO-N m) than BR-A or BR-B (0.09 and 0.08 g NO-N m, respectively). Emission peaks differed considerably between soils, occurring on Day 1 in the organic soil and on Days 11 to 15 in the sand, whereas in the clay the peak varied markedly (Days 1, 6, and 13) depending on residue type. In all treatments, NH concentration decreased with time, and NO concentration increased. Potential ammonium oxidation and potential denitrification activity increased significantly in the amended sandy soil but not in the organic soil and only in the clay amended with CS. The results showed that fertilization with BR can increase NO emissions and that the size is dependent on the total N and organic C content of the slurry and on soil type. In conclusion, the two types of BR and the CS are not interchangeable regarding their effects on NO production in different soils, and, hence, matching fertilizer type to soil type could reduce NO emissions. For instance, it could be

  4. Predictivity strength of the spatial variability of phenanthrene sorption across two sandy loam fields

    DEFF Research Database (Denmark)

    Soares, Antonio; Paradelo Pérez, Marcos; Møldrup, Per

    2015-01-01

    Sorption is commonly suggested as the major process underlying the transport and fate of polycyclic aromatic hydrocarbons (PAHs) in soils. However, studies focusing in spatial variability at the field scale in particular are still scarce. In order to investigate the sorption of phenanthrene...

  5. Effect of gamma radiation on plant growth, nodulation, nutritional status and yield of soybean

    International Nuclear Information System (INIS)

    Mohamed, F.A.; Hefni, E.H.; Maghraby, G.M.

    1988-01-01

    Field experiment was conducted under the conditions of a sandy clay-loam soil. Soybean seeds were exposed to gamma rays (0,5,10,20,40,80 and 160 Gry) before planting. Low-medium range of gamma rays (5-40 Gry), particularly at 20 Gry, considerably stimulated plant growth, nodules formation and development as well as the total uptake of N and Mn by plants. Significant increase in seed yield was obtained as a result of gamma rays ranged from 10 to 40 Gry, but the dose of 160 Gry, reduced it. The total contents of protein and oil in seeds were highly related to the produced yield, however their concentrations did not affect by the tested range of gamma rays. Generally, seed yield of soybean seemed to be positively related to the rate of plant growth, nodulation and nutritional status. Therefore, irradiation of seeds before planting with low gamma doses could be recommended to improve the productivity of soybean

  6. Agro-economic performance of mungbean intercropped in sesame under different planting patterns

    International Nuclear Information System (INIS)

    Bhatti, I.H.; Ahmed, R.; Aslam, M.; Virk, Z.A.

    2008-01-01

    The performance of mungbean intercropped in sesame under different geometric arrangements was determined o sandy-clay loam soil at the university of Agriculture, Faisalabad for two consecutive years (2001-02). The planting patterns consisted of 40 cm spaced single rows, 60 cm spaced 3-row strips and 100 cm spaced 4-row strip while mungbean was intercropped in all the three planting patterns and also grown as a sole crop. The result evinced that planting sesame in 100 cm spaced 4-row strips explored the intercropping in sesame. It not only permitted convenient intercropping but also facilitated the harvesting and handling of intercrop without doing any damage to the base crop. Intercropping sesame with mungbean in the pattern of 100 cm spaced 4-row strips appeared to be more convenient, productive and profitable than the monocropped sesame. (author)

  7. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    detachment. Studies on necessary kinetic energy to detach one kilogram of sediments by raindrop impact have shown that the minimum energy is required for particles of 0.125 mm. Particles between 0.063 to 0.250 mm are the most vulnerable to detachment. This means that soils with high content of particles into vulnerable range, for example silty loam, loamy, fine sandy, and sandy loam are the most susceptible soils to detachment. Many aspects of soil behaviour in the field such as hydraulic conductivity water retention, soil crusting, soil compaction, and workability are influenced strongly by the primary particles. In tropical soils also a negative relation between structure stability and particles of silt, fine sand and very fine sand has been found, this is attributed to low cohesiveness of these particles. The ability of a structure to persist is known as its stability. There are two principal types of stability: the ability of the soil to retain its structure under the action of water, and the ability of the soil to retain its structure under the action of external mechanical stresses. (e.g. by wheels). Both types of stability are related with susceptibility to erosion

  8. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  9. Sorption – desorption of imidacloprid insecticide on Indian soils of five different locations

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2013-07-01

    Full Text Available Sorption-desorption processes govern the movement of all chemicals including pesticides in soils. The present investigation was undertaken to study the sorption-desorption of imidacloprid, using a batch method, on soils of five different location of India. Sorption data were fitted to Freundlich isotherm. The log K value was the highest for loam type soil (1.830 and the lowest for clay type soil (1.661. The value of 1/n was the maximum for silt loam soil (0.909 but minimum for loam soil (0.723. Simple correlation analysis indicated that among soil properties only electrical conductivity showed a higher but marginally non-significant negative correlation with log K (r = -0.826 indicating that higher concentration of solutes solutes are conducive to low sorption capacity of soil. The desorption data conformed to two surfaces Freundlich desorption isotherm. The values of 1/n1' corresponding to easily desorbed fraction of imidacloprid showed significant negative correlation with soil pH (r = -0.886, significant at p ≤0.05 but significant positive correlation with clay content (r = 0.980, significant at p ≤0.01. The desorption index for easily desorbed fraction of imidacloprid (n1’/n also had significant negative correlation with soil pH (r = 0.953, significant at p ≤0.05. From cumulative desorption data, it appeared that bioavailability of imidacloprid would be lower in neutral soil than acidic or alkaline soils.

  10. Evaporation From Soil Containers With Irregular Shapes

    Science.gov (United States)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  11. Agrogenic degradation of soils in Krasnoyarsk forest-steppe

    Science.gov (United States)

    Shpedt, A. A.; Trubnikov, Yu. N.; Zharinova, N. Yu.

    2017-10-01

    Agrogenic degradation of soils in Krasnoyarsk forest-steppe was investigated. Paleocryogenic microtopography of microlows and microhighs in this area predetermined the formation of paragenetic soil series and variegated soil cover. Specific paleogeographic conditions, thin humus horizons and soil profiles, and long-term agricultural use of the land resulted in the formation of soils unstable to degradation processes and subjected to active wind and water erosion. Intensive mechanical soil disturbances during tillage and long-term incorporation of the underlying Late Pleistocene (Sartan) calcareous silty and clay loams into the upper soil horizons during tillage adversely affected the soil properties. We determined the contents of total and labile humus and easily decomposable organic matter and evaluated the degree of soil exhaustion. It was concluded that in the case of ignorance of the norms of land use and soil conservation practices, intense soil degradation would continue leading to complete destruction of the soil cover within large areas.

  12. Carbon dioxide emissions after application of different tillage systems for loam in northern China

    Science.gov (United States)

    Hongwen, Li; Lifeng, Hu; Fub, Chen; Xuemin, Zhang

    2010-05-01

    Tillage operations influence soil physical properties and crop growth, and thus both directly and indirectly the cropland CO2 exchange with the atmosphere. In this study, the results of CO2 flux measurements on cropland, under different tillage practices in northern China, are presented. CO2 flux on croplands with a winter wheat (Triticum aestivum L.) and maize (Zea may L.) rotation was monitored on plots with conventional tillage (CT), rotary tillage (RT) and no tillage (NT). Soil CO2 flux was generally greater in CT than in NT, and the RT CO2 flux was only slightly smaller than the CT. Daily soil CO2 emissions for CT, RT, and NT averaged 11.30g m-2, 9.63 g m-2 and 7.99 g m-2, respectively, during the growing period. Analysis of variance shows that these differences are significant for the three tillage treatments. Peak CO2 emissions were recorded on the CT and RT croplands after tillage operations. At the same time, no obviously increased emission of CO2 occurred on the NT plot. These differences demonstrate that tillage results in a rapid physical release of CO2.

  13. Comparative research on tillable properties of diatomite-improved soils in the Yangtze River Delta region, China.

    Science.gov (United States)

    Qu, Ji-Li; Zhao, Dong-Xue

    2016-10-15

    To improve soil texture and structure, techniques associated with physical, biological or chemical aspects are generally adopted, among which diatomite is an important soil conditioner. However, few studies have been conducted to investigate the physical, hydraulic and tillage performance of diatomite-improved soils. Consistency limits and compaction properties were investigated in this study, and several performance indicators were compared, such as the liquid limit, plastic limit and compactability, of silt, silt loam and silty-clay loam soils to which diatomite was added at volumetric ratios of 0%, 10%, 20%, and 30%. The results showed that diatomite significantly (pdiatomite lowered the maximum dry bulk density (MBD) of the classified soils, the optimum moisture content (OMC) was increased overall. The trend was consistent with the proportion of diatomite, and MBD decreased by 8.7%, 10.3%, and 13.2% in the silt, silt loam and silty-clay loam soils when 30% diatomite was mixed, whereas OMC increased by 28.7%, 22.4%, and 25.3%, respectively. Additionally, aggregate stability was negatively correlated with MBD but positively correlated with OMC. Diatomite exerts positive effects on soil mechanical strength, suggesting that soils from sludge farms are more tillable with a larger stabilized and workable matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Distribution of nitrogen ammonium sulfate ({sup 15}N) soil-plant system in a no-tillage crop succession; Distribuicao do nitrogenio do sulfato de amonio ({sup 15}N) no sistema solo-planta, em uma sucessao de culturas, sob sistema plantio direto

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Flavia Carvalho da Silva, E-mail: flcsfernandes@gmail.com [Universidade Estadual de Maringa - Campus de Umuarama, PR (Brazil); Libardi, Paulo Leonel, E-mail: pllibard@esalq.usp.br [Departamento de Engenharia de Biossistemas, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP (Brazil)

    2012-05-15

    the n use by maize (Zea mays, l.) is affected by n-fertilizer levels. this study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of n use by maize in a crop succession, based on {sup 15}N labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signal grass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of n rates of 60, 120 and 180 kg ha{sup -1}in the form of labeled {sup 15}N ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated n; fertilizer-derived n in corn plants and pasture; fertilizer-derived n in the soil; and recovery of fertilizer-n by plants and soil were evaluated.The highest uptake of fertilizer n by corn was observed after application of 120 kg ha{sup -1}N and the residual effect of n fertilizer on subsequent corn and brachiaria was highest after application of 180 kg ha{sup -1}N. After the crop succession, soil n recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha{sup -1}N. (author)

  15. 14C tebuconazole degradation in Colombian soils.

    Science.gov (United States)

    Mosquera, C S; Martínez, M J; Guerrero, J A

    2010-01-01

    Tebuconazole is a fungicide used on onion crops (Allium Fistulosum L) in Colombia. Persistence of pesticides in soils is characterized by the half-life (DT50), which is influenced by their chemical structure, the physical and chemical properties of the soil and the previous soil history. Based on its structural and chemical properties, tebuconazole should be expected to be relatively persistent in soils. Laboratory incubation studies were conducted to evaluate persistence and bond residues of 14C tebuconazole in three soils, two inceptisol (I) and one histosol (H). Textural classifications were: loam (101), loamy sand (102) and loam (H03), respectively. Data obtained followed a first-order degradation kinetics (R2 > or = 0.899) with DT50 values between 158 and 198 days. The production of 14CO2 from the 14C-ring-labelled test chemicals was very low and increased slightly during 63 days in all cases. The methanol extractable 14C-residues were higher than aqueous ones and both decreased over incubation time for the three soils. The formation of bound 14C-residues increased with time and final values were 11.3; 5.55 and 7.87% for 101, 102 and H03 respectively. Soil 101 showed the lowest mineralization rate and the highest bound residues formation, which might be explained by the clay fraction content. In contrast, an inverse behavior was found for soils 102 and H03, these results might be explained by the higher soil organic carbon content.

  16. Integrated assessment of space, time, and management-related variability of soil hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Es, H.M. van; Ogden, C.B.; Hill, R.L.; Schindelbeck, R.R.; Tsegaye, T.

    1999-12-01

    Computer-based models that simulate soil hydrologic processes and their impacts on crop growth and contaminant transport depend on accurate characterization of soil hydraulic properties. Soil hydraulic properties have numerous sources of variability related to spatial, temporal, and management-related processes. Soil type is considered to be the dominant source of variability, and parameterization is typically based on soil survey databases. This study evaluated the relative significance of other sources of variability: spatial and temporal at multiple scales, and management-related factors. Identical field experiments were conducted for 3 yr. at two sites in New York on clay loam and silt loam soils, and at two sites in Maryland on silt loam and sandy loam soils, all involving replicated plots with plow-till and no-till treatments. Infiltrability was determined from 2054 measurements using parameters, and Campbell's a and b parameters were determined based on water-retention data from 875 soil cores. Variance component analysis showed that differences among the sites were the most important source of variability for a (coefficient of variation, CV = 44%) and b (CV = 23%). Tillage practices were the most important source of variability for infiltrability (CV = 10%). For all properties, temporal variability was more significant than field-scale spatial variability. Temporal and tillage effects were more significant for the medium- and fine-textured soils, and correlated to initial soil water conditions. The parameterization of soil hydraulic properties solely based on soil type may not be appropriate for agricultural lands since soil-management factors are more significant. Sampling procedures should give adequate recognition to soil-management and temporal processes at significant sources of variability to avoid biased results.

  17. Geoelectrical Soil Properties of Farmlands Located on Ancient River Floodplains in EL Paso County Texas

    Science.gov (United States)

    Pegues, J. G.; Kaip, G.; Doser, D. I.

    2013-12-01

    Farming in Rio Grande flood plain deposit soils has presented challenges concerning soil salinity, soil drainage and soil collapse. Typical soil forms include Saneli silted clay loam, Harkey loam, Harkey silky loam clay and Tigua silty clay. In the lower valley farmlands of Socorro, TX, cotton and alfalfa are the principal crops, but grain sorghum, corn and vegetable crops also are suitable. Pecan trees, as well as fruit trees suited to the climate, can be grown. Agrarians are faced with varying results of crop yields over relatively small stretches of land; for example, a 22 acre area can contain multiple soil inclusions. This study was conducted on a 22 acre tract of farmland which has recently undergone multiple geophysical testing analyses that include: magnetics, DC resistivity, gravity, and ground penetrating radar. Results will compare flood plain sedimentation qualities to agricultural soil classes through the identification of soil salinity and grain size. This investigation will focus on the testing of geo-electrical soil properties through resistivity assessment. Examination of the sight using a capacity coupled resistivity meter to measure the soil properties over various time periods will be conducted. The results will be compared with the other geophysical data to look for correlations that highlight soil properties.

  18. Restauração da estrutura do solo por sequências culturais implantadas em semeadura direta, e sua relação com a erosão hídrica em distintas condições físicas de superfície Restoration of the soil structure by crop sequences established in no-till, as related to water erosion in distinct surface physical conditions

    Directory of Open Access Journals (Sweden)

    Jeane Cruz Portela

    2010-08-01

    , 2007. The six erosion tests, in intervals of about a week, were performed from October to December, 2007. The soil used is an Ultisol, with a sandy clay loam texture in the surface layer and 0.115 m m-1 average slope steepness, and an advanced degree of degradation. The rains were applied with a rotating-boom rainfall simulator, at a constant intensity of 64 mm h-1; for 1-3 h. For this study, water and soil loss data were adjusted to a rainfall duration of 1.5 h. Properties of soil and plants were measured in the experimental plots and water erosion in the surface runoff. The crop sequences and erosion tests influenced the results of the study significantly, with greater differences in the latter than in the former. The erosive process was more influenced by the external or soil surface than the internal or subsurface physical conditions. In general, all crop sequences were effective in restoring the soil structure in the experimental period. The sequence involving teosinte controlled the rainfall erosion process most effectively with regard to soil and water loss and the one involving corn+cowpea and pearl millet with regard to soil loss. The highest soil and water losses in the study were observed from the soil surface with no mobilization and little crop residue cover, regardless of the presence or type of crust, but especially when this latter was slightly cracked prior to rainfall application. The soil surface entirely covered by crop residue, be it untilled or freshly chiseled, controlled runoff effectively and impeded erosion completely. Soil and water losses from the freshly-disked soil surface chiseled a month earlier, although the soil was the most mobilized of all and bare, were practically zero, opposite to what was expected.

  19. Cesium-137 retention in irops obtained from various soils

    International Nuclear Information System (INIS)

    Gulyakin, I.V.; Yudintseva, E.V.; Gorina, L.I.

    1974-01-01

    A non-station experiment has shown that the accumulation of cesium-137 in a plant yield depends on the type of soil. The highest contents of cesium-137 were found in the yield of plants from soddy-podzolic sandy loam soils, and the lowest- in those from leached chernozem. The accumulation of radiocesium in the yield of the basic produce strongly depended on the plant species. The amount of cesium-137 differed 5- to 7-fold in different crops

  20. Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions.

    Science.gov (United States)

    Menahem, Adi; Dror, Ishai; Berkowitz, Brian

    2016-02-01

    The release of pharmaceuticals and personal care products (PPCPs) to the soil-water environment necessitates understanding of PPCP transport behavior under conditions that account for dynamic flow and varying redox states. This study investigates the transport of two organometallic PPCPs, Gd-DTPA and roxarsone (arsenic compound) and their metal salts (Gd(NO3)3, AsNaO2); Gd-DTPA is used widely as a contrasting agent for MRI, while roxarsone is applied extensively as a food additive in the broiler poultry industry. Here, we present column experiments using sand and Mediterranean red sandy clay soil, performed under several redox conditions. The metal salts were almost completely immobile. In contrast, transport of Gd-DTPA and roxarsone was affected by the soil type. Roxarsone was also affected by the different redox conditions, showing delayed breakthrough curves as the redox potential became more negative due to biological activity (chemically-strong reducing conditions did not affect the transport). Mechanisms that include adsorptive retardation for aerobic and nitrate-reducing conditions, and non-adsorptive retardation for iron-reducing, sulfate-reducing and biologically-strong reducing conditions, are suggested to explain the roxarsone behavior. Gd-DTPA is found to be a stable complex, with potential for high mobility in groundwater systems, whereas roxarsone transport through groundwater systems is affected by redox environments, demonstrating high mobility under aerobic and nitrate-reducing conditions and delayed transport under iron-reducing, sulfate-reducing and biologically-strong reducing conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte.

    Science.gov (United States)

    Hultine, K R; Koepke, D F; Pockman, W T; Fravolini, A; Sperry, J S; Williams, D G

    2006-03-01

    We investigated hydraulic constraints on water uptake by velvet mesquite (Prosopis velutina Woot.) at a site with sandy-loam soil and at a site with loamy-clay soil in southeastern Arizona, USA. We predicted that trees on sandy-loam soil have less negative xylem and soil water potentials during drought and a lower resistance to xylem cavitation, and reach E(crit) (the maximum steady-state transpiration rate without hydraulic failure) at higher soil water potentials than trees on loamy-clay soil. However, minimum predawn leaf xylem water potentials measured during the height of summer drought were significantly lower at the sandy-loam site (-3.5 +/- 0.1 MPa; all errors are 95% confidence limits) than at the loamy-clay site (-2.9 +/- 0.1 MPa). Minimum midday xylem water potentials also were lower at the sandy-loam site (-4.5 +/- 0.1 MPa) than at the loamy-clay site (-4.0 +/- 0.1 MPa). Despite the differences in leaf water potentials, there were no significant differences in either root or stem xylem embolism, mean cavitation pressure or Psi(95) (xylem water potential causing 95% cavitation) between trees at the two sites. A soil-plant hydraulic model parameterized with the field data predicted that E(crit) approaches zero at a substantially higher bulk soil water potential (Psi(s)) on sandy-loam soil than on loamy-clay soil, because of limiting rhizosphere conductance. The model predicted that transpiration at the sandy-loam site is limited by E(crit) and is tightly coupled to Psi(s) over much of the growing season, suggesting that seasonal transpiration fluxes at the sandy-loam site are strongly linked to intra-annual precipitation pulses. Conversely, the model predicted that trees on loamy-clay soil operate below E(crit) throughout the growing season, suggesting that fluxes on fine-textured soils are closely coupled to inter-annual changes in precipitation. Information on the combined importance of xylem and rhizosphere constraints to leaf water supply across soil

  3. Occurrence, fate, and persistence of gemfibrozil in water and soil.

    Science.gov (United States)

    Fang, Yu; Karnjanapiboonwong, Adcharee; Chase, Darcy A; Wang, Jiafan; Morse, Audra N; Anderson, Todd A

    2012-03-01

    Pharmaceuticals and personal care products (PPCPs) have emerged as a group of potential environmental contaminants of concern. The occurrence of gemfibrozil, a lipid-regulating drug, was studied in the influent and effluent at a wastewater treatment plant (WWTP) and groundwater below a land application site receiving treated effluent from the WWTP. In addition, the sorption of gemfibrozil in two loam soils and sand was assessed, and biological degradation rates in two soil types under aerobic conditions were also determined. Results showed that concentrations of gemfibrozil in wastewater influent, effluent, and groundwater were in the range of 3.47 to 63.8 µg/L, 0.08 to 19.4 µg/L, and undetectable to 6.86 µg/L, respectively. Data also indicated that gemfibrozil in the wastewater could reach groundwater following land application of the treated effluent. Soil-water distribution coefficients for gemfibrozil, determined by the batch equilibrium method, varied with organic carbon content in the soils. The sorption capacity was silt loam > sandy loam > sand. Under aerobic conditions, dissipation half-lives for gemfibrozil in sandy loam and silt loam soils were 17.8 and 20.6 days, respectively; 25.4 and 11.3% of gemfibrozil was lost through biodegradation from the two soils over 14 days. Copyright © 2011 SETAC.

  4. Key parameters in testing biodegradation of bio-based materials in soil.

    Science.gov (United States)

    Briassoulis, D; Mistriotis, A

    2018-05-05

    Biodegradation of plastics in soil is currently tested by international standard testing methods (e.g. ISO 17556-12 or ASTM D5988-12). Although these testing methods have been developed for plastics, it has been shown in project KBBPPS that they can be extended also to lubricants with small modifications. Reproducibility is a critical issue regarding biodegradation tests in the laboratory. Among the main testing variables are the soil types and nutrients available (mainly nitrogen). For this reason, the effect of the soil type on the biodegradation rates of various bio-based materials (cellulose and lubricants) was tested for five different natural soil types (loam, loamy sand, clay, clay-loam, and silt-loam organic). It was shown that use of samples containing 1 g of C in a substrate of 300 g of soil with the addition of 0.1 g of N as nutrient strongly improves the reproducibility of the test making the results practically independent of the soil type with the exception of the organic soil. The sandy soil was found to need addition of higher amount of nutrients to exhibit similar biodegradation rates as those achieved with the other soil types. Therefore, natural soils can be used for Standard biodegradation tests of bio-based materials yielding reproducible results with the addition of appropriate nutrients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. An automated microinfiltrometer to measure small-scale soil water infiltration properties

    Directory of Open Access Journals (Sweden)

    Gordon Dennis C.

    2014-09-01

    Full Text Available We developed an automated miniature constant-head tension infiltrometer that measures very small infiltration rates at millimetre resolution with minimal demands on the operator. The infiltrometer is made of 2.9 mm internal radius glass tube, with an integrated bubbling tower to maintain constant negative head and a porous mesh tip to avoid air-entry. In the bubbling tower, bubble formation and release changes the electrical resistance between two electrodes at the air-inlet. Tests were conducted on repacked sieved sands, sandy loam soil and clay loam soil, packed to a soil bulk density ρd of 1200 kg m-3 or 1400 kg m-3 and tested either air-dried or at a water potential ψ of -50 kPa. The change in water volume in the infiltrometer had a linear relationship with the number of bubbles, allowing bubble rate to be converted to infiltration rate. Sorptivity measured with the infiltrometer was similar between replicates and showed expected differences from soil texture and ρd, varying from 0.15 ± 0.01 (s.e. mm s-1/2 for 1400 kg m-3 clay loam at ψ = -50 kPa to 0.65 ± 0.06 mm s-1/2 for 1200 kg m-3 air dry sandy loam soil. An array of infiltrometers is currently being developed so many measurements can be taken simultaneously.

  6. 238U content in soils of Byelorussia

    International Nuclear Information System (INIS)

    Shagalova, Eh.D.

    1986-01-01

    Results of detection in Byelorussian soils of a heavy natural radionuclide 238 U and its content in humus horizons of the soils on map-schemes are presented. 238 U content is determined by complete decomposition of soils by acids, isolation from thorium using EhDEh-10 P anionite and subsequent solution colorimetry. It is shown that the content of uranium-238 in soils decreases from the North to the South. Its maximum amount (>2x10 -4 %) is detected in turfy-podsolic soils in lake-glacier loams; the minimum one ( -4 %)- in peatymarshy soils. The map-scheme of 238 U content is a background base. Using the background base it is possible to trace the change in uranium content in soils under conditions of technogenic effect and to substantiate the efficiency of environment protection measures

  7. Identification of Soil Properties and Organophosphate Residues From Agricultural Land in Wanasari Sub-District, Brebes, Indonesia

    Science.gov (United States)

    Joko, Tri; Anggoro, Sutrisno; Sunoko, Henna Rya; Rachmawati, Savitri

    2018-02-01

    Organophosphates have been used to eradicate pests and prevent losses from harvest failures caused by pest attack. It is undeniable that the organophosphate persist in soil. This study aims to identify the organophosphate residue and soil properties include pH, soil texture, and permeability. The soil samples were taken from cropland in 10 villages, Wanasari sub-district, Brebes, Indonesia. Organophosphate residue determined by gas chromatography using Flame Photometric Detector. Soil texture was determined by soil texture triangle from NRCS USDA, and the permeability value was determined by falling head method. The mean value of chlorpyrifos, profenofos, diazinon were 0.0078; 0.0388; 0.2271 mg/l respectively. The soil texture varies from clay, silt clay, loam, silt loam, and silt clay loam with permeability value at 10-7 with the soil pH value between 6.4 - 8.1. The results showed that organophosphate residues found in the soil and its potential affect the soil fertility decline. We recommend to conduct routine soil quality analysis to prevent soil damage in the agricultural environment.

  8. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity

    OpenAIRE

    Pulleman, M M; Six, J; van Breemen, N; Jongmans, A G

    2005-01-01

    Stable microaggregates can physically protect occluded soil organic matter (SOM) against decomposition. We studied the effects of agricultural management on the amount and characteristics of microaggregates and on SOM distribution in a marine loam soil in the Netherlands. Three long-term farming systems were compared: a permanent pasture, a conventional-arable system and an organic-arable system. Whole soil samples were separated into microaggregates (53-250 mu m), 20-53 mu m and 20 mu m) ve...

  9. The role of soil layers in preventing ground water pollution with 17ß-estradiol hormone (E 2

    Directory of Open Access Journals (Sweden)

    A’zam Golzari

    2016-03-01

    Full Text Available Background: Estrogens include estoril (E3, estradiol and estrone (E1. These chemicals are produced in human and animal bodies as well as in synthetic chemicals (drugs. Estrogens can enter water sources in different ways. When these chemicals enter the human body through water and wastewater, they have the ability to mimic or disrupt the normal estrogen activities in humans and animals. Estrogens in wastewater are able to pass soil layers and contaminate groundwater. Therefore, in this study, the removal of the hormone 17ß-estradiol (E2 as a representative of estrogens in three types of soils was studied. The selection was chosen in respect to the importance of entering the hormone into groundwater through the soil. Methods: This study was an experimental study in which the removal of the hormone E2 from different depths of three types of soils was experimented. The soils were consisted of two different textures, the silty sandy clay and the silty sand with gravel. The hormone E2 was diluted and injected into the drilled holes. Soils were characterized in the soil mechanics laboratory. Hormone extraction from the soils was performed using a centrifuge and analyzed with the Elecsys device. The results were analyzed using the IBM SPSS version 22 software. Results: The results showed that the removal rates of hormone E2 in the three types of soils were higher than 99.5%, and the removal rate in the silty sand was more than the others. In all three soil samples, the removal rates in the first layer were high. The average injected hormone in the soil decreased from 3500 to 3112 ng/l. The results showed that the adhesion and plasticity of the soil had also affected the removal rates. Conclusion: Results showed that the soil plays a significant role in the removal of E2 hormone and this hormone was reduced or eliminated in the first layers of the soils. Thus, the risk of groundwater contamination is low.

  10. A Preliminary Study on Termite Mound Soil as Agricultural Soil for Crop Production in South West, Nigeria

    Directory of Open Access Journals (Sweden)

    O. E. Omofunmi

    2017-08-01

    Full Text Available It is a popular belief of the people in the Southern region of Nigeria that a land infested with termite usually brings prosperity to the land owner regardless of the type of its usage. Therefore, the present study assessed termite mounds soil properties which are important to crop production. Two soil samples were collected and their physical and chemical properties determined in accordance with American Public Health Association (APHA, 2005. Data were analyzed using descriptive statistics. The textural classes showed that the termite mound soil was sand clay loam while the surrounding soil was clay loam. This results revealed that: Termites’ activity induced significant chemical changes in the soil possible due to the materials used in building their nests. There was increase the concentrations of nitrogen, phosphorus, Potassium, calcium and magnesium higher in the termite’s mounds, while the micro-nutrients (zinc, iron and copper except sulphur and manganese lower in the soil infested by termites. There were significant differences (p ≥ 0.05 between termite mound soil and surrounding soil. It showed highly positive correlation between termite mound and surrounding soil (r= 0.92. The concentration of the soil properties around the termite mound are within the range of soil nutrients suitable for arable crop production. Termite mound soil is recommended to be used as an alternative to local farmers who cannot afford to buy expensive inorganic fertilizers.

  11. Effectiveness of the GAEC cross-compliance standard Ploughing in good soil moisture conditions in soil structure protection

    Directory of Open Access Journals (Sweden)

    Maria Teresa Dell'Abate

    2011-08-01

    Full Text Available Researches have been carried out within the framework on the EFFICOND Project, focused at evaluating the effectiveness of the standards of Good Agricultural and Environmental Conditions (GAECs established for Cross Compliance implementation under EC Regulation 1782/2003. In particular the standard 3.1b deals with soil structure protection through appropriate machinery use, with particular reference to ploughing in good soil moisture conditions. The study deals with the evaluation of soil structure after tillage in tilth and no-tilth conditions at soil moisture contents other than the optimum water content for tillage. The Mean Weight Diameter (MWD of water stable aggregates was used as an indicator of tillage effectiveness. The study was carried out in the period 2008-2009 at six experimental farms belonging to Research Centres and Units of the Italian Agricultural Research Council (CRA with different pedo-climatic and cropping conditions. Farm management and data collection in the different sites were carried out by the local CRA researchers and technicians. The comparison of MWD values in tilth and no tilth theses showed statistically significant differences in most cases, depending on topsoil texture. On clay, clay loam, silty clay, and silty clay loam topsoils a general and significant increase of MWD values under no tilth conditions were observed. No significant differences were observed in silt loam and sandy loam textures, probably due to the weak soil structure of the topsoils. Moreover, ploughing in good soil moisture condition determined higher crop production and less weed development than ploughing in high soil moisture conditions.

  12. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  13. PRODUÇÃO E CONCENTRAÇÃO DE METAIS PESADOS EM PLANTAS DE BETERRABA ADUBADAS COM COMPOSTO DE LIXO URBANO

    Directory of Open Access Journals (Sweden)

    Regynaldo Arruda Sampaio

    2008-01-01

    Full Text Available The objective of this work was to evaluate the effect of the urban waste compost on the yield and heavy metals concentrations in red beet plants (Beta vulgaris L. in soils with different textures. The experiment was carried out in greenhouse in polyethylene recipients of 9 dm3. The experimental treatments resulted from a 3 x 4 factorial arrangement of a Red Yellow Latosol, sandy clay loam, (LVAfaa, a Red Yellow Latosol, loamy sand, (LVAfa and a Quartzarenic Neosol, sand loam, (RQ, combined with the urban waste compost doses of 0, 30, 60 and 90 t/ha, in dry base. The experimental design was in randomized blocks with three replications of the treatments. Soil pH, fresh and dry matter weight and Zn, Cu, Cd, Pb and Ni concentrations in the soil and the leaf tissue were determined. Amongst heavy metals determined, Zn and Cu had been only influenced by the soil texture, being biggest concentrations in the soil with bigger amount of clay. The dry and fresh weights of the red beet root had increased with the increment of the doses of compost, having reached maximum values, inside of the experimental interval, with the 90 t.ha-1. Otherwise, the heavy metal content in red beet root decreased with the increase of the doses of compost. As much the Ni how much the Pb had presented content level in root above of the allowed maximum limits for the consumption, as values established for the Brazilian legislation.

  14. Radiotracer studies on the degradation and dissipation of lindane under Malaysian environment. Part of a coordinated programme on the fate of persistent pesticides in the tropics, using radioisotopes

    International Nuclear Information System (INIS)

    Jamaluddin, M.D.

    1983-11-01

    A protocol was designed to provide information on rates of dissipation and degradation of lindane (γ-isomer of 1,2,3,4,5,6-hexachlorocyclohexane), a chemical used in Malaysia for pest control in rice paddies. The parameters studied included adsorption to three Malaysian soils, volatilization, degradation, dissipation through leaching and terminal residues in the grain. 14 C-labelled lindane was used after mixing with appropriate concentrations of the cold chemical. Standard nuclear techniques such as liquid scintillation counting and radiochromatography were applied. Adsorption of lindane to soil decreased in the order clay>sandy clay>loam>sandy loam. Volatilization of lindane was proportional to the chemical concentration and was more rapid in non-flooded and sterilized flooded soils. Under flooding conditions, microorganismal activities seem to play a dominant role in the disappearance, possibly degradation, of lindane. The half-life of lindane in non-sterilized flooded soil ranged from 10.5 to 34.5 days depending on the type of soil. The chemical residue in the grain was well below the maximum residue level. This is part of a project designed to provide data on the degradation and dissipation of lindane in the Malaysian environment in an attempt to pass a realistic judgement as to its persistence

  15. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Luksiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60%) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  16. Autoclave decomposition method for metals in soils and sediments.

    Science.gov (United States)

    Navarrete-López, M; Jonathan, M P; Rodríguez-Espinosa, P F; Salgado-Galeana, J A

    2012-04-01

    Leaching of partially leached metals (Fe, Mn, Cd, Co, Cu, Ni, Pb, and Zn) was done using autoclave technique which was modified based on EPA 3051A digestion technique. The autoclave method was developed as an alternative to the regular digestion procedure passed the safety norms for partial extraction of metals in polytetrafluoroethylene (PFA vessel) with a low constant temperature (119.5° ± 1.5°C) and the recovery of elements were also precise. The autoclave method was also validated using two Standard Reference Materials (SRMs: Loam Soil B and Loam Soil D) and the recoveries were equally superior to the traditionally established digestion methods. Application of the autoclave was samples from different natural environments (beach, mangrove, river, and city soil) to reproduce the recovery of elements during subsequent analysis.

  17. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30–70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below...

  18. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Lukshiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60 %) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  19. Adsorption and diffusion of plutonium in soil

    International Nuclear Information System (INIS)

    Relyea, J.F.; Brown, D.A.

    1978-01-01

    The behavior of plutonium in soil--water systems was studied by measuring its apparent diffusion coefficient in the aqueous and solid phases and by finding the adsorption--desorption relationships between soil and solution. Apparent diffusion coefficients of plutonium in soil were measured using a quick-freeze method. Aqueous diffusion was studied in a capillary-tube diffusion cell. Adsorption studies were done by equilibrating a tagged soil--water mixture on a rotary shaker before centrifuging and sampling. As expected from high adsorption coefficients (Kd) (300--10,000), the apparent diffusion coefficients were low compared with normal soil cations (1.4 x 10 -8 cm 2 /sec in a sandy soil to less than 2.4 x 10 -11 cm 2 /sec in a silt loam). The Kd of plutonium in aqueous solution containing the chelate ethylenediaminetetraacetic acid (EDTA) was reduced compared with the Kd in dilute HNO 3 . As the EDTA concentration was increased, the Kd was decreased. The chelate diethylenetriaminepentaacetic acid (DTPA) reduced the Kd more than EDTA at comparable concentrations. The aqueous diffusion coefficients varied from 3.1 x 10 -7 cm 2 /sec in a solution extracted from the silt loam up to 2.7 x 10 -5 cm 2 /sec in a solution extracted from the sandy soil

  20. Application of Modular Modeling System to Predict Evaporation, Infiltration, Air Temperature, and Soil Moisture

    Science.gov (United States)

    Boggs, Johnny; Birgan, Latricia J.; Tsegaye, Teferi; Coleman, Tommy; Soman, Vishwas

    1997-01-01

    Models are used for numerous application including hydrology. The Modular Modeling System (MMS) is one of the few that can simulate a hydrology process. MMS was tested and used to compare infiltration, soil moisture, daily temperature, and potential and actual evaporation for the Elinsboro sandy loam soil and the Mattapex silty loam soil in the Microwave Radiometer Experiment of Soil Moisture Sensing at Beltsville Agriculture Research Test Site in Maryland. An input file for each location was created to nut the model. Graphs were plotted, and it was observed that the model gave a good representation for evaporation for both plots. In comparing the two plots, it was noted that infiltration and soil moisture tend to peak around the same time, temperature peaks in July and August and the peak evaporation was observed on September 15 and July 4 for the Elinsboro Mattapex plot respectively. MMS can be used successfully to predict hydrological processes as long as the proper input parameters are available.

  1. Predicting nitrous oxide emissions from manure properties and soil moisture: An incubation experiment

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Arthur, Emmanuel; Olesen, Jørgen Eivind

    2016-01-01

    Field-applied manure is a source of essential plant nutrients, but benefits may be partly offset by high rates of nitrous oxide (N2O) emissions, as modified by manure characteristics and soil properties. In a 28-d incubation experiment we quantified short-term emissions of N2O from a sandy loam...

  2. THE PHYTOAVAILABILITY OF CADMIUM TO LETTUCE IN LONG-TERM BIOSOLIDS-AMENDED SOILS

    Science.gov (United States)

    A field study was conducted to assess the phytoavailability of Cd in long-term biosolids-amended field plots managed at high and low pH. The experiment, established 13-15 yr prior to the present cropping, on a Christiana fine sandy loam soil (a clayey, kaolinitic, mesic Typic Pa...

  3. Phenanthrene sorption on biochar-amended soils

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo Pérez, Marcos

    2014-01-01

    on their influences on the sorption of environmental contaminants. In a field-based study at two experimental sites in Denmark, we investigated the effect of birch wood-derived biochar (Skogans kol) on the sorption of phenanthrene in soils with different properties. The soil sorption coefficient, Kd (L kg-1......), of phenanthrene was measured on sandy loam and loamy sand soils which have received from zero up to 100 t ha-1 of biochar. Results show that birch wood biochar had a higher Kd compared to soils. Furthermore, the application of birch wood biochar enhanced the sorption of phenanthrene in agricultural soils...... carbon, while it negatively correlated with clay content. The results also revealed that biochar-mineral interactions play an important role in the sorption of phenanthrene in biochar-amended soil....

  4. The fate of uranium contaminants of phosphate fertiliser: chemical partitioning of uranium in two New Zealand soils of volcanic origin and the effect on partitioning of amending one of those soils with uranium

    International Nuclear Information System (INIS)

    Taylor, M.D.

    1998-01-01

    This study assessed the chemical partitioning of U isotopes in Horomanga Sandy Loam and Te Kowhai silt loam, two agricultural soils derived from rhyolitic ash and receiving low level contamination from U impurities in phosphate fertiliser. To simulate future U additions, a sub-sample of the Horomanga soil was amended with 2.259 μg U g -1 soil before sequential extraction. The hypothesis that U additions will be strongly held on to the soil and are not available for leaching or plant uptake was tested. After extraction U was purified and determined by alpha spectrometry. Results were corrected for tailing, background, for losses in the purification process (using 232 U), and for soil moisture. It is concluded that only a small proportion of U in the two type of soils examined was derived from fertiliser and that very little U would be available to plants or to leaching

  5. EFFECT OF SOLE AND ASSOCIATIVE ACTIONS OF ELEMENTAL SULFUR AND INOCULATION SULFUR OXIDIZING BACTERIA ON GROWTH AND NUTRIENTS CONTENTS OF PEPPER PLANTS AND THE USED SOILS

    Directory of Open Access Journals (Sweden)

    S. A. Ibrahim

    2011-12-01

    Full Text Available A pot experiment was conducted to study the effect of elemental sulfur (E.S rate (2.5 g/kg soil and sulfur oxidizing bacteria on pepper plant and some chemical properties of two representative soil samples varying in their texture and CaCO3 content. Pepper was grown in Shobrakheet clay loam and Nobaria sandy loam soils for 50 days. Each soil was treated with elemental sulfur (2.5 g kg-1 soil and inoculated with two sulfur oxidizing bacteria (S.O.B. No.8 and S.O.B. ATCC 8158. Elemental sulfur with or without sulfur oxidizing bacteria increased shoot dry weights of pepper plants as compared with control. The highest effect was observed with E.S + ATCC 8158 treatment which resulted in increasing the pepper shoot dry weights from 1.36 to 2.08 g pot-1 with the clay loam soil and from 0.77 to 1.37 g pot-1 with the sandy loam soil. The same treatment resulted in the highest plant content of S, N, P, K and micronutrients.

  6. Effects of biochar addition to soil on nitrogen fluxes in a winter wheat lysimeter experiment

    Science.gov (United States)

    Hüppi, Roman; Leifeld, Jens; Neftel, Albrecht; Conen, Franz; Six, Johan

    2014-05-01

    Biochar is a carbon-rich, porous residue from pyrolysis of biomass that potentially increases crop yields by reducing losses of nitrogen from soils and/or enhancing the uptake of applied fertiliser by the crops. Previous research is scarce about biochar's ability to increase wheat yields in temperate soils or how it changes nitrogen dynamics in the field. In a lysimeter system with two different soils (sandy/silt loam) nitrogen fluxes were traced by isotopic 15N enriched fertiliser to identify changes in nitrous oxide emissions, leaching and plant uptake after biochar addition. 20t/ha woodchip-waste biochar (pH=13) was applied to these soils in four lysimeters per soil type; the same number of lysimeters served as a control. The soils were cropped with winter wheat during the season 2012/2013. 170 kg-N/ha ammonium nitrate fertiliser with 10% 15N was applied in 3 events during the growing season and 15N concentrations where measured at different points in time in plant, soil, leachate and emitted nitrous oxide. After one year the lysimeter system showed no difference between biochar and control treatment in grain- and straw yield or nitrogen uptake. However biochar did reduce nitrous oxide emissions in the silt loam and losses of nitrate leaching in sandy loam. This study indicates potential reduction of nitrogen loss from cropland soil by biochar application but could not confirm increased yields in an intensive wheat production system.

  7. 50 Years And 400 Radiocarbon Measurements Since 1959: What Has The “Bomb Spike” Taught Us About Soil C Dynamics In New Zealand Soils?

    Science.gov (United States)

    Baisden, W. T.; Parfitt, R. L.; Ross, C.

    2009-12-01

    In 1959, Athol Rafter began a substantial programme of monitoring the flow of 14C produced by atmospheric thermonuclear tests through New Zealand’s atmosphere, biosphere and soil. The programme produced important publications, but also leaves a legacy of unpublished data critical for understanding soil C dynamics. A database of ~400 soil radiocarbon measurements spanning 50 years has now been compiled. Among the most compelling data is a comparison of soil carbon dynamics in deforested dairy pastures under similar climate in the Tokomaru silt loam (non-Andisol) versus the Egmont black loam (Andisol), originally sampled in 1962-3, 1965 and 1969. After adding soil profiles sampled to similar depths in 2008, we can use a relatively simple 2-box model to calculate that the residence time of soil C (upper ~8 cm) in the Tokomaru soil is ~9 years compared to ~15 years for the Egmont soil. This difference represents nearly a doubling of soil C residence time, and roughly explains the doubling of the soil C stock. With three measurements in the 1960s, the data is of sufficient resolution to estimate the parameters for an “inert” or “passive pool” comprising approximately 15% of soil C, and having a residence time of 600 years in the Tokomaru soil versus 3000 years in the Egmont surface soil. The Tokomaru/Egmont comparison is necessarily illustrative since the 1960s samplings were not replicated extensively, but provides globally unique data illustrating the nature of C movement through soil. Moreover, the Tokomaru/Egmont comparison supports evidence that C dynamics does differ in Andisols versus other soils. Additional lines of evidence include emerging theories of soil organic matter stabilisation processes, rates of soil organic matter change following land-use change, and chemistry data. The contrasting soil C dynamics in these different soils appear to have implications for land-use change and management schemes that could be eligible for “C credits”. More

  8. New Comparative Experiments of Different Soil Types for Farmland Water Conservation in Arid Regions

    Directory of Open Access Journals (Sweden)

    Yiben Cheng

    2018-03-01

    Full Text Available Irrigated farmland is the main food source of desert areas, and moisture is the main limiting factor of desert farmland crop productivity. Study on the influence of irrigation on desert farmland soil moisture can guide the agricultural water resource utilization and agricultural production in those regions. At present, the efficiency of irrigation water usage in Northwest China is as low as approximately 40% of the irrigated water. To understand the response of farmland soil moisture in different soil types on irrigation in the Ulan Buh Desert of Inner Mongolia of China, this experimental study takes advantage of different infiltration characteristics and hydraulic conductivities of sand, clay, and loam to determine an optimized soil combination scheme with the purpose of establishing a hydraulic barrier that reduces infiltration. This study includes three comparative experiments with each consisting of a 100 cm thick of filled sand, or clay, or loam soil underneath a 50 cm plough soil, with a total thickness of 150 cm soil profile. A new type of lysimeter is installed below the above-mentioned 150 cm soil profile to continuously measure deep soil recharge (DSR, and the ECH2O-5 soil moisture sensors are installed at different depths over the 150 cm soil profile to simultaneously monitor the soil moisture above the lysimeter. The study analyzes the characteristics of soil moisture dynamics, the irrigation-related recharge on soil moisture, and the DSR characteristics before and after irrigation, during the early sowing period from 2 April to 2 May 2017. Research results show that: (1 Irrigation significantly influences the soil moisture of 0–150 cm depths. The soil moisture increase after the irrigation follows the order from high to low when it is in the order of loam, sand, and clay. (2 Irrigation-induced soil moisture recharge occurs on all three soil combinations at 0–150 cm layers, and the order of soil moisture recharge from high to low

  9. Study on Soil Mobility of Two Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Mária Mörtl

    2016-01-01

    Full Text Available Movement of two neonicotinoid insecticide active ingredients, clothianidin (CLO and thiamethoxam (TMX, was investigated in different soil types (sand, clay, or loam and in pumice. Elution profiles were determined to explore differences in binding capacity. Soil characterized by high organic matter content retained the ingredients, whereas high clay content resulted in long release of compounds. Decrease in concentration was strongly influenced by soil types: both CLO and TMX were retained in loam and clay soils and showed ready elution through sandy soil and pumice. Elution capability of the active ingredients in sandy soil correlated with their water solubility, indicating approximately 30% higher rapidity for TMX than for CLO. Soil organic carbon-water partitioning coefficients (Koc determined were in good agreement with literature values with somewhat lower value for CLO in sandy soil and substantially higher values for TMX in clay soil. High mobility of these neonicotinoid active ingredients in given soil types urges stronger precautionary approach taken during their application.

  10. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    Science.gov (United States)

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  11. The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management

    DEFF Research Database (Denmark)

    Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl; Schjønning, Per

    2016-01-01

    × SOC according to Dexter et al. (2008). NCC was a better predictor of dispersible clay than total clay and SOC at all depths in natural aggregates, while tensile strength and derived parameters were generally better explained by the total amount of clay in remoulded aggregates. Remoulded aggregates had...

  12. Loss of surface horizon of an irrigated soil detected by radiometric images of normalized difference vegetation index.

    Science.gov (United States)

    Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis

    2017-04-01

    The use of the soil in the Humid Pampa of Argentina has changed since the mid-1990s from agricultural-livestock production (that included pastures with direct grazing) to a purely agricultural production. Also, in recent years the area under irrigation by central pivot has been increased to 150%. The waters used for irrigation are sodium carbonates. The combination of irrigation and rain increases the sodium absorption ratio of soil (SARs), consequently raising the clay dispersion and reducing infiltration. This implies an increased risk of soil loss. A reduction in the development of white clover crop (Trifolium repens L.) was observed at an irrigation plot during 2015 campaign. The clover was planted in order to reduce the impact of two maize (Zea mays L.) campaigns under irrigation, which had increased soil SAR and deteriorated soil structure. SPOT-5 radiometric normalized difference vegetation index (NDVI) images were used to determine two zones of high and low production. In each zone, four random points were selected for further geo-referenced field sampling. Two geo-referenced measures of effective depth and surface soil sampling were carried out in each point. Texture of soil samples was determined by Pipette Method of Sedimentation Analysis. Data exploratory analysis showed that low production zone had a media effective depth = 80 cm and silty clay loam texture, while high production zone had a media effective depth > 140 cm and silt loam texture. The texture class of the low production zone did not correspond to prior soil studies carried out by the INTA (National Institute of Agricultural Technology), which showed that those soil textures were silt loam at surface and silty clay loam at sub-surface. The loss of the A horizon is proposed as a possible explanation, but further research is required. Besides, the need of a soil cartography actualization, which integrates new satellite imaging technologies and geo-referenced measurements with soil sensors is

  13. Adsorption-desorption characteristics of Ni, Zn and Pb in soils of a landfill environment in Metro Manila, Philippines

    International Nuclear Information System (INIS)

    Castañeda, Soledad S.; Cuarto, Christina D.; David, Carlos Primo C.

    2015-01-01

    This study investigated the sorption-desorption characteristics of Ni, Zn, and Pb on two soil types in the environment of a municipal waste disposal facility. Batch experiments were carried out in ambient temperature and in unadjusted and close to soil field pH conditions. The kinetics of of adsorption fitted a pseudo second-order model. Rate constants were calculated and an empirical model for predicting adsorption of metal ions at a given time was derived from these constants. The equilibrium sorption capacities for the heavy metals in the clay and sandy loam soils were estimated using the Linear, Freundlich, and Langmuir isotherm models. The sorption process of Ni, Pb, and Zn in both soils generally fitted well with the Freundlich isotherm model at moderate to high initial concentration range of the metals. The Langmuir isotherm was applicable to the adsorption of Ni and Zn only. The adsorption capacity of the clay soil for the metals followed the order Zn > Pb > Ni. In the sandy loam soil, the adsorption capacity for the metals under the same conditions followed the order Pb > Zn > Ni. The adsorption capacities for the metals were in order of 1mg/g in both the landfill clay soil and the Lukutan River sandy loam soil, with slightly higher values for the clay soil. Desorption was minimal, less than 1% in the clay soil and about 2% in the sandy loam soil. Sorption reversibility tests showed that the retention of the metals in both soils follows the order Ni> Pb> Zn. (author)

  14. Effects of biochar, compost and biochar-compost on growth and nutrient status of maize in two Mediterranean soils

    Science.gov (United States)

    Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    During the past years, studies have shown that biochar alone or combined with compost, has the potential to improve soil fertility and maize yield mostly on tropical soils whereas experiments on Mediterranean soils are rare. Therefore, the influence of biochar, compost and mixtures of the two, on maize (Zea mays L.) growth and nutrient status were investigated, in this study. Biochars were produced from 2 feedstocks: grape pomace (GP) and rice husks (RH) pyrolyzed at 300°C. Maize was grown for 30 days in a greenhouse pot trial on two Mediterranean soils amended with biochar or/with compost at application rates of 0% and 2% (w/w) (equivalent to 0 and 16 t ha-1) and N fertilization. Total aboveground dry matter yield of maize was significantly improved relative to the control for all organic amendments, with increases in yield 43-60.8%, in sandy loam soil, while, in loam soil a statistically significant increase of 70.6-81.3% was recorded for all the amendments apart from compost. Some morphological traits, such as aboveground height of plants, shoot diameter and belowground dry matter yield were significantly increased by the organic treatments. Aboveground concentration of P was significantly increased from 1.46 mg g-1 at control to 1.69 mg g-1 at 2% GP biochar in sandy loam soil, whereas GP biochar combined with compost gave an increase of 2.03 mg g-1 compared to control 1.23 mg g-1. K and Mn concentrations of above ground tissues were significantly increased only in sandy loam soil, while Fe in both soils. N concentration of aboveground tissues declined for all the amendments in loam soil and in sandy loam soil apart from compost amendment. Significant positive impacts of amended soils on nutrients uptake were observed in both soils as compared to the control related to the improved dry matter yield of plant. The current study demonstrated that maize production could be greatly improved by biochar and compost because of the nutrients they supply and their

  15. Residues of Avermectin B1a in rotational crops and soils following soil treatment with [14C]Avermectin B1a

    International Nuclear Information System (INIS)

    Moye, H.A.; Malagodi, M.H.; Yoh, H.; Leibee, G.L.; Ku, C.C.; Wislocki, P.G.

    1987-01-01

    [ 14 C]Avermectin B 1 a was applied twelve times to muck and sandy loam soils and three times to sandy soil at 0.025-0.030 lb/acre per application. These applications simulated the intended use of avermectin B 1 a on celery, vegetables, and cotton, respectively. Following three aging periods in each soil type, sorghum, lettuce, and carrot or turnip seeds were planted and harvested at one-fourth, half, and full size. Analysis of these crops by oxidative combustion demonstrated that crops grown in muck, sandy loam, and sandy soils contained radiolabeled residues ranging from below the limit of quantitation (BLQ) to 7.4 μg/kg of avermectin B 1 a equivalents, BLQ to 11.6 μg/kg, and BLQ to 3.54 μg/kg, respectively. There was a general trend of decreasing residue concentrations with increasing preharvest intervals in crops grown in all soils. The radioactivity present in muck and sandy loam soils disappeared with half-lives ranging from 103 to 267 days and from 102 to 132 days, respectively

  16. Models for prediction of soil precompression stress from readily available soil properties

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu

    2018-01-01

    matric potentials. σpc was estimated from the original stress-strain curves by a novel, numerical method for estimating the stress at maximum curvature, assumingly partitioning the curve into elastic and plastic sections. Multiple regression was used to identify the drivers best describing the variation......Compaction of the subsoil is an almost irreversible damage to the soil resource. Modern machinery exerts high mechanical stresses to the subsoil, and a range of studies report significant effects on soil functions. There is an urgent need for quantitative knowledge of soil strength in order...... to evaluate sustainability of current field traffic. The aim of this study was to identify the most important drivers of soil precompression stress, σpc, and to develop pedotransfer functions for prediction of σpc. We revisited previously published data on σpc for a silty clay loam soil at a range of soil...

  17. Observed effects of soil organic matter content on the microwave emissivity of soils

    International Nuclear Information System (INIS)

    O'Neill, P.E.; Jackson, T.J.

    1990-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, a series of field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8%, 4.0%, and 6.1%) for a range of soil moisture values. Analyses of the observed data showed only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibited the same trends and type of response as the measured data when adjusted values for the input parameters were utilized

  18. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  19. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    Science.gov (United States)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  20. Effects of Atrazine on Soil Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2006-01-01

    Full Text Available Effects of the herbicide atrazine on soil microorganisms was investigated. Trials were set up in laboratory, on a clay loam soil. Atrazine was applied at 8.0, 40.0 and 80.0 mg/kg soil rates. The abundance of total microorganisms, fungi, actinomycetes, cellulolytic microorganisms and amino-heterotrophs was recorded. Soil samples were collected 1, 7, 14, 21, 30 and 60 days after atrazine treatment for microbiological analyses.The results showed that the intensity of atrazine effect on soil microorganisms depended on treatment rate, exposure time and group of microorganisms. Atrazine had an inhibiting effect on cellulolytic microorganisms and amino-heterotrophs. Initially, it inhibited fungiand actinomycetes but its effect turned into a stimulating one once a population recovered. Atrazine had a stimulating effect on total abundance of microorganisms.

  1. The water retention of a granite rock fragments in High Tatras stony soils

    OpenAIRE

    Novák, Viliam; Šurda, Peter

    2010-01-01

    The water retention capacity of coarse rock fragments is usually considered negligible. But the presence of rock fragments in a soil can play an important role in both water holding capacity and in hydraulic conductivity as well. This paper presents results of maximum water holding capacity measured in coarse rock fragments in the soil classified as cobbly sandy loam sampled at High Tatra mountains. It is shown, that those coarse rock (granite) fragments have the maximum retention capacity up...

  2. Effect of ISPAD Anaerobic Digestion on Ammonia Volatilization from Soil Applied Swine Manure

    Directory of Open Access Journals (Sweden)

    Susan King

    2012-01-01

    Full Text Available Swine manure subjected to in-storage psychrophilic anaerobic digestion (ISPAD undergoes proteins degradation but limited NH3 volatilization, producing an effluent rich in plant-available nitrogen. Accordingly, ISPAD effluent can offer a higher fertilizer value during land application, as compared to manure of similar age stored in an open tank. However, this additional nitrogen can also be lost by volatilization during land application. The objective of this study was therefore to measure NH3 volatilization from both ISPAD and open tank swine manures when applied to 5 different soils, namely, washed sand, a Ste Rosalie clay, an Upland sandy loam, a St Bernard loam, and an Ormstown loam. This research was conducted using laboratory wind tunnels simulating land application. The five experimental soils offered similar pH values but different water holding capacity, cation exchange capacity, cation saturation, and organic matter. After 47 h of wind tunnel monitoring, the % of total available nitrogen (TAN or NH4 + and NH3 volatilized varied with both manure and soil type. For all soil types, the ISPAD manure consistently lost less NH3 as compared to the open tank manure, averaging 53% less. Lower volatile solids content improving manure infiltration into the soil and a more complex ionic solution explain the effect of the ISPAD manure advantages. This was reinforced by the St Bernard sandy loam losing the same nitrogen mass for both manures, because of its higher pH and buffer pH coupled with an intermediate CEC resulting in more soil solution NH3. Within each manure type, % TAN volatilized was highest for washed sand and lowest for the clay soil. As a result, ISPAD manure can offer up to 21% more plant-available nitrogen fertilizer especially when the manure is not incorporated into the soil following its application.

  3. Persistência do herbicida sulfentrazone em solo cultivado com cana-de-açúcar Persistence of the herbicida sulfentrazone in soil cultivated with sugarcane

    Directory of Open Access Journals (Sweden)

    Flávio Martins Garcia Blanco

    2010-01-01

    Full Text Available O objetivo do trabalho foi determinar o comportamento do herbicida sulfentrazone em solo franco-argilo-arenoso cultivado com cana-de-açúcar. O delineamento experimental foi o de blocos ao acaso com cinco repetições e três tratamentos de sulfentrazone (0,0; 0,6 e 1,2 kg ha-1, aplicado como pré-emergente. Foram coletadas periodicamente amostras de solo (0-10 cm, em 23 épocas entre 0 e 704 dias após o tratamento (DAT. O comportamento do herbicida sulfentrazone foi avaliado por bioensaios usando a beterraba como planta-teste, sendo determinada que para a menor dose (0,6 kg ha-1, o herbicida persistiu até 601 DAT. Para a dose de 1,2 kg ha-1, até o fim do ensaio aos 704 DAT, o herbicida ainda persistia. A persistência do herbicida sulfentrazone no solo é longa e proporcional à dose aplicada.The objective here was to determine the behavior of sulfentrazone in sandy clay soil cultivated with sugar cane. The experimental design was randomized blocks with five replications and three treatments of sulfentrazone (0.0, 0.6 and 1.2 kg ha-1, applied as pre-emergent. Samples of soil (0-10 cm, were regularly collected at 23 times between 0 and 704 days after treatment (DAT. The behavior of sulfentrazone was evaluated by bioassays using sugar beet as test plant, and analysis indicated that for the lower dose (0.6 kg ha-1, the herbicide persisted until 601 DAT. At the end of the test, 704 DAT, the herbicide still persisted for the dose of 1.2 kg ha-1. The persistence of sulfentrazone in soil is long and proportional to applied dose.

  4. Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental release: design and first results

    International Nuclear Information System (INIS)

    Rauret, G.; Real, J.

    1995-01-01

    The behaviour of 134 Cs, 110m Ag and 85 Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author)

  5. Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental release: design and first results

    Energy Technology Data Exchange (ETDEWEB)

    Rauret, G. [Universitat de Barcelona (Spain). Dept. of Quimica Analitica; Vallejo, V.R. [Universitat de barcelona (Spain). Dept. of Biologia Vegetal; Cancio, D. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Real, J. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1995-12-31

    The behaviour of {sup 134}Cs, {sup 110m}Ag and {sup 85}Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author).

  6. Lysimeter experiments to determine the ability of soil to reduce concentrations of BOD, available P and inorganic N in dirty water.

    Science.gov (United States)

    Brookman, S K E; Chadwick; Retter, A R

    2005-11-01

    Lysimeter experiments were conducted to determine the ability of different soils to reduce levels of biochemical oxygen demand (BOD) and concentrations of molybdate reactive phosphorus (MRP) and ammonium-N (NH4(+)-N) in dirty water and the impact of applications on nitrate leaching. An additional experiment investigated the effect of dirty water components on leaching quality. This information is required to assess the potential risk of dirty water applications on polluting groundwater and to assess the use of such soils in the development of treatment systems for dirty water. Intact and disturbed soil lysimeters, 0.5 and 1m deep were constructed from four soils; a coarse free-draining sandy loam, a sandy loam over soft sandstone, a calcareous silty clay over chalk and a sandy loam over granite. For the coarse free-draining sandy loam, lysimeters were also constructed from disturbed soil with and without the addition of lime, to assess if this could increase phosphorus immobilisation. Levels of BOD and concentrations of MRP, NH4(+)-N and nitrate (NO3(-)-N) of leachates were measured following dirty water applications at 2 and 8 mm day(-1) under laboratory conditions. Under the daily 2mm application, all soils were effective at treating dirty water, reducing concentrations of BOD, MRP and NH4(+)- N by > or = 98% but NO3(-)-N concentrations increased up to 80 mg l(-1) from the 0.5 m deep lysimeters of the sandy loam over granite. Soils were less effective at reducing levels of BOD, MRP and NH4(+)- N at the 8 mm daily rate of application, with maximum NO3(-)-N concentrations of leachates of 200 mg l(-1) from disturbed soils.

  7. The Evaluation of Basal Respiration for Various Soil Textures in Ecologically Sensitive Area

    Science.gov (United States)

    Huličová, P.; Kotorová, D.; Fazekašová, D.; Hynšt, J.

    2017-10-01

    The present contribution was focused on monitoring changes in the soil basal respiration in different textures of soil in the dry polder Beša. The research was conducted between 2012 and 2014 on soil type Fluvisol locations on three soil textures: clay - loam soil, clayey soil and clay soil in three soil depths. The basal respiration (BR) has been determine by soil CO2 production measuring from incubated soil samples in serum bottles in laboratory condition. Release Co2 has been analysed by gas chromatography. Content of clay particles were in the range 52.18 % to 81.31%, indicating the high difference between the minimum and maximum content. By using of multiple LSD-test we recorded statistically significant impact of clay on basal respiration. Results confirm the values of basal respiration with the depth of the soil profile decreased.

  8. Characteristics of Soil and Organic Carbon Loss Induced by Water Erosion on the Loess Plateau in China.

    Science.gov (United States)

    Li, Zhongwu; Nie, Xiaodong; Chang, Xiaofeng; Liu, Lin; Sun, Liying

    2016-01-01

    Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau.

  9. Soil of the lower valley of the Dragonja river (Slovenia

    Directory of Open Access Journals (Sweden)

    Tomaž PRUS

    2015-11-01

    Full Text Available Soil of the lower valley of the river Dragonja developed under specific soil-forming factors. Soil development in the area was influenced by alluvial sediments originating from surrounding hills, mostly of flysch sequence rocks, as a parent material, Sub-Mediterranean climate and the vicinity of the sea. Different soil classification units (Gleysol and Fluvisol were proposed for that soil in previous researches. The aim of our study was the evaluation of morphological, chemical and mineralogical characteristics of soil, based on detailed soil description and analyses, and to define the appropriate soil classification units. Field examinations revealed that the soil had a stable blocky or subangular structure and did not express substantial hydromorphic forms. Soil pH value was ranging from 6.9 to 7.5. In most locations electroconductivity (ECe did not exceed 2 ds/m. Base saturation was high (up to 99 %, with a majority of Ca2+ ions. Exchangeable sodium percentage (ESP was ranging from 0.2 to 3.8 %, which is higher compared to other Slovenian soils but does not pose a risk to soil structure. Soil has silty clay loam texture with up to 66 % of silt. Prevailing minerals were quartz, calcite and muscovite/illite. No presence of swelling clay mineral montmorillonite was detected. According to Slovenian soil classification, we classified the examined soil as alluvial soil. According to WRB soil classification, the soil was classified as Cambisol.

  10. Effect of vermicomposts from wastes of the wine and alcohol industries in the persistence and distribution of imidacloprid and diuron on agricultural soils.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2009-06-24

    The persistence and distribution of diuron (D) and imidacloprid (I) in soils amended or not with winery vermicomposts were recorded for several months. Sandy loam (S1) and silty clay loam (S2) soils with organic carbon contents of Diuron was dissipated more rapidly except in the unamended soil S1 with DT(50) values of 259 days. The addition of vermicomposts to S1 soil decreased the persistence of D, and high amounts of DPMU (40%) and DPU (20%) metabolites were found. In unamended and amended S2 soils, the persistence of D was lower than in S1 (DT(50) < 42 days) but only DPMU was determined (up to 5%). Different simulation models from FOCUS guidelines were applied to the experimental data. No relationship between pesticide degradation and soil enzyme activities was found.

  11. Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests

    Directory of Open Access Journals (Sweden)

    Paula Cristina Caruana Martins

    Full Text Available ABSTRACT Traffic of farm machinery during harvest and logging operations has been identified as the main source of soil structure degradation in forestry activity. Soil susceptibility to compaction and the amount of compaction caused by each forest harvest operation differs according to a number of factors (such as soil strength, soil texture, kind of equipment, traffic intensity, among many others, what requires the adequate assessment of soil compaction under different traffic conditions. The objectives of this study were to determine the susceptibility to compaction of five soil classes with different textures under eucalyptus forests based on their load bearing capacity models; and to determine, from these models and the precompression stresses obtained after harvest operations, the effect of traffic intensity with different equipment in the occurrence of soil compaction. Undisturbed soil samples were collected before and after harvest operations, being then subjected to uniaxial compression tests to determine their precompression stress. The coarse-textured soils were less resistant and endured greater soil compaction. In the clayey LVd2, traffic intensity below four Forwarder passes limited compaction to a third of the samples, whereas in the sandy loam PVd all samples from the 0-3 cm layer were compacted regardless of traffic intensity. The Feller Buncher and the Clambunk presented a high potential to cause soil compaction even with only one or two passes. The use of soil load bearing capacity models and precompression stress determined after harvest and logging operations allowed insight into the soil compaction process in forestry soils.

  12. Electrochemical techniques implementation for corrosion rate measurement in function of humidity level in grounding systems (copper and stainless steel) in soil samples from Tunja (Colombia)

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Blanco, J.; Jimenez, C.; Vera-Monroy, S. P.; Mejía-Camacho, A.

    2017-12-01

    In this work, DC electrochemical techniques were used to determine the corrosion rate of copper and stainless-steel electrodes used in grounding, varying the level of humidity, in sandy loam and clay loam soils. The maximum corrosion potentials were: for copper -211 and -236mV and for stainless steel of -252 and -281mV, in sandy loam and clay loam respectively, showing that in sandy loam the values are higher, about 30mV. The mechanism by which steel controls corrosion is by diffusion, whereas in copper it is carried out by transfer of mass and charge, which affects the rate of corrosion, which in copper reached a maximum value of 5mm/yr and in Steel 0.8mm/yr, determined by Tafel approximations. The behaviour of the corrosion rate was mathematically adjusted to an asymptotic model that faithfully explains the C.R. as a function of humidity, however, it is necessary to define the relation between the factor □ established in the model and the precise characteristics of the soil, such as the permeability or quantity of ions present.

  13. The influence of surface incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. I. Soil solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lime, fluidised bed boiler ash (FBA) and flue gas desulfurisation gypsum (FGDG) were incorporated in the top 50 mm of repacked columns of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. After leaching with water, the columns were sliced into sections for chemical analysis. In the columns of the variable-charged, allophanic Patua soil, topsoil-incorporated FBA ameliorated top and subsurface soil acidity through liming and the `self liming effect` induced by sulfate sorption, respectively. The soil solution pH of the top and subsurface layers of the Patua soil were raised to pH 6.40 and 5.35, respectively, by the FBA treatment. Consequently , phytotoxic labile monomeric aluminium (Al) concentration in the soil solution of the FBA treatment was reduced to {lt} 0.1 {mu}M Al. FGDG had a similar `self-liming effect` on subsurface of the Patua soil, but not the topsoil. Whereas FBA raised the pH of the Kaawa topsoil, no `self-liming effect` of subsurface soil by sulfate sorption was observed on the Kaawa subsurface soil, which is dominated by permanently charged clay minerals. Application of FBA and FGDG to both soils, however, caused significantly leaching of native soil Mg{sup 2+} and K{sup +}.

  14. Effects of Plant Residues in Two Types of Soil Texture on Soil characteristics and corn (Zea mays L. NS640 Yield in a Reduced -Tillage cropping System

    Directory of Open Access Journals (Sweden)

    E Hesami

    2018-05-01

    Full Text Available Introduction The impact of agronomy on the subsequent product in rotational cropping systems depends on factors such as plant type, duration of crop growth, soil moisture content, tillage type, irrigation method, the amount of nitrogen fertilizer, quantity and quality of returned crop residues to the soil. Prior cultivated crops improve the next crop yield by causing different conditions (nitrogen availability, organic matter and volume of available water in soil. This study was conducted due to importance of corn cultivation in Khuzestan and necessity of increasing the soil organic matter, moisture conservation and in the other hand the lack of sufficient information about the relationship between soil texture, type of preparatory crop in low-tillage condition and some soil characteristics and corn growth habits. The purpose of this experiment was to evaluate the effect of residue of preparatory crops in low plowing condition in two soil types on corn yield and some soil characteristics. Materials and Methods This experiment was carried out at Shooshtar city located in Khuzestan province. An experiment was performed by combined analysis in randomized complete block design in two fields and in two consecutive years with four replications. Two kinds of soil texture including: clay loam and clay sand. Five preparatory crops including: broad bean, wheat, canola, cabbage and fallow as control assigned as sub plots. SAS Ver. 9.1 statistical software was used for analysis of variance and comparison of means. Graphs were drawn using MS Excel software. All means were compared by Duncan test at 5% probability level. Results and Discussion The soil texture and the type of preparatory crop influenced the characteristics of the soil and corn grain yield. Returning the broad bean residue into two types of soil caused the highest grain yield of corn 10128.6 and 9547.9 kgha-1, respectively. The control treatment in sandy loam texture had the lowest corn seed

  15. Benelux Colloquium on Geomorphological Processes and Soils (4th) Held in Amsterdam and Leuven on April 24-May 2, 1988. Excursion Guide

    Science.gov (United States)

    1988-01-01

    that they have been constructed in the Early Middle Ages for the growing of wine grapes. There has been viticulture in the area until the second half...Lucamante, G., 1983 Micromorphometric and micromorphological investigations of a clay loam soil in viticulture under zero and conventional tillage...continuous) bio - turbation, animal activity, freeze-thaw cycles, pipe erosion, splash erosion, slaking of cracks at the soil surface, changing soil

  16. Soil Properties Control Glyphosate Sorption in Soils Amended with Birch Wood Biochar

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo, Marcos

    2016-01-01

    Abstract Despite a contemporary interest in biochar application to agricultural fields to improve soil quality and long-term carbon sequestration, a number of potential side effects of biochar incorporation in field soils remain poorly understood, e.g., in relation to interactions...... with agrochemicals such as pesticides. In a fieldbased study at two experimental sites in Denmark (sandy loam soils at Risoe and Kalundborg), we investigated the influence of birch wood biochar with respect to application rate, aging (7–19 months), and physico- chemical soil properties on the sorption coefficient......, Kd (L kg−1), of the herbicide glyphosate. We measured Kd in equilibrium batch sorption experiments with triplicate soil samples from 20 field plots that received biochar at different application rates (0 to 100 Mg ha−1). The results showed that pure biochar had a lower glyphosate Kd value as compared...

  17. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Klimiuk, Ewa

    2012-01-01

    The influence of multiple saponin washing on copper, cadmium and zinc removal and stability in three types of soils (loamy sand, loam, silty clay) was investigated. Distribution of metals and their mobility measured as the ratio of exchangeable form to the sum of all fractions in soils was differential. After single washing the highest efficiency of metal removal was obtained in loamy sand (82-90%) and loam (67-88%), whereas the lowest in silty clay (39-62%). In loamy sand and loam metals had higher mobility factors (44-61% Cu, 60-76% Cd, and 68-84% Zn) compared to silty clay (9% Cu, 28% Cd and 36% Zn). Triplicate washing led to increase both efficiency of metal removal and percentage content of their stable forms. In consequence, fractional patterns for metals before and after treatment changed visibly as a result of their redistribution. Based on the redistribution index, the most stable metal (mainly in residual and organic fractions) after triplicate washing was Cu in loamy sand and loam. For silty clay contaminated with Cd, effective metal removal and its stabilization required a higher number of washings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Effect of biochar on soil structural characteristics: water retention and gas transport

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C......-gas diffusivity on intact 100cm3 soil samples (5 replicates in each plot). We found that biochar application significantly decreased soil bulk density, hereby creating higher porosity. At the same soil-water matric potential, all the soil-gas phase parameters (air-filled porosity, air permeability and gas...

  19. Humic substances as a washing agent for Cd-contaminated soils.

    Science.gov (United States)

    Meng, Fande; Yuan, Guodong; Wei, Jing; Bi, Dongxue; Ok, Yong Sik; Wang, Hailong

    2017-08-01

    Cost-effective and eco-friendly washing agents are in demand for Cd contaminated soils. Here, we used leonardite-derived humic substances to wash different types of Cd-contaminated soils, namely, a silty loam (Soil 1), a silty clay loam (Soil 2), and a sandy loam (Soil 3). Washing conditions were investigated for their effects on Cd removal efficiency. Cadmium removal was enhanced by a high humic substance concentration, long washing time, near neutral pH, and large solution/soil ratio. Based on the tradeoff between efficiency and cost, an optimum working condition was established as follows: humic substance concentration (3150 mg C/L), solution pH (6.0), washing time (2 h) and a washing solution/soil ratio (5). A single washing removed 0.55 mg Cd/kg from Soil 1 (1.33 mg Cd/kg), 2.32 mg Cd/kg from Soil 2 (6.57 mg Cd/kg), and 1.97 mg Cd/kg from Soil 3 (2.63 mg Cd/kg). Cd in effluents was effectively treated by adding a small dose of calcium hydroxide, reducing its concentration below the discharge limit of 0.1 mg/L in China. Being cost-effective and safe, humic substances have a great potential to replace common washing agents for the remediation of Cd-contaminated soils. Besides being environmentally benign, humic substances can improve soil physical, chemical, and biological properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    M. B. Defersha

    2011-07-01

    Full Text Available Soil erosion is a two-phase process consisting of the detachment of individual particles and their transport by the flowing water. This study discusses the results of laboratory experiments in which for three soils, the runoff depth, sediment yield, splash erosion and sediment size were measured. Rainfall intensity, slope and antecedent moisture contents were varied in the experiment. The soil types ranged from clay to sandy clay loam (Alemaya Black soil, Regosols and Cambisols. Rainfall was applied for six sequential 15-min periods with rainfall intensities varying between 55 and 120 mm h−1. The three slopes tested were 9, 25, and 45 %. Results show that as slope increased from 9 to 25 %, splash erosion and sediment yield increased. An increase in slope from 25 to 45 % generally decreases in splash erosion. Sediment yield for one soil increased and one soil decreased with slope and for the third soil the trend was different between the two initial moisture contents. Sediment yield was correlated (r = 0.66 with runoff amounts but not with splash erosion. Interrill erosion models that were based on the flowing water and rainfall intensity fitted the data better than when based on rainfall intensity solely. Models that assume a positive linear relationship between erosion and slope may overestimate sediment yield.

  1. Structure and Composition of Leachfield Bacterial Communities: Role of Soil Texture, Depth and Septic Tank Effluent Inputs

    Directory of Open Access Journals (Sweden)

    Janet A. Atoyan

    2012-09-01

    Full Text Available Although groundwater quality depends on microbial processes in the soil treatment area (STA of onsite wastewater treatment systems (OWTS, our understanding of the development of these microbial communities is limited. We examined the bacterial communities of sand, sandy loam, and clay STAs at different depths in response to septic tank effluent (STE addition using mesocosms. Terminal restriction fragment length polymorphism (TRFLP analysis was used to compare the bacterial community structure and composition of STE, native soil prior to STE addition (UNX and soil exposed to STE (EXP. Principal component analysis separated communities with depth in sand but not in sandy loam or clay. Indices of richness, diversity, and evenness followed the order: sandy loam > sand > clay. Analysis of TRF peaks indicated that STE contributed least to the composition of STA bacterial communities (5%–16%, followed by UNX soil (18%–48%, with the highest proportion of the community made up of TRFs not detected previously in either UNX or STE (50%–82% for all three soils. Soil type and depth can have a marked effect on the structure and composition of STA bacterial communities, and on the relative contribution of native soil and STE to these communities.

  2. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration

    Directory of Open Access Journals (Sweden)

    Sonia Chamizo

    2018-06-01

    Full Text Available Cyanobacteria are ubiquitous components of biocrust communities and the first colonizers of terrestrial ecosystems. They play multiple roles in the soil by fixing C and N and synthesizing exopolysaccharides, which increase soil fertility and water retention and improve soil structure and stability. Application of cyanobacteria as inoculants to promote biocrust development has been proposed as a novel biotechnological technique for restoring barren degraded areas and combating desertification processes in arid lands. However, previous to their widespread application under field conditions, research is needed to ensure the selection of the most suitable species. In this study, we inoculated two cyanobacterial species, Phormidium ambiguum (non N-fixing and Scytonema javanicum (N-fixing, on different textured soils (from silt loam to sandy, and analyzed cyanobacteria biocrust development and evolution of physicochemical soil properties for 3 months under laboratory conditions. Cyanobacteria inoculation led to biocrust formation in all soil types. Scanning electron microscope (SEM images showed contrasting structure of the biocrust induced by the two cyanobacteria. The one from P. ambiguum was characterized by thin filaments that enveloped soil particles and created a dense, entangled network, while the one from S. javanicum consisted of thicker filaments that grouped as bunches in between soil particles. Biocrust development, assessed by chlorophyll a content and crust spectral properties, was higher in S. javanicum-inoculated soils compared to P. ambiguum-inoculated soils. Either cyanobacteria inoculation did not increase soil hydrophobicity. S. javanicum promoted a higher increase in total organic C and total N content, while P. ambiguum was more effective in increasing total exopolysaccharide (EPS content and soil penetration resistance. The effects of cyanobacteria inoculation also differed among soil types and the highest improvement in soil

  3. Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil.

    Science.gov (United States)

    Hamamoto, Shoichiro; Seki, Katsutoshi; Miyazaki, Tsuyoshi

    2009-07-15

    The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.

  4. Assessing the impact of azadirachtin application to soil on ureaseactivity and its kinetic parameters

    OpenAIRE

    KIZILKAYA, RIDVAN; SAMOFALOVA, IRAIDA; MUDRYKH, NATALYA; MİKAİLSOY, FARİZ; AKÇA, İZZET; SUSHKOVA, SVETLANA; MINKINA, TATIANA

    2015-01-01

    Abstract: The kinetic parameters of soil urease have attracted considerable attention; however, little information is available on its kinetic parameters and behaviors in response to azadirachtin application to the soil. A short (14-day) field experiment was conducted using Albic Luvisol soil (loam texture; pH 6.70; electrical conductivity 0.81 dS m-1; CaCO3 content 0.04%; total organic carbon 0.99%) as the experimental soil in the Perm region of the Russian Federation to investigate the effe...

  5. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1995-01-01

    Two experiments were set up to investigate the influence of soil organic matter on growth of arbuscular mycorrhizal (AM) hyphae and concurrent changes in soil inorganic P, organic P and phosphatase activity. A sandy loam soil was kept for 14 months under two regimes (outdoor where surplus...... additions. In soil with added clover alkaline phosphatase activity increased due to the presence of mycorrhizal hyphae. We suggest that mycorrhizas may influence the exudation of acid phosphatase by roots. Hyphae of G. invermaium did apparently not excrete extracellular phosphatases, but their presence may...

  6. Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover

    Science.gov (United States)

    Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.

    2017-12-01

    The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.

  7. Evaluation of soil fertility status of Regional Agricultural Research Station, Tarahara, Sunsari, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2017-10-01

    Full Text Available Soil fertility evaluation of an area or region is most basic decision making tool for the sustainable soil nutrient management. In order to evaluate the soil fertility status of the Regional Agricultural Research Station (RARS, Tarahara, Susari, Nepal. Using soil sampling auger 81 soil samples (0-20 cm were collected based on the variability of land. The collected samples were analyzed for their texture, structure, colour, pH, OM, N, P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu and Mn status. The Arc-GIS 10.1 software was used for the preparation of soil fertility maps. The soil structure was granular to sub-angular blocky and varied between brown- dark grayish brown and dark gray in colour. The sand, silt and clay content were 30.32±1.4%, 48.92±0.89% and 20.76±0.92%, respectively and categorized as loam, clay loam, sandy loam, silt loam and silty clay loam in texture. The soil was moderately acidic in pH (5.98±0.08. The available sulphur (2.15±0.21 ppm, available boron (0.08±0.01 ppm and available zinc (0.35±0.03 ppm status were very low, whereas extractable magnesium (44.33±6.03 ppm showed low status. Similarly, organic matter (2.80±0.07%, total nitrogen (0.09±0.004 %, extractable calcium (1827.90±45.80 ppm and available copper (1.15±0.04 ppm were medium in content. The available phosphorus (39.77±5.27 ppm, extractable potassium (134.12±4.91 ppm, and available manganese (18.15±1.15 ppm exhibits high status, while available iron (244.7±19.70 ppm was very high. The fertilizer recommendation can be done based on determined soil fertility status to economize crop production. Furthermore, research farm should develop future research strategy accordance with the prepared soil data base.

  8. Applicability of zeolites in potassium and nitrate retention in different soil types

    Directory of Open Access Journals (Sweden)

    Pavlović Jelena B.

    2017-01-01

    Full Text Available Environmental protection and sustainable agricultural production require the use of inexpensive and environmentally acceptable soil supplements. Objectives of this study were to investigate the influence of the addition of the natural zeolite – clinoptilolite (NZ and its iron(III-modified form (FeZ on the potassium and nitrate leaching from sandy, silty loam and silty clay soils. The zeolites were added in two amounts: 0.5 (FeZ and 1.0 wt. % (NZ and FeZ. The experiments were carried out in columns organized in eight experimental systems containing unamended (control specimens and amended soils. The concentration of K+ and NO3–N in the leachates was monitored during 7 days. The obtained results indicate that the K+ and NO3–N leaching mainly depends on the soil type and pH of the soil. The NZ and FeZ addition has the highest impact on the K+ retention in the acidic sandy soil. The highest NO3–N retention is obtained with FeZ in acidic silty loam soil. The K+ leaching kinetics for all the studied soils follow the Avrami kinetics model with the parameter n < 1. This study demonstrates that NZ and FeZ can be a good soil supplement for the K+ retention for all studied soils and in the NO3–N retention for silty loam and silty clay soils. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172018

  9. Soil and plant response to used potassium silicate drilling fluid application.

    Science.gov (United States)

    Yao, Linjun; Anne Naeth, M

    2015-10-01

    Use of drilling waste generated from the oil and gas industry for land reclamation has potential to be a practical and economical means to improve soil fertility and to decrease landfills. A four month greenhouse experiment with common barley (Hordeum vulgare L.) on three different textured soils was conducted to determine soil and plant response to incorporated or sprayed potassium silicate drilling fluid (PSDF). Two PSDF types (used once, used twice) were applied at six rates (10, 20, 30, 40, 60, 120m(3)ha(-1)) as twelve PSDF amendments plus a control (non PSDF). Effects of PSDF amendment on plant properties were significant, and varied through physiological growth stages. Barley emergence and below ground biomass were greater with used once than used twice PSDF at the same application rate in clay loam soil. Used twice PSDF at highest rates significantly increased barley above ground biomass relative to the control in loam and sand soil. All PSDF treatments significantly increased available potassium relative to the control in all three soils. Soil electrical conductivity and sodium adsorption ratio increased with PSDF addition, but not to levels detrimental to barley. Soil quality rated fair to poor with PSDF amendments in clay loam, and reduced plant performance at the highest rate, suggesting a threshold beyond which conditions are compromised with PSDF utilization. PSDF application method did not significantly affect plant and soil responses. This initial greenhouse research demonstrates that PSDF has potential as a soil amendment for reclamation, with consideration of soil properties and plant species tolerances to determine PSDF types and rates to be used. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Soil sampling for environmental contaminants

    International Nuclear Information System (INIS)

    2004-10-01

    The Consultants Meeting on Sampling Strategies, Sampling and Storage of Soil for Environmental Monitoring of Contaminants was organized by the International Atomic Energy Agency to evaluate methods for soil sampling in radionuclide monitoring and heavy metal surveys for identification of punctual contamination (hot particles) in large area surveys and screening experiments. A group of experts was invited by the IAEA to discuss and recommend methods for representative soil sampling for different kinds of environmental issues. The ultimate sinks for all kinds of contaminants dispersed within the natural environment through human activities are sediment and soil. Soil is a particularly difficult matrix for environmental pollution studies as it is generally composed of a multitude of geological and biological materials resulting from weathering and degradation, including particles of different sizes with varying surface and chemical properties. There are so many different soil types categorized according to their content of biological matter, from sandy soils to loam and peat soils, which make analytical characterization even more complicated. Soil sampling for environmental monitoring of pollutants, therefore, is still a matter of debate in the community of soil, environmental and analytical sciences. The scope of the consultants meeting included evaluating existing techniques with regard to their practicability, reliability and applicability to different purposes, developing strategies of representative soil sampling for cases not yet considered by current techniques and recommending validated techniques applicable to laboratories in developing Member States. This TECDOC includes a critical survey of existing approaches and their feasibility to be applied in developing countries. The report is valuable for radioanalytical laboratories in Member States. It would assist them in quality control and accreditation process

  11. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    ), and moldboard plowing (MP) with and without a cover crop were evaluated in a long-term experiment on a sandy loam soil in Denmark. Chemical, physical, and biological soil properties were measured in the spring of 2012. The field measurements included mean weight diameter (MWD) after the drop-shatter test......, penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K......Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  12. Effect of intermediate soil cover on municipal solid waste decomposition.

    Science.gov (United States)

    Márquez-Benavides, L; Watson-Craik, I

    2003-01-01

    A complex series of chemical and microbiological reactions is initiated with the burial of refuse in a sanitary landfill. At the end of each labour day, the municipal solid wastes (MSW) are covered with native soil (or an alternative material). To investigate interaction between the intermediate cover and the MSW, five sets of columns were set up, one packed with refuse only, and four with a soil-refuse mixture (a clay loam, an organic-rich peaty soil, a well limed sandy soil and a chalky soil). The anaerobic degradation over 6 months was followed in terms of leachate volatile fatty acids, chemical oxygen demand, pH and ammoniacal-N performance. Results suggest that the organic-rich peaty soil may accelerate the end of the acidogenic phase. Clay appeared not to have a significant effect on the anaerobic degradation process.

  13. Development of an extraction method for perchlorate in soils.

    Science.gov (United States)

    Cañas, Jaclyn E; Patel, Rashila; Tian, Kang; Anderson, Todd A

    2006-03-01

    Perchlorate originates as a contaminant in the environment from its use in solid rocket fuels and munitions. The current US EPA methods for perchlorate determination via ion chromatography using conductivity detection do not include recommendations for the extraction of perchlorate from soil. This study evaluated and identified appropriate conditions for the extraction of perchlorate from clay loam, loamy sand, and sandy soils. Based on the results of this evaluation, soils should be extracted in a dry, ground (mortar and pestle) state with Milli-Q water in a 1 ratio 1 soil ratio water ratio and diluted no more than 5-fold before analysis. When sandy soils were extracted in this manner, the calculated method detection limit was 3.5 microg kg(-1). The findings of this study have aided in the establishment of a standardized extraction method for perchlorate in soil.

  14. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  15. Basic exchangeable cations in Finnish mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1972-09-01

    Full Text Available The content of exchangeable Ca, Mg, K and Na replaced by neutral ammonium acetate was determined in 470 samples of mineral soils from various parts of Finland, except from Lapland. The amount of all these cations tended to increase with an increase in the clay content, but variation within each textural class was large, and the ranges usually overlapped those of the other classes. The higher acidity of virgin surface soils was connected with a lower average degree of saturation by Ca as compared with the corresponding textural classes of cultivated soils. No significant difference in the respective contents of other cations was detected. The samples of various textural groups from deeper layers were usually poorer in exchangeable Ca and K than the corresponding groups of plough layer. The mean content of exchangeable Mg was equal or even higher in the samples from deeper layers than in the samples from plough layer, except in the group of sand soils. The percentage of Mg of the effective CEC increased, as an average, from 9 in the sand and fine sand soils of plough layer to 30 in the heavy clay soils; in the heavy clay soils from deeper layers its mean value was 38 ± 4 %. In the samples of plough layer, the mean ratio of Ca to Mg in sand and fine sand soils was about 9, in silt and loam soils about 6, in the coarser clay soils about 4, and in heavy clay about 2.

  16. Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Nilsson, S Ingvar; Eriksen, Jørgen

    2009-01-01

    accumulated net S mineralization (SAccMin) and a number of soil physical and chemical properties were determined. Treatments and soil differences in SAccMin, as well as correlations with soil variables, were tested with single and multivariate analyses. Long-term FYM application resulted in a significantly (p......The long-term treatment effect (since 1957-1966) of farmyard manure (FYM) application compared with crop residue incorporation was investigated in five soils (sandy loam to silty clay) with regards to the net sulfur (S) mineralization potential. An open incubation technique was used to determine...... = 0.012) higher net S mineralization potential, although total amounts of C, N, and S were not significantly (p soils within this treatment. The measured soil variables were not significantly correlated...

  17. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development.

    Science.gov (United States)

    Ouyang, Wei; Wu, Yuyang; Hao, Zengchao; Zhang, Qi; Bu, Qingwei; Gao, Xiang

    2018-02-01

    Soil erosion exhibits special characteristics in the process of agricultural development. Understanding the combined impacts of land use and soil property changes on soil erosion, especially in the area under long-term agricultural cultivations, is vital to watershed agricultural and soil management. This study investigated the temporal-spatial patterns of the soil erosion based on a modified version of Universal Soil Loss Equation (USLE) and conducted a soil erosion contribution analysis. The land use data were interpreted from Landsat series images, and soil properties were obtained from field sampling, laboratory tests and SPAW (Soil-Plant-Atmosphere-Water) model calculations. Over a long period of agricultural development, the average erosion modulus decreased from 187.7tkm -2 a -1 in 1979 to 158.4tkm -2 a -1 in 2014. The land use types were transformed mainly in the reclamation of paddy fields and the shrinking of wetlands on a large scale. Most of the soils were converted to loam from silty or clay loam and the saturated hydraulic conductivity (K s ) of most soil types decreased by 1.11% to 43.6%. The rapidly increasing area of 49.8km 2 of paddy fields together with the moderate decrease of 14.0km 2 of forests, as well as K s values explained 87.4% of the total variance in soil erosion. Although changes in soil physical and water characteristics indicated that soil erosion loads should have become higher, the upsurge in paddy fields played an important role in mitigating soil erosion in this study area. These results demonstrated that land use changes had more significant impacts than soil property changes on soil erosion. This study suggested that rational measures should be taken to extend paddy fields and control the dry land farming. These findings will benefit watershed agricultural targeting and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Determination of heavy metal content and physico-chemical properties of soils in the vicinity of Tasik Chini, Pahang

    International Nuclear Information System (INIS)

    Sahibin Abdul Rahim; Muhd Barzani Gasim; Mohd Nizam Mohd Said; Wan Mohd Razi Idris; Azman Hashim; Sharilnizam Yusof; Masniyana Jamil

    2008-01-01

    This study was carried out to determine heavy metal content and physico-chemical properties of soils influencing heavy metal accumulation in some series surrounding the Chini Lakes. A total of 15 topsoil sample were collected randomly from 6 stations. The physical properties that were analyzed include particle size distribution and soil organic matter. Meanwhile, the chemical characteristics determined were pH, electrical conductivity and cation exchange capacity. It was found that heavy metal content of Cd, Cr, Cu, Co, Pb, Zn and Mn were low whereas Fe content was high. The textures of soil studied were clay, loamy sand, sandy loam, clay loam and silty clay loam. The mean of organic matter ranged from 2.68 to 11.46 %. The soil pH showed that the soil studied was acidic with values ranged between 3.36 to 3.72. The range of electrical conductivity mean was between 2150 μScm -1 to 2403 μScm -1 . Cation exchange capacity mean ranged from 2.85 until 8.59 cmol/ kg. Correlation analysis showed that there were positive and negative significant correlations between soils parameters heavy metal concentration. Analysis of variance (ANOVA) showed that there were significant differences in organic matter percentage, pH, cation exchange capacity and heavy metals except cadmium between sampling station. (author)

  19. Simulation of chloride transport based description soil structure

    International Nuclear Information System (INIS)

    Mahmood-ul-Hassan, M.; Akhtar, M.S.; Gill, S.M.; Nabi, G.

    2003-01-01

    There is a need of environmental implications of rapid appearance of surface by applying chemical at depths below the vadose zone (tile line or shallow groundwater) for developing better insight into solute flow mechanism through the arable lands. Transport of chloride, a representative non-adsorbing solute, through a moderately structured silty clay loam soil (Gujranwala series, Typic Ustochrepts) and an un-structured sandy loam soil (Nabipur series, Typic Camborthid) was characterized and two existing models viz. convection dispersion equation (CDE) and preferential flow models were tested. The flux average of solute concentration in the outflow as a function of cumulative drainage was fitted to the models. The CDE fitted, relatively, better in the non-structured soil than in the moderately structured soil. Dispersivity value determined by CDE was very high for the structured soil which is physically not possible. The preferential flow model fitted well in the Gujranwala soil, but not in the Nabipur soil. The breakthrough characteristics i.e. drainage to peak concentration (Dp), symmetry coefficient (SC), skewness, and kurtosis were compared. Chloride breakthrough was earlier than expected based on piston flow. It indicated preferential flow in both the soils, yet, immediate appearance of the tracer in the Gujranwala soil demonstrated even larger magnitude of the preferential flow. Breakthrough curves' parameters indicated a large amount of the solute movement through the preferred pathways by passing the soil matrix in the Gujranwala soil. The study suggests that some soil structure parameters (size/shape and degree of aggregation) should be incorporated in the solute transport models.(author)

  20. Response of soil microbiota to selected herbicide treatments.

    Science.gov (United States)

    Roslycky, E B

    1977-04-01

    Recommended concentrations of paraquat alone and its combination with each of linuron, diuron, atrazine, simazine, and simazine plus diuron exerted little effect on total populations of bacteria, actinomycetes, and fungi in Fox sandy loam under laboratory and simulated field conditions in 66 and 77 days, respectively. Respiration of the total microbiota in soil suspension was afeected by the combinations as well as individual herbicides in various concentrations. Yet, the inhibition of the O2 uptake by any of these herbicides, including some extreme concentrations, was not permanent, indicating adaptation, or suppression of specific organisms. Only linuron in concentrations up to 20 microng/ml stimulated respiration of the soil.

  1. Prediction of cesium-134 and strontium-85 crop uptake based on soil properties

    International Nuclear Information System (INIS)

    Roca, M.C.; Vallejo, V.R.; Roig, M.; Tent, J.; Vidal, M.; Rauret, G.

    1997-01-01

    Nowadays, there is still the need to improve the quantification of parameters that affect radionuclide mobility. With this aim, radiocesium and radiostrontium soil-to-plant transfer was measured in lysimeters in a Calcic Luvisol, loamy soil and in a Fluvisol, loam-sandy soil, using lettuce [Lactuca sativa L. cv. Kinemontepas] and pea plants [Pisum sativum L. cv. Kelvedon Wonder]. Weighted Concentration Ratios (WCR), expressed as kg soil/kg plant, were calculated for different growth stages. Weighted Concentration Ratios were in general higher for 85Sr than for 134Cs, and also higher in the loam-sandy than in the loamy soil. To predict plant uptake, we evaluated a set of soil properties to define a prediction factor for the relative transfer in the two soils using cation exchange capacity (CEC) and radionuclide available fraction (fav) for radiostrontium, and soil solution composition, solid-liquid distribution coefficient, and radionuclide available fraction for radiocesium. The ratios of WCR in the loam-sandy and loamy soil were compared with the prediction factor. There was good agreement in lettuce for 85Sr (ratio of WCR was 5.4 for seedling and 3.9 for commercial samples, whereas prediction factor was 3.1) and for 134Cs (ratio of WCR was 5.1 for seedling and 5.5 for commercial samples, the prediction factor being 5.1), although for pea only the relative root uptake of radiocesium in seedling pea was well predicted (the ratio of WCR was 8.8, the prediction factor being 9.1). These soil parameters improved former predictions based solely on the fav, although factors depending on plant physiology should be better evaluated

  2. Distribution of Soil Organic Carbon and the Influencing Factors in An Oasis Farmland Area

    Directory of Open Access Journals (Sweden)

    WANG Ze

    2014-08-01

    Full Text Available The soil organic carbon(SOC of a typical oasis farmland in middle part of Manasi county of Xinjiang was used as the research ob原 ject. Using remote sensing and lab analysis techniques, influences of soil texture, terrain, land uses, and crop types on SOC content of farmland were studied. Results showed that the SOC distribution in farmland of Manasi was mainly determined by comprehensive natural environmental factors. The SOC content decreased along with the increasing soil depth. For soil textures, the SOC content from high to low was clay loam>powder loam>silty loam. Slope direction had significantly positive correlations with SOC contents at 0~30 cm and 30~60 cm, while altitude and SOC content at 60~100 cm were significantly positive correlation. The SOC content of orchard was the highest, and the uncultivated land was the lowest under different land-use patterns. For different crop planting systems, the order of SOC content was corn field >wine grapes field>cotton field, and the difference was significant.

  3. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    ploughing to a depth of 20 cm (MP), harrowing to a depth of 8-10 cm (H) and direct drilling (D). Minimally disturbed core samples were taken at 4-8, 12-16 and 18-27 cm depths 11 years after experimental start. Water retention characteristics were measured for a range of matric potential ranging from -10......Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...... of quantitative knowledge to support this statement. This study examines the long-term effects of crop rotations, residue management and tillage on soil pore characteristics of two sandy loam soils in Denmark. Results are reported from a split plot field experiment rotation as main plot factor and tillage...

  4. Probabilistic risk assessment of nitrate groundwater contamination from greenhouses in Albenga plain (Liguria, Italy) using lysimeters.

    Science.gov (United States)

    Paladino, Ombretta; Seyedsalehi, Mahdi; Massabò, Marco

    2018-04-05

    The use of fertilizers in greenhouse-grown crops can pose a threat to groundwater quality and, consequently, to human beings and subterranean ecosystem, where intensive farming produces pollutants leaching. Albenga plain (Liguria, Italy) is an alluvial area of about 45km 2 historically devoted to farming. Recently the crops have evolved to greenhouses horticulture and floriculture production. In the area high levels of nitrates in groundwater have been detected. Lysimeters with three types of reconstituted soils (loamy sand, sandy clay loam and sandy loam) collected from different areas of Albenga plain were used in this study to evaluate the leaching loss of nitrate (NO 3 - ) over a period of 12weeks. Leaf lettuce (Lactuca sativa L.) was selected as a representative green-grown crop. Each of the soil samples was treated with a slow release fertilizer, simulating the real fertilizing strategy of the tillage. In order to estimate the potential risk for aquifers as well as for organisms exposed via pore water, nitrate concentrations in groundwater were evaluated by applying a simplified attenuation model to the experimental data. Results were refined and extended from comparison of single effects and exposure values (Tier I level) up to the evaluation of probabilistic distributions of exposure and related effects (Tier II, III IV levels). HHRA suggested HI >1 and about 20% probability of exceeding RfD for all the greenhouses, regardless of the soil. ERA suggested HQ>100 for all the greenhouses; 93% probability of PNEC exceedance for greenhouses containing sand clay loam. The probability of exceeding LC50 for 5% of the species was about 40% and the probability corresponding to DBQ of DEC/EC50>0.001 was >90% for all the greenhouses. The significantly high risk, related to the detected nitrate leaching loss, can be attributed to excessive and inappropriate fertigation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Water and nutrient productivity in melon crop by fertigation under subsurface drip irrigation and mulching in contrasting soils

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio Câmara Monteiro

    2014-01-01

    Full Text Available Cropping intensification and technical, economic and environmental issues require efficient application of production factors to maintain the soil productive capacity and produce good quality fruits and vegetables. The production factors, water and NPK nutrients, are the most frequent limiting factors to higher melon yields. The objective of the present study was to identify the influence of subsurface drip irrigation and mulching in a protected environment on the water and NPK nutrients productivity in melon cropped in two soil types: sandy loam and clay. The melon crop cultivated under environmental conditions with underground drip irrigation at 0.20m depth, with mulching on sandy loam soil increased water and N, P2O5 and K use efficiency.

  6. Experimental study on soluble chemical transfer to surface runoff from soil.

    Science.gov (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  7. Association of radionuclides with different molecular size fractions in soil solution: implications for plant uptake

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Shaw, S.; Salbu, B.

    1993-01-01

    The feasibility of using hollow fibre ultrafiltration to determine the molecular size distribution of radionuclides in soil solution was investigated. The physical and chemical composition of soil plays a vital role in determining radionuclide uptake by plant roots. Soil solution samples were extracted from loam, peat and sand soils that had been artificially contaminated with 137 Cs, 90 Sr, 239 Pu and 241 Am six years previously as part of a five-year lysimeter study on radionuclide uptake to crops. Ultrafiltration of soil solution was performed using hollow fibre cartridges with a nominal molecular weight cut off of 3 and 10 kD. The association of 137 Cs, 90 Sr, 239 Pu and 241 Am with different molecular size fractions of the soil solution is discussed in terms of radionuclide bioavailability to cabbage grown in the same three soils. 137 Cs and 90 Sr were present in low molecular weight forms and as such were mobile in soil and potentially available for uptake by the cabbage. In contrast, a large proportion (61-87%) of the 239 Pu and 241 Am were associated with colloidal and high molecular weight material and therefore less available for uptake by plant roots. The contribution from low molecular weight species of 239 Pu and 241 Am to the total activity in soil solution decreased in the order loam ≥ peat ≥ sand. Association of radionuclides with low molecular weight species of less than 3 kD did not, however, automatically imply availability to plants. (author)

  8. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, Mathias Neumann; Lærke, Poul Erik

    2011-01-01

    Nitrogen (N) uptake (kg ha-1) of field-grown potatoes was measured in 4.32 m2 lysimeters that were filled with coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  9. Biochar Effects on Soil Aggregate Properties Under No-Till Maize

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Naveed, Muhammad; Heckrath, Goswin Johann

    2014-01-01

    of biochar particles had higher TS and SRE probably because of bonding effects. Based on the improved soil aggregate properties, we suggest that biochar can be effective for increasing and sustaining overall soil quality, for example, related to minimizing the soil erosion potential.......Soil aggregates are useful indicators of soil structure and stability, and the impact on physical and mechanical aggregate properties is critical for the sustainable use of organic amendments in agricultural soil. In this work, we evaluated the short-term soil quality effects of applying biochar (0......–10 kg m−2), in combination with swine manure (2.1 and 4.2 kg m−2), to a no-till maize (Zea mays L.) cropping system on a sandy loam soil in Denmark. Topsoil (0–20 cm) aggregates were analyzed for clay dispersibility, aggregate stability, tensile strength (TS), and specific rupture energy (SRE) using end...

  10. Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.

    Science.gov (United States)

    Zhang, Weilan; Musante, Craig; White, Jason C; Schwab, Paul; Wang, Qiang; Ebbs, Stephen D; Ma, Xingmao

    2017-01-01

    Cerium oxide nanoparticles (CeO 2 NP) are a common component of many commercial products. Due to the general concerns over the potential toxicity of engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO 2 NPs have been broadly investigated. However, most previous studies were conducted in hydroponic systems and with grain crops. For a few studies performed with soil grown plants, the impact of soil properties on the fate and transport of CeO 2 NPs was generally ignored even though numerous previous studies indicate that soil properties play a critical role in the fate and transport of environmental pollutants. The objectives of this study were to evaluate the soil fractionation and bioavailability of CeO 2 NPs to Raphanus sativus L (radish) in two soil types. Our results showed that the silty loam contained slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO 2 NPs concentration increased. CeO 2 NPs associated with silicate minerals or the residue fraction (F4) dominated in both soils. The cerium concentration in radish storage root showed linear correlation with the sum of the first three fractions (r 2  = 0.98 and 0.78 for loamy sand and silty loam respectively). However, the cerium content in radish shoots only exhibited strong correlations with F1 (r 2  = 0.97 and 0.89 for loamy sand and silty loam respectively). Overall, the results demonstrated that soil properties are important factors governing the distribution of CeO 2 NPs in soil and subsequent bioavailability to plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Improved retention of imidacloprid (Confidor) in soils by adding vermicompost from spent grape marc.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2007-05-25

    Batch sorption experiments of the insecticide imidacloprid by ten widely different Spanish soils were carried out. The sorption was studied for the active ingredient and its registered formulation Confidor. The temperature effect was studied at 15 degrees C and 25 degrees C. The addition of a vermicompost from spent grape marc (natural and ground), containing 344 g kg(-1) organic carbon, on the sorption of imidacloprid by two selected soils, a sandy loam and a silty clay loam, having organic carbon content of 3.6 g kg(-1) and 9.3 g kg(-1), respectively, was evaluated. Prior to the addition of this vermicompost, desorption isotherms with both selected soils, were also performed. The apparent hysteresis index (AHI) parameter was used to quantify sorption-desorption hysteresis. Sorption coefficients, K(d) and K(f), for the active ingredient and Confidor(R) in the different soils were similar. Sorption decreased with increasing temperature, this fact has special interest in greenhouse systems. A significant correlation (R(2)=0.965; Pcharacteristics of soils could contribute to the retention capacity as well. The spent grape marc vermicompost was an effective sorbent of this insecticide (K(f)=149). The sorption of imidacloprid increased significantly in soils amended with this vermicompost. The most pronounced effect was found in the sandy loam soil with low OC content, where the addition of 5% and 10% of vermicompost increased K(f) values by 8- and 15-fold, respectively. Soil desorption of imidacloprid was slower for the soil with the higher OC and clay content.

  12. Rhizosphere organic anions play a minor role in improving crop species’ ability to take up residual phosphorus (P in agricultural soils low in P availability

    Directory of Open Access Journals (Sweden)

    Yanliang Wang

    2016-11-01

    Full Text Available Many arable lands have accumulated large reserves of residual phosphorus (P and a relatively large proportion of soil P is less available for uptake by plants. Root released organic anions are widely documented as a key physiological strategy to enhance P availability, while limited information has been generated on the contribution of rhizosphere organic anions to P utilization by crops grown in agricultural soils that are low in available P and high in extractable Ca, Al and Fe. We studied the role of rhizosphere organic anions in P uptake from residual P in four common crops Triticum aestivum, Avena sativa, Solanum tuberosum and Brassica napus in low- and high-P availability agricultural soils from long-term fertilization field trials in a mini-rhizotron experiment with four replications. Malate was generally the dominant organic anion. More rhizosphere citrate was detected in low P soils than in high P soil. Brassica napus showed 74-103% increase of malate in low P loam, compared with clay loam. Avena sativa had the greatest rhizosphere citrate concentration in all soils (5.3-15.2 mol g-1 root DW. Avena sativa also showed the highest level of root colonization by arbuscular mycorrhizal fungi (36% and 40%, the greatest root mass ratio (0.51 and 0.66 in the low-P clay loam and loam respectively, and the greatest total P uptake (5.92 mg P/mini-rhizotron in the low-P loam. Brassica napus had 15-44% more rhizosphere APase activity, ~0.1-0.4 units lower rhizosphere pH than other species, the greatest increase in rhizosphere water-soluble P in the low-P soils, and the greatest total P uptake in the low-P clay loam. Shoot P content was mainly explained by rhizosphere APase activity, water-soluble P and pH within low P soils across species. Within species, P uptake was mainly linked to rhizosphere water soluble P, APase and pH in low P soils. The effects of rhizosphere organic anions varied among species and they appeared to play minor roles in

  13. Rhizosphere Organic Anions Play a Minor Role in Improving Crop Species' Ability to Take Up Residual Phosphorus (P) in Agricultural Soils Low in P Availability.

    Science.gov (United States)

    Wang, Yanliang; Krogstad, Tore; Clarke, Jihong L; Hallama, Moritz; Øgaard, Anne F; Eich-Greatorex, Susanne; Kandeler, Ellen; Clarke, Nicholas

    2016-01-01

    Many arable lands have accumulated large reserves of residual phosphorus (P) and a relatively large proportion of soil P is less available for uptake by plants. Root released organic anions are widely documented as a key physiological strategy to enhance P availability, while limited information has been generated on the contribution of rhizosphere organic anions to P utilization by crops grown in agricultural soils that are low in available P and high in extractable Ca, Al, and Fe. We studied the role of rhizosphere organic anions in P uptake from residual P in four common crops Triticum aestivum, Avena sativa, Solanum tuberosum , and Brassica napus in low- and high-P availability agricultural soils from long-term fertilization field trials in a mini-rhizotron experiment with four replications. Malate was generally the dominant organic anion. More rhizosphere citrate was detected in low P soils than in high P soil. B. napus showed 74-103% increase of malate in low P loam, compared with clay loam. A. sativa had the greatest rhizosphere citrate concentration in all soils (5.3-15.2 μmol g -1 root DW). A. sativa also showed the highest level of root colonization by arbuscular mycorrhizal fungi (AMF; 36 and 40%), the greatest root mass ratio (0.51 and 0.66) in the low-P clay loam and loam respectively, and the greatest total P uptake (5.92 mg P/mini-rhizotron) in the low-P loam. B. napus had 15-44% more rhizosphere acid phosphatase (APase) activity, ~0.1-0.4 units lower rhizosphere pH than other species, the greatest increase in rhizosphere water-soluble P in the low-P soils, and the greatest total P uptake in the low-P clay loam. Shoot P content was mainly explained by rhizosphere APase activity, water-soluble P and pH within low P soils across species. Within species, P uptake was mainly linked to rhizosphere water soluble P, APase, and pH in low P soils. The effects of rhizosphere organic anions varied among species and they appeared to play minor roles in

  14. Ridge sowing of sunflower (Helianthus annuus L.) in a minimum till system improves the productivity, oil quality, and profitability on a sandy loam soil under an arid climate.

    Science.gov (United States)

    Sher, Ahmad; Suleman, Muhammad; Qayyum, Abdul; Sattar, Abdul; Wasaya, Allah; Ijaz, Muhammad; Nawaz, Ahmad

    2018-04-01

    Sunflower (Helianthus annuus L.) is a major oilseed crop grown for its edible oil across the globe including Pakistan. In Pakistan, the production of edible oil is less than the required quantity; the situation is being worsened with the increasing population. Thus, there is dire need to grow those sunflower genotypes which perform better under a given set of agronomic practices. In this 2-year study, we compared four sunflower genotypes, viz., Armoni, Kundi, Sinji, and S-278 for their yield potential, oil contents, fatty acid composition, and profitability under three sowing methods, viz., bed sowing, line sowing, and ridge sowing and two tillage system, viz., plow till and minimum till. Among the sunflower genotypes, the genotype Armoni produced the highest plant height, number of leaves, head diameter, 1000-achene weight, and achene yield; the oil contents and oleic acid were the highest in genotype Sinji. Among the sowing methods, the highest number of leaves per plant, head diameter, number of achenes per head, achene yield, and oil contents were recorded in ridge sowing. Among the tillage systems, the highest head diameter 16. 2 cm, 1000-achene weight (57.2 g), achene yield (1.8 t ha -1 ), oil contents (35.2%), and oleic acid (15.2%) were recorded in minimum till sunflower. The highest net benefits and benefit to cost ratio were recorded in minimum till ridge sown Armoni genotype. In conclusion, the genotype Armoni should be grown on ridges to achieve the highest achene yield, oil contents, and net profitability.

  15. Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters

    International Nuclear Information System (INIS)

    Thevenot, M.; Dousset, S.; Rousseaux, S.; Andreux, F.

    2008-01-01

    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron + metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching. - The application of organic amendments increased diuron leaching through a sandy-loam soil, in contrast to a clay-loam soil

  16. Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Thevenot, M. [UMR 1229 Microbiologie et Geochimie des Sols, CMSE, INRA - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France)], E-mail: mathieu.thevenot@u-bourgogne.fr; Dousset, S. [UMR 5561 Biogeosciences, CNRS - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France); Rousseaux, S. [EA 4149 Laboratoire de Recherche en Vigne et Vin, Institut Universitaire de la Vigne et du Vin, rue Claude Ladrey, 21000 Dijon (France); Andreux, F. [UMR 1229 Microbiologie et Geochimie des Sols, CMSE, INRA - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France)

    2008-05-15

    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron + metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching. - The application of organic amendments increased diuron leaching through a sandy-loam soil, in contrast to a clay-loam soil.

  17. Metal accumulation and crop yield for a variety of edible crops grown in diverse soil media amended with sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J; Blessin, C W; Inglett, G E; Kwolek, W F

    1981-07-01

    This study was designed to determine the best uses for sewage sludge, by amending soil materials ranging in scope from distributed materials such as coal mine gob and sanitary landfill to fully productive agricultural soils. The following aspects were studied: physical characteristics of the soils as a result of their amendment with sludge; yields for a broad variety of crop species; nutritional quality of selected crops; metal uptake and accumulation in crop tissues; and translocation of metals from soil medium to tissues. Harvested crops with the highest metal contents were derived from landfill and coal mine gob treatments, and the lowest were associated with loam, clay, and agriculturally productive topsoils.

  18. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  19. Vapor Intrusion from Entrapped NAPL Sources and Groundwater Plumes: Process Understanding and Improved Modeling Tools for Pathway Assessment

    Science.gov (United States)

    2014-07-01

    into a building ....149 Figure 5.52: Effect of infiltration at 1 mm/hr for 24 hours on vapor signals in sandy clay loam scenario...shown above, there will also likely be large diameter sanitary sewers running the length of each street. Each house on the street will have a sewer...permeability, a discontinuous clay layer system, and a system with scattered obstacles (e.g. utilities). The layered systems indicated that the sequence of

  20. Extraction of an urease-active organo-complex from soil.

    Science.gov (United States)

    Burns, R. G.; El-Sayed, M. H.; Mclaren, A. D.

    1972-01-01

    Description of an extraction from a Dublin clay loam soil of a colloidal organic matter complex that is urease active and, by X-ray analysis, free of clays. Urease activity in the clay-free precipitates, as in the soil, was not destroyed by the activity of an added proteolytic enzyme, pronase. This is attributed to the circumstance that native soil urease resides in organic colloidal particles with pores large enough for water, urea, ammonia, and carbon dioxide to pass freely, but nevertheless small enough to exclude pronase.

  1. Dynamic model for the transfer of CS-137 through the soil-grass-lamb foodchain

    DEFF Research Database (Denmark)

    Nielsen, S.P.

    1994-01-01

    A dynamic radioecological model for the transfer of radiocaesium through the soil-grass-lamb foodchain was constructed on the basis of field data collected in 1990–1993 from the Nordic countries: Denmark, Faroe Islands, Finland, Iceland, Norway and Sweden. The model assumes an initial soil...... contamination of one kilobecquerel of 137Cs per square metre and simulates the transfer to grass through root uptake in addition to direct contamination from resuspended activity. The model covers two different soil types: clay-loam and organic, with significantly different transfers of radiocaesium to grass...

  2. Biotreatment of hydrocarbons from petroleum tank bottom sludges in soil slurries

    International Nuclear Information System (INIS)

    Ferrari, M.D.; Neirotti, E.; Albornoz, C.; Mostazo, M.R.; Cozzo, M.

    1996-01-01

    Biotreatment of oil wastes in aqueous slurries prepared with sandy loam soil and inoculated with selected soil cultures was evaluated. After 90 days, oil removal was 47%. Removal of each hydrocarbon class was 84% for saturates, 20% for aromatics, and 44% for asphaltenes. Resins increased by 68%. The use of a soil with a lower level of fine particles or minor organic matter content, or reinoculation with fresh culture did not improve oil elimination. Residual oil recovered from slurries was biotreated. Oil removal was 22%. Slurry-phase biotreatment showed less variability and faster oil removal than solid-phase biotreatment. (author)

  3. Association between Aquilaria distribution, geographic characteristics, edaphic factors and water availability in natural tropical rainforest

    International Nuclear Information System (INIS)

    Shyful Azizi Abdul Rahman; Khairuddin Abdul Rahim; Ahsanulkhaliqin Abdul Wahab; Mohd Fajri Osman; Chong Saw Peng

    2006-01-01

    Oud or gaharu is a fragrant resin produced from Aquilaria trees as a response to injury, wounding and/or a fungal infection. Proliferation of Aquilaria under plantation system is essential to ensure continuous supply of gaharu. Even though the plantation of Aquilaria is aggressively conducted nowadays, there are still lack of details information and knowledge in terms of plant agronomy and oleoresin production. Understanding of plant, soil, water and environment relationship in natural habitat is important in order to provide guidelines and strategies for growers to adopt new agroforestry approaches that can lead to the best management practices for Aquilaria plantation. A study on soil physical and chemical characteristics, topographic condition, soil moisture and climate has been carried out to investigate the plant distribution pattern and resin production potential of 178 stand of Aquilaria in MINT Tech-Park tertiary forest and Gunung Tebu Forest Reserve. Result show that Aquilaria distributions concentrate at slope areas of gradient between 10 degrees to 15 degrees, the soil type is the stony low fertility sandy loam to sandy clay and this area receives a high density of rainfall which is more than 2500 mm/year. For the potential of resin production analysis, slope with high gradient show a significant potential of resin production probably due to the plant stress condition factors

  4. Assessment of Cu applications in two contrasting soils-effects on soil microbial activity and the fungal community structure.

    Science.gov (United States)

    Keiblinger, Katharina M; Schneider, Martin; Gorfer, Markus; Paumann, Melanie; Deltedesco, Evi; Berger, Harald; Jöchlinger, Lisa; Mentler, Axel; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz

    2018-03-01

    Copper (Cu)-based fungicides have been used in viticulture to prevent downy mildew since the end of the 19th century, and are still used today to reduce fungal diseases. Consequently, Cu has built up in many vineyard soils, and it is still unclear how this affects soil functioning. The present study aimed to assess the short and medium-term effects of Cu contamination on the soil fungal community. Two contrasting agricultural soils, an acidic sandy loam and an alkaline silt loam, were used for an eco-toxicological greenhouse pot experiment. The soils were spiked with a Cu-based fungicide in seven concentrations (0-5000 mg Cu kg -1 soil) and alfalfa was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test Cu toxicity effects on total microbial biomass, basal respiration and enzyme activities. Fungal abundance was analysed by ergosterol at both samplings, and for the second sampling, fungal community structure was evaluated via ITS amplicon sequences. Soil microbial biomass C as well as microbial respiration rate decreased with increasing Cu concentrations, with EC 50 ranging from 76 to 187 mg EDTA-extractable Cu kg -1 soil. Oxidative enzymes showed a trend of increasing activity at the first sampling, but a decline in peroxidase activity was observed for the second sampling. We found remarkable Cu-induced changes in fungal community abundance (EC 50 ranging from 9.2 to 94 mg EDTA-extractable Cu kg -1 soil) and composition, but not in diversity. A large number of diverse fungi were able to thrive under elevated Cu concentrations, though within the order of Hypocreales several species declined. A remarkable Cu-induced change in the community composition was found, which depended on the soil properties and, hence, on Cu availability.

  5. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices (di...... that P improved soil quality compared to H and D, especially when combined with cover crop. We also conclude that D may benefit from cover crop to yield better soil friability and hence soil quality.......This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...... (direct drilling (D), harrowing (H) to a depth of 8 cm and ploughing to a depth of 20 cm (P)) as main plot. The soil was cropped with cover crop (+CC) or left without cover crop (-CC) as split plot treatments in the main plots with different tillage treatments. We assessed topsoil structural quality...

  6. Abundance of plankton population densities in relation to bottom soil textural types in aquaculture ponds

    Directory of Open Access Journals (Sweden)

    F. Siddika

    2012-06-01

    Full Text Available Plankton is an important food item of fishes and indicator for the productivity of a water body. The present study was conducted to evaluate the effects of bottom soil textural conditions on abundance of plankton in aquaculture pond. The experiment was carried out using three treatments, i.e., ponds bottom with sandy loam (T1, with loam (T2 and with clay loam (T3. The ranges of water quality parameters analyzed were suitable for the growth of plankton during the experimental period. Similarly, chemical properties of soil were also within suitable ranges and every parameter showed higher ranges in T2. A total 20 genera of phytoplankton were recorded belonged to Chlorophyceae (7, Cyanophyceae (5, Bacillariophyceae (5, Euglenophyceae (2 and Dinophyceae (1. On the other hand, total 13 genera of zooplankton were recorded belonged to Crustacea (7 and Rotifera (6. The highest ranges of phytoplankton and zooplankton densities were found in T2 where low to medium-type bloom was observed during the study period. Consequently, the mean abundance of plankton (phytoplankton and zooplankton density was significantly highest in T2. The highest abundance of plankton in the T2 indicated that pond bottom with loamy soil is suitable for the growth and production of plankton in aquaculture ponds.

  7. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam.

    Science.gov (United States)

    Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi

    2016-11-05

    Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg -1 . Manganese and iron concentrations averaged 811 µg·g -1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  8. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Thinh Nguyen Van

    2016-11-01

    Full Text Available Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As, chromium (Cr, cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg−1. Manganese and iron concentrations averaged 811 µg·g−1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  9. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics

    Science.gov (United States)

    Armenise, Elena; Simmons, Robert W.; Ahn, Sujung; Garbout, Amin; Doerr, Stefan H.; Mooney, Sacha J.; Sturrock, Craig J.; Ritz, Karl

    2018-01-01

    This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 min). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 to 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24-0.48 mm below the soil surface. This

  10. Lixiviação de trifluralin, atrazine e bromacil em três diferentes solos Leaching of trifluralin, atrazine and bromacil in three different soils

    Directory of Open Access Journals (Sweden)

    L. H. Signori

    1978-01-01

    Full Text Available Foi estudada a taxa de lixiviação dos herbicidas trifluralin. atrazine e bromacil em três la. tossolos de texturas diferentes, utilizando-se as doses normais de uso de cada um. Foram utilizadas colunas não deformadas de cada solo e, após a percolação de precipitação simulada de 110 ou 220 mm, semearam-se capim-arroz (Echinochloa cruz-galli (L. Beauv. e alface (Lactuca sativa L. var. La Chaume longitudinalmente nas metades de cada uma. A lixiviação dos herbicidas foi avaliada aos 21 e 33 dias após a semeação. Com indicação dada pelo capim-arroz verificou-se que o trifluralin apresentou lixiviação pequena em quantidade e extensão no perfil, sendo semelhante nos três solos. No solo argiloso e areno-argiloso, com 110 ou 220 mm de chuva, o bromacil apresentou lixiviação bem maior que o atrazine. O bioensaio indicou que as concentrações de bromacil e de atrazine decresciam com a profundidade do perfil. As taxas de lixiviação dos herbicidas foram, de modo geral, proporcionais à sua solubilidade.The leaching rate of trifluralin, atrazine and bromacil in three latossols, with different textures, applying normal dosages of each. was studied. Intact columns of each soil were used and simula ted precip itations of 110 or 220 mm of water, Echinochloa cruz-galli L. Beauv. and Lactuca sativa cv. La Chaume were sown lenghtwise in the two halves of each colum. The leaching rate of the herbic ides was evaluated 21 and 23 days after seedling. With the indication given by E. cruz_galli it was verified that trifluralin showed very little leaching in the soil prof ile, and was similar in the three soils. In the clay and sandy-clay soils with 110 or 220 mm of rain, bromacil showed higher leaching rate than atrazine. In the loamy soil both herbicides showed simila r leaching due to the presence of caulinite, with has a low adsorbing capacity for atrazine. The bio-assay indicated that the bromacil and atrazine concentrations diminished with

  11. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils

    DEFF Research Database (Denmark)

    Woldetsadik, Desta; Drechsel, Pay; Keraita, Bernard

    2016-01-01

    To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam...... and the applied treatments were 7 % w/w. The reduction of bioavailable Cd (ammonium nitrate extractable) and its phytoavailability for lettuce were used as assessment criteria in the evaluation of stabilization performance of each treatment. Moreover, the agronomic values of the treatments were also investigated...... extracts. The immobilization potential of faecal matter biochar and lime were superior than the other treatments. However, lime and egg shell promoted statistically lower yield and P, K and Zn concentrations response of lettuce plants compared to the biochar treatments. The lowest Cd and highest P tissue...

  12. Fate of {sup 14}C-triclocarban in biosolids-amended soils

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Elizabeth Hodges, E-mail: lizah@ufl.edu [Soil and Water Science Department, University of Florida, 408 Newell Hall, Gainesville, Florida, 32611 (United States); Department of Health Sciences, University of Alaska Anchorage, DPL 404, 3211 Providence Drive, Anchorage, AK 99508-4614 (United States); O' Connor, George A., E-mail: gao@ufl.edu [Soil and Water Science Department, P.O. Box 110510, University of Florida, Gainesville, FL 32611-01519 (United States); McAvoy, Drew C., E-mail: mcavoy.dc@pg.com [Environmental Safety Department, P.O. Box 538707, The Procter and Gamble Company, Cincinnati, OH, 45253-8707 (United States)

    2010-06-01

    Triclocarban (TCC) is an antibacterial compound commonly detected in biosolids at parts-per-million concentrations. Approximately half of the biosolids produced in the United States are land-applied, resulting in a systematic release of TCC into the soil environment. The extent of biosolids-borne TCC environmental transport and potential human/ecological exposures will be greatly affected by its bioavailability and the rate of degradation in amended soils. To investigate these factors, radiolabeled TCC ({sup 14}C-TCC) was incorporated into anaerobically digested biosolids, amended to two soils, and incubated under aerobic conditions. The evolution of {sup 14}CO2 (biodegradation) and changes in chemical extractability (bioavailability) was measured over time. Water extractable TCC over the study period was low and significantly decreased over the first 3 weeks of the study (from 14% to 4% in a fine sand soil and from 3 to < 1% in a silty clay loam soil). Mineralization (i.e. ultimate degradation), as measured by evolution of {sup 14}CO{sub 2}, was < 4% over 7.5 months. Methanol extracts of the amended soils were analyzed by radiolabel thin-layer chromatography (RAD-TLC), but no intermediate degradation products were detected. Approximately 20% and 50% of the radioactivity in the amended fine sand and silty clay loam soils, respectively, was converted to bound residue as measured by solids combustion. These results indicate that biosolids-borne TCC becomes less bioavailable over time and biodegrades at a very slow rate.

  13. Heavy metal phytoextraction-natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat.

    Science.gov (United States)

    Mahmood-Ul-Hassan, Muhammad; Suthar, Vishandas; Ahmad, Rizwan; Yousra, Munazza

    2017-10-30

    The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala-silty loam and Pacca-clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg -1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg -1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.

  14. Rhizoctonia solani and Bacterial Inoculants Stimulate Root Exudation of Antifungal Compounds in Lettuce in a Soil-Type Specific Manner

    Directory of Open Access Journals (Sweden)

    Saskia Windisch

    2017-06-01

    Full Text Available Previous studies conducted on a unique field site comprising three contrasting soils (diluvial sand DS, alluvial loam AL, loess loam LL under identical cropping history, demonstrated soil type-dependent differences in biocontrol efficiency against Rhizoctonia solani-induced bottom rot disease in lettuce by two bacterial inoculants (Pseudomonas jessenii RU47 and Serratia plymuthica 3Re-4-18. Disease severity declined in the order DS > AL > LL. These differences were confirmed under controlled conditions, using the same soils in minirhizotron experiments. Gas chromatography-mass spectrometry (GC-MS profiling of rhizosphere soil solutions revealed benzoic and lauric acids as antifungal compounds; previously identified in root exudates of lettuce. Pathogen inoculation and pre-inoculation with bacterial inoculants significantly increased the release of antifungal root exudates in a soil type-specific manner; with the highest absolute levels detected on the least-affected LL soil. Soil type-dependent differences were also recorded for the biocontrol effects of the two bacterial inoculants; showing the highest efficiency after double-inoculation on the AL soil. However, this was associated with a reduction of shoot growth and root hair development and a limited micronutrient status of the host plants. Obviously, disease severity and the expression of biocontrol effects are influenced by soil properties with potential impact on reproducibility of practical applications.

  15. Draft forces prediction model for standard single tines by using principles of soil mechanics and soil profile evaluation

    Directory of Open Access Journals (Sweden)

    Amer Khalid Ahmed Al-Neama

    2017-06-01

    Full Text Available This paper explains a model to predict the draft force acting on varying standard single tines by using principles of soil mechanics and soil profile evaluation. Draft force (Fd measurements were made with four standard single tines comprising Heavy Duty, Double Heart, Double Heart with Wings and Duck Foot. Tine widths were 6.5, 13.5, 45 and 40 cm, respectively. The test was conducted in a soil bin with sandy loam soil. The effects of forward speeds and working depths on draft forces were investigated under controlled lab conditions. Results were evaluated based on a prediction model. A good correlation between measured and predicted Fd values for all tines with an average absolute variation less than 15 % was found.

  16. Mineralization of soil organic matter in biochar amended agricultural landscape

    Science.gov (United States)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  17. Leaching of human pathogens in repacked soil lysimeters and contamination of potato tubers under subsurface drip irrigation in Denmark

    DEFF Research Database (Denmark)

    Forslund, Anita; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O......, phage 28B was detected in low concentrations (2 pfu ml1) in leachate from both sandy loam soil and coarse sand lysimeters. After 27 days, phage 28B continued to be present in similar concentrations in leachate from lysimeters containing coarse sand, while no phage were found in lysimeters with sandy....... The findings of bacterial pathogens and phage 28 on all potato samples suggest that the main risk associated with subsurface drip irrigation with low quality water is faecal contamination of root crops, in particular those consumed raw....

  18. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Science.gov (United States)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  19. Relation between soil P test values and mobilization of dissolved and particulate P from the plough layer of typical Danish soils from a long-term field experiment with applied P fertilizers

    DEFF Research Database (Denmark)

    Glaesner, N.; Kjaergaard, C.; Rubaek, G. H.

    2013-01-01

    Accumulation of phosphorus (P) in agricultural topsoils can contribute to leaching of P which may cause eutrophication of surface waters. An understanding of P mobilization processes in the plough layer is needed to improve agricultural management strategies. We compare leaching of total dissolved...... and particulate P through the plough layer of a typical Danish sandy loam soil subjected to three different P fertilizer regimes in a long-term field experiment established in 1975. The leaching experiment used intact soil columns (20cm diameter, 20cm high) during unsaturated conditions. The three soils had small...

  20. Impact of Poultry Litter Cake, Cleanout, and Bedding following Chemical Amendments on Soil C and N Mineralization

    OpenAIRE

    Watts, Dexter B.; Smith, Katy E.; Torbert, H. A.

    2012-01-01

    Poultry litter is a great alternative N source for crop production. However, recent poultry litter management changes, and increased chemical amendment use may impact its N availability. Thus, research was initiated to evaluate the effect that broiler cake and total cleanout litter amended with chemical additives have on C and N mineralization. A 35-day incubation study was carried out on a Hartsells fine sandy loam (fine-loamy, siliceous, subactive, thermic Typic Hapludults) soil common to t...

  1. Assessment of microbial activity and biomass in different soils exposed to nicosulfuron

    Directory of Open Access Journals (Sweden)

    Ljiljana Šantrić

    2014-09-01

    Full Text Available The effects of the herbicide nicosulfuron on the abundance of cellulolytic and proteolytic microorganisms, activity of β-glucosidase and protease enzymes, and microbial phosphorus biomass were examined. A laboratory bioassay was set up on two types of agricultural soils differing in physicochemical properties. The following concentrations were tested: 0.3, 0.6, 3.0 and 30.0 mg a.i./kg of soil. Samples were collected 3, 7, 14, 30 and 45 days after treatment with nicosulfuron. The results showed that nicosulfuron significantly reduced the abundance of cellulolytic microorganisms in both soils, as well as microbial biomass phosphorus in sandy loam soil. The herbicide was found to stimulate β-glucosidase and protease activity in both types of soil and microbial biomass phosphorus in loamy soil. Proteolytic microorganisms remained unaffected by nicosulfuron.

  2. The impact of atrazine on several biochemical properties of chernozem soil

    Directory of Open Access Journals (Sweden)

    LJ. RADIVOJEVIC

    2008-10-01

    Full Text Available The impact of the pesticide atrazine on biochemical processes in soil was investigated. Atrazine loadings of 8.0, 40.0 and 80.0 mg/kg soil were laboratory tested in an experiment set up on a clay loam soil. Dehydrogenase activity, change in biomass carbon, soil respiration and metabolic coefficient were examined. The samples were collected for analysis 1, 7, 14, 21, 30 and 60 days after atrazine application. The acquired data indicated that the effect of atrazine on the biochemical activity of the soil depended on its application rate and duration of activity, and the effect was either stimulating or inhibiting. However, the detected changes were found to be transient, indicating that there is no real risk of the compound disrupting the balance of biochemical processes in soil.

  3. Dependence of the phosphate sorption capacity on the aluminium and iron in Finnish soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1963-12-01

    Full Text Available An attempt was made to study to what extent the capacity of the more or less acid soils in Finland to sorb phosphate may be explained on the basis of their content of aluminium and iron. The indicator of the phosphate sorption capacity was calculated on the basis of the Freundlich adsorption isotherm according to the procedure proposed by TERÄSVUORI (8. The material consisted of 390 samples from cultivated and virgin soils representing both topsoils and subsoils. The indicator of the phosphate sorption capacity, the coefficient k, varied in the present material from 40 to 1510. The mean values (with the confidence limits at the 95 per cent level were for the 109 samples of sand and fine sand soils 290 ± 17, for the 103 samples of loam and silt soils 201 ± 24, for the 151 clay soils 308 ± 20, and for the 27 humus soils 236 ± 41. The total linear correlation coefficients between k and the soil pH, and its contents of organic carbon or clay were low or negligible in most of the soil groups. The correlation of k with the content of aluminium extracted by Tamm’s acid ammonium oxalate was fairly close in the clay soils (r = 0.84***, lower in the sand and fine sand soils (r = 0.77***, and in the loam and silt soils, and in the humus soils it was rather poor (r = 0.65*** and 0.63*** resp.. The elimination of the effect of the ammonium oxalate soluble iron decreased the correlation in the two latter groups quite markedly (to 0.32** and 0.37 resp., while the corresponding decrease in the coefficients for the former groups was less significant (to 0.64*** and 0.75*** resp.. The elimination of the effect of the ammonium oxalate soluble aluminium, on the other hand, decreased the correlation coefficients between k and the ammonium oxalate soluble iron in the sand and fine sand soils from 0.59*** to 0.26**, in the loam and silt soils from 0.73*** to 0.54***, in the clay soils from 0.70*** to 0.51***, and in the humus soils from 0.68*** to 0.49*. The

  4. An analysis on remediation characteristics of soils contaminated with Co for in-situ application

    International Nuclear Information System (INIS)

    Kim, K. N.; Won, H. J.; Kweun, H. S.; Shon, J. S.; Oh, W. J.

    1999-01-01

    The solvent flushing apparatus for in-situ soil remediation was designed. After the soil around nuclear facilities was sampled and compulsorily contaminated by Co solution, the remediation characteristics by solvent flushing were analyzed. Meanwhile, the nonequilibrium sorption code was developed for modelling of the soil remediation by solvent flushing, and input parameters needed for modelling were measured by laboratory experiment. Experimental results are as follows: The soil around nuclear facilities belongs to Silt Loam including a lot of silt and sand. When water was used as a solvent, the higher was the hydraulic conductivity, the higher the efficiency of soil remediation was. The values calculated by the nonequilibrium sorption code agreed with experimental values more exactly than the values calculated by the equilibrium sorption code. When citric acid was used as a solvent, the soil remediation efficiency by citric acid showed 1.65 times that by water

  5. Assessing PAH removal from clayey soil by means of electro-osmosis and electrodialysis

    DEFF Research Database (Denmark)

    Lima, Ana T.; Ottosen, Lisbeth M.; Heister, Katja

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are persistent and toxic contaminants which are difficult to remove from fine porous material like clayey soils. The present work aims at studying two electroremediation techniques for the removal of PAHs from a spiked natural silt soil from Saudi Arabia...... and a silty loam soil from The Netherlands which has been exposed to tar contamination for over 100years. The two techniques at focus are electro-osmosis and electrodialysis. The latter is applied for the first time for the removal of PAH. The efficiency of the techniques is studied using these two soils......, having been subjected to different PAH contact times.Two surfactants were used: the non-ionic surfactant Tween 80 and anionic surfactant sodium dodecyl sulphate (SDS) to aid desorption of PAHs from the soil. Results show a large discrepancy in the removal rates between spiked soil and long-term field...

  6. Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input

    DEFF Research Database (Denmark)

    Abdalla, M.; Jones, M.B.; Ambus, Per

    2010-01-01

    and reduced N fertilizer on seasonal fluxes and emission factors of N2O and to study the relationship between crop yield and N-induced fluxes of N2O. The soil is classified as a sandy loam with a pH of 7.4 and a mean organic carbon and nitrogen content at 15 cm of 19 and 1.9 g kg(-1) dry soil, respectively....... Reduced tillage had no significant effect on N2O fluxes from soils or crop grain yield. Multiple regression analysis revealed that soil moisture and an interaction between soil moisture and soil nitrate are the main significant factors affecting N2O flux. The derived emission factor was 0...... nitrogen fertilizer by 50% compared to the normal field rate, N2O emissions could be reduced by 57% with no significant decrease on grain yield or quality. This was consistent over the 2 years of measurements....

  7. Andropogon scoparius uptake of 45Ca and production from two contrasting soil types

    International Nuclear Information System (INIS)

    Waller, S.S.; Dodd, J.D.

    1976-01-01

    Total foliage production of Andropogon scoparius was greater on the Heiden-Hunt clay soil complex (Udic chromusterts and pellusterts) than on he Tabor fine sandy loam (Udertic paleustalfs). Foliage production on both soil types increased as clipping frequency decreased. Foliage production and 45 C uptake exhibited a positive relationship with precipitation during the growing season. Total uptake and concentration were greater in the sand-grown clones than in the clay-grown clones. Foliage concentration was inversely related to stable soil Ca and reflected the ratio of radioactive to stable Ca in the soil. However, uptake at the end of the growing season was less than 0.20% of that applied on either soil type. Increased clipping frequency increased foliage 45 Ca concentration on both soil types

  8. Acidification of forest soil in Russia: From 1893 to present

    Science.gov (United States)

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2004-01-01

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations ???100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place. Copyright 2004 by the American Geophysical Union.

  9. Plant-uptake of uranium: Hydroponic and soil system studies

    Science.gov (United States)

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  10. Sorption behavior of cesium on various soils under different pH levels

    International Nuclear Information System (INIS)

    Giannakopoulou, F.; Haidouti, C.; Chronopoulou, A.; Gasparatos, D.

    2007-01-01

    In the present study we investigated the sorption behavior of Cs in four different soils (sandyloam, loam, clayloam and clay) by using batch experiment. Cs sorption characteristics of the studied soils were examined at 4 mg L -1 Cs concentration, at various pH levels, at room temperature and with 0.01 M CaCl 2 as a background electrolyte. Among different soils the decrease of k d (distribution coefficient) of cesium, at all pH levels, followed the sequence sandyloam > loam > clayloam > clay, indicating that the particle size fractions and especially the clay content plays predominant role on sorption of Cs. The effect of pH on cesium sorption displays a similar pattern for all soils, depending on soil type. At acid pH levels less cesium was sorbed, due to a greater competition with other cations for available sorption sites. The maximum sorption of Cs was observed at pH 8, where the negative charge density on the surface of the absorbents was the highest. For all soils was observed significantly lower Cs sorption at pH 10

  11. Bioavailability of diuron, imazapic and isoxaflutole in soils of contrasting textures.

    Science.gov (United States)

    Inoue, Miriam H; Oliveira, Rubem S; Constantin, Jamil; Alonso, Diego G; Tormena, Cássio A

    2009-11-01

    This research was aimed at understanding the dynamics of the herbicides diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], imazapic [2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-5-methylnicotinic acid] and isoxaflutole [5-cyclopropyl-4-(2-methanesulfonyl-4-trifluoromethyl benzoyl)isoxazole] in two soils of different physico-chemical properties. To accomplish such intent, several greenhouse experiments were run. The bioavailability of diuron (0; 1.6 and 3.2 kg ha(-1)), imazapic (0; 98 and 122.5 g ha(-1)) and isoxaflutole (0; 35 and 70 g ha(-1)) was measured in samples from a sandy loam soil and a clay soil, by sowing a bioindicator (Brachiaria decumbens), at 0, 25, 50, 75 and 100 days after herbicides application (DAA). Diuron was very stable in clay soil, providing control equal to or higher than 92% of bioindicator, up to 100 DAA, as assumed by biomass accumulation. No differential effect was observed in sandy loam soil, even when 2x labeled rate were applied. Imazapic provided a short bioavailability in relation to B. decumbens, independent of rates applied. The persistence of isoxaflutole was longer in clay soil (28 to 30 days).

  12. Effect of urea placement on leaching losses of nitrogen from flooded rice soils

    International Nuclear Information System (INIS)

    Vlek, P.L.G.; Byrnes, B.H.; Craswell, E.T.

    1980-01-01

    In an effort to provide an explanation for the reported variability in fertilizer N efficiency from deep-placed urea on flooded rice, a set of controlled experiments was conducted to evaluate the effect of water percolation on fertilizer loss and plant uptake from 15 N labeled urea supergranules. Three soils of different texture (silt loam-clay) were subjected to various percolation rates (0-20 mm/day) while planted to rice which was harvested after approximately 40 days. The results indicate that moderate to high percolation through silt loam soil will lead to significant fertilizer N losses and drastically decrease the fertilizer uptake by plants. The permeability of the clay soil was too low for any leaching to take place. It is therefore concluded that deep placement of urea supergranules not be recommended in soils where percolation rates may exceed 5 mm/day, particularly if the cation exchange capacity of the soil is low. This experiment points to the need of evaluating and reporting the percolation rates in soils where experiments with supergranular urea are conducted. (orig.)

  13. Bioavailability in rats of metal adsorbed to soils

    International Nuclear Information System (INIS)

    Rubenstein, R.; Griffin, S.; Irene, S.; DeRosa, C.; Choudhury, H.

    1990-01-01

    The toxicity of metals to humans and animals has been well documented, however little data are available on the physiological bioavailability of metals from various soil types. These studies were designed to assess the bioavailability of sodium 75 selenate (NaS), 63 nickel chloride (NiCl) and 109 cadmium chloride (CdCl) adsorbed to sand or clay loam in rats. Each test compound was administered in seven dose groups: Group 1 - intravenously, Group 2 and 3 - oral aqueous solution by gavage, Groups 4-7 - aqueous suspension adsorbed to each soil type by gavage. Blood was collected from the jugular vein at intervals up to 48 hours post dosing and analyzed for radio-activity. Both NiCl and CdCl were poorly adsorbed from the soils. Approximately 3% of the CdCl bound to sand and 1.5% of the NiCl bound to clay loam were absorbed into the bloodstream. Approximately 0.5% and 0.1% of the CdCl bound to sand and clay, respectively were absorbed. NaS was well absorbed following oral administration with approximately 85% of the compound bound to sand and 94% bound to clay being absorbed into the blood. Bioavailability of metals from soil appears to be primarily affected by the ionic state of the metal. Anions, such as selenium, are more mobile in an acid environment and may leach more readily from soil. Cations, such as Ni and Cd may bind to soil more tightly, thus soil type becomes a factor affecting bioavailability

  14. Construction of disturbed and intact soil blocks to develop percolating soil based treatment systems for dirty water from dairy farms.

    Science.gov (United States)

    Brookman, S K E; Chadwick, D R; Headon, D M

    2002-03-01

    Intact soil blocks with a surface area of 1.8 x 1.6 m, 1.0 m deep, were excavated in a coarse sandy loam. The sides of the soil blocks were supported with plywood before using hydraulic rams to force a steel cutting plate beneath them. Disturbed soil blocks of the same depth as the intact blocks were also established. Experiments were conducted to determine purification efficiencies for biological oxygen demand (BOD), molybdate reactive phosphorus (MRP), nitrate and ammonium-N after the application of dirty water. A preliminary experiment is described where a low application of dirty water was applied to the soil blocks, 2 mm day(-1). In addition, a chloride tracer was conducted for the duration of the experiment. Disturbed soil had a purification efficiency for BOD of 99% compared to 96% from intact soil (Pammonium-N were 100 and 99%, respectively, for the intact and disturbed soils. Nitrate-N concentration increased in leachate from both treatments reaching maximum concentrations of 15 and 8 mg l(-1) from disturbed and intact soils, respectively. Chloride traces for each soil block followed similar patterns with 47 and 51% loss from disturbed and intact soils, respectively.

  15. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce.

    Science.gov (United States)

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.

  16. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    Directory of Open Access Journals (Sweden)

    Susanne eSchreiter

    2014-04-01

    Full Text Available The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for ten years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected three and seven weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type-dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type-dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three different soils. The number of rhizosphere responders was highest three weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.

  17. The effect of different tillage methods and organic fertilizers on soil physical state and crop yield

    OpenAIRE

    Ožeraitienė, Danutė; Čiuberkis, Steponas

    2006-01-01

    The present paper summarises the data of field and laboratory trials conducted in Lithuania (Vežaiciai Branch of the Lithuanian Institute of Agriculture) during the period 2003-2006. The effects of primary soil tillage: 1) deep (22-25 cm) ploughing; 2) shallow (10-12 cm) ploughing; 3) shallow (8-10 cm) tillage with a disc harrow as well as the effects of different organic fertilizers (farmyard manure, green manure and straw) on the main physical indicators of moraine loam soil (structure, bul...

  18. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching

    OpenAIRE

    Kuo, S.; Huang, B.; Bembenek, R.

    2001-01-01

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation sin...

  19. Studies on bound residues of 14C-malathion in soil

    International Nuclear Information System (INIS)

    Hussain, A.; Azam, F.; Malik, K.A.

    1984-01-01

    The extractability and formation of bound 14 C-labelled residues in clay loam soil under laboratory conditions were investigated with malathion. 14 C-malathion rapidly decomposed to 14 CO 2 . Twelve days after treatment 56% of the applied dose was lost as 14 CO 2 . Methanol gave the highest extraction efficiency; 6% of the applied radiocarbon was extractable while bound residues amounted to 38%. The soil containing 14 C-labelled residues was fractionated into humic acid, fulvic acid and humin fractions. These fractions contained 7.83%, 16.81% and 19.36%, respectively of applied radiocarbon. (author)

  20. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation.

    Science.gov (United States)

    Sandhu, Saroop S; Ussiri, David A N; Kumar, Sandeep; Chintala, Rajesh; Papiernik, Sharon K; Malo, Douglas D; Schumacher, Thomas E

    2017-10-01

    Biochar is a solid material obtained when biomass is thermochemically converted in an oxygen-limited environment. In most previous studies, the impacts of biochar on soil properties and organic carbon (C) were investigated under controlled conditions, mainly laboratory incubation or greenhouse studies. This 2-year field study was conducted to evaluate the influence of biochar on selected soil physical and chemical properties and carbon and nitrogen fractions for two selected soil types (clay loam and a sandy loam soil) under a corn (Zea mays L.)-soybean (Glycine max L.) rotation. The three plant based biochar materials used for this study were corn stover (CS), ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue (PW), and switchgrass (Panicum virgatum L.) (SG). Data showed that CS and SG significantly increased the pH of acidic soil at the eroded landscape position but produced no significant change in soil pH at the depositional landscape position. The effects of biochar treatments on cold water extractable C (WSC) and nitrogen (WSN) fractions for the 0-7.5 cm depth were depended on biochar and soil type. Results suggested that alkaline biochars applied at 10 Mg ha -1 can increase the pH and WSC fraction of acidic sandy loam soil, but the 10 Mg ha -1 rate might be low to substantially improve physical properties and hot water extractable C and N fractions of soil. Application of higher rates of biochar and long-term monitoring is needed to quantify the benefits of biochar under field conditions on soils in different environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comparative evaluation of the effect of rock phosphate and monoammonium phosphate on plant P: Nutrition in Sod-podzolic and peat soils

    International Nuclear Information System (INIS)

    Bogdevitch, I.; Tarasiuk, S.; Putyatin, Yu.; Seraya, T.

    2002-01-01

    The direct application of finely ground rock phosphate (RP) imported from Russia has been suggested as an alternative to the almost twice more expensive water-soluble monoammonium phosphate (MAP) on acid (moderately limed) Sod-podzolic and peat soils. A pot experiment was conducted in 1997-1998 for a comparative evaluation of P availability from RP and MAP using the 32 P isotope dilution technique. The lupine was grown on Sod-podzolic silty clay loam soil with pH 6.0 and a medium level of available P. Ryegrass plants were grown on peat soil with pH 4.9 and a low level of native soil P fertility. Application of RP and MAP at a rate of 40 mg P/kg soil supplied similar moderate mount of P to lupine plants. The Pdff values, i.e. the fractions of P in the plants derived from the applied RP and MAP, were 7.4 and 8.4%, respectively. The application of the same P fertilizers to the peat soil had different effects on P nutrition of ryegrass plants. The Pdff values were 14.9% for RP and 22.1% for MAP. It may be concluded that for most annual crops water-soluble P forms such as MAP should be preferred. Direct application of RP is recommended for plants with an adequate rhizosphere ability to utilize P, such as lupine on acid Sod-podzolic silty clay loam soils (pH 137 Cs on contaminated, moderately limed Sod-podzolic silty clay loam and peat soils. These soils are widely spread in the radioactive contaminated area of Belarus after the Chernobyl accident. Direct application of RP may be one of the effective countermeasures for the decrease of 137 Cs transfer from the contaminated acid soils to crop production. (author)

  2. Soil plant transfer coefficient of 14C-carbofuran in brassica sp. vegetable agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Mazleha Maskin; Kubiak, R.

    2006-01-01

    The soil plant transfer coefficient or f factor of 14 C-carbofuran pesticide was studied in outdoor lysimeter experiment consisting of Brassica sp. vegetable crop, riverine alluvial clayey soil and Bungor series sandy loam soil. Soil transfer coefficients at 0-10 cm soil depth were 4.38 ± 0.30, 5.76 ± 1.04, 0.99 ± 0.25 and 2.66 ± 0.71; from IX recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, IX recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 0-25 cm soil depth, soil plant transfer coefficients were 8.96 ± 0.91, 10.40 ± 2.63, 2.34 ± 0.68 and 619 ±1.40, from IX recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, IX recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 77 days after treatment (DAT), the soil plant transfer coefficient was significantly higher in riverine alluvial soil than Bungor soil whereas shoot and root growth was significantly higher in Bungor soil than in riverine alluvial soil. At both 0-10 cm Brassica sp. rooting depth and 0-25 cm soil depth, the soil plant transfer coefficient was significantly higher in 2X recommended application rate of 14 C-carbofuran as compared to IX recommended application rate, in both Bungor and riverine alluvial soils. (Author)

  3. Digestate influence after biogas production on soil parameters

    Energy Technology Data Exchange (ETDEWEB)

    Igaz, D.; Horak, J.; Kondrlova, E.; Cimo, J. [Department of Biomereorology and Hydrology, Slovak University of Agriculture in Nitra, Nirra (Slovakia)

    2011-07-01

    Energy demands of society pun pressure on the use of alternative ways of getting the energy. From this point of view, the controlled anaerobic fermentation seems to be the perspective biotechnology: The final product of this process is an energy valuable raw - biogas and bio sludge. There was experimentally tested an influence of bio sludge on hydrophysical characteristics at the field condition of site Barca (Slovak Republic) with clav-loam soil. Based on the obtained results from three-year field experiment can be concluded that the application of the bio sludge on the soil does not contribute to the deterioration of soil hydrophysical properties. There was observed a positive effect on these properties, with observed increase of average value of capillary suction capacity, field capacity, porosity, non-capillary porosity and hydraulic conductivity. There was also observed decrease of average values of ρ{sub s} and ρ{sub d}. (author)

  4. Electrochemical masstransfer of oil hydrocarbons in dispersed soils

    Energy Technology Data Exchange (ETDEWEB)

    Nekrasova, M.A.; Zvolinsky, V.P.; Kanev, M.V. [Russian Friendship Peoples Univ., Dept. of Eecological Monitoring and Forecasting, Moscow (Russian Federation)

    2001-07-01

    A large-scale pollution of the geological environment is a result of imperfect processes of mining, refining, haul of oil and irrational use of petroleum. The processes of masstransfer of hydrocarbons in dispersed soils and the problems of forming of a dual electric layer (DEL) on the demarcations 'water-oil' and 'mineral-water' are still insufficiently studied. Therefore, one of the most important problems in the field of the ecological geology is the analysis of ways of cleaning of soils from hydrocarbons. The kaolinitic clay from the Tirlianskoye deposit (K{sub 2}, st. Jabik, Bashkiria) and average polymineral loam (prlllkl, Moscow region, the south-east of town Zvenigorod) was chosen as the objects of the experimental study. The mixture of West Siberian oils was used for model pollution. The experimental laboratory researches of electrochemical migration of hydrocarbons were carried out on dispersiblis clayey soils. (orig.)

  5. Effect of soil properties on Hydraulic characteristics under subsurface drip irrigation

    Science.gov (United States)

    Fan, Wangtao; Li, Gang

    2018-02-01

    Subsurface drip irrigation (SDI) is a technique that has a high potential in application because of its high efficiency in water-saving. The hydraulic characteristics of SDI sub-unit pipe network can be affected by soil physical properties as the emitters are buried in soils. The related research, however, is not fully explored. The laboratory tests were carried out in the present study to determine the effects of hydraulic factors including operating pressure, initial soil water content, and bulk density on flow rate and its sensitivity to each hydraulic factor for two types of SDI emitters (PLASSIM emitter and Heping emitter). For this purpose, three soils with contrasting textures (i.e., light sand, silt loam, and light clay) were repacked with two soil bulk density (1.25 and1.40 g cm-3) with two initial soil water content (12% and 18%) in plexiglass columns with 40 cm in diameter and 40 cm in height. Drip emitters were buried at depth of 20 cm to measure the flow rates under seven operating pressures (60, 100, 150, 200, 250, 300, and 370 kPa). We found that the operating pressure was the dominating factor of flow rate of the SDI emitter, and flow rate increased with the increase of operating pressure. The initial soil water content and bulk density also affected the flow rate, and their effects were the most notable in the light sand soil. The sensitivity of flow rate to each hydraulic factor was dependent on soil texture, and followed a descending order of light sand>silt loam>light clay for both types of emitters. Further, the sensitivity of flow rate to each hydraulic factor decreased with the increase of operating pressure, initial soil water content, and bulk density. This study may be used to guide the soil specific-design of SDI emitters for optimal water use and management.

  6. The effect of flooding on soil proportion and plant growth. 2. Its effect on the changes in soil proportion

    International Nuclear Information System (INIS)

    Sisworo, E.L.

    1975-01-01

    An experiment has been carried out to study changes in soil proportion as affected by flooding. Barley plants were used as indicators. Black polyethylene columns were used as plant containers, and were filled with sandy loam Begbroke soil. Several parameters were used in the experiment, namely concentrations of oxygen carbon dioxide, ethylene, hydrogen sulfide, and organic acids. Oxygen concentration dropped to about 2% one day after flooding, while the concentration of carbon dioxide, ethylene and organic acids turned out to be slowly increased with the extension of flooding time. No hydrogen sulfide was detectable as affected by various flooding periods. Different concentrations of oxygen, carbon dioxide, and ethylene were observed between the top and the lower layers of soil. (author)

  7. Proximal Soil Sensing - A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    Science.gov (United States)

    Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens

    2016-01-01

    Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Our findings suggest that PSS contributes to the spatial modelling of

  8. Extraction of soil solution by drainage centrifugation-effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils.

    Science.gov (United States)

    Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique

    2017-02-01

    The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.

  9. Dielectrophoretic sample preparation for environmental monitoring of microorganisms: Soil particle removal.

    Science.gov (United States)

    Fatoyinbo, Henry O; McDonnell, Martin C; Hughes, Michael P

    2014-07-01

    Detection of pathogens from environmental samples is often hampered by sensors interacting with environmental particles such as soot, pollen, or environmental dust such as soil or clay. These particles may be of similar size to the target bacterium, preventing removal by filtration, but may non-specifically bind to sensor surfaces, fouling them and causing artefactual results. In this paper, we report the selective manipulation of soil particles using an AC electrokinetic microfluidic system. Four heterogeneous soil samples (smectic clay, kaolinitic clay, peaty loam, and sandy loam) were characterised using dielectrophoresis to identify the electrical difference to a target organism. A flow-cell device was then constructed to evaluate dielectrophoretic separation of bacteria and clay in a continous flow through mode. The average separation efficiency of the system across all soil types was found to be 68.7% with a maximal separation efficiency for kaolinitic clay at 87.6%. This represents the first attempt to separate soil particles from bacteria using dielectrophoresis and indicate that the technique shows significant promise; with appropriate system optimisation, we believe that this preliminary study represents an opportunity to develop a simple yet highly effective sample processing system.

  10. Adhesion of and to soil in runoff as influenced by polyacrylamide.

    Science.gov (United States)

    Bech, Tina B; Sbodio, Adrian; Jacobsen, Carsten S; Suslow, Trevor

    2014-11-01

    Polyacrylamide (PAM) is used in agriculture to reduce soil erosion and has been reported to reduce turbidity, nutrients, and pollutants in surface runoff water. The objective of this work was to determine the effect of PAM on the concentration of enteric bacteria in surface runoff by comparing four enteric bacteria representing phenotypically different motility and hydrophobicity from three soils. Results demonstrated that bacterial surface runoff was differentially influenced by the PAM treatment. Polyacrylamide treatment increased surface runoff for adhered and planktonic cells from a clay soil; significantly decreased surface runoff of adhered bacteria, while no difference was observed for planktonic bacteria from the sandy loam; and significantly decreased the surface runoff of planktonic cells, while no difference was observed for adhered bacteria from the clay loam. Comparing strains from a final water sample collected after 48 h showed a greater loss of while serovar Poona was almost not detected. Thus, (i) the PAM efficiency in reducing the concentration of enteric bacteria in surface runoff was influenced by soil type and (ii) variation in the loss of enteric bacteria highlights the importance of strain-specific properties that may not be captured with general fecal indicator bacteria. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Soil and Waste Matrix Affects Spatial Heterogeneity of Bacteria Filtration during Unsaturated Flow

    Directory of Open Access Journals (Sweden)

    Adrian Unc

    2015-02-01

    Full Text Available Discontinuous flows resulting from discrete natural rain events induce temporal and spatial variability in the transport of bacteria from organic waste through soils in which the degree of saturation varies. Transport and continuity of associated pathways are dependent on structure and stability of the soil under conditions of variable moisture and ionic strength of the soil solution. Lysimeters containing undisturbed monoliths of clay, clay loam or sandy loam soils were used to investigate transport and pathway continuity for bacteria and hydrophobic fluorescent microspheres. Biosolids, to which the microspheres were added, were surface applied and followed by serial irrigation events. Microspheres, Escherichia coli, Enterococcus spp., Salmonella spp. and Clostridium perfringens were enumerated in drainage collected from 64 distinct collection areas through funnels installed in a grid pattern at the lower boundary of the monoliths. Bacteria-dependent filtration coefficients along pathways of increasing water flux were independent of flow volume, suggesting: (1 tracer or colloid dependent retention; and (2 transport depended on the total volume of contiguous pores accessible for bacteria transport. Management decisions, in this case resulting from the form of organic waste, induced changes in tortuosity and continuity of pores and modified the effective capacity of soil to retain bacteria. Surface application of liquid municipal biosolids had a negative impact on transport pathway continuity, relative to the solid municipal biosolids, enhancing retention under less favourable electrostatic conditions consistent with an initial increase in straining within inactive pores and subsequent by limited re-suspension from reactivated pores.

  12. Implication of zinc excess on soil health.

    Science.gov (United States)

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  13. Potential use of fly ash to soil treatment in the Morava region

    Science.gov (United States)

    Bulíková, Lucia; Kresta, František; Rochovanský, Martin

    2017-09-01

    Soil treatment by binders is a standard technology and leads to optimal utilization of excavated soils in road constructions. Soil treatment is controlled in the Czech Republic by EN 14227-15 and Technical Requirement TP 94. Soil treatment using fly ash has not been performed in the Czech Republic, although there is a sufficient normative base. Fly ash produced by burning of hard coal in the Moravian region was tested as a potential binder. Fly ash samples were mixed with loess loams (CI). Tested siliceous fly ash of class F (ASTM C618) did not showed hydraulic properties but it showed positive effect on reducing maximum dry density of mixtures, increasing the IBI value (Immediate bearing index) and decreasing tendency to volume changes when the amount of fly ash was increased. The results of laboratory tests demonstrate the possibility of using fly ashes as a binder for soil treatment.

  14. Mobility Studies of (14)C-Chlorpyrifos in Malaysian Oil Palm Soils.

    Science.gov (United States)

    Halimah, Muhamad; Ismail, B Sahid; Nashriyah, Mat; Maznah, Zainol

    2016-01-01

    The mobility of (14)C-chlorpyrifos using soil TLC was investigated in this study. It was found that chlorpyrifos was not mobile in clay, clay loam and peat soil. The mobility of (14)C-chlorpyrifos and non-labelled chlorpyrifos was also tested with silica gel TLC using three types of developing solvent hexane (100%), hexane:ethyl acetate (95:5, v/v); and hexane:ethyl acetate (98:2, v/v). The study showed that both the (14)C-labelled and non-labelled chlorpyrifos have the same Retardation Factor (Rf) for different developing solvent systems. From the soil column study on mobility of chlorpyrifos, it was observed that no chlorpyrifos residue was found below 5 cm depth in three types of soil at simulation rainfall of 20, 50 and 100 mm. Therefore, the soil column and TLC studies have shown similar findings in the mobility of chlorpyrifos.

  15. Long-Term Effects of Legacy Copper Contamination on Microbial Activity and Soil Physical Properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    Soils heavily contaminated with copper (Cu) are considered unsuitable for agricultural use due to adverse impacts on microbial activity, soil physical properties, and direct toxicity to crops. This study investigated effects of Cu pollution from timber preservation activities between 1911 and 1924...... on soil micro-organisms and subsequent effects on physical properties of a sandy loam soil. Tillage operations over the last 70 years have caused spreading of the initially localized contamination and have created a Cu concentration gradient from 20 to 3800 mg kg-1 across an agricultural field in Hygum......, Denmark. Soil samples obtained from the fallow field were used to determine total microbial activity using fluorescein diacetate and dehydrogenase assays. The physical properties measured included water-dispersible clay, bulk density, air permeability and air-filled porosity. Significant differences...

  16. Enhanced dissipation of oxyfluorfen, ethalfluralin, trifluralin, propyzamide, and pendimethalin in soil by solarization and biosolarization.

    Science.gov (United States)

    Fenoll Serrano, José; Ruiz, Encarnación; Hellín, Pilar; Lacasa, Alfredo; Flores, Pilar

    2010-02-24

    This study was conducted to assess the effects of solarization and biosolarization on the degradation of oxyfluorfen, ethalfluralin, trifluralin, propyzamide, and pendimethalin. The experimental design consisted of 17 L pots filled with clay-loam soil, which were contaminated with the studied herbicides. Then, soil disinfection treatments were applied during the summer season, including a control without disinfection (C), solarization (S), and biosolarization (BS). Soil from five pots per treatment was sampled periodically up to 90 days. Herbicide dissipation rates were higher in both S and BS treatments with regard to the control. Similar dissipation rates were observed under S and BS for most of the herbicides studied, except oxyfluorfen and pendimethalin, which were degraded to a greater extent in the BS than in the S treatment. The obtained results showed that both solarization and biosolarization can be considered, in addition to soil disinfection techniques, such as bioremediation tools for herbicide-polluted soils.

  17. Effectiveness of the Entomopathogenic Nematodes Heterorhabditis bacteriophora and Steinernema feltiae against Tenebrio molitor (Yellow Mealworm) Larvae in Different Soil Types at Different Temperatures

    OpenAIRE

    SUSURLUK, Alper

    2014-01-01

    The efficiency of the entomopathogenic nematodes Steinernema feltiae Tur-S3 and Heterorhabditis bacteriophora Tur-H2, isolated in Turkey, against larvae of Tenebrio molitor L. was investigated in different soil type and temperature conditions. Sterilized and non-sterilized silver sand, clay-loam soil, and compost soil were tested, each at 12, 18, and 24 ºC. Temperature had the greatest effect on the mortality of T. molitor larvae caused by both nematode species. The efficiency of the 2 nemato...

  18. Persistence and dissipation pathways of the antidepressant sertraline in agricultural soils

    International Nuclear Information System (INIS)

    Li, Hongxia; Sumarah, Mark W.; Topp, Edward

    2013-01-01

    Sertraline is a widely-used antidepressant that is one of the selective serotonin reuptake inhibitors. It has been detected in biosolids and effluents from sewage treatment plants. Since sertraline can reach agriculture land through the application of municipal biosolids or reclaimed water, the persistence and dissipation pathways of 3 H-sertraline were determined in laboratory incubations using three agriculture soils varying in textures and properties. The total solvent extractable radioactivity decreased in all three soils with times to dissipate 50% of material (DT 50 ) ranging from 48.1 ± 3.5 (loam soil) to 84.5 ± 13.8 (clay soil) days. Two hydroxylated sertraline transformation products were identified in all three soils by high performance liquid chromatography with time-of-flight mass spectrometry (HPLC–TOF-MS), but the accumulation did not exceed 10% of the initial parent concentration. The addition of liquid municipal biosolids to the loam soil had no effect on the rate of sertraline dissipation, or production of transformation products. In summary, sertraline was persistent in agricultural soils with major dissipation pathways including the production of non-extractable soil-bound residues, and accumulation of hydroxylated transformation products. The biologically active sertraline transformation product norsertraline was not detected in soil. - Highlights: • The antidepressant drug sertraline is carried in biosolids used as fertilizers. • The persistence of this drug in agricultural soils was determined using radioisotope methods. • The half-life ranged from about 50 to 85 days. • Hydroxylated transformation products accumulated to less than 10% of the concentration of the added parent

  19. Low black carbon concentration in agricultural soils of central and northern Ethiopia.

    Science.gov (United States)

    Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena

    2018-08-01

    Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Persistence and dissipation pathways of the antidepressant sertraline in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongxia; Sumarah, Mark W.; Topp, Edward, E-mail: ed.topp@agr.gc.ca

    2013-05-01

    Sertraline is a widely-used antidepressant that is one of the selective serotonin reuptake inhibitors. It has been detected in biosolids and effluents from sewage treatment plants. Since sertraline can reach agriculture land through the application of municipal biosolids or reclaimed water, the persistence and dissipation pathways of {sup 3}H-sertraline were determined in laboratory incubations using three agriculture soils varying in textures and properties. The total solvent extractable radioactivity decreased in all three soils with times to dissipate 50% of material (DT{sub 50}) ranging from 48.1 ± 3.5 (loam soil) to 84.5 ± 13.8 (clay soil) days. Two hydroxylated sertraline transformation products were identified in all three soils by high performance liquid chromatography with time-of-flight mass spectrometry (HPLC–TOF-MS), but the accumulation did not exceed 10% of the initial parent concentration. The addition of liquid municipal biosolids to the loam soil had no effect on the rate of sertraline dissipation, or production of transformation products. In summary, sertraline was persistent in agricultural soils with major dissipation pathways including the production of non-extractable soil-bound residues, and accumulation of hydroxylated transformation products. The biologically active sertraline transformation product norsertraline was not detected in soil. - Highlights: • The antidepressant drug sertraline is carried in biosolids used as fertilizers. • The persistence of this drug in agricultural soils was determined using radioisotope methods. • The half-life ranged from about 50 to 85 days. • Hydroxylated transformation products accumulated to less than 10% of the concentration of the added parent.

  1. Energetic contaminants inhibit plant litter decomposition in soil.

    Science.gov (United States)

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Sunahara, Geoffrey I; Hawari, Jalal

    2018-05-30

    Individual effects of nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), nitroglycerin (NG), and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) on litter decomposition, an essential biologically-mediated soil process, were assessed using Orchard grass (Dactylis glomerata) straw in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support "very high" qualitative relative bioavailability for organic chemicals. Batches of SSL soil were separately amended with individual EMs or acetone carrier control. To quantify the decomposition rates, one straw cluster was harvested from a set of randomly selected replicate containers from within each treatment, after 1, 2, 3, 4, 6, and 8 months of exposure. Results showed that soil amended with 2,4-DNT or NG inhibited litter decomposition rates based on the median effective concentration (EC50) values of 1122 mg/kg and 860 mg/kg, respectively. Exposure to 2-ADNT, 4-ADNT or CL-20 amended soil did not significantly affect litter decomposition in SSL soil at ≥ 10,000 mg/kg. These ecotoxicological data will be helpful in identifying concentrations of EMs in soil that present an acceptable ecological risk for biologically-mediated soil processes. Published by Elsevier Inc.

  2. Change of physical and chemical composition of soil washing out during vegetation season from differently used fields

    Science.gov (United States)

    Baryła, A.; Pierzgalski, E.; Karczmarczyk, A.

    2009-04-01

    oil losses due to water erosion not only decrease of soil fertility but also influence on pollution of water bodies. One of the method for limitation of water erosion process is protected soil management and choose suitable plants which requires knowledge about effect and mechanism of erosion under different environmental conditions. The results of measurements of quantity and quality of soil losses from three experimental plots are given in the article. Plots were located in Experimental Agricultural Station Puczniew in central part of Poland. Surface soil layer on the plots had mechanical composition of medium loam soil. On two plots grass and barley were planted. Third plot was used as fallow and tilled land. Measurements were carried out four times in the period May-October 2007. Physical and chemical composition of washed soil material was analyzed.

  3. Investigation of biochar effects as a non-structural BMP on soil erosional properties using a rainfall simulator

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Kuhn, Nikolaus J; Hu, Yaxian

    Recent studies have shown the potential of biochar for improving overall soil quality including soil aggregation and structure. Erodibility is an inherent soil property that amongst others is highly dependent on soil organic matter content which affects aggregate stability and crusting during...... runoff events. We hypothesized that erodibility is reduced in biochar-amended soils and tested this in controlled rainfall-runoff simulations. The specific objectives of our study were (1) to compare runoff and sediment generation between a biochar and an unamended control treatment on an arable sandy...... loam soil and (2) to determine the effect of the biochar treatment on SOC erodibility. A field experiment with eight plots was established at Risø, Denmark, in 2011; four biochar-amended and four unamended control plots. Biochar produced from birch wood at 500 ºC was applied at a rate of 2 kg m-2...

  4. Increase in fertilizer nitrogen use efficiency in lowland rice with application of dicyandiamide and pellet urea formulation

    International Nuclear Information System (INIS)

    Sachdev, M.S.; Sachdev, P.; Jain, Neeru

    2008-01-01

    Two greenhouse and one field experiment were conducted in a sandy clay loam Typic Ustochrept soil of the Indian Agricultural Research Institute farm using 15 N labeled urea and dicyandiamide (DCD). The results clearly revealed that application of DCD with urea resulted in significant increase in paddy yield and both total and fertilizer N uptake. The application of full dose of N as urea plus DCD in the form of 1.0 g pellets and given as basal gave the highest yield compared to that obtained with application of urea in two splits in the prilled form. The 15 N fertilizer balance data showed that maximum amount of unaccounted fertilizer 15 N was in the treatment where urea was applied in full dose in the prilled form as basal and it was least in the treatment where it was applied in the form of pellets of 1.0 g along with DCD. The ammonium N concentration in flood water was significantly higher in treatments where urea was applied in prilled form and with or without DCD. However urea application in the pellet form and particularly in combination with DCD reduced the ammonium concentration in floodwater appreciably. (author)

  5. Biological efficiency of component crops in different geometrical patterns of wheat-linseed intercropping

    International Nuclear Information System (INIS)

    Nazir, M. S.; Saeed, M.; Khan, I.; Ghaffar, A.

    2005-01-01

    An experiment to determine the biological efficiency and agro-economic relationships of component crops in wheat-linseed intercropping under different geometrical patterns, was conducted on sandy-clay loam soil at Faisalabad (Pakistan). Wheat was sown in 100-cm spaced 4, 6, 8, and 10 row strips and was intercropped with three rows of linseed. The component crops were also grown alone in 30-cm spaced single row. Wheat grain yield was reduced by 25.6%, 19.2%, 14.7% and 11.9% by intercropping linseed in wheat grown in the pattern of 4, 6 and 10-row strips, respectively. However, at the cost of this much reduction in wheat yield, linseed gave an additional yields of 516, 412, 335 kg/ha in the respective patterns which resulted in yield advantages of 41%, 31%, 29% and 27%, respectively over sole cropping of wheat. Intercropping also generated higher net monetary gain/ha (Rs. 12378-12826) than monocropped wheat (Rs. 11034) and linseed (Rs. 4249). (author)

  6. Effect of radiation and some micronutrients on some legumes

    International Nuclear Information System (INIS)

    Maghraby, G.M.

    1987-01-01

    This work was carried out to study the effect of pre - planting gamma radiation and some micro nutrients (Mn and Mo) on soybean ( c v. Clark) and peanut (c v. Giza - 4). In this respect, two field experiments were conducted under the condition of newly reclaimed soil, namely: sandy clay loam, to study the effect of radiating soybean and peanut seeds with gamma rays (0,5,10,20,40,80 and 160 G ry) before sowing on plant growth, nodulation, yield and yield components as well as total plant content of N and Mn. In addition, four pot experiments were carried out under the greenhouse condition to study the application effect of Mn (0,5,10,and 20 ppm) and Mo (0,2.5,5.0, 7.5 and 10 ppm) on plant growth, nodulation and total content of N and Mn of both soybean and peanut plants. The important results could be summarized as follows: Effect of radiation on: A - Irradiation of soybean seeds before planting with gamma rays at relatively low doses ranged from 10 to 40 G ry considerably stimulated plant growth causing a great increase in the dry matter production. B - Peanut Plant growth of peanut was stimulated as a result of pre-planting gamma radiation ranged from 10 to 40 G ry . The highest dry matter production was obtained by gamma rays at 20 G ry, whereas the dose of 160 G ry depressed it when compared with the non-irradiated plants

  7. Earthworm biomass as additional information for risk assessment of heavy metal biomagnification: a case study for dredged sediment-derived soils and polluted floodplain soils

    International Nuclear Information System (INIS)

    Vandecasteele, Bart; Samyn, Jurgen; Quataert, Paul; Muys, Bart; Tack, Filip M.G.

    2004-01-01

    The important role of earthworms in the biomagnification of heavy metals in terrestrial ecosystems is widely recognised. Differences in earthworm biomass between sites is mostly not accounted for in ecological risk assessment. These differences may be large depending on soil properties and pollution status. A survey of earthworm biomass and colonisation rate was carried out on dredged sediment-derived soils (DSDS). Results were compared with observations for the surrounding alluvial plains. Mainly grain size distribution and time since disposal determined earthworm biomass on DSDS, while soil pollution status of the DSDS was of lesser importance. Highest earthworm biomass was observed on sandy loam DSDS disposed at least 40 years ago. - Polluted clayey dredged sediment-derived soils have a relatively low risk for heavy metal biomagnification due to slow earthworm colonisation

  8. STUDI POLA SPASIAL PERSEBARAN GAHARU (Aquilaria spp. DAN KETERKAITANNYA DENGAN KONDISI HABITAT DI TAMAN NASIONAL KUTAI KALIMANTAN TIMUR

    Directory of Open Access Journals (Sweden)

    Didit Okta Pribadi

    2009-01-01

    Full Text Available Agarwood is an important forest product due to its high economic value. However, the natural population of agarwood species has been decreasing rapidly because of over exploitation, therefore the international trade of the most important agarwood species (i.e. Aquilaria malaccensis is restricted to just a small quota. This research was conducted in an attempt to provide basic information for the conservation of Aquilaria spp. by identifying the species spatial distribution and habitat characteristics and developing a linkage model between their abundance and habitat characteristics. Data were collected through a field survey at Kutai National Park in August 2006 with Aquilaria spp. as the target species. Data on the species localities were used to determine the species densities and the value of Distance Index of Dispersion. The ordinance levels between the target species and the surrounding other species were identified using a correspondence analysis, while the linkage model between the species abundance and habitat characteristics was established using an ordinal multinomial logit model. The results showed that Aquilaria spp. had a low density (0.01/ha and were spatially distributed in a clump pattern. The abundance of Aquilaria species had a close association with soil texture, humidity and acidity, land elevation, air temperature and humidity, and light intensity. The abundance decreased with increasing the proportion of sandy clay loam content, soil humidity and acidity, land elevation, and light intensity. In contrast, the abundance increased with increasing sandy loam content, air temperature and air humidity. The existence of A. malaccensis was likely to associate with the existence of Goniothalamus sp., Macaranga sp., Vordia splendidissima, Lygopodium sp., and Stachyphrynium borneensis.

  9. Investigation of the variation of the specific heat capacity of local soil samples from the Niger delta, Nigeria with moisture content

    International Nuclear Information System (INIS)

    Ofoegbu, C.O.; Adjepong, S.K.

    1987-11-01

    Results of an investigation of the variation, with moisture content, of the specific heat capacity of samples of three texturally different types of soil (clayey, sandy and sandy loam) obtained from the Niger delta area of Nigeria, are presented. The results show that the specific heat capacities of the soils studied, increase with moisture content. This increase is found to be linear for the entire range of moisture contents considered (0-25%), in the case of the sandy loam soil while for the clayey and sandy soils the specific heat capacity is found to increase linearly with moisture content up to about 15% after which the increase becomes parabolic. The rate of increase of specific heat capacity with moisture content appears to be highest in the clayey soil and lowest in the sandy soil. It is thought that the differences in the rates of increase of specific heat capacity with moisture content, observed for the soils, reflect the soils' water-retention capacities. (author) 3 refs, 5 figs

  10. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties

    International Nuclear Information System (INIS)

    Bending, Gary D.; Lincoln, Suzanne D.; Edmondson, Rodney N.

    2006-01-01

    The extent of within field variability in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican, and the role of intrinsic soil factors and technical errors in contributing to the variability, was investigated in sites on sandy-loam and clay-loam. At each site, 40 topsoil samples were taken from a 160x60 m area, and pesticides applied in the laboratory. Time to 25% dissipation (DT25) ranged between 13 and 61 weeks for diflufenican, 5.6 and 17.2 weeks for azoxystrobin, and 0.3 and 12.5 weeks for isoproturon. Variability in DT25 was higher in the sandy-loam in which there was also greatest variability in soil chemical and microbial properties. Technical error associated with pesticide extraction, analysis and lack of model fit during derivation of DT25 accounted for between 5.3 and 25.8% of the variability for isoproturon and azoxystrobin, but could account for almost all the variability for diflufenican. Azoxystrobin DT25, sorption and pH were significantly correlated. - Spatial variation determines risk assessment for pesticides in soil

  11. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties

    Energy Technology Data Exchange (ETDEWEB)

    Bending, Gary D. [Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF (United Kingdom)]. E-mail: gary.bending@warwick.ac.uk; Lincoln, Suzanne D. [Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF (United Kingdom); Edmondson, Rodney N. [Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF (United Kingdom)

    2006-01-15

    The extent of within field variability in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican, and the role of intrinsic soil factors and technical errors in contributing to the variability, was investigated in sites on sandy-loam and clay-loam. At each site, 40 topsoil samples were taken from a 160x60 m area, and pesticides applied in the laboratory. Time to 25% dissipation (DT25) ranged between 13 and 61 weeks for diflufenican, 5.6 and 17.2 weeks for azoxystrobin, and 0.3 and 12.5 weeks for isoproturon. Variability in DT25 was higher in the sandy-loam in which there was also greatest variability in soil chemical and microbial properties. Technical error associated with pesticide extraction, analysis and lack of model fit during derivation of DT25 accounted for between 5.3 and 25.8% of the variability for isoproturon and azoxystrobin, but could account for almost all the variability for diflufenican. Azoxystrobin DT25, sorption and pH were significantly correlated. - Spatial variation determines risk assessment for pesticides in soil.

  12. Initial growth and yield structure of selected cultivars of cranberry (Vaccinium macrocarpon Ait. cultivated on mineral soils

    Directory of Open Access Journals (Sweden)

    Szwonek Eugeniusz

    2016-06-01

    Full Text Available A study was conducted to evaluate the possibility of cranberry cultivation on mineral soils and to assess the influence of vegetative biomass development, generative growth and yield components on the yielding of three cranberry cultivars originating in the USA (Stevens, Pilgrim and Ben Lear at two locations in Poland. The key biometrical traits involved in yield formation were taken into account, and the soil and plant chemical conditions were evaluated. All of the measured biometrical characteristics were strongly influenced by the location and the year of cultivation, and varietal differences were also noted. The most important determinants that explained yield variation were: the number of uprights per square meter, floral induction and berry set. However, the participation of each component in yield variation was strongly affected by the location, age of plantation and to a minor extent by the cultivar. The study confirmed the possibility of cranberry cultivation on mineral soils with a low pH. The biggest average yield of the three years was collected from cv. Stevens as cultivated on sandy soil in contrast to the same cultivar grown on sandy loam soil. In the case of sandy loam soil after acidification, cv. Pilgrim appeared to be a relatively better yielding cultivar.