WorldWideScience

Sample records for sandy-clay loam soil

  1. Assessment of Fate of Thiodicarb Pesticide in Sandy Clay Loam Soil

    Directory of Open Access Journals (Sweden)

    M. A. Bajeer

    2015-06-01

    Full Text Available In present study the fate of thiodicarb pesticide in sandy clay loam soil was investigated through its adsorption and leaching using HPLC. Experimental results revealed that thiodicarb follows first order kinetic with rate constant value of 0.711 h-1 and equilibrium study showed that Freundlich model was best fitted with multilayer adsorption capacity 3.749 mol/g and adsorption intensity 1.009. Therefore, adsorption of thiodicarb was multilayer, reversible and non-ideal. Leaching study has indicated intermediate mobility of thiodicarb with water due to its solubility, while field study showed the non-leacher nature. However both adsorption and leaching were heavily affected by soil characteristics. As the soil taken was sandy clay loam hence due to clay texture adsorption was higher because of vacant sites existing and greater surface area. For this the pesticide has remained adsorbed in above 20 cm soil layer as clearly seen from field study, minor amount was recorded in third layer of soil having 21-30 cm depth. The leached amount of thiodicarb in first and last part of water was 1.075 and 0.003 ng/µl. The general trend observed for adsorption in column and field soil was decreased downwards from 2.027 to 0.618 and 5.079 to 0.009 ng/µl.

  2. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil

    Science.gov (United States)

    Harter, Johannes; Guzman-Bustamante, Ivan; Kuehfuss, Stefanie; Ruser, Reiner; Well, Reinhard; Spott, Oliver; Kappler, Andreas; Behrens, Sebastian

    2016-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of N2O emissions with nitrogen fertilizer application being the main driver of rising atmospheric N2O concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate N2O emissions from soils. However, the underlying processes that cause N2O emission suppression in biochar-amended soils are still poorly understood. We set up microcosm experiments with fertilized, wet soil in which we used 15N tracing techniques and quantitative polymerase chain reaction (qPCR) to investigate the impact of biochar on mineral and gaseous nitrogen dynamics and denitrification-specific functional marker gene abundance and expression. In accordance with previous studies our results showed that biochar addition can lead to a significant decrease in N2O emissions. Furthermore, we determined significantly higher quantities of soil-entrapped N2O and N2 in biochar microcosms and a biochar-induced increase in typical and atypical nosZ transcript copy numbers. Our findings suggest that biochar-induced N2O emission mitigation is based on the entrapment of N2O in water-saturated pores of the soil matrix and concurrent stimulation of microbial N2O reduction resulting in an overall decrease of the N2O/(N2O + N2) ratio.

  3. Hidráulica do escoamento e transporte de sedimentos em sulcos em solo franco-argilo-arenoso Flow hydraulics and sediment transport in rills of a sandy clay loam soil

    Directory of Open Access Journals (Sweden)

    José Ramon Barros Cantalice

    2005-07-01

    capacity to deform the rill and alter flow hydraulics, responsible for rill formation dynamics. The objective of this study was to evaluate flow hydraulic conditions that can provide important information on erosion relationships, soil erodibility and sediment transport in furrows of a recently-tilled Palleudult. Rills were pre-formed in a sandy clay loam soil with an average slope of 0.067 m m-1. Simulated rainfall with an intensity of 74 mm h-1 was applied during 80 min, while rainfall and extra inflows of 0, 10, 20, 30, 40, and 50 L min-1 were jointly applied for the last 20 min of each run in the rill. Results indicated that the rill flow regime varied from transitional subcritical to turbulent subcritical. The rill erosion detachment rates were linear to shear stress. Rill erodibility (Kr was 0.0024 kg-1 s-1 N and critical shear stress (tauc was 2.75 Pa. Two functions to predict sediment transport based on stream power explained 53% of data variability, which indicates the inherent difficulty of predicting solid transport through shallow flows on eroding agricultural lands, and the physical and mineralogical diversity of particles and aggregates of the studied soil.

  4. Escoamento superficial e desagregação do solo em entressulcos em solo franco-argilo-arenoso com resíduos vegetais Interrill surface runoff and soil detachment on a sandy clay loam soil with residue cover

    Directory of Open Access Journals (Sweden)

    Elemar Antonino Cassol

    2004-07-01

    Full Text Available A presença de resíduos vegetais sobre a superfície do solo altera as características do escoamento superficial gerado pela chuva e a desagregação e transporte de sedimento resultantes do processo erosivo. O objetivo deste trabalho foi avaliar as condições hidráulicas e as relações de desagregação do solo e de resistência ao escoamento com a presença de resíduos vegetais na erosão em entressulcos. O experimento foi realizado no laboratório, com um Argissolo Vermelho distrófico típico, em parcelas com 0,10 m m-1 de declive sob chuva simulada. O solo foi coberto por resíduos vegetais de palha de soja, nas doses de 0, 0,05, 0,1, 0,2, 0,4 e 0,8 kg m-2. O aumento na cobertura do solo (CS com resíduos vegetais elevou a altura da lâmina de escoamento e a rugosidade hidráulica e reduziu a velocidade média do escoamento, provocada pelo aumento das forças viscosas promovida pela interposição física dos resíduos ao escoamento. O resultado é a redução na taxa de desagregação do solo (Di. A Di foi de 5,35x10-4 kg m-2 s-1 para solo descoberto e 1,50x10-5 kg m-2 s-1 em solo com 100% de cobertura na maior dose de palha. Os modelos de Laflen e potencial foram adequados para estimar o coeficiente de cobertura para resíduo em contato direto com a superfície do solo em função da cobertura do solo.Soil surface cover with crop residue modifies surface flow characteristics, generated by excess rainfall, and soil detachment and sediment transport resulting from the erosion process. The objective of this study was to evaluate the hydraulic conditions, detachment and flow resistance on interrill erosion on soil covered with residue. The experiment was conducted in the laboratory, on a Hapludult soil at a slope of 0.10 m m-1, under simulated rainfall and soil surface covered with soybean residue at the rates of 0, 0.05, 0.1, 0.2, 0.4, and 0.8 kg m-2. The increase in soil surface cover (SC with residue, caused an increase in water flow

  5. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    Directory of Open Access Journals (Sweden)

    Silva João Eudes da

    2002-01-01

    Full Text Available Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.

  6. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Plauborg, Finn; Jacobsen, Sven-Erik

    2012-01-01

    in field lysimeters with sand, sandy loam and sandy clay loam soil. Despite application of the same amount of nitrogen (120 kg N ha−1) to all plots, there were large differences in crop nitrogen-uptake for sandy clay loam (134 kg ha−1), sandy loam (102 kg ha−1) and sand (77 kg ha−1) under full irrigation...

  7. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    OpenAIRE

    Silva João Eudes da; Castro Fernando

    2002-01-01

    Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were sub...

  8. Fingerlike wetting patterns in two water-repellent loam soils

    NARCIS (Netherlands)

    Dekker, L.W.; Ritsema, C.J.

    1995-01-01

    In soils with fingered flow, surface-applied solutes can reach the groundwater more rapidly than in the case of homogeneous wetting. This study was undertaken to demonstrate the occurrence of finger-like wetting patterns in a silt loam soil and a silty clay loam soil, and to investigate the

  9. Nitrogen Mineralization of Broiler Litter Applied to Southeastern Coastal Plain Soils

    Science.gov (United States)

    A field study was conducted to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (clayey, kaoliniti...

  10. MINERALIZATION OF NITROGEN FROM BROILER LITTER AS AFFECTED BY SOIL TEXTURE IN THE SOUTHEASTERN COASTAL PLAIN

    Science.gov (United States)

    A field study was conducted during 2004-2005 to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (...

  11. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  12. [Effects of Different Residue Part Inputs of Corn Straws on CO2 Efflux and Microbial Biomass in Clay Loam and Sandy Loam Black Soils].

    Science.gov (United States)

    Liu, Si-yi; Liang, Ai-zhen; Yang, Xue-ming; Zhang, Xiao-ping; Jia, Shu-xia; Chen, Xue-wen; Zhang, Shi-xiu; Sun, Bing-jie; Chen, Sheng-long

    2015-07-01

    The decomposed rate of crop residues is a major determinant for carbon balance and nutrient cycling in agroecosystem. In this study, a constant temperature incubation study was conducted to evaluate CO2 emission and microbial biomass based on four different parts of corn straw (roots, lower stem, upper stem and leaves) and two soils with different textures (sandy loam and clay loam) from the black soil region. The relationships between soil CO2 emission, microbial biomass and the ratio of carbon (C) to nitrogen (N) and lignin of corn residues were analyzed by the linear regression. Results showed that the production of CO2 was increased with the addition of different parts of corn straw to soil, with the value of priming effect (PE) ranged from 215. 53 µmol . g-1 to 335. 17 µmol . g -1. Except for corn leaves, the cumulative CO2 production and PE of clay loam soil were significantly higher than those in sandy loam soil. The correlation of PE with lignin/N was obviously more significant than that with lignin concentration, nitrogen concentration and C/N of corn residue. The addition of corn straw to soil increased the contents of MBC and MBN and decreased MBC/MBN, which suggested that more nitrogen rather than carbon was conserved in microbial community. The augmenter of microbial biomass in sandy loam soil was greater than that in clay loam soil, but the total dissolved nitrogen was lower. Our results indicated that the differences in CO2 emission with the addition of residues to soils were primarily ascribe to the different lignin/N ratio in different corn parts; and the corn residues added into the sandy loam soil could enhance carbon sequestration, microbial biomass and nitrogen holding ability relative to clay loam soil.

  13. Effect of Application of Increasing Concentrations of Contaminated Water on the Different Fractions of Cu and Co in Sandy Loam and Clay Loam Soils

    Directory of Open Access Journals (Sweden)

    John Volk

    2016-12-01

    Full Text Available This study aimed to establish the fate of copper (Cu and cobalt (Co in sandy loam and clay loam soils that had been irrigated with increasing concentrations of contaminated water. A sequential extraction procedure was used to determine the fractions of Cu and Co in these soils. The concentration of bioavailable Cu and Co on clay loam was 1.7 times that of sandy loam soil. Cu on sandy loam soil was largely in the organic > residual > exchangeable > water-soluble > carbonate fractions, whereas on clay loam soil the element was largely in organic > exchangeable > residual > carbonate > water-soluble fractions. Co was largely observed in the exchangeable, water-soluble, and carbonate fractions, but with no particular trend observed in both soil types. When crops are grown on sandy soils that have a low capacity to hold heavy metals, the resulting effect would be high uptake of the heavy metals in crop plants. Because the predominant forms of Cu and Co vary in soils, it is expected that the metals will behave differently in the soils.

  14. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    for each rotation: mouldboard ploughing to a depth of 20 cm (MP); harrowing to a depth of 8–10 cm (H); and direct drilling (D) at two experimental sites with a sandy loam soil and different water budgets in Denmark. The Muencheberg soil quality rating (M-SQR) method and simpler soil quality indices (i...

  15. Influence of wood-derived biochar on the compactibility and strength of silt loam soil

    Science.gov (United States)

    Ahmed, Ahmed; Gariepy, Yvan; Raghavan, Vijaya

    2017-04-01

    Biochar is proven to enhance soil fertility and increase crop productivity. Given that the influence of biochar on soil compaction remains unclear, selected physico-mechanical properties of soil amended with wood-derived biochar were assessed. For unamended silt loam, the bulk density, maximum bulk density, optimum moisture content, plastic limit, liquid limit, and plasticity index were 1.05 Mg m-3, 1.69 Mg m-3, 16.55, 17.1, 29.3, and 12.2%, respectively. The penetration resistance and shear strength of the unamended silt loam compacted in the standard compaction Proctor mold and at its optimum moisture content were 1800 kPa and 850 kPa, respectively. Results from amending the silt loam with 10% particle size ranges (0.5-212 μm) led to relative decreases of 18.1, 17.75, 66.66, and 97.4% in bulk density, maximum bulk density, penetration resistance, and shear strength, respectively; a 26.8% relative increase in optimum moisture content; along with absolute increases in plastic limit, liquid limit, and plasticity index of 5.3, 13.7, and 8.4%, respectively. While the biochar-amended silt loam soil was more susceptible to compaction, however, soil mechanical impedance enhanced.

  16. Water flow and nutrient transport in a layered silt loam soil

    NARCIS (Netherlands)

    Vos, de J.A.

    1997-01-01


    Theory, numerical models, and field and laboratory measurements are used to describe and predict water flow and nutrient transport in a layered silt loam soil. One- and two-dimensional models based on the Darcy equation for water flow and the convection-dispersion equation for solute

  17. S-index and soybean root growth in different soil textural classes

    Directory of Open Access Journals (Sweden)

    Pedro D. de Oliveira

    2016-04-01

    Full Text Available ABSTRACT This study tested the hypothesis that the limiting values of S-index, proposed in the literature can not be used to determine the degradation condition of soils under soybean cultivation in the state of Pará, Brazil. The objective was to determine limiting values of S-index using soil physical attributes and validate it with soybean root growth, in soils with different textural classes. For the experimental design, the following treatments were established: five compaction levels for sandy loam and sandy clay loam soils and three levels for clayey and very clayey soils. The following physical parameters were analysed: particle-size distribution, soil bulk density, critical soil bulk density, degree of compaction, soil-water retention curve, S-index and relative root length of soybean. The limiting values of S-index varied according to soil textural class and were equal to 0.037, 0.020 and 0.056 for sandy loam, sandy clay loam and clay, respectively. The S-index does not apply to soils with clay content > 71%, because it does not vary with the degree of compaction of the soil or the root growth of the evaluated crop.

  18. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field......, it was found that soil pH, rather than biochar rates, was a driving environmental variable. For ASA, the methodological approach was challenged by product sorption, but results did not suggest that biochar significantly stimulated the enzyme activity. Crop yields of maize in field experiments with 10–100 Mg...

  19. Leaching behaviour of azoxystrobin in sandy loam soil

    African Journals Online (AJOL)

    Mr HMM Mzimela

    2014-08-01

    Aug 1, 2014 ... harmful pesticide residues on the crops and in the soil. Recent studies have ... roots and translocate to stems and leaves via xylem, or through leaf ... Analysis of azoxystrobin was carried out on gas liquid chromatograph (GLC) ...

  20. Feasibility of on-site bioremediation of loam soil contaminated by diesel oil.

    Science.gov (United States)

    Rubin, H; Narkis, N

    2001-09-01

    This study originated from an accidental event of diesel oil contamination in a loam soil area of 7,000 m2. Approximately a volume of 1,300 m3 of diesel oil was released into the environment. Reclamation of the contaminated soil by on-site bioremediation was selected as the most appropriate treatment method. A major concern was associated with the nature of the local loam soil. Loam has a very low hydraulic conductivity and very quickly becomes impermeable after its contact with water. The bioremediation approach incorporated excavation of the contaminated soil, mixing it with an agent, which increased its permeability. Following this preliminary treatment came the construction of bioreactors as a suitable environment of nutrients, moisture, dissolved oxygen, and enriched culture of microorganisms, which enabled breakdown of the diesel oil. This case study indicated that the target of 99% of diesel oil clean up could be achieved by using the technology of on-site bioremediation. The selected treatment method was found to be technologically and economically feasible. However, some improvement in the application of the basic treatment approach might increase the bioremediation efficiency.

  1. Soil nitrogen dynamics and Capsicum Annuum sp. plant response to biochar amendment in silt loam soil

    Science.gov (United States)

    Horel, Agota; Gelybo, Gyorgyi; Dencso, Marton; Toth, Eszter; Farkas, Csilla; Kasa, Ilona; Pokovai, Klara

    2017-04-01

    The present study investigated the growth of Capsicum Annuum sp. (pepper) in small-scale experiment to observe changes in plant growth and health as reflected by leaf area, plant height, yield, root density, and nitrogen usage. Based on field conditions, part of the study aimed to examine the photosynthetic and photochemical responses of plants to treatments resulting from different plant growth rates. During the 12.5 week long study, four treatments were investigated with biochar amount of 0, 0.5%, 2.5%, and 5.0% (by weight) added to silt loam soil. The plants were placed under natural environmental conditions, such that photosynthetic activities from photosynthetically active radiation (PAR) and the plants photochemical reflectance index (PRI) could be continuously measured after exposure to sunlight. In this study we found that benefits from biochar addition to silt loam soil most distinguishable occurred in the BC2.5 treatments, where the highest plant yield, highest root density, and highest leaf areas were observed compared to other treatments. Furthermore, data showed that too low (0.5%) or too high (5.0%) biochar addition to the soil had diminishing effects on Capsicum Annuum sp. growth and yield over time. At the end of the 12th week, BC2.5 had 22.2%, while BC0.5 and BC5.0 showed 17.4% and 15.7% increase in yield dry weight respectively compared to controls. The collected data also showed that the PRI values of plants growing on biochar treated soils were generally lower compared to control treatments, which could relate to leaf nitrogen levels. Total nitrogen amount showed marginal changes over time in all treatments. The total nitrogen concentration showed 28.6% and 17.7% increase after the 6th week of the experiment for BC2.5 and BC5.0, respectively, while inorganic nutrients of NO3-N and NH4+-N showed a continuous decrease during the course of the study, with a substantial drop during the first few weeks. The present study provides evidence for impact

  2. Advance of Wetting Front in Silt Loam Soil

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmood

    2013-04-01

    Full Text Available Under drip irrigation , the plant's root is concentrated inside the wetted bulb (region. Thus, the development of these roots and the plant production are greatly affected by the wetting pattern. Therefore, the wetting pattern of soil under drip irrigation must be taken into consideration in the design of drip irrigation system for both single dripping source or multi-overlapping wetting patterns of dripping water sources.2The aim of this study is to evaluate the effect of initial water content of the soil and spacing between two adjacent dripping sources with different flow rate on the movement of the wetting front.This study included 16 tests for monitoring the advancement of the wetting front with time during and after the water application phase. The water advance and water distribution measurement are carried out for two cases of the soil profile: for the first case with initial volumetric water content of 4.08% and for the second case with initial volumetric water content of 12.24%. Two spacing between the emitter were tested 25cm and 50 cm using application flow rates of 0.606, 1.212, 1.818, and 2.424 cm3 /min/cm to show the combined effect of spacing and flow rate on the performance of two adjacent emitter.The study proposed a method for determining the spacing between the two emitting sources , the water application rate and watering time. The proposed method depends on a wetted zone whose depth is equal to the root zone depth with a values equals to the maximum vertical advance of the wetting front underneath the drip line at time when this depth is equal to the depth of wetting at mid­point between the drip line. the study revealed that both the vertical water advance in soil underneath the emitter and the horizontal advance of the wetting front is larger than those in the case of single emitter.Furthermore, the vertical water advance increases with the decrease spacing between the two drip lines. Also, the horizontal advance of the

  3. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil

    Science.gov (United States)

    2015-04-01

    FOLSOMIA CANDIDA IN A NATURAL SANDY LOAM SOIL ECBC-TR-1272 Carlton T. Phillips Ronald T. Checkai Roman G. Kuperman Michael Simini Jan E...SUBTITLE Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil 5a. CONTRACT NUMBER 5b...2,4-dinitrotoluene (2,4-DNT) Folsomia candida octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) 2,6-dinitrotoluene

  4. Degradation of roxarsone in a silt loam soil and its toxicity assessment.

    Science.gov (United States)

    Liang, Tengfang; Ke, Zhengchen; Chen, Qing; Liu, Li; Chen, Guowei

    2014-10-01

    The land application of poultry or swine litter, containing large amounts of roxarsone, causes serious arsenic pollution in soil. Understanding biotransformation process of roxarsone and its potential risks favors proper disposal of roxarsone-contaminated animal litter, yet remains not achieved. We report an experimental study of biotransformation process of roxarsone in a silt loam soil under various soil moisture and temperature conditions, and the toxicity of roxarsone and its products from degradation. Results showed that soil moisture and higher temperature promoted roxarsone degradation, associating with emergent pentavalent arsenic. Analysis of fluorescein diacetate (FDA) hydrolysis activity revealed that roxarsone does not exert acute toxic on soil microbes. With the release of inorganic arsenic, FDA hydrolysis activity was inhibited gradually, as evidenced by ecotoxicological assessment using Photobacterium leiognathi. The results shade new lights on the dynamic roxarsone biotransformation processes in soil, which is important for guiding appropriate disposal of poultry or swine litter in the environment.

  5. Freeze-Thaw Cycles Effects on Soil Compaction in a Clay Loam

    Science.gov (United States)

    Jabro, J.; Evans, R.; Iversen, W.

    2012-04-01

    Inappropriate soil management practices and heavier farm machinery and equipment have led to an increase in soil compaction in the last two decades prompting increased global concern regarding the impact of soil compaction on crop production and soil quality in modern mechanized agriculture. A 3-yr comprehensive study was established to evaluate the dynamic of freeze-thaw cycles on soil compaction in a clay loam soil. Plots of frozen soils were compared with plots where soils were prevented from freezing with electrically heated blankets commonly used on concrete. Results showed that frequent freeze-thaw cycles over the winter alleviated a majority of soil compaction at the 0 - 20 cm depth. Soil penetration resistance in compacted soils was reduced by 73 and 68% over the winter at the 0 - 10 and 10 - 20 cm depths, respectively, due to dynamic effects of freeze-thaw cycles on soil structure and particles configuration. In unfrozen compacted soils, the penetration resistance was also reduced by 50 and 60% over winter at the 0 - 10 and 10 - 20 cm depths, respectively, due to the biology of soil, microbial activity, and disruptive effects of shrink-swell cycles. These results have demonstrated of how repeated freeze-thaw cycles can alleviate soil compaction, alter soil physical quality and create optimal soil conditions required for profitable growth of agricultural crops. The results from this study will save growers considerable time, money and energy currently required to alleviate soil compaction using other methods such as sub-soiling and deep tillage. We believe that Mother Nature provides ways to reverse soil compaction and improve soil structure and aggregation through the dynamic of freeze-thaw cycles that soils in Montana and other parts of the country go through each year. We concluded that the Mother Nature is the most effective and cheapest way to alleviate soil compaction.

  6. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per;

    2015-01-01

    properties of soils, especially on water retention at low matric potentials. To overcome this knowledge gap, the effects of combined BC (0 to 100 Mg ha-1) and manure (21 and 42 Mg ha-1) applications on water vapor sorption and specific surface area was investigated for a sandy loam soil. In addition......, potential impacts of BC aging were evaluated. All considered BC-amendment rates led to a distinct increase of water retention, especially for low matric potentials. The observed increases were attributed to a significant increase of soil organic matter contents and specific surface areas in BCamended soils......Over the last few years, the application of biochar (BC) as a soil amendment to sequester carbon and mitigate global climate change has received considerable attention. While positive effects of biochar on plant nutrition are well documented, little is known about potential impacts on the physical...

  7. Cadmium phytoextraction from loam soil in tropical southern China by Sorghum bicolor.

    Science.gov (United States)

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-06-03

    The cadmium (Cd) uptake characteristics by Sorghum bicolor cv. Nengsi 2# and Cowley from the acidic sandy loam soil (pH = 6.1) during the entire growth period (100 days) were investigated in pot outdoors in a tropical district of southern China, Hainan Island. The Cd-spiked levels in soil were set as 3 and 15 mg/kg. Correspondingly, the available Cd levels in soil extracted by Mehlich III solution were 2.71 and 9.41 mg/kg, respectively. Basically, two varieties in a full growth period (100 days) did not show a significant difference in their growth and Cd uptake. Under high Cd stress, the plant growth was inhibited and its biomass weight and height decreased by 38.7-51.5% and 27.6-28.5%, respectively. However, S. bicolor showed higher bioaccumulation capability of Cd from soil to plant [bioconcentration factor (BCF)>4], and higher transfer capability of Cd from roots to shoots [translocation factor (TF)>1] under high Cd stress; Cd contents in the roots, stems, and leaves of S. bicolor reached 43.79-46.07, 63.28-70.60, and 63.10-66.06 mg/kg, respectively. S. bicolor exhibited the potential phytoextraction capability for low or moderate Cd-contamination in acidic sandy loam soil.

  8. Changes in labile soil organic matter fractions following land use change from monocropping to poplar-based agroforestry systems in a semiarid region of Northeast China.

    Science.gov (United States)

    Mao, Rong; Zeng, De-Hui; Li, Lu-Jun; Hu, Ya-Lin

    2012-11-01

    Labile fractions of soil organic matter (SOM) respond rapidly to land management practices and can be used as a sensitive indicator of changes in SOM. However, there is little information about the effect of agroforestry practices on labile SOM fractions in semiarid regions of China. In order to test the effects of land use change from monocropping to agroforestry systems on labile SOM fractions, we investigated soil microbial biomass C (MBC) and N, particulate organic matter C (POMC) and N (POMN), as well as total organic C (TOC) and total N (TN) in the 0- to 15-cm and the 15- to 30-cm layers in 4-year-old poplar-based agroforestry systems and adjoining monocropping systems with two different soil textures (sandy loam and sandy clay loam) in a semiarid region of Northeast China. Our results showed that poplar-based agroforestry practices affected soil MBC, POMC, and POMN, albeit there was no significant difference in TOC and TN. Agroforestry practices increased MBC, POMC, and POMN in sandy clay loam soils. However, in sandy loam soils, agroforestry practices only increased MBC and even decreased POMC and POMN at the 0- to 15-cm layer. Our results suggest that labile SOM fractions respond sensitively to poplar-based agroforestry practices and can provide early information about the changes in SOM in semiarid regions of Northeast China and highlight that the effects of agroforestry practices on labile SOM fractions vary with soil texture.

  9. Influence of crop residues on trifluralin mineralization in a silty clay loam soil.

    Science.gov (United States)

    Farenhorst, Annemieke

    2007-01-01

    Trifluralin is typically applied onto crop residues (trash, stubble) at the soil surface, or onto the bare soil surface after the incorporation of crop residues into the soil. The objective of this study was to quantify the effect of the type and amount of crop residues in soil on trifluralin mineralization in a Wellwood silty clay loam soil. Leaves and stubble of Potato (Solanum tuberosum) (P); Canola (Brassica napus) (C), Wheat (Triticum aestivum) (W), Oats (Avena sativa), (O), and Alfalfa (Medicago sativa) (A) were added to soil microcosms at rates of 2%, 4%, 8% and 16% of the total soil weight (25 g). The type and amount of crop residues in soil had little influence on the trifluralin first-order mineralization rate constant, which ranged from 3.57E-03 day(-1) in soil with 16% A to 2.89E-02 day(-1) in soil with 8% W. The cumulative trifluralin mineralization at 113 days ranged from 1.15% in soil with 16% P to 3.21% in soil with 4% C, again demonstrating that the observed differences across the treatments are not of agronomic or environmental importance.

  10. Effect of biochar amendment on nitrate retention in a silty clay loam soil

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2016-08-01

    Full Text Available Biochar incorporation into agricultural soils has been proposed as a strategy to decrease nutrient leaching. The present study was designed to assess the effect of biochar on nitrate retention in a silty clay loam soil. Biochar obtained from the pyrogasification of fir wood chips was applied to soil and tested in a range of laboratory sorption experiments. Four soil treatments were considered: soil only (control, soil with 2, 4 and 8% of biochar by mass. The Freundlich sorption isotherm model was used to fit the adsorbed amount of nitrate in the soil-biochar mixtures. The model performed very well in interpreting the experimental data according to a general linear regression (analysis of co-variance statistical approach. Nitrate retention in the soilbiochar mixtures was always higher than control, regardless the NO3 – concentration in the range of 0-400 mg L–1. Different sorption capacities and intensities were detected depending on the biochar application rate. The highest adsorption capacity was observed in the soils added with 2 and 4% of biochar, respectively. From the results obtained is possible to infer that nitrate retention is higher at lower biochar addition rate to soil (2 and 4% and at lower nitrate concentration in the soil water solution. These preliminary laboratory results suggest that biochar addition to a typical Mediterranean agricultural soil could be an effective management option to mitigate nitrate leaching.

  11. Effect of Corn Residue Biochar on the Hydraulic Properties of Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Avanthi Deshani Igalavithana

    2017-02-01

    Full Text Available Biochar has an ability to alter the biological, chemical, and physical properties of soil due to its physicochemical properties such as surface area, porosity, nutrient retention ability, available nutrient contents, aromaticity, etc. The present study was designed to evaluate the impact of physical properties and application rate of biochar on the hydraulic properties of a sandy loam soil in the short term. Biochar was produced at 500 °C from dried corn residue (BC500. The BC500 was incorporated at the rates of 0, 2.5%, 5.0%, 7.5%, and 10% (w·w−1 into the sandy loam soil and filled up to a height of 4 cm, in cores having 5 cm diameter and height. Each treatment was performed in triplicate and equilibrated for 30 days. Then saturated hydraulic conductivity (Ksat, water holding capacity (WHC, and bulk density were determined in each sample after four days of saturation at room temperature in a water bath. The BC500 particle size distribution, pores, and surface functional groups were assessed. The Ksat exhibited a highly significant exponential reduction from 0% to 7.5% of BC500 application and approached an asymptote at 10% BC500. Bulk density showed a significant negative correlation to biochar application rate. The WHC and BC500 application rate illustrated a strong positive relationship. Biochar surface was free from hydrophobic functional groups. The addition of BC500 has a positive influence on soil hydraulic properties, primarily due to the increased soil porosity. The BC500 is composed of a microporous structure and hydrophilic surface that retain water in sandy textured soils. The application of BC500 would be a wise investment to maximize the water use efficiency in soils for agricultural production.

  12. A Bioassay Technique to Study Clomazone Residues in Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Jelena Gajić Umiljendić

    2013-01-01

    Full Text Available A bioassay test was conducted to evaluate the sensitivity of maize, sunflower and barley toclomazone residues in sandy loam soil. Clomazone was applied at different rates from 0.12 to12 mg a.i./kg of soil. The parameters measured 14 days after treatment were: shoot height, freshand dry weight, and content of pigments (carotenoids, chlorophyll a and chlorophyll b. Theresults showed that the lowest clomazone concentration caused a significant reduction in allmeasured parameters for barley and sunflower shoots. Fresh weight of maize shoots was notsensitive to clomazone residual activity in soil while the other parameters were highly inhibited.Nomenclature: clomazone (2-(2-chlorbenzyl-4,4-dimethyl-1,2-oxazolidin-3-one, maize(Zea mays L., sunflower (Helianthus annuus L., barley (Hordeum vulgare L.

  13. Response of the microbial community to copper oxychloride in acidic sandy loam soil.

    Science.gov (United States)

    Du Plessis, K R; Botha, A; Joubert, L; Bester, R; Conradie, W J; Wolfaardt, G M

    2005-01-01

    Determining the response of different microbial parameters to copper oxychloride in acidic sandy loam soil samples using cultivation-dependent and direct microscopic techniques. Culturable microbial populations were monitored for 245 days in a series of soil microcosms spiked with different copper oxychloride concentrations. Microbial populations responded differently to additional Cu. Protistan numbers and soil metabolic potential decreased. Experiments with more soil samples revealed that metabolic potential was not significantly affected by protista was noted in soil containing only 15 mg kg(-1) EDTA-extractable Cu. The negative impact on protistan numbers was less severe in soils with a higher phosphorous and zinc content. Bacterial populations responded differently, and protista were most sensitive to elevated Cu levels. Protistan numbers in soil from uncultivated land were higher and seemed to be more sensitive to additional Cu than the numbers of these organisms in soil originating from cultivated land. Protistan sensitivity to small increases in Cu levels demonstrates the vulnerability of the soil ecosystem to Cu perturbations, especially when the importance of protista as link in the flow of energy between trophic levels is considered.

  14. Phytotoxicity and uptake of nitroglycerin in a natural sandy loam soil.

    Science.gov (United States)

    Rocheleau, Sylvie; Kuperman, Roman G; Dodard, Sabine G; Sarrazin, Manon; Savard, Kathleen; Paquet, Louise; Hawari, Jalal; Checkai, Ronald T; Thiboutot, Sonia; Ampleman, Guy; Sunahara, Geoffrey I

    2011-11-15

    Nitroglycerin (NG) is widely used for the production of explosives and solid propellants, and is a soil contaminant of concern at some military training ranges. NG phytotoxicity data reported in the literature cannot be applied directly to development of ecotoxicological benchmarks for plant exposures in soil because they were determined in studies using hydroponic media, cell cultures, and transgenic plants. Toxicities of NG in the present studies were evaluated for alfalfa (Medicago sativa), barnyard grass (Echinochloa crusgalli), and ryegrass (Lolium perenne) exposed to NG in Sassafras sandy loam soil. Uptake and degradation of NG were also evaluated in ryegrass. The median effective concentration values for shoot growth ranged from 40 to 231 mg kg(-1) in studies with NG freshly amended in soil, and from 23 to 185 mg kg(-1) in studies with NG weathered-and-aged in soil. Weathering-and-aging NG in soil did not significantly affect the toxicity based on 95% confidence intervals for either seedling emergence or plant growth endpoints. Uptake studies revealed that NG was not accumulated in ryegrass but was transformed into dinitroglycerin in the soil and roots, and was subsequently translocated into the ryegrass shoots. The highest bioconcentration factors for dinitroglycerin of 685 and 40 were determined for roots and shoots, respectively. Results of these studies will improve our understanding of toxicity and bioconcentration of NG in terrestrial plants and will contribute to ecological risk assessment of NG-contaminated sites.

  15. Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils

    Energy Technology Data Exchange (ETDEWEB)

    Wick, A.F.; Stahl, P.D.; Ingram, L.J. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2009-11-15

    Minimal research has been conducted on aggregate, C, and N in coarse-textured soils used to reclaim surface coal mine lands. Furthermore, little is known about the contribution different plant communities make to the recovery of aggregation in these soils. Two chronosequences of semiarid reclaimed sites with sandy loam soils were sampled under shrub- and grass-dominated communities. Aggregation, aggregate fractions, and associated C and N were measured. No definitive trends of increasing macroaggregates between sites were observed undershrubs; however, macro- and microaggregation was greater in the 16-yr-old (0.20 and 0.23 kg aggregate kg{sup -1} soil, respectively) than in the 5-yr-old soils (0.02 and 0.08 kg aggregate kg{sup -1} soil, respectively) under grasses. Although C and N concentrations were drastically reduced (50-75%) with mining activity between the <1-yr-old and native soils, aggregate C and N concentrations tinder shrubs and grasses were similar to each other and to the native soils in the 5-yr-old site. Sods under grass in the 16-yr-old site had lower available and aggregate-occluded C and N concentrations than the 5-yr-old site, while C and N concentrations did not change between 5- and 16-yr-old soils under shrubs. Conversely, aggregate C and N pool sizes under shrubs and grasses both increased with site age to conditions similar to those observed in the native soil. Reclaimed shrub site soils had consistently higher C concentrations in the older reclaimed sites (10 and 16 yr old) than the soils under grasses, indicating greater accumulation and retention of C and N in organic material under shrub than grass communities in semiarid reclaimed sites.

  16. Estimation of the Potential for Atrazine Transport in a Silt Loam Soil

    Science.gov (United States)

    Eckhardt, D.A.V.; Wagenet, R.J.

    1996-01-01

    The transport potential of the herbicide atrazine (2-chloro-4-ethyl-6-isopropyl-s-triazine) through a 1-meter-thick root zone of corn (Zea mays L.) in a silty-loam soil in Kansas was estimated for a 22-year period (1972-93) using the one-dimensional water-flow and solute-transport model LEACHM. Results demonstrate that, for this soil, atrazine transport is directly related to the amount and timing of rain that follows spring applications of atrazine. Two other critical transport factors were important in wet years - [1] variability in atrazine application rate, and [2] atrazine degradation rates below the root zone. Results demonstrate that the coincidence of heavy rain soon after atrazine application can cause herbicide to move below the rooting zone into depths at which biodegradation rates are assumed to be low but are often unknown. Atrazine that reaches below the rooting zone and persists in the underlying soil can subsequently be transported into ground water as soil water drains, typically after the growing season. A frequency analysis of atrazine concentrations in subsurface drainage, combined with field data, demonstrates the relative importance of critical transport factors and confirms a need for definitive estimates of atrazine-degradation rates below the root zone. The analysis indicates that periodic leaching of atrazine can be expected for this soil when rainfall that exceeds 20 cm/mo coincides with atrazine presence in soil.

  17. Field wind tunnel testing of two silt loam soils on the North American Central High Plains

    Science.gov (United States)

    Scott Van Pelt, R.; Baddock, Matthew C.; Zobeck, Ted M.; Schlegel, Alan J.; Vigil, Merle F.; Acosta-Martinez, Veronica

    2013-09-01

    Wind erosion is a soil degrading process that threatens agricultural sustainability and environmental quality globally. Protecting the soil surface with cover crops and plant residues, practices common in no-till and reduced tillage cropping systems, are highly effective methods for shielding the soil surface from the erosive forces of wind and have been credited with beneficial increases of chemical and physical soil properties including soil organic matter, water holding capacity, and wet aggregate stability. Recently, advances in biofuel technology have made crop residues valuable feed stocks for ethanol production. Relatively little is known about cropping systems effects on intrinsic soil erodibility, the ability of the soil without a protective cover to resist the erosive force of wind. We tested the bare, uniformly disturbed, surface of long-term tillage and crop rotation research plots containing silt loam soils in western Kansas and eastern Colorado with a portable field wind tunnel. Total Suspended Particulate (TSP) were measured using glass fiber filters and respirable dust, PM10 and PM2.5, were measured using optical particle counters sampling the flow to the filters. The results were highly variable and TSP emission rates varied from less than 0.5 mg m-2 s-1 to greater than 16.1 mg m-2 s-1 but all the results indicated that cropping system history had no effect on intrinsic erodibility or dust emissions from the soil surfaces. We conclude that prior best management practices will not protect the soil from the erosive forces of wind if the protective mantle of crop residues is removed.

  18. Leaching and ponding of viral contaminants following land application of biosolids on sandy-loam soil.

    Science.gov (United States)

    Wong, Kelvin; Harrigan, Tim; Xagoraraki, Irene

    2012-12-15

    Much of the land available for application of biosolids is cropland near urban areas. Biosolids are often applied on hay or grassland during the growing season or on corn ground before planting or after harvest in the fall. In this study, mesophilic anaerobic digested (MAD) biosolids were applied at 56,000 L/ha on a sandy-loam soil over large containment lysimeters seeded to perennial covers of orchardgrass (Dactylis glomerata L.), switchgrass (Panicum virgatum), or planted annually to maize (Zea mays L.). Portable rainfall simulators were to maintain the lysimeters under a nearly saturated (90%, volumetric basis) conditions. Lysimeter leachate and surface ponded water samples were collected and analyzed for somatic phage, adenoviruses, and anionic (chloride) and microbial (P-22 bacteriophage) tracers. Neither adenovirus nor somatic phage was recovered from the leachate samples. P-22 bacteriophage was found in the leachate of three lysimeters (removal rates ranged from 1.8 to 3.2 log(10)/m). Although the peak of the anionic tracer breakthrough occurred at a similar pore volume in each lysimeter (around 0.3 pore volume) the peak of P-22 breakthrough varied between lysimeters (worm holes or other natural phenomena. The concentration of viral contaminants collected in ponded surface water ranged from 1 to 10% of the initial concentration in the applied biosolids. The die off of somatic phage and P-22 in the surface water was fit to a first order decay model and somatic phage reached background level at about day ten. In conclusion, sandy-loam soils can effectively remove/adsorb the indigenous viruses leached from the land-applied biosolids, but there is a potential of viral pollution from runoff following significant rainfall events when biosolids remain on the soil surface.

  19. Retention and transport of mecoprop on acid sandy-loam soils

    Science.gov (United States)

    Paradelo Núñez, Remigio; Conde Cid, Manuel; Abad, Elodie Martin; Fernández Calviño, David; Nóvoa Muñoz, Juan Carlos; Arias Estévez, Manuel

    2017-04-01

    Interaction with soil components is one of the key processes governing the fate of agrochemicals in the environment. In this work, we have studied the adsorption/desorption and transport of mecoprop in four acid sandy-loam soils with different organic matter contents. Kinetics of adsorption and adsorption/desorption at equilibrium have been studied in batch experiments, whereas transport was studied in laboratory columns. Adsorption and desorption are linear or nearly-linear. The kinetics of mecoprop adsorption are relatively fast in all cases (less than 24 h). Adsorption and desorption were adequately described by the linear and Freundlich models, with KF values that ranged from 0.7 to 8.8 Ln µmol1-n kg-1 and KD values from 0.3 to 3.6 L kg-1. High desorption percentages (>50%) were found, indicative of a high reversibility of the adsorption process. The results of the transport experiments showed that the retention of mecoprop by soil was very low (less than 6.2%). The retention of mecoprop by the soils in all experiments increased with organic matter content. Overall, it was observed that mecoprop was weakly adsorbed by the soils, what would result in a high risk of leaching of this compound.

  20. Leaching of trifluralin, metolachlor, and metribuzin in a clay loam soil of Louisiana.

    Science.gov (United States)

    Kim, Jung-Ho; Feagley, Sam E

    2002-09-01

    Trifluralin[2,6-dinitro-N,N-dipropyl-4-(trifluormethyl)benzenamine], metolachlor[2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide], and metribuzin[4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)one] were applied in field plots located on a Commerce clay loam soil near Baton Rouge, Louisiana at the rate of 1683 g/ha, 2759 g/ha and 609 g/ha, respectively. The half-lives of trifluralin, metolachlor, and metribuzin in the top 0-15 cm soil depth were found to be 54.7 days, 35.8 days and 29.8 days, respectively. The proportion of trifluralin, metolachlor, and metribuzin in the top 0-15 cm soil depth was 94.7%, 86.6%, and 75.4%, respectively of that found in the top 0-60 cm soil depth 30 days after application. Trifluralin concentrations were within a range of 0.026 ng/mL to 0.058 ng/mL in 1 m deep well water, and between 0.007 ng/mL and 0.039 ng/mL in 2 m deep well water over a 62 day period after application. Metolachlor concentrations in the 1 m and 2 m wells ranged from 3.62 ng/mL to 82.32 ng/mL and 8.44 ng/mL to 15.53 ng/mL, respectively. Whereas metribuzin concentrations in the 1 m and 2 m wells ranged from 0.70 ng/mL to 27.75 ng/mL and 1.71 ng/mL to 3.83 ng/mL, respectively. Accordingly, trifluralin was found to be strongly adsorbed on the soil and showed negligible leaching. Although metolachlor and metribuzin were also both readily adsorbed on the soil, their leaching potential was high. As a result, in the clay loam soil studied, metribuzin concentration in groundwater with shallow aquifers is likely to exceed the 10 mg/L US Environmental Protection Agency (EPA) advisory level for drinking water early in the application season, whereas trifluralin and metolachlor concentrations are expected to remain substantially lower than their respective 2 ng/mL and 175 ng/mL EPA advisory levels.

  1. Influence of tebuconazole and copper hydroxide on phosphatase and urease activities in red sandy loam and black clay soils

    OpenAIRE

    B. Anuradha; Rekhapadmini, A.; Rangaswamy, V.

    2016-01-01

    The efficacy of two selected fungicides i.e., tebuconazole and coppoer hydroxide, was conducted experiments in laboratory and copper hydroxide on the two specific enzymes phosphatase and urease were determined in two different soil samples (red sandy loam and black clay soils) of groundnut (Arachis hypogaea L.) from cultivated fields of Anantapuramu District, Andhra Pradesh. The activities of the selected soil enzymes were determined by incubating the selected fungicides-treated (1.0, 2.5, 5....

  2. Imazaquin degradation and metabolism in a sandy loam soil amended with farm litters

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Imazaquin applied in legume crops has a long residual time in soil,which often impacts safety of the susceptible crops.To increase safety of imazaquin application,two composted litters,bovine manure (BM) and chicken manure (CM),were used to determine their effects on imazaquin environmental behavior by incorporating each kind of manure into the tested sandy loam soil at 10% (w/w).The degradation of imazaquin in BM- and CM-amended soil was about 2.4 and 1.5 times,respectively,faster than that in unamended soil.The half-lives of imazaquin in BM-amended soil varied between 6.7 and 15.4 d over the temperature range of 20 to 40℃,and the degradation rate constant (k) increased by a factor of about 1.5 for every 10℃ change.Higher mix ratio did not significantly increase the degradation,and the optimal active degradation of imazaquin was observed approximately at the mix ratio of 10:1 of soil to BM.The different moisture levels had negligible effect on imazaquin degradation.In both unamended and BM-amended treatments.two metabolites were observed at 5,10 and 30 d after treatment.One metabolite at retention time (RT) of 8.4 min was identified as 2-(4-hydroxyl-5-oxo-2-imidazolin-2-y1) quinoline acid,originating from the loss of isopropyl group and hydroxylation at the 4-position of imidazolinone ring.The other at RT of 12.9 min was identified as quinolinc-2,3-dicarboxylic anhydride,resulting from detachment of imidazolinone ring and the forming of dicarboxylic anhydride.This finding suggested that the addition of farm litters into soil might be a good management option since it can not only increase soil fertility but also contribute to increase safety of imazaquin application to the following susceptible crops.

  3. Characterisation of phosphate solubilising bacteria in sandy loam soil under chickpea cropping system.

    Science.gov (United States)

    Singh, Machiavelli; Tejo Prakash, N

    2012-06-01

    With the aim to explore the possible role of phosphate-solubilizing bacteria (PSB) in phosphorus (P) cycling in agricultural soils, we isolated PSB inhabiting naturally in the sandy loam soils under chickpea cropping of Patiala (Punjab State). A total of 31 bacterial isolates showing solubilizing activities were isolated on Pikovskaya agar plates. The potent phosphate solubilizers were selected for further characterization. These isolates were shown to belong to the genera Pseudomonas and Serratia by partial sequencing analysis of their respective 16S rDNA genes. ERIC-PCR based fingerprinting was done for tracking the survival of introduced populations of the PSB during mass inoculation of these strains under chickpea plots. The results showed positive correlation (r(2) = 0.853) among soil phosphatase activity and phosphate solubilizers population, which was also positively correlated (r(2) = 0.730) to available phosphorus. Identification and characterization of soil PSB for the effective plant growth-promotion broadens the spectrum of phosphate solubilizers available for field application.

  4. THE EFFECT OF MIXING WITH ORGANIC SOIL ON CHANGES IN SOME PHYSICAL PROPERTIES OF A COMPACTED CLAY LOAM SOIL

    Directory of Open Access Journals (Sweden)

    Abdullah BARAN

    1996-01-01

    Full Text Available In this research, the effect of organic soil on changes in total pore space, aeration porosity, available water content and hydraulic conductivity of a compacted clay loam were investigated. By adding organic soil at rates of 0 %, 1 %, 2 % and 4 % to soil, mixtures were compacted at compaction levels of 0 kg/cm2, 0.21 kg/cm2, 1.98 kg/cm2 and 3.95 kg/cm2 Some physical properties of compacted soil were determined. Compaction decreased total pore space, areation porosity, available water content and hydraulic conductivity, but in samples with the mixing rate of 4 %, all properties inspected were affected positively in all compaction levels, except available water content

  5. Influence of diaphragm wall installation in overconsolidated sandy clays on in situ stress disturbance and resulting wall deformations

    Directory of Open Access Journals (Sweden)

    Truty Andrzej Adam

    2016-09-01

    Full Text Available Numerical modeling of deep excavations becomes a standard practice in modern geotechnical engineering. A detailed numerical model for a given case is able to reproduce major effects of soil-structure interaction by taking into account any kind of drainage conditions, strong stiffness variation due to effective stress and strain changes, creep and cracking, when reinforced concrete is used as a structural material, but also interface effects between subsoil and structure. Calibrating soil constitutive models is one of the most difficult tasks and due to several sources of uncertainty there is no one unique set of the data that should be used in numerical predictions. Lack or incompleteness of experimental data, significant mismatch between laboratory and field tests is an another source of difficulty. Contrary to several simplified methods, that are usually limited to two dimensions, numerical models allow a full 3D analysis in which many simplifications can be eliminated. This paper is devoted to the problem of in situ stress disturbance caused by diaphragm wall installation in overconsolidated quaternary sandy clays and its influence on final wall deformations.

  6. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai;

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... region-water retention curve increased with increasing biochar rates....

  7. Transport and Retention of Toxoplasma gondii Oocysts in Loamy Sand and Sandy Loam Soils

    Science.gov (United States)

    Kinsey, E. N.; Korte, C.; L'Ollivier, C.; Dubey, J. P.; Aurélien, D.; Darnault, C. J. G.

    2016-12-01

    Toxoplasma gondii is one of the most prevalent parasites affecting warm-blooded animals and humans. It has a complex life cycle that involves a wide variety of intermediate hosts with felids as a definitive host. Humans may contract it through consumption of infected, undercooked meat or by water or food sources contaminated with the oocyst form of the parasite. Infection of pregnant women can cause stillbirth, neurological effects or blindness. Because of the prevalence of cats, including on farms where oocyst-contaminated cat feces, animal feed, soil and water have been found, T. gondii is spread almost throughout the entire globe. It has been implicated or suspected in waterborne infections since the 1990s. This study aims to characterize the transport and retention of T. gondii oocysts in field soils. The four soils used were collected from fallow and cultivated fields in Illinois and Utah, USA. They are classified as loamy sands and sandy loams. Soil columns were subjected to continuous artificial rainfall until they reached steady state at which point pulses that included 2.5 million T. gondii oocysts (Me49 strain) and KBr as a tracer were added. After the pulse infiltrated, continuous rainfall was resumed. Rain applied all columns was a 1 mM KCl solution. Leachate samples were collected, analyzed using qPCR for T. gondii and bromide ions and breakthrough curves were produced. Soil was sliced into 1 to 2 cm sections, for which water content and T. gondii concentration were measured to access degree of saturation and oocyst retention.

  8. IMPACT OF THE REPEATED TRACTOR PASSES ON SOME PHYSICAL PROPERTIES OF SILTY LOAM SOIL

    Directory of Open Access Journals (Sweden)

    Dubravko Filipović

    2011-12-01

    Full Text Available The aim of this paper was to quantify soil compaction induced by tractor traffic on untilled wet silty loam soil (Mollic Fluvisol. Changes in penetration resistance, bulk density and total porosity were measured for detecting the soil compaction. Treatments include ten passes of a four-wheel drive tractor with the engine power of 54.0 kW and weight of 3560 kg (1580 kg on the front axle and 1980 kg on the rear axle, 2.41 m distance between axles. The tyres on the tractor were cross-ply, front 11.2-24 and rear 16.9-30, with the inflation pressure of 160 kPa and 100 kPa, respectively. The speed of tractor during passes over experimental plots was 5.0 km h-1. In comparison to control, each tractor pass induced an increase in soil penetration resistance at all depths, and the average increment ratios, determined as the average of all layers, were 9.8, 18.5 and 26.1% after one, five and ten passes, respectively. The bulk density also increased with number of tractor passes, but with less percentage increasing. The increment ratios comparison to the control were 3.6, 9.5 and 12.9% after one, five and ten passes, respectively. The total porosity decreased with the number of passes, and the decrement ratios were 4.5, 16.5 and 20.8% after one, five and ten passes, respectively.

  9. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D

    2017-01-01

    Soil structure is a key soil physical property that affects soil water balance, gas transport, plant growth and development, and ultimately plant yield. Biochar has received global recognition as a soil amendment with the potential to ameliorate the structure of degraded soils. We investigated how...... corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... to significant increase in soil water retention compared to the CT and BC-10 as a result of increased microporosity (pores biochar had minimal impact. No significant influence of biochar was observed for ka and Dp/D0 for the BC treatments compared to the CT despite...

  10. Uncertainty of Deardorff’s soil moisture model based on continuous TDR measurements for sandy loam soil

    Directory of Open Access Journals (Sweden)

    Brandyk Andrzej

    2016-03-01

    Full Text Available Knowledge on soil moisture is indispensable for a range of hydrological models, since it exerts a considerable influence on runoff conditions. Proper tools are nowadays applied in order to gain in-sight into soil moisture status, especially of uppermost soil layers, which are prone to weather changes and land use practices. In order to establish relationships between meteorological conditions and topsoil moisture, a simple model would be required, characterized by low computational effort, simple structure and low number of identified and calibrated parameters. We demonstrated, that existing model for shallow soils, considering mass exchange between two layers (the upper and the lower, as well as with the atmosphere and subsoil, worked well for sandy loam with deep ground water table in Warsaw conurbation. GLUE (Generalized Likelihood Uncertainty Estimation linked with GSA (Global Sensitivity Analysis provided for final determination of parameter values and model confidence ranges. Including the uncertainty in a model structure, caused that the median soil moisture solution of the GLUE was shifted from the one optimal in deterministic sense. From the point of view of practical model application, the main shortcoming were the underestimated water exchange rates between the lower soil layer (ranging from the depth of 0.1 to 0.2 m below ground level and subsoil. General model quality was found to be satisfactory and promising for its utilization for establishing measures to regain retention in urbanized conditions.

  11. Nitrogen Mineralization of a Loam Soil Supplemented with Organic–Inorganic Amendments under Laboratory Incubation

    Science.gov (United States)

    Abbasi, M. Kaleem; Khaliq, Abdul

    2016-01-01

    The quantification of nitrogen (N) supplying capacity of organic amendments applied to a soil is of immense importance to examine synchronization, N release capacity, and fertilizer values of these added materials. The aims of the present study was to determine the potential N mineralization and subsequent nitrification of separate and combined use of poultry manure (PM), wheat straw residues (WSR), and urea N (UN) applied to a loam soil incubated periodically over 140 days period. In addition, changes in total soil N and carbon contents were also monitored during the study. Treatments included: PM100, WSR100, PM50 + WSR50, UN100, UN50 + PM50, UN50 + WSR50, UN50 + PM25 + WSR25, and a control (unfertilized). All the amendments were applied on an N-equivalent basis at the rate of 200 mg N kg-1. Results indicated that a substantial quantity of N had been released from the added amendments into the soil mineral pool and the net cumulative N mineralized varied between 39 and 147 mg N kg-1, lowest in the WSR and highest in the UN50 + PM50. Significant differences were observed among the amendments and the net mineral N derived from a separate and combined use of PM was greater than the other treatments. The net cumulative N nitrified (NCNN) varied between 16 and 126 mg kg-1, highest in UN50 + PM50 treatment. On average, percentage conversion of added N into available N by different amendments varied between 21 and 80%, while conversion of applied N into NO3-–N ranged between 9 and 65%, and the treatment UN50 + PM50 displayed the highest N recovery. Urea N when applied alone showed disappearance of 37% N (N unaccounted for) at the end while application of PM and WSR with UN reduced N disappearance and increased N retention in the mineral pool for a longer period. Organic amendments alone or in combination with UN improved organic matter buildup and increased soil N concentration. These results demonstrate the existence of substantial amounts of N reserves present in PM

  12. Nitrogen Mineralization of a Loam Soil Supplemented with Organic-Inorganic Amendments under Laboratory Incubation.

    Science.gov (United States)

    Abbasi, M Kaleem; Khaliq, Abdul

    2016-01-01

    The quantification of nitrogen (N) supplying capacity of organic amendments applied to a soil is of immense importance to examine synchronization, N release capacity, and fertilizer values of these added materials. The aims of the present study was to determine the potential N mineralization and subsequent nitrification of separate and combined use of poultry manure (PM), wheat straw residues (WSR), and urea N (UN) applied to a loam soil incubated periodically over 140 days period. In addition, changes in total soil N and carbon contents were also monitored during the study. Treatments included: PM100, WSR100, PM50 + WSR50, UN100, UN50 + PM50, UN50 + WSR50, UN50 + PM25 + WSR25, and a control (unfertilized). All the amendments were applied on an N-equivalent basis at the rate of 200 mg N kg(-1). Results indicated that a substantial quantity of N had been released from the added amendments into the soil mineral pool and the net cumulative N mineralized varied between 39 and 147 mg N kg(-1), lowest in the WSR and highest in the UN50 + PM50. Significant differences were observed among the amendments and the net mineral N derived from a separate and combined use of PM was greater than the other treatments. The net cumulative N nitrified (NCNN) varied between 16 and 126 mg kg(-1), highest in UN50 + PM50 treatment. On average, percentage conversion of added N into available N by different amendments varied between 21 and 80%, while conversion of applied N into NO3 (-)-N ranged between 9 and 65%, and the treatment UN50 + PM50 displayed the highest N recovery. Urea N when applied alone showed disappearance of 37% N (N unaccounted for) at the end while application of PM and WSR with UN reduced N disappearance and increased N retention in the mineral pool for a longer period. Organic amendments alone or in combination with UN improved organic matter buildup and increased soil N concentration. These results demonstrate the existence of substantial amounts of N reserves present

  13. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  14. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per;

    2012-01-01

    carbon (CCC resistance and resilience of the three soils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile...... at both soil-water potentials than the MCC and CCC soils possibly due to higher biotic binding of soil particles by the greater organic carbon content. The water dispersible clay was negatively correlated with the level of clay saturation by organic carbon. The resistance of the soils to compaction......, quantified by both the compression index and a proposed functional index, was significantly greater for the MFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles...

  15. [Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil].

    Science.gov (United States)

    Wang, Ji-Dong; Qi, Bing-Jie; Zhang, Yong-Chun; Zhang, Ai-Jun; Ning, Yun-Wang; Xu, Xian-Ju; Zhang, Hui; Ma, Hong-Bo

    2012-04-01

    Soil samples (0-80 cm) were collected from a 30-year fertilization experimental site in Xuzhou, Jiangsu Province of East China to study the variations of the pH, calcium carbonate and active calcium carbonate contents, and pH buffer capacity of sandy loam calcareous fluvor-aquic soil under different fertilization treatments. Thirty-year continuous application of different fertilizers accelerated the acidification of topsoil (0-20 cm), with the soil pH decreased by 0.41-0.70. Under different fertilization, the soil pH buffer capacity (pHBC) varied from 15.82 to 21.96 cmol x kg(-1). As compared with no fertilization, single N fertilization decreased the pHBC significantly, but N fertilization combined with organic fertilization could significantly increase the pHBC. The soil pHBC had significant positive correlations with soil calcium carbonate and active calcium carbonate contents, but less correlation with soil organic matter content and soil cation exchange capacity, suggesting that after a long-term fertilization, the sandy loam calcareous fluvor-aquic soil was still of an elementary calcium carbonate buffer system, and soil organic matter and cation exchange capacity contributed little to the buffer system. The soil calcium carbonate and active calcium carbonate contents were greater in 0-40 cm than in 40-80 cm soil layer. Comparing with soil calcium carbonate, soil active calcium carbonate was more sensitive to reflect the changes of soil physical and chemical properties, suggesting that the calcium carbonate buffer system could be further classified as soil active calcium carbonate buffer system.

  16. Nitrogen mineralization of a loam soil supplemented with organic-inorganic amendments under laboratory incubation

    Directory of Open Access Journals (Sweden)

    M. Kaleem ABBASI

    2016-07-01

    Full Text Available The quantification of nitrogen (N supplying capacity of organic amendments applied to a soil is of immense importance to examine synchronization, N release capacity, and fertilizer values of these added materials. The aim of the present study was to determine the potential mineralization of separate and combined use of poultry manure (PM, wheat (Triticum aestivum L. straw residues (WSR, and urea N (UN applied to a loam soil and incubated periodically over 140 days period. Treatments included PM100, WSR100, PM50 + WSR50, UN100, UN50 + PM50, UN50 + WSR50, UN50 + PM25 + WSR25, and a control (unfertilized. Added amendments were applied on an N-equivalent basis at the rate of 200 mg N kg−1. Nitrogen supplying capacity of added materials was determined by measuring changes in total mineral N (ammonium-nitrogen and nitrate-nitrogen [NH4+–N + NO3––N] and accumulation of NO3––N over different incubation periods. Changes in soil organic matter content and total N concentration were also monitored during the study. Results indicated that added amendments released substantial N into the mineral N pool (net cumulative N mineralized [NCNM] ranged between 39 and 147 mg N kg−1, lowest in the WSR and highest in the UN50+PM50. Significant differences were observed among the amendments and the net inorganic N derived from a separate and combined use of PM was greater than the other treatments. Total inorganic N derived from PM increased from 2.3 mg kg−1 at d 1, to a maximum of 102 to 105 mg kg−1 at 63, 84 and 105 d after PM application. The values were further increase from 31.5 mg kg−1 at d 0 to a maximum of 165 mg kg−1 at d 49 in UN50 + PM50 treatment. The net cumulative N nitrified (NCNN varied between 16 and 126 mg kg−1, highest in UN50 + PM50 treatment. Soil amended with WSR100 showed negative values both for mineralization and nitrification until day 84, displaying net immobilization. On average, percentage conversion of added N into

  17. An elasto-plastic constitutive model of moderate sandy clay based on BC-RBFNN

    Institute of Scientific and Technical Information of China (English)

    彭相华; 王智超; 罗涛; 余敏; 罗迎社

    2008-01-01

    Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in different fields.In allusion to this,an elasto-plastic constitutive model based on clustering radial basis function neural network(BC-RBFNN) was proposed for moderate sandy clay according to its properties.Firstly,knowledge base was established on triaxial compression testing data;then the model was trained,learned and emulated using knowledge base;finally,predicting results of the BC-RBFNN model were compared and analyzed with those of other intelligent model.The results show that the BC-RBFNN model can alter the training and learning velocity and improve the predicting precision,which provides possibility for engineering practice on demanding high precision.

  18. Effects of Nitramine Explosive CL-20 on the Soil Microinvertebrate Community in a Sandy Loam Soil

    Science.gov (United States)

    2013-09-01

    by individually combining and gently mixing CL-20- amended soil concentrates with clean SSL field soil in a plastic bag . This approach ensured that...Hawari, J.; Spain, J.C. Biodegradation of the Nitramine Explosive CL- 20. Appl. Environ. Microbiol. 2003, 69, 1871–1874. U.S. Department of

  19. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  20. Field performance of nine soil water content sensors on a sandy loam soil in new brunswick, maritime region, Canada.

    Science.gov (United States)

    Chow, Lien; Xing, Zisheng; Rees, Herb W; Meng, Fanrui; Monteith, John; Stevens, Lionel

    2009-01-01

    An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada) using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE) of 15.78, 16.93, and 17.65%, and a r(2) of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917), and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r(2) of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region.

  1. Field Performance of Nine Soil Water Content Sensors on a Sandy Loam Soil in New Brunswick, Maritime Region, Canada

    Directory of Open Access Journals (Sweden)

    Lionel Stevens

    2009-11-01

    Full Text Available An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE of 15.78, 16.93, and 17.65%, and a r2 of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917, and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r2 of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region.

  2. Redistribution of contaminants from pig slurry after direct injection into soil

    DEFF Research Database (Denmark)

    Amin, Mostofa; Bech, T B; Forslund, A;

    2010-01-01

    The redistribution of pig manure-borne contaminants after direct injection to soil was investigated in a field study. The spatial distribution of Escherichia coli, Salmonella Typhimurium Bacteriophage 28B and other slurry components in and around the injection slit was measured on day 0.15, 1, 6......, 18, and 46/49 at Silstrup (sandy clay loam) and Estrup (sandy loam), Denmark. Transport of the slurry components away from the slit was slower at Silstrup in comparison to Estrup, probably because of a higher slurry dry matter content and soil clay content. Slurry NH4-N dissipated and....../or was nitrified gradually at Silstrup and more rapidly at Estrup, but had disappeared completely at both sites within 49 days. The rate of disappearance of E. coli at Estrup was lower than at Silstrup. Survival of E. coli was high in the upper soil layer at both sites. The overall persistence of the bacteriophage...

  3. Evaluation of Soil Quality Indicators in Sugarcane Management in Sandy Loam Soil

    Institute of Scientific and Technical Information of China (English)

    S.A.C.SANT'ANNA; M.F.FERNANDES; W.M.P.M.IVO; J.L.S.COSTA

    2009-01-01

    An important factor for the sustainability of soils highly susceptible to degradation is the use of monitoring tools that promptly and realistically reflect changes imposed on soil by different cropping systems.To select soil quality indicator variables in sugarcane (Saccharum offcinarum L.) production areas that fulfill the criteria of sensitivity to management practices and between-season consistency in the management discrimination,ten composite soil samples (0-10 cm) were collected in July 2005 (rainy season) and again in March 2006 (dry season) from areas under cultivation of organic sugarcane (OS),green sugarcane (GS),burned sugarcane (BS) and from an adjacent native forest (NF) area at Usina Triunfo,Boca da Mata,Alagoas,Brazil.Microbial biomass-C (MBC),total organic C (TOC),soil enzyme activity expressed as the rate of fluorescein diacetate (FDA) hydrolysis,mean weight diameter of water-stable soil aggregates (MWD),and percentage of water-stable macroaggregates (PWSA) were analyzed.Although MBC and TOC were higher in NF than in the cultivated areas,no differences were observed in these C pools between the three sugarcane systems.The response of FDA to the site management was dependent on the sampling time.In the rainy period,the activity followed the order:NF > OS > GS > BS,whereas in the dry season,only NF differed from the other treatments.Irrespective of the sampling time,MWD and PWSA decreased in the order NF > OS = GS > BS.The variables MWD and PWSA are quite sensitive for discriminating between site management histories regardless the sampling season.

  4. Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil.

    Science.gov (United States)

    Samarajeewa, A D; Velicogna, J R; Princz, J I; Subasinghe, R M; Scroggins, R P; Beaudette, L A

    2017-01-01

    Silver nano-particles (AgNPs) are widely used in a range of consumer products as a result of their antimicrobial properties. Given the broad spectrum of uses, AgNPs have the potential for being released to the environment. As a result, environmental risks associated with AgNPs need to be assessed to aid in the development of regulatory guidelines. Research was performed to assess the effects of AgNPs on soil microbial activity and diversity in a sandy loam soil with an emphasis on using a battery of microbial tests involving multiple endpoints. The test soil was spiked with PVP coated (0.3%) AgNPs at the following concentrations of 49, 124, 287, 723 and 1815 mg Ag kg(-1) dry soil. Test controls included an un-amended soil; soil amended with PVP equivalent to the highest PVP concentration of the coated AgNP; and soil amended with humic acid, as 1.8% humic acid was used as a suspension agent for the AgNPs. The impact on soil microbial community was assessed using an array of tests including heterotrophic plate counting, microbial respiration, organic matter decomposition, soil enzyme activity, biological nitrification, community level physiological profiling (CLPP), Ion Torrent™ DNA sequencing and denaturing gradient gel electrophoresis (DGGE). An impact on microbial growth, activity and community diversity was evident from 49 to 1815 mg kg(-1) with the median inhibitory concentrations (IC50) as low as 20-31 mg kg(-1) depending on the test. AgNP showed a notable impact on microbial functional and genomic diversity. Emergence of a silver tolerant bacterium was observed at AgNP concentrations of 49-287 mg kg(-1) after 14-28 days of incubation, but not detectable at 723 and 1815 mg kg(-1). The bacterium was identified as Rhodanobacter sp. The study highlighted the effectiveness of using multiple microbial endpoints for inclusion to the environmental risk assessment of nanomaterials.

  5. Runoff of trifluralin, metolachlor, and metribuzin from a clay loam soil of Louisiana.

    Science.gov (United States)

    Kim, Jung-Ho; Feagley, Sam E

    2002-09-01

    Trifluralin[2,6-dinitro-N,N-dipropyl-4-(trifluormethyl)benzenamine], metolachlor[2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] and metribuzin[4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)one] were applied as pre-emergent herbicides to soybean plots in Louisiana (LA) at the rate of 1683 g/ha, 2759 g/ha and 609 g/ha, respectively. The concentrations of trifluralin in the runoff water ranged between 0.09 ng/mL and 0.02 ng/mL, which is lower than the 2 ng/mL US Environmental Protection Agency (EPA) advisory level for trifuralin in drinking water. Metolachlor concentrations in the runoff water ranged from 9.0 ng/mL to 221.5 ng/mL, which is both lower and higher than the 175 ng/mL EPA advisory level for metolachlor. Similarly, metribuzin concentrations in the runoff water ranged between 1.5 ng/mL and 56.2 ng/mL, which is also lower and higher than the 10 ng/mL EPA advisory level for metribuzin. Accordingly, from the field plots located on a Commerce clay loam soil in LA, although the concentration of trifluralin in runoff water were substantially lower than the EPA advisory level, metolachlor and metribuzin concentrations are likely to exceed the EPA advisory levels early on in the application season with a subsequent rapid decrease to safe levels. The total loss of trifluralin in runoff water was 0.005% of the applied amount over an 89 day period after application. The total loss of metolachlor and metribuzin in the runoff water was 4.67% and 5.36% of the applied amount, respectively, over a 22 day period after application. As such, there was almost no movement of trifluralin in the runoff water, whereas metolachlor and metribuzin were much more easily moved.

  6. Weeds of cereal stubble-fields on various soils in the Kielce region. P. 1. Podzolic and brown soils developed from sands and loams

    Directory of Open Access Journals (Sweden)

    Franciszek Pawłowski

    2013-12-01

    Full Text Available Occupying cereal stubble-fields weed flora is the most characteristic of the environmental (especially soil conditions. Because of its developing and accomplishing the reproductive stages there it can threatens cultivated plants. They are considered to complete the seed store in a soil by 393 min per ha. The results presented in the paper concern the species composition, number and constancy (S and indice of coverage (D of the cereal stubble-field weed species on various soils in the Kielce region (the central part of Poland. The report was based upon 885 phytosociological records collected in the 268 stands. The records were carried out after the crop harvest, in the latter part of September, in 1976-1980. Soil were chosen on the base of soil maps. The analyse of soil samples, taken at the investigation process, were done in order to confirm the soil quality. The worked out material was divided into three parts. The first part, including 369 phytosociological records collected in the 112 stands (in 90 localities concerns stubble-field weeds on podzolic and brown soils developed from sands (loose, weakly loamy and loamy and loams (light and medium. It was found that these soils were grown by 108 (loamy sands to 132 (weakly loamy sands weed species. Among them 66 species were common for all of the soils. Species composition was not differentiated by the soil type (brown, podzolic within kind of the. soil (sand or loams. Among soil examined, the brown loams was the most abundant with species of high constancy degree (30 species but brown loose sands and podzolic loamy sands was the poorest one with (16 species.

  7. Eleven years' effect of conservation practices for temperate sandy loams: I. Soil physical properties and topsoil carbon content

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl

    2017-01-01

    experiments were conducted in 11- to 12-yr-old experiments on two Danish sandy loams at Foulum and Flakkebjerg. Three crop rotations/residue management treatments were compared and tillage was included as a splitplot factor. The tillage systems were moldboard plowing to a depth of 20 cm (MP), direct drilling...... their important role in soil structure formation and stabilization. Our study showed benefits of combining key CA elements, although longer-term studies are most likely needed to reveal the full potential....

  8. Short-term Effects of Tillage Practices on Organic Carbon in Clay Loam Soil of Northeast China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage management on SOC content and its distribution in surface layer (30 cm) of a clay loam soil in northeast China. NT did not lead to significant increase of SOC in topsoil (0-5 cm) compared with MP and RT; however, the SOC content in NT soil was remarkably reduced at a depth of 5-20 cm. Accordingly, short-term (3-year) NT management tended to stratify SOC concentration, but not necessarily increase its storage in the plow layer for the soil.

  9. Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar

    Science.gov (United States)

    Cely, P.; Tarquis, A. M.; Paz-Ferreiro, J.; Méndez, A.; Gascó, G.

    2014-06-01

    The effect of biochar on the soil carbon mineralization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on physicochemical properties and CO2 emissions of a sandy loam soil. For this purpose, soil was amended with three different biochars (BI, BII and BIII) at a rate of 8 wt% and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coefficients (r2) greater than 0.97. Results show a negative priming effect in the soil after addition of BI and a positive priming effect in the case of soil amended with BII and BIII. These results can be related to different biochar properties such as carbon content, carbon aromaticity, volatile matter, fixed carbon, easily oxidized organic carbon or metal and phenolic substance content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.

  10. Seasonal fluctuations in water repellency and infiltration in a sandy loam soil after a forest fire in Galicia (NW Spain

    Directory of Open Access Journals (Sweden)

    M. Rodríguez-Alleres

    2013-05-01

    Full Text Available The aim of this work was to analyze, after a wildfire of moderate severity, the temporal fluctuations in water repellency and infiltration in a sandy loam soil under a mixed plantation of pine and eucalyptus and the comparison with an adjacent area not affected by the fire. In the burnt area and in a neighboring area not affected by the fire were collected during one year (1, 4, 6, 8 and 12 months after the fire 10 soil samples along a transect of 18 m at four depths: 0-2, 2-5, 5-10 and 10-20 cm. Soil water repellency was determined using the water drop penetration time test (WDPT test and the infiltration was measured with a mini-disc infiltrometer (pressure head h0 = -2 cm.The results show a temporal pattern of soil water repellency in the burnt and unburnt areas. Significant correlations between water repellency and soil moisture were observed, with higher correlation coefficients in the unburned area and in the surface soil layer.Soil water infiltration was significantly lower than would be expected by the coarse texture of the soil in both burnt and unburnt areas. Temporal fluctuations in unburnt soil infiltration seem to be clearly related to the transient nature of the soil water repellency, with no infiltration in samples extremely repellent. In the burned area, the soil infiltration showed much more variability and temporal fluctuations appear to be less dependent on the persistence of water repellency and more dependent on environmental conditions.The unburnt area show significant and negative correlations of soil water repellency with hydraulic conductivity and sorptivity and positive of these two parameters with soil moisture. These relationships were not observed in the burnt area. The temporal fluctuations of soil water repellency have an evident impact on soil infiltration and seem to be more influent than the effects of fire.

  11. Influence of Long-term Application of Feedlot Manure Amendments on Water Repellency of a Clay Loam Soil.

    Science.gov (United States)

    Miller, Jim J; Beasley, Bruce W; Hazendonk, Paul; Drury, Craig F; Chanasyk, David S

    2017-05-01

    Long-term application of feedlot manure to cropland may increase the quantity of soil organic carbon (C) and change its quality, which may influence soil water repellency. The objective was to determine the influence of feedlot manure type (stockpiled vs. composted), bedding material (straw [ST] vs. woodchips [WD]), and application rate (13, 39, or 77 Mg ha) on repellency of a clay loam soil after 17 annual applications. The repellency was determined on all 14 treatments using the water repellency index ( index), the water drop penetration time (WDPT) method, and molarity of ethanol (MED) test. The C composition of particulate organic matter in soil of five selected treatments after 16 annual applications was also determined using C nuclear magnetic resonance-direct polarization with magic-angle spinning (NMR-DPMAS). Manure type had no significant ( > 0.05) effect on index and WDPT, and MED classification was similar. Mean index and WDPT values were significantly greater and MED classification more hydrophobic for WD than ST. Application rate had no effect on the index, but WDPT was significantly greater and MED classification more hydrophobic with increasing application rate. Strong ( > 0.7) but nonsignificant positive correlations were found between index and WDPT versus hydrophobic (alkyl + aromatic) C, lignin at 74 ppm (O-alkyl), and unspecified aromatic compounds at 144 ppm. Specific aromatic compounds also contributed more to repellency than alkyl, O-alkyl, and carbonyl compounds. Overall, all three methods consistently showed that repellency was greater for WD- than ST-amended clay loam soil, but manure type had no effect. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Rapid development of enhanced atrazine degradation in a Dundee silt loam soil under continuous corn and in rotation with cotton.

    Science.gov (United States)

    Zablotowicz, Robert M; Krutz, L Jason; Reddy, Krishna N; Weaver, Mark A; Koger, Clifford H; Locke, Martin A

    2007-02-07

    Mississippi Delta cotton (Gossypium hirsutum L.) production in rotation with corn (Zea mays L.) was evaluated in field experiments from 2000 to 2005 at Stoneville, Mississippi. Plots maintained under minimum tillage were established in 2000 on a Dundee silt loam with treatments including continuous cotton or corn and alternate cotton-corn rotations. Mineralization and dissipation of 14C [ring]-labeled atrazine were evaluated in the laboratory on soils collected prior to herbicide application in the first, second, third, and sixth years of the study. In soils collected in 2000, a maximum of 10% of the atrazine was mineralized after 30 days. After 1 year of herbicide application, atrazine-treated soils mineralized 52-57% of the radiolabeled atrazine in 30 days. By the sixth year of the study, greater than 59% of the atrazine was mineralized after 7 days in soils treated with atrazine, while soils from plots with no atrazine treatment mineralized less than 36%. The data also indicated rapid development of enhanced atrazine degradation in soils following 1 year of corn production with atrazine use. Atrazine mineralization was as rapid in soils under a rotation receiving biannual atrazine applications as in soils under continuous corn receiving annual applications of atrazine. Cumulative mineralization kinetics parameters derived from the Gompertz model (k and ti) were highly correlated with a history of atrazine application and total soil carbon content. Changes in the soil microbial community assessed by total fatty acid methyl ester (FAME) analysis indicated significant interactions of cropping system and sampling date, with FAME indicators for soil bacteria responsible for differences in community structure. Autoclaved soil lost all ability to mineralize atrazine, and atrazine-mineralizing bacteria were isolated from these plots, confirming the biological basis for atrazine mineralization. These results indicate that changes in degradative potential of a soil can

  13. Influence of tebuconazole and copper hydroxide on phosphatase and urease activities in red sandy loam and black clay soils.

    Science.gov (United States)

    Anuradha, B; Rekhapadmini, A; Rangaswamy, V

    2016-06-01

    The efficacy of two selected fungicides i.e., tebuconazole and coppoer hydroxide, was conducted experiments in laboratory and copper hydroxide on the two specific enzymes phosphatase and urease were determined in two different soil samples (red sandy loam and black clay soils) of groundnut (Arachis hypogaea L.) from cultivated fields of Anantapuramu District, Andhra Pradesh. The activities of the selected soil enzymes were determined by incubating the selected fungicides-treated (1.0, 2.5, 5.0, 7.5 and 10.0 kg ha(-1)) and -untreated groundnut soil samples at 10 day intervals. By determining the effective concentration, the rate of selected enzyme activity was estimated by adding the suitable substrate at 10, 20, 30 and 40 days of soil incubation. Both the enzyme activities were increased up to 5.0 kg ha(-1) level of fungicide in both soil samples significantly at 10 days of soil incubation and further enhanced up to 20 days of incubation. The activity of the phosphatase and urease decreased progressively at 30 and 40 days of incubation. From overall studies, higher concentrations (7.5 and 10.0 kg ha(-1)) of both tebuconazole and copper hydroxide were toxic to phosphatase and urease activities, respectively, in both soil samples.

  14. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions Extração de cátions em solos areno-argilosos do vale do cávado, portugal, utilizando soluções de sais de sódio

    OpenAIRE

    João Eudes da Silva; Fernando De Castro

    2002-01-01

    Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were sub...

  15. Changes to soil water content and biomass yield under combined maize and maize-weed vegetation with different fertilization treatments in loam soil

    Directory of Open Access Journals (Sweden)

    Lehoczky Éva

    2016-06-01

    Full Text Available Especially during early developmental stages, competition with weeds can reduce crop growth and have a serious effect on productivity. Here, the effects of interactions between soil water content (SWC, nutrient availability, and competition from weeds on early stage crop growth were investigated, to better understand this problem. Field experiments were conducted in 2013 and 2014 using long-term study plots on loam soil in Hungary. Plots of maize (Zea mays L. and a weed-maize combination were exposed to five fertilization treatments. SWC was observed along the 0–80 cm depth soil profile and harvested aboveground biomass (HAB was measured.

  16. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition.

    Science.gov (United States)

    Kumar, Anjani; Nayak, A K; Shukla, Arvind K; Panda, B B; Raja, R; Shahid, Mohammad; Tripathi, Rahul; Mohanty, Sangita; Rath, P C

    2012-04-01

    A laboratory study was conducted with four pesticides, viz. a fungicide (carbendazim), two insecticides (chlorpyrifos and cartap hydrochloride) and an herbicide (pretilachlor) applied to a sandy clay loam soil at a field rate to determine their effect on microbial biomass carbon (MBC) and carbon mineralization (C(min)). The MBC content of soil increased with time up to 30 days in cartap hydrochloride as well as chlorpyrifos treated soil. Thereafter, it decreased and reached close to the initial level by 90th day. However, in carbendazim treated soil, the MBC showed a decreasing trend up to 45 days and subsequently increased up to 90 days. In pretilachlor treated soil, MBC increased through the first 15 days, and thereafter decreased to the initial level. Application of carbendazim, chlorpyrifos and cartap hydrochloride decreased C(min) for the first 30 days and then increased afterwards, while pretilachlor treated soil showed an increasing trend.

  17. Research Note:Determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin, Turkey

    Directory of Open Access Journals (Sweden)

    M. Tombul

    2004-01-01

    Full Text Available Spatial and temporal variations in soil hydraulic properties such as soil moisture q(h and hydraulic conductivity K(q or K(h, may affect the performance of hydrological models. Moreover, the cost of determining soil hydraulic properties by field or laboratory methods makes alternative indirect methods desirable. In this paper, various pedotransfer functions (PTFs are used to estimate soil hydraulic properties for a small semi-arid basin (Kurukavak in the north-west of Turkey. The field measurements were a good fit with the retention curve derived using Rosetta SSC-BD for a loamy soil. To predict parameters to describe soil hydraulic characteristics, continuous PTFs such as Rosetta SSC-BD (Model H3 and SSC-BD-q33q1500 (Model H5 have been applied. Using soil hydraulic properties that vary in time and space, the characteristic curves for three soil types, loam, sandy clay loam and sandy loam have been developed. Spatial and temporal variations in soil moisture have been demonstrated on a plot and catchment scale for loamy soil. It is concluded that accurate site-specific measurements of the soil hydraulic characteristics are the only and probably the most promising method to progress in the future. Keywords: soil hydraulic properties, soil characteristic curves, PTFs

  18. Comparative assessment of water infiltration of soils under different tillage systems in eastern Botswana

    Science.gov (United States)

    Moroke, T. S.; Dikinya, O.; Patrick, C.

    Water infiltration is an important component of water balance for improving crop production potential in dryland soil tillage systems in Botswana, particularly in the eastern region. Hardsetting soils common in arable lands of Botswana, often require some kind of tillage such as mouldboard ploughing, chiselling and ripping to improve waterharvesting and crop growth conditions. The objective of this study was to compare ponded cumulative infiltration, steady state infiltration rate and sorptivity of soils cultivated using deep ripping, single and double mouldboard ploughing. This study was conducted on Chromic Luvisols (sandy loam), Haplic Luvisols (sandy clay loam), Ferric Luvisols (clay loam), and Ferric Arenosols (sand). Infiltration was measured using double ring infiltrometer method for 4 h. Although infiltration was smaller on traffic line of deep ripping system at all sites, it was only significantly ( P 0.05) different under deep ripped. Cumulative and steady state infiltration rate was greater under sandy than loamy soils, smaller under double ploughing compared with single ploughed and deep ripped soils. Sorptivity was not significantly ( P > 0.05) different among tillage systems but was greater under sandy than sandy loam soils. Information on tillage and infiltration can improve implementation of waterharvesting technologies and crop production in Botswana.

  19. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    Science.gov (United States)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (Pconservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  20. Connectivity and percolation of pore networks in a cultivated silt loam soil quantified by X-ray tomography

    Science.gov (United States)

    Jarvis, Nicholas; Koestel, John; Larsbo, Mats

    2016-04-01

    The connectivity of macropore networks is thought to exert an important control on transport processes in soil. However, little progress has been made towards quantifying these effects for natural soils in the field, partly because of the experimental difficulties but also because the concept of connectivity lacks a unique mathematical definition. To investigate this question, X-ray tomography was used to measure pore volume, size distribution and connectivity at an image resolution of 65 microns for 64 samples taken in two consecutive years in the harrowed and ploughed layers of a silt loam soil a few weeks after spring cultivation. Three different connectivity metrics were evaluated and compared: one local metric, the Euler number, and two global measures, the connection probability and the probability of percolation (the fraction of the porosity which is continuous across the sample). The connection probability was found to be a good measure of the long-range connectivity (i.e. continuity) of the pore networks. In contrast, the Euler number was not a sensitive measure of global connectivity, although all samples with negative Euler numbers did percolate. We also found that the way connection is defined in the image analysis (either by 6 or 26 nearest neighbours) did not influence the calculations of percolating porosity. The results also demonstrate that harrowing has a clear homogenizing effect on the distribution of the pore space. However, a comparison with random field simulations and the evidence of small percolation thresholds shows that the macropore system developed in the recently harrowed soil was far from completely random or disordered. In some samples, more than one pore cluster percolated, while in others the percolating cluster was not the largest one. Nevertheless, the macropore networks in this cultivated silt loam soil displayed some key features predicted by percolation theory: a strong relationship was found between the percolating fraction

  1. Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar.

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Harchegani, Mahboobeh Kiani

    2016-01-15

    Many different amendments, stabilizers, and conditioners are usually applied for soil and water conservation. Biochar is a carbon-enriched substance produced by thermal decomposition of organic material in the absence of oxygen with the goal to be used as a soil amendment. Biochar can be produced from a wide range of biomass sources including straw, wood, manure, and other organic wastes. Biochar has been demonstrated to restore soil fertility and crop production under many conditions, but less is known about the effects of its application on soil erosion and runoff control. Therefore, a rainfall simulation study, as a pioneer research, was conducted to evaluate the performance of the application of vinasse-produced biochar on the soil erosion control of a sandy clay loam soil packed in small-sized runoff 0.25-m(2) plots with 3 replicates. The treatments were (i) no biochar (control), (ii) biochar (8 tha(-1)) application at 24h before the rainfall simulation and (iii) biochar (8 tha(-1)) application at 48 h before the rainfall simulation. Rainfall was applied at 50 mm h(-1) for 15 min. The mean change of effectiveness in time to runoff could be found in biochar application at 24 and 48 h before simulation treatment with rate of +55.10% and +71.73%, respectively. In addition, the mean runoff volume 24 and 48 h before simulation treatments decreased by 98.46% and 46.39%, respectively. The least soil loss (1.12 ± 0.57 g) and sediment concentration (1.44 ± 0.48 gl(-1)) occurred in the biochar-amended soil treated 48 h before the rainfall simulation. In conclusion, the application of vinasse-produced biochar could effectively control runoff and soil loss. This study provided a new insight into the effects of biochar on runoff, soil loss, and sediment control due to water erosion in sandy clay loam soils.

  2. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1996-01-01

    .), or it was applied to ryegrass one month after sowing. In a sandy loam soil, 62% of the incorporated urine N and 78% of the incorporated urea N was recovered in three cuts of herbage after 5 months. In a sandy soil, 51-53% of the labelled N was recovered in the herbage and the distribution of labelled N in plant...... and soil was not significantly different for incorporated urine and urea. Almost all the supplied labelled N was accounted for in soil and herbage in the sandy loam soil, whereas 33-34% of the labelled N was unaccounted for in the sandy soil. When the stored urine was applied to the soil surface, 20...... unaccounted for was probably mainly lost by ammonia volatilization. Significantly more urine- than urea-derived N (36 and 19%, respectively) was immobilized in the sandy loam soil, whereas the immobilization of N from urea and urine was similar in the sandy soil (13-16%). The distribution of urine N, whether...

  3. Removal of non aqueous phase liquid liquid (NAPL) from a loam soil monitored by time domain reflectometry (TDR) technique

    Science.gov (United States)

    comegna, alessandro; coppola, Antonio; dragonetti, giovanna; ajeel, ali; saeed, ali; sommella, angelo

    2016-04-01

    Non-aqueous phase liquids (NAPLs) are compounds with low or no solubility with water. These compounds, due to the several human activities, can be accidentally introduced in the soil system and thus constitute a serious geo-environmental problem, given the toxicity level and the high mobility. The remediation of contaminated soil sites requires knowledge of the contaminant distribution in the soil profile and groundwater. Methods commonly used to characterize contaminated sites are coring, soil sampling and the installation of monitoring wells for the collection of groundwater samples. The main objective of the present research is to explore the potential application of time domain reflectometry (TDR) technique in order to evaluate the effect of contaminant removal in a loam soil, initially contaminated with NAPL and then flushed with different washing solutions. The experimental setup consist of: i) a Techtronix cable tester; ii) a three-wire TDR probe with wave guides 14.5 cm long inserted vertically into the soil samples; iii) a testing cell of 8 cm in diameter and 15 cm high; iv) a peristaltic pump for upward injection of washing solution. In laboratory, soil samples were oven dried at 105°C and passed through a 2 mm sieve. Known quantities of soil and NAPL (corn oil, a non-volatile and non-toxic organic compound) were mixed in order to obtain soil samples with different degrees of contamination. Once a soil sample was prepared, it was repacked into a plastic cylinder and then placed into the testing cell. An upward injection of washing solution was supplied to the contaminated sample with a rate q=1.5 cm3/min, which corresponds to a darcian velocity v=6.0 cm/h. The out coming fluid, from the soil column was collected, then the washing solution and oil was separated. Finally both the amount of oil that was remediated and the dielectric permittivity (measured via TDR) of the contaminated soil sample were recorded. Data collected were employed to implement a

  4. Evaluation of Potential Nutritional Problems and Fertility Status of the Alfalfa (Medicago sativa L. Grown Soils of Artvin Province

    Directory of Open Access Journals (Sweden)

    Mehmet Özyazıcı

    2013-11-01

    Full Text Available This research was carried out to determine nutritional problems and soil fertility status of alfalfa grown soils in Artvin Region. For this objective, 78 soil samples were collected from intensive alfalfa cultivation area and used as material. Texture, pH, EC, CaCO3, organic matter, available P, total N, extractable K, Ca, Mg, Na, B, Fe, Cu, Zn and Mn analysis were done in soil samples and results of them were compared with threshold values. According to obtained results, texture, soil reaction, lime content and salt status were detected as clay loam, sandy clay loam and sandy loam, neutral reaction in 55.13% of samples, low lime content in 58.97% of samples and non salt problem, respectively. In addition, it was determined that most of the soil samples have enough sufficient level in terms of organic matter and total N whereas, 58.97% of samples has insufficient available P and 39.75% of samples has not enough concentration about extractable K. Moreover, extractable Ca, Mg and Na of soils varied between 48-9976, 134-830 and 18-240 mg kg-1 respectively while, it was found sufficient level in terms of extractable Fe, Cu, Zn in soils. As for B and Mn concentration of soils, 46.16% of soils investigated for this research has insufficient extractable B content and 16.67% of soils has also insufficient extractable Mn concentration.

  5. Shifts in soil biodiversity-A forensic comparison between Sus scrofa domesticus and vegetation decomposition.

    Science.gov (United States)

    Olakanye, Ayodeji O; Thompson, Tim; Ralebitso-Senior, T Komang

    2015-12-01

    In a forensic context, microbial-mediated cadaver decomposition and nutrient recycling cannot be overlooked. As a result, forensic ecogenomics research has intensified to gain a better understanding of cadaver/soil ecology interactions as a powerful potential tool for forensic practitioners. For this study, domestic pig (Sus scrofa domesticus) (4g) and grass (Agrostis/Festuca spp) cuttings (4g) were buried (July 2013 to July 2014) in sandy clay loam (80 g) triplicates in sealed microcosms (127 ml; 50 × 70 cm) with parallel soil only controls. The effects of the two carbon sources were determined by monitoring key environmental factors and changes in soil bacterial (16S rRNA gene) and fungal (18S rRNA gene) biodiversity. Soil pH changes showed statistically significant differences (pscrofa domesticus and grass trimming decomposition, respectively. In contrast, no statistically significant difference in evenness (p>0.05) was observed between the treatments.

  6. Seasonal dynamics in wheel load-carrying capacity of a loam soil in the Swiss Plateau

    DEFF Research Database (Denmark)

    Gut, S.; Chervet, A.; Stettler, Matthias

    2015-01-01

    ) is defined as the maximum wheel load for a specific tyre and inflation pressure that does not result in soil stress in excess of soil strength. The soil strength and hence WLCC is strongly influenced by soil matric potential (h). The aim of this study was to estimate the seasonal dynamics in WLCC based...... on in situ measurements of h, measurements of precompression stress at various h and simulations of soil stress. In this work, we concentrated on prevention of subsoil compaction. Calculations were made for different tyres (standard and low-pressure top tyres) and for soil under different tillage...... and cropping systems (mouldboard ploughing, direct drilling, permanent grassland), and the computed WLCC was compared with real wheel loads to obtain the number of trafficable days (NTD) for various agricultural machines. Wheel load-carrying capacity was higher for the top than the standard tyres...

  7. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study.

    Directory of Open Access Journals (Sweden)

    Weiwei Lu

    Full Text Available This study examined the effect of nitrogen (N on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant straw in absence (BC0 and presence (BCN of N and monitored for dynamics of carbon dioxide (CO2 flux, phospholipid fatty acids (PLFAs profile and dissolved organic carbon (DOC content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05, and the proportions of decomposed biochar carbon (C were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05 higher than DOC in biochar (1.75% and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05 increased the proportion of gram-positive (G+ bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G- bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil.

  8. Critical soil bulk density for soybean growth in Oxisols

    Science.gov (United States)

    Keisuke Sato, Michel; Veras de Lima, Herdjania; Oliveira, Pedro Daniel de; Rodrigues, Sueli

    2015-10-01

    The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.

  9. Mobility of Arsenic and Heavy Metals in a Sandy-Loam Textured and Carbonated Soil

    Institute of Scientific and Technical Information of China (English)

    GARCIA; M.DIEZ; F.MARTIN; M.SIMóN; C.DORRONSORO

    2009-01-01

    The continued effect of the pyrite-tailing oxidation on the mobility of arsenic,lead,zinc,cadmium,and copper was studied in a carbonated soil under natural conditions,with the experimcntal plot preserved with a layer of tailing covering the soil during three years.The experimental area is located in Southern Spain and was affected by a pyrite-mine spill.The climate in the area is typically Mediterranean,which determines the rate of soil alteration and element mobility.The intense alteration processes that occurred in the soil during three years caused important changes in its morphology and a strong degradation of the main soil properties.In this period,lead concentrated in the first 5 mm of the soil,with concentrations higher than 1500 mg kg-1,mainly associated to the neoformation of plumbojarosite.Arsenic was partially leached from the first 5 mm and mainly concentrated between 5-10 mm in the soil,with maximum values of 1 239 mg kg-1;the retention of arsenates was related to the neoformation of iron hydroxysulfates (jarosite,schwertmannite) and oxyhydroxides (goethite,ferrihydrite),both with a variable degree of crystallinity.The mobility of Zn,Cd,and Cu was highly affected by pH,producing a stronger leaching in depth;their retention was related to the forms of precipitated aluminium and,in the case of Cu,also to the neoformation of hydroxysulfate.

  10. Biodegradation of polyethylene glycol (PEG) in three tropical soils using radio labelled PEG

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, A.L. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil)]. E-mail: abdalla@cena.usp.br; Regitano, J.B.; Tornisielo, V.L.; Marchese, L. [Laboratory of Ecotoxicology, Piracicaba SP (Brazil); Pecanha, M.R.S.R.; Vitti, D.M.S.S. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil); Smith, T. [School of Agriculture, Policy and Development, University of Reading, Reading (United Kingdom)

    2005-08-19

    Polyethylene glycol (PEG) may be added to forage based diets rich in tannins for ruminant feeding because it binds to tannins and thus prevent the formation of potentially indigestible tannin-protein complexes. The objective of this work was to determine the in vitro biodegradation (mineralization, i.e., complete breakdown of PEG to CO{sub 2}) rate of PEG. {sup 14}C-Polyethylene glycol ({sup 14}C-PEG) was added to three different tropical soils (a sandy clay loam soil, SaCL; a sandy clay soil, SaC; and a sandy loam soil, SaL) and was incubated in Bartha flasks. Free PEG and PEG bound to tannins from a tannin rich local shrub were incubated under aerobic conditions for up to 70 days. The biodegradation assay monitored the {sup 14}CO{sub 2} evolved after degradation of the labelled PEG in the soils. After incubation, the amount of {sup 14}CO{sub 2} evolved from the {sup 14}C-PEG application was low. Higher PEG mineralization values were found for the soils with higher organic matter contents (20.1 and 18.6 g organic matter/kg for SaCL and SaC, respectively) than for the SaL soil (11.9 g organic matter/kg) (P < 0.05). The extent of mineralization of PEG after 70 days of incubation in the soil was significantly lower (P < 0.05) when it was added as bound to the browse tannin than in the free form (0.040 and 0.079, respectively). (author)

  11. The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management

    DEFF Research Database (Denmark)

    Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl; Schjønning, Per

    2016-01-01

    was sampled at the 0–10, 10–20 and 25–30 cm depths of a sandy loam soil at Flakkebjerg, Denmark in 2013. We used the experimental plots of a long-term field experiment with mouldboard ploughing (MP) and direct drilling (DD) treatments. The residue management included straw removal (−S) and straw retention (+S...... decreased clay dispersibility (p = 0.09) and increased soil friability (p b 0.05) compared with the MP soil. Direct drilling with straw removal (DD − S) resulted in higher workability compared with mouldboard ploughing with straw removal (MP − S) (p b 0.05). We defined non-complexed clay as NCC = clay −10...

  12. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties.

    Science.gov (United States)

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-03-01

    The present study was carried out to evaluate the impact of the effluents and the solid wastes generated by a giant pulp and paper mill in the northeastern part of India on soil mineralogy of the area. The impacts were monitored by analysis of soil samples from seven sites located in the potential impact zone and a control site where any kind of effluent discharge or solid waste dumping was absent. The soil belonged to medium texture type (sandy clay loam, sandy loam, loamy sand, and silt loam), and the soil aggregate analysis indicated higher levels of organic carbon, pH, electrical conductivity, effective cation exchange capacity, and mean weight diameter at sites receiving effluents and solid wastes from the pulp and paper mill. Depletion in soil silica level and in feldspar and quartz contents and rise in iron and calcium contents at the sites receiving effluents from the pulp and paper mill indicated significant influence on soil mineralogy. The soil contained a mixture of minerals consisting of tectosilicates (with silicate frameworks as in quartz or feldspar), phylosilicates (layered clays like kaolinite, smectite, chlorite, illite, etc.), and carbonates. Absence of pure clay minerals indicated a state of heterogeneous intermediate soil clay transformation. The significance of the mixed mineralogy in relation to the disposal of effluents and dumping of solid wastes is discussed in details.

  13. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore......, the volume of pores > 30 μm was more than 0.03 m3 m-3 larger for MP than for D in spring 2014 at the 4- to 8-cm depth. At the 18- to 27-cm depth, direct drilling resulted in a better air permeability and pore continuity index (e.g., air permeability of 18.2 and 11.2 mm2 for D and MP, respectively at −10 k...

  14. Lumbricid macrofauna alter atrazine mineralization and sorption in a silt loam soil

    OpenAIRE

    Binet, Françoise; Anne Kersanté; Munier-Lamy, Colette; Le Bayon, Renée-Claire; Belgy, Marie-José; Shipitalo, Martin J.

    2009-01-01

    Atrazine is a widely used herbicide and is often a contaminant in terrestrial and freshwater ecosystems. It is uncertain, however, how the activity of soil macrofauna affects atrazine fate and transport. Therefore, we investigated whether earthworms enhance atrazine biodegradation by stimulating herbicide degrading soil microflora, or if they increase atrazine persistence by facilitating herbicide sorption. Short (43 d) and medium term (86 d) effects of the earthworms Lumbricus terrestris and...

  15. Modeling of Fecal Coliform Bacteria in Surface Drip Irrigationin Clay Loam Soil

    Directory of Open Access Journals (Sweden)

    foroogh abbasi teshnizi

    2017-03-01

    Full Text Available Water for agriculture is one of the most important factors in arid and semi-arid areas and municipal wastewater treatment is an important resource for this purpose. Therefore, potential of transfer contaminations is a serious problem regarding use of treated wastewater for agriculture. Due to the risk of transfer contaminations through the use of wastewater, the study of transfer microbes in soil in recent decades has been of interest to researchers. In the present study, the transfer of bacteria fecal coliform was investigated in a lysimeter and the HYDRUS-1D model was used to simulate water flow and the fecal coliform in the soil. For calibration of the model and estimating the model input parameters, soil hydraulic and transport parameters, were inversely estimated. Results represented that the HYDRUS-1D with reasonably accurately simulated the outlet flow. To simulate the transfer of the bacteria in the soil, one site sorption model, two kinetic sites model (particle transport using attachment/detachment and one kinetic site model were used. In the simulation of bacterial transfer, one site sorption model was selected as the proper model for this study. One site sorption model estimated solid-phase growth coefficient ( about sextuple more than liquid-phase. It showed that deposited cells had a higher division rate compared with the cell in liquid-phase. The calibrated model was used for surveying the effect various irrigation intervals and irrigation times on bacterial transfer. The results showed that by increasing irrigation times, more bacteria leached out from the soil. Also by increasing irrigation intervals, more bacteria observed in the soil profile, due to favorable environmental conditions and food for the bacteria growth. According to the results, the best interval and irrigation times were one day and four hours, respectively.

  16. Clinoptilolite zeolite influence on inorganic nitrogen in silt loam and sandy agricultural soils

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral Clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4...

  17. Altered humin compositions under organic and inorganic fertilization on an intensively cultivated sandy loam soil

    Science.gov (United States)

    Humin is the largest and also the least understood fraction of soil organic matter. The humin structure and its correlation with microbiological properties are particularly uncertain. We applied advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to investigate the structural chan...

  18. Effect of blade vibration on mulch tillage performance under silt clay loam soil

    Directory of Open Access Journals (Sweden)

    B Goudarzi

    2015-09-01

    Full Text Available Introduction: Mulch tillage system is an intermediate system which covers some of disadvantages of no tillage and conventional tillage systems. In farms in which tillage is done with a chisel plow, runoff and soil erosion have a less important relation to moldboard and disk plow and naturally absorption of rainfall will be developed. Thus, the mulch tillage system is an appropriate alternative to conventional tillage and no tillage (Backingham and Pauli, 1993. The unwanted vibration in machinery and industry mainly processes most harmful factors, for example: bearing wear, cracking and loosening joints. And noise is produced in electrical systems by creating a short circuit (Wok, 2011. Self-induced and induced vibration are used in tillage systems. Induced vibration is created by energy consumption and self-induced vibration is created by collision among the blades and soil at the shank (Soeharsono and Setiawan, 2010. A study by Mohammadi-gol et al. (2005 was conducted. It was found that on the disk plow, plant residues maintained on the soil are more than that of moldboard plow. 99% frequency and amplitude, speed and rack angle of blade directly affect soil inversion and indirectly affect preservation of crop residue on the soil. The effect of vibration frequency and rack angle of blade to reduce the tensile strength is also clear. Moreover, in contrast to previous studies when speed progressing is less than (λ, not only the relative speed (λ, but also frequency can reduce the tensile strength (Beiranvand and Shahgoli, 2010; Awad-Allah et al., 2009. Therefore, aim of this study was to determine the effect of vibration and the speed of tillage on soil parameters and drawbar power in using electric power. Materials and Methods: To perform this test, three different modes of vibration (fixed, variable and induced vibration and two levels of speed in real terms at a depth of 20 cm were used for farming. The test was performed with a split plot

  19. Crop residues as driver for N2O emissions from a sandy loam soil

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Petersen, Søren O.; Chirinda, Ngonidzashe

    2017-01-01

    Nitrogen (N) cycling within agriculture constitutes a source of direct and indirect emissions of the potent greenhouse gas nitrous oxide (N2O). We analysed relationships between N2O emissions and C and N balances of four arable cropping systems under conventional or organic management within a long......-term experiment on a loamy sand soil at Foulum in Denmark. All cropping systems included winter wheat, a leguminous crop (faba bean or grass-clover), potato and spring barley grown in different 4-crop rotations varying in strategies for N supply (fertilizer/manure type and rate, use of catch crops and green...... manure). Crops in both organic and conventional systems received N at rates below the optimum for crop production. Soil N2O emissions were monitored in 2008–2009 in six selected crops which could be combined with data from other monitoring programs to calculate N2O emission factors for each of the 16...

  20. Olive Mill Effluent Spreading Effects on Water Retention of Tunisian Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Hamdi SAHRAOUI

    2014-01-01

    Full Text Available Olive mill effluents (OME are characterized by their nutrients content and their adhesive and hydrophobic properties. An experiment was carried out at an olive growing area in Tunisia, “Sidi Bou Ali”, to identify the impact of spreading over OME on physical soil characteristics. Three treatments were in situ monitored, namely T0 (Control, T1 (25 m3/ha and T2 (50 m3/ha, over a period of 4 months. Measurements were conducted monthly corresponding respectively to D1, D2, D3 and D4. Water retention curves were established by a physical capillary model in porous medium. Results showed that the two applied OME doses induced a decrease in water retention, especially for potential matrixes above pF 2 corresponding to the water available range. No significant differences were found between the treated soil plots T1 and T2.doi:10.14456/WJST.2014.27

  1. Modeling Tractive Force Requirements of Wheel tractors For Disc Ploughing in Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    S O Nkakini

    2012-10-01

    Full Text Available Tractive force models at different tillage speeds were developed using dimensional analysis, describing the tractor tyre - soil interaction. In this research study, disc ploughing on an experimental plot at twenty different soil moisture levels in loamy sand soil was carried out using trace tractor techniques. The independent variables: drawbar pull force, rolling (motion resistance, wheel slip, moisture content, cone index, wheel numeric, contact pressure, speed, width of plough, depth of plough, and dependent variable (Tractive force were measured and compared to computed values. High coefficients of determination R2 = 0.9492, 0.9555 and 0.9447 for ploughing at tillage speeds of 1.94m/s, 2.22m/s and 2.5m/s were obtained respectively. Standard errors of 0.3672552, 0.8628 and 0.8047 and the percentage (% errors of -2.272608059 and 2.45655144,-2.304946155 and 2.523126085,-1.424947801 and 2.020155232 at minimum and maximum values, were obtained. These results are clear evidence of the test of goodness of fit of the models between predictive and measured parameters for ploughing at different tillage speeds. The models were verified and validated by comparing the predicted with the measured tractive forces, and shown to closely followed the experimental results.

  2. Transport of Alachlor, Atrazine, Dicamba, and Bromide through Silt and Loam Soils

    Science.gov (United States)

    Tindall, J. A.

    2015-12-01

    The herbicides alachlor, atrazine, and dicamba, as well as bromide were applied to soils overlying the High Plains aquifer in Nebraska, to both macropore and non-macropore sites. Three of 6 study areas (exhibiting a high percentage of macropores) were used for analysis of chemical transport. Twelve intact soil cores (30 cm diameter; 40 cm height), were excavated (two each from 0-40 cm and 40-80 cm depths). The first three study areas and soil cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties; the remaining cores were treated the same as field macropore sites. Two undisturbed experimental field plots, each with a 1 m2 surface area, were established in each of the three macropore study areas. Each preferential plot was instrumented with suction lysimeters, tensiometers, and neutron access tubes - 10 cm increments to 80 cm - and planted in corn. Three study areas that did not exhibit macropores had alachlor, atrazine, and dicamba and bromide disked into the top 15 cm of soil; concentrations were tracked for 120 days - samples were collected on a grid, distributed within 3 plots measuring 50 m x 50 m each. Core samples were collected prior to and immediately after application, and then at 30, 60, and 120 days after application. Each lab core sample was in 15-cm lengths from 0-15 cm, 15-30 cm, 45-60 cm, and 75-90 cm. For areas exhibiting macropores, herbicides had begun to move between 10-15 days after application with concentrations peaking at various depths after heavy rainfall events. Field lysimeter samples showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of preferential flowpaths. Concentrations of atrazine, alachlor and dicamba exceeding 0.30, 0.30, and 0.05 μg m1-1 respectively were observed with depth (10-30 cm and 50-70 cm) after two months following heavy rainfall events indicating that preferential flowpaths were a significant

  3. Determination of Selenium Toxicity for Survival and Reproduction of Enchytraeid Worms in a Sandy Loam Soil

    Science.gov (United States)

    2016-07-01

    active radiation (PAR) light intensity of 12.8  0.7 µM m2/s (985  52 lux ), and mean temperature of 21.6  0.1 C. The soil moisture level was...PAR light intensity of 12.8  0.7 µM m2/s (985  52 lux ), and a mean temperature of 21.6  0.1 °C, for the duration of the 28 d test. The containers

  4. Pine Woodchip Biochar Impact on Soil Nutrient Concentrations and Corn Yield in a Silt Loam in the Mid-Southern U.S.

    Directory of Open Access Journals (Sweden)

    Katy E. Brantley

    2015-02-01

    Full Text Available Biochar has altered plant yields and soil nutrient availability in tropical soils, but less research exists involving biochar additions to temperate cropping systems. Of the existing research, results vary based on soil texture, crop grown, and biochar properties. The objective of this study was to determine the effects of pine (Pinus spp. woodchip biochar at 0, 5, and 10 Mg·ha−1 rates combined with urea nitrogen (N on soil chemical properties and corn (Zea mays L. yield under field conditions in the first growing season after biochar addition in a silt-loam alluvial soil. Biochar combined with fertilizer numerically increased corn yields, while biochar alone numerically decreased corn yields, compared to a non-amended control. Corn nitrogen uptake efficiency (NUE was greater with 10 Mg·ha−1 biochar compared to no biochar. There were limited biochar effects on soil nutrients, but biochar decreased nitrate, total dissolved N, and Mehlich-3 extractable sulfur and manganese concentrations in the top 10 cm. Pine woodchip biochar combined with N fertilizer has the potential to improve corn production when grown in silt-loam soil in the mid-southern U.S. by improving NUE and increasing yield. Further research will be important to determine impacts as biochar ages in the soil.

  5. Development of methods for multiresidue analysis of rice post-emergence herbicides in loam soil and their possible applications to soils of different composition.

    Science.gov (United States)

    Niell, Silvina; Pareja, Lucia; Asteggiante, Lucía Geis; Roehrs, Rafael; Pizzutti, Ionara R; García, Claudio; Heinzen, Horacio; Cesio, María Verónica

    2010-01-01

    Two simple and straightforward sample preparation methods were developed for the multiresidue analysis of post-emergence herbicides in loam soil that are commonly used in rice crop cultivation. A number of strategic soil extraction and cleanup methods were evaluated. The instrumental analysis was performed by HPLC with a diode array detector. The best compromise between the recoveries (69-98%) and good repeatability (RSD clomazone were analyzed simultaneously. Quinclorac and bispyribac sodium were also assayed, but their recoveries were below 50%. Both methods had an LOD of 0.7 microg/kg and could accurately determine the residues at the 2 microg/kg level. These two methods could not be applied directly to other soil types as the recoveries strongly depended on the soil composition. The developed methodologies were successfully applied in monitoring 87 real-world soil samples, in which only propanil (6 to 12 microg/kg) and clomazone (15 to 20 microg/kg) residues could be detected.

  6. Seasonal differences in tillage draught on a sandy loam soil with long-term additions of animal manure and mineral fertilizers

    DEFF Research Database (Denmark)

    Peltre, Clément; Nyord, T.; Christensen, B.T.;

    2016-01-01

    Energy requirements for soil tillage are closely linked to soil properties, such as clay, water and soil organic carbon (SOC) contents. Long-term application of inorganic fertilizer and organic amendments affects SOC content but little is known about seasonal differences in tillage draught...... requirements of soils subject to contrasting nutrient management regimes. We assessed autumn and spring tillage draught following harvest of early-sown and timely sown winter wheat grown on a sandy loam in the Askov Long-Term Experiment on Animal Manure and Mineral Fertilizers. Draught force was related...... to soil texture, soil water and SOC content, shear strength and bulk density, nutrient management, and yield of the preceding winter wheat. Contents of clay and SOC ranged from 8.9 to 10.6% and from 0.98 to 1.36%, respectively. In the autumn and spring, SOC normalized by clay content explained 38 and 5...

  7. Cultivos de cobertura: efectos sobre la macroporosidad y la estabilidad estructural de un suelo franco-limoso Cover crops: effects on soil macroporosity and soil structural stability in a silt loam soil

    Directory of Open Access Journals (Sweden)

    María Florencia Varela

    2011-07-01

    Full Text Available Los suelos franco-limosos manejados con siembra directa a menudo poseen porosidad estructural baja e inestable. Con el objetivo de determinar la capacidad de los cultivos de cobertura (CC de mejorar la porosidad y estabilidad estructural de estos suelos se llevaron a cabo experimentos de campo y de invernáculo. Ambos tuvieron tratamientos con y sin CC (avena, Avena sativa L., en rotación con soja (Glicine max L. Merr.. Luego de los CC se midieron densidad aparente (DA, el índice de inestabilidad estructural (IE y en el ensayo de invernáculo además, se midió la evolución de la distribución de tamaño de poros (DTP. En ambos ensayos la introducción de CC no disminuyó la DA, aunque incrementó la estabilidad del suelo (PNo- till (NT silt loam topsoils have often a low and unstable structural porosity. The objective of this study was to determine the capability of cover crops (CC of improving the structural porosity and stability of silt loam soils under NT. Greenhouse and field experiments were carried out on a silt loam soil (Typic Argiudoll with and without CC (oat, Avena sativa L. in crop sequences with soybean (Glicine max L. Merr.. Soil bulk density (DA and aggregate instability index (IE were measured after the CC in both experiments. In the greenhouse experiment, soil pore size distribution (DTP was measured. The use of CC did not change DA, but soil IE was significantly lower in crop sequences with CC (P < 0.05 both under field and greenhouse conditions. Stability increases were likely due to the effect of CC residues and root mass. No differences in DTP were found between treatments, although a significant effect of sampling date was observed (P<0.05. Changes in DTP were due to significant increases in mesopore (517.5% and macropore (52.7% volumes. Such changes occurred in all the treatments, probably due to the soil wetting-drying cycles. The results found in this study agree with other studies carried out on silt loams in the

  8. Solid beef cattle manure application impacts on soil properties and 17β-estradiol fate in a clay loam soil.

    Science.gov (United States)

    Caron, Emmanuelle; Farenhorst, Annemieke; Hao, Xiying; Sheedy, Claudia

    2012-01-01

    Livestock manure applied to agricultural land is one of the ways natural steroid estrogens enter soils. To examine the impact of long-term solid beef cattle (Bos Taurus) manure on soil properties and 17β-estradiol sorption and mineralization, this study utilized a soil that had received beef cattle manure over 35 years. The 17β-estradiol was strongly sorbed and sorption significantly increased (P applied.

  9. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils.

    Science.gov (United States)

    Turgut, Cafer; Pepe, M Katie; Cutright, Teresa J

    2005-02-01

    The use of two EDTA concentrations for enhancing the bioavailability of cadmium, chromium, and nickel in three natural soils (Ohio, New Mexico and Colombia) was investigated. The resulting uptake, translocation and selectivity with Helianthus annuus after mobilization were also examined. In general, plants grown in the sandy-loam Ohio soil had a higher uptake that resulted in a selectivity and total metal content of Cd>Cr>Ni and 0.73 mg and Cr>Cd>Ni and 0.32 mg for 0.1 and 0.3 g kg-1 EDTA, respectively. With the silty-loam New Mexico soil, although the total metal uptake was not statistically different the EDTA level did alter the selectivity; Cd>Cr>Ni (0.1 g kg-1 EDTA) and Cd>Cr>Ni (0.3 g kg-1 EDTA). Conversely, with the Colombian (sandy clay loam) soil increasing the EDTA level resulted in a higher total metal uptake (0.62 mg) than the 0.1 g kg-1 (0.59 mg) treatment. For all three soils, the translocation of Cd was limited. Evaluating the mobile metal fraction with and without EDTA determined that the chelator was capable of overcoming mass transfer limitations associated with the expandable clay fraction in the soils. Root wash results and root biomass concentrations indicated that Cd sorption was occurring. Therefore limited Cd translocation was attributed to insufficient phytochelatin levels.

  10. Effect of land-use changes and site variables on surface soil organic carbon pool at Mediterranean Region

    Science.gov (United States)

    Abu-hashim, Mohamed; Elsayed, Mohamed; Belal, Abd-ElAziz

    2016-02-01

    Soil organic carbon pool (SOCP) is affected by several factors particularly soil type, climate, topography, crop management, and anthropogenic factors. The study was carried out to clarify relationships between SOCP under different soil types and land-use changes in the Mediterranean region. Data of 26 pedons were investigated in Tanta catchment, middle Nile Delta, Egypt (30°45 N, 30°55 E), that the collected soil samples covered different soil types and land-uses. There were significant differences of SOCP among soils: loam and clay loams were rather similar. Clay soils were the most extensive and have mean SOCP of 4.08 ± 1.41 kg C m-2. The highest SOCP of 7.07 kg C m-2 was in clay loam soil associated with bare soil, while the lowest of 2.57 kg C m-2 in sandy clay loam soil associated with bare soil. Losing cropland showed highest increase from 1990 to 2015 with increasing urban encroachment by 15.3%. The overall average results of SOCP in cropland area showed 53.85 Mg C ha-1 under different soils. Losing the arable lands to urbanization resulted in a decrease of 285.421 Gg C of SOCP. With the decrease in SOCP sequestrated within the soil surface, carbon dioxide would be emitted to the atmosphere. The emitted CO2 resulted from losing the cropland equal to 1047.5 Gg CO2. Land-use changes have marked impact on surface SOCP and C sequestration.

  11. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil

    Science.gov (United States)

    Ndiaye, Babacar; Esteves, Michel; Vandervaere, Jean-Pierre; Lapetite, Jean-Marc; Vauclin, Michel

    2005-06-01

    The study was aimed at evaluating the effect of rainfall and tillage-induced soil surface characteristics on infiltration and runoff on a 2.8 ha catchment located in the central region of Senegal. This was done by simulating 30 min rain storms applied at a constant rate of about 70 mm h -1, on 10 runoff micro-plots of 1 m 2, five being freshly harrowed perpendicularly to the slope and five along the slope (1%) of the catchment. Runoff was automatically recorded at the outlet of each plot. Hydraulic properties such as capillary sorptivity and hydraulic conductivity of the sandy loam soil close to saturation were determined by running 48 infiltration tests with a tension disc infiltrometer. That allowed the calculation of a mean characteristic pore size hydraulically active and a time to ponding. Superficial water storage capacity was estimated using data collected with an electronic relief meter. Because the soil was subject to surface crusting, crust-types as well as their spatial distribution within micro-plots and their evolution with time were identified and monitored by taking photographs at different times after tillage. The results showed that the surface crust-types as well as their tillage dependent dynamics greatly explain the decrease of hydraulic conductivity and sorptivity as the cumulative rainfall since tillage increases. The exponential decaying rates were found to be significantly greater for the soil harrowed along the slope (where the runoff crust-type covers more than 60% of the surface after 140 mm of rain) than across to the slope (where crusts are mainly of structural (60%) and erosion (40%) types). That makes ponding time smaller and runoff more important. Also it was shown that soil hydraulic properties after about 160 mm of rain were close to those of untilled plot not submitted to any rain. That indicates that the effects of tillage are short lived.

  12. Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Munkholm, Lars Juhl

    2016-01-01

    treatment (labelled M8-1), the soil was loaded only in the first year. A tricycle-like machine with a single pass of wide tyres each carrying 12 Mg (treatment S12) was included at one site. Traffic treatments were applied in a randomized block design with four replicates and with treatments repeated in four...... strength measure predicting resistance to subsoil compaction. The tyre inflation pressure and/or the mean ground pressure were the main predictors of PR in the upper soil layers. For deeper soil layers, PR correlated better to the wheel load. The number of wheel passes (M-treatments vs the S12 treatment......-pressure tyres by crab steering/dog-walk machinery....

  13. Nutrient Availability in the Surface Horizons of Four Tropical Agricultural Soils in Mali

    Directory of Open Access Journals (Sweden)

    Verloo, MG.

    2002-01-01

    Full Text Available Studies of nutrient availability are important for the understanding and the estimation of soil fertility in areas like West Africa, where low nutrient availability is still one of the major constraints for food production. Physico-chemical soil analyses were used to assess the fertility status of the surface horizon samples of four Malian agricultural soils, (Bougouni, Kangaba, Baguinéda and Gao abbreviated as Bgni, Kgba, Bgda and Gao. Soil texture was sandy loam for Bgni and Kgba, sandy clay loam for Bgda and loamy sand for Gao. Soil pH values varied from moderately acid for Bgda to neutral for the other sites. Organic carbon ranged from very low (for Gao or low (for Bgni and Bgda to medium (for Kgba. Total N, P and CEC were low for the four soils. Available contents of Fe and Mn in all soils, except Gao, were higher than the critical levels while available Cu and Zn contents (except in Kgba were below or close to it. Results indicated that Kgba soil had a better macronutrient status for plant growth than the other sites.

  14. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic l

  15. Effects of shrub encroachment on soil organic carbon in global grasslands

    Science.gov (United States)

    Li, He; Shen, Haihua; Chen, Leiyi; Liu, Taoyu; Hu, Huifeng; Zhao, Xia; Zhou, Luhong; Zhang, Pujin; Fang, Jingyun

    2016-07-01

    This study aimed to evaluate the effect of shrub encroachment on soil organic carbon (SOC) content at broad scales and its controls. We conducted a meta-analysis using paired control data of shrub-encroached grassland (SEG) vs. non-SEG collected from 142 studies worldwide. SOC contents (0–50 cm) were altered by shrub encroachment, with changes ranging from ‑50% to + 300%, with an effect size of 0.15 (p legumes. The SOC content decreased in silty and clay soils but increased in sand, sandy loam and sandy clay loam. The SOC content increment was significantly positively correlated with precipitation and temperature as well as with soil bulk density but significantly negatively correlated with soil total nitrogen. We conclude the main effects of shrub encroachment would be to increase topsoil organic carbon content. As structural equation model revealed, soils properties seem to be the primary factors responsible for the extent of the changes, coarse textured soils having a greater capacity than fine textured soils to increase the SOC content. This increased effect appears to be secondarily enhanced by climate and plant elements.

  16. Effects of long-term amendment of organic manure and nitrogen fertilizer on nitrous oxide emission in a sandy loam soil

    Institute of Scientific and Technical Information of China (English)

    DING Wei-xin; MENG Lei; CAI Zu-cong; HAN Feng-xiang

    2007-01-01

    To understand the effects of long-term amendment of organic manure and N fertilizer on N2O emission in the North China Plain,a laboratory incubation at different temperatures and soil moistures were carried out using soils treated with organic manure (OM),half organic manure plus half fertilizer N (HOM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (NK) and control (CK) since 1989. Cumulative N2O emission in OM soil during the 17 d incubation period was slightly higher than in NPK soil under optimum nitrification conditions (25C and 60% water-filled pore space, WFPS), but more than twice under the optimum denitrification conditions (35C and 90% WFPS). N2O produced by denitrification was 2.1-2.3 times greater than that by nitrification in OM and HOM soils, but only 1.5 times greater in NPK and NP soils. These results implied that the long-term amendment of organic manure could significantly increase the N2O emission via denitrification in OM soil as compared to NPK soil. This is quite different from field measurement between OM soil and NPK soil. Substantial inhibition of the formation of anaerobic environment for denitrification in field might result in no marked difference in N2O emission between OM and NPK soils. This is due in part to more rapid oxygen diffusion in coarse textured soils than consumption by aerobic microbes until WFPS was 75% and to low easily decomposed organic C of organic manure. This finding suggested that addition of organic manure in the tested sandy loam might be a good management option since it seldom caused a burst of N2O emission but sequestered atmospheric C and maintained efficiently applied N in soil.

  17. Sorção do imazapyr em solos com diferentes texturas Imazapyr sorption in soils with different textures

    Directory of Open Access Journals (Sweden)

    L.E. Firmino

    2008-06-01

    Full Text Available O conhecimento do comportamento de herbicidas no ambiente, sobretudo no solo, permite a predição de possíveis impactos do seu uso em sistemas agrícolas. Com o intuito de avaliar a sorção do herbicida imazapyr no solo, foi realizado um experimento, utilizando sorgo (Sorghum bicolor como planta bioindicadora. A sorção do imazapyr foi avaliada em areia lavada e em três solos, com as seguintes texturas: muito argilosa, franco-argilo-arenosa e areia-franca, provenientes, respectivamente, das cidades de Sete Lagoas, João Pinheiro e Rio Casca, em Minas Gerais. Foram determinados: o valor de I50 (dose que inibiu 50% no acúmulo de massa seca da planta-teste e a relação de sorção [RS = (I50 solo -I 50 areia/I50 areia]. Os valores de I50 observados foram: 29,41; 10,20 e 7,33 mg kg-1, e a relação de sorção (RS: 9,77; 2,73 e 1,68, respectivamente para os solos muito argiloso, franco-argilo-arenoso e areia franca. O herbicida imazapyr apresentou a seguinte ordem de sorção nos substratos: muito argiloso > franco-argilo-arenoso > areia-franca > areia lavada. Em solos arenosos e com baixos teores de matéria orgânica, a baixa sorção do imazapyr predispõe o produto à lixiviação no perfil do solo, podendo contaminar mananciais de águas subterrâneas.Knowledge about herbicide behavior in the environment, especially in soil, allows predicting possible impacts caused by its use in agricultural systems. An experiment using Sorghum bicolor as a bio-indicator was carried out to evaluate imazapyr sorption in soil. Sorption was evaluated in washed sand and in soils of 3 different textures: very clayed, sandy clayed loam and sandy loam, respectively from Sete Lagoas, João Pinheiro and Rio Casca - Minas Gerais. The value of I50, which inhibits 50% of dry biomass accumulation of the test-plant, and sorption relation (SR = I50 soil - I50 sand/I50 sand were determined. I50 values observed were 29.41, 10.20 and 7.33 mg kg-1 and SR values were 9

  18. Sorption/desorption of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane(4,4'-DDT) on a sandy loam soil.

    Science.gov (United States)

    Erdem, Ziya; Cutright, Teresa J

    2015-02-01

    1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane(4,4'-DDT) is a pesticide well-known for its negative health and environmental effects. Despite being banned by a majority of world countries more than 30 years ago, its persistence in the environment is a continuing problem even today. The objective of the study was the investigation of sorption/desorption behavior of 4,4'-DDT in sandy loam soil. The impact of contaminant concentration and age was observed with three different experiments. The sorption percentages at the end of the short time step (8 h) were 50 and 92 %, for initial concentrations 2.26 and 5.28 mg/L, respectively. When freshly spiked soil was subjected to a conventional sorption study, 82 to 99.6 % of the initial aqueous DDT concentrations were sorbed within 24 h. When modeled with a Freundlich isotherm, the log K f was found to be 3.62. After six consecutive 24 h desorption steps, 33 to 96.6 % still remained in the soil. This was more pronounced for soils that had been aged for 60 days. After seven consecutive 24 h desorption steps of aged soil, the percent remaining sorbed to the soil were 44, 64, and 77 %, for 25, 250, and 500 mg/kg, respectively. All results show that 4,4-DDT has a tendency of sorbing to the soil rapidly and showing resistance to desorption. When comparing desorption values, aged soils were seen to desorb less than non-aged soils. This result was attributed to stronger binding to soil with increased contact time.

  19. Physical-hydraulic properties of a sandy loam typic paleudalf soil under organic cultivation of 'montenegrina' mandarin (Citrus deliciosa Tenore¹

    Directory of Open Access Journals (Sweden)

    Caroline Valverde dos Santos

    2014-12-01

    Full Text Available Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina' under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT, between the wheel tracks (BWT, and in the area under the line projection of the canopy (CLP, with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT, which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

  20. USE OF THE “ROTHC” MODEL TO SIMULATE SOIL ORGANIC CARBON DYNAMICS ON A SILTY-LOAM INCEPTISOL IN NORTHERN ITALY UNDER DIFFERENT FERTILIZATION PRACTICES

    Directory of Open Access Journals (Sweden)

    Rosa Francaviglia

    2014-01-01

    Full Text Available We evaluated the efficiency of the RothC model to simulate Soil Organic Carbon (SOC dynamics after 12 years of organic and mineral fertilization practices in a study area located in northern Italy, on a silty-loam Inceptisol with a rotation including tomato, maize and alfalfa. The model performance was assessed by RMSE and EF coefficients. RothC simulated well observed SOC decreases in 71 samples (RMSE=7.42; EF=0.79, while performed with less accuracy when considering all samples (96 samples; RMSE=12.37; EF=0.58, due to the fact that the model failed in case of measured SOC increases (25 samples; RMSE=20.77; EF=-0.038. The model was used to forecast the SOC dynamics over a 50 year period under the same pedoclimatic conditions. Only clay contents >15% allowed to predict increasing levels of SOC respect to the starting values.

  1. Enzyme activities and arylsulfatase protein content of dust and the soil source: biochemical fingerprints?

    Science.gov (United States)

    Acosta-Martínez, V; Zobeck, T M

    2004-01-01

    Little is known about the potential of enzyme activities, which are sensitive to soil properties and management, for the characterization of dust properties. Enzyme activities may be among the dust properties key to identifying the soil source of dust. We generated dust (27 and 7 microm) under controlled laboratory conditions from agricultural soils (0-5 cm) with history of continuous cotton (Gossypium hirsutum L.) or cotton rotated with peanut (Arachis hypogaea L.), sorghum [Sorghum bicolor (L.) Moench], rye (Secale cereale L.), or wheat (Triticum aestivum L.) under different water management (irrigated or dryland) and tillage (conservation or conventional) systems. The 27- and 7-microm dust samples showed activities of beta-glucosidase, alkaline phosphatase, and arylsulfatase, which are related to cellulose degradation and phosphorus and sulfur mineralization in soil, respectively. Dust samples generated from a loam and sandy clay loam showed higher enzyme activities compared with dust samples from a fine sandy loam. Enzyme activities of dust samples were significantly correlated to the activities of the soil source with r > 0.74 (P < 0.01). The arylsulfatase proteins contents of the soils (0.04-0.65 mg protein kg(-1) soil) were lower than values reported for soils from other regions, but still dust contained arylsulfatase protein. The three enzyme activities studied, as a group, separated the dust samples due to the crop rotation or tillage practice history of the soil source. The results indicated that the enzyme activities of dust will aid in providing better characterization of dust properties and expanding our understanding of soil and air quality impacts related to wind erosion.

  2. Pupal development of Ceratitis capitata (Diptera: Tephritidae) and Diachasmimorpha longicaudata (Hymenoptera: Braconidae) at different moisture values in four soil types.

    Science.gov (United States)

    Bento, F de M M; Marques, R N; Costa, M L Z; Walder, J M M; Silva, A P; Parra, J R P

    2010-08-01

    This study aimed to evaluate adult emergence and duration of the pupal stage of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and emergence of the fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead), under different moisture conditions in four soil types, using soil water matric potential. Pupal stage duration in C. capitata was influenced differently for males and females. In females, only soil type affected pupal stage duration, which was longer in a clay soil. In males, pupal stage duration was individually influenced by moisture and soil type, with a reduction in pupal stage duration in a heavy clay soil and in a sandy clay, with longer duration in the clay soil. As matric potential decreased, duration of the pupal stage of C. capitata males increased, regardless of soil type. C. capitata emergence was affected by moisture, regardless of soil type, and was higher in drier soils. The emergence of D. longicaudata adults was individually influenced by soil type and moisture factors, and the number of emerged D. longicaudata adults was three times higher in sandy loam and lower in a heavy clay soil. Always, the number of emerged adults was higher at higher moisture conditions. C. capitata and D. longicaudata pupal development was affected by moisture and soil type, which may facilitate pest sampling and allow release areas for the parasitoid to be defined under field conditions.

  3. Preliminary exploration of the relationships between soil characteristics and PAH desorption and biodegradation.

    Science.gov (United States)

    Hwang, Sangchul; Cutright, Teresa J

    2004-01-01

    Desorption and biodegradation of pyrene (PYR) were investigated and their relationships to soil characteristics were addressed. The results indicated that maximum achievable desorption was 30.2, 10.4, and 1.0 mg/kg for soils that had 1.7, 2.2, and 4.4 wt.% of expandable clays (smectite and vermiculite), respectively. Neither dissolved organic matter (DOM) nor total clay amounts made a good prediction of the desorption trend. Subsequently, the ease of desorption facilitated a faster aqueous biodegradation rate. The slowest aqueous biodegradation rate, 0.02 l/h, was achieved for the soil system that had the greatest amount of expandable clays, whereas the soil containing 1.7% expandable clays only achieved 0.73 l/h. The soil with 2.2% expandable clays depicted 0.41 l/h of aqueous biodegradation rate. A good linear correlation was obtained between maximum achievable desorption and aqueous biodegradation rate (R(2)=0.92). Soil analysis revealed that the total (soil+water) biodegradation reached was 65%, 78.3%, and 81.8% of the initial concentration (100 mg/kg) for the sandy clay loam (Colombian), sandy loam (Ohio), and silty loam (New Mexico) soils, respectively. This biodegradation extent was also in good agreement of expandable clay amount. Although aqueous PYR bioavailability was limited due to the strong association with the expandable clays, microbial movement and adhesion to those clays seemed to result in a great extent of the soil-phase biodegradation.

  4. Effect of nutrients and plant growth regulators on growth and yield of black gram in sandy loam soils of Cauvery new delta zone, India

    Directory of Open Access Journals (Sweden)

    S. Marimuthu

    2015-12-01

    Full Text Available Pulse productivity is very low in some of the sandy soil areas where, soils are having poor water and nutrient holding capacity. To improve the pulse productivity, field experiments were conducted at Agricultural Research Station, Tamil Nadu for two consecutive years to study the effect of phosphorus sources (mono- and diammonium phosphate with brassinolide and salicylic acid on growth and yield of black gram in sandy loam soils. The experiment was carried out in a randomized block design with three replications during kharif season. The treatments include 100% recommended dose of NPK along with foliar application of monoammonium phosphate (MAP, diammonium phosphate (DAP, brassinolide (0.25 ppm, and salicylic acid (100 ppm along with the combination of these treatments. TNAU pulse wonder at 5.0 kg ha−1 and TNAU micronutrient mixture (MN at 5 kg ha−1 were also tried. The results revealed that application of 100% recommended dose of NPK + DAP 2% + TNAU pulse wonder 5.0 kg ha−1 was statistically significant and recorded higher plant growth (37.62 cm, number of pods / plant (37.15, yield of black gram (1162 kg ha−1, and benefit cost ratio (2.98 over the other treatments. The lowest black gram yield (730 kg ha−1 was recorded for control.

  5. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types.

    Science.gov (United States)

    Frenk, Sammy; Ben-Moshe, Tal; Dror, Ishai; Berkowitz, Brian; Minz, Dror

    2013-01-01

    Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials. Engineered nanoparticles (ENPs) may thus find their way into the soil environment via wastewater, dumpsters and other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by measuring bacterial community activity, composition and size following exposure to copper oxide (CuO) and magnetite (Fe3O4) nanosized (soil types were examined: a sandy loam (Bet-Dagan) and a sandy clay loam (Yatir), under two ENP concentrations (1%, 0.1%). Results indicate that the bacterial community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil. More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a significant decreased oxidative potential and changes to community composition. Fe3O4 changed the hydrolytic activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community. Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO. Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore, it is suggested that the clay fraction and organic matter in different soils interact with the ENPs and reduce

  6. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.

    Science.gov (United States)

    Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad

    2015-04-01

    Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured.

  7. Quantity and nature of water-extractable organic matter from sandy loam soils with potato cropping managements

    Science.gov (United States)

    Water-extractable organic matter (WEOM) is part of the soil labile organic matter components. In this work, we evaluated the level and nature of soil WEOM from a long-term (6-year) potato crop rotation field experiment. The contents of water-extractable organic C (WEOC) were higher in continuous pot...

  8. Non-Linear finite element analysis of cone penetration in layered sandy loam soil-considering precompression stress state

    Science.gov (United States)

    Axisymmetric finite element (FE) method was developed using a commercial computer program to simulate cone penetration process in layered granular soil. Soil was considered as a non-linear elastic plastic material which was modeled using variable elastic parameters of Young’s Modulus and Poisson’s r...

  9. Study and Estimation of the Ratio of 137CS and 40K Specific Activities in Sandy and Loam Soils

    Directory of Open Access Journals (Sweden)

    Renata Mikalauskienė

    2011-12-01

    Full Text Available The present article describes changes in specific activities and fluctuations in the ratio of natural 40K and artificial 137Cs radionuclides in soil samples taken from different places of Lithuanian territory. The samples of soil have been selected from the districts polluted after the accident in Chernobyl nuclear plant performing nuclear testing operations. The study has established the main physical and chemical properties of soil samples and their impact on the concentration of 40K activities. 137Cs/40K specific activities in soil have been observed under the dry weight of the sample that varied from 0.0034 to 0.0240. The results of the study could be used for establishing and estimating 137Cs and 40K transfer in the system “soil-plant”.Article in Lithuanian

  10. Testing Some Pedo-Transfer Functions (PTFs in Apulia Region. Evaluation on the Basis of Soil Particle Size Distribution and Organic Matter Content for Estimating Field Capacity and Wilting Point

    Directory of Open Access Journals (Sweden)

    Floriano Buccigrossi

    2010-10-01

    Full Text Available The knowledge of soil water retention vs. soil water matric potential is applied to study irrigation and drainage scheduling, soil water storage capacity (plant available water, solute movement, plant growth and water stress. To measure field capacity and wilting point is expensive, laborious and is time consuming, so, frequently, matemathic models, called pedo-transfer functions (PTFs are utilized to estimate field capacity and wilting point through physical-chemical soil characteristics. Six PTFs have been evaluated (Gupta and Larson, 1979; Rawls et al., 1982; De Jong et al., 1983; Rawls and Brakensiek, 1985; Saxton et al., 1986; Vereecken et al., 1989 by comparing measured soil moisture values with estimated ones at soil water matric potential of -33 and -1500 kPa. Soil samples were collected (361 from 185 pedons of Apulian Region (Southern Italy. Accuracy of the soil moisture predictions is quantified with Root Mean Square Deviation (RMSD between estimated and measured water retention values. In Apulia Region the tested PTFs give different results on soils grouped on the basis of textural composition and organic matter (O.M. content both at the Field Capacity (FC and Wilting Point (WP. At the FC, Gupta and Larson model has given the best performance in Clayey (C, Sandy clay loam (SaCL, Sandy loam (SaL and Silty (Si soil, in loamy and tendency silty soils with O.M. content less than 1.9% and in tendency sandy soils with O.M. content less than 1.5% and greater than 2%; the Rawls model in Silty clay (SiC and Silty loam (SiL soils, in tendency clayey soils with O.M. less than 2.3% and in loamy and tendency silty soils with O.M. greater than 1.9%; the Rawls and Brakensiek model in tendency sandy soils with O.M. content between 1.5 and 2%; the Saxton model in Silty clay loam (SiCL, Loamy sand (LSa soils and in tendency clayey soils with O.M. content greater than 2.3% and the Vereecken model in Sandy clay (SaC, Loamy (L, Clay loam (CL and Sandy (Sa

  11. Fuel consumption of tractor for different soil types in semi-arid regions; Consumo de combustivel de um trator agricola para diferentes tipos de solo em regioes semi-aridas

    Energy Technology Data Exchange (ETDEWEB)

    Montanha, Gustavo K. [Universidade Estadual Paulista (FAC/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], E-mail: gmontanha@fca.unesp.br; Guerra, Saulo P.S. [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Dept. de Gestao e Tecnologia Agroindustrial; Andrade-Sanchez, Pedro; Heun, John [The University of Arizona, Maricopa, AZ (United States); Monteiro, Leonardo A. [The University of Arizona (MAC/UA), Maricopa, AZ (United States). Maricopa Agricultural Center

    2010-07-01

    The appropriate use of agricultural machinery enables greater operational efficiency and higher productivity for the farmer. Some factors such as soil type can influence the fuel consumption, one of the biggest costs. This study aimed to compare the fuel consumption of a tractor operating in two different conditions of soil in semi-arid regions. The area used for testing is located in the city of Maricopa, in Arizona, belonging to 'The University of Arizona'. The area 1 is classified as sandy clay loam soil (52% sand, 35% clay, 13% silt). The area 2 is classified as a sandy loam soil (71% sand, 12% clay and 17% silt). The tractor 4 x 2 TDA, with 88 kw (120 hp) engine power equipped with auto pilot system and an implement for tillage were used in the experiment. A data acquisition system was installed in the tractor to collect the data generated by the GPS and fuel consumption sensor. The results showed significant statistical difference in fuel consumption between soil textures. (author)

  12. Carbonate-silicate ratio for soil correction and influence on nutrition, biomass production and quality of palisade grass

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2011-10-01

    Full Text Available Silicates can be used as soil correctives, with the advantage of being a source of silicon, a beneficial element to the grasses. However, high concentrations of silicon in the plant would affect the digestibility of the forage. To evaluate the influence of the substitution of the calcium carbonate by calcium silicate on the nutrition, biomass production and the feed quality of the palisade grass [Urochloa brizantha (C. Hochstetter ex A. Rich. R. Webster], three greenhouse experiments were conducted in completely randomized designs with four replications. Experimental units (pots contained a clayey dystrophic Rhodic Haplustox, a sandy clay loam dystrophic Typic Haplustox and a sandy loam dystrophic Typic Haplustox. Each soil received substitution proportions (0, 25, 50, 75 and 100 % of the carbonate by calcium silicate. The increase in the proportion of calcium silicate elevated the concentrations and accumulations of Si, Ca, Mg, and B, reduced Zn and did not alter P in the shoot of plants. The effects of the treatments on the other nutrients were influenced by the soil type. Inclusion of calcium silicate also increased the relative nutritional value and the digestibility and ingestion of the forage, while the concentration and accumulation of crude protein and the neutral detergent and acid detergent fibers decreased. Biomass production and feed quality of the palisade grass were generally higher with the 50 % calcium silicate treatment.

  13. Movimento do herbicida imazapyr no perfil de solos tropicais Imazapyr mobility in tropical soil profile

    Directory of Open Access Journals (Sweden)

    L.E. Firmino

    2008-03-01

    imazapyr. After applying 1 kg ha-1 of the herbicide on each column surface, columns were submitted to three conditions: 1 14 min/35 min rainfall simulation followed by 48 hours rest; 2 14 min/35 min rainfall simulation followed by 30 days rest; and column inversion after applying imazapyr on the surface, under sub irrigation during 20 days, followed by 10 days rest. After this stage, columns were sectioned every 5 cm of depth. Sorghum bicolor was sowed as bioindicator on each portion and after 20 days of sowing, dry matter of the above ground tissue was evaluated. The higher herbicide descending movement observed was in sandy loam soil, followed by sandy clay loam and clay soil. The ascending movement of this herbicide occurred together with water, causing herbicide distribution in all the column area in sandy clay loam and sandy loam soils, while clay soil showed a smaller ascending movement. Imazapyr presents high mobility on all three soils, together with water movement in the soil profile, both in ascending and descending motions. Such high mobility may cause ground water contamination, and also cycles of permanence of this product in the superficial layers of the soil, depending on humidity availability.

  14. Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs

    Institute of Scientific and Technical Information of China (English)

    LONG Pan; SUI Peng; GAO Wang-sheng; WANG Bin-bin; HUANG Jian-xiong; YAN Peng; ZOU Juan-xiu; YAN Ling-ling; CHEN Yuan-quan

    2015-01-01

    To make recycling utilization of organic materials produced in various agricultural systems, ifve kinds of organic materials were applied in a ifeld test, including crop straw (CS), biogas residue (BR), mushroom residue (MR), wine residue (WR), pig manure (PM), with a mineral fertilizer (CF) and a no-fertilizer (CK) treatment as a control. Our objectives were:i) to quantify the effects of organic materials on soil C and N accumulation;i ) to evaluate the effects of organic materials on soil aggregate stability, along with the total organic carbon (TOC), and N in different aggregate fractions;and i i) to assess the relationships among the organic material components, soil C and N, and C, N in aggregate fractions. The trial was conducted in Wuqiao County, Hebei Province, China. The organic materials were incorporated at an equal rate of C, and combined with a mineral fertilizer in amounts of 150 kg N ha-1, 26 kg P ha-1 and 124 kg K ha-1 respectively during each crop season of a wheat-maize rotation system. The inputted C quantity of each organic material treatment was equivalent to the total amount of C contained in the crop straw harvested in CS treatement in the previous season. TOC, N, water-stable aggregates, and aggregate-associated TOC and N were investigated. The results showed that organic material incorpora-tion increased soil aggregation and stabilization. On average, the soil macroaggregate proportion increased by 14%, the microaggregate proportion increased by 3%, and mean-weight diameter (MWD) increased by 20%. TOC content fol owed the order of PM>WR>MR>BR>CS>CK>CF;N content fol owed the order WR>PM>MR>BR>CS>CF>CK. No signiifcant correlation was found between TOC, N, and the quality of organic material. Soil silt and clay particles contained the largest part of TOC, whereas the smal macroaggregate fraction was the most sensitive to organic materials. Our results indicate that PM and WR exerted better effects on soil C and N accumulation, fol owed by MR

  15. Toxicity of a New Polynitramine Energetic Material, CL-20, to the Enchytraeid Worm, Enchytraeus Crypticus, in a Sandy Loam Soil

    Science.gov (United States)

    2006-08-01

    due to photodecomposition, hydrolysis, reaction with organic matter, sorption/fixation, precipitation , immobilization, occlusion, microbial...ASTM Type II water, analytical reagent grade nitric acid 1% (volume/volume), then with ASTM Type I water. 2.3 Soil Amendment Procedures. Studies were...Initial reaction(s) in biotransformation of CL-20 is catalyzed by salicylate -l-monooxygenase from Pseudomonas sp. strain ATCC 29352. Appl. Environ

  16. 有机氯代烃在壤土中的吸附和解吸特性%Sorption and Desorption of Chlorinated Hydrocarbons onto Loam Soil

    Institute of Scientific and Technical Information of China (English)

    张凤君; 贾晗; 刘佳露; 董佳新; 卢伟; 吕聪

    2015-01-01

    The sorption and desorption characteristics of the four organic chlorinated hydrocarbons (trichloroethylene (TCE) ,cis 1 ,2 dichloroethylene (cis 1 ,2 DCE) ,1 ,1 ,1 trichloroethane (1 ,1 , 1 TCA ) , and 1 ,2 dichloroethane (1 ,2 DCA )) onto loam soil are investigated by a batch of experiments in this study .The results indicate that the sorption equilibrium time of the four chlorinated hydrocarbons onto the loam soil is about three days .The sorption isotherm for all compounds is nearly linear , and fits to Freundlich isotherm slightly over the entire concentration range . As for chloroethylenes ,TCE is strongly sorbed to the loam samples (Kd = 0 .624 L/kg) ,and followed by cis‐DCE (Kd = 0 .238 L/kg) .For chloroethanes ,1 ,1 ,1 TCA is strongly sorbed (Kd = 0 .520 L/kg) ,and followed by 1 ,2 DCA (Kd = 0 .353 L/kg) .This is consistent with the order of hydrophobicity of the compounds .In addition , the lg Koc value is estimated by Abdul , Dobbs , Rao and Cong empirical regression formula respectively in this study , and the results show that the estimated lg Koc value determined by Abdul regression is significantly lower than the calculated value ,and the estimated lgKoc value determined by Cong regression is significantly higher than the calculated value , while the estimated lg Koc values determined by Dobbs and Rao regression are much closer to the calculated values . This demonstrates that the Dobbs and Rao regression is more suitable for lg Koc estimation for chlorinated hydrocarbons .Besides ,it is found that there is a certain lag in desorption of chlorinated hydrocarbons from the loam soil ;and the higher the sorption capacity of chlorinated hydrocarbon ,the lower the desorption capacity of chlorinated hydrocarbon .%选取三氯乙烯(TCE)、顺1,2二氯乙烯(cis 1,2 DCE)、1,1,1三氯乙烷(1,1,1 TCA)、1,2二氯乙烷(1,2 DCA)4种常见的有机氯代烃,通过批次实验研究其在壤土中的吸附和

  17. The Effects of Land Configuration and Wood-Shavings Mulch on the Properties of a Sandy Loam Soil in Northeast Nigeria. 2. Changes in Physical Properties

    Directory of Open Access Journals (Sweden)

    Chiroma, AM.

    2006-01-01

    Full Text Available Mulching and ridge tillage are proven technologies for improving soil productivity in semi-arid regions. Yet data quantifying the combined influences of these practices are limited. Our objectives were to determine the changes in selected physical properties of a sandy loam after 4-years of annual tillage and wood-shavings mulching. The tillage and wood-shavings treatments consisted of: Flat bed (FB, Open ridge (OR, Tiedridge (TR, FBM, ORM and TRM were same as FB, OR and TR, respectively except that wood-shavings at a rate of 10 t/ha were surface applied ≈ 2 weeks after sowing each year to serve as both a mulch and an organic amendment. At the end of the trial in 2002, bulk density, penetration resistance, total porosity and soil water content from each of 0-0.075, 0.075-0.15 and 0.15-0.30 m depths were determined. Composite samples from the surface (0.075 and 0.075-0.15 m layers from 3 replicates of each treatment were also collected for the determination of wet aggregate stability and from 0-0.15 m and 0.15-0.30 m layers for determination of saturated hydraulic conductivity (Ksat. After 4 years of annual tillage and addition of woodshavings, soil bulk density and penetration resistance were consistently lower and total porosity higher in the FBM, ORM and TRM treatments than in the FB, OR and TR treatments. Penetration resistance in all treatments was strongly related to soil water content. A 'hoe pan' was established below 0.15 m depth beneath the furrows of the ridged treatments. This could be attributed to human traffic during field operations and ponding of water, which occurred in the furrows following heavy rains. Wet aggregate stability estimated as the proportion of aggregates of size > 0.25 mm (macro-aggregates in the 0-0.15 m layer were significantly (P< 0.05 higher under FBM, ORM and TRM than under FB, OR or TR treatments. Ksat was not influenced by either tillage or wood-shavings treatments but were higher for the mulched plots

  18. Evaluation of distribution and manganese availability in soils under soybean cultivation

    Science.gov (United States)

    Mendes Coutinho, Edson Luiz; de Cássia Gomes São João, Andréia; Mendes Coutinho Neto, André; Corá, José Eduardo; Fernandes, Carolina

    2013-04-01

    Manganese (Mn) deficiency in soybean became a problem in Brazil, mainly, due to soil low fertility use or soil high pH due to incorrect lime use. However, the manganese deficiency have not been thoroughly investigated. The effect of Mn soil application on Mn distribution among exchangeable, organic matter, amorphous Fe and Al oxides, crystalline Fe and Al oxides, and residual fractions were studied on a Typic Quartzipsament (RQ), a clayey Typic Haplustox (LVA) and a sandy clay loam Typic Haplustox (LV), in a greenhouse experiment carried out in Jaboticabal (SP) - Brazil (21°14'05'' S and 48°17'09'' W). A complete randomized design with three replications of treatments in a 3 x 6 factorial arrangement (three soils and six manganese rates) was used. Five soybean plants were grown during 34 days in pots with 2.5 kg of soil. The Mn contents in these fractions were correlated with those extracted by DTPA and by Mehlich-1 extractants and with soybean shoot Mn contents. Mn rates (0, 5, 10, 20, 40 and 60 mg kg-1) were applied using manganese sulphate (MnSO4). In the Oxisols, most of the Mn was associated with the Fe and Al oxides (amorphous and crystalline) and residual fractions. In the sandy soil (RQ), higher contents were found in exchangeable and residual fractions. Exchangeable fraction was the most important Mn supplier to soybean plants. Multiple regression analysis showed that Mn extracted by DTPA and Mehlich-1 were associated with soil exchangeable fraction.

  19. Surface water seal application to minimize volatilization loss of methyl isothiocyanate from soil columns.

    Science.gov (United States)

    Simpson, Catherine R; Nelson, Shad D; Stratmann, Jerry E; Ajwa, Husein A

    2010-06-01

    Metam-sodium (MS, sodium methyldithiocarbamate) has been identified as a promising alternative chemical to replace methyl bromide (MeBr) in soil preplant fumigation. One degradation product of MS in soil is the volatile gas methyl isothiocyanate (MITC) which controls soilborne pests. Inconsistent results associated with MS usage indicate that there is a need to determine cultural practices that increase pest control efficacy. Sealing the soil surface with water after MS application may be a sound method to reduce volatilization loss of MITC from soils and increase the contact time necessary for MITC to control pests. The objective of this research was to develop a preliminary soil surface water application amount that would potentially inhibit the off-gassing rate of MITC. Off-gassing rate was consistently reduced with increasing water seal application. The application of a 2.5-3.8 cm water seal provided significantly lower (71-74% reduction in MITC volatilization) total fumigant loss compared with no water seal. The most favorable reduction in MITC off-gassing was observed in the 2.5 cm water seal. This suggests that volatilization of MITC-generating compounds can be highly suppressed using adequate surface irrigation following chemical application in this soil type (sandy clay loam), based on preliminary bench-scale soil column studies. .

  20. Transport of contaminants from energy-process-waste leachates through subsurface soils and soil components: laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wangen, L.E.; Stallings, E.A.; Walker, R.D.

    1982-08-01

    The subsurface transport and attenuation of inorganic contaminants common to a variety of energy process waste leachates are being studied using laboratory column methods. Anionic species currently being emphasized are As, B, Mo, and Se. Transport of the cations Cd and Ni is also being studied. The solid adsorbents consist of three soil mineral components (silica sand, kaolinite, and goethite), and four subsurface soils (a dunal sand, an oxidic sandy clay loam, an acidic clay loam, and an alkaline clay loam). Breakthrough patterns of these species from packed soil columns are followed by monitoring eluent concentrations vs time under carefully controlled laboratory conditions. This report describes the experimental methods being used, the results of preliminary batch adsorption studies, and the results of column experiments completed through calendar year 1981. Using column influent concentrations of about 10 mg/l, adsorption (mmoles/100 g) has been determined from the eluent volume corresponding to 50% breakthrough. On silica sand, kaolinite, dunal sand, and goethite, respectively, these are 2.0 x 10/sup -4/, 0.020, 0.013, and 0.31 for cadmium, 4.4 x 10/sup -4/, 0.039, 0.020, and 0.98 for nickel. On kaolinite, dunal sand, and goethite, respectively, adsorption values (mmoles/100 g) are As (0.24, 0.019, and 20.5), B (0.041, 0.0019, and 1.77), Mo (0.048, 0.0010, and 5.93), and Se (0.029, 0.00048, and 1.30). Arsenic is the most highly adsorbed contaminant species and goethite has the largest adsorption capacity of the adsorbents.

  1. Impact of lfuxapyroxad on the microbial community structure and functional diversity in the silty-loam soil

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-hu; XU Jun; LIU Yong-zhuo; DONG Feng-shou; LIU Xin-gang; ZHANG Wen-wen; ZHENG Yong-quan

    2015-01-01

    The aim of this work was to assess the effect of applying three different doses of lfuxapyroxad on microbial activity, com-munity structure and functional diversity as measured by respiration, microbial biomass C, phospholipid fatty acid (PLFA) and community-level physiological proifles (CLPPs). Our results demonstrated that substrate-induced respiration (on day 15) and microbial biomass C (on days 7 and 15) were inhibited by lfuxapyroxad, but stimulation was observed thereafter. In contrast, lfuxapyroxad addition increased the basal respiration and metabolic quotients (qCO2) and respiratory quotients (QR). Analysis of the PLFA proifles revealed that the total and bacterial biomass (both Gram-positive bacteria (GP) and Gram-negative bacteria (GN)) were decreased within the initial 15 days, whereas those as wel as the GN/GP ratio were increased at days 30 and 60. Fluxapyroxad input decreased the fungi biomass but increased the bacteria/fungi ratio at al incubation time. Moreover, high lfuxapyroxad input (75 mg lfuxapyroxad kg–1 soil dry weight) increased the microbial stress level. A principal component analysis (PCA) of the PLFAs revealed that lfuxapyroxad treatment signiifcantly shifted the microbial community structure, but al of the observed effects were transient. Biolog results showed that average wel color development (AWCD) and functional diversity index (H´) were increased only on day 60. In addition, the dissipation of lfuxa-pyroxad was slow in soil, and the degradation half-lives varied from 158 to 385 days depending on the concentration tested.

  2. Fate of carbosulfan and monocrotophos in sandy loam soils of Pakistan under field conditions at different watertable depths.

    Science.gov (United States)

    Tariq, Muhammad Ilyas; Afzal, Shahzad; Shahzad, Farina

    2010-05-01

    Information regarding pesticide mobility is critical for the evaluation of pesticide management practices. For this purpose, lysimetric studies were conducted to develop assessment schemes to protect groundwater from unacceptable effects caused by pesticide use. By using these studies, specific monitoring actions and prevention measures for the protection of waters can be studied, and the results thus obtained can provide the local authorities and the decision makers with an identification tool for demarcating risk areas. Pesticide residues were found at the bottom of lysimeters in the following pattern i.e., 1.52 > 2.1 > 2.74 m which could represent an "index of risk" for groundwater pollution. Regressions built for carbofuran and monocrotophos against watertable depths showed a decreasing trend of pesticide in higher watertable treatments. These findings support the existence of a significant role for chromatographic flow in sandy texture soil. Moreover, the higher values of pesticide residue at the bottom of lysimeters reflect that chromatographic flow as well as preferential flow pattern prevails during higher precipitation events. The precipitation received during the study was higher than the 10 year average and can be considered relatively as a worst case scenario. Finally, the authors have recommended a standardized pesticide monitoring scheme for groundwater in accordance with the already validated generic schemes in developed countries.

  3. Mechanical impedance of soil crusts and water content in loamy soils

    Science.gov (United States)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  4. Long-term effects of grass-clover ley on the structure of a silt loam soil in a cold temperate climate

    Science.gov (United States)

    Jarvis, Nicholas; Koestel, John; Larsbo, Mats; Taylor, Astrid; Kätterer, Thomas

    2016-04-01

    Soil pore space structure is mediated by interacting biological and physical processes that can be strongly affected by land use or management change. The objective of this study was to investigate the long-term effects of grass-clover leys on the structure of a silt loam soil in a cold humid climate. The measurements were made in a long-term field trial established in 1956 at Offer in northern Sweden. This experiment includes four treatments with varying proportions of ley (1, 2, 3 or 5 years) in a 6-year forage-based rotation. We used X-ray tomography to quantify topsoil structural pore networks in the first year of arable cropping following the ley break, a few weeks after sowing in spring. Near-saturated infiltration was also measured as a proxy for soil structure in both topsoil and subsoil. Earthworm populations were quantified by both hand-digging and infiltration of mustard solution. In the topsoil, the treatments with a greater proportion of ley in the rotation had larger organic carbon contents, near-saturated hydraulic conductivity and earthworm biomass as well as smaller bulk densities and larger total porosities. In contrast, no treatment effects were found for the volume, size distribution, connectivity and heterogeneity of the X-ray imaged pore space. Topsoil structure is seasonally dynamic and it seems possible that significant effects of long-term cropping treatments on the architecture of these larger pore networks (image resolution of 65 microns) would have been found later in the season, as a result of the re-establishment of earthworm biopores after tillage. No individuals of deep-burrowing anecic earthworm species were found at the site. Previous work has also showed shallow rooting at this site, with almost all visible roots of spring barley confined to the uppermost 30 cm. Thus, it is perhaps not surprising that no effects of crop treatment on organic carbon content were found in the subsoil. Likewise, there were no apparent treatment

  5. Arsenic localization and speciation in the root-soil interface of the desert plant Prosopis juliflora-velutina.

    Science.gov (United States)

    Castillo-Michel, Hiram; Hernandez-Viezcas, Jose A; Servin, Alia; Peralia-Videa, Jose R; Gardea-Torresdey, Jorge L

    2012-06-01

    The bioavailability and mobility of arsenic (As) in soils depends on several factors such as pH, organic matter content, speciation, and the concentration of oxides and clay minerals, among others. Plants modify As bioavailability in the rhizosphere; thus, the biogeochemical processes of As in vegetated and non-vegetated soils are different. Changes in As speciation induced by the rhizosphere can be monitored using micro-focused synchrotron-based X-ray fluorescence (μXRF) combined with μX-ray absorption near-edge spectroscopy (μXANES). This research investigated As speciation in the rhizosphere of mesquite (Prosopis juliflora-velutina) plants grown in a sandy clay loam treated with As(III) and As(V) at 40 mg kg(-1). Rhizosphere soil and freeze-dried root tissues of one-month-old plants were analyzed by bulk XAS. Bulk XAS results showed that As(V) was the predominant species in the soil (rhizosphere and non-vegetated), whereas As(III) was dominant in the root tissues from both As(V) and As(III) treated plants. μXAS and μXRF studies of thin sections from resin embedded soil cores revealed the As(III)-S interactions in root tissues and a predominant As-Fe interaction in the soil. This research demonstrated that the combination of bulk XAS and μXAS techniques is a powerful analytical technique for the study of As speciation in soil and plant samples.

  6. Spatial variability in the soil water content of a Mediterranean agroforestry system with high soil heterogeneity

    Science.gov (United States)

    Molina, Antonio Jaime; Llorens, Pilar; Aranda, Xavier; Savé, Robert; Biel, Carmen

    2013-04-01

    Variability of soil water content is known to increase with the size of spatial domain in which measurements are taken. At field scale, heterogeneity in soil, vegetation, topography, water input volume and management affects, among other factors, hydrologic plot behaviour under different mean soil water contents. The present work studies how the spatial variability of soil water content (SWC) is affected by soil type (texture, percentage of stones and the combination of them) in a timber-orientated plantation of cherry tree (Prunus avium) under Mediterranean climatic conditions. The experimental design is a randomized block one with 3 blocks * 4 treatments, based on two factors: irrigation (6 plots irrigated versus 6 plots not irrigated) and soil management (6 plots tillaged versus 6 plots not tillaged). SWC is continuously measured at 25, 50 and 100 cm depth with FDR sensors, located at two positions in each treatment: under tree influence and 2.5 m apart. This study presents the results of the monitoring during 2012 of the 24 sensors located at the 25 cm depth. In each of the measurement point, texture and percentage of stones were measured. Sandy-loam, sandy-clay-loam and loam textures were found together with a percentage of stones ranging from 20 to 70 %. The results indicated that the relationship between the daily mean SWC and its standard deviation, a common procedure used to study spatial variability, changed with texture, percentage of stones and the estimation of field capacity from the combination of both. Temporal stability analysis of SWC showed a clear pattern related to field capacity, with the measurement points of the sandy-loam texture and the high percentage of stones showing the maximun negative diference with the global mean. The high range in the mean relative difference observed (± 75 %), could indicate that the studied plot may be considered as a good field-laboratory to extrapolate results at higher spatial scales. Furthermore, the

  7. The impact of standard preparation practice on the runoff and soil erosion rates under laboratory conditions

    Science.gov (United States)

    Khaledi Darvishan, Abdulvahed; Homayounfar, Vafa; Hamidreza Sadeghi, Seyed

    2016-09-01

    The use of laboratory methods in soil erosion studies, rainfall simulation experiments, Gerlach troughs, and other measurements such as ring infiltrometer has been recently considered more and more because of many advantages in controlling rainfall properties and high accuracy of sampling and measurements. However, different stages of soil removal, transfer, preparation and placement in laboratory plots cause significant changes in soil structure and, subsequently, the results of runoff, sediment concentration and soil loss. Knowing the rate of changes in sediment concentration and soil loss variables with respect to the soil preparation for laboratory studies is therefore inevitable to generalize the laboratory results to field conditions. However, there has been little attention given to evaluate the effects of soil preparation on sediment variables. The present study was therefore conducted to compare sediment concentration and soil loss in natural and prepared soil. To achieve the study purposes, 18 field 1 × 1 m plots were adopted in an 18 % gradient slope with sandy-clay-loam soil in the Kojour watershed, northern Iran. A portable rainfall simulator was then used to simulate rainfall events using one or two nozzles of BEX: 3/8 S24W for various rainfall intensities with a constant height of 3 m above the soil surface. Three rainfall intensities of 40, 60 and 80 mm h-1 were simulated on both prepared and natural soil treatments with three replications. The sediment concentration and soil loss at five 3 min intervals after time to runoff were then measured. The results showed the significant increasing effects of soil preparation (p ≤ 0.01) on the average sediment concentration and soil loss. The increasing rates of runoff coefficient, sediment concentration and soil loss due to the study soil preparation method for laboratory soil erosion plots were 179, 183 and 1050 % (2.79, 2.83 and 11.50 times), respectively.

  8. Soil bulk electrical resistivity and forage ground cover: nonlinear models in an alfalfa (Medicago sativa L. case study

    Directory of Open Access Journals (Sweden)

    Roberta Rossi

    2015-12-01

    Full Text Available Alfalfa is a highly productive and fertility-building forage crop; its performance, can be highly variable as influenced by within-field soil spatial variability. Characterising the relations between soil and forage- variation is important for optimal management. The aim of this work was to model the relationship between soil electrical resistivity (ER and plant productivity in an alfalfa (Medicago sativa L. field in Southern Italy. ER mapping was accomplished by a multi-depth automatic resistivity profiler. Plant productivity was assessed through normalised difference vegetation index (NDVI at 2 dates. A non-linear relationship between NDVI and deep soil ER was modelled within the framework of generalised additive models. The best model explained 70% of the total variability. Soil profiles at six locations selected along a gradient of ER showed differences related to texture (ranging from clay to sandy-clay loam, gravel content (0 to 55% and to the presence of a petrocalcic horizon. Our results prove that multi-depth ER can be used to localise permanent soil features that drive plant productivity.

  9. Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil.

    Science.gov (United States)

    Abbas, Mohamed H H; Abdelhafez, Ahmed A

    2013-01-01

    EDTA amendments are widely used for micronutrient fertilization in arid soils, besides their effectiveness in the remediation process of heavy metal from contaminated soils. However, the persistence of EDTA in arsenic contaminated soil may have further negative effects on the grown plants. To investigate the influences of EDTA on soil As, a pot experiment was conducted using a sandy clay loam As-polluted soil treated with gradual rates of EDTA (0, 1.0, 2.5 and 5 mmol kg(-1)) and planted with maize for two months. The key findings reveal that EDTA applications increased AB-DTPA extractable and water soluble As significantly. Such increases seemed to be the main reasons behind the increase in As uptake by maize plants as the addition of EDTA at the rates of 1.0, 2.5 and 5.0 mmol kg(-1) increased significantly As uptake by shoots 1.5, 2.4 and 3.0 folds, respectively compared to the untreated soil. On the other hand, As uptake by roots did not increase significantly except with the highest application rates of 2.5 and 5.0 mmol kg(-1). The results also show that arsenic translocation factor (TF) values were too low to attain successful phytoextraction. In conclusion, the bioavailable fraction of As is important to investigate the phytoextraction and phytotoxicity of As.

  10. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions

    Directory of Open Access Journals (Sweden)

    F.Sh.F. Badawi

    2011-06-01

    Full Text Available The ability of tested rhizomicrobial isolates (Serratia marcescens and Trichoderma harzianum along with a strain of root nodule bacteria (Bradyrhizobium spp. to exhibit some PGP-properties was evaluated in vitro conditions. The main PGP-properties, namely the ability to solubilize-P and production of IAA, as well as production of siderophores and HCN were examined. Additionally, field trials were conducted on sandy loam soil at El-Tahrir Province during two successive summer seasons to study the effect of co-inoculation with Bradyrhizobium either individually or together with S. marcescens and/or T. harzianum on nodulation, some plant growth characters, peanut yield and its yield components. The in vitro experiment revealed that all of the tested microorganisms were apparently able to trigger PGP-properties. Phosphate solubilization was the common feature of the employed microorganisms. However, T. harzianum appeared to be superior to other microorganisms, and Bradyrhizobium displayed the lowest capacity. The ability of the microorganisms to produce indole compounds showed that S. marcescens was more effective in IAA production and followed by Bradyrhizobium. Capacity of S. marcescens and T. harzianum to excrete ferric-specific ligands (siderophores and HCN was detected, while Bradyrhizobium failed to produce such compounds. Results of field trials showed that the uninoculated peanut had the least nodulation status, N2-ase activity and all vegetative growth characters in both studied seasons. Bacterization of peanut seeds with bradyrhizobia exerted considerable improvement in number and mass of root nodules, increased the rate of acetylene reduction and all growth characters in comparison to the uninoculated control. The synergy inoculation between bradyrhizobia and any of the tested microorganisms led to further increases of all mentioned characters and strengthened the stimulating effect of the bacterial inoculation. However, the promotive

  11. Influência do período de restrição hídrica na atividade residual de isoxaflutole no solo Influence of drought periods on the residual activity of isoxaflutole in soil

    Directory of Open Access Journals (Sweden)

    R.S. Oliveira Jr.

    2006-12-01

    Full Text Available O objetivo deste trabalho foi estudar a atividade residual do isoxaflutole (IFT no controle de Brachiaria decumbens sob diferentes períodos de seca, após a aplicação do herbicida, em dois solos. Para isso, foram realizados seis ensaios simultâneos, sendo utilizadas doses de 0, 230 e 270 g ha-1 de isoxaflutole em amostras de Latossolo Vermelho Distroférrico nitossólico (textura argilosa e doses de 0, 180 e 200 g ha-1 em amostras de Latossolo Vermelho distrófico (textura franco-argilo-arenosa. Em cada ensaio, foram combinados em esquema fatorial doses e períodos de seca após as aplicações do herbicida, utilizando-se B. decumbens como bioindicador da atividade residual do herbicida no solo. As avaliações de controle foram feitas aos 15, 30, 45 e 60 dias após a semeadura do bioindicador. O IFT apresentou alta estabilidade no solo de textura argilosa mesmo após três chuvas simuladas de 20 mm, espaçadas de 30 dias e seguidas de 120 dias de seca após sua aplicação. No solo de textura franco-arenosa a estabilidade foi menor, e o efeito residual (80% de controle persistiu entre 0 e 110 dias para B. decumbens, conforme dose, períodos de seca e data de avaliação após a semeadura. Esse fato evidenciou que, à medida que aumenta o tempo e o número de irrigações entre a aplicação do herbicida e a semeadura do bioindicador, há redução no potencial efetivo de controle de IFT no Latossolo Vermelho distrófico.This work was carried out to evaluate the residual activity of isoxaflutole (IFT in Brachiaria decumbens control after different simulated drought conditions following herbicide application in two soils. Six simultaneous experiments were performed, using rates of 0, 230 and 270 g ha-1 of IFT in samples of a heavy clay soil and of 0, 180 and 200 g ha-1 in samples of a sandy clay loam soil. In each experiment, rates of IFT were combined in a factorial scheme with drought periods after herbicide application. B. decumbens was

  12. Field Performance of the Disk Harrow, Power Harrow and Rotary Tiller at Different Soil Moisture Contents on a Clay Loam Soil in Mazandaran

    Directory of Open Access Journals (Sweden)

    M Rajabi Vandechali

    2015-03-01

    Full Text Available About 60% of the mechanical energy consumed in mechanized agriculture is used for tillage operations and seedbed preparation. On the other hand, unsuitable tillage system resulted in soil degradation, affecting soil physical properties and destroying soil structure. The objective of this research was to compare the effects of three types of secondary tillage machines on soil physical properties and their field performances. An experiment was conducted in a wheat farm in Jouybar area of Mazandaran as split plots based on randomized complete block design with three replications. The main independent variable (plot was soil moisture with three levels (23.6-25, 22.2-23.6 and 20.8-22.2 percent based on dry weight and the subplot was three types of machine (two-disk perpendicular passing harrow, Power harrow and Rotary tiller. The measured parameters included: clod mean weight diameter, soil bulk density, specific fuel consumption, machine efficiency and machine capacity. The effects of treatments and their interactions on the specific fuel consumption, machine efficiency and machine capacity and also the effects of treatments on bulk density were significant (P

  13. Degradation of zearalenone and ochratoxin A in three Danish agricultural soils

    DEFF Research Database (Denmark)

    Mortensen, G.K.; Strobel, B.W.; Hansen, H.C.B.

    2006-01-01

    Degradation of two mycotoxins: zearalenone (ZON) produced by species of Fusarium and ochratoxin A (OTA) produced by species of Penicillium were followed in pot experiments using agricultural topsoils from Danish experimental farms: a sandy soil, a sandy clay soil and a gyttja soil with a high...

  14. Response of Sorghum bicolor L. to Residual Phosphate on Two Contrasting Soils Previously Planted to Cowpea or Maize

    Directory of Open Access Journals (Sweden)

    Tola Omolayo Olasunkanmi

    2016-01-01

    Full Text Available Proper fertilizer nutrient management through adequate utilization of the residual value coupled with healthy crop rotation contributes significantly to sustainable crop production. This study was conducted to evaluate the direct and residual effects of two rock phosphate (RP materials on two contrasting soils previously planted with either the cereal crop or the leguminous crop. The effectiveness of the RP materials as substitute for the conventional P fertilizers was evaluated using single superphosphate as reference at the Department of Agronomy, University of Ibadan, Ibadan, Nigeria. The experiments were 2 × 2 × 4 factorial in completely randomized design. The test crops in the first cropping performed better on the slightly acidic loamy sand than on the strongly acidic sandy clay loam. Performance of each crop was improved by P supply in the first and second cropping. Single superphosphate proved to be more efficient than the RPs in the first cropping but not as effective as MRP in the second cropping. In the second cropping, sorghum performed better on the soil previously cropped to cowpea while Morocco RP had the highest residual effect among the P-fertilizer sources. It is evident that rock phosphates are better substitutes to the conventional phosphorus fertilizers due to their long term residual effect in soils. The positive effects of healthy rotation of crops as well as the negative effects of low soil pH are also quite obvious.

  15. Study on soils under shifting cultivation and other land use categories in Chittagong Hill Tracts, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Alake Biswas; M.Alamgir; S.M.S.Haque; K.T.Osman

    2012-01-01

    Soil samples were collected and analyzed from 25 sites of three hilly regions (Rangamati,Banderban and Khagrachari) for an understanding of the impact of denudation and land use on soils in Chittagong Hill Tracts,Bangladesh.There were natural forests,bushy land,slashed sites,slashed and burnt sites,and the sites prepared for shifting cultivation,one year after shifting cultivation and two years after shifting cultivation.The soils were generally yellowish brown to reddish brown,sandy to sandy clay loam,strongly acid,and well to excessively drained on steep slopes with considerable variation among the sites and land use categories.Bulk density was the highest in sites of one year after shifting cultivation (1.52 g·cm-3) and the lowest in foreted sites (1.38 g·cm-3).Water holding capacities were,however,statistically similar in all sites.Organic carbon varied from 0.54% (slashed and burnt sites) to 1.55% (forested sites) and total N ranged from 0.05% (shifting cultivation for one year) to 0.13% (forested sites).Available phosphorus (Bray & Kurtz-2 P) was the maximum in forested sites (12.32 mg·kg-1),and it did not differ significantly in other sites.Contents of available Ca,Mg and K were also higher in the bushy lands and forested sites than cleared and shifting cultivated sites.

  16. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil.

    Science.gov (United States)

    Kulikowska, Dorota; Gusiatin, Zygmunt Mariusz; Bułkowska, Katarzyna; Kierklo, Katarzyna

    2015-10-01

    Although commercially available biosurfactants are environmentally friendly and effectively remove heavy metals from soil, they are costly. Therefore, this study investigated whether inexpensive humic substances (HS) from sewage sludge compost could effectively remove copper (Cu) and cadmium (Cd) from highly contaminated sandy clay loam (S1) and clay (S2). The optimum HS concentration and pH were determined, as well process kinetics. Under optimum conditions, a single washing removed 80.7% of Cu and 69.1% of Cd from S1, and 53.2% and 36.5%, respectively, from S2. Triple washing increased removal from S1 to almost 100% for both metals, and to 83.2% of Cu and 88.9% of Cd from S2. Triple washing lowered the potential ecological risk (Er(i)) of the soils, especially the risk from Cd. HS substances show potential for treating soils highly contaminated with heavy metals, and HS from other sources should be tested with these and other contaminants.

  17. Degradation of plant cuticles in soils: impact on formation and sorptive ability of humin-mineral matrices.

    Science.gov (United States)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2015-05-01

    Plant cuticles are important precursors for soil organic matter, in particular for soil humin, which is considered an efficient sorbent for organic pollutants. In this study, we examined degradation and transformation of cuticles isolated from fruit and leaves in loamy sand and sandy clay loessial arid brown soils. We then studied sorption of phenanthrene and carbamazepine to humin-mineral matrices isolated from the incubated soils. Low degradation (22%) was observed for agave cuticle in a sandy clay soil system, whereas high degradation (68-78%) was obtained for agave cuticle in a loamy sand soil system and for loamy sand and sandy clay soils amended with tomato cuticle. During incubation, most of the residual organic matter was accumulated in the humin fraction. Sorption of phenanthrene was significantly higher for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with soils without cuticle application. Sorption of carbamazepine to humin-mineral matrices was not affected by cuticle residues. Cooperative sorption of carbamazepine on humin-mineral matrices isolated from sandy clay soil is suggested. Sorption-desorption hysteresis of both phenanthrene and carbamazepine was lower for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with nonamended soils. Our results show that cuticle composition significantly affects the rate and extent of cuticle degradation in soils and that plant cuticle application influences sorption and desorption of polar and nonpolar pollutants by humin-mineral matrices.

  18. Investigating the Effect of Soil Texture and Fertility on Evapotranspiration and Crop Coefficient of Maize Forage

    Directory of Open Access Journals (Sweden)

    M. Ghorbanian Kerdabadi

    2017-02-01

    Full Text Available Introduction: Crop coefficient varies in different environmental conditions, such as deficit irrigation, salinity and intercropping. The effect of soil fertility and texture of crop coefficient and evapotranspiration of maize was investigated in this study. Low soil fertility and food shortages as a stressful environment for plants that makes it different evapotranspiration rates of evapotranspiration calculation is based on the FAO publication 56. Razzaghi et al. (2012 investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (CV. Titicaca was grown in field lysimeters with sand, sandy loam and sandy clay loam soil. Zhang et al (2014 were investigated the Effect of adding different amounts of nitrogen during three years (from 2010 to 2012 on water use efficiency and crop evapotranspiration two varieties of winter wheat. The results of their study showed. The results indicated the following: (1 in this dry land farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic. Materials and Methods: The study was a factorial experiment in a completely randomized design with three soil texture treatment, including silty clay loam, loam and sandy-loam soil and three fertility treatment, including without fertilizer, one and two percent fertilizer( It was conducted at the experimental farm in

  19. Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material.

    Science.gov (United States)

    Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer

    2012-08-03

    The use of some novel and efficient crop nutrient-based superabsorbent hydrogel nanocomposites (SHNCs), is currently becoming increasingly important to improve the crop yield and productivity, due to their water retention properties. In the present study a poly(Acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite was synthesized and its physical properties characterized using Energy Dispersive X-ray (EDX), FE-SEM and FTIR spectroscopic techniques. The effects of different levels of SHNC were studied to evaluate the moisture retention properties of sandy loam soil (sand 59%, silt 21%, clay 19%, pH 7.4, EC 1.92 dS/m). The soil amendment with 0.1, 0.2, 0.3 and 0.4 w/w% of SHNC enhanced the moisture retention significantly at field capacity compared to the untreated soil. Besides, in a separate experiment, seed germination and seedling growth of wheat was found to be notably improved with the application of SHNC. A delay in wilting of seedlings by 5-8 days was observed for SHNC-amended soil, thereby improving wheat plant growth and establishment.

  20. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types.

    Directory of Open Access Journals (Sweden)

    Sammy Frenk

    Full Text Available Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials. Engineered nanoparticles (ENPs may thus find their way into the soil environment via wastewater, dumpsters and other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by measuring bacterial community activity, composition and size following exposure to copper oxide (CuO and magnetite (Fe3O4 nanosized (<50 nm particles. Two different soil types were examined: a sandy loam (Bet-Dagan and a sandy clay loam (Yatir, under two ENP concentrations (1%, 0.1%. Results indicate that the bacterial community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil. More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a significant decreased oxidative potential and changes to community composition. Fe3O4 changed the hydrolytic activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community. Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO. Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore, it is suggested that the clay fraction and organic matter in

  1. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.

    Science.gov (United States)

    Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C

    2015-01-01

    Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.

  2. Nitrogen release from decomposing residues of leguminous cover crops and their effect on maize yield on depleted soils of Bukoba District, Tanzania

    NARCIS (Netherlands)

    Baijukya, F.P.; Ridder, de N.; Giller, K.E.

    2006-01-01

    Nitrogen release patterns from decomposing shoot residues of Tephrosia candida, Crotalaria grahamiana, Mucuna pruriens, Macrotyloma axillare, Macroptillium atropurpureum and Desmodium intortum were studied in the laboratory for a period of 22 weeks in a sandy clay soil and 10 weeks in a clay soil us

  3. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Directory of Open Access Journals (Sweden)

    Leila Esmaeelnejad

    2016-06-01

    Full Text Available In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C from two feedstocks (rice husk and apple wood chips. Produced biochars were prepared at two diameters (1-2 mm and <1 mm and mixed with soil at a rate of 2% (w/w. Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks.

  4. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeelnejad, L.; Shorafa, M.; Gorji, M.; Hosseini, S.M.

    2016-11-01

    In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C) from two feedstocks (rice husk and apple wood chips). Produced biochars were prepared at two diameters (1-2 mm and <1 mm) and mixed with soil at a rate of 2% (w/w). Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks) was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks. (Author)

  5. Pine Woodchip Biochar Impact on Soil Nutrient Concentrations and Corn Yield in a Silt Loam in the Mid-Southern U.S.

    OpenAIRE

    Katy E. Brantley; Mary C. Savin; Brye, Kristofor R.; David E. Longer

    2015-01-01

    Biochar has altered plant yields and soil nutrient availability in tropical soils, but less research exists involving biochar additions to temperate cropping systems. Of the existing research, results vary based on soil texture, crop grown, and biochar properties. The objective of this study was to determine the effects of pine ( Pinus spp.) woodchip biochar at 0, 5, and 10 Mg·ha −1 rates combined with urea nitrogen (N) on soil chemical properties and corn ( Zea mays L.) yield under field con...

  6. Soil Properties and Wheat Growth and Nutrients as Affected by Compost Amendment Under Saline Water Irrigation

    Institute of Scientific and Technical Information of China (English)

    A. M. MAHDY

    2011-01-01

    A greenhouse experiment was conducted to test and compare the suitability of saline compost and saline irrigation water for nutrient status amendment of a slightly productive sandy clay loam soil,to study the macronutrient utilization and dry matter production of wheat (Triticum aestivum c.v.Gemmiza 7) grown in a modified soil environment and to determine the effects of compost and saline irrigation water on soil productivity.The sandy clay loam soil was treated with compost of five rates (0,24,36,48,and 60 m3 ha-1,equivalent to 0,3,4.5,and 6 g kg-1 soil,respectively) and irrigation water of four salinity levels (0.50 (tap water),4.9,6.3,and 8.7 dS m-1).The results indicated that at harvest,the electrical conductivity (EC) of the soil was significantly (P < 0.05) changed by the compost application as compared to thecontrol.In general,the soil salinity significantly increased with increasing application rates of compost.Soluble salts,K,C1,HCO3,Na,Ca,and Mg,were significantly increased by the compost treatment.Soil sodium adsorption ratio (SAR) was significantly affected by the salinity levels of the irrigation water,and showed a slight response to the compost application.The soil organic carbon content was also significantly (P < 0.05) affected by application of compost,with a maximum value of 31.03 g kg-1 recorded at the compost rate of 60 m3 ha-1 and the irrigation water salinity level of 8.7 dS m-1 and a minimum value of 12.05 g kg-1 observed in the control.The compost application produced remarkable increases in wheat shoot dry matter production.The maximum dry matter production (75.11 g pot-1) occurred with 60 m3 ha-1 compost and normal irrigation water,with a minimum of 19.83 g pot-1 with no addition of compost and irrigation water at a salinity level of 8.70 dS m-1.Significant increases in wheat shoot contents of K,N,P,Na,and C1 were observed with addition of compost.The relatively high shoot N values may be attributed to increases in N availability in

  7. Arbuscular mycorrhizal fungus enhances P acquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilization regime.

    Science.gov (United States)

    Hu, Junli; Lin, Xiangui; Wang, Junhua; Cui, Xiangchao; Dai, Jue; Chu, Haiyan; Zhang, Jiabao

    2010-10-01

    The P efficiency, crop yield, and response of wheat to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (19 years) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIR) of wheat plants at acquiring P were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Without AMF inoculation, higher crop yields but lower colonization rates were observed in the NPK and two OA-inputted treatments, and NPK had significantly (P soils and thereby P acquisition of wheat plants compared with OA and 1/2 OM. G. caledonium inoculation significantly (P soil alkaline phosphatase (ALP) activity, only with the NPK treatment. This gave an MIR of ca. 45% on total P acquisition of wheat plants. There were no other remarkable MIRs. It suggested that the MIR is determined by soil available P status, and rational combination of AMF with chemical NPK fertilizer can compensate for organic amendments by improving P-acquisition efficiency in arable soils.

  8. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil.

    Science.gov (United States)

    Chu, Haiyan; Fujii, Takeshi; Morimoto, Sho; Lin, Xiangui; Yagi, Kazuyuki; Hu, Junli; Zhang, Jiabao

    2007-01-01

    The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the alpha subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils.

  9. Aging effect of 137Cs obtained from 137Cs in the Kanto loam layer from the Fukushima nuclear power plant accident and in the Nishiyama loam layer from the Nagasaki A-bomb explosion.

    Science.gov (United States)

    Ohta, Tomoko; Mahara, Yasunori; Kubota, Takumi; Igarashi, Toshifumi

    2013-01-01

    We measured (134)Cs and (137)Cs in the surface soil of the Kanto loam in the eastern Tokyo metropolitan area and the Nishiyama loam in Nagasaki, Japan. The observed (137)Cs deposition in the Kanto loam from the Fukushima nuclear power plant (NPP) accident ranged from 4.0 to 77 kBq m(-2), which corresponds to 0.3-5 times of that in the Nishiyama loam. The (137)Cs retardation factor in the Kanto loam obtained seven months after the Fukusima NPP accident and in the Nishiyama loam after 36 and 38 years from the detonation of the Pu atomic bomb (A-bomb) ranged from 180 to 260 and 2000 to 10,000, respectively. This difference in the retardation factors is attributed to an aging effect that corresponds to seven months and 36 to 38 years after the deposition of (137)Cs occurred on the soil minerals.

  10. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions

    National Research Council Canada - National Science Library

    Badawi, F.Sh.F; Biomy, A.M.M; Desoky, A.H

    2011-01-01

    ... known N 2 -fixing plant-microorganism interactions is the legume–rhizobia symbiosis, which is considered the most efficient and important process in crop production, so as to improve soil fertility and farming system flexibility ( Mylona et al., 1995 ). Numerous publications have indicated the necessity of legume inoculation with effective and effi...

  11. Environmental fate of manure-borne estrogens and pathogens applied to agricultural land

    DEFF Research Database (Denmark)

    Amin, Mostofa; Forslund, Anita; Bech, Tina Bundgaard

    was investigated in a field study, where the spatial distribution of Escherichia coli and Salmonella Typhimurium Bacteriophage 28B in and around the injection slit was measured on day 0, 1, 6, 18, and 46/49 in sandy clay loam and sandy loam soil. Transport of slurry components away from the slit varied...

  12. Influence of 20-year organic and inorganic fertilization on organic carbon accumulation and microbial community structure of aggregates in an intensively cultivated sandy loam soil.

    Directory of Open Access Journals (Sweden)

    Huanjun Zhang

    Full Text Available To evaluate the long-term effect of compost (CM and inorganic fertilizer (NPK application on microbial community structure and organic carbon (OC accumulation at aggregate scale, soils from plots amended with CM, NPK and no fertilizer (control for 20 years (1989-2009 were collected. Soil was separated into large macroaggregate (>2,000 μm, small macroaggregate (250-2,000 μm, microaggregate (53-250 μm, silt (2-53 μm and clay fraction (<2 μm by wet-sieving, and their OC concentration and phospholipid fatty acids (PLFA were measured. The 20-year application of compost significantly (P<0.05 increased OC by 123-134% and accelerated the formation of macroaggregates, but decreased soil oxygen diffusion coefficient. NPK mainly increased OC in macroaggregates and displayed weaker influence on aggregation. Bacteria distributed in all aggregates, while fungi and actinobacteria were mainly in macroaggregates and microaggregates. The ratio of monounsaturated to branched (M/B PLFAs, as an indicator for the ratio of aerobic to anaerobic microorganisms, increased inversely with aggregate size. Both NPK and especially CM significantly (P<0.05 decreased M/B ratios in all aggregates except the silt fraction compared with the control. The increased organic C in aggregates significantly (P<0.05 negatively correlated with M/B ratios under CM and NPK. Our study suggested that more efficient OC accumulations in aggregates under CM-treated than under NPK-treated soil was not only due to a more effective decrease of actinobacteria, but also a decrease of monounsaturated PLFAs and an increase of branched PLFAs. Aggregations under CM appear to alter micro-habitats to those more suitable for anaerobes, which in turn boosts OC accumulation.

  13. Influence of 20-year organic and inorganic fertilization on organic carbon accumulation and microbial community structure of aggregates in an intensively cultivated sandy loam soil.

    Science.gov (United States)

    Zhang, Huanjun; Ding, Weixin; He, Xinhua; Yu, Hongyan; Fan, Jianling; Liu, Deyan

    2014-01-01

    To evaluate the long-term effect of compost (CM) and inorganic fertilizer (NPK) application on microbial community structure and organic carbon (OC) accumulation at aggregate scale, soils from plots amended with CM, NPK and no fertilizer (control) for 20 years (1989-2009) were collected. Soil was separated into large macroaggregate (>2,000 μm), small macroaggregate (250-2,000 μm), microaggregate (53-250 μm), silt (2-53 μm) and clay fraction (soil oxygen diffusion coefficient. NPK mainly increased OC in macroaggregates and displayed weaker influence on aggregation. Bacteria distributed in all aggregates, while fungi and actinobacteria were mainly in macroaggregates and microaggregates. The ratio of monounsaturated to branched (M/B) PLFAs, as an indicator for the ratio of aerobic to anaerobic microorganisms, increased inversely with aggregate size. Both NPK and especially CM significantly (Psoil was not only due to a more effective decrease of actinobacteria, but also a decrease of monounsaturated PLFAs and an increase of branched PLFAs. Aggregations under CM appear to alter micro-habitats to those more suitable for anaerobes, which in turn boosts OC accumulation.

  14. Soil management and green water in sloping rainfed vineyards

    Science.gov (United States)

    José Marqués Pérez, María; Ruíz-Colmenero, Marta; García-Díaz, Andrés; Bienes Allas, Ramón

    2017-04-01

    plots having different management practices allowed the record of runoff per minute and further influence in soil moisture. After rainfalls soils were at field capacity and progressively dried in undisturbed conditions. Particle size analysis shows that this soil has 58 % sand, 18% silt and 24% clay, corresponding to a Sandy Clay Loam texture. Total porosity in the topsoil ranges from 49 to 51%, although according to previous studies only the 28% is effective to stock water in their micro and mesopores. In the upper 35 cm these soils are able to store from 0.05 to 0.25 m3 of water per m3 of soil depending on the seasons. At the same time, variations of runoff / infiltration were also noticed depending on the seasons and treatments.

  15. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  16. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    2013-04-01

    Full Text Available Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06 and 352% ± 139% (p = 0.1 of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site with growth of 142% ± 42% (p > 0.2 and 131% ± 62% (p > 0.2 of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC, no significant effects on maize yields were observed (p > 0.2. In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination

  17. Effects of changes in land use on soil physical properties and soil organic carbon content in a wheat-corn-sunflower crop sequence, in a loam soil of Argentina.

    Science.gov (United States)

    Aparicio, V.; Costa, J. L.

    2012-04-01

    The Argentinean Humid Pampas extend over about 60 million hectares, 90% of which are agricultural lands. The Southeast of the Buenos Aires Province is part of the Humid Pampas, it covers over 1,206,162 hectares, the mean annual temperature is 13.3 °C and the climate is sub-humid. At the present only 6% of the lands are used for pasture. The main activities are agriculture and cattle production. The main crops are wheat, sunflower, corn and soybean. The tillage systems used in the area are: moldboard plow (MP), chisel plow (CP) and no-till (NT). Excessive soil cultivation under MP generates decreases in the levels of soil organic carbon (SOC). The magnitude of such decrease depends on the intensity of the tillage system, the tillage timeliness and the amount and quality of the residues. Adopting NT may reduce the effects of intensive agriculture, through the maintenance and accumulation of SOC. However, there are evidences that, under NT, the bulk density (ρb) in the superficial layers of the soil increases. The soil compaction causes degradation of the soil structure, reduces the soil water availability and reduces the soil hydraulic conductivity. With this scenario and the tendency to increase the surface under NT in the Southeast Humid Pampas, we evaluated the evolution of some soil physical properties and the SOC in a 10-year experiment with a wheat-corn-sunflower rotation. The experiment was carried out in four localities at farmerś fields under three different tillage systems: MP, CP and NT in a randomized complete block design, considering each locality as a block. Each plot had 50 m in width by 100 m length and the treatments were: NT, MP and CP. The results of this experiment have allowed us to verify that: i) the wheat-corn-sunflower crop sequence showed a tendency to reduce the values of bulk density (ρb) but NT increased ρb in the superficial soil layers; ii) the more intensive the tillage system, the higher the change in the mean weight diameter

  18. Soil Carbon and Nitrogen Stocks of Different Hawaiian Sugarcane Cultivars

    Directory of Open Access Journals (Sweden)

    Rebecca Tirado-Corbalá

    2015-06-01

    Full Text Available Sugarcane has been widely used as a biofuel crop due to its high biological productivity, ease of conversion to ethanol, and its relatively high potential for greenhouse gas reduction and lower environmental impacts relative to other derived biofuels from traditional agronomic crops. In this investigation, we studied four sugarcane cultivars (H-65-7052, H-78-3567, H-86-3792 and H-87-4319 grown on a Hawaiian commercial sugarcane plantation to determine their ability to store and accumulate soil carbon (C and nitrogen (N across a 24-month growth cycle on contrasting soil types. The main study objective establish baseline parameters for biofuel production life cycle analyses; sub-objectives included (1 determining which of four main sugarcane cultivars sequestered the most soil C and (2 assessing how soil C sequestration varies among two common Hawaiian soil series (Pulehu-sandy clay loam and Molokai-clay. Soil samples were collected at 20 cm increments to depths of up to 120 cm using hand augers at the three main growth stages (tillering, grand growth, and maturity from two experimental plots at to observe total carbon (TC, total nitrogen (TN, dissolved organic carbon (DOC and nitrates (NO−3 using laboratory flash combustion for TC and TN and solution filtering and analysis for DOC and NO−3. Aboveground plant biomass was collected and subsampled to determine lignin and C and N content. This study determined that there was an increase of TC with the advancement of growing stages in the studied four sugarcane cultivars at both soil types (increase in TC of 15–35 kg·m2. Nitrogen accumulation was more variable, and NO−3 (<5 ppm were insignificant. The C and N accumulation varies in the whole profile based on the ability of the sugarcane cultivar’s roots to explore and grow in the different soil types. For the purpose of storing C in the soil, cultivar H-65-7052 (TC accumulation of ~30 kg·m−2 and H-86-3792 (25 kg·m−2 rather H-78

  19. Soil Nutrient Dynamics under Old and Young Cocoa, Coffee and Cashew Plantations at Uhonmora, Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Rotimi Rufus Ipinmoroti

    2014-06-01

    Full Text Available A study was conducted to assess nutrient dynamics of soils under old and young cocoa, coffee and cashew plantations and the leaf nutrient contents of the crops at Uhonmora, Edo State, Nigeria for proper cultural and soil fertility management of the plantations. Soil and crop leaf samples were collected from each plantation using a random sampling technique. The samples were analyzed using standard procedures for sand, silt, clay, pH (H2O, electrical conductivity (EC, total N, available P, K, Ca, Mg, Na, and Effective Cation Exchange Capacity (ECEC. Leaf samples were analyzed for N, P, K, Ca, Mg and Na. Data were compared with the corresponding soil and foliar critical nutrient values for each crop. Results indicated that the soils were texturally sandy clay loam and acidic. The soils varied in their nutrient contents, with soil P for the old cocoa, young coffee and cashew plantations far below critical values. The young cashew plot was low in N content but adequate for other plots. However, the soil ECEC increased with the increasing of calcium contents. Leaf N was below critical for all the crops. Leaf K was low for cocoa and coffee plants, leaf Ca was low for the young cashew plants, while leaf Mg was low for the young cocoa and old cashew. The high soil Mg/K ratio of 8.7- 22.3 as against the established value of 2.0 might have resulted in gross nutrient imbalance which must have affected the absorption and utilization of other nutrients. Hence, adequate soil N did not translate the same availability to the crops. The ECEC showed that the soil needs to be improved upon for sustainable productivity. Soil nutrient content variation across the plantations with age of establishment will necessitate the need for consistent routine soil nutrient assessment for proper and balanced soil nutrient supply to the crops, for healthy crop growth and optimum yield. Management practices of soil surface mulching using organic wastes and cover crops under

  20. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    , bare soil and open water surfaces. The result of this study also shows that runoff is high in the clay, clay loam and sandy-clay loam due to the lack of infiltration process in clay soil from capping or crusting or sealing of the soil pores, therefore this situation will aid runoff. The application of the WetSpass model shows that precipitation, soil texture and land use / land cover are three controlling factors affecting the water balance in the LCB. Key words: Groundwater recharge, surface runoff, evapotranspiration, water balance, meteorological, draught, Landuse changes, climate changes, WetSpass, GIS.

  1. KARAKTERISTIK TANAH DAN MIKROKLIMAT HABITAT BURUNG MALEO (MACROCEPHALON MALEO DI TAMAN NASIONAL LORE LINDU SULAWESI TENGAH (Soil Characteristics and Microclimate of Habitat Maleo Bird (Macrocephalon Maleo in Lore Lindu National Park Central Sulawesi

    Directory of Open Access Journals (Sweden)

    Hafsah Hafsah

    2009-07-01

    Full Text Available ABSTRAK Penelitian ini bertujuan untuk mengetahui karakteristik tanah dan mikroklimat habitat burung maleo di Taman Nasional Lore Lindu Sulawesi Tengah. Metode yang digunakan adalah metode survey dengan melakukan pengamatan dan pengukuran langsung variabel di habitat alami. Analisis data secara deskriptif berdasarakan hasil pengamatan di lapangan dan di laboratorium. Hasil penelitian menunjukkan bahwa habitat peneluran burung maleo di Taman Nasional Lore Lindu mempunyai karakteristik tanah dengan tekstur (pasir pada kisaran 45,80%-62,80%; liat antara 4,30%-8,20% dan debu dengan kisaran 22,90%-46,50% dan kelsa tekstur tanah didominasi lempung berpasir (LB 77,80% dan lempung debu berpasir (LDB 22,20%. Kisaran pH tanah antara 6,15-6,75 dengan kandungan bahan organik (C dan N yang rendah, berarti tingkat kesuburan juga rendah. Kondisi mikroklimat pada lubang peneluran mempunyai rataan temperatur 33,08 oC dengan kisaran (31-35 oC, dan kelembaban 86,52% dengan kisaran 60,90-71,00%. Mikroklimat dalam tanah sangat penting peranannya untuk perkembangan embrio telur burung maleo selama dalam proses inkubasi.   ABSTRACT Objective of the research was to identify the soil characteristics and microclimate habitat of maleo bird in Lore Lindu National Park Central Sulawesi. This research was based on field observation and measurement of several variables in order to achieve the aim of the research. Variables which were measured, there are soil characteristics included  soil  texture (sand, clay and silt, pH  and   soil organic matter  ( C and N.  The results of research was shown  the habitat  of maleo bird for nesting site  have  soil characteristics with sand texture range from  45.80 % - 62.80 %;  clay 4.30 % -  8.20 % , and  silt 22.90 % -  46.50 % respectively.  While the class of soil texture dominated by sandy loam (77.80% and sandy clay loam  (22.20%.  The range of soil pH was 6.15 – 6.75 with the range of  organics matter of

  2. Phosphorus extracted by ion exchange resins and mehlich-1 from oxisols (latosols treated with different phosphorus rates and sources for varied soil-source contact periods

    Directory of Open Access Journals (Sweden)

    Irio Fernando de Freitas

    2013-06-01

    Full Text Available Despite the large number of studies addressing the quantification of phosphorus (P availability by different extraction methods, many questions remain unanswered. The aim of this paper was to compare the effectiveness of the extractors Mehlich-1, Anionic Resin (AR and Mixed Resin (MR, to determine the availability of P under different experimental conditions. The laboratory study was arranged in randomized blocks in a [(3 x 3 x 2 + 3] x 4 factorial design, with four replications, testing the response of three soils with different texture: a very clayey Red Latosol (LV, a sandy clay loam Red Yellow Latosol (LVA, and a sandy loam Yellow Latosol (LA, to three sources (triple superphosphate, reactive phosphate rock from Gafsa-Tunisia; and natural phosphate from Araxá-Minas Gerais at two P rates (75 and 150 mg dm-3, plus three control treatments (each soil without P application after four contact periods (15, 30, 60, and 120 days of the P sources with soil. The soil acidity of LV and LVA was adjusted by raising base saturation to 60 % with the application of CaCO3 and MgCO3 at a 4:1 molar ratio (LA required no correction. These samples were maintained at field moisture capacity for 30 days. After the contact periods, the samples were collected to quantify the available P concentrations by the three extractants. In general, all three indicated that the available P-content in soils was reduced after longer contact periods with the P sources. Of the three sources, this reduction was most pronounced for triple superphosphate, intermediate for reactive phosphate, while Araxá phosphate was least sensitive to the effect of time. It was observed that AR extracted lower P levels from all three soils when the sources were phosphate rocks, while MR extracted values close to Mehlich-1 in LV (clay and LVA (medium texture for reactive phosphate. For Araxá phosphate, much higher P values were determined by Mehlich-1 than by the resins, because of the acidity of

  3. Regional SOC inventory in the Belgian loam belt

    Science.gov (United States)

    Stevens, F.; Bogaert, P.; van Wesemael, B.

    2012-04-01

    Soil organic carbon (SOC) is the largest component of the terrestrial carbon pool and plays a vital role in the terrestrial carbon cycle. However, it remains a challenge to accurately quantify SOC dynamics in intensively cultivated landscapes. The general objective of the research is to improve the regional SOC dynamics by taking into account the lateral fluxes of sediments and carbon. The study focuses on the croplands of the Belgian loam belt. The first part of the project consists in constructing a 3-dimensional SOC map from soil profile description and ancillary environmental data. A georeferenced soil database provided soil profile description and analyses across the entire Belgian loam belt. A Monte Carlo method was used to account for the uncertainty in the reported SOC content of each horizon. Different methods permitting to construct continuous distribution of SOC density from bulk horizon measurements were compared. Properties that best characterized the erosion-accumulation pattern in the region were searched in the profile description database. Different topographic indices were computed from digital elevation models to assess the influence of the topography on the SOC distribution. A linear regression analysis was conducted in order to predict the SOC spatial distribution at different depth intervals from soil and terrain properties. Using the resulting model, maps of SOC and other soil properties at different depths, and representative of the situation in ~1960, will be constructed. The total uncertainty will be assessed and the main sources of uncertainty determined. These maps could be used as input data for a processed-based model coupling lateral fluxes of sediment and carbon turnover.

  4. Study of processes influencing bioavailability of pesticides in wood-soil systems: Effect of different factors.

    Science.gov (United States)

    Marín-Benito, J M; Herrero-Hernández, E; Rodríguez-Cruz, M S; Arienzo, M; Sánchez-Martín, M J

    2017-05-01

    Lignocellulosic wastes and by-products containing lignin are now available in large amounts from forestry and industrial activities, and could be promising organic materials for the biosorption of pesticides by soils in order to reduce point-source pollution. Adding these materials to soil requires understanding the process of pesticide sorption-desorption by wood-soils, as sorption capacity could increase, with changes in pesticide bioavailability and final fate. The objective of this work was to study the effect that pine and oak wood added to soils had on the sorption/desorption of the pesticides linuron, alachlor, and metalaxyl. Experiments were conducted with two sandy loam and sandy clay soils each amended with two wood doses (5% and 50%) after different incubation times (0, 5 and 12 months). A low wood dose (5%) had no significant impact on the sorption (Kf) of alachlor, but Kf increased for linuron (up to 5.4-1.7 times) and metalaxyl (up to 4.4 and 8.6 times) in all wood-soil systems. The results were not significantly different after different incubation times. The desorption results indicated that wood decreases the sorption irreversibility of alachlor, and increases that of linuron and metalaxyl, with a varying effect of the wood-soil incubation time. The addition of a high wood dose to soil (50%) was more significant for increasing the sorption of all the pesticides, and the sorbed amounts remaining after desorption (>49% for linuron, >33% for alachlor and >6% for metalaxyl), although there was no apparent discrimination between the two types of woods. The role of the nature of the organic carbón (Koc values) for sorption was evidenced for alachlor and metalaxyl, but not for linuron. These outcomes are of interest for extending wood application to soil as a barrier for avoiding environmental risk by point-source pollution due to the use and management of pesticides in farming systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions

    Science.gov (United States)

    Mooney, Sacha J.

    2016-01-01

    Tropical regions have been considered the world’s primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management

  6. Effect of Injecting Hydrogen Peroxide into Heavy Clay Loam Soil on Plant Water Status, NET CO2 Assimilation, Biomass, and Vascular Anatomy of Avocado Trees Efecto de la Inyección de Peróxido de Hidrógeno en Suelo Franco Arcilloso Pesado, sobre el Estado Hídrico, Asimilación Neta de CO2, Biomasa y Anatomía Vascular de Paltos

    OpenAIRE

    2009-01-01

    In Chile, avocado (Persea americana Mill.) orchards are often located in poorly drained, low-oxygen soils, situation which limits fruit production and quality. The objective of this study was to evaluate the effect of injecting soil with hydrogen peroxide (H2O2) as a source of molecular oxygen, on plant water status, net CO2 assimilation, biomass and anatomy of avocado trees set in clay loam soil with water content maintained at field capacity. Three-year-old ‘Hass’ avocado trees were planted...

  7. Soil respiration, labile carbon pools, and enzyme activities as affected by tillage practices in a tropical rice-maize-cowpea cropping system.

    Science.gov (United States)

    Neogi, S; Bhattacharyya, P; Roy, K S; Panda, B B; Nayak, A K; Rao, K S; Manna, M C

    2014-07-01

    In order to identify the viable option of tillage practices in rice-maize-cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2-C emissions were quantified in between plants and rows throughout the year in rice-maize-cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2-C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4-78.1, 37.1-128.1, and 28.6-101.2 mg m(-2) h(-1) under CT and 10.7-60.3, 17.3-99.1, and 17.2-79.1 mg m(-2) h(-1) under MT in rice, maize, and cowpea, respectively. The CO2-C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2-C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2-C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and

  8. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    Science.gov (United States)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an

  9. Distribución de la porosidad de un suelo franco arcilloso (alfisol en condiciones semiáridas después de 15 años bajo siembra directa Soil porosity distribution of a clay loam soil (alfisol in semi-arid conditions after 15 years under direct drilling

    Directory of Open Access Journals (Sweden)

    Cecilia Isabel Cerisola

    2005-12-01

    Full Text Available A partir de un estudio más amplio sobre evolución de las propiedades físicas de un suelo sometido a tres sistemas de labranza, se realizó, en dos campañas consecutivas, un seguimiento de la distribución de la porosidad del suelo según su origen, en parcelas cultivadas bajo siembra directa continua durante 15 años. En el ensayo se consideró un trayecto de 2 metros de longitud, perpendicular a la dirección de las labores, donde se realizaron mediciones de densidad aparente seca y contenido de humedad. El cultivo extensivo de secano (cereal, en cada una de las dos campañas, fue cebada de ciclo corto y de ciclo largo. El calendario de la toma de datos de las variables medidas se fijó en 5 fechas por campaña. La porosidad estructural del suelo, debida principalmente a la alternancia de ciclos de humectación - desecación, fue calculada cada 5 cm y hasta 35 cm de profundidad. Este proceso de fisuración natural resulta suficiente para asegurar un buen drenaje y facilitar el desarrollo radicular de las plantas, siempre y cuando el contenido de humedad se mantenga dentro de la capacidad de retención de agua.On a long-term essay under direct drilling, the evolution of the physical properties of a clay loam soil, such as distribution by origin of soil porosity, has been assessed during two growing seasons. The cereal crops in each growing seasons were spring barley and winter barley, respectively. Soil physical properties were measured on a 2 m length transect located in a perpendicular line to the direction of vehicular traffic for field operations. Five sampling opportunities, within crop cycle, were used to measure the variables. Structural soil porosity, due principally to shrinkage and swelling cycles, was assessed in the 0 to 35 cm depth soil profile. This natural process seemed to be sufficient to guarantee good drainage and normal crop development, unless in the moisture content range included in field capacity.

  10. Linear Shrinkage Behaviour of Compacted Loam Masonry Blocks

    Directory of Open Access Journals (Sweden)

    NAWAB ALI LAKHO

    2017-04-01

    Full Text Available Walls of wet loam, used in earthen houses, generally experience more shrinkage which results in cracks and less compressive strength. This paper presents a technique of producing loam masonry blocks that are compacted in drained state during casting process in order to minimize shrinkage. For this purpose, loam masonry blocks were cast and compacted at a pressure of 6 MPa and then dried in shade by covering them in plastic sheet. The results show that linear shrinkage of 2% occurred which is smaller when compared to un-compacted wet loam walls. This implies that the loam masonry blocks compacted in drained state is expected to perform better than un-compacted wet loam walls.

  11. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    Science.gov (United States)

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  12. Pore structure characteristics after two years biochar application to a sandy loam field

    DEFF Research Database (Denmark)

    Sun, Zhencai; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2015-01-01

    Soil pore structure comprises the size and shape of soil pores and has a major impact on water retention and gas movement. The porous nature of biochar suggests that its application to soil can potentially alter soil pore structure characteristics, and the purpose of this study was to evaluate...... the effects of birch wood biochar (20, 40, and 100 Mg ha−1) applied to a sandy loam on soil total porosity and pore structure indices. Bulk and intact soil samples were collected for physicochemical analyses and water retention and gas diffusivity measurements between pF 1.0 and pF 3.0. Biochar application...... reduced bulk density and increased total porosity especially for soil with 100 Mg ha−1 biochar (16% and 14% reduction in bulk density and total porosity, respectively). Biochar application of more than 20 Mg ha−1 enhanced water retention, and the trend increased with increasing biochar application rate...

  13. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    Science.gov (United States)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  14. Dolomite and phosphogypsum surface application effects on annual crops nutrition and yield

    OpenAIRE

    Soratto,Rogério Peres; Crusciol,Carlos Alexandre Costa

    2008-01-01

    Brazil has extensive area with acid soils. Using phosphogypsum and soil acidity tolerant cultivars are alternatives to crop establishment in no-till system without previous limestone incorporation in many agricultural soils of Brazil. However, it remains unknown how phosphogypsum and limestone surface application affects rice (Oryza sativa L.) and common bean (Phaseolus vulgaris L.) nutrition and yield under a no-till system. A field experiment was conducted in a sandy clay loam, kaolinitic, ...

  15. Examination of Technetium Transport Through Soils Under Contrasting Redox Conditions: Batch and Column Work

    Science.gov (United States)

    Dozier, R.; Montgomery, D.; Wylie, E. M.; Dogan, M.; Moysey, S. M.; Powell, B. A.; Martinez, N. E.

    2015-12-01

    Experiments were performed under various reducing conditions to evaluate the transport behavior of technetium-99 (99Tc) in the presence of sandy clay loam soil from the Savannah River Site (SRS) and goethite, magnetite, and iron sulfide, which were selected for their increasing reducing potential. The experiments were conducted to investigate how redox reaction equilibria and rates affect the overall mobility of 99Tc as it transitions between the mobile Tc(VII) and immobile Tc(IV). Under oxygen-rich conditions, batch sorption isotherms measured for TcO4- across the concentration range 0.5 to 50 μg/L were linear with distribution coefficients (Kd) of 0.78 mL/g or lower, with decreasing sorption for goethite, magnetite, and iron sulfide, respectively. Addition of Na2S resulted in a marked increase in apparent 99Tc sorption to the solid phase, with Kd of 43 mL/g, 35 mL/g, and 29 mL/g, following the same mineral trend as previously. The increased Kd values are possibly due to reduction of Tc(VII) to Tc(IV), resulting in the formation of TcO2(s). SRS soil batch sorption isotherms measured for TcO4- across the same concentration range were also linear, with Kd of 0.7 mL/g for unadjusted pH, 5.1 mL/g for pH of around 6, and 6.7 mL/g for pH of around 4. Kinetic batch sorption tests showed less than 10% 99Tc sorption in an oxidizing environment and greater than 95% sorption in a reducing environment, with both reactions occurring on the order of minutes. In contrast, desorption experiments initiated by transferring the samples from a reducing environment (0.1% H2(g)/99.9% N2(g)) to atmospheric conditions resulted in a slow desorption step on the order of days. Column experiments conducted with the SRS sands indicate a retardation factor of 1.17 for 99Tc under oxygen rich conditions. Additional column experiments are being conducted to evaluate 99Tc transport dependencies on transitions between oxygen rich and poor conditions.

  16. Soil fertility and {sup 137} Cs redistribution as related to land use, landscape and texture in a watershed of Paraiba State; Fertilidade do solo e redistribuicao de {sup 137} Cs em funcao da cobertura vegetal, relevo, e classes texturais, em uma microbacia hidrografica do Estado da Paraiba

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio Clementino dos

    2004-03-15

    , whereas soil chemical analyses were total C and N, extractable P (Mehlich-1), pH (water, exchangeable acidity and cations). The soils of the watershed generally exhibited low fertility, regardless of their landscape position (p<0.05). However, land use and texture contributed significantly to the soil fertility (p<0.05). The contents of C, N, Ca, Mg, and ECEC were significantly higher (p<0.05) for the forest soils, whereas P, K, and exchangeable acidity were higher (p<0,05) in the cultivated soils. Forest soils were classified as sandy clay and sandy clay loam (65%), whereas cultivated soils were identified as sand and sandy loam (64%). Particle size distribution and topography were interrelated as sand contents decreased with the increase in slope. Overall, soils with finer texture showed higher fertility levels, regardless of the landscape position. Catchment sites were not discriminated as areas of significant gain of nutrients. It was observed a strong P deficiency, regardless of the landscape position, land use or particle size distribution. The catena segmentation, based on landform elements, land use and soil depths, was an efficient tool to understand the erosion/sedimentation processes by using the {sup 137} Cs redistribution approach. Soils of the topossequences under native forest (n 2) and pasture (n = 3) were sampled for this purpose. It was observed a significant correlation between clay content and {sup 137} Cs activity in the soil (r = 0.75, p<0.01). At the summit positions of the forest soil, the average {sup 137} Cs stock down to a depth of 28 cm was 38,7 Bq m{sup -2}. At the backslope positions the {sup 137} Cs stock was similar for the same depth range. On the other hand, the average {sup 137} Cs stock in soils under pasture at the summit landscape position was 58,0 Bq m{sup -2}, with a maximum of 74,9 Bq m{sup -2}. Levels of {sup 137} Cs were below detection limit (0,03 Bq kg{sup -1}) on soils under pasture from the shoulder and backslope positions

  17. Soils of the Eastern mountainsides of the southern Sikhote-Alin (on the example of Lazovsky nature reserve, Russia)

    Science.gov (United States)

    Tregubova, Valentina; Semal, Victoria; Nesterova, Olga; Yaroslavtsev, Alexis

    2017-04-01

    The most common soils of the southern Far East are Brownzems under Russian classification (Cambisols), which are the zonal ones, emerging on the steep slopes and tops of hills, on high river terraces under broad-leaved and cedar-broad-leaved forests. Those soils formed due to two processes: organic matter metamorphism and clayization by siallite, leading to the formation of clay-metamorphic horizon Bw. The main morphological features of Cambisols are not deep soil profile (50 - 70 cm), weak horizons differentiation, with lots of cobble. Chemically those soils are low saturated, even in the humus horizon. Distribution of total absorbed bases is mostly accumulative, which is related to the distribution of humus in these soils, and the predominant type of clay fraction distribution of. The only exception are Humic Cambisols and Humic Cambisols Calcic which were formed on redeposited products of limestone rock weathering. Fine-grained deposits are mainly loams with a low content of silt. Silt distribution has an accumulative character with a gradual decrease in the content of silt down from the top of the profile. Layer of fresh leaf fall is very common for the Humic Cambisols surfaces, and under it there is the litter of plant residues with different degrees of decomposition. Accumulative humus horizon is dark gray with brownish tint, thin, from 10 to 15 cm in depth, loose, crumbly, highly penetrated by roots, with a strong granular structure, with aggregates tightly attached to the root hairs, sandy loam or sandy clay loam. The middle horizon is brown, yellowish-brown, divided into sub-horizons, with different color intensity, density, soil texture and amount of cobble. Dystric Cambisols are acidic or strongly acidic with low saturation of soil absorbing complex. Due to amount and distribution of organic matter these soils can be divided into two groups. The first group is soils with accumulative humus distribution: with a low depth humus-accumulative horizon (11

  18. Soil fertility and {sup 137} Cs redistribution as related to land use, landscape and texture in a watershed of Paraiba State; Fertilidade do solo e redistribuicao de {sup 137} Cs em funcao da cobertura vegetal, relevo, e classes texturais, em uma microbacia hidrografica do Estado da Paraiba

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio Clementino dos

    2004-03-15

    , whereas soil chemical analyses were total C and N, extractable P (Mehlich-1), pH (water, exchangeable acidity and cations). The soils of the watershed generally exhibited low fertility, regardless of their landscape position (p<0.05). However, land use and texture contributed significantly to the soil fertility (p<0.05). The contents of C, N, Ca, Mg, and ECEC were significantly higher (p<0.05) for the forest soils, whereas P, K, and exchangeable acidity were higher (p<0,05) in the cultivated soils. Forest soils were classified as sandy clay and sandy clay loam (65%), whereas cultivated soils were identified as sand and sandy loam (64%). Particle size distribution and topography were interrelated as sand contents decreased with the increase in slope. Overall, soils with finer texture showed higher fertility levels, regardless of the landscape position. Catchment sites were not discriminated as areas of significant gain of nutrients. It was observed a strong P deficiency, regardless of the landscape position, land use or particle size distribution. The catena segmentation, based on landform elements, land use and soil depths, was an efficient tool to understand the erosion/sedimentation processes by using the {sup 137} Cs redistribution approach. Soils of the topossequences under native forest (n 2) and pasture (n = 3) were sampled for this purpose. It was observed a significant correlation between clay content and {sup 137} Cs activity in the soil (r = 0.75, p<0.01). At the summit positions of the forest soil, the average {sup 137} Cs stock down to a depth of 28 cm was 38,7 Bq m{sup -2}. At the backslope positions the {sup 137} Cs stock was similar for the same depth range. On the other hand, the average {sup 137} Cs stock in soils under pasture at the summit landscape position was 58,0 Bq m{sup -2}, with a maximum of 74,9 Bq m{sup -2}. Levels of {sup 137} Cs were below detection limit (0,03 Bq kg{sup -1}) on soils under pasture from the shoulder and backslope positions

  19. Studies on amendment of different biopolymers in sandy loam and their effect on germination, seedling growth of Gossypium herbaceum L.

    Science.gov (United States)

    Patil, Satish Vitthalrao; Salunke, B K; Patil, C D; Salunkhe, R B

    2011-03-01

    Different biopolymers, agar, cellulose, alginate, psyllium gaur gum, and bacterial exopolysaccharide (EPS) powders were amended to check their efficacy in enhancing maximum water holding capacity (MWHC), permanent wilting point (PWP), and germination and seedling growth of the Gossypium herbaceum in a laboratory scale. The efficacy of all biopolymers for enhancement of MWHC, PWP, and growth was also analyzed by measuring organic carbon, organic matter, total nitrogen, respiration rate, and microflora in amended and control sandy loams. The range of concentrations (0.2-2%) of all biopolymers was incorporated in sandy loam containing pots. The soil without polymer was considered as control. The psyllium (0.6%) and bacterial EPS (1%) amended soil has 242 and 233% increase in MWHC and thus delaying in the permanent wilting point by 108 and 84 h at 37 °C, respectively, as compared to control. All biopolymers found to increase more or less MWHC, organic matter, total nitrogen, microflora, and PWP as compared to control. The psyllium and bacterial EPS show the highest increase organic matter, biomass, and microflora. The highest reduction in MWHC after 12 weeks were observed in cellulose, gaur gum, and alginate; besides, psyllium, bacterial EPS, and agar showed comparatively less reduction MWHC, i.e., 24% and 14.5%, respectively. The toxicity studies of biopolymer were carried out on earthworm (Eisenia foetida). It revealed their nontoxic nature. The biopolymer amendment in sandy loam can be an effective strategy to improved soil texture, fertility, and thereby crop yield.

  20. Direct and Indirect Short-term Effects of Biochar on Physical Characteristics of an Arable Sandy Loam

    DEFF Research Database (Denmark)

    Sun, Zhencai; Moldrup, Per; Elsgaard, Lars

    2013-01-01

    Biochar addition to agricultural soil is reported in several studies to reduce climate gas emissions, boost carbon storage, and improve soil fertility and crop productivity. These effects may be partly related to soil physical changes resulting from biochar amendment, but knowledge of how biochar...... application mechanistically affects soil physical characteristics is limited. This study investigated the effect of biochar application on soil structural and functional properties, including specific surface area, water retention, and gas transport parameters. Intact soil cores were taken from a field...... experiment on an arable sandy loam that included four reference plots without biochar and four plots with 20 tons ha(-1) biochar incorporated into the upper 20 cm 7 months before sampling. Water retention was measured at matric potentials ranging from wet (pF 1.0) to extremely dry conditions (pF similar to 6...

  1. Effect of Injecting Hydrogen Peroxide into Heavy Clay Loam Soil on Plant Water Status, NET CO2 Assimilation, Biomass, and Vascular Anatomy of Avocado Trees Efecto de la Inyección de Peróxido de Hidrógeno en Suelo Franco Arcilloso Pesado, sobre el Estado Hídrico, Asimilación Neta de CO2, Biomasa y Anatomía Vascular de Paltos

    Directory of Open Access Journals (Sweden)

    Pilar M Gil M

    2009-03-01

    Full Text Available In Chile, avocado (Persea americana Mill. orchards are often located in poorly drained, low-oxygen soils, situation which limits fruit production and quality. The objective of this study was to evaluate the effect of injecting soil with hydrogen peroxide (H2O2 as a source of molecular oxygen, on plant water status, net CO2 assimilation, biomass and anatomy of avocado trees set in clay loam soil with water content maintained at field capacity. Three-year-old ‘Hass’ avocado trees were planted outdoors in containers filled with heavy loam clay soil with moisture content sustained at field capacity. Plants were divided into two treatments, (a H2O2 injected into the soil through subsurface drip irrigation and (b soil with no H2O2 added (control. Stem and root vascular anatomical characteristics were determined for plants in each treatment in addition to physical soil characteristics, net CO2 assimilation (A, transpiration (T, stomatal conductance (gs, stem water potential (SWP, shoot and root biomass, water use efficiency (plant biomass per water applied [WUEb]. Injecting H2O2 into the soil significantly increased the biomass of the aerial portions of the plant and WUEb, but had no significant effect on measured A, T, gs, or SWP. Xylem vessel diameter and xylem/phloem ratio tended to be greater for trees in soil injected with H2O2 than for controls. The increased biomass of the aerial portions of plants in treated soil indicates that injecting H2O2 into heavy loam clay soils may be a useful management tool in poorly aerated soil.En Chile, los huertos de palto (Persea americana Mill. se ubican comúnmente en suelos pobremente drenados con bajo contenido de oxígeno, lo que limita producción y calidad de fruta. El objetivo de este estudio fue evaluar el efecto de la inyección de peróxido de hidrógeno (H2O2 al suelo como fuente de O2, sobre el estado hídrico, asimilación de CO2, biomasa y anatomía de paltos en suelo franco arcilloso con

  2. THE CLAY CONTENT EFFECT ON THE FORMATION OF SHALLOW MOLE DRAINAGE AND THE RATE OF LOWERING SOIL MOISTURE CONTENT

    Directory of Open Access Journals (Sweden)

    Siti Suharyatun

    2014-10-01

    loam soil did not infl uence the rate of lowering soil moisture content. Contrary, the mole drainage installed in clay soil has effected to increase the rate of lowering soil moisture content. Keywords: Mole drainage, soil moisture content, clay content

  3. Effects of Nitrogen Application Patterns on Ammonia Volatilization, Summer Maize Yield and Nitrogen Use Efficiency in Sandy Loam Fluvo-aquic Soil%施氮模式对砂质潮土氨挥发、夏玉米产量及氮肥利用率的影响

    Institute of Scientific and Technical Information of China (English)

    谢迎新; 刘园; 靳海洋; 王晨阳; 朱云集; 郭天财; 贺德先

    2015-01-01

    采用连续多年田间小区定位试验,在氮肥施用量200 kg/hm2下,观测夏玉米季不同施氮模式对夏玉米季土壤氨挥发、子粒产量及氮肥利用率的影响。结果表明,夏玉米季不同施氮处理土壤氨挥发损失量不同,当地常规施氮处理损失量最高,改变氮肥基追比处理次之,控释复合肥处理损失量最低。与不施肥对照相比,各施氮模式处理均能提高夏玉米产量,控释复合肥、改变氮肥基追比处理较当地常规施氮处理分别增产9.89%和7.14%。不同施氮模式下夏玉米季氮肥利用率以控释复合肥利用率最高,改变氮肥基追比处理次之,常规施氮最低。综合考虑,控释复合肥、改变氮肥基追比均可作为砂质潮土区推广的适宜氮肥施用模式。%Under the field experiment condition, the effects of different nitrogen application patterns on ammo⁃nia volatilization, yield of summer maize and nitrogen use efficiency were studied at the same amount of nitrogen(N) application with 200 kg/ha in summer maize season in each fertilizer treatment. There were four treatments includ⁃ing no fertilizer(CK), convention fertilizer(F1), changing basic fertilizer and topdressing regimes(F2) and controlled-release fertilizer(F3). The result showed that the amount of ammonia loss from summer maize field was different in all treatments, F1 was the highest, followed by F2, and F3 was the lowest. Compared to CK, each nitrogen applica⁃tion patterns treatment all can improve the yield of summer maize, of which F3 was best, followed by F2, compared with F1, the yield increased by 9.89%and 7.14%, respectively. In addition, the study also showed that the nitrogen use efficiency was different in all treatments, of which F3 was the highest, followed by F2, F1 was the lowest. In con⁃clusion, F3 and F2 could be taken as nitrogen application patterns by spread and application for summer maize in the sandy loam fluvo

  4. [Influence of diesel fuel on the number of selected soil microorganisms group].

    Science.gov (United States)

    Hawrot-Paw, Małgorzata

    2012-01-01

    Among a range of xenobiotics, that are introduced into the environment, especially dangerous are petroleum substances. Microorganisms participating in their decomposition, may be a good effectiveness indicator of biodegradation process. The aim of this study was to determine the influence of soil contamination with diesel oil for changes in number of basic taxonomic groups of microorganisms, including bacteria, actinomycetes and fungi. The study was carried out in two soils, loamy sand and sandy clay, which, apart from granulometric composition also differed in organic matter content. Two levels of diesel contamination was used: 5% and 15% w/w of soil d.m. The soil samples, not contaminated with diesel oil, was left as a experience control objects. The number of microorganisms were evaluated by automated method with measuring impedance in media, using the analyzer BacTrac 4100. In the studied soils the largest group of microorganisms were bacteria, significantly less was fungi and actinomycetes. Based on the results of research it was found a significant effect on the quantitative composition of microflora was both contamination dose and type of soil. Diesel fuel at a concentration of 5% stimulated the number of bacteria and fungi in sandy soil. In general, increase in concentration of pollutants adversely affect the microorganisms, especially in loamy soils. Soil contamination with diesel oil resulted in a reduction in the degree of microbial growth rate (55% in loamy sand and 39% in sandy clay), and thus have an impact on their fertility. The reduction of SR index was correlated with increasing dose of pollutants. Diesel oil affect the biological balance of soil and stimulates or reduces the number of different groups of microorganisms, depending on the amount of fuel. The presence of fuel decrease index of soil fertility, proportion to increase in the level of contamination.

  5. Soil microbial community response to surfactants and herbicides in two soils

    Science.gov (United States)

    The impact of herbicides on more than just the target weed and the effect of some herbicides on the soil biota is of environmental interest. The surfactants that are often used with herbicides are also coming under fire as a potential harm to the soil life. We used a silt loam and a silty clay loam ...

  6. Experiences of soil fertility management through legume based ...

    African Journals Online (AJOL)

    Mo

    either sandy soils or sandy loam soils to compare soil rehabilitation benefits of ... to incorporate the legume crop residues in order to maximize the residual nitrogen benefit to the cereal crop. ... different legume technologies either in rotation or.

  7. Modelling climate change impacts on and adaptation strategies for agriculture in Sardinia and Tunisia using AquaCrop and value-at-risk.

    Science.gov (United States)

    Bird, David Neil; Benabdallah, Sihem; Gouda, Nadine; Hummel, Franz; Koeberl, Judith; La Jeunesse, Isabelle; Meyer, Swen; Prettenthaler, Franz; Soddu, Antonino; Woess-Gallasch, Susanne

    2016-02-01

    In Europe, there is concern that climate change will cause significant impacts around the Mediterranean. The goals of this study are to quantify the economic risk to crop production, to demonstrate the variability of yield by soil texture and climate model and to investigate possible adaptation strategies. In the Rio Mannu di San Sperate watershed, located in Sardinia (Italy) we investigate production of wheat, a rainfed crop. In the Chiba watershed located in Cap Bon (Tunisia), we analyze irrigated tomato production. We find, using the FAO model AquaCrop that crop production will decrease significantly in a future climate (2040-2070) as compared to the present without adaptation measures. Using "value-at-risk", we show that production should be viewed in a statistical manner. Wheat yields in Sardinia are modelled to decrease by 64% on clay loams, and to increase by 8% and 26% respectively on sandy loams and sandy clay loams. Assuming constant irrigation, tomatoes sown in August in Cap Bon are modelled to have a 45% chance of crop failure on loamy sands; a 39% decrease in yields on sandy clay loams; and a 12% increase in yields on sandy loams. For tomatoes sown in March; sandy clay loams will fail 81% of the time; on loamy sands the crop yields will be 63% less while on sandy loams, the yield will increase by 12%. However, if one assume 10% less water available for irrigation then tomatoes sown in March are not viable. Some adaptation strategies will be able to counteract the modelled crop losses. Increasing the amount of irrigation one strategy however this may not be sustainable. Changes in agricultural management such as changing the planting date of wheat to coincide with changing rainfall patterns in Sardinia or mulching of tomatoes in Tunisia can be effective at reducing crop losses.

  8. Conceptual Model for Flow and Transport through Unsaturated Silty Loams and Sands in North Mississippi

    Science.gov (United States)

    Coleman, S. H.; Corley, D. S.; van Volkenburg, G. J.; Wildman, J. C.; Holt, R. M.

    2008-05-01

    We conducted a five-day ponded infiltration test at the University of Mississippi (UM) Soil Moisture Observatory (SMO). The 5 acre SMO is located in a former agricultural field at the UM Field Station, a 740 acre tract of land with restricted access located 11 miles from the UM campus in Oxford, Mississippi. At the infiltration site, the near surface soils consist of about infiltration test, the soil surface was leveled and a 2.0 m diameter infiltration ring was installed. Six neutron access tubes were installed to a depth of 2.5 m around the infiltration ring. A constant ponding depth of 13 cm was maintained throughout the duration of the experiment. Blue dye was added to the water to enable mapping of infiltration paths. During the experiment, moisture content profiles were periodically measured at each neutron access tube. Neutron probe data suggested that infiltration was dominated by capillary forces. However, later mapping of a trench through the infiltration site revealed that infiltration in the upper silt loam was dominated by macropore flow along roots and microfractures in the soil. In the sand, gravity driven fingers formed below the root-zone, where deep roots focused flow.

  9. Carbon Dioxide and Temperature Gradielits in Baermann Funnel Extraction of Rotylenchulus reniformis

    OpenAIRE

    Robinson, A. F.; Heald, C. M.

    1991-01-01

    Vermiform Rotylenchulus reniformis were anesthetized in water by 10-40% CO₂ but were fully motile for 24 hours in water below 5% CO₂. When air containing 2.5% CO₂ was blown onto agar, nematodes accumulated at the point of highest CO₂ concentration. Nematodes also accumulated when chilling (0.2-1 C) of agar by the gas flow at the accumulation point was offset with heat from a fiber optic. In Baermann funnels containing R. reniformis in silt loam and sandy clay loam soils, CO₂ in funnel water i...

  10. SHEARING AND WATER RETENTION BEHAVIOR OF UNSATURATED LOAM WITH MODELING

    Science.gov (United States)

    Kiyohara, Yukoh; Kazama, Motoki

    Unsaturated triaxial tests were carried out to study deformation behavior, effective stress path and water retention property of consolidated loam during consolidation and shearing processes. Initial matric suction was set as 0, 50, and 90 kPa, and confining pressures (net normal stresses) were set as 100 kPa. Then shearing processes were done under undrained and drained conditions. We clarified the relation between void ratio and Van Genuchten model parameter by using water retention curve. To predict the unsaturated shearing behavior, a modified Cam Clay model considering void ratio dependent Van Genuchten parameter was proposed. Those numerical test results were agreed well with laboratory tests results.

  11. THE EFFECT OF SALINITY-SODICITY AND GLYPHOSATE FORMULATIONS – AVANS PREMIUM 360 SL ON PHOSPHOMONOESTERASE ACTIVITIES IN SANDY LOAM

    Directory of Open Access Journals (Sweden)

    Maciej Płatkowski

    2016-01-01

    Full Text Available The aim of study was to determine the influence of NaCl and glyphosate-based herbicide Avans Premium 360 SL on acid and alkaline phosphomonoesterase activities in sandy loam. The experiment was carried out in laboratory conditions on sandy loam with Corg content 10.90 g/kg. Soil was divided into half kilogram samples and adjusted to 60% of maximum water holding capacity. In the experiment dependent variables were: I – dosages of Avans Premium 360 SL (0, a recommended field dosage – FD, a tenfold higher dosage – 10 FD and hundredfold higher dosage – 100 FD, II – amount of NaCl (0, 3% and 6%, III – day of experiment (1, 7, 14, 28 and 56. On days of experiment the activity of alkaline and acid phosphomonoesterase activity was assayed spectrophotometrically. The obtained result showed that the application of Avans Premium 360 SL decreased in acid and alkaline phosphomonoesterase activity in clay soil. Significant interaction effect between the dosage of Avans Premium 360 SL, NaCl amount and day of experiment was reported in the experiment. The inhibitory effect of Avans Premium 360 SL was the highest in soil with NaCl at the amount of 6%.

  12. Calagem e adubação orgânica: influência na adsorção de fósforo em solos Liming and organic fertilizer: influence on phosphorus adsorption in soils

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2006-12-01

    replications, in a greenhouse. The treatments consisted of four liming levels (0; 0,5; 1 and 2 times the recommended dose to reach V = 60% and five doses of cattle manure (0; 2,5; 5,0; 7,5 and 10% of the total soil volume, applied in samples of four dm³ of orthic Quartzarenic Neosol sand texture, dystrophic Red-Yellow Latosol sandy clay texture, dystrophic Red-Yellow Latosol sandy clay loam texture and dystrophic Red Latosol clay texture soils; each soil represented an experiment. The values of equilibrium phosphorus (P-rem, maximum P adsorption capacity (MPAC and the soil P buffering index (PBI were evaluated and subjected to fitting of multiple regression models as a function of the applied lime and cattle (bovine manure. Liming and manure fertilizer caused a reduction of MPAC and increase in P-rem and PBI. The alterations of these values was associated to soil mineralogy and texture; P adsorption increased with the oxidic character of the soils. Results evidenced the importance of soil management systems that contemplate acidity correction and increase in organic matter levels to optimize the P use by crops.

  13. Study on the downward movement of carbofuran in two Malaysian soils.

    Science.gov (United States)

    Farahani, G H N; Sahid, Ismail Bin; Zakaria, Zuriati; Kuntom, Aini; Omar, Dzolkifli

    2008-09-01

    The downward movement of carbofuran in two Malaysian soil types was studied using soil columns. The columns were filled with disturbed and undisturbed soils of either the Bagan Datoh soil (clay) or the Labu soil (sandy clay). The average total percentage of carbofuran in the leachate of the undisturbed Labu soil after 14 days of watering (80.8%) was approximately similar to that of the total amount from the disturbed soil (81.4%). However, carbofuran leaching was observed in the disturbed soil after the fourth day of watering whereas for the undisturbed soil, leaching occurred after the first watering. A similar trend was observed in the Bagan Datoh soil where the residue of carbofuran was detected after the first day of watering in the undisturbed soil column but only at the eighth day of watering in the disturbed soil column. The total percentage carbofuran in the leachate of disturbed and undisturbed soil columns from Bagan Datoh after 14 days of watering was 3.6% and 41.7%, respectively. The study showed that less leaching occurred in soil columns with high organic content such as the Bagan Datoh soil and especially so in disturbed soils where the organic matter was homogeneously mixed in all layers.

  14. [Effects of soil texture and water content on the mineralization of soil organic carbon in paddy soils].

    Science.gov (United States)

    Sun, Zhong-lin; Wu, Jin-shui; Ge, Ti-da; Tang, Guo-yong; Tong, Cheng-li

    2009-01-01

    To understand how soil texture and water content affect the mineralization of organic C in paddy soil, 3 selected soils (sandy loam, clay loam, and silty clay) were incubated (25 degrees C) with 14 C-labelled rice straw (1.0 g x kg(-1)) at water content varied from 45% to 105% of water holding capacity (WHC). Data indicated that, in the sandy loam and clay loam, the mineralization rate of 14 C-labelled rice straw reached the maximum at 75% WHC, as 53% and 58% of the straw C mineralized in the incubation period of 160 d, whereas in the silty clay, it increased gradually (from 41.8% to 49.0%) as water content increased up to 105% WHC. For all of the three soils, the mineralization rate of soil native organic C reached the maximum at 75% WHC, with 5.8% of the organic C mineralized in the same period for the sandy loam, and 8.0% and 4.8% for the clay loam and silty clay, respectively. As water content increased further, the mineralization rate of native organic C in the three soils significantly declined. The mineralization rate of added rice straw and native organic C in all the three soils, was well fitted with a conic curve. These results suggest that water-logging can decrease the mineralization of organic C in paddy soils.

  15. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2013-01-01

    Full Text Available Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots. The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14±5% (mean ± standard deviation. Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  16. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories

    Science.gov (United States)

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using soil sampled from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ul...

  17. Nickel adsorption by soils in relation to pH, organic matter, and iron oxides Adsorção de níquel em solos em função de pH, matéria orgânica e óxidos de ferro

    Directory of Open Access Journals (Sweden)

    Estêvão Vicari Mellis

    2004-04-01

    Full Text Available There is little information on nickel adsorption by Brazilian soils. The objective of this experiment was to determine the effect of pH, organic matter, and iron oxides on nickel adsorption by three soils: a clayey Anionic "Rhodic" Acrudox, a sandy clay loam Anionic "Xanthic" Acrudox, and a clayey Rhodic Hapludalf. Soil samples were collected from the 0-0.2 m layer and treated to eliminate organic matter and iron oxides. The nickel adsorption was evaluated in the original samples and in those treated to remove organic matter and to remove both, organic matter and iron oxides, using 2 g soil + 20 mL of 0.01 mol L-1 CaCl2 solution containing 5 mg L-1 Ni, pH varying from 3.5 to 7.5. The nickel adsorption decreased with the elimination of organic matter. For the samples without organic matter and iron oxides, adsorption decreased only in the Anionic "Rhodic" Acrudox. The pH was the main factor involved in nickel adsorption variation, and for soil samples without organic matter and iron oxides, the maximum adsorption occurred at higher pH values.Há poucas informações disponíveis na literatura quanto à adsorção de níquel em solos do Brasil. O objetivo deste trabalho foi determinar a influência do pH, da matéria orgânica, e dos óxidos de ferro na adsorção de níquel em amostras da camada superficial (0 a 0,20 m de um Latossolo Vermelho acriférrico típico (LVwf, textura argilosa, um Latossolo Amarelo ácrico típico (LAw, textura argilo-arenosa e um Nitossolo Vermelho eutroférrico (NVef, textura muito argilosa. Foram utilizadas amostras de solo natural, de solo sem matéria orgânica (MO, e de solo sem matéria orgânica e sem óxidos de ferro, para fazer envelopes de adsorção (2,0 g de solo + 20 mL de solução contendo 5 mg L-1 de Ni em CaCl2 0,01 mol L-1, variando o pH de 3,5 a 7,5. A adsorção de níquel diminuiu com a eliminação da MO; a eliminação de MO e de óxidos de Fe só provocou diminuição na média de adsorção no

  18. Transport of silver nanoparticles (AgNPs) in soil.

    Science.gov (United States)

    Sagee, Omer; Dror, Ishai; Berkowitz, Brian

    2012-07-01

    The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. The AgNPs with average size of ~30nm yielded a stable suspension in water with zeta potential of -39mV. Early breakthrough of AgNPs in soil was observed in column transport experiments. AgNPs were found to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. AgNP mobility through the column decreased when the fraction of smaller soil aggregates was larger. The early breakthrough pattern was not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. The retention of AgNPs in the soil column was reduced when humic acid was added to the leaching solution, while a lower flow rate (Darcy velocity of 0.17cm/min versus 0.66cm/min) resulted in higher retention of AgNPs in the soil. When soil residual chloride was exchanged by nitrate prior to column experiments, significantly improved mobility of AgNPs was observed in the soil column. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations.

  19. INFLUENCE OF VERMICOMPOST ON THE PHYSICO-CHEMICAL AND BIOLOGICAL PROPERTIES IN DIFFERENT TYPES OF SOIL ALONG WITH YIELD AND QUALITY OF THE PULSE CROP-BLACKGRAM

    Directory of Open Access Journals (Sweden)

    K. Parthasarathi, M. Balamurugan, L. S. Ranganathan

    2008-01-01

    Full Text Available Field experiments were conducted during 2002-2003 on clay loam, sandy loam and red loam soil at Sivapuri, Chidambaram, Tamil Nadu, to evaluate the efficacy of vermicompost on the physico-chemical and biological characteristics of the soils and on the yield and nutrient content of blackgram - Vigna mungo, in comparison to inorganic fertilizers nitrogen, phosphorous, potassium. Vermicompost had increased the pore space, reduced particle and bulk density, increased water holding capacity, cation exchange capacity, reduced pH and electrical conductivity, increased organic carbon content, available nitrogen, phosphorous, potassium and microbial population and activity in all the soil types, particularly clay loam. The yield and quality (protein and sugar content in seed of blackgram was enhanced in soils, particularly clay loam soil. On the contrary, the application of inorganic fertilizers has resulted in reduced porosity, compaction of soil, reduced carbon and reduced microbial activity.

  20. Effects of the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate and potassium leaching in two soils

    Institute of Scientific and Technical Information of China (English)

    WU Shao-fu; WU Liang-huan; SHI Qi-wei; WANG Zhong-qiang; CHEN Xian-you; LI Yong-shan

    2007-01-01

    In this study, soil column was used to study the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate (NO3--N) and potassium (K) leaching in the sandy loam soil and clay loam soil. The results showed that DMPP with ammonium sulphate nitrate (ASN) ((NH4)2SO4 and NH4NO3) or urea could reduce NO3--N leaching significantly, whereas ammonium (NH4+-N) leaching increased slightly. In case of total N (NO3--N+NH4+-N), losses by leaching during the experimental period (40 d) were 37.93 mg (urea), 31.61 mg (urea+DMPP), 108.10 mg (ASN), 60.70 mg (ASN+DMPP) in the sandy loam soil, and 30.54 mg (urea), 21.05 mg (urea+DMPP), 37.86 mg (ASN), 31. 09 mg (ASN+DMPP) in the clay loam soil, respectively. DMPP-amended soil led to the maintenance of relatively high levels of NH4+-N and low levels of NO3--N in soil, and nitrification was slower. DMPP supplementation also resulted in potassium leached less, but the difference was not significant except the treatment ASN and ASN+DMPP in the sandy loam soil. Above results indicate that DMPP is a good nitrification inhibitor, the efficiency of DMPP seems better in the sandy loam soil than in the clay loam soil and lasts longer.

  1. Effects of a new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate and potassium leaching in two soils.

    Science.gov (United States)

    Wu, Shao-Fu; Wu, Liang-Huan; Shi, Qi-Wei; Wang, Zhong-Qiang; Chen, Xian-You; Li, Yong-Shan

    2007-01-01

    In this study, soil column was used to study the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate (NO3(-)-N) and potassium (K) leaching in the sandy loam soil and clay loam soil. The results showed that DMPP with ammonium sulphate nitrate (ASN) ((NH4)2SO4 and NH4NO3) or urea could reduce NO3(-)-N leaching significantly, whereas ammonium (NH4(+)-N) leaching increased slightly. In case of total N (NO3(-)-N+NH4(+)-N), losses by leaching during the experimental period (40 d) were 37.93 mg (urea), 31.61 mg (urea+DMPP), 108.10 mg (ASN), 60.70 mg (ASN+DMPP) in the sandy loam soil, and 30.54 mg (urea), 21.05 mg (urea+DMPP), 37.86 mg (ASN), 31.09 mg (ASN+DMPP) in the clay loam soil, respectively. DMPP-amended soil led to the maintenance of relatively high levels of NH4(+)-N and low levels of NO3(-)-N in soil, and nitrification was slower. DMPP supplementation also resulted in less potassium leached, but the difference was not significant except the treatment of ASN and ASN+DMPP in the sandy loam soil. Above results indicate that DMPP is a good nitrification inhibitor, the efficiency of DMPP seems better in the sandy loam soil than in the clay loam soil and lasts longer.

  2. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China.

    Science.gov (United States)

    Wang, Zhuoran; Zhao, Gengxing; Gao, Mingxiu; Chang, Chunyan

    2017-02-01

    The objectives of this study were to explore the spatial variability of soil salinity in coastal saline soil at macro, meso and micro scales in the Yellow River delta, China. Soil electrical conductivities (ECs) were measured at 0-15, 15-30, 30-45 and 45-60 cm soil depths at 49 sampling sites during November 9 to 11, 2013. Soil salinity was converted from soil ECs based on laboratory analyses. Our results indicated that at the macro scale, soil salinity was high with strong variability in each soil layer, and the content increased and the variability weakened with increasing soil depth. From east to west in the region, the farther away from the sea, the lower the soil salinity was. The degrees of soil salinization in three deeper soil layers are 1.14, 1.24 and 1.40 times higher than that in the surface soil. At the meso scale, the sequence of soil salinity in different topographies, soil texture and vegetation decreased, respectively, as follows: depression >flatland >hillock >batture; sandy loam >light loam >medium loam >heavy loam >clay; bare land >suaeda salsa >reed >cogongrass >cotton >paddy >winter wheat. At the micro scale, soil salinity changed with elevation in natural micro-topography and with anthropogenic activities in cultivated land. As the study area narrowed down to different scales, the spatial variability of soil salinity weakened gradually in cultivated land and salt wasteland except the bare land.

  3. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils

    Science.gov (United States)

    Alice W. Ratcliff; Matt D. Busse; Carol J. Shestak

    2006-01-01

    Glyphosate applied at the recommended field rate to a clay loam and a sandy loam forest soil resulted in few changes in microbial community structure. Total and culturable bacteria, fungal hyphal length, bacterial:fungal biomass, carbon utilization profiles (BIOLOG), and bacterial and fungal phospholipid fatty acids (PLFA) were unaffected 1, 3, 7, or 30 days...

  4. Environmental and agricultural benefits of a management system designed for sandy loam soils of the humid tropics Benefícios ambientais e agronômicos de um agrossistema definido para solos de textura franco arenosa do trópico úmido

    Directory of Open Access Journals (Sweden)

    Alana das Chagas Ferreira Aguiar

    2009-10-01

    Full Text Available A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.O manejo sustentável dos solos de baixa fertilidade natural na agricultura familiar do trópico tem sido um grande desafio, que, se vencido, resultará em vantagens para o ambiente e para os agricultores. Este trabalho foi realizado com o objetivo de avaliar os benefícios ambiental e agronômico de um cultivo em aleias, por meio da determinação do C sequestrado, dos indicadores da qualidade do solo e da produtividade da cultura do milho

  5. Effects of biochar and maize straw on the short-term carbon and nitrogen dynamics in a cultivated silty loam in China.

    Science.gov (United States)

    Zhu, Li-Xia; Xiao, Qian; Shen, Yu-Fang; Li, Shi-Qing

    2017-01-01

    Application of maize straw and biochar can potentially improve soil fertility and sequester carbon (C) in the soil, but little information is available about the effects of maize straw and biochar on the mineralization of soil C and nitrogen (N). We conducted a laboratory incubation experiment with five treatments of a cultivated silty loam, biochar produced from maize straw and/or maize straw: soil only (control), soil + 1 % maize straw (S), soil + 4 % biochar (B1), soil + 4 % biochar + 1 % maize straw (B1S), and soil + 8 % biochar + 1 % maize straw (B2S). CO2 emissions, soil organic C, dissolved organic C, easily oxidized C, total N, mineral N, net N mineralization, and microbial biomass C and N of three replicates were measured periodically during the 60-day incubation using destructive sampling method. C mineralization was highest in treatment S, followed by B2S, B1S, the control, and B1. Total net CO2 emissions suggested that negative or positive priming effect may occur between the biochar and straw according to the biochar addition rate, and biochar mineralization was minimal. By day 35, maize straw, irrespective of the rate of biochar addition, significantly increased microbial biomass C and N but decreased dissolved organic N. Biochar alone, however, had no significant effect on either microbial biomass C or N but decreased dissolved organic N. Mixing the soil with biochar and/or straw significantly increased soil organic C, easily oxidized C and total N contents, and decreased dissolved organic N content. Dissolved organic C contents showed mixed results. Notably, N was immobilized in soil mixed with straw and/or biochar, but the effect was stronger for soil mixed with straw, which may cause N deficiency for plant growth. The application of biochar and maize straw can thus affect soil C and N cycles, and the appropriate proportion of biochar and maize straw need further studies to increase C sequestration.

  6. Soil properties affect the toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the enchytraeid worm Enchytraeus crypticus.

    Science.gov (United States)

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Phillips, Carlton T; Kolakowski, Jan E; Lanno, Roman

    2013-11-01

    The authors investigated individual toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the potworm Enchytraeus crypticus using the enchytraeid reproduction test. Studies were designed to generate ecotoxicological benchmarks that can be used for developing ecological soil-screening levels for ecological risk assessments of contaminated soils and to identify and characterize the predominant soil physicochemical parameters that can affect the toxicities of TNT and RDX to E. crypticus. Soils, which had a wide range of physicochemical parameters, included Teller sandy loam, Sassafras sandy loam, Richfield clay loam, Kirkland clay loam, and Webster clay loam. Analyses of quantitative relationships between the toxicological benchmarks for TNT and soil property measurements identified soil organic matter content as the dominant property mitigating TNT toxicity for juvenile production by E. crypticus in freshly amended soil. Both the clay and organic matter contents of the soil modulated reproduction toxicity of TNT that was weathered and aged in soil for 3 mo. Toxicity of RDX for E. crypticus was greater in the coarse-textured sandy loam soils compared with the fine-textured clay loam soils. The present studies revealed alterations in toxicity to E. crypticus after weathering and aging TNT in soil, and these alterations were soil- and endpoint-specific. © 2013 SETAC.

  7. New way of measurement of thermophysical properties of clay loam materials by transient methods

    Science.gov (United States)

    Boháč, Vlastimil; Dieška, Peter; Vretenár, Viliam; Lukáč, Vladimír

    2016-07-01

    The problem of the measurement of clay loam materials in plastic consistency is more or less difficult as they can change the shape during the long time measurements. The specimen thickness is expected as the constant during all the experiment measured by transient pulse method. In a case of plastic clay loam, it can change the form during the measurement because of the squeeze of the material even under the gravity condition. Thus the specimen surface wall should be reinforced by special dimensionally well-defined thin wall container. In this paper the special container in a form of thin tube rings bounded by central annular ring was constructed and used for the measurements. The heat source was inserted into the tube rings through the nozzle in the middle part and the thermocouple was inserted through the drilled openings at defined distance from the heat source. System clamped the heat source together with the rings at desired distance from the thermocouple. This distance represents the thickness of tested specimen. The soft plastic material fill the inner space of tube rings in such a way to fulfill the geometry conditions for this method. The need of soft clay loam material measurement is to test its thermal properties because of the interest to use it as the heat storage material below the buildings. The measured clay loam containing some moisture has quite high values of specific heat and thus the use of it as the heat storage material is promising.

  8. Vapor Flow Resistance of Dry Soil Layer to Soil Water Evaporation in Arid Environment: An Overview

    Directory of Open Access Journals (Sweden)

    Xixi Wang

    2015-08-01

    Full Text Available Evaporation from bare sandy soils is the core component of the hydrologic cycle in arid environments, where vertical water movement dominates. Although extensive measurement and modeling studies have been conducted and reported in existing literature, the physics of dry soil and its function in evaporation is still a challenging topic with significant remaining issues. Thus, an overview of the previous findings will be very beneficial for identifying further research needs that aim to advance our understanding of the vapor flow resistance (VFR effect on soil water evaporation as influenced by characteristics of the dry soil layer (DSL and evaporation zone (EZ. In this regard, six measurement and four modeling studies were overviewed. The results of these overviewed studies, along with the others, affirm the conceptual dynamics of DSL and EZ during drying or wetting processes (but not both within dry sandy soils. The VFR effect tends to linearly increase with DSL thickness (δ when δ < 5 cm and is likely to increase as a logarithmic function of δ when δ ≥ 5 cm. The vaporization-condensation-movement (VCM dynamics in a DSL depend on soil textures: sandy soils can form a thick (10 to 20 cm DSL while sandy clay soils may or may not have a clear DSL; regardless, a DSL can function as a transient EZ, a vapor condensation zone, and/or a vapor transport medium. Based on the overview, further studies will need to generate long-term continuous field data, develop hydraulic functions for very dry soils, and establish an approach to quantify the dynamics and VFR effects of DSLs during wetting-drying cycles as well as take into account such effects  when using conventional (e.g., Penman-Monteith evaporation models.

  9. Influence of soil texture on the electrokinetic transport of diesel-degrading microorganisms.

    Science.gov (United States)

    Mena, Esperanza; Villaseñor, José; Cañizares, Pablo; Rodrigo, Manuel A

    2011-01-01

    This work studied the mobilisation of diesel-degrading microorganisms in soils of different textures using electrokinetic techniques. The mobilisation tests were performed using a laboratory-scale electrokinetic cell in which a synthetic soil column was inserted between the cathode and anode compartments. Model soils of different textures were prepared by mixing silica and kaolin at different weight ratios. Microorganisms were obtained from an undefined diesel-degrading microbial culture and located at the anode compartment. In each four hours experiment, constant cell voltage was applied, and samples were taken from the cathode compartment. Changes in the pH due to water electrolysis were found to significantly influence the process performance, and the effect of the carbonate concentration (buffer) was studied to clarify this effect. With respect to soil texture, it was observed that large particle size led to high numbers of microorganisms passing through the soil column, and the presence of small particles, which give rise to small pores, was required to improve the retention of microorganisms. Finally, current-intensity measurements with different soil textures revealed that it was favourable to use only large or small particles, whereas a sandy clay soil (50% silica/50% clay) did not favour any of the fundamental electrokinetic processes.

  10. Enzyme activity and microorganisms diversity in soil contaminated with the Boreal 58 WG herbicide.

    Science.gov (United States)

    Kucharski, Jan; Tomkiel, Monika; Baćmaga, Małgorzata; Borowik, Agata; Wyszkowska, Jadwiga

    2016-07-02

    Next-generation herbicides are relatively safe when used properly, but the recommended rates are relatively low, which can lead to overdosing. This study evaluated the responses of soil-dwelling microorganisms and soil enzymes to contamination with the Boreal 58 WG herbicide. The analyzed product contains active ingredients flufenacet and isoxaflutole. All tests were performed under laboratory conditions. The analyzed material was sandy clay. Boreal 58 WG was introduced to soil in four doses. Soil without the addition of the herbicide served as the control. The soil was mixed with the tested herbicide, and its moisture content was maintained at 50% of capillary water capacity. Biochemical and microbiological analyses were performed on experimental days 0, 20, 40, 80 and 160. Accidental contamination of soil with the Boreal 58 WG herbicide led to a relatively minor imbalance in the soil microbiological and biochemical profile. The herbicide dose influenced dehydrogenase activity in only 0.84%, urease activity in 2.04%, β-glucosidase activity in 8.26%, catalase activity in 12.40%, arylsulfatase activity in 12.54%, acid phosphatase activity in 42.11%, numbers of organotrophic bacteria in 18.29%, actinomyces counts in 1.31% and fungi counts in 6.86%.

  11. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    Science.gov (United States)

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  12. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa ON, Canada K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada)

    2010-12-01

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. {sup 14}C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable {sup 14}C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  13. Soil mineral concentrations and soil microbial activity in grapevine inoculated with arbuscular mycorrhizal (AM fungus in Chile

    Directory of Open Access Journals (Sweden)

    Eduardo von Bennewitz

    2008-01-01

    Full Text Available A two year-experiment was carried out to study an effect of root inoculation with arbuscular mycorrhizal (AM fungus on soil mineral concentrations and soil microbial activity in grapevine (Vitis vi­ni­fe­ra cv. “Cabernet Sauvignon” cultivated in Chile. Plants were inoculated with a commercial granular inoculant (Mycosym Tri-ton® and cultivated in 20 L plastic pots filled with an unsterilized sandy clay soil from the Vertisols class under climatic conditions of Curicó (34°58´ S; 71°14´ W; 228 m ASL, Chile.Soil analyses were carried out at the beginning of the study and after two years (four samples of rhizospheric soil for each treatment to assess the effects of mycorrhizal infection on soil mineral concentration and physical properties. Soil microbial activity was measured by quantifying the soil production of CO2 in ten replications of 50 g of soil from each treatment. Root mycorrhizal infection was assessed through samples of fresh roots collected during 2005 and 2006. Fifty samples for each treatment were analyzed and the percentage of root length containing arbuscules and vesicles was assessed.During both years (2005 and 2006 all treatments showed mycorrhizal infection, even the Control treatment where no AM was applied. Mycorrhizal colonization did not affect the soil concentrations of N, P, K, Ca, Mg, K, Ca, Mg, Mn, Zn, Cu, Fe, B, organic matter, pH/KCl and ECe. Soil CO2-C in vitro production markedly decreased during the period of the study. No significant differences where detected among treatments in most cases.

  14. Antibiotic resistance of microorganisms in agricultural soils in Russia

    Science.gov (United States)

    Danilova, Natasha; Galitskaya, Polina; Selivanovskaya, Svetlana

    2017-04-01

    Antibiotics are medicines widely used to treat and prevent bacterial infections not only in human medicine but also in veterinary. Besides, in animal husbandry antibiotics are often used in for stimulation of animal's growth. Many antibiotics used for veterinary purposes are weakly absorbed in the animal's gut. So up to 90% of the administered antibiotics are excreted with manure and urine. Therefore use of manure as an organic fertilizer leads to formation and spreading of antibiotic resistance among soil microbes. Another reason of such spreading is the horizontal transfer of genes encoding antibiotic resistance from manure to soil microflora. The level of antibiotic resistance genes pollution of soils has not been properly studied yet. The aim of this study was to estimate the contamination of agricultural soils by antibiotic resistant genes. 30 samples of agricultural soils were selected around of Kazan city (Tatarstan Republic) with 1.3 Mio citizens. Since tetracycline is reported to be the most wide spread veterinary antibiotic in Russia, we estimated the level of soil contamination by tet(X) gene encoding tetracycline decomposition in microbial cell. Real time PCR method with specific primers was used as a method of investigation. Particle size type distribution of 31% of soil samples was estimated to be sandy clay, and 69% of soil samples - to silty clay. Content of dissoluble organic carbon ranged from 0,02 mg g -1 (sample 20) to 0,46 mg g -1 (sample 16). Respiration activity and microbial biomass of soils were estimated to be 0,80-5,28 CO2 C mg g -1 h-1 and 263,51-935,77 µg kg - 1 respectively. The values presented are typical for soils of Tatarstan Republic. In terms of the antibiotic resistant gene content, 27 of 30 samples investigated contained tet(X) gene, while 52% of the samples were highly contaminated, 34% of samples were middle contaminated and 14% of samples - weakly contaminated.

  15. Effects of Different Types of Sludge on Soil Microbial Properties: A Field Experiment on Degraded Mediterranean Soils

    Institute of Scientific and Technical Information of China (English)

    D.TARRAS(O)N; G.OJEDA; O.ORTIZ; J.M.ALCA(N)IZ

    2010-01-01

    T The recycling of suitable organic wastes can enhance soil fertility via effects on soil physical, chemical and biological properties. To compare the effects of digested (DS), thermally dried (TDS) and composted dewatered (CDS) sewage sludge on soil microbiological properties, an experiment was conducted at field sites for more than one year (401 d) when applied to two Mediterranean degraded soils (loam and loamy sand soils). All three types of sewage sludge had a significant effect on measured parameters. In a short time, the plots of both loamy sand and loam soils amended with TDS showed the highest microbial basal respiration (loam soil: P < 0.01; loamy sand soil: P < 0.001) and carbon mineralization coefficient (loam soil: P < 0.01; loamy sand soil: P < 0.001). Furthermore, on loamy sand soil, the plots amended with TDS showed the highest microbial metabolic quotient (qCO2) (P < 0.05). This study revealed that the addition of sludge caused transient non-equilibrium effects on almost all soil microbial properties. However, there were no differences one year later because the remaining organic carbon was stable and quite similar in all treatments. These results may have practical implications for the rehabilitation of degraded soils.

  16. BIOSYNTHESIS OF AgNPs WITH THREE WIDESPREAD LOAM FUNGI VIA ASPERGILLUS FUMIGATUS, FUSARIUM SPP. RHIZOPUS SPP.

    Directory of Open Access Journals (Sweden)

    P. SHIVAKUMAR SINGH

    2016-05-01

    Full Text Available Objectives: Biosynthesis of silver nanoparticles using fungi Aspergillus fumigatus, Fusarium spp. and Rhizopus spp. for the potential synthesis of metal nanoparticles. Methods: The standard techniques have been followed for the AgNPs synthesis characterizations. Spectral analysis of UV-visible spectroscopy, Transmission Electron Microscopy, X-ray diffraction studies, energy dispersive X-ray, Fourier transforms infrared spectroscopy. Results: The hurried decline of silver (Ag+ ions was monitored using a UV-visible spectrophotometer and showed the formation of silver nanoparticles within 28 minutes. Transmission electron microscopy (TEM showed that the synthesized silver nanoparticles are varied from 15-50 nm and have the varying in shapes like round, rod, uneven. Further, the XRD analysis confirms the nano-crystalline phase of the silver structure. FTIR examinations confirm the Silver particles. The present study, it reveals the increasing broth concentration increases the rate of reduction and decreases the particle size. Conclusion: The AgNPs were biologically synthesized using isolated fungal species biomass from the soil of loam. The cell filtrate of fungi was challenged with 1mm Silver nitrate, change of mixture from colorless to orange-brown indicates the synthesis of AgNPs in the reaction mixture. The isolated fungi are an important producer of Silver nanoparticles.

  17. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main...

  18. Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils

    Directory of Open Access Journals (Sweden)

    Yunhe Zhang

    2016-03-01

    Full Text Available A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a lab-scale pyrolyzer operated at 450 °C under a nitrogen environment and slow pyrolysis conditions. Two local arid soils used for crop production, a sandy loam and a clay loam, were amended with these biochars at a rate of 45 Mg·ha−1 and incubated for three weeks in a growth chamber. The soils were analyzed for multiple soil quality indicators including soil organic matter content, pH, electrical conductivity (EC, and available nutrients. Results showed that amendment with cotton gin trash biochar has the greatest impact on both soils, significantly increasing SOM and plant nutrient (P, K, Ca, Mn contents, as well as increasing the electrical conductivity, which creates concerns about soil salinity. Other biochar treatments significantly elevated soil salinity in clay loam soil, except for pecan shell biochar amended soil, which was not statistically different in EC from the control treatment. Generally, the effects of the biochar amendments were minimal for many soil measurements and varied with soil texture. Effects of biochars on soil salinity and pH/nutrient availability will be important considerations for research on biochar application to arid soils.

  19. Evaluation of pedotransfer functions for estimating the soil water retention points

    Science.gov (United States)

    Bahmani, Omid; Palangi, Sahar

    2016-06-01

    Direct measurement of soil moisture has been often expensive and time-consuming. The aim of this study was determining the best method to estimate the soil moisture using the pedotransfer functions in the soil par2 model. Soil samples selected from the database UNSODA in three textures include sandy loam, silty loam and clay. In clay soil, the Campbell model indicated better results at field capacity (FC) and wilting point (WP) with RMSE = (0.06, 0.09) and d = (0.65, 0.55) respectively. In silty loam soil, the Epic model had accurate estimation with MBE = 0.00 at FC and Campbell model had the acceptable result of WP with RMSE = 0.03 and d = 0.77. In sandy loam, Hutson and Campbell models had a better result to estimation the FC and WP than others. Also Hutson model had an acceptable result to estimation the TAW (Total Available Water) with RMSE = (0.03, 0.04, 0.04) and MBE = (0.02, 0.01, 0.01) for clay, sandy loam and silty loam, respectively. These models demonstrate the moisture points had the internal linkage with the soil textures. Results indicated that the PTFs models simulate the agreement results with the experimental observations.

  20. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  1. Threshold friction velocity of soils within the Columbia Plateau

    Science.gov (United States)

    Sharratt, B. S.; Vaddella, V. K.

    Wind erosion only occurs when the friction velocity exceeds the threshold friction velocity (TFV) of the surface. The TFV of loessial soils found across the Columbia Plateau region of the U.S. Pacific Northwest is virtually unknown even though these soils are highly erodible and a source of atmospheric particulates that reduce air quality. The TFV's of a sandy loam and four silt loams collected from field sites in eastern Washington were determined by systematically measuring the temporal variation in wind speed, saltation activity, and PM10 (particles with an aerodynamic diameter of ⩽10 μm) and TSP (total suspended particulate matter) concentrations above the soil surface inside a wind tunnel. The erodible fraction of each soil, obtained by drying and screening the soil, was placed in a tray inside the wind tunnel. The TFV for the sandy loam was 0.139 m s-1 whereas the TFV for the four silt loams ranged from 0.180-0.239 m s-1. The sandy loam was aerodynamically smoother than that of the silt loams, possibly due to a smaller size fraction of larger soil aggregates or particles on the surface of the sandy loam. The TFV's measured in this study were lower than those previously observed in the field in the Columbia Plateau and also lower than the minimum TFV required to initiate erosion in some wind erosion models. While these TFV's are representative of the erodible soil fraction, the low TFV's may contribute to the occasional poor performance of wind erosion models in the region.

  2. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    , MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...

  3. ESTIMATING SOIL PARTICLE-SIZE DISTRIBUTION FOR SICILIAN SOILS

    Directory of Open Access Journals (Sweden)

    Vincenzo Bagarello

    2009-09-01

    Full Text Available The soil particle-size distribution (PSD is commonly used for soil classification and for estimating soil behavior. An accurate mathematical representation of the PSD is required to estimate soil hydraulic properties and to compare texture measurements from different classification systems. The objective of this study was to evaluate the ability of the Haverkamp and Parlange (HP and Fredlund et al. (F PSD models to fit 243 measured PSDs from a wide range of 38 005_Bagarello(547_33 18-11-2009 11:55 Pagina 38 soil textures in Sicily and to test the effect of the number of measured particle diameters on the fitting of the theoretical PSD. For each soil textural class, the best fitting performance, established using three statistical indices (MXE, ME, RMSE, was obtained for the F model with three fitting parameters. In particular, this model performed better in the fine-textured soils than the coarse-textured ones but a good performance (i.e., RMSE < 0.03 was detected for the majority of the investigated soil textural classes, i.e. clay, silty-clay, silty-clay-loam, silt-loam, clay-loam, loamy-sand, and loam classes. Decreasing the number of measured data pairs from 14 to eight determined a worse fitting of the theoretical distribution to the measured one. It was concluded that the F model with three fitting parameters has a wide applicability for Sicilian soils and that the comparison of different PSD investigations can be affected by the number of measured data pairs.

  4. Nitrogen application in the maize, under no tillage system: effects in the soil physical quality and agronomics characteristics

    Directory of Open Access Journals (Sweden)

    Flávia Carvalho Silva

    2014-05-01

    Full Text Available This research was developed in the experimental area of ESALQ-USP, city of Piracicaba , state of Sao Paulo, in a soil of sandy-clay texture and aimed to evaluate the soil physical quality and maize agronomic characteristics with maize crop under different N doses and different tillage systems. The experimental design consisted of randomized blocks with four replicates. Treatments consisted of three nitrogen doses (N (60, 120, and 180 kg ha-1 and a control. The ammonium sulfate fertilizer was applied at 30 kg ha-1 N during seeding, and the rest was applied as sidedressing when the plants had between six and eight leaves. Were determined the bulk density, microporosity, macroporosity and total porosity of soil, at depths of 0.05, 0.15, 0.25, 0.35 m, and the maize components yield. The soil physical properties tend to change over time and N levels, especially with regard to soil macroporosity and microporosity, conditioned by the structural change of the soil.

  5. The antihistamine diphenhydramine is extremely persistent in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Edward, E-mail: ed.topp@agr.gc.ca; Sumarah, Mark W.; Sabourin, Lyne

    2012-11-15

    The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT{sub 50}) of {sup 14}C-diphenhydramine residues at 30 Degree-Sign C ranged from 88 {+-} 28 days in the clay loam to 335 {+-} 145 days in the loam soil. Mineralization of {sup 14}C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation. -- Highlights: Black-Right-Pointing-Pointer Diphenhydramine is a widely used antihistamine drug, is found in biosolids, and in runoff from biosolids-fertilized fields. Black-Right-Pointing-Pointer The persistence of {sup 14}C-diphenhydramine was evaluated in soils. Black-Right-Pointing-Pointer Half lives ranged from 88 to 335 days. Diphenhydramine-N-oxide was the only detected transformation product. Black-Right-Pointing-Pointer Soil-bound residues was a major sink.

  6. Atributos químicos de solos influenciados pela substituição do carbonato por silicato de cálcio Soil chemical properties influenced by the substitution of calcium carbonate by calcium silicate

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2008-08-01

    ácia do silicato de Ca foi inferior à de carbonato de Ca na melhoria das condições químicas do solo.The application of silicates to soils can result in increased soil cation exchange capacity (CEC, displace anions, especially H2PO4- (diacid phosphate, neutralize the pH and Al toxicity and, in general, increase the nutrient availability to plants. However, calcium silicates may be less efficient than calcium carbonates. To evaluate the effect of calcium carbonate substitution by calcium silicate on the soil chemical properties, especially on phosphorus availability, four experiments were conducted in an entirely randomized design with four replications, in a greenhouse. The treatments consisted of five levels (0, 25, 50, 75, and 100 % of calcium carbonate substitution by calcium silicate, with a 4:1 Ca:Mg stoichiometric and the same amount of CaO, enough to reach a 60 % base saturation. The treatments were applied to 4 dm³ samples of a sandy orthic Quartzarenic Neosol (Quartzpsament, a sandy loam dystrophic Red-Yellow Latosol (Oxisol, sandy clay loam dystrophic Red-Yellow Latosol (Oxisol and a clayey dystrophic Red Latosol (Oxisol; each soil represented one experiment. The pH values in H2O, P, phosphorus in the equilibrium solution (P-rem, K, Ca, Mg, Si, Al, H + Al, organic matter (OM, Cu, Mn, Zn and B, sum of bases (S, effective (t ant total (T CEC, base saturation (V and Al saturation (m were submitted to analysis of variance and simple regression models fitted as a function of CaCO3 substitution by CaSiO3 levels. It was observed that carbonate substitution by silicate promoted significant increases in the values of Si, Al, H + Al and m and reduction in the values of P-rem, pH, S, t and V. The values of Mehlich 1 P, K, Mg, OM, T, Mn, Cu, and B were not influenced significantly. A reduction in Zn availability was verified in the dystrophic orthic Quartzarenic Neosol only. Calcium silicate was less efficient than calcium carbonate in the improvement of soil chemical

  7. Experimental Study on Aero Conductivity of Porous Media

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the variation pattern of aero conductivity of different porous media under low pressure conditions, three kinds of media are selected.These include sandy clay loam, fine sand, and medium sand, and air as fluid to conduct soil column ventilation tests.Pressure at both ends of the columns is measured under different ventilation flow rates during testing.The test results show that the aero conductivity, solved by Darcy's law, is not a constant.It is a variable, which increases first when air flow velocity is less than 0.258 7 cm/ s for sandy clay loam, 0.637 3 cm/s for fine sand and then decreases when air flow velocity is bigger than that with the increase of the ventilation flow rate when the medium is determined.By analyzing various factors that influence the flow resistance, the reasons for variation in aero conductivity are found as follows: first, the change of pore structure results in better ventilation; second, the relationship between pressure head loss and air flow velocity is nonlinear, and it is beyond the condition of the laminar flow domain to which Darcy's law can be applied, when the air flow rate increases to a certain value and the flow velocity is in the transition range to turbulent flow.

  8. Abamectin in soils: Analytical methods, kinetics, sorption and dissipation.

    Science.gov (United States)

    Dionisio, Andreza Camilotti; Rath, Susanne

    2016-05-01

    Abamectin is a broad-spectrum antiparasitic agent that has been widely employed in veterinary medicine and has also been used as a pesticide in agriculture. Veterinary drugs may reach the soil and may be transported to surface and ground waters, posing risks to terrestrial and aquatic organisms. Sorption, transformation and transport processes are primarily responsible for the fate of these substances in the environment. In this study, the sorption and the aerobic dissipation of abamectin in Brazilian soils (sand, clay and sandy-clay) were evaluated. For sorption studies, batch equilibrium experiments were performed. Sorption and desorption isotherms were fitted to the Freundlich model. Abamectin showed a high affinity to soil particles, with Freundlich sorption and desorption coefficients ranging from 44 to 138 μg(1-1/n) (cm(3))(1/n) g(-1) and from 89 to 236 μg(1-1/n) (cm(3))(1/n) g(-1), respectively. Dissipation of abamectin was evaluated in sterile and non-sterile soils in an aerobic and dark environment under controlled temperature and humidity. The time required for a 50% reduction of the amount of abamectin present in non-sterile soils was up to 4 days, and the time period for 90% dissipation was up to 12 days. In sterilized soils, there was no reduction in the concentration of abamectin over 37 days of exposure, suggesting that aerobic microbial degradation must have been the primary mechanism responsible for the dissipation of abamectin in soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Alleviation of Soil Acidity and Aluminium Phytotoxicity in Acid Soils by Using Alkaline-Stabilised Biosolids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A pot experiment was carried out to study alleviation of soil acidity and Al toxicity by applying an alkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acid sandy loam (pH 4.5). Barley (Hordeum vulgare L. cv. Forrester) was used as a test crop and was grown in the sewage sludge-amended (33.5 t sludge DM ha-1) and unamended soils. The results showed that the alkaline biosloids increased soil pH from 5.7 to 6.9 for the clay sandy loam and from 4.5 to 6.0 for the sandy loam. The sludge product decreased KCl-extractable Al from 0.1 to 0.0 cmol kg-1 for the former soil and from 4.0 to 0.1 cmol kg-1 for the latter soil. As a result, barley plants grew much better and grain yield increased greatly in the amended treatments compared with the unamended controls. These observations indicate that alkaline-stabilised biosolids can be used as a liming material for remedying Al phytotoxicity in strongly acid soils by increasing soil pH and lowering Al bioavailability.

  10. The impacts of pyrolysis temperature and feedstock type on biochar properties and the effects of biochar application on the properties of a sandy loam

    Science.gov (United States)

    Aston, Steve; Doerr, Stefan; Street-Perrott, Alayne

    2013-04-01

    The production of biochar and its application to soil has the potential to make a significant contribution to climate change mitigation whilst simultaneously improving soil fertility, crop yield and soil water-holding capacity. Biochar is produced from various biomass feedstock materials at varying pyrolysis temperatures, but relatively little is known about how these parameters affect the properties of the resultant biochars and their impact on the properties of the soils to which they are subsequently applied. Salix viminalis, M. giganteus and Picea sitchensis feedstocks were chipped then sieved to 2 - 5 mm, oven dried to constant weight, then pyrolyzed at 350, 500, 600 and 800° C in a nitrogen-purged tube furnace. Biochar yields were measured by weighing the mass of each sample before and after pyrolysis. Biochar hydrophobicity was assessed by using a goniometer to measure water-droplet contact-angles. Cation-exchange-capacity (CEC) was measured using the ammonium acetate method. Biochars were also produced in a rotary kiln from softwood pellets at 400, 500, 600 and 700° C then ground to 0.4 - 1 mm and applied to a sandy loam at a rate of 50 g kg-1. Bulk densities of these soil-biochar mixtures were measured on a tapped, dry, basis. The water-holding-capacity (WHC) of each mixture was measured gravimetrically following saturation and free-draining. The filter paper method was used to assess how pyrolysis temperature influences the effect of biochar application on matric suction. For all feedstocks, large decreases in biochar yield were observed between the pyrolysis temperatures of 350° C and 500° C. For Salix viminalis and M. giganteus feedstocks, subsequent reductions in the yield with increasing pyrolysis temperature were much lower. There were significant differences in hydrophobicity between biochars produced from different biomass and mean biochar hydrophobicity decreased with increasing pyrolysis temperature for all feedstocks. Results for CEC and WHC

  11. Soil Loss by Wind Erosion for Three Different Textured Soils Treated with Polyacrylamide and Crude Oil, Iraq

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The study is conducted to estimate the resistance of three soils (EL-Hartha clay loam, Barjisiya sandy loam and the soil near the sand dunes in Sheikh sa'ad area sandy soil) to wind erosion, it is also aimed at getting full acquaintance of the relationship between the soil loss and the physical and chemical features of soil. In addition to the experiment of some soil stabilizers, polyacrylamide (PAM) concentration of 0.2 % and crude oil in concentration of 1 % in order to reduce or prevent wind erosion. The study shows that the amendment increased the dry soil aggregate >1 mm, mean weight diameter and soil moisture. It is clear that polyacrylamide had greater effect than that of crude oil, besides the great effectiveness of these amendments in decreasing bulk density and relations of soil loss.

  12. Effectiveness of 3,4-Dimethylpyrazole Phosphate as Nitrification Inhibitor in Soil as Influenced by Inhibitor Concentration,Application Form,and Soil Matric Potential

    Institute of Scientific and Technical Information of China (English)

    G.BARTH; S.VON TUCHER; U.SCHMIDHALTER

    2008-01-01

    The efficacy of nitrification inhibitors depends on soil properties and environmental conditions.The nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) was investigated in a sandy loam and a loamy soil to study its effectiveness as influenced by inhibitor concentration,application form,and soil matric potential.DMPP was applied with concentrations up to 34.6 mg DMPP kg-1 soil as solution or as ammonium-sulfate/ammonium-nitrate granules formulated with DMPP.DMPP inhibited the oxidation of ammonium in both soils,but this effect was more pronounced in the sandy loam than in the loamy soil When applied as solution,increasing DMPP concentrations up to 7 mg DMPP kg-1 soil had no influence on the inhibition.The effectiveness of DMPP formulated as fertilizer granules was superior to the liquid application of DMPP and NH+,particularly in the loamy soil.Without DMPP,a decline in soil matric potential down to -600 kPa decreased nitrification in both soils,but this effect was more pronounced in the sandy loam than in the loamy soil.DMPP was most effective in the sandy loam particularly under conditions of higher soil moisture,i.e.,under conditions favorable for nitrate leaching.

  13. Chemical properties of soils treated with biological sludge from gelatin industry

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Melo Guimarães

    2012-04-01

    Full Text Available The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay and an Oxisol (clay. The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1, with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

  14. Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions.

    Science.gov (United States)

    Menahem, Adi; Dror, Ishai; Berkowitz, Brian

    2016-02-01

    The release of pharmaceuticals and personal care products (PPCPs) to the soil-water environment necessitates understanding of PPCP transport behavior under conditions that account for dynamic flow and varying redox states. This study investigates the transport of two organometallic PPCPs, Gd-DTPA and roxarsone (arsenic compound) and their metal salts (Gd(NO3)3, AsNaO2); Gd-DTPA is used widely as a contrasting agent for MRI, while roxarsone is applied extensively as a food additive in the broiler poultry industry. Here, we present column experiments using sand and Mediterranean red sandy clay soil, performed under several redox conditions. The metal salts were almost completely immobile. In contrast, transport of Gd-DTPA and roxarsone was affected by the soil type. Roxarsone was also affected by the different redox conditions, showing delayed breakthrough curves as the redox potential became more negative due to biological activity (chemically-strong reducing conditions did not affect the transport). Mechanisms that include adsorptive retardation for aerobic and nitrate-reducing conditions, and non-adsorptive retardation for iron-reducing, sulfate-reducing and biologically-strong reducing conditions, are suggested to explain the roxarsone behavior. Gd-DTPA is found to be a stable complex, with potential for high mobility in groundwater systems, whereas roxarsone transport through groundwater systems is affected by redox environments, demonstrating high mobility under aerobic and nitrate-reducing conditions and delayed transport under iron-reducing, sulfate-reducing and biologically-strong reducing conditions.

  15. Germination requirements and seedling responses to water availability and soil type in four eucalypt species

    Science.gov (United States)

    Schütz, Wolfgang; Milberg, Per; Lamont, Byron B.

    2002-03-01

    We conducted experiments on seed germination, seedling survival and seedling growth of four Eucalyptus species to identify factors that might explain why they are restricted to the two major soil types in southwestern Australia, deep sands ( E. macrocarpa, E. tetragona) and lateritic loam ( E. loxophleba, E. wandoo). At high temperatures (28 °C), germination in darkness was lower for the two 'loam species' than for the 'sand species', while there were no differences in light or at low temperatures (10 °C). Germination commenced earlier, and was faster in the sand species than in the loam species, but was almost inhibited in all species by -1.0 MPa. E. tetragona proved the most drought-tolerant in terms of germination level and seedling survival. Seedlings of the sand species had much longer roots two weeks after germination in the absence of water stress, and the roots of more seedlings continued to elongate under moderate water stress (-1.0 MPa), than the two loam species. Roots were longer in all species, except E. macrocarpa, at -0.5 MPa than at -0.1 MPa, despite seedlings having a smaller mass and hypocotyl length. As water availability declined, there was a tendency for the sand species to survive longer on sand than on loam while soil type had no effect on the loam species. Pattern and duration of seedling survival of the loam species was similar to that of the sand species despite their smaller seeds. We conclude that seedlings from the large-seeded sand species are able to penetrate the soil profile faster and deeper, but that they are not less prone to drying soils than seedlings from the small-seeded loam species. Instead, seed size and germination speed are important prerequisites to cope successfully with unstable soil surfaces and to exploit the rapidly descending water in deep sands.

  16. Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2014-04-01

    Full Text Available Segmented mesocosms (n = 3 packed with sand, sandy loam or clay loam soil were used to determine the effect of soil texture and depth on transport of two septic tank effluent (STE-borne microbial pathogen surrogates—green fluorescent protein-labeled E. coli (GFPE and MS-2 coliphage—in soil treatment units. HYDRUS 2D/3D software was used to model the transport of these microbes from the infiltrative surface. Mesocosms were spiked with GFPE and MS-2 coliphage at 105 cfu/mL STE and 105–106 pfu/mL STE, respectively. In all soils, removal rates were >99.99% at 25 cm. The transport simulation compared (1 optimization; and (2 trial-and-error modeling approaches. Only slight differences between the transport parameters were observed between these approaches. Treating both the die-off rates and attachment/detachment rates as variables resulted in an overall better model fit, particularly for the tailing phase of the experiments. Independent of the fitting procedure, attachment rates computed by the model were higher in sandy and sandy loam soils than clay, which was attributed to unsaturated flow conditions at lower water content in the coarser-textured soils. Early breakthrough of the bacteria and virus indicated the presence of preferential flow in the system in the structured clay loam soil, resulting in faster movement of water and microbes through the soil relative to a conservative tracer (bromide.

  17. CONTROL OF AROMATIC WASTE AIR STREAMS BY SOIL BIOREACTORS

    Science.gov (United States)

    Three soils were examined for the ability to degrade hydrocarbon vapors of benzene, toluene, ethylbenzene, and o-xylene (BTEX). Each of these compounds are major aromatic constituents of gasolines. The soils examined were Rubicon Sand from Traverse City, Michigan, Durant Loam fro...

  18. Study on Development of Leaf Tissue Structure of Flue-cured Tobacco Produced in Sandy Loam and Clay Loam in Wannan%皖南砂壤土和水稻土烤烟叶片组织结构发育规律研究

    Institute of Scientific and Technical Information of China (English)

    张国; 时向东; 季学军; 沈思灯; 马称心

    2011-01-01

    为了弄清烤烟叶片组织结构与皖南焦甜香特色风格的关系,对皖南砂壤土和水稻土烤烟叶片组织结构发育规律进行了研究.结果表明,土壤质地影响栅栏组织细胞快速分裂时期,对细胞总数的影响不明显.土壤质地间烟叶各组织厚度指标在叶肉细胞分裂期差异不大;叶肉细胞伸长前期,砂壤土烟叶栅栏组织细胞快速伸长较早,栅栏组织厚度与叶厚的比值和栅栏组织厚度与海绵组织厚度的比值也较大,而土壤质地引起的叶厚和海绵组织厚度发育差异规律在叶位间表现不一;但水稻土烟叶栅栏组织厚度、海绵组织厚度和叶厚均在叶长定长和成熟期达到或超过砂壤土水平.随着叶长的增加,皖南烤烟栅栏组织与海绵组织厚度比值和栅栏组织厚度与叶厚的比值均大体呈上升趋势.%The study results of development of leaf tissue structure of flue-cured tobacco produced in sandy loam soil and paddy soil in wannan area showed that: soil types could affect the time to cell rapid divisional of tobacco leaf palisade tissue, but not the total cell numbers. There were not obvious difference about leaf tissue thickness caused by soil types when the mesophyll cell divided; At the early stage of mesophyll cell elongation period, palisade tissue of tobacco leaf produced in sandy loam soil rapid elongated earlier, thus the thickness ratios of both palisade tissue to leaf and palisade tissue to sponge tissue were higher in this period, and the development changes in both palisade tissue thickness and leaf thickness caused by soil types were different between stalk positions; But palisade tissue thickness of the tobacco leaf produced in paddy soil reached or surpassed the levels of which produced in sandy loam soil, and so did the leaf thickness and the sponge tissue thickness. With the leaf growing, the thickness ratios of both palisade tissue to sponge tissue and palisade tissue to leaf

  19. Soil organic matter distribution as influenced by enchytraeid and earthworm activity

    NARCIS (Netherlands)

    Koutika, L.S.; Didden, W.A.M.; Marinissen, J.C.Y.

    2001-01-01

    Loam and sandy soils, and the earthworm casts produced with 14C-labelled plant material in both soils, were incubated in airtight glass vessels with and without enchytraeids to evaluate the effects of soil fauna on the distribution and fragmentation of organic matter. After 1, 3, and 6 weeks, the

  20. Brief and vigorous N2O production by soil at spring thaw

    DEFF Research Database (Denmark)

    Christensen, Søren; Tiedje, James M.

    1990-01-01

    In an acid sandy loam soil (pH 3.8), field production of N2O was two orders of magnitude higher at thaw in the spring than at any time during the rest of the year. Soil thaw in midwinter did not result in any increase in N2O flux. Soil water content remained at, or above field capacity during...

  1. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M; Ouedraogo, T; Kumar, L; Sanou, S; van Langevelde, F; Kiema, A; van de Koppel, J; van Andel, J; Hearne, J; Skidmore, AK; de Ridder, N; Stroosnijder, L; Prins, HHT

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  2. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  3. Mesquite root distribution and water use efficiency in response to long-term soil moisture manipulations

    Science.gov (United States)

    R. J. Ansley; T. W. Boutton; P. W. Jacoby

    2007-01-01

    This study quantified honey mesquite (Prosopis glandulosa) root growth and water use efficiency following chronic soil drought or wetness on a clay loam site in north Texas. Root systems of mature trees were containerized with barriers inserted into the soil. Soil moisture within containers was manipulated with irrigation (Irrigated) or rain...

  4. influence of tillage practices on physical properties of a sandy loam ...

    African Journals Online (AJOL)

    DR. AMINU

    Soil organic carbon (OC) and aggregate stability in water (MAW, ASC, DR and WSI) ... Key words: Tillage, Tillage systems, Soil Physical properties, Moisture storage, Physical quality ..... OC/organic matter contents of soils exerts great influe.

  5. Ectomycorrhizal Influence on Particle Size, Surface Structure, Mineral Crystallinity, Functional Groups, and Elemental Composition of Soil Colloids from Different Soil Origins

    Directory of Open Access Journals (Sweden)

    Yanhong Li

    2013-01-01

    Full Text Available Limited data are available on the ectomycorrhizae-induced changes in surface structure and composition of soil colloids, the most active portion in soil matrix, although such data may benefit the understanding of mycorrhizal-aided soil improvements. By using ectomycorrhizae (Gomphidius viscidus and soil colloids from dark brown forest soil (a good loam and saline-alkali soil (heavily degraded soil, we tried to approach the changes here. For the good loam either from the surface or deep soils, the fungus treatment induced physical absorption of covering materials on colloid surface with nonsignificant increases in soil particle size (P>0.05. These increased the amount of variable functional groups (O–H stretching and bending, C–H stretching, C=O stretching, etc. by 3–26% and the crystallinity of variable soil minerals (kaolinite, hydromica, and quartz by 40–300%. However, the fungus treatment of saline-alkali soil obviously differed from the dark brown forest soil. There were 12–35% decreases in most functional groups, 15–55% decreases in crystallinity of most soil minerals but general increases in their grain size, and significant increases in soil particle size (P<0.05. These different responses sharply decreased element ratios (C : O, C : N, and C : Si in soil colloids from saline-alkali soil, moving them close to those of the good loam of dark brown forest soil.

  6. Ectomycorrhizal influence on particle size, surface structure, mineral crystallinity, functional groups, and elemental composition of soil colloids from different soil origins.

    Science.gov (United States)

    Li, Yanhong; Wang, Huimei; Wang, Wenjie; Yang, Lei; Zu, Yuangang

    2013-01-01

    Limited data are available on the ectomycorrhizae-induced changes in surface structure and composition of soil colloids, the most active portion in soil matrix, although such data may benefit the understanding of mycorrhizal-aided soil improvements. By using ectomycorrhizae (Gomphidius viscidus) and soil colloids from dark brown forest soil (a good loam) and saline-alkali soil (heavily degraded soil), we tried to approach the changes here. For the good loam either from the surface or deep soils, the fungus treatment induced physical absorption of covering materials on colloid surface with nonsignificant increases in soil particle size (P > 0.05). These increased the amount of variable functional groups (O-H stretching and bending, C-H stretching, C=O stretching, etc.) by 3-26% and the crystallinity of variable soil minerals (kaolinite, hydromica, and quartz) by 40-300%. However, the fungus treatment of saline-alkali soil obviously differed from the dark brown forest soil. There were 12-35% decreases in most functional groups, 15-55% decreases in crystallinity of most soil minerals but general increases in their grain size, and significant increases in soil particle size (P soil colloids from saline-alkali soil, moving them close to those of the good loam of dark brown forest soil.

  7. CO2 emission and structural characteristics of two calcareous soils amended with municipal solid waste and plant residue

    Science.gov (United States)

    Yazdanpanah, N.

    2016-01-01

    This investigation examines the effect of different amendments on selected soil physical and biological properties over a 24-month period in two cropland fields. Urban municipal solid waste (MSW) compost and alfalfa residue (AR) were used as different organic amendments at the rates of 0 (control), 10 and 30 Mg ha-1 to a clay loam soil and a loamy sand soil in a semiarid region. Results showed that the soil improvement was controlled by the application rate and decomposability of amendments and soil type. The addition of organic amendments to the soils improved aggregate stability and consequently enhanced total porosity, especially macropore fraction. The increased soil organic carbon (SOC) and total porosity values as compared to the control treatment were greater in the loamy sand soil than in the clay loam soil. Moreover, compared to the microbial respiration of control plots, the application of MSW resulted in higher values of microbial respiration in the clay loam soil than in the loamy sand soil, whereas the reverse was found for AR. Linear and power functions were provided for the relationships between microbial respiration and SOC in the loamy sand and clay loam soils, respectively. Also, CO2 emission was stimulated significantly as power functions of the total porosity and the ratio of macroporosity to microporosity. However, the soil microbial respiration and carbon storage improved aggregate stability and pore size distribution, and as a response, soil porosity, especially the macropore fraction, controlled CO2 flux.

  8. Fate of the antiretroviral drug tenofovir in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)

    2010-10-15

    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  9. Effect of successive cauliflower plantings and Rhizoctonia solani AG 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil

    NARCIS (Netherlands)

    Postma, J.; Scheper, R.W.A.; Schilder, M.T.

    2010-01-01

    Disease suppressiveness against Rhizoctonia solani AG 2-1 in cauliflower was studied in two marine clay soils with a sandy loam texture. The soils had a different cropping history. One soil had a long-term (40 years) cauliflower history and was suppressive, the other soil was conducive and came from

  10. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    Science.gov (United States)

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.

  11. Effects of nitrogen fertilizer on nitrogen use efficiency and yield of rice under different soil conditions

    Institute of Scientific and Technical Information of China (English)

    YE Quanbao; ZHANG Hongcheng; WEI Haiyan; ZHANG Ying; WANG Benfu; XIA Ke; HUO Zhongyang; DAI Qigen; XU Ke

    2007-01-01

    Four rice cultivars were used to study the effects of nitrogen fertilizer on nitrogen use efficiency,yield and characteristics of nitrogen uptake under two soil conditions (sandy and clay soil)in soil culture pool.The results were as follows.First,yield of rice in sandy and clay soil was increased by nitrogen application,and that in clay soil was higher than that in sandy soil,but the effect of nitrogen on yield increment was greater in sandy soil than in clay soil.Second,nitrogen utilization of rice was different under different soil conditions.Nitrogen harvest index(NHI)and physiological Nitrogen use efficiency(PNUE)were higher in sandy soil than in clay soil.Apparent Nitrogen recovery efficiency (ANRE),partial factor productivity for applied Nitrogen (PFP),and soil Nitrogen dependent rate(SNDR)were higher in clay soil than in sandy soil.Agronomic Nitrogen use efficiency(ANUE)was varied in different cultivars under different soil conditions.Third,N harvest index,agronomic N use efficiency,physiological N use efficiency,partial factor productivity for applied N,and soil N dependent rate were decreased significantly with the increment of the amount of nitrogen applied under two soil conditions.In sandy soil,ANRE was increased with the increasing nitrogen application and reached the highest value at high nitrogen level.However,in clay soil,ANRE was increased with the increasing of nitrogen application at first,and reached the highest value at medium nitrogen level,then decreased dramatically at high nitrogen level.Fourth,N uptake rate for rice straw and for rice grain and total N uptake rate for rice were higher in sandy clay soil than in sandy soil,but the difference between them was relatively small.Fifth,under different soil conditions,there were significant genotypic differences in the effects of applying nitrogen fertilizer on nitrogen use efficiency,yield,and characteristics of nitrogen uptake.

  12. Soil microbial and faunal responses to herbicide tolerant maize and herbicide in two soils

    DEFF Research Database (Denmark)

    Griffiths, Bryan; Caul, Sandra; Thompson, J.

    2008-01-01

    ), Orient (non HT near isogenic control for T25) and Monumental (a conventional, non HT variety) were grown in contrasting sandy loam and clay loam soils, half were sprayed with the appropriate herbicide as used in the field and soil samples were taken at the five-leaf and flowering plant growth stage....... The main effects on all measured parameters were those of soil type and plant growth stage, with four categories of subsequent interaction: (1) there were no effects of herbicide on plant growth or soil microarthropods: (2) the maize cultivar (but not the GM HT trait) had effects on the decomposition...... of cotton strips and the nematode community; (3) herbicide application in general altered the community level physiological profile of the microbial community and reduced both soil basal respiration and the abundance of protozoa; and (4) the specific application of glufosinate-ammonium to T25 maize altered...

  13. Effects of soil type, moisture content, redox potential and methyl bromide fumigation on Kd values of radio-selenium in soil.

    Science.gov (United States)

    Ashworth, D J; Moore, J; Shaw, G

    2008-07-01

    Understanding the processes that determine the solid-liquid partitioning (K(d) value) of Se is of fundamental importance in assessing the risk associated with the disposal of radio-selenium-containing waste. Using a mini-column (rather than batch) approach, K(d) values for (75)Se were determined over time in relation to soil moisture content (field capacity or saturated), redox potential and methyl bromide fumigation (used to disrupt the soil microbial population) in three contrasting soil types: clay loam, organic and sandy loam. The K(d) values were generally in the range 50-500 L kg(-1), with mean soil K(d) increasing with increasing organic matter content. Saturation with water lowered the measured redox potentials in the soils. However, only in the sandy loam soil did redox potential become negative, and this led to an increase in (75)Se K(d) value in this soil. Comparison of the data with the Eh-pH stability diagram for Se suggested that such strong reduction may have been consistent with the formation of the insoluble Se species, selenide. These findings, coupled with the fact that methyl bromide fumigation had no discernible effect on (75)Se K(d) value in the sandy loam soil, suggest that geochemical, rather than microbial, processes controlled (75)Se partitioning. The inter-relations between soil moisture content, redox potential and Se speciation should be considered in the modelling and assessment of radioactive Se fate and transport in the environment.

  14. Nutrientes (K, P, Ca, Na, Mg e Fe em sedimentos (solos aluviais e cultivares (feijão e milho de praias e barrancos de rios de água branca: a bacia do purus no estado do Acre, Brasil Nutrients in sediment (alluvial soils and cultivates (bean and corn developed in beaches and cliffs found along loam water: the purus basin in state Acre, Brazil

    Directory of Open Access Journals (Sweden)

    Milta Mariane da Mata Martins

    2009-01-01

    Full Text Available The present research highlights the macronutrient abundance in the sediments of beaches and cliffs and cultivates in the river Purus and flowing, southwest of Amazon. The concentrations found in leaves and bean seeds and corn leaves reflect the mineralogical and chemical nature of those rich sediments in K2O and Na2O, which are formed by smectite, illite and K-feldspar. The factors of transfer of the elements in the corn leaves and bean (Ca>K>Na and bean seeds (Na>K>Ca demonstrate that the nutrient needs of the cultivate were found appropriately in the sediments (soils of the beaches and cliffs.

  15. Soil compaction effects on water status of ponderosa pine assessed through 13C/12C composition.

    Science.gov (United States)

    Gomez, G Armando; Singer, Michael J; Powers, Robert F; Horwath, William R

    2002-05-01

    Soil compaction is a side effect of forest reestablishment practices resulting from use of heavy equipment and site preparation. Soil compaction often alters soil properties resulting in changes in plant-available water. The use of pressure chamber methods to assess plant water stress has two drawbacks: (1) the measurements are not integrative; and (2) the method is difficult to apply extensively to establish seasonal soil water status. We evaluated leaf carbon isotopic composition (delta13C) as a means of assessing effects of soil compaction on water status and growth of young ponderosa pine (Pinus ponderosa var. ponderosa Dougl. ex Laws) stands across a range of soil textures. Leaf delta13C in cellulose and whole foliar tissue were highly correlated. Leaf delta13C in both whole tissue and cellulose (holocellulose) was up to 1.0 per thousand lower in trees growing in non-compacted (NC) loam or clay soils than in compacted (SC) loam or clay soils. Soil compaction had the opposite effect on leaf delta13C in trees growing on sandy loam soil, indicating that compaction increased water availability in this soil type. Tree growth response to compaction also varied with soil texture, with no effect, a negative effect and a positive effect as a result of compaction of loam, clay and sandy loam soils, respectively. There was a significant correlation between 13C signature and tree growth along the range of soil textures. Leaf delta13C trends were correlated with midday stem water potentials. We conclude that leaf delta13C can be used to measure retrospective water status and to assess the impact of site preparation on tree growth. The advantage of the leaf delta13C approach is that it provides an integrative assessment of past water status in different aged leaves.

  16. Comparison of germination and seed vigor of sunflower in two contaminated soils of different texture

    Science.gov (United States)

    Zhao, Xin; Han, Jaemaro; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Phytoremediation as an emerging low-cost and ecologically friendly alternative to the conventional soil remediation technologies has gained a great deal of attention and into lots of research. As a kind of the methods that use of green plants to remediate heavy metals contaminated soils, the early growth status of plant seeds in the contaminated environmental directly affects the effect of phytoremediation. Germination test in the water (aqueous solution of heavy metal) is generally used for assessing heavy metal phytotoxicity and possibility of plant growth, but there is a limit. Because soil is commonly main target of phytoremediation, not the water. The bioavailability of heavy metals in the soil also depends on the texture. So soil texture is an important factor of phytoremediation effect. Sunflower is the representative species which have good tolerance to various heavy metals; furthermore, the seeds of sunflower can be used as the raw-material for producing bio-diesel. The objectives of this research were to investigate germination rate of sunflowers in various heavy metal contaminated soils and to compare the seedling vigor index (SVI) of sunflower in two contaminated soils of different texture. Sunflower (Helianthusannuus L.) seeds were obtained from a commercial market. In order to prove the soil texture effect on heavy metal contaminated soil, germination tests in soil were conducted with two different types of soil texture (i.e., loam soil and sandy loam soil) classified by soil textural triangle (defined by USDA) including representative soil texture of Korea. Germination tests in soil were conducted using KS I ISO 11260-1 (2005) for reference that sunflower seeds were incubated for 7 days in dark at 25 ± 1 Celsius degree. The target heavy metals are Nickel (Ni) and Zinc (Zn). The Ni and Zn concentrations were 0, 10, 50, 100, 200, 300, 500 mg-Ni/kg-dry soil, and 0, 10, 50, 100, 300, 500, 900 mg-Zn/kg-dry soil, respectively. After germination test for 7

  17. EFFECT OF SOLE AND ASSOCIATIVE ACTIONS OF ELEMENTAL SULFUR AND INOCULATION SULFUR OXIDIZING BACTERIA ON GROWTH AND NUTRIENTS CONTENTS OF PEPPER PLANTS AND THE USED SOILS

    OpenAIRE

    Ibrahim, S. A.; M. H. El-Halfawi; Hala Kandil

    2011-01-01

    A pot experiment was conducted to study the effect of elemental sulfur (E.S) rate (2.5 g/kg soil) and sulfur oxidizing bacteria on pepper plant and some chemical properties of two representative soil samples varying in their texture and CaCO3 content. Pepper was grown in Shobrakheet clay loam and Nobaria sandy loam soils for 50 days. Each soil was treated with elemental sulfur (2.5 g kg-1 soil) and inoculated with two sulfur oxidizing bacteria (S.O.B. No.8 and S.O.B. ATCC 8158). Elemental sul...

  18. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    Science.gov (United States)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  19. Dietary crude protein and tannin impact dairy manure chemistry and ammonia emissions from incubated soils.

    Science.gov (United States)

    Powell, J M; Aguerre, M J; Wattiaux, M A

    2011-01-01

    Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH) emissions from dairy farms and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH emissions, and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate the impacts of CP and tannin feeding on slurry chemistry, NH emissions, and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels of dietary CP (low CP [LCP], 155 g kg; high CP [HCP], 168 g kg) each fed at four levels of dietary tannin extract, a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees (0 tannin [0T]; low tannin [LT], 4.5 g kg; medium tannin [MT], 9.0 g kg; and high tannin [HT], 18.0 g kg) were applied to soil-containing lab-scale chambers, and NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after slurry application. Emissions from the HCP slurry were 1.53 to 2.57 times greater ( soils were greater ( soils than in LCP slurry-amended soils. Emissions from HT slurry were 28 to 49% lower ( soil inorganic N levels. Emissions from the sandy loam soil were 1.07 to 1.15 times greater ( soil, a result that decreased soil inorganic N in the sandy loam compared with the silt loam soil. Larger-scale and longer-term field trails are needed to ascertain the effectiveness of feeding tannin extracts to dairy cows in abating NH loss from land-applied slurry and the impact of tannin-containing slurry on soil N cycles.

  20. Effects of deep tillage and straw returning on soil microorganism and enzyme activities.

    Science.gov (United States)

    Ji, Baoyi; Hu, Hao; Zhao, Yali; Mu, Xinyuan; Liu, Kui; Li, Chaohai

    2014-01-01

    Two field experiments were conducted for two years with the aim of studying the effects of deep tillage and straw returning on soil microorganism and enzyme activity in clay and loam soil. Three treatments, (1) conventional tillage (CT), shallow tillage and straw returning; (2) deep tillage (DT), deep tillage and straw returning; and (3) deep tillage with no straw returning (DNT), were carried out in clay and loam soil. The results showed that deep tillage and straw returning increased the abundance of soil microorganism and most enzyme activities. Deep tillage was more effective for increasing enzyme activities in clay, while straw returning was more effective in loam. Soil microorganism abundance and most enzyme activities decreased with the increase of soil depth. Deep tillage mainly affected soil enzyme activities in loam at the soil depth of 20-30 cm and in clay at the depth of 0-40 cm. Straw returning mainly affected soil microorganism and enzyme activities at the depths of 0-30 cm and 0-40 cm, respectively.

  1. Salt—Water Dynamics in Soils:V.Salt Balance in Soil Profiles

    Institute of Scientific and Technical Information of China (English)

    YOUWEN-RUI; MENGFAN-HUA

    1995-01-01

    Salt balance in simulated soil coulumns was calculated on the basis of a large amount of long term observation data.The results showed that under the climate conditions of semi-arid region of the Huang-Huai-Hai Plain,the soils in the columns were under salt accumulation conditions when the groundwater depth was controlled at less than 2.0m,and under desalinization conditions when at larger than 2.5m.In the soil columns with clay soil and silty loam soil intercalated with a clay layer,the amount of salt accumulated was far less than that in the soil column with silty loam soil throughout the whole profile.Under no irriagtion conditions crop planting may increase groundwater evaporation and hence salt accumulation in soil,making the soil columns under desalinization be under salt accumulation conditions.

  2. Soil Property Influences on Xiphinema americanum Populations as Related to Maturity of Loess-Derived Soils.

    Science.gov (United States)

    Schmitt, D P

    1973-10-01

    Field populations of Xiphinerna americanum around roots of Syringa vulgaris 'President Lincoln' were larger in Marshall silty clay loam, a medially developed loess soil, than in Monona silt loam, a minimally developed loess soil. Most X. amerieanum occurred in the top 15 cm of soil, with few below 30 cm. Maximum numbers occurred in August of both years in the Marshall soil, and in August 1969 and June 1970 in the Monona soil. Population fluctuations during the growing season were coincident with changes in soil moisture content. Although the population fluctuation pattern was the same at each depth tested, the adult-to-juvenile ratio increased in one soil while it decreased in the other. Numbers of X. americanum decreased as root weights decreased within a soil profile, but they were not correlated with root weights over all soils and depths. More X. americanum were recovered from the Marshall than from the Monona soil, but fibrous root weights were greater in the Monona soil. Survival of X. americanum in soil columns in growth chamber experiments was better in the Marshall than in the Monona soil. Movement and survival were different in identically textured Monona A and B horizon soils. Factors related to the ion exchange sites may affect X. americanum.

  3. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  4. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Science.gov (United States)

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar ('Cocodrie' and 'Rondo'), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  5. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Directory of Open Access Journals (Sweden)

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  6. Effect of Biochar on Soil Physical Characteristics

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C......-gas diffusivity on intact 100cm3 soil samples (5 replicates in each plot). We found that biochar application significantly decreased soil bulk density, hereby creating higher porosity. At the same soil-water matric potential, all the soil-gas phase parameters (air-filled porosity, air permeability and gas...

  7. Effects Of Palm Oil Mill Effluents (Pome) On Soil Bacterial Flora And ...

    African Journals Online (AJOL)

    Effects Of Palm Oil Mill Effluents (Pome) On Soil Bacterial Flora And Enzyme Activities In ... Sandy loam soil in Egbema, Rivers State was impacted with POME at different levels and ... Light application caused significant increase in total heterotrophic, ... The most affected were the nitrifying bacteria followed by phosphate ...

  8. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...

  9. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity

    NARCIS (Netherlands)

    Pulleman, M.M.; Six, J.; Breemen, van N.; Jongmans, A.G.

    2005-01-01

    Stable microaggregates can physically protect occluded soil organic matter (SOM) against decomposition. We studied the effects of agricultural management on the amount and characteristics of microaggregates and on SOM distribution in a marine loam soil in the Netherlands. Three long-term farming sys

  10. Soil microbial communities associated to plant rhizospheres in an organic farming system in Alabama

    Science.gov (United States)

    The microbial communities under different organic crop rhizospheres (0-10 and 10-20 cm) were characterized using fatty acid methyl ester (FAME) and pyrosequencing techniques. The soil was a silt loam (12.8% clay, 71.8% silt and15.4% sand). Soils at this site are characterized as having pH of ~6.53, ...

  11. Cropping sequence and nitrogen fertilization impact on surface residue, soil carbon sequestration, and crop yields

    Science.gov (United States)

    Information is needed on the effect of management practices on soil C storage for obtaining C credit. The effects of tillage, cropping sequence, and N fertilization were evaluated on dryland crop and surface residue C and soil organic C (SOC) at the 0-120 cm depth in a Williams loam from 2006 to 201...

  12. Surface soil factors and soil characteristics in geo-physical milieu of Kebbi State Nigeria

    Directory of Open Access Journals (Sweden)

    Suleiman Usman

    2016-07-01

    Full Text Available Soil erodibility (K factor is the most important tool for estimation the erosion. The aim of this study Soil factors and surface soil characteristics are important components of agricultural environment. They support surface and subsurface soils to perform many functions to agriculture and economic human developments. Understanding these factors would aid to the recognition of the values that our soil and land offered to humanity. It is therefore, aim of this study to visualise and examine the soil factors and surface soil characteristics in Kebbi State Nigeria. An Integrated Surface Soil Approach (ISSA was used in the classification and description of soil environment in the study region. The factors constituted in the ISSA are important components of soil science that theories and practice(s noted to provide ideas on how soil environment functioned. The results indicate that the surface soil environments around Arewa, Argungu, Augie, Birnin Kebbi and Dandi are physically familiar with the following surface soil characteristics: bad-lands, blown-out-lands, cirque-lands, fertile-lands, gullied-lands, miscellaneous and rock-outcrops.The major soil factors observed hat played an important role in surface soil manipulations and soil formation are alluvial, colluvial, fluvial and lacustrine; ant, earthworms and termite; and various forms of surface relief supported by temperature, rainfall, relative humidity and wind. Overall, the surface soil environment of the region was describe according to their physical appearance into fadama clay soils, fadama clay-loam soils, dryland sandy soils, dryland sandy-loam soils, dryland stony soils and organic-mineral soils.

  13. Predictivity strength of the spatial variability of phenanthrene sorption across two sandy loam fields

    DEFF Research Database (Denmark)

    Soares, Antonio; Paradelo Pérez, Marcos; Møldrup, Per

    2015-01-01

    Sorption is commonly suggested as the major process underlying the transport and fate of polycyclic aromatic hydrocarbons (PAHs) in soils. However, studies focusing in spatial variability at the field scale in particular are still scarce. In order to investigate the sorption of phenanthrene at th......). Other factors, such as the soil structure, available water content and the soil mineral fraction, might greatly influence the transport phenomenon, thus acting for important environmental repercussions....

  14. Soil preparation and nutrient losses by erosion in the culture cucumber

    Directory of Open Access Journals (Sweden)

    Amaral Sobrinho Nelson Moura Brasil do

    2005-01-01

    Full Text Available Minimum tillage reportedly reduce erosion, avoid soil degradation and improve crop productivity. This study aimed to determine how tillage operations may affect either nutrient accumulation or nutrient losses by erosion. The study was, carried out from December, 2000 to March, 2001, in the watershed of the Caetés River, in Rio de Janeiro State, Brazil (22º25'43"S, 43º25'07"W. The experiment was set up in sandy clay Kandiudult soil, 60% slope, under cucumber (Cucumis sativus L. crop. Soil samples were collected before planting and after harvest, on 22.0 X 4.0 m Greeoff plots. After each rainfall, fine sediments carried by runoff were deposited into two collecting tanks in a row, installed at the end of each plot, and were later dried, weighed and stored for analyses. Treatments (n = 4 were characterized by different tillage systems: (i downhill plowing followed by the burning of crop residues (DPB; (ii downhill plowing with no burning of the crop residues (DPNB; (iii animal traction contour plowing, with strips of guinea grass planted at a spacing of 7.0 m (AT; and (iv minimum tillage (MT. Samples of the soil-plowed layer were collected before planting and after harvest, between the rows and from the plants. Total concentration of Ca, Mg, K and P were determined after extraction with nitric perchloride digestion. Labile P and exchangeable K were extracted with the Mehlich 1 extractant solution. The MT system reduced losses of both exchangeable bases (15% and P (8%, and affected the distribution of labile and organic P. Crop residues left on soil surface in the MT system, resulted in increased organic matter content. Downhill plowing, the most used tillage operation in the region, resulted in the greatest losses of Ca, Mg, K, and P.

  15. Fate of Pharmaceuticals and Personal Care Products (PPCPs) in Saturated Soil Under Various Redox Conditions

    Science.gov (United States)

    Dror, I.; Menahem, A.; Berkowitz, B.

    2014-12-01

    The growing use of PPCPs results in their increasing release to the aquatic environment. Consequently, understanding the fate of PPCPs under environmentally relevant conditions that account for dynamic flow and varying redox states is critical. In this study, the transport of two organometallic PPCPs, Gd-DTPA and Roxarsone (As complex) and their metal salts (Gd(NO3)3, AsNaO2), is investigated. The former is used widely as a contrasting agent for MRI, while the latter is applied extensively as a food additive in the broiler poultry industry. Both of these compounds are excreted from the body, almost unchanged chemically. Gadolinium complexes are not fully eliminated in wastewater treatment and can reach groundwater via irrigation with treated wastewater; Roxarsone can enter groundwater via leaching from manure used as fertilizer. Studies have shown that the transport of PPCPs in groundwater is affected by environmental conditions such as redox states, pH, and soil type. For this study, column experiments using sand or Mediterranean red sandy clay soil were performed under several redox conditions: aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, methanogenic, and very strongly chemical reducing. Batch experiments to determine adsorption isotherms were also performed for the complexes and metal salts. We found that Gd-DTPA transport was affected by the soil type and was not affected by the redox conditions. In contrast, Roxarsone transport was affected mainly by the different redox conditions, showing delayed breakthrough curves as the conditions became more biologically reduced (strong chemical reducing conditions did not affect the transport). We also observed that the metal salts show essentially no transport while the organic complexes display much faster breakthrough. The results suggest that transport of these PPCPs through soil and groundwater is determined by the redox conditions, as well as by soil type and the form of the applied metal (as salt

  16. Effect of vegetation change from native broadleaf forest to coniferous plantation on selected soil properties.

    Science.gov (United States)

    Hızal, Ahmet; Gökbulak, Ferhat; Zengin, Mustafa; Ercan, Mehmet; Karakaş, Ahmet; Tuğrul, Dilek

    2013-12-01

    The objective of this study was to examine the effects of vegetation change from a native broadleaf forest to a coniferous plantation on selected soil properties, including soil texture, pH, organic matter, total nitrogen (N), total phosphorus (P), exchangeable cations (Ca(2+), K(+), Na(+)), and cation exchange capacity (CEC). Results showed that the amount of clay particles, Ca(2+), and K(+) values significantly increased, whereas Na(+), total N, and organic matter and soil pH values decreased on the treatment plot after vegetation change. Soil acidity also increased and soil textural group changed from moderately fine-textured soils (clay loam) to medium-textured soils (loam) under both control and treatment plots. Organic matter, total N, and Na(+) values increased, whereas Ca(2+) concentration decreased through time on the control plot. Soil pH, total P, K(+), and CEC did not show significant changes through time on the control plot.

  17. Evaluation of the ecotoxicological impact of the organochlorine chlordecone on soil microbial community structure, abundance, and function.

    Science.gov (United States)

    Merlin, Chloé; Devers, Marion; Béguet, Jérémie; Boggio, Baptiste; Rouard, Nadine; Martin-Laurent, Fabrice

    2016-03-01

    The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring (14)C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and (14)C-compounds mineralizing activity). Mineralization of (14)C-chlordecone was inferior below 1 % of initial (14)C-activity. Less than 2 % of (14)C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial (14)C-activity). Only 23 % of the remaining (14)C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of (14)C-sodium acetate and (14)C-2,4-D was insensitive to chlordecone exposure in silty loam soil. However, mineralization of (14)C-sodium acetate was significantly reduced in soil

  18. Predicting Soil Moisture in the Field from Amplitude Temperature

    Science.gov (United States)

    Al-Kayssi, A. W.

    2009-04-01

    Measurements of amplitude temperature and soil moisture content of sandy loam and silty clay loam soils were conducted in Al-Mada'in Research Station south of Baghdad during the period from the 1st of February to the 30th of April, 2004. Exponential regression relations were developed between amplitude temperature and volumetric moisture content for soil depths of 0.5, 3.0, 7.5 and 15cm below surface, which was highly significant (R2>0.96). A good linear regression between measured and predicted soil moisture contents was deduced for each depth (r>0.97). Soil moisture content was successfully predicted from the regression line when amplitude temperature was known.

  19. Water flow in soil from organic dairy rotations

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Eriksen, Jørgen; Krogh, Paul Henning

    2017-01-01

    and fertilizer practice on the movement of water through sandy loam soil profiles were investigated in managed grassland of a dairy operation. Experiments using tracer chemicals were performed, with or without cattle slurry application, with cutting or grazing, in the 1st and the 3rd year of ley, and in winter...

  20. Greywater reuse for irrigation: effect on soil properties.

    Science.gov (United States)

    Travis, Micheal J; Wiel-Shafran, Alit; Weisbrod, Noam; Adar, Eilon; Gross, Amit

    2010-05-15

    A controlled study of the effect of greywater (GW) irrigation on soil properties was conducted. Containers of sand, loam and loess soils were planted with lettuce, and irrigated with fresh water, raw artificial GW or treated artificial GW. Greywater was treated using a recirculating vertical-flow constructed wetland. Soil samples were collected every 10 days for the 40-day duration of the study, and plant growth was measured. Soils were analysed for physicochemical and biological parameters to determine changes caused by the different treatments. It was demonstrated that raw artificial GW significantly increased the development of hydrophobicity in the sand and loam soils, as determined by water droplet penetration time. No significant changes were observed for the loess soil under all treatments. Observed hydrophobicity was correlated with increased oil and grease and surfactant concentrations in the soil. Zeta (zeta) potential of the soils was measured to determine changes in the soil particle surface properties as a result of GW irrigation. A significant change in zeta-potential (less negative) was observed in the raw artificial GW-irrigated sand, whereas no difference was observed in the loam or loess. Soils irrigated with fresh water or treated GW exhibited no increase in hydrophobicity. Fecal coliform bacteria were absent or <10 CFU g(-1) in soils irrigated with fresh water or treated GW, but at least 1 order of magnitude higher in raw artificial GW irrigated soils. Only in the last sampling event and only for the loess soil was plant growth significantly higher for fresh water irrigated vs. raw or treated GW irrigated soils. This study demonstrates that treated GW can be effectively irrigated without detrimental effects on soil or plant growth; however, raw GW may significantly change soil properties that can impact the movement of water in soil and the transport of contaminants in the vadose zone.

  1. Long-Term Effects of Rotational Tillage On Visual Evaluation of Soil Structure, Soil Quality and Crop Yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, Richard; Deen, Bill

    year old long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Measurements were carried out in the topsoil for three different rotations: R1 (C-C-C-C) continuous corn (Zea mays L.), R6. (C-C-O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare...

  2. Soil and Groundwater Characteristics of a Legacy Spill Site AKURO ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    lower part of the sandy clay or within the sands and gravels layer. The general direction of .... Test Pitting: Twenty-three (23) trial pits were dug with the aid of Spade ... galvanized iron pipe, was raised at least 0.5m above the ground level, and ...

  3. Effects of Soil Texture, Moisture Condition and Cropping Systems on Soil Friability

    Directory of Open Access Journals (Sweden)

    A. Safadoust

    2016-10-01

    Full Text Available Introduction: Soil friability is defined as the tendency of a mass of unconfined intact soil in bulk to crumble and break up under applied stress into similar fragments, aggregates and individual soil particles with specific size range. Tensile strength is a term which defined as the stress, or force per unit area, required to cause soil to fail in tension. The stated parameters are almost considered as the key physical properties of agricultural soils, because the friable condition is a desirable feature for establishing adequate seedbeds during tillage practice. In spite of the relevance of the subject, information on the effects of intrinsic soil properties on the tensile strength and friability is limited in Iran. The objective of this study was to quantify and to relate tensile strength and friability of two texturally different soils of clay loam and sandy loam under two different cropping systems of wheat and alfalfa. Materials and methods: The soil samples were collected from the 0–30 cm horizon of two sites of sandy loam (SL and clay loam (CL soils which were located inHamadan province in western Iran. Each soil had been under cultivation of either wheat (conventionally tilled or alfalfa for 11 years. At the laboratory, the soils were gently dry-sieved to separate 8-10, 15-25 and 30-38 mm fractions. The tensile strength was calculated as suggested by Dexter and Kroesbergen, (1985 and the soil friability was calculated through the coefficient of variation method as proposed by Watts and Dexter (1998. The experiment was carried out at the air-dry water content and soil matric suctions of 80 and 50 kPa for three ranges of aggregate size (8-10 mm, 15-25 mm and 30-38 mm. Then the impacts of soil texture (clay loam and sandy loam and cultivation types (alfalfa and wheat were assessed in a factorial design at each water content. Regression analyses were carried out to evaluate the relationship between soil intrinsic properties (clay content

  4. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  5. Nitrous oxide production from soils amended with biogas residues and cattle slurry.

    Science.gov (United States)

    Abubaker, J; Odlare, M; Pell, M

    2013-07-01

    The amount of residues generated from biogas production has increased dramatically due to the worldwide interest in renewable energy. A common way to handle the residues is to use them as fertilizers in crop production. Application of biogas residues to agricultural soils may be accompanied with environmental risks, such as increased NO emission. In 24-d laboratory experiments, NO dynamics and total production were studied in arable soils (sandy, clay, and organic) amended with one of two types of anaerobically digested biogas residues (BR-A and BR-B) generated from urban and agricultural waste and nondigested cattle slurry (CS) applied at rates corresponding to 70 kg NH-N ha. Total NO-N losses from the sandy soil were higher after amendment with BR-B (0.32 g NO-N m) than BR-A or CS (0.02 and 0.18 g NO-N m, respectively). In the clay soil, NO-N losses were very low for CS (0.02 g NO-N m) but higher for BR-A and BR-B (0.25 and 0.15 g NO-N m, respectively). In the organic soil, CS gave higher total NO-N losses (0.31 g NO-N m) than BR-A or BR-B (0.09 and 0.08 g NO-N m, respectively). Emission peaks differed considerably between soils, occurring on Day 1 in the organic soil and on Days 11 to 15 in the sand, whereas in the clay the peak varied markedly (Days 1, 6, and 13) depending on residue type. In all treatments, NH concentration decreased with time, and NO concentration increased. Potential ammonium oxidation and potential denitrification activity increased significantly in the amended sandy soil but not in the organic soil and only in the clay amended with CS. The results showed that fertilization with BR can increase NO emissions and that the size is dependent on the total N and organic C content of the slurry and on soil type. In conclusion, the two types of BR and the CS are not interchangeable regarding their effects on NO production in different soils, and, hence, matching fertilizer type to soil type could reduce NO emissions. For instance, it could be

  6. Effect of Soil Texture on Starch Accumulation and Activities of Key Enzymes of Starch Synthesis in the Kernel of ZM 9023

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-jing; ZHAN Hai-hong

    2008-01-01

    Three kinds of soil texture (clay-loam, mid-loam, and sand-loam soil) were used to study the effects of soil texture on starch accumulating rate and the changes in activities of the key enzymes of starch synthesis in the kernel during grain filling in high gluten content wheat ZM 9023, under conditions of pond culture. The content of starch and its components were measured according to the method of double-wave length described by Bao (1996). ADP-glucose pyrophosphorylase (AGPP) activity was tested according to the method described by Doehlert et al. (1988). Soluble starch synthase (SSS) and starch branching enzyme (SBE) activities were tested according to the method described by Nakamura et al. (1989). The amylose, amylopectin, and total starch accumulating rate in the kernel of ZM 9023 were found to be a single-peak curve in three different soil textures during grain filling, and peaked 20, 15, and 15 d after anthesis, respectively. The activities of the enzymes, AGPP, SSS, and SBE, in the kernel of ZM 9023 had a single-peaked curve, which peaked 20, 15, and 15 d after anthesis, respectively. The activities of the above three enzymes of ZM 9023 were higher in the sand-loam soil. The accumulating peak of amylose formed later compared to that of amylopectin. The sand-loam soil could help high gluten content cultivars to synthesize starch.

  7. Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds.

    Science.gov (United States)

    Quiroz Londoño, Orlando Mauricio; Romanelli, Asunción; Lima, María Lourdes; Massone, Héctor Enrique; Martínez, Daniel Emilio

    2016-07-01

    This paper gives an account of the design a logic-based approach for identifying potential infiltration areas in low-gradient watersheds based on remote sensing data. This methodological framework is applied in a sector of the Pampa Plain, Argentina, which has high level of agricultural activities and large demands for groundwater supplies. Potential infiltration sites are assessed as a function of two primary topics: hydrologic and soil conditions. This model shows the state of each evaluated subwatershed respecting to its potential contribution to infiltration mainly based on easily measurable and commonly used parameters: drainage density, geomorphologic units, soil media, land-cover, slope and aspect (slope orientation). Mapped outputs from the logic model displayed 42% very low-low, 16% moderate, 41% high-very high contribution to potential infiltration in the whole watershed. Subwatersheds in the upper and lower section were identified as areas with high to very high potential infiltration according to the following media features: low drainage density (<1.5 km/km(2)), arable land and pastures as the main land-cover categories, sandy clay loam to loam - clay loam soils and with the geomorphological units named poorly drained plain, channelized drainage plain and, dunes and beaches.

  8. Efficacy of biochar amendments in limiting the transport of pathogenic bio-colloids in soils of different textures

    Science.gov (United States)

    Biochar amendment has been shown to affect bacterial transport in soils. The effect of pyrolysis temperature of the added poultry litter biochar on the transport of Escherichia coli O157:H7 and Salmonella typhimurium through fine sand and sandy loam soils were investigated in water-saturated column ...

  9. Wheel traffic effect on air-filled porosity and air permeability in a soil catena across the wheel rut

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Lamandé, Mathieu

    experiment was conducted on a clay loam soil at Suberg, Switzerland, in 2010. Four repeated wheeling were performed by driving a forage harvester (wheel load of 6100 kg and a tyre width of 0.8 m) forward and rearward in the same track. We sampled 100 cm3 intact cores at 10, 30 and 50 cm depth in a soil...

  10. A New Method for Determination of Adsorption and Desorption Coefficients of Pesticides with Soil Column Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The adsorption and desorption coefficients of atrazine, methiocarb and simazine on a sandy loam soil were measured in this study with soil column liquid chromatographic (SCLC) technique. The adsorption and desorption data of all the three pesticides followed Freundlich isotherms revealing the existence of hysteresis. In comparing with other methods, SCLC method showed some characteristics such as rapidity, online and accuracy.

  11. The Florida citrus soil water atmosphere plant (SWAP) project: review and final summary of yields and tree health

    Science.gov (United States)

    The Florida Citrus Soil Water Atmosphere Plant (SWAP) Project at the UF-IFAS Indian River Research and Education Center had three blocks each of soil tillage (mixing ) treatments of shallow tilled (ST), deep tilled (DT), and deep tilled plus lime (DTL) on a Spodosol (Oldsmar fine sandy loam). Each ...

  12. The Florida citrus soil water atmosphere plant (SWAP) project: final summary of cumulative yields and tree health

    Science.gov (United States)

    The Florida Citrus Soil Water Atmosphere Plant (SWAP) Project at the Fort Pierce had three blocks each of soil tillage treatments of shallow tilled (ST), deep tilled (DT), and deep tilled plus lime (DTL) on a Spodosol (Oldsmar fine sandy loam). Each block had three adjacent submerged subsurface pla...

  13. Distribution of nitrogen ammonium sulfate ({sup 15}N) soil-plant system in a no-tillage crop succession; Distribuicao do nitrogenio do sulfato de amonio ({sup 15}N) no sistema solo-planta, em uma sucessao de culturas, sob sistema plantio direto

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Flavia Carvalho da Silva, E-mail: flcsfernandes@gmail.com [Universidade Estadual de Maringa - Campus de Umuarama, PR (Brazil); Libardi, Paulo Leonel, E-mail: pllibard@esalq.usp.br [Departamento de Engenharia de Biossistemas, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP (Brazil)

    2012-05-15

    the n use by maize (Zea mays, l.) is affected by n-fertilizer levels. this study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of n use by maize in a crop succession, based on {sup 15}N labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signal grass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of n rates of 60, 120 and 180 kg ha{sup -1}in the form of labeled {sup 15}N ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated n; fertilizer-derived n in corn plants and pasture; fertilizer-derived n in the soil; and recovery of fertilizer-n by plants and soil were evaluated.The highest uptake of fertilizer n by corn was observed after application of 120 kg ha{sup -1}N and the residual effect of n fertilizer on subsequent corn and brachiaria was highest after application of 180 kg ha{sup -1}N. After the crop succession, soil n recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha{sup -1}N. (author)

  14. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bos taurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural...... texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.......Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bos taurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural...... soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 μm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam...

  15. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Terrestrial Plants in a Natural Sandy Loam Soil

    Science.gov (United States)

    2005-04-01

    TNB, RDX, HMX, and heavy metals to cucumber and radish. They determined that toxicity was mostly related to TNT and TNB, with a LOEC of 7 to 19 mg kg...species exposed to TNB, 2,4-DNT, and 2,6-DNT. Hormesis has been reported in plants exposed to heavy metals and aromatic hydrocarbons (Stebbing, 1982...Watermilfoil and duckweed ), and terrestrial plant species (i.e., yellow nutsedge, poplar, lettuce, and tall fescue (Schott and Worthley, 1974; Palazzo and

  16. Nitrate leaching from sandy loam soils under a double-cropping forage system estimated from suction-probe measurements.

    NARCIS (Netherlands)

    Trindade, H.; Coutinho, J.; Beusichem, van M.L.; Scholefield, D.; Moreira, N.

    1997-01-01

    Nitrate leaching from a double-cropping forage system was measured over a 2-year period (June 1994–May 1996) in the Northwest region of Portugal using ceramic cup samplers. The crops were grown for silage making and include maize (from May to September) and a winter crop (rest of the year)

  17. Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil.

    Science.gov (United States)

    Cutright, Teresa; Gunda, Nagaraju; Kurt, Firat

    2010-08-01

    Phytoremediation is a promising means for the treatment of contamination arising from heavy metal spills. Although several species have been identified as hyperaccumulators, most of the studies were performed with only one heavy metal. Experiments were conducted with two cultivars of H. annuus exposed to different combinations of metal contamination (30 mg/kg Cd, Cr, Ni, As, and/or Fe). Cultivar efficiency was based on total metal uptake, as well as translocation and selectivity of each metal. The results for each cultivar were also compared after 0.1 g/kg or 0.3 g/kg EDTA was added to enhance metal bioavailability. The key finding was that H. annuus achieved hyperaccumulator status for multiple metals simultaneously: Cd, Cr, and As.

  18. Solid-phase microextraction (SPME) as a tool to predict the bioavailability and toxicity of pyrene to the springtail, Folsomia candida, under various soil conditions

    DEFF Research Database (Denmark)

    Styrishave, Bjarne; Mortensen, Mads; Krogh, Paul Henning

    2008-01-01

    ) for the euedaphic springtail, Folsomia candida, under various test conditions. The soil used was a sandy loam soil with natural OM content of 2.6% (Askov soil). It was enriched with increasing organic matter concentrations of 5%, 10%, and 20% and was aged for 0, 56, and 112 days. The EC50 values of the springtails...

  19. Restauração da estrutura do solo por sequências culturais implantadas em semeadura direta, e sua relação com a erosão hídrica em distintas condições físicas de superfície Restoration of the soil structure by crop sequences established in no-till, as related to water erosion in distinct surface physical conditions

    Directory of Open Access Journals (Sweden)

    Jeane Cruz Portela

    2010-08-01

    , 2007. The six erosion tests, in intervals of about a week, were performed from October to December, 2007. The soil used is an Ultisol, with a sandy clay loam texture in the surface layer and 0.115 m m-1 average slope steepness, and an advanced degree of degradation. The rains were applied with a rotating-boom rainfall simulator, at a constant intensity of 64 mm h-1; for 1-3 h. For this study, water and soil loss data were adjusted to a rainfall duration of 1.5 h. Properties of soil and plants were measured in the experimental plots and water erosion in the surface runoff. The crop sequences and erosion tests influenced the results of the study significantly, with greater differences in the latter than in the former. The erosive process was more influenced by the external or soil surface than the internal or subsurface physical conditions. In general, all crop sequences were effective in restoring the soil structure in the experimental period. The sequence involving teosinte controlled the rainfall erosion process most effectively with regard to soil and water loss and the one involving corn+cowpea and pearl millet with regard to soil loss. The highest soil and water losses in the study were observed from the soil surface with no mobilization and little crop residue cover, regardless of the presence or type of crust, but especially when this latter was slightly cracked prior to rainfall application. The soil surface entirely covered by crop residue, be it untilled or freshly chiseled, controlled runoff effectively and impeded erosion completely. Soil and water losses from the freshly-disked soil surface chiseled a month earlier, although the soil was the most mobilized of all and bare, were practically zero, opposite to what was expected.

  20. POTENTIAL POLLINATORS AND FLORAL VISITORS OF ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    2013-05-06

    May 6, 2013 ... shallow to moderately shallow sandy clay loam. Ferric Luvisols based on ... visitor in the field, it was collected using white net trap for identification. .... be due to the presence of settlements and waste disposal pits near to this ...

  1. Influence of Accompanying Anions on Potassium Retention and Leaching in Potato Growing Alluvial Soils

    Institute of Scientific and Technical Information of China (English)

    V.SHARMA; K.N.SHARMA

    2013-01-01

    A column study was carried out to assess the influence of accompanying anions on potassium (K) leaching at potato growing sites with different soil textures (sandy loam and clay loam) in northwestern India.Potassium was applied in the top 15 cm layer of soil column at 30 and 60 mg K kg-1 through different sources having different accompanying anions (Cl-,SO42-,NO3-and H2PO4-).Maximum K was retained in the top 0-15 cm layer with a sharp decrease in K content occurring in 15-30 cm layer of the soil column.The trend was similar for both levels of applied K as well as frequency of leaching and soil type.The decrease of K content in soil column after four leaching events was maximum in case of Khanaura sandy loam,while only minor decrease was observed in Hundowal clay loam when K was applied at 60 mg K kg-1,indicating higher potential of clay rich soil to adsorb K.In general,the K leaching in presence of the accompanying anions followed the order of SO42-≤ H2PO42-< NO3-=Cl-.Highest 1 mol L-1 CH3COONH4-extractable K was retained when K was applied along with SO42-and H2PO4-anions,and the least was retained when accompanying anion was Cl-.The influence of anions was more pronounced in the light textured soil and at high amounts of K application.Higher levels of K application resulted in higher losses of K,especially in sandy loam soil as observed from the leachate concentration.Among the different K sources,the maximum amount of K leaching was noticed in the soil column amended with KCl.After four leachings,the maximum amount of K leached out was 6.40 mg L-1 in Hundowal clay loam and 9.29 mg L-1 in Khanaura sandy loam at 60 mg K kg-1 of soil application through KCl.These concentrations were lower than the recommended guideline of the World Health Organisation (12.00 mg L-1).

  2. Plant root tortuosity: an indicator of root path formation in soil with different composition and density

    Science.gov (United States)

    Popova, Liyana; van Dusschoten, Dagmar; Nagel, Kerstin A.; Fiorani, Fabio; Mazzolai, Barbara

    2016-01-01

    Background and Aims Root soil penetration and path optimization are fundamental for root development in soil. We describe the influence of soil strength on root elongation rate and diameter, response to gravity, and root-structure tortuosity, estimated by average curvature of primary maize roots. Methods Soils with different densities (1·5, 1·6, 1·7 g cm−3), particle sizes (sandy loam; coarse sand mixed with sandy loam) and layering (monolayer, bilayer) were used. In total, five treatments were performed: Mix_low with mixed sand low density (three pots, 12 plants), Mix_medium - mixed sand medium density (three pots, 12 plants), Mix_high - mixed sand high density (three pots, ten plants), Loam_low sandy loam soil low density (four pots, 16 plants), and Bilayer with top layer of sandy loam and bottom layer mixed sand both of low density (four pots, 16 plants). We used non-invasive three-dimensional magnetic resonance imaging to quantify effects of these treatments. Key Results Roots grew more slowly [root growth rate (mm h–1); decreased 50 %] with increased diameters [root diameter (mm); increased 15 %] in denser soils (1·7 vs. 1·5 g cm–3). Root response to gravity decreased 23 % with increased soil compaction, and tortuosity increased 10 % in mixed sand. Response to gravity increased 39 % and tortuosity decreased 3 % in sandy loam. After crossing a bilayered–soil interface, roots grew more slowly, similar to roots grown in soil with a bulk density of 1·64 g cm–3, whereas the actual experimental density was 1·48±0·02 g cm–3. Elongation rate and tortuosity were higher in Mix_low than in Loam_low. Conclusions The present study increases our existing knowledge of the influence of physical soil properties on root growth and presents new assays for studying root growth dynamics in non-transparent media. We found that root tortuosity is indicative of root path selection, because it could result from both mechanical deflection and

  3. Comparative research on tillable properties of diatomite-improved soils in the Yangtze River Delta region, China.

    Science.gov (United States)

    Qu, Ji-Li; Zhao, Dong-Xue

    2016-10-15

    To improve soil texture and structure, techniques associated with physical, biological or chemical aspects are generally adopted, among which diatomite is an important soil conditioner. However, few studies have been conducted to investigate the physical, hydraulic and tillage performance of diatomite-improved soils. Consistency limits and compaction properties were investigated in this study, and several performance indicators were compared, such as the liquid limit, plastic limit and compactability, of silt, silt loam and silty-clay loam soils to which diatomite was added at volumetric ratios of 0%, 10%, 20%, and 30%. The results showed that diatomite significantly (pOMC) was increased overall. The trend was consistent with the proportion of diatomite, and MBD decreased by 8.7%, 10.3%, and 13.2% in the silt, silt loam and silty-clay loam soils when 30% diatomite was mixed, whereas OMC increased by 28.7%, 22.4%, and 25.3%, respectively. Additionally, aggregate stability was negatively correlated with MBD but positively correlated with OMC. Diatomite exerts positive effects on soil mechanical strength, suggesting that soils from sludge farms are more tillable with a larger stabilized and workable matrix.

  4. Multitracer and filter-separated half-cell method for measuring solute diffusion in undisturbed soil

    DEFF Research Database (Denmark)

    Lægdsmand, Mette; Møldrup, Per; Schjønning, Per

    2010-01-01

    Solute diffusion controls important processes in soils: plant uptake of nutrients, sorption-desorption processes, degradation of organic matter, and leaching of radionuclides through clay barriers. We developed a new method for measuring the solute diffusivity (solute diffusion coefficient...... in the soil relative to water) in intact soil samples (the Multiple Tracer, Filter Separated half-cell method using a Dynamic Model for parameter estimation [MT-FS-DM]). The MT-FS-DM method consists of half-cell diffusion of two pairs of counterdiffusing anionic tracers and a parameter estimation scheme...... that the MT-FS-DM method provided reliable results. We compared diffusivities measured on a sandy loam soil using the MT-FS-DM method with diffusivities from six sandy loam test soils from the literature. The new method can be used to estimate solute diffusivity in intact structured soil and provides a more...

  5. An automated microinfiltrometer to measure small-scale soil water infiltration properties

    Directory of Open Access Journals (Sweden)

    Gordon Dennis C.

    2014-09-01

    Full Text Available We developed an automated miniature constant-head tension infiltrometer that measures very small infiltration rates at millimetre resolution with minimal demands on the operator. The infiltrometer is made of 2.9 mm internal radius glass tube, with an integrated bubbling tower to maintain constant negative head and a porous mesh tip to avoid air-entry. In the bubbling tower, bubble formation and release changes the electrical resistance between two electrodes at the air-inlet. Tests were conducted on repacked sieved sands, sandy loam soil and clay loam soil, packed to a soil bulk density ρd of 1200 kg m-3 or 1400 kg m-3 and tested either air-dried or at a water potential ψ of -50 kPa. The change in water volume in the infiltrometer had a linear relationship with the number of bubbles, allowing bubble rate to be converted to infiltration rate. Sorptivity measured with the infiltrometer was similar between replicates and showed expected differences from soil texture and ρd, varying from 0.15 ± 0.01 (s.e. mm s-1/2 for 1400 kg m-3 clay loam at ψ = -50 kPa to 0.65 ± 0.06 mm s-1/2 for 1200 kg m-3 air dry sandy loam soil. An array of infiltrometers is currently being developed so many measurements can be taken simultaneously.

  6. Hybrid Soft Soil Tire Model (HSSTM). Part 1: Tire Material and Structure Modeling

    Science.gov (United States)

    2015-04-28

    HYBRID SOFT SOIL TIRE MODEL (HSSTM). PART I: TIRE MATERIAL AND STRUCTURE MODELING Taheri, Sh.a,1, Sandu, C.a...model the dynamic behavior of the tire on soft soil , a lumped mass discretized tire model using Kelvin-Voigt elements is developed. To optimize the...terrains (such as sandy loam) and tire force and moments, soil sinkage, and tire deformation data were collected for various case studies based on a

  7. Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel.

    Science.gov (United States)

    Borowik, Agata; Wyszkowska, Jadwiga; Wyszkowski, Mirosław

    2017-09-10

    This study determined the susceptibility of cultured soil microorganisms to the effects of Ekodiesel Ultra fuel (DO), to the enzymatic activity of soil and to soil contamination with PAHs. Studies into the effects of any type of oil products on reactions taking place in soil are necessary as particular fuels not only differ in the chemical composition of oil products but also in the composition of various fuel improvers and antimicrobial fuel additives. The subjects of the study included loamy sand and sandy loam which, in their natural state, have been classified into the soil subtype 3.1.1 Endocalcaric Cambisols. The soil was contaminated with the DO in amounts of 0, 5 and 10 cm(3) kg(-1). Differences were noted in the resistance of particular groups or genera of microorganisms to DO contamination in loamy sand (LS) and sandy loam (SL). In loamy sand and sandy loam, the most resistant microorganisms were oligotrophic spore-forming bacteria. The resistance of microorganisms to DO contamination was greater in LS than in SL. It decreased with the duration of exposure of microorganisms to the effects of DO. The factor of impact (IFDO) on the activity of particular enzymes varied. For dehydrogenases, urease, arylsulphatase and β-glucosidase, it had negative values, while for catalase, it had positive values and was close to 0 for acid phosphatase and alkaline phosphatase. However, in both soils, the noted index of biochemical activity of soil (BA) decreased with the increase in DO contamination. In addition, a positive correlation occurred between the degree of soil contamination and its PAH content.

  8. The role of soil layers in preventing ground water pollution with 17ß-estradiol hormone (E 2

    Directory of Open Access Journals (Sweden)

    A’zam Golzari

    2016-03-01

    Full Text Available Background: Estrogens include estoril (E3, estradiol and estrone (E1. These chemicals are produced in human and animal bodies as well as in synthetic chemicals (drugs. Estrogens can enter water sources in different ways. When these chemicals enter the human body through water and wastewater, they have the ability to mimic or disrupt the normal estrogen activities in humans and animals. Estrogens in wastewater are able to pass soil layers and contaminate groundwater. Therefore, in this study, the removal of the hormone 17ß-estradiol (E2 as a representative of estrogens in three types of soils was studied. The selection was chosen in respect to the importance of entering the hormone into groundwater through the soil. Methods: This study was an experimental study in which the removal of the hormone E2 from different depths of three types of soils was experimented. The soils were consisted of two different textures, the silty sandy clay and the silty sand with gravel. The hormone E2 was diluted and injected into the drilled holes. Soils were characterized in the soil mechanics laboratory. Hormone extraction from the soils was performed using a centrifuge and analyzed with the Elecsys device. The results were analyzed using the IBM SPSS version 22 software. Results: The results showed that the removal rates of hormone E2 in the three types of soils were higher than 99.5%, and the removal rate in the silty sand was more than the others. In all three soil samples, the removal rates in the first layer were high. The average injected hormone in the soil decreased from 3500 to 3112 ng/l. The results showed that the adhesion and plasticity of the soil had also affected the removal rates. Conclusion: Results showed that the soil plays a significant role in the removal of E2 hormone and this hormone was reduced or eliminated in the first layers of the soils. Thus, the risk of groundwater contamination is low.

  9. Effectiveness of the GAEC cross-compliance standard Ploughing in good soil moisture conditions in soil structure protection

    Directory of Open Access Journals (Sweden)

    Maria Teresa Dell'Abate

    2011-08-01

    Full Text Available Researches have been carried out within the framework on the EFFICOND Project, focused at evaluating the effectiveness of the standards of Good Agricultural and Environmental Conditions (GAECs established for Cross Compliance implementation under EC Regulation 1782/2003. In particular the standard 3.1b deals with soil structure protection through appropriate machinery use, with particular reference to ploughing in good soil moisture conditions. The study deals with the evaluation of soil structure after tillage in tilth and no-tilth conditions at soil moisture contents other than the optimum water content for tillage. The Mean Weight Diameter (MWD of water stable aggregates was used as an indicator of tillage effectiveness. The study was carried out in the period 2008-2009 at six experimental farms belonging to Research Centres and Units of the Italian Agricultural Research Council (CRA with different pedo-climatic and cropping conditions. Farm management and data collection in the different sites were carried out by the local CRA researchers and technicians. The comparison of MWD values in tilth and no tilth theses showed statistically significant differences in most cases, depending on topsoil texture. On clay, clay loam, silty clay, and silty clay loam topsoils a general and significant increase of MWD values under no tilth conditions were observed. No significant differences were observed in silt loam and sandy loam textures, probably due to the weak soil structure of the topsoils. Moreover, ploughing in good soil moisture condition determined higher crop production and less weed development than ploughing in high soil moisture conditions.

  10. Autoclave decomposition method for metals in soils and sediments.

    Science.gov (United States)

    Navarrete-López, M; Jonathan, M P; Rodríguez-Espinosa, P F; Salgado-Galeana, J A

    2012-04-01

    Leaching of partially leached metals (Fe, Mn, Cd, Co, Cu, Ni, Pb, and Zn) was done using autoclave technique which was modified based on EPA 3051A digestion technique. The autoclave method was developed as an alternative to the regular digestion procedure passed the safety norms for partial extraction of metals in polytetrafluoroethylene (PFA vessel) with a low constant temperature (119.5° ± 1.5°C) and the recovery of elements were also precise. The autoclave method was also validated using two Standard Reference Materials (SRMs: Loam Soil B and Loam Soil D) and the recoveries were equally superior to the traditionally established digestion methods. Application of the autoclave was samples from different natural environments (beach, mangrove, river, and city soil) to reproduce the recovery of elements during subsequent analysis.

  11. PRODUÇÃO E CONCENTRAÇÃO DE METAIS PESADOS EM PLANTAS DE BETERRABA ADUBADAS COM COMPOSTO DE LIXO URBANO

    Directory of Open Access Journals (Sweden)

    Regynaldo Arruda Sampaio

    2008-01-01

    Full Text Available The objective of this work was to evaluate the effect of the urban waste compost on the yield and heavy metals concentrations in red beet plants (Beta vulgaris L. in soils with different textures. The experiment was carried out in greenhouse in polyethylene recipients of 9 dm3. The experimental treatments resulted from a 3 x 4 factorial arrangement of a Red Yellow Latosol, sandy clay loam, (LVAfaa, a Red Yellow Latosol, loamy sand, (LVAfa and a Quartzarenic Neosol, sand loam, (RQ, combined with the urban waste compost doses of 0, 30, 60 and 90 t/ha, in dry base. The experimental design was in randomized blocks with three replications of the treatments. Soil pH, fresh and dry matter weight and Zn, Cu, Cd, Pb and Ni concentrations in the soil and the leaf tissue were determined. Amongst heavy metals determined, Zn and Cu had been only influenced by the soil texture, being biggest concentrations in the soil with bigger amount of clay. The dry and fresh weights of the red beet root had increased with the increment of the doses of compost, having reached maximum values, inside of the experimental interval, with the 90 t.ha-1. Otherwise, the heavy metal content in red beet root decreased with the increase of the doses of compost. As much the Ni how much the Pb had presented content level in root above of the allowed maximum limits for the consumption, as values established for the Brazilian legislation.

  12. Xiphinema americanum as Affected by Soil Organic Matter and Porosity.

    Science.gov (United States)

    Ponchillia, P E

    1972-07-01

    The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.

  13. Potential Environmental and Health Impacts of High Land Application of Cheese Whey

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2007-01-01

    Full Text Available A laboratory scale experiment was carried out to study the transformation and transport of nitrogenous compounds in soils receiving high application rates of cheese whey (twice the nitrogen requirement for crops. The experimental apparatus consists of 36 soil columns constructed of 20 cm inside diameter PVC pipes. Three types of soil (sandy loam, loam and sandy clay loam and three soil depths (60, 120, 180 cm were studied. The average monthly rainfall for the summer period in Halifax was used. The nitrogen in the soil was subject to biological transformations and downward movement in the soil. There were indications of the mineralization and nitrification processes taking place in the soil. The soil type and depth appeared to affect these processes. The ammonia volatilization occurred during the first 75 days with most (90 % of the NH3 loss taking place during the first 30 days. The amount of nitrogen losses to the air is about 3.41 kg/ha (0.59% of the total nitrogen. The amount of organic nitrogen lost in the leachates was 3.0-4.14 kg/ha (0.52-0.71% of the total nitrogen whereas the amount of inorganic nitrogen (ammonium nitrogen, nitrate nitrogen and nitrate nitrogen lost in the leachates was 18.63-24.09 kg/ha (3.54-4.56% of the total nitrogen. The presence of nitrite nitrogen in the leachate at high concentrations is a potential health hazard. Although cheese whey has been reported to have the potential to improve soil conditions, excess application has the potential of degrading soils and causing health problems. Additional research is, therefore, needed to better characterize the physical and chemical characteristics of soils receiving continuous high applications of cheese whey and their impact on crop yield and the qualities of groundwater and air.

  14. The red mantle of weathering and brownish-red loam of Miaodao Islands in Shandong Province and implication in paleoclimate

    Institute of Scientific and Technical Information of China (English)

    曹家欣; 严润娥; 王欢

    1995-01-01

    The formation,age and paleoclimatic changes of the red mantle of weathering and brownish-redloam of the Miaodao Islands are dealt with for the first time.The red mantle of weathering products formedthrough Fe-Al enrichment and desilication process under wet and hot climatic conditions.The brownish-red loam isa kind of eolian loess formed under semiarid and warm climatic conditions.They correlate,respectively,with thered clay of Pliocene and Wucheng Loess occurring in the inland of North China.They indicate that an abruptchange of climatic conditions took place during the turn of Pliocene and Pleistocene.This change may relate to theglobal climatic change.

  15. Wetting Patterns and Nitrate Distributions in Layered-Textural Soils Under Drip Irrigation

    Institute of Scientific and Technical Information of China (English)

    LI Jiu-sheng; JI Hong-yan; LI Bei; LIU Yu-chun

    2007-01-01

    Laboratory experiments were conducted in different sequence and thickness of the soil layers to investigate the effects of layered-textural soils on wetting patterns and water and nitrate distributions from a surface point source under various combinations of application rate and applied volume. Three layered soils, including a sandy-over-sandy loam (SL), a sandy loam-over-sandy (LS), and a sandy loam-sandy-sandy loam (LSL), and two uniform soils (a uniform sandy loam and a uniform sandy soil) were tested. In the experiments, the application rate was varied from 0.69 to 3.86 L h-1 and the applied volume from 5.7 to 12.1 L. The experimental results demonstrated that the wetting patterns and water and nitrate distributions were greatly affected by the sequence and thickness of soil layers as well as the application rate and volume applied. An interface existing in the layered soils, whether a fine-over-coarse or a coarse-over-fine, had a common feature of limiting downward water movement and of increasing horizontal water movement. For the fine-over-coarse layered soils of LS and LSL, water and nitrate were uniformly distributed at a given depth in the top layer soil. For a coarse-over-fine layered soil of SL, however, water accumulated in the sublayer soil underneath the interface and a zone of lower nitrate concentration was observed. The effect of application rate on water distribution pattern was dependent upon soil layering. A minor influence of application rate on water distribution for the fine-over-coarse layered soils (LS and LSL) than for the uniform soils was found. To obtain a greater wetted depth through selecting the emitters having a smaller application rate, which is a common method in the system design for a uniform soil, may not be necessarily applied for the layered soils.Measurements of nitrate distribution showed that nitrate accumulated toward the boundary of the wetted volume for both the uniform and the layered soils. This suggests the

  16. Evidence For Different Reaction Pathways For Liquid And Granular Micronutrients In A Calcareous Soil

    Science.gov (United States)

    The benefits of Mn and Zn fluid fertilizers over conventional granular products in calcareous sandy loam soils have been agronomically demonstrated. We hypothesized that the differences in the effectiveness between granular and fluid Mn and Zn fertilizers is due to different Mn ...

  17. Soil fertility and upland rice yield after biochar application in the Cerrado

    NARCIS (Netherlands)

    Petter, F.A.; Madari, B.E.; Silva, da M.A.S.; Carneiro, M.A.C.; Melo Carvalho, de M.T.; Marimon, B.; Pacheco, L.P.

    2012-01-01

    The objective of this work was to evaluate the effect of biochar made from Eucalyptus on soil fertility, and on the yield and development of upland rice. The experiment was performed during two years in a randomized block design with four replicates, in a sandy loam Dystric Plinthosol. Four doses of

  18. THE PHYTOAVAILABILITY OF CADMIUM TO LETTUCE IN LONG-TERM BIOSOLIDS-AMENDED SOILS

    Science.gov (United States)

    A field study was conducted to assess the phytoavailability of Cd in long-term biosolids-amended field plots managed at high and low pH. The experiment, established 13-15 yr prior to the present cropping, on a Christiana fine sandy loam soil (a clayey, kaolinitic, mesic Typic Pa...

  19. Evidence For Different Reaction Pathways For Liquid And Granular Micronutrients In A Calcareous Soil

    Science.gov (United States)

    The benefits of Mn and Zn fluid fertilizers over conventional granular products in calcareous sandy loam soils have been agronomically demonstrated. We hypothesized that the differences in the effectiveness between granular and fluid Mn and Zn fertilizers is due to different Mn ...

  20. Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems.

    Science.gov (United States)

    Fuentes, María S; Raimondo, Enzo E; Amoroso, María J; Benimeli, Claudia S

    2017-04-01

    Although the use of organochlorine pesticides (OPs) is restricted or banned in most countries, they continue posing environmental and health concerns, so it is imperative to develop methods for removing them from the environment. This work is aimed to investigate the simultaneous removal of three OPs (lindane, chlordane and methoxychlor) from diverse types of systems by employing a native Streptomyces consortium. In liquid systems, a satisfactory microbial growth was observed accompanied by removal of lindane (40.4%), methoxychlor (99.5%) and chlordane (99.8%). In sterile soil microcosms, the consortium was able to grow without significant differences in the different textured soils (clay silty loam, sandy and loam), both contaminated or not contaminated with the OPs-mixture. The Streptomyces consortium was able to remove all the OPs in sterile soil microcosm (removal order: clay silty loam > loam > sandy). So, clay silty loam soil (CSLS) was selected for next assays. In non-sterile CSLS microcosms, chlordane removal was only about 5%, nonetheless, higher rates was observed for lindane (11%) and methoxychlor (20%). In CSLS slurries, the consortium exhibited similar growth levels, in the presence of or in the absence of the OPs-mixture. Not all pesticides were removed in the same way; the order of pesticide dissipation was: methoxychlor (26%)>lindane (12.5%)>chlordane (10%). The outlines of microbial growth and pesticides removal provide information about using actinobacteria consortium as strategies for bioremediation of OPs-mixture in diverse soil systems. Texture of soils and assay conditions (sterility, slurry formulation) were determining factors influencing the removal of each pesticide of the mixture.

  1. Phenanthrene Sorption on Biochar-Amended Soils

    DEFF Research Database (Denmark)

    Kumari, K. G I D; Moldrup, Per; Paradelo, Marcos

    2014-01-01

    on their influences on the sorption of environmental contaminants. In a field-based study at two experimental sites in Denmark, we investigated the effect of birch wood-derived biochar (Skogans kol) on the sorption of phenanthrene in soils with different properties. The soil sorption coefficient, Kd (L kg-1......), of phenanthrene was measured on sandy loam and loamy sand soils which have received from zero up to 100 t ha-1 of biochar. Results show that birch wood biochar had a higher Kd compared to soils. Furthermore, the application of birch wood biochar enhanced the sorption of phenanthrene in agricultural soils...... carbon, while it negatively correlated with clay content. The results also revealed that biochar-mineral interactions play an important role in the sorption of phenanthrene in biochar-amended soil....

  2. Butachlor degradation in tropical soils: effect of application rate, biotic-abiotic interactions and soil conditions.

    Science.gov (United States)

    Pal, R; Das, P; Chakrabarti, K; Chakraborty, A; Chowdhury, A

    2006-01-01

    The degradative characteristics of butachlor (N-Butoxymethyl-2-chloro-2',6'-diethyla- cetanilide) were studied under controlled laboratory conditions in clay loam alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) from rice cultivated fields. The application rates included field rate (FR), 2-times FR (2FR) and 10-times FR (10FR). The incubation study was carried out at 30 degrees C with and without decomposed cow manure (DCM) at 60% of maximum water holding capacity (WHC) and waterlogged soil condition. The half-life values depended on the soil types and initial concentrations of butachlor. Butachlor degraded faster in AL soil and in soil amended with DCM under waterlogged condition. Microbial degradation is the major avenue of butachlor degradation from soils.

  3. Hydraulic conductivity of organomodified soil

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.B.; Grant, J.M.; Voice, T.C.; Rakhshandehroo, G.; Xu, S.; Boyd, S.A. [Michigan State Univ., East Lansing, MI (United States)

    1995-11-01

    The effects of organomodification on soil hydraulic conductivity were investigated. Hydraulic conductivity and porosity of treated and untreated samples of a sandy loam were measured as a function of effective stress. Batch treatment with hexadecyltrimethyl ammonium (HDTMA) and dry packing produced organomodified samples that were 79% less conducive than untreated samples prior to loading. Treated samples lost less hydraulic conductivity as a result of loading than untreated samples so that treated samples had higher conductivity at high loads. Observed differences in conductivity are explained in terms of the role of the treated and untreated clay in controlling initial effective pore size and its change during consolidation.

  4. Control of Ditylenchus dipsaci in Infected Garlic Seed Cloves by Nonfumigant Nematicides.

    Science.gov (United States)

    Roberts, P A; Greathead, A S

    1986-01-01

    Different rates of granular formulations ofaldicarb, carbofuran, ethoprop, fensulfothion, and phenamiphos were applied directly onto garlic seed cloves in the seed furrow in sandy clay loam, clay loam, and loam soils at planting to assess efficacy for control of Ditylenchus dipsaci in infected seed cloves. All treatments were compared to hotwater-formalin clove dip disinfection treatment and to nontreated infected controls. Aldicarb and phenamiphos at 2.52 and 5.04 kg a.i./ ha, but not at lower rates, effectively suppressed infection by D. dipsaci and increased yields. Although both nematicides slightly slowed the rate of plant emergence, normal stands were established. Trace levels of infection occurred in all treatments, including the hotwater-formalin dip. Carbofuran at 5.04 kg a.i./ha controlled the nematode but was phytotoxic. Ethoprop was phytotoxic. Fensulfothion did not control D. dipsaci even at the highest application rate, 8.90 kg a.i./ha. Single and multiple applications of oxamyl at 1.12-8.96 kg a.i./ha, applied as a surface spray or in furrow irrigation water, slowed the early progression of disease symptoms but failed to provide season-long nematode control.

  5. Effects of soil type, moisture content, redox potential and methyl bromide fumigation on K{sub d} values of radio-selenium in soil

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, D.J. [Centre for Environmental Policy, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY (United Kingdom)], E-mail: daniel.ashworth@ars.usda.gov; Moore, J. [Centre for Environmental Policy, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY (United Kingdom); Shaw, G. [Division of Agricultural and Environmental Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2008-07-15

    Understanding the processes that determine the solid-liquid partitioning (K{sub d} value) of Se is of fundamental importance in assessing the risk associated with the disposal of radio-selenium-containing waste. Using a mini-column (rather than batch) approach, K{sub d} values for {sup 75}Se were determined over time in relation to soil moisture content (field capacity or saturated), redox potential and methyl bromide fumigation (used to disrupt the soil microbial population) in three contrasting soil types: clay loam, organic and sandy loam. The K{sub d} values were generally in the range 50-500 L kg{sup -1}, with mean soil K{sub d} increasing with increasing organic matter content. Saturation with water lowered the measured redox potentials in the soils. However, only in the sandy loam soil did redox potential become negative, and this led to an increase in {sup 75}Se K{sub d} value in this soil. Comparison of the data with the Eh-pH stability diagram for Se suggested that such strong reduction may have been consistent with the formation of the insoluble Se species, selenide. These findings, coupled with the fact that methyl bromide fumigation had no discernible effect on {sup 75}Se K{sub d} value in the sandy loam soil, suggest that geochemical, rather than microbial, processes controlled {sup 75}Se partitioning. The inter-relations between soil moisture content, redox potential and Se speciation should be considered in the modelling and assessment of radioactive Se fate and transport in the environment.

  6. Enhanced solubilization and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant.

    Science.gov (United States)

    Zheng, Guanyu; Selvam, Ammaiyappan; Wong, Jonathan W C

    2012-11-06

    The effect of oil-swollen micelles formed with nonionic surfactant polyoxyethylene sorbitan monooleate (Tween 80), cosurfactant 1-pentanol, and linseed oil on the solubilization and desorption of organochlorine pesticides (OCPs) including DDT and γ-HCH from both loam soil and clay soil were investigated. Results showed that the solubilizing capacities of oil-swollen micelles were dependent on the critical micelle concentration (CMC) of Tween 80. Once the concentrations of oil-swollen micelles exceeded the CMC of Tween 80, the oil-swollen micelles exhibited much higher solubilizing capacity than empty Tween 80 micelles for the two OCPs. Desorption tests revealed that oil-swollen micelles could successfully enhance desorption of OCPs from both loam soil and clay soil. However, compared with the efficiencies achieved by empty Tween 80 micelles, oil-swollen micelles exhibited their superiority to desorb OCPs only in loam soil-water system while was less effective in clay soil-water system. Distribution of Tween 80, 1-pentanol and linseed oil in soil-water system revealed that the difference in the sorption behavior of linseed oil onto the two soils is responsible for the different effects of oil-swollen micelles on the desorption of OCPs in loam soil and clay soil systems. Therefore, oil-swollen micelles formed with nonionic surfactant Tween 80 are better candidates over empty micelle counterparts to desorb OCPs from soil with relatively lower sorption capacity for oil fraction, which may consequently enhance the availability of OCPs in soil environment during remediation processes of contaminated soil.

  7. Improved retention of imidacloprid (Confidor) in soils by adding vermicompost from spent grape marc.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2007-05-25

    Batch sorption experiments of the insecticide imidacloprid by ten widely different Spanish soils were carried out. The sorption was studied for the active ingredient and its registered formulation Confidor. The temperature effect was studied at 15 degrees C and 25 degrees C. The addition of a vermicompost from spent grape marc (natural and ground), containing 344 g kg(-1) organic carbon, on the sorption of imidacloprid by two selected soils, a sandy loam and a silty clay loam, having organic carbon content of 3.6 g kg(-1) and 9.3 g kg(-1), respectively, was evaluated. Prior to the addition of this vermicompost, desorption isotherms with both selected soils, were also performed. The apparent hysteresis index (AHI) parameter was used to quantify sorption-desorption hysteresis. Sorption coefficients, K(d) and K(f), for the active ingredient and Confidor(R) in the different soils were similar. Sorption decreased with increasing temperature, this fact has special interest in greenhouse systems. A significant correlation (R(2)=0.965; Pvermicompost was an effective sorbent of this insecticide (K(f)=149). The sorption of imidacloprid increased significantly in soils amended with this vermicompost. The most pronounced effect was found in the sandy loam soil with low OC content, where the addition of 5% and 10% of vermicompost increased K(f) values by 8- and 15-fold, respectively. Soil desorption of imidacloprid was slower for the soil with the higher OC and clay content.

  8. Electrical Imaging of Infiltration in Agricultural Soils on Long Island, New York

    Science.gov (United States)

    Lampousis, A.; Kenyon, P. M.; Sanwald, K.; Steiner, N.

    2007-12-01

    High resolution electrical resistivity imaging of vadose zone infiltration experiments was conducted on agricultural soils by the City College and Graduate Center of CUNY, in cooperation with Cornell University's Agricultural Stewardship Program and Long Island Horticultural Research and Extension Center (LIHREC) in Riverhead, New York. Measurements were made in active vineyards with a commercial resistivity imaging system, using a half- meter electrode spacing. Soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silty loam (BgA). The Riverhead and Haven soils are the most common types found on eastern Long Island. The Bridgehampton is considered the most fertile. Soil samples and measurements of soil compaction were collected at the same time as the geophysical measurements. In addition, remote sensing data were obtained for the three sites and processed to produce normalized difference vegetation index (NDVI) data to evaluate potential correlations between vegetation vigor, soil texture and water migration patterns. Applications of this study include continuous water content monitoring in high value cash crops (precision agriculture). Changes in electrical resistivity during infiltration are clearly visible at all three locations. Preliminary analysis of the results shows correlations of baseline resistivity with particle size distributions and correlations between changes in resistivity during infiltration and soil compaction data. Time-lapse electrical images of the three sites will also be compared with published properties for these soils, including particle size distribution, saturated hydraulic conductivity, available water capacity, and surface texture.

  9. Study on Soil Mobility of Two Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Mária Mörtl

    2016-01-01

    Full Text Available Movement of two neonicotinoid insecticide active ingredients, clothianidin (CLO and thiamethoxam (TMX, was investigated in different soil types (sand, clay, or loam and in pumice. Elution profiles were determined to explore differences in binding capacity. Soil characterized by high organic matter content retained the ingredients, whereas high clay content resulted in long release of compounds. Decrease in concentration was strongly influenced by soil types: both CLO and TMX were retained in loam and clay soils and showed ready elution through sandy soil and pumice. Elution capability of the active ingredients in sandy soil correlated with their water solubility, indicating approximately 30% higher rapidity for TMX than for CLO. Soil organic carbon-water partitioning coefficients (Koc determined were in good agreement with literature values with somewhat lower value for CLO in sandy soil and substantially higher values for TMX in clay soil. High mobility of these neonicotinoid active ingredients in given soil types urges stronger precautionary approach taken during their application.

  10. Predicting the impact of biochar additions on soil hydraulic properties

    Science.gov (United States)

    Spokas, Kurt; Lim, Tae Jun; Feyereisen, Gary; Novak, Jeff

    2015-04-01

    Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool predicting the impact of biochar additions on soil saturated hydraulic conductivity (Ksat). Four different kinds of biochar were added to four different textured soils (coarse sand, fine sand, loam, and clay texture) to assess these effects at the rates of 0, 1, 2, and 5 % (w/w). The Ksat of the biochar amended soils were significantly influenced by the rate and type of biochar, as well as the original particle size of soil. The Ksat decreased when biochar was added to coarse and fine sands. Biochar with larger particles sizes (60%; >1 mm) decreased Ksat to a larger degree than the smaller particle size biochar (60%; soils. Increasing tortuosity in the amended sandy soil could explain this behavior. On the other hand, for the clay loam 1% and 2% biochar additions universally increased the Ksat with higher biochar amounts providing no further alterations. The developed model utilizes soil texture pedotransfer functions for predicting agricultural soil Ksat as a function of soil texture. The model accurately predicted the direction of the Ksat influence, even though the exact magnitude still requires further refinement.

  11. Effects of soil moisture content and tractor wheeling intensity on traffic-induced soil compaction

    Directory of Open Access Journals (Sweden)

    Iman AHMADI

    2015-12-01

    Full Text Available Soil compaction causes deleterious effects on physical and mechanical proprieties of agricultural soils. In order to investigate the effect of soil moisture content and tractor wheeling intensity on traffic-induced soil compaction, this study was carried out on a field with clay loam soil. Soil dry bulk density and hydraulic conductivity as well as emergence percentage of corn seedlings and dry mass of the sampled mature plants were considered the dependent variables of the experiment. Independent variables consisted of soil moisture content with five levels (12, 15, 17, 19, and 21%, traffic intensity with three levels (four, two, and zero passes of tractor wheel (tractor model: John Deere 3350 from the entire area of the plot, and soil sampling depth with three levels (0-10, 10-20, and 20-30 cm. According to the results of this study, gradual increase in soil water content generally resulted in an increase in soil bulk density; moreover, increasing the tractor wheeling intensity from 0 to 4 passes increased bulk density by 13%. Furthermore, the driest soil water content had the highest and the wettest soil water content had the lowest emergence percentage of corn seedlings among the treatments; moreover, traffic intensity treatment inversely affected the emergence percentage of corn seedlings and the dry mass of mature plants. To sum up, these results indicate that, for improving water permeability and reducing dry bulk density of the examined clay loam soil, as well as better emergence of corn seedlings and ultimately increasing crop yield, it is recommended to avoid wheeling when soil moisture content is high, reduce the number of machinery wheel passes from the farm as low as possible, and restrict the wheel passes to fixed strips along the field, whenever possible.

  12. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    of quantitative knowledge to support this statement. This study examines the long-term effects of crop rotations, residue management and tillage on soil pore characteristics of two sandy loam soils in Denmark. Results are reported from a split plot field experiment rotation as main plot factor and tillage...... air permeability and pore continuity index. Generally, residue input, especially when combined with direct drilling at the Foulum site, decreased bulk density and the volume of blocked air porosity, and increased air-filled porosity, volumetric water content, air permeability and gas diffusivity. Our...

  13. Loss of surface horizon of an irrigated soil detected by radiometric images of normalized difference vegetation index.

    Science.gov (United States)

    Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis

    2017-04-01

    The use of the soil in the Humid Pampa of Argentina has changed since the mid-1990s from agricultural-livestock production (that included pastures with direct grazing) to a purely agricultural production. Also, in recent years the area under irrigation by central pivot has been increased to 150%. The waters used for irrigation are sodium carbonates. The combination of irrigation and rain increases the sodium absorption ratio of soil (SARs), consequently raising the clay dispersion and reducing infiltration. This implies an increased risk of soil loss. A reduction in the development of white clover crop (Trifolium repens L.) was observed at an irrigation plot during 2015 campaign. The clover was planted in order to reduce the impact of two maize (Zea mays L.) campaigns under irrigation, which had increased soil SAR and deteriorated soil structure. SPOT-5 radiometric normalized difference vegetation index (NDVI) images were used to determine two zones of high and low production. In each zone, four random points were selected for further geo-referenced field sampling. Two geo-referenced measures of effective depth and surface soil sampling were carried out in each point. Texture of soil samples was determined by Pipette Method of Sedimentation Analysis. Data exploratory analysis showed that low production zone had a media effective depth = 80 cm and silty clay loam texture, while high production zone had a media effective depth > 140 cm and silt loam texture. The texture class of the low production zone did not correspond to prior soil studies carried out by the INTA (National Institute of Agricultural Technology), which showed that those soil textures were silt loam at surface and silty clay loam at sub-surface. The loss of the A horizon is proposed as a possible explanation, but further research is required. Besides, the need of a soil cartography actualization, which integrates new satellite imaging technologies and geo-referenced measurements with soil sensors is

  14. Prediction of runoff and discharge in the Simiyu River (tributary of Lake Victoria, Tanzania using the WetSpa model

    Directory of Open Access Journals (Sweden)

    J. Rwetabula

    2007-04-01

    Full Text Available A spatially distributed hydrologic model (WetSpa is used to estimate daily river water discharge in the Simiyu river a tributary of Lake Victoria, Tanzania. The model combines topography, landuse and soil maps, and observed daily meteorological time series to predict discharge hydrographs and the spatial distribution of hydrological parameters in the catchment. The elevations in the catchment range from 2000 to 1100 m at the outlet, with average slope of 1.4%. The dominant landuse types are, wasteland, grassland, bushland, cultivated land, and a very small area is covered by surface water. The dominant soil types are sandy loam, followed by sandy clay loam, clay loam, clay, loam and sandy clay. There are two distinctive seasons in the Simiyu catchment. Short rains mainly in November, December and January, and long rains in March to May, resulting in a total average annual precipitation of 700 to 1000 mm. The annual potential evapotranspiration is about 1300 mm, and the river discharge at the catchment outlet ranges from 0 to about 200 m3/s. Global parameters of the model are calibrated using three years of daily observed discharge values measured at the mouth of the river at Lake Victoria. The estimated average travel time of the runoff to the outlet of the catchment is about 2.4 d and maximum 8 d for the most remote areas. The model results also show that the surface runoff and interflow provide respectively 38.6% and 61.4% of the total runoff, while the contribution of groundwater drainage is nil. The absence of groundwater drainage is probably due to the high evaporation demand of the atmosphere, which accounts for about 90% of the total precipitation being lost by evapotranspiration. The annual water balance estimated with the model reveals that the total outflow to Lake Victoria is about 500×106 m3 per year, which occurs mainly in the wet seasons, i.e. from March to May and from November to January. The

  15. Effects of biochar, compost and biochar-compost on growth and nutrient status of maize in two Mediterranean soils

    Science.gov (United States)

    Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    During the past years, studies have shown that biochar alone or combined with compost, has the potential to improve soil fertility and maize yield mostly on tropical soils whereas experiments on Mediterranean soils are rare. Therefore, the influence of biochar, compost and mixtures of the two, on maize (Zea mays L.) growth and nutrient status were investigated, in this study. Biochars were produced from 2 feedstocks: grape pomace (GP) and rice husks (RH) pyrolyzed at 300°C. Maize was grown for 30 days in a greenhouse pot trial on two Mediterranean soils amended with biochar or/with compost at application rates of 0% and 2% (w/w) (equivalent to 0 and 16 t ha-1) and N fertilization. Total aboveground dry matter yield of maize was significantly improved relative to the control for all organic amendments, with increases in yield 43-60.8%, in sandy loam soil, while, in loam soil a statistically significant increase of 70.6-81.3% was recorded for all the amendments apart from compost. Some morphological traits, such as aboveground height of plants, shoot diameter and belowground dry matter yield were significantly increased by the organic treatments. Aboveground concentration of P was significantly increased from 1.46 mg g-1 at control to 1.69 mg g-1 at 2% GP biochar in sandy loam soil, whereas GP biochar combined with compost gave an increase of 2.03 mg g-1 compared to control 1.23 mg g-1. K and Mn concentrations of above ground tissues were significantly increased only in sandy loam soil, while Fe in both soils. N concentration of aboveground tissues declined for all the amendments in loam soil and in sandy loam soil apart from compost amendment. Significant positive impacts of amended soils on nutrients uptake were observed in both soils as compared to the control related to the improved dry matter yield of plant. The current study demonstrated that maize production could be greatly improved by biochar and compost because of the nutrients they supply and their

  16. How can climate, soil, and monitoring schedule affect temporal stability of soil water contents?

    Science.gov (United States)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2012-12-01

    Temporal stability (TS) of soil water content (SWC) reflects the spatio-temporal organization of soil water. The TS SWC was originally recognized as a phenomenon that can be used to provide temporal average SWC of an area of interest from observations at a representative location(s). Currently application fields of TS SWC are numerous, e.g. up- and downscaling SWC, SWC monitoring and data assimilation, precision farming, and sensor network design and optimization. However, the factors that control the SWC organization and TS SWC are not completely understood. Among these factors are soil hydraulic properties that are considered as local controls, weather patterns, and the monitoring schedule. The objective of this work was to use modeling to assess the effect of these factors on the spatio-temporal patterns of SWC. We ran the HYDRUS6 code to simulate four years of SWC in 4-m long soil columns. The columns were assumed homogeneous, soil hydraulic conductivity was drawn from lognormal distributions. Sets of columns were generated separately for sandy loam and loamy soils, soil water retention was set to typical values for those soil textures. Simulations were carried out for four climates present at the continental US. The climate-specific weather patterns were obtained with the CLIGEN code using climate-specific weather observation locations that were humid subtropical from College Station (TX), humid continental from Indianapolis (IN), cold semiarid from Moscow (ID) and hot semiarid from Tucson (AZ). We evaluated the TS and representative location (RL) selections by comparing i) different climates; ii) for the same climates different years; iii) different time intervals between samplings; iv) one year duration surveys vs. one month summer campaigns; and v) different seasons of the same year. Spatial variability of the mean relative differences (MRD) differed among climates for both soils, as the probability of observing the same variance in the MRD was lower than

  17. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  18. Observed effects of soil organic matter content on the microwave emissivity of soils

    Science.gov (United States)

    O'Neill, P. E.; Jackson, T. J.

    1990-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.

  19. Characterization of MASDs of surface soils in north China and its influence on estimating dust emission

    Institute of Scientific and Technical Information of China (English)

    MEI Fanmin; ZHANG Xiaoye; LU Huayu; SHEN Zhenxing; WANG Yaqiang

    2004-01-01

    The micro-aggregated size distribution (MASD) of surface soil is an important parameter for modelling dust emission. However,there is no dataset of MASDs of all surface soil types in north China.The MASDs are here presented,measured by dry sieving,for typical surface soil samples,including sandy soil,gravelly sand soil,gravelly loam soil,loam soil and silt loam soil,collected from sandy deserts,Gobi deserts,oases,farmlands in steppe regions and steppe areas in north China.The MASDs of various surface soil types exhibit a combination of several log-normal distributions of five separated sizes with mean mass median diameters (MMDs) of 90,210,390,600 and 980 цm,respectively,and mean standard deviations (SDs) of 1.25,1.40,1.25,1.35 and 1.25 respectively. The log-normal distributions correspond to very fine sand,fine sand,medium sand,coarse sand and very coarse sand population.On the basis of characterization of the retrieved MASDs of various surface soil types in north China,dust emission fluxes are modelled by a dust production model (DPM model).It is shown that dust emission has been significantly influenced by MASDs.Fine sand and very fine sand are always associated with the highest dust emission fluxes. Emission fluxes of the medium sand, gravelly sand soil,gravelly loam soil and loam soil are lower than those of very fine sand and fine sand,but larger than those of the coarse sand.The differences in dust emission fluxes vary among the different soil types from 101 to 103 цg·m-2·s-1.Dust emission fluxes from sandy deserts and farmlands covered with sand sheets in north China rang from 101 to 104 цg·m-2·s-1 while those from Gobi deserts,farmlands and steppes with gravelly desertification range from 101 to 102 цg·m-2· s-1.The modelled results indicate that deserts and farmlands with sand are the major dust sources in north China.

  20. Soils, Pores, and NMR

    Science.gov (United States)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 samples (Haber-Pohlmeier et al. 2010). Third, relaxometric information forms the basis of understanding magnetic resonance imaging (MRI) results. The general difficulty of imaging in soils are the inherent fast T2 relaxation times due to i) the small pore sizes, ii) presence of paramagnetic ions in the solid matrix, and iii) diffusion in internal gradients. The last point is important, since echo times can not set shorter than about 1ms for imaging purposes. The way out is either the usage of low fields for imaging in soils or special ultra-short pulse sequences, which do not create echoes. In this presentation we will give examples on conventional imaging of macropore fluxes in soil cores (Haber-Pohlmeier et al. 2010), and the combination with relaxometric imaging, as well as the advantages and drawbacks of low-field and ultra-fast pulse imaging. Also first results on the imaging of soil columns measured by SIP in Project A3 are given. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Waterflow Monitored by Tracer Transport in Natural Porous Media Using MRI." Vadose Zone J.: submitted. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Relaxation in a

  1. Effects of storage time and straw content of cattle slurry on the mineralization of nitrogen and carbon in soil

    DEFF Research Database (Denmark)

    Sørensen, P.

    1998-01-01

    to a sandy and a sandy loam soil. After 1 week, the preceding storage period (0-20 weeks) and temperature (5 degrees C or 15 degrees C) had no significant effect on the net release of inorganic N from the slurry in soil. Thus, the increased NH4+ content in the slurry after storage was followed by increased...... net N immobilization in soil. Additional straw in the slurry caused increased net N immobilization only in the sandy loam soil. Following anaerobic storage, 8-14% of slurry C was released in gaseous form, and the net mineralization of slurry C after 12 weeks in soil amounted to 54-63%. The extra net...

  2. A waveguide-on-access-tube (WOAT) TDR sensor for deep soil water content and bulk EC

    Science.gov (United States)

    A waveguide-on-access-tube (WOAT) TDR sensor was invented and the design optimized through a combination of electromagnetic modeling and several rounds of prototyping and testing in air, water, mixtures of water and ethylene glycol, sand, and silty clay loam soils over a range of water contents and ...

  3. Links between matrix bulk density, macropore characteristics and hydraulic behavior of soils

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Møldrup, Per; Lamandé, Mathieu

    2013-01-01

    The relationship of soil bulk density with the hydraulic behavior of soil and the role of macropores in preferential flow and transport has been extensively studied in literatures. Yet, the influence of soil structural heterogeneity as simultaneous variation of bulk density and macropore characte......The relationship of soil bulk density with the hydraulic behavior of soil and the role of macropores in preferential flow and transport has been extensively studied in literatures. Yet, the influence of soil structural heterogeneity as simultaneous variation of bulk density and macropore...... resolution X-ray CT and linked them with laboratory measurements of air permeability and leaching experiment. In addition to macropore characteristics, we also quantified the CT-number of the matrix as a measure of the bulk density of the matrix, i.e., excluding macropores in the soil. Soils from the two...... field sites had similar texture (loam or sandy loam), yet the sand content was higher in Faardrup soils and clay and organic carbon content were higher in Silstrup soils. In general, Silstrup soil had more macropores (>1.2mm) than Faardrup soils but both the soils exhibited similar relationships between...

  4. Effects of biochar on the emissions, soil distribution, and nematode control of 1,3-dichloropropene

    Science.gov (United States)

    Application of a rice husk-derived biochar to the surface of a sandy loam soil chamber reduced soil-air emissions of 1,3-dichloropropene (1,3-D) from 42% in a control (no biochar) to 8%. The difference in emissions was due to adsorption of 1,3-D onto the biochar, measured as 32.5%. The remaining 1,3...

  5. Horizontal and vertical movement of Pseudomonas fluorescens toward exudate of Macrophomina phaseolina in soil: influence of motility and soil properties.

    Science.gov (United States)

    Singh, Tanuja; Srivastava, Alok K; Arora, Dilip K

    2002-01-01

    The role of motility and cell surface hydrophobicity in transport and dispersal of Pseudomonas fluorescens strains LAM1-hydrophilic, LAM2-hydrophobic and LAM(NM) (non-motile mutant of LAM2) under different soil conditions was studied. Maximum adhesion was recorded for LAM2 in clay loam (70%), followed by sandy loam (68%) and sandy soil (40%). Vertical migration of P fluorescens isolates in soils was recorded at 5 and 25 cm flow of wafer or M. phaseolina exudate. In all the treatments, LAM1 exhibited maximum migration followed, by LAM2 and LAM(NM). The rate of migration of such isolates was lowered in water irrigated soils compared to those irrigated with M. phaseolina exudate. In sandy soil, cells of LAM1 migrated up to 13 cm in comparison to LAM2 (11 cm) and LAN(NM) (9 cm) at 5 cm flow of fungal exudate. Population of LAM1, LAM2 and LAM(NM) was 5.7, 5.68 and 5.61 log cfu g(-1) soil at 1 cm depth, but it decreased to 2.56, 2.21 and 1.99 log cfu during migration up to 11 cm in sandy soil at 5 cm flow of fungal exudate. Greater motility was observed in sandy soil irrigated with water or fungal exudate, followed by sandy loam and clay loam. In general, filtration coefficient (lambda) of P. fluorescens was higher in soils irrigated with 5 cm of water or exudate than with 25 cm of irrigation. The horizontal movement of P. fluorescens strains in sandy soil adjusted at different psi m showed marked reduction with decrease in psi m. The non-motile LAN(NM) did not show chemotactic response and migrated up to a maximum of 3 mm in saturated soils (0 kPa). After 96 h, LAM1 and LAM2 migrated upto 35 and 29 mm respectively in sandy soil. Motile isolates had significantly greater colonization of M. phaseolina sclerotia over the non-motile mutant.

  6. Characteristics of Soil and Organic Carbon Loss Induced by Water Erosion on the Loess Plateau in China.

    Science.gov (United States)

    Li, Zhongwu; Nie, Xiaodong; Chang, Xiaofeng; Liu, Lin; Sun, Liying

    2016-01-01

    Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau.

  7. Soil evolution dynamics and cultural response: Transformation of habitation patterns in the southern Netherlands (1000 BC-500 AD)

    Science.gov (United States)

    Roymans, Nico; Kluiving, Sjoerd; Bekkema, Marijke; van Puijenbroek, Florens

    2013-04-01

    Long-term archaeological data gathering in the southern Netherlands may deliver an interesting scale model that is suitable for the Pleistocene sand areas of the Northwest European Plain. On a micro-scale level it has become clear that Bronze Age and Iron Age farmers intensively used the landscape, resulting in relatively dense distribution patterns of settlements all over the sand plateaus. However, this agricultural use of the landscape - related to the 'celtic field' system - led to a process of soil degeneration during which initially brown moder podzols gradually transformed into degenerated humus podzols that could no longer be used as farmland. According to established 'models', this process of 'secondary podzolisation' particularly affected those sections of the landscape that were dominated by dry sandy soils with a low loam content (between c. 10 and 20%). In the later Iron Age the changing soil conditions resulted in a dramatic shift in the habitation pattern that clearly manifests itself in the Roman period; on the local scale the habitation moved from the degenerated soils to nearby zones with better soil conditions (higher loam content), which became more densely inhabited now than in the Bronze Age/Early Iron Age. The zones where the Roman period settlements concentrated became also the zones where we can find the early medieval habitation and where in the late medieval period the plaggen soils started to develop. Measured loam values of soil samples (n=181) in Veldhoven, southern Netherlands, are in agreement with the described model that the plaggen cover is located on soils containing high loam% and that humus podzolsoils of former heath areas have low loam content. Local spatial as well as vertical variations in loam content of sand layers is shown to occur, warning against single parameter research. Other potential causes for the deviation of the model are: a) the impact of fluctuating groundwater levels, b) impact of older formations with

  8. [The transferability of acetochlor and butachlor in soil].

    Science.gov (United States)

    Zheng, H; Ye, C

    2001-09-01

    The transferability of acetochlor and butachlor in soil was studied by soil thin layer chromatography. Acetochlor and butachlor were dropped on the glass plate and spreaded soil on the glass plate was collected per 2 cm, then acetochlor and butachlor were analyzed quantitatively by HPlC. When river water was as the spread solution, Rf(relative flow) of acetochlor and butachlor in the Haidian loam were 0.116 and 0.031 respectively, Rf of acetochlor and butachlor in the Baiyangdian sandy loam were 0.147 and 0.032 respectively. When 30 mg.L-1 dodecylbenzene sulfonic acid sodium salt solution was as the spread solution, Rf of acetochlor and butachlor in the Haidian loam were 0.159 and 0.034 respectively. Acetochlor's transferability was weak and the gradation of its transferability was II grade, while butachlor's was more weak and the gradation was I grade. Anionic surfactant solution can promote pesticides to transfer. Cationic surfactant solution can impede pesticides to transfer.

  9. Salt—Water Dynamics in Soils:I.Salt—Water Dynamics in Unsaturated Soils Under Stable Evaporation Condition

    Institute of Scientific and Technical Information of China (English)

    YOUWEN-RUI; MENGFAN-HUA; 等

    1992-01-01

    A long term simulation test on salt-water dynamics in unsaturated soils with different groundwater depths and soil texture profiles under stable evaporation condition was conducted.Salinity sensors and tensiometers were used to monitor salt and water variation in soils.The experiment revealed that in the process of fresh groundwater moving upwards by capillary rise in the column,the salts in subsoil were brought upwards and accumulated in the surface soil,and consequently the salinization of surface soil took place.The rate of salt accumulation is determined mainly by the volume of capillary water flow and the conditions of salts contained in the soil profile.Water flux in soils decreased obviously when groundwater depths fell below 1.5m.When there was an interbedded clay layer 30cm in thickness in the silty loam soil profile or a clay layer 100cm in thickness at the top layer,the water flux was 3-5 times less than in the soil profile of homogeneous silty loam soil.Therefore,the rate of salt accumulation was decreased and the effect of variation of groundwater depth on the water flux in soils was weakened comparatively.If there was precipitation or irrigation supplying water to the soil,the groundwater could rarely take a direct part in the process of salt accumulation in surface soil,especially,in soil profiles with an interbedded stratum or a clayey surface soil layer.

  10. THE INFLUENCE OF LITHOLOGY ON THE PHYSICO-CHEMICAL PROPERTIES OF SOILS FROM OAŞ MOUNTAINS (EASTERN CARPATHIAN

    Directory of Open Access Journals (Sweden)

    Constantin Rusu

    2005-10-01

    Full Text Available The geological composition is essential for the pedogenetical processes. The Oas Mountains have a special complexity, caused by the subsequent magmatism. From a lithological point of view, we can mention the rhyolites and volcanic agglomerates followed by dacites, pyroxenic hyalodacites, porphyric, pyroxenic microgranodiorites, sands and clays with gravels intercalations, sandy clays and clays with coal lenses.

  11. Hydrocarbon contamination increases the liquid water content of frozen Antarctic soils.

    Science.gov (United States)

    Siciliano, Steven D; Schafer, Alexis N; Forgeron, Michelle A M; Snape, Ian

    2008-11-15

    We do not yet understand why fuel spills can cause greater damage in polar soils than in temperate soils. The role of water in the freezing environment may partly be responsible for why polar soils are more sensitive to pollution. We hypothesized that hydrocarbons alter the liquid water in frozen soil, and we evaluated this hypothesis by conducting laboratory and field experiments at Casey Station, Antarctica. Liquid water content in frozen soils (theta(liquid)) was estimated by time domain reflectometry in laboratory, field collected soils, and in situ field measurements. Our results demonstrate an increase in liquid water associated with hydrocarbon contamination in frozen soils. The dependence of theta(liquid) on aged fuel and spiked fuel were almost identical,with a slope of 2.6 x 10(-6) mg TPH (total petroleum hydrocarbons) kg(-1) for aged fuel and 3.1 x 10(-6) mg TPH kg(-1) for spiked fuel. In situ measurements found theta(liquid) depends, r2 = 0.75, on fuel for silt loam soils (theta(liquid) = 0.094 + 7.8 x 10(-6) mg TPH kg(-1)) but not on fuel for silt clay loam soils. In our study, theta(liquid) doubled in field soils and quadrupled in laboratory soils contaminated with diesel which may have profound implications on frost heave models in contaminated soils.

  12. DESCRIPTION OF CERTAIN ASPECTS OF THE PRODUCTION POTENTIAL OF SOILS TAMAN PENINSULA

    Directory of Open Access Journals (Sweden)

    Lukyanov A. A.

    2015-10-01

    Full Text Available The work presents the results of the scientific research in the Taman Peninsula soil properties. We carry out the historic review of the studies in the Taman Peninsula soils, and its geological structure. We present morphological characteristics of the soil profile for the southern, calcareous, ultra heavy loam chernozem developed from the loessial loams and forming genetic horizons. The studies of the humus content in the soils show the associations between its percentage and the type and intensity of the agricultural use. Studies of the soils structure and composition demonstrate marked aggravation of the soils physical properties caused by grape growing. The best results of the particle size analysis have been achieved for the woodland soils. In woodlands, after their establishment, the soils under the grass and crown layers develop free of the anthropogenic impact. We register self-supporting growth of organic matter and natural processes of soil fertility recovery; therefore, such soils are characterized with a greater content of organic matter as compared to the soils under grape plantings cultivated in the monoculture regime. Reduced soil organic matter (humus content in vineyards results from the disturbed biological interchange of the matter and increased anthropogenic impact causing erosion processes

  13. Effect of biochar on soil structural characteristics: water retention and gas transport

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C......-gas diffusivity on intact 100cm3 soil samples (5 replicates in each plot). We found that biochar application significantly decreased soil bulk density, hereby creating higher porosity. At the same soil-water matric potential, all the soil-gas phase parameters (air-filled porosity, air permeability and gas...

  14. Land Use Effects on Soil Quality Indicators: A Case Study of Abo-Wonsho Southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Awdenegest Moges

    2013-01-01

    Full Text Available Soil quality assessment is valuable for evaluating agroecosystem sustainability, soil degradation, and identifying sustainable land management practices. This study compared soil quality within culturally protected forest areas and adjacent grassland, grazing land, and farmland in Abo-Wonsho, Southern Ethiopia. A total of 40 soil samples (4 land uses × 5 replications × 2 soil depth layers: 0 to 10 cm and 10 to 20 cm were collected for analysis. Soil textural fractions (i.e., sand, silt, and clay percentage varied with land use and soil depths even though the textural class across all land use types was sandy loam. Bulk density, soil organic carbon (SOC, and available potassium (K varied significantly: , , and , respectively, with land use and soil depth, but other indicators showed no significant difference. We conclude soil quality can be protected and maintained by improving existing land use practices within both agricultural and modern forest management areas.

  15. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system

    Science.gov (United States)

    Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling

    2017-05-01

    Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.

  16. Relation between soil P test values and mobilization of dissolved and particulate P from the plough layer of typical Danish soils from a long-term field experiment with applied P fertilizers

    DEFF Research Database (Denmark)

    Glæsner, Nadia Andersen; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2013-01-01

    Accumulation of phosphorus (P) in agricultural topsoils can contribute to leaching of P which may cause eutrophication of surface waters. An understanding of P mobilization processes in the plough layer is needed to improve agricultural management strategies. We compare leaching of total dissolved...... and particulate P through the plough layer of a typical Danish sandy loam soil subjected to three different P fertilizer regimes in a long-term field experiment established in 1975. The leaching experiment used intact soil columns (20 cm diameter, 20 cm high) during unsaturated conditions. The three soils had...... in particulate P (PP) with increasing labile P content was modest and statistically insignificant. We found concentrations up to 1.5 mg TP/L for the plough layer of this typical Danish sandy loam soil. This highlights that even a moderate labile P content can be a potential source of TDP from the plough layer...

  17. Leaching of human pathogens in repacked soil lysimeters and contamination of potato tubers under subsurface drip irrigation in Denmark

    DEFF Research Database (Denmark)

    Forslund, Anita; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    to groundwater. However, viruses may leach to groundwater and represent a health risk as for some viruses only few virus particles are needed to cause human disease. The bacterial pathogens and the phage 28B were found on the potato samples harvested just after the application of microbial tracers was terminated......The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O...... loam soil. The added bacterial pathogens were not found in any leachate samples during the entire study period of 212 days. Under the study conditions with repacked soil, limited macropores and low water velocity, bacterial pathogens seemed to be retained in the soil matrix and died-off before leaching...

  18. The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    M. B. Defersha

    2011-07-01

    Full Text Available Soil erosion is a two-phase process consisting of the detachment of individual particles and their transport by the flowing water. This study discusses the results of laboratory experiments in which for three soils, the runoff depth, sediment yield, splash erosion and sediment size were measured. Rainfall intensity, slope and antecedent moisture contents were varied in the experiment. The soil types ranged from clay to sandy clay loam (Alemaya Black soil, Regosols and Cambisols. Rainfall was applied for six sequential 15-min periods with rainfall intensities varying between 55 and 120 mm h−1. The three slopes tested were 9, 25, and 45 %. Results show that as slope increased from 9 to 25 %, splash erosion and sediment yield increased. An increase in slope from 25 to 45 % generally decreases in splash erosion. Sediment yield for one soil increased and one soil decreased with slope and for the third soil the trend was different between the two initial moisture contents. Sediment yield was correlated (r = 0.66 with runoff amounts but not with splash erosion. Interrill erosion models that were based on the flowing water and rainfall intensity fitted the data better than when based on rainfall intensity solely. Models that assume a positive linear relationship between erosion and slope may overestimate sediment yield.

  19. Effects of dissolved organic matter from sewage sludge on sorption of tetrabromobisphenol A by soils

    Institute of Scientific and Technical Information of China (English)

    SUN Zhaohai; MAO Li; XIAN Qiming; YU Yijun; LI Hui; YU Hongxia

    2008-01-01

    Sorption of tetrabromobisphenol A (TBBPA) by soil influences its fate and transport in the environment. The presence of dissolved organic matter (DOM) may complicate the sorption process in soil. The effects of DOM from sewage sludge on TBBPA sorption by three soils were investigated using batch equilibration experiments in the study. DOM was observed to be sorbed on the soils and the isotherms could be fitted by the Langmuir model. The effects of DOM on TBBPA sorption were dependent on the characteristics of soils and the concentrations of DOM present. TBBPA sorption by Henan (HN) soil (sandy loam) and Liaoning (LN) soil (loamy clay) was promoted in the presence of DOM at low concentration (≤ 90 mg organic carbon (OC)/L), and the sorption was promoted by HN soil and inhibited by LN soil at DOM added concentration of 180 mg OC/L. TBBPA sorption by Guangxi (GX) soil (silt loam) was always inhibited in the presence of DOM. It was also found that the amount of TBBPA sorbed decreased with the increase in the solution pH value in the absence of DOM. The influencing mechanisms of DOM on the sorption of TBBPA by soils were also discussed.

  20. Water consumption and soil moisture distribution in melon crop with mulching and in a protected environment

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio Câmara Monteiro

    2013-06-01

    Full Text Available Mulching has become an important technique for land cover, but there are some technical procedures which should be adjusted for these new modified conditions to establish optimum total water depth. It is also important to observe the soil-water relations as soil water distribution and wetted volume dimensions. The objective of the present study was to estimate melon evapotranspiration under mulching in a protected environment and to verify the water spatial distribution around the melon root system in two soil classes. Mulching provided 27 mm water saving by reducing water evaporation. In terms of volume each plant received, on average, the amount of 175.2 L of water in 84 days of cultivation without mulching, while when was used mulching the water requirement was 160.2 L per plant. The use of mulching reduced the soil moisture variability throughout the crop cycle and allowed a greater distribution of soil water that was more intense in the clay soil. The clayey soil provided on average 43 mm more water depth retention in 0.50 m soil deep relative to the sandy loam soil, and reduced 5.6 mm the crop cycle soil moisture variation compared to sandy loam soil.

  1. Amyloid proteins are highly abundant in water-repellent but not wettable soils: microbial differentiation matters to soils

    Science.gov (United States)

    van Keulen, Geertje; Quinn, Gerry; Sinclair, Kat; Dudley, Ed; Swain, Martin; Doerr, Stefan; Matthews, Peter; Francis, Lewis; Gazze, Andrea; Hallin, Ingrid

    2017-04-01

    Soil water repellency is a common phenomenon affecting the hydrological responses of many soil and land use types in different climates. This in turn leads to decreased water infiltration, reduced vegetation cover, fertiliser run off and soil erosion. The fundamental (biological) causes of (bulk) soil repellency and its dynamic behaviour remain poorly understood. We have applied soil metaproteomics, the systemic extraction and identification of proteins from a soil, to understand the biological (adaptive) processes and potential for bio-modification of mineral surfaces, which occur at the molecular level in soils switching between wettable and repellent states. Extreme, moderate and sub-critical water-repellent UK silt-loam soils under permanent grass vegetation, including Park Grass at Rothamsted Research, were sampled below the root zone depth under wettable and repellent conditions. Soils were subjected to our new extraction methods for determining the specific ultrahydrophobic and total metaproteomes. Using our ultrahydrophobic extraction protocol, we have identified more than 200, mostly novel amyloid, proteins, which could be extracted from water-repellent soils, but were absent in the comparable wettable soils. One of the novel amyloid proteins was highly abundant in all soils, which has the potential as a soil biomarker for precision land management, especially in irrigation. Comparative profiling of the total metaproteomes of wettable and repellent soils has revealed similarities and dissimilarities in microbial diversity and their activities, which have created a deeper understanding of soil system processes common and adaptive to soil moisture and to the severity of repellence.

  2. Leaching behavior of enrofloxacin in three different soils and the influence of a surfactant on its mobility

    Institute of Scientific and Technical Information of China (English)

    Zhiyong Yu; Ayfer Yediler; Min Yang; Sigurd Schulte-Hostede

    2012-01-01

    The leaching behaviors of enrofloxacin(ENR),a fluoroquinolone group antibiotic,in three different standard soils,namely sandy,loamy sand and sandy loam were investigated according to OECD guideline 312.In addition,the effects of tenside,sodium dodecylbenzenesulfonate(DBS)on the mobility of ENR in two different soils were studied.The mobility of ENR in all three standard soils was very similar and was mostly(98%)concentrated on the top 0-5 cm segment of the soils at pH 5.7.The DBS can enhance the mobility of ENR in soils but the impact was in general negligible under the studied conditions.

  3. Boron and Zinc Transport Through Intact Columns of Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    M. MAHMOOD-UL-HASSAN; M. S. AKHTAR; G. NABI

    2008-01-01

    Leaching of boron (B) and zinc (Zn) can be significant in some pedomorphic conditions, which can cause contamination of shallow groundwater and economic losses. Boron and Zn adsorption and transport was studied using 8.4 cm diameter ×28 cm long intact columns from two calcareous soil series with differing clay contents and vadose zone structures:Lyallpur soil series, clay loam (fine-silty, mixed, hyperthermic Ustalfic Haplargid), and Sultanpur soil series, sandy loam (coarse-silty, mixed, hyperthermic Ustollic Camborthid). The adsorption isotherms were developed by equilibrating soil with 0.01 mol L-1 CaCl2 aqueous solution containing varying amounts of B and Zn and were fitted to the Langmuir equation. The B and Zn breakthrough curves were fitted to the two-domain convective-dispersive equation. At the end of the leaching experiment, 0.11 L 10 g L-1 blue dye solution was also applied to each column to mark the flow paths.The Lyallpur soil columns had a slightly greater adsorption partition coefficient both for B and Zn than the Sultanpur soil columns. In the Lyallpur soil columns, B arrival was immediate but the peak concentration ratio (the concentration in solution at equilibrium/concentration applied) was lower than that in the Sultanpur soil columns. The breakthrough of B in the Sultanpur soil columns occurred after about 10 cm of cumulative drainage in both the columns; the rise in effluent concentration was fast and the peak concentration ratio was almost 1. Zinc leaching through the soil columns was very limited as only one column from the Lyallpur soil series showed Zn breakthrough in the effluent where the peak concentration ratio was only 0.05. This study demonstrates the effect of soil structure on B transport and has implications for the nutrient management in field soils.

  4. A geophysical and biochemical investigation of buried remains in contrasting soil textures in southern Ontario

    Science.gov (United States)

    Lowe, Amanda C.

    Ground penetrating radar (GPR) is a non-invasive, geophysical tool used for the detection of clandestine graves. GPR operates by detecting density differences in soil by the transmission of high frequency electromagnetic (EM) waves from an antenna. A 500 Megahertz (MHz) frequency antenna is typically used for forensic investigations, as it provides a suitable compromise between depth of penetration and sub-surface resolution. Domestic pig (Sus scrofa) carcasses were clothed in 100% cotton t-shirts and 50% cotton/50% polyester briefs, and buried at a consistent depth at three field sites of contrasting soil texture (silty clay loam, fine sand and fine sandy loam) in southern Ontario. GPR was used to detect and monitor the graves for a period of 14 months post burial. Analysis of collected data revealed that GPR had applicability in the detection of clandestine graves containing remains in silty clay loam and fine sandy loam soils, but was not suitable for detection in fine sandy soil. Specifically, within a fine sandy loam soil, there is the potential to estimate the post burial interval (PBI), as hyperbolic grave response was well defined at the beginning of the 14 month burial duration, but became less distinctive near the completion of the study. Following the detection of a clandestine grave containing a carcass, collection of gravesoil, tissue and textile samples is important for the estimation of the stage of decomposition and the post burial interval (PBI) of the remains. Throughout the decomposition process of a carcass, adipose tissue is subjected to hydrolytic enzymes that convert triglycerides to their corresponding unsaturated, saturated and salts of fatty acids. The composition of fatty acids in the decomposed tissue will vary with the post mortem period, but it is unknown what affect the soil texture has on lipid degradation. As decomposition proceeds, fatty acids can leach from the tissues into the surrounding burial environment. Fatty acid analysis

  5. Effects of Soil on Ammonia, Ethylene, Chloroethane, and 1,1,1-Trichloroethane Oxidation by Nitrosomonas europaea†

    OpenAIRE

    Hommes, Norman G.; Russell, Sterling A.; Bottomley, Peter J.; Arp, Daniel J.

    1998-01-01

    Ammonia monooxygenase (AMO) from Nitrosomonas europaea catalyzes the oxidation of ammonia to hydroxylamine and has been shown to oxidize a variety of halogenated and nonhalogenated hydrocarbons. As part of a program focused upon extending these observations to natural systems, a study was conducted to examine the influence of soil upon the cooxidative abilities of N. europaea. Small quantities of Willamette silt loam (organic carbon content, 1.8%; cation-exchange capacity, 15 cmol/kg of soil)...

  6. Leaching and Transformation of Nitrogen Fertilizers in Soil After Application of N with Irrigation: A Soil Column Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI,DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4+-N + NO3--N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4+-N fixation or volatilization in the soil during the fertigation process.

  7. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H......), and moldboard plowing (MP) with and without a cover crop were evaluated in a long-term experiment on a sandy loam soil in Denmark. Chemical, physical, and biological soil properties were measured in the spring of 2012. The field measurements included mean weight diameter (MWD) after the drop-shatter test......, penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K...

  8. Microbial effect on soil hydraulic properties

    Science.gov (United States)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  9. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  10. Introducing Fractal Dimension to Estimation of Soil Sensitivity to Preferential Flow

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Food dye Brilliant Blue was introduced as the tracer in a dye-tracing experiment to obtain dye profile patterns of sandy loam soil, aeolian sandy soil, percolating paddy soil and permeable paddy soil. The dyed soil profiles were then photographed and the photos were scanned into a computer. Edited with certain software, only the dyed areas were left on the profile photos, which indicted the preferential flow paths for water and solute transport. Fractal dimensions of the dye patterns were calculated according to Arnold's function. Soil particle size distribution was analyzed by pipette method. The regression analysis showed that there was significant relationship between soil clay content and fractal dimension D of the dye pattern of soil profile. Based on the experiment results, the possibility of introducing fractal dimension to estimation of soil sensitivity to preferential flow is discussed.

  11. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development.

    Science.gov (United States)

    Ouyang, Wei; Wu, Yuyang; Hao, Zengchao; Zhang, Qi; Bu, Qingwei; Gao, Xiang

    2017-09-22

    Soil erosion exhibits special characteristics in the process of agricultural development. Understanding the combined impacts of land use and soil property changes on soil erosion, especially in the area under long-term agricultural cultivations, is vital to watershed agricultural and soil management. This study investigated the temporal-spatial patterns of the soil erosion based on a modified version of Universal Soil Loss Equation (USLE) and conducted a soil erosion contribution analysis. The land use data were interpreted from Landsat series images, and soil properties were obtained from field sampling, laboratory tests and SPAW (Soil-Plant-Atmosphere-Water) model calculations. Over a long period of agricultural development, the average erosion modulus decreased from 187.7tkm(-2)a(-1) in 1979 to 158.4tkm(-2)a(-1) in 2014. The land use types were transformed mainly in the reclamation of paddy fields and the shrinking of wetlands on a large scale. Most of the soils were converted to loam from silty or clay loam and the saturated hydraulic conductivity (Ks) of most soil types decreased by 1.11% to 43.6%. The rapidly increasing area of 49.8km(2) of paddy fields together with the moderate decrease of 14.0km(2) of forests, as well as Ks values explained 87.4% of the total variance in soil erosion. Although changes in soil physical and water characteristics indicated that soil erosion loads should have become higher, the upsurge in paddy fields played an important role in mitigating soil erosion in this study area. These results demonstrated that land use changes had more significant impacts than soil property changes on soil erosion. This study suggested that rational measures should be taken to extend paddy fields and control the dry land farming. These findings will benefit watershed agricultural targeting and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bacteria as transporters of phosphorus through soil

    DEFF Research Database (Denmark)

    Glæsner, N.; Bælum, Jacob; Jacobsen, C. S.

    2016-01-01

    The transport of phosphorus (P) from agricultural land has led to the eutrophication of surface waters worldwide, especially in areas with intensive animal production. In this research, we investigated the role of bacteria in the leaching of P through three agricultural soils with different......RNA genes cell−1. Leaching of bacteria was in the range of 2.5–4.5 × 105 cells ml−1 prior to application of slurry to the three soil textures. After slurry application, leaching increased to 1.1 × 106 cells ml−1 in the loamy sand, 4.9 × 106 cells ml−1 in the sandy loam and 5.0 × 106 cells ml−1 in the loam....... Based on the reported P content of soil bacteria, 0.3–1.8% of the total P leached was present in the bacterial biomass when no slurry was applied, whereas slurry application increased the leaching of P from the bacterial biomass to 3−7.9% of total P leached. Bacterial leaching was related...

  13. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1995-01-01

    Two experiments were set up to investigate the influence of soil organic matter on growth of arbuscular mycorrhizal (AM) hyphae and concurrent changes in soil inorganic P, organic P and phosphatase activity. A sandy loam soil was kept for 14 months under two regimes (outdoor where surplus precipi...... have influenced alkaline phosphatase excreted by other microorganisms, probably through competition for nutrients. Phosphatase activity was not correlated with the concentration of labile organic P in soil extracts.......Two experiments were set up to investigate the influence of soil organic matter on growth of arbuscular mycorrhizal (AM) hyphae and concurrent changes in soil inorganic P, organic P and phosphatase activity. A sandy loam soil was kept for 14 months under two regimes (outdoor where surplus...... precipitation leached through the soil, or indoor at constant moisture) with or without 9% (w/w) chopped wheat straw plus mineral N. Then the soils were partially sterilized and placed in two-compartment pots where mycorrhizal or non-mycorrhizal cucumber plants were grown in one root compartment (RC), and soils...

  14. Effective Saturated Hydraulic Conductivity for Representing Field-Scale Infiltration and Surface Soil Moisture in Heterogeneous Unsaturated Soils Subjected to Rainfall Events

    Directory of Open Access Journals (Sweden)

    Richa Ojha

    2017-02-01

    Full Text Available Spatial heterogeneity in soil properties has been a challenge for providing field-scale estimates of infiltration rates and surface soil moisture content over natural fields. In this study, we develop analytical expressions for effective saturated hydraulic conductivity for use with the Green-Ampt model to describe field-scale infiltration rates and evolution of surface soil moisture over unsaturated fields subjected to a rainfall event. The heterogeneity in soil properties is described by a log-normal distribution for surface saturated hydraulic conductivity. Comparisons between field-scale numerical and analytical simulation results for water movement in heterogeneous unsaturated soils show that the proposed expressions reproduce the evolution of surface soil moisture and infiltration rate with time. The analytical expressions hold promise for describing mean field infiltration rates and surface soil moisture evolution at field-scale over sandy loam and loamy sand soils.

  15. A discrete element model for soil-sweep interaction in three different soils

    DEFF Research Database (Denmark)

    Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs

    2013-01-01

    Soil–tool interactions are at the centre of many agricultural field operations, including slurry injection. Understanding of soil–tool interaction behaviours (soil cutting forces and soil disturbance) is important for designing high performance injection tools. A discrete element model was develo....... The calibrated model was validated using the soil disturbance characteristics measured in those three soils. The simulations agreed well with the measurements with relative errors below 10% in most cases....... were measured. The measured draught and vertical forces were used in calibrations of the most sensitive model parameter, particle stiffness. The calibrated particle stiffness was 0.75 × 103 N m−1 for the coarse sand, 2.75 × 103 N m−1 for the loamy sand, and 6 × 103 N m−1 for the sandy loam...

  16. Determining fate and transport parameters for nitroglycerine, 2,4-dinitrotoluine, and nitroguanidine in soils

    Science.gov (United States)

    Gosch, D. L.; Dontsova, K.; Chorover, J.; Ferré, T.; Taylor, S.

    2010-12-01

    During military operations, a small fraction of propellant mass is not consumed during firing and is deposited onto the ground surface (Jenkins et al., 2006). Soluble propellant constituents can be released from particulate residues into the environment. Propellant constituents of interest for this study are nitroglycerine (NG), 2,4-dinitrotoluine (2,4-DNT), 2,6-dinitrotoluine (2,6-DNT), and nitroguanidine (NQ). The goal of this work is to determine fate and transport parameters for these constituents in three soils that represent a range of geographic locations and soil properties. This supports a companion study that looks at dissolution of NG, 2,4-DNT, 2,6-DNT, and NQ from fired and unfired solid propellant formulations and their transport in soils. The three soils selected for the study are Catlin silt loam (fine-silty, mixed, mesic, superactive Oxyaquic Argiudoll), Plymouth sandy loam (mesic, coated Typic Quartzipsamment), and Sassafras loam (fine loamy, siliceous, mesic Typic Hapudult). Two of these soils, Plymouth sandy loam and Sassafras loam, were collected on military installations. Linear adsorption coefficients and transformation rates of propellant constituents were determined in batch kinetic experiments. Soils were mixed with propellant constituent solutions (2 mg L-1) at 4:1 solution/soil mass ratio and equilibrated for 0, 1, 2, 6, 12, 24, 48, and 120 hr at which time samples were centrifuged and supernatant solutions were analyzed for target compounds by high performance liquid chromatography (HPLC) using U.S. EPA Method 8330b for NG, 2,4-DNT, and 2,6-DNT, and Walsh (1989) method for NQ. Adsorption and transformation of propellant constituents were determined from the decrease in solution concentration of these compounds. It was determined that all studied compounds were subjected to sorption by the solid phase and degradation. Catlin soil, with finer texture and high organic matter content, influenced solution concentration of NG, 2,4-DNT, 2,6-DNT

  17. Hierarchical set of models to estimate soil thermal diffusivity

    Science.gov (United States)

    Arkhangelskaya, Tatiana; Lukyashchenko, Ksenia

    2016-04-01

    Soil thermal properties significantly affect the land-atmosphere heat exchange rates. Intra-soil heat fluxes depend both on temperature gradients and soil thermal conductivity. Soil temperature changes due to energy fluxes are determined by soil specific heat. Thermal diffusivity is equal to thermal conductivity divided by volumetric specific heat and reflects both the soil ability to transfer heat and its ability to change temperature when heat is supplied or withdrawn. The higher soil thermal diffusivity is, the thicker is the soil/ground layer in which diurnal and seasonal temperature fluctuations are registered and the smaller are the temperature fluctuations at the soil surface. Thermal diffusivity vs. moisture dependencies for loams, sands and clays of the East European Plain were obtained using the unsteady-state method. Thermal diffusivity of different soils differed greatly, and for a given soil it could vary by 2, 3 or even 5 times depending on soil moisture. The shapes of thermal diffusivity vs. moisture dependencies were different: peak curves were typical for sandy soils and sigmoid curves were typical for loamy and especially for compacted soils. The lowest thermal diffusivities and the smallest range of their variability with soil moisture were obtained for clays with high humus content. Hierarchical set of models will be presented, allowing an estimate of soil thermal diffusivity from available data on soil texture, moisture, bulk density and organic carbon. When developing these models the first step was to parameterize the experimental thermal diffusivity vs. moisture dependencies with a 4-parameter function; the next step was to obtain regression formulas to estimate the function parameters from available data on basic soil properties; the last step was to evaluate the accuracy of suggested models using independent data on soil thermal diffusivity. The simplest models were based on soil bulk density and organic carbon data and provided different

  18. Rapid Changes in Soil Carbon and Structural Properties Due to Stover Removal from No-Till Corn Plots

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

    2006-06-01

    Harvesting corn (Zea mays L.) stover for producing ethanol may be beneficial to palliate the dependence on fossil fuels and reduce CO2 emissions to the atmosphere, but stover harvesting may deplete soil organic carbon (SOC) and degrade soil structure. We investigated the impacts of variable rates of stover removal from no-till (NT) continuous corn systems on SOC and soil structural properties after 1 year of stover removal in three soils in Ohio: Rayne silt loam (fine-loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. This study also assessed relationships between SOC and soil structural properties as affected by stover management. Six stover treatments that consisted of removing 100, 75, 50, 25, and 0, and adding 100% of corn stover corresponding to 0 (T0), 1.25 (T1.25), 2.50 (T2.5), 3.75 (T3.75), 5.00 (T5), and 10.00 (T10) Mg haj1 of stover, respectively, were studied for their total SOC concentration, bulk density (>b), aggregate stability, and tensile strength (TS) of aggregates. Effects of stover removal on soil properties were rapid and significant in the 0- to 5-cm depth, although the magnitude of changes differed among soils after only 1 year of stover removal. The SOC concentration declined with increase in removal rates in silt loams but not in clay loam soils. It decreased by 39% at Coshocton and 30% at Charleston within 1 year of complete stover removal. At the same sites, macroaggregates contained 10% to 45% more SOC than microaggregates. Stover removal reduced 94.75-mm macroaggregates and increased microaggregates (P G 0.01). Mean weight diameter (MWD) and TS of aggregates in soils without stover (T0) were 1.7 and 3.3 times lower than those in soils with normal stover treatments (T5) across sites. The SOC concentration was negatively correlated with >b and positively with MWD and

  19. The Impact of Different Fertigation Practices and Initial Soil Salinity on Soil N and Salinity Transport

    Directory of Open Access Journals (Sweden)

    Zeng Wen-zhi

    2013-04-01

    Full Text Available For studying the impact of different fertigation practices and initial soil salinity on soil N and salinity transport, large Plexi-glass columns (18.2 cm in diameter and 100 cm long assembled from sandy loam (Inner Mongolia and saturation optimum design were employed to simulate a range of initial soil salinity conditions in soil profile and fertigation practices. (4~8 L solution with 20 g urea dissolved was applied evenly and slowly to the surface of each column. Nitrate and ammonium nitrogen in soil and discharge from the outlet were sampled and the electrical conductivity of soil and the chloride ion concentration of discharges were also measured. Findings from this study include: (1 high initial salinity in soil had a certain impact on the changes of water content of vertical soil section with the time being after large amount of water irrigation and it might increase the rate of infiltration; (2 the amount of irrigation water significantly affected the transport of soil salinity; (3 high soil salinity content was likely to promote the conversion of urea nitrogen to ammonium nitrogen and it might also play an active role in ammonium nitrogen accumulation in drainage; (4 There is a sound linear relation between the cumulative content of chloride ion and that of nitrate nitrogen in the drainage and soil profile (r2 = 0.8221 and 0.7442.

  20. Replication efficiency of soil-bound prions varies with soil type.

    Science.gov (United States)

    Saunders, Samuel E; Shikiya, Ronald A; Langenfeld, Katie; Bartelt-Hunt, Shannon L; Bartz, Jason C

    2011-06-01

    Prion sorption to soil is thought to play an important role in the transmission of scrapie and chronic wasting disease (CWD) via the environment. Sorption of PrP to soil and soil minerals is influenced by the strain and species of PrP(Sc) and by soil characteristics. However, the ability of soil-bound prions to convert PrP(c) to PrP(Sc) under these wide-ranging conditions remains poorly understood. We developed a semiquantitative protein misfolding cyclic amplification (PMCA) protocol to evaluate replication efficiency of soil-bound prions. Binding of the hyper (HY) strain of transmissible mink encephalopathy (TME) (hamster) prions to a silty clay loam soil yielded a greater-than-1-log decrease in PMCA replication efficiency with a corresponding 1.3-log reduction in titer. The increased binding of PrP(Sc) to soil over time corresponded with a decrease in PMCA replication efficiency. The PMCA efficiency of bound prions varied with soil type, where prions bound to clay and organic surfaces exhibited significantly lower replication efficiencies while prions bound to sand exhibited no apparent difference in replication efficiency compared to unbound controls. PMCA results from hamster and CWD agent-infected elk prions yielded similar findings. Given that PrP(Sc) adsorption affinity varies with soil type, the overall balance between prion adsorption affinity and replication efficiency for the dominant soil types of an area may be a significant determinant in the environmental transmission of prion diseases.

  1. Relações entre tamanho de sedimentos erodidos, velocidade da enxurrada, rugosidade superficial criada pelo preparo e tamanho de agregados em solo submetido a diferentes manejos Relationships between size of eroded sediments, runoff velocity, surface roughness created by tillage, and size of aggregates in a soil submmited to different managements

    Directory of Open Access Journals (Sweden)

    Leandro Bochi da Silva Volk

    2009-10-01

    aggregates. Considering that, this work was accomplished with the purpose of establishing quantitative relationships between the D50 index of the size distribution of the soil-eroded sediments, the runoff velocity, the SR index of the tillage-induced soil surface roughness, and the mean weight diameter (MWD of the soil aggregates, in a soil submitted to different forms of management. The study was developed in the field, at the Agricultural Experimentation Station of the Federal University of Rio Grande do Sul (EEA/UFRGS, in Eldorado do Sul (RS, Brazil, by applying simulated rainfall on an Ultisol with a sandy clay loam texture in the surface layer and 0.115 m m-1 average slope steepness. This soil had been put into agricultural use by different manners (continuous and discontinued cultivation, with different crop sequences (winter and summer, grass and legume crop species, planted in rows, using no-tillage, for a 7.5 year period (starting at the original condition of native pasture. Seven erosion tests were performed in the study, each one of them at 63.5 mm h-1 rainfall intensity and 1.5 h duration, using the rotating-boom rainfall simulator and 3.5 x 11.0 m experimental plots. The referred erosion tests were performed in the following soil surface physical conditions: (a non-mobilized soil, with complete and no cover by crop residues, and (b soil successively mobilized by the passage of a light disc-harrow (five times, one at a time, with no cover. It was observed that the crop sequences provided values of the MWD index significantly different each other, which reflected in significantly different values of the SR index and, as consequence, of the runoff velocity and the D50 index, with the sequences with none or less time of discontinued cultivation (in the last period of the research having produced the best results. In the non-mobilized, completely mulch-covered soil, with a firm and smooth surface, the mulch of crop residues was the dominant factor either in reducing

  2. Monitoring soil aggregates dynamics at a plot scale using multitemporal image texture and colour analysis

    Science.gov (United States)

    Ymeti, Irena; van der Werff, Harald; van der Meer, Freek; Jetten, Victor

    2016-10-01

    Monitoring of soil aggregate breakdown remains, even at the micro-plot scale, a challenge. Remote sensing has shown its potential to assess many different soil properties and is a fast and non-destructive method to investigate soil susceptibility to water erosion. We designed an outdoor experiment to monitor soil aggregates breakdown under natural rainfall at a micro-plot scale using a regular camera. Five soils susceptible to detachment (silty loam with various organic matter content, loam and sandy loam) were photographed once per day. We collected images and rainfall data from November 2014 until February 2015. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is used to observe the soil aggregates changes. In addition, a Gray Level Co-occurrence Matrix (GLCM) is used to extract the image texture entropy which reflects the process of soil aggregates breakdown. In our research the entropy calculated at 135 degrees along the direction of shadows gives best results. Our results show that both entropy and shadow index follow the wetting and drying cycles with a decrease due to a rain event. This decrease is small due to low rainfall intensity (< 2.5 mmh-1) for the entire period that the experiment ran. However, the biggest rain event of 20 mmday-1 resulted in a decrease in entropy, meaning that sufficient rainfall energy was present to trigger the soil aggregates break down. This research concludes that both entropy and shadow index obtained with a regular camera enable the monitoring of soil aggregate breakdown at a high spatial resolution.

  3. Distribution of Soil Organic Carbon and the Influencing Factors in An Oasis Farmland Area

    Directory of Open Access Journals (Sweden)

    WANG Ze

    2014-08-01

    Full Text Available The soil organic carbon(SOC of a typical oasis farmland in middle part of Manasi county of Xinjiang was used as the research ob原 ject. Using remote sensing and lab analysis techniques, influences of soil texture, terrain, land uses, and crop types on SOC content of farmland were studied. Results showed that the SOC distribution in farmland of Manasi was mainly determined by comprehensive natural environmental factors. The SOC content decreased along with the increasing soil depth. For soil textures, the SOC content from high to low was clay loam>powder loam>silty loam. Slope direction had significantly positive correlations with SOC contents at 0~30 cm and 30~60 cm, while altitude and SOC content at 60~100 cm were significantly positive correlation. The SOC content of orchard was the highest, and the uncultivated land was the lowest under different land-use patterns. For different crop planting systems, the order of SOC content was corn field >wine grapes field>cotton field, and the difference was significant.

  4. Soil compaction vulnerability at Organ Pipe Cactus National Monument, Arizona

    Science.gov (United States)

    Webb, Robert H.; Nussear, Kenneth E.; Carmichael, Shinji; Esque, Todd C.

    2014-01-01

    Compaction vulnerability of different types of soils by hikers and vehicles is poorly known, particularly for soils of arid and semiarid regions. Engineering analyses have long shown that poorly sorted soils (for example, sandy loams) compact to high densities, whereas well-sorted soils (for example, eolian sand) do not compact, and high gravel content may reduce compaction. Organ Pipe Cactus National Monument (ORPI) in southwestern Arizona, is affected greatly by illicit activities associated with the United States–Mexico border, and has many soils that resource managers consider to be highly vulnerable to compaction. Using geospatial soils data for ORPI, compaction vulnerability was estimated qualitatively based on the amount of gravel and the degree of sorting of sand and finer particles. To test this qualitative assessment, soil samples were collected from 48 sites across all soil map units, and undisturbed bulk densities were measured. A scoring system was used to create a vulnerability index for soils on the basis of particle-size sorting, soil properties derived from Proctor compaction analyses, and the field undisturbed bulk densities. The results of the laboratory analyses indicated that the qualitative assessments of soil compaction vulnerability underestimated the area of high vulnerability soils by 73 percent. The results showed that compaction vulnerability of desert soils, such as those at ORPI, can be quantified using laboratory tests and evaluated using geographic information system analyses, providing a management tool that managers potentially could use to inform decisions about activities that reduce this type of soil disruption in protected areas.

  5. Persistence and dissipation pathways of the antidepressant sertraline in agricultural soils.

    Science.gov (United States)

    Li, Hongxia; Sumarah, Mark W; Topp, Edward

    2013-05-01

    Sertraline is a widely-used antidepressant that is one of the selective serotonin reuptake inhibitors. It has been detected in biosolids and effluents from sewage treatment plants. Since sertraline can reach agriculture land through the application of municipal biosolids or reclaimed water, the persistence and dissipation pathways of (3)H-sertraline were determined in laboratory incubations using three agriculture soils varying in textures and properties. The total solvent extractable radioactivity decreased in all three soils with times to dissipate 50% of material (DT50) ranging from 48.1±3.5 (loam soil) to 84.5±13.8 (clay soil) days. Two hydroxylated sertraline transformation products were identified in all three soils by high performance liquid chromatography with time-of-flight mass spectrometry (HPLC-TOF-MS), but the accumulation did not exceed 10% of the initial parent concentration. The addition of liquid municipal biosolids to the loam soil had no effect on the rate of sertraline dissipation, or production of transformation products. In summary, sertraline was persistent in agricultural soils with major dissipation pathways including the production of non-extractable soil-bound residues, and accumulation of hydroxylated transformation products. The biologically active sertraline transformation product norsertraline was not detected in soil.

  6. Water and nutrient productivity in melon crop by fertigation under subsurface drip irrigation and mulching in contrasting soils

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio Câmara Monteiro

    2014-01-01

    Full Text Available Cropping intensification and technical, economic and environmental issues require efficient application of production factors to maintain the soil productive capacity and produce good quality fruits and vegetables. The production factors, water and NPK nutrients, are the most frequent limiting factors to higher melon yields. The objective of the present study was to identify the influence of subsurface drip irrigation and mulching in a protected environment on the water and NPK nutrients productivity in melon cropped in two soil types: sandy loam and clay. The melon crop cultivated under environmental conditions with underground drip irrigation at 0.20m depth, with mulching on sandy loam soil increased water and N, P2O5 and K use efficiency.

  7. Potential Air and Groundwater Pollution from Continuous High Land Application of Cheese Whey

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2007-01-01

    Full Text Available Experiments were performed, using eighteen 280 cm deep soil columns with 20 cm inside diameter, to determine the relative amounts of nitrogenous compounds leached and volatilized from soils receiving high application rates of cheese whey during two seasons. Three soils (loamy sand, sandy loam and sandy clay loam and two cheese whey application rates (560 and 840 kg-N haˉ1, that provided twice and three times the nitrogen requirement for corn crop, were investigated. The leaching and volatilization processes were monitored over a period of five months each season. The concentrations of nitrogenous compounds in the leachates obtained from three soils decreased with time and the soil type and whey application rate did not have any significant effect on the soil removal efficiency of these compounds. However, higher concentrations were observed in the second season of application. The decline in the ammonium nitrogen concentrations in the absence of plants and the initial increase in the nitrite nitrogen and nitrate nitrogen concentrations indicated that the nitrification process had taken place. The organic nitrogen losses in the leachates were 3.02-4.14 kg hˉ1 (0.54-0.74 % of the initial total nitrogen. The total inorganic (NH4, NO2, NO3 nitrogen losses in the leachates were 59-76 mg which is higher than the initial concentration of 55 mg indicating that the mineralization process had taken place. Volatilization of NH3 was independent of soil type and whey application rate. About 3.41 gˉ1haˉ1 (0.59 % of the initial total nitrogen of nitrogen was lost to the atmosphere through volatilization Nitrite and nitrate are highly soluble and easily leach out of soil solution. Therefore, continuous application of cheese whey at higher rates may result in ground water contamination and eventually becomes a threat to human and animal health.

  8. Degradation kinetics of forchlorfenuron in typical grapevine soils of India and its influence on specific soil enzyme activities.

    Science.gov (United States)

    Banerjee, Kaushik; Dasgupta, Soma; Oulkar, Dasharath P; Patil, Sangram H; Adsule, Pandurang G

    2008-05-01

    The rate of degradation of forchlorfenuron, a cytokinin-based plant growth regulator (PGR) was explored in typical grapevine soils of India with simultaneous evaluation of its effect on biochemical attributes of the test soils in terms of the activities of specific soil microbial enzymes. In all the test soils, namely clay, sandy-loam and silty-clay, the dissipation rate was faster at the beginning, which slowed down with time, indicating a non-linear pattern of degradation. Degradation in soils could best be explained by two-compartment 1st+1st order kinetics with half-life ranging between 4-10 days. The results suggest that organic matter might be playing a major role in influencing the rate of degradation of forchlorfenuron in soil. The rate of degradation in sandy-loam soil was fastest followed by clay and silty-clay soils, respectively. Comparison of the rate of degradation in natural against sterilized soils suggests that microbial degradation might be the major pathway of residue dissipation. Changes in soil enzyme activities as a consequence of forchlorfenuron treatment were studied for extra-cellular enzymes namely acid phosphatase, alkaline phosphatase and beta -glucosidase and intracellular enzyme-dehydrogenase. Although small changes in enzyme activities were observed, forchlorfenuron did not have any significant deleterious effect on the enzymatic activity of the test soils. Simple correlation studies between degradation percentage and individual enzyme activities did not establish any significant relationships. The pattern and change of enzyme activity was primarily the effect of the incubation period rather than the effect of forchlorfenuron itself.

  9. Genotoxic activity and inhibition of soil respiration by ptaquiloside, a bracken fern carcinogen

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Rasmussen, L.H.; Svendsen, Gitte Winkel

    2005-01-01

    Ptaquiloside (PTA) is a natural toxin produced by bracken (Pteridium aquilinum [L.] Kuhn). Assessment of PTA toxicity is needed because PTA deposited from bracken to soil may leach to surface and groundwater. Inhibition of soil respiration and genotoxic activity of PTA was determined by a soil...... microbial carbon transformation test and an umu test, respectively. In the carbon transformation test, sandy loam soil was incubated at five different initial concentrations of PTA for a period of 28 d, after which glucose was added and respiration measured for 12 consecutive hours. The tests were performed...... at 20 degrees C and Soil moisture content of approximately 15%. For soil material sampled in the autumn, initial PTA concentrations ranging from 0.008 to 40.6 mu g PTA/g dry soil were tested. From fitting of data by a sigmoidal function, a 10% effect dose (ED10) was estimated to 13 jig PTA/g dry soil...

  10. Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Henriksen, Kaj; Mortensen, Lars

    2010-01-01

    Intrinsic biodegradation of organic contaminants in the soil vadose zone depends on site-specific soil properties controlling biophysical and geochemical interactions within the soil pore space. In this study we evaluated the effect of soil texture and moisture conditions on aerobic biodegradation...... in a deep and highly layered vadose zone contaminated with petroleum hydrocarbons. Soil slurry experiments on benzene biodegradation were used for determining the relative potential for hydrocarbon biodegradation in 100 soil samples collected from 2-16 m below ground surface. Regardless of nutrient......-poor and calcareous subsoil conditions, the results showed a significant aerobic biodegradation potential. Average first-order rate constants (k1) ranged from 0 to 5 d-1 and varied significantly across soil types in the order sandy loam > fine sand > limestone. Within samples with high biodegradation potential, soil...

  11. Comparison of Urea-Derived N2O Emission from Soil and Soil-Plant System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that after urea fertilizer applied, the N2O emission from soil and soil-wheat system decreased exponentially with time, and its total amount was 0.34%~0.63% and 0.33%~0.58% of applied urea-N respectively, no significant difference being found between these two systems. The N2O emission had a very significant negative relationship (P = 0.01) with the biomass of wheat plant. A combined application of urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide could reduce the N2O emission by 50%~83% and 46%~74%, respectively, from soil and soil-wheat system. The N2O was mainly produced and emitted from soil, and the soil biochemical regulation, i.e., applying related inhibitors into soil could effectively diminish the urea derived N2O emission.

  12. Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Thevenot, M. [UMR 1229 Microbiologie et Geochimie des Sols, CMSE, INRA - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France)], E-mail: mathieu.thevenot@u-bourgogne.fr; Dousset, S. [UMR 5561 Biogeosciences, CNRS - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France); Rousseaux, S. [EA 4149 Laboratoire de Recherche en Vigne et Vin, Institut Universitaire de la Vigne et du Vin, rue Claude Ladrey, 21000 Dijon (France); Andreux, F. [UMR 1229 Microbiologie et Geochimie des Sols, CMSE, INRA - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France)

    2008-05-15

    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron + metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching. - The application of organic amendments increased diuron leaching through a sandy-loam soil, in contrast to a clay-loam soil.

  13. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, M.N.; Lærke, P.E.

    2011-01-01

    Nitrogen (N) uptake (kg ha-1) of field-grown potatoes was measured in 4.32 m2 lysimeters that were filled with coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  14. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  15. Two years of gaseous emissions from contrasting soils amended with organic and synthetic nitrogen fertilizers.

    Science.gov (United States)

    Pelster, D. E.; Chantigny, M. H.; Rochette, P.; Angers, D. A.; Rieux, C.; Vanasse, A.

    2012-04-01

    Animal manures are often used as a source of nitrogen (N) for agriculture; however impacts of amendment type on N2O production may vary. In this study, N2O emissions from two soil types with contrasting texture and carbon (C) content (a silty clay mixed frigid dystric eutrudept and a sandy loam mixed frigid typic dystrudept) were measured for two years under a cool, humid climate. Treatments consisted of a no N control (CTL), calcium ammonium nitrate (CAN), poultry manure (PM), liquid cattle manure (LCM), or liquid swine manure (LSM). The N sources were surface applied and immediately incorporated at 90 kg N ha-1 before seeding of spring wheat (Triticum aestivum L.). Leaching losses of N were also measured using zero-tension lysimeters located at approximately 0.35 m depth. Cumulative growing season N2O-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha-1 yr-1 and were slightly lower in CTL plots than in the fertilized plots (P = 0.067). The mean N2O emission factors ranged from 2.0 to 4.4% of added N with no difference among treatments. Emissions of N2O from the sandy loam soil ranged from 0.3 to 2.2 kg N2O-N ha-1 yr-1, with greatest emissions following PM application (P < 0.001). The N2O emission factor from sandy loam plots amended with PM was 1.7%, more than double that of the other treatments (0.3 to 0.9%), likely because of the high C content of the PM. On the silty clay the yield-based N2O emissions (g N2O-N kg-1 grain yield N) were similar between treatments; while on the sandy loam, they were greatest when amended with PM. Annual N leaching losses averaged 28.7 kg ha-1 for the silty clay and 19.6 kg ha-1 for the sandy loam and were similar for all amendment types suggesting that off-site N2O emissions will also be similar amongst treatments. Preliminary data indicate that overwinter N2O emissions from sandy loam plots were consistently greater when amended with pig slurry compared with unamended soils, and that these overwinter losses may exceed

  16. Effect of Cadmium Stress on Wheat Rhizosphere Environment in Three Soil Textures during Filling Stage%不同质地土壤中Cd胁迫对灌浆期小麦根际环境的影响

    Institute of Scientific and Technical Information of China (English)

    邵云; 王钰亮; 姜丽娜; 张黛静; 刘会娟; 赵院利; 李春喜

    2012-01-01

    concentration of cadmium was more than 60 mg/kg. Considering the soil texture, the growth of wheat root and the enzyme activities of soil in loam were better than in sandy soil and clay soil. Besides, total cadmium in three textures of soil was listed as loam>clay> sandy soil, available cadmium as sandy soil>clay>loam, cadmium in wheat root as sandy soil>loam >clay, and cadmium in wheat grain as sandy soil>loam>clay, which indicated that clay and loam had stronger adsorption ability to cadmium than sandy soil. And so, cadmium stress to wheat plantswas more alleviated in clay and loam for less transport of cadmium than in sandy soil. In conclusion, cadmium pollution for grown wheat was less in loam and clay than in sandy soil.

  17. Weeds of cereal stubble-fields on various soils in the Kielce region. P. III. Black, alluvial and rendzina soils

    Directory of Open Access Journals (Sweden)

    Maria Jędruszczak

    2013-12-01

    Full Text Available The weed flora growing stubble-fields area is determined by soil features. Weeds found in cereal stubble-fields on black soils formed from sands and loams, medium and haevy alluvial soils as well as brown and chernozem rendzina soils are presented in the paper. The 273 phytosociological records were worked out. They were collected from 87 stands situated in 76 localities of Kielce region. The results showed that species number and species composition were dependent on the soils (black. alluvial, rendzina. The existance of 118 (medium alluvial soil to 140 (brown rendzina soil weed species, including 73 common for all of the soils considered, was found there. Relatively high per cent (29-35 of them belonged to perennial weeds. From 22 (brown rendzina soil to 35 (heavy alluvial soil of species reached high constancy degrees (V-III. Stellaria media, Myosotis arvensis, Polygonum aviculare, Agropyron repens and Cirsium arvense predominated on the all of the soil examined. Among the weed flora registered, 25 species, recorded only on rendzina soils, were distinguishable for that soils.

  18. Risk assessment of linear alkylbenzene sulphonates, LAS, in agricultural soil revisited: Robust chronic toxicity tests for Folsomia candida (Collembola), Aporrectodea caliginosa (Oligochaeta) and Enchytraeus crypticus (Enchytraeidae)

    DEFF Research Database (Denmark)

    Krogh, P. H.; Lopez, C. V.; Cassani, G.

    2007-01-01

    To obtain robust data on the toxicity of LAS, tests with the collembolan Folsomia candida L., the oligochaetes Aporrectodea caliginosa Savigny (earthworm) and Enchytraeus crypticus Westheide and Graefe (enchytraeid) were performed in a sandy loam soil. Additionally limited tests with LAS spiked...

  19. Dynamic model for the transfer of CS-137 through the soil-grass-lamb foodchain

    DEFF Research Database (Denmark)

    Nielsen, S.P.

    1994-01-01

    A dynamic radioecological model for the transfer of radiocaesium through the soil-grass-lamb foodchain was constructed on the basis of field data collected in 1990–1993 from the Nordic countries: Denmark, Faroe Islands, Finland, Iceland, Norway and Sweden. The model assumes an initial soil...... contamination of one kilobecquerel of 137Cs per square metre and simulates the transfer to grass through root uptake in addition to direct contamination from resuspended activity. The model covers two different soil types: clay-loam and organic, with significantly different transfers of radiocaesium to grass...

  20. Extraction of an urease-active organo-complex from soil.

    Science.gov (United States)

    Burns, R. G.; El-Sayed, M. H.; Mclaren, A. D.

    1972-01-01

    Description of an extraction from a Dublin clay loam soil of a colloidal organic matter complex that is urease active and, by X-ray analysis, free of clays. Urease activity in the clay-free precipitates, as in the soil, was not destroyed by the activity of an added proteolytic enzyme, pronase. This is attributed to the circumstance that native soil urease resides in organic colloidal particles with pores large enough for water, urea, ammonia, and carbon dioxide to pass freely, but nevertheless small enough to exclude pronase.

  1. Soil microbial and physical properties and their relations along a steep copper gradient

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    2012-01-01

    years; from background concentrations up to 3837 mg Cu kg–1) on soil microbial enzyme activity, physical properties and resilience to compression. Soil samples and cores were taken from a fallow sandy loam field in Denmark. Microbial activity was quantified using fluorescein diacetate (FDA......) and dehydrogenase (DHA) assays. Water dispersible clay was measured on field moist and air dried samples. For the resilience assay, soil cores (drained to –100 hPa) were subjected to uniaxial confined compression (200 kPa) followed by wet–dry or freeze–thaw cycles. Microbial enzyme activity significantly decreased...

  2. Biotreatment of hydrocarbons from petroleum tank bottom sludges in soil slurries

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, M.D.; Neirotti, E.; Albornoz, C.; Mostazo, M.R.; Cozzo, M. [Administracion Nacional de Combustibles, Alcohol y Portland Pando, Canelones (Uruguay). Centro de Investigaciones Tecnologicas

    1996-11-01

    Biotreatment of oil wastes in aqueous slurries prepared with sandy loam soil and inoculated with selected soil cultures was evaluated. After 90 days, oil removal was 47%. Removal of each hydrocarbon class was 84% for saturates, 20% for aromatics, and 44% for asphaltenes. Resins increased by 68%. The use of a soil with a lower level of fine particles or minor organic matter content, or reinoculation with fresh culture did not improve oil elimination. Residual oil recovered from slurries was biotreated. Oil removal was 22%. Slurry-phase biotreatment showed less variability and faster oil removal than solid-phase biotreatment. (author)

  3. Geochemical background values for trace elements in arable soils developed from sedimentary rocks of glacial origin.

    Science.gov (United States)

    Czarnowska, K; Gworek, B

    1990-12-01

    The total content of trace elements was examined in some arable soils developed from boulder loam and silt formations of the Middle Poland and Baltic glaciations (62 profiles). Mean element concentrations calculated on the basis of chemical and statistical analyses were as follows: Mn = 322; Zn = 36; Cr = 30; Ni = 12.7; Pb = 10.3; Cu = 8.8; Co = 4.7; and Cd = 0.27 in mg kg(-1) of soil dry weight. The authors propose to accept these figures as the geochemical background values for soils derived from sedimentary rocks of glacial origin.

  4. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables

    OpenAIRE

    Patrick Grant Lawson; Diemo eDaum; Roman eCzauderna; Helmut eMeuser; Härtling, Joachim W.

    2015-01-01

    Iodine (I) biofortification of vegetables by means of soil and foliar applications was investigated in field experiments on a sandy loam soil. Supply of iodine to the soil in trial plots fertilized with potassium iodide (KI) and potassium iodate directly before planting (0, 1.0, 2.5, 7.5, and 15 kg I ha-1) increased the iodine concentration in the edible plant parts. The highest iodine accumulation levels were observed in the first growing season: In butterhead lettuce and kohlrabi the desire...

  5. Groundwater contamination by azinphos methyl in the northern Patagonic Region (Argentina).

    Science.gov (United States)

    Loewy, M; Kirs, V; Carvajal, G; Venturino, A; Pechen de D'Angelo, A M

    1999-01-26

    Approximately 30 groundwater monitoring wells, under a fruit production field, in the Valley of the Neuquen River (Northern Patagonic, Argentina), to which different pesticides have been applied, were sampled eleven times between October 1995 and March 1997. Azinphos methyl was the main pesticide applied and it was detected with the highest frequency in groundwater wells during the period of intensive pesticide application in the Southern Hemisphere. Dimethoate, methidathion, fosmet, cipermethrin, carbaryl, propoxur, carbofuran, benomyl and carbendazim were also detected with lower frequency. The characteristic of the area under study was alkaline soil, with an organic matter content below 2.5% and texture sandy clay loam. The half life of azinphos methyl in soils was 166.2 days in the sun light for horizon A and 194.15 in the dark for horizon B. Leaching of azinphos methyl through the different soil horizons was minimum. On the basis of our lysimeter laboratory data, in which most of the pesticide was adsorbed into the soil column and only small quantities leachate, we inferred that the impact of azinphos methyl on groundwater would be minimal. However, field data indicates that there is a persistence of azinphos methyl in groundwater during the application season.

  6. Vapor Intrusion from Entrapped NAPL Sources and Groundwater Plumes: Process Understanding and Improved Modeling Tools for Pathway Assessment

    Science.gov (United States)

    2014-07-01

    airflow was introduced into the tank through the left gravel well screen and exited the tank at the right gravel well screen. A bentonite clay cap...screens and evenly distribute the air flow. The top of the tank was sealed with bentonite clay and an aluminum plate to ensure that the tank was...into a building ....149 Figure 5.52: Effect of infiltration at 1 mm/hr for 24 hours on vapor signals in sandy clay loam scenario

  7. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data

    Science.gov (United States)

    Gu, Y.; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, J.F.; Verdin, J.P.

    2008-01-01

    The evaluation of the relationship between satellite-derived vegetation indices (normalized difference vegetation index and normalized difference water index) and soil moisture improves our understanding of how these indices respond to soil moisture fluctuations. Soil moisture deficits are ultimately tied to drought stress on plants. The diverse terrain and climate of Oklahoma, the extensive soil moisture network of the Oklahoma Mesonet, and satellite-derived indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) provided an opportunity to study correlations between soil moisture and vegetation indices over the 2002-2006 growing seasons. Results showed that the correlation between both indices and the fractional water index (FWI) was highly dependent on land cover heterogeneity and soil type. Sites surrounded by relatively homogeneous vegetation cover with silt loam soils had the highest correlation between the FWI and both vegetation-related indices (r???0.73), while sites with heterogeneous vegetation cover and loam soils had the lowest correlation (r???0.22). Copyright 2008 by the American Geophysical Union.

  8. Impact of paper mill wastewater on soil properties and crop yield through lysimeter studies.

    Science.gov (United States)

    Singh, P K; Ladwani, K; Ladwani, K; Deshbhratar, P B; Ramteke, D S

    2013-01-01

    Paper and pulp industries produce large quantities of wastewater which can have adverse effects on the receiving water systems. In the present study lysimeters were used and filled with different soils replicating natural soil horizons and provided with a leachate collection system. The physico-chemical characteristics of the soil in each lysimeter and the quality of wastewater before leaching were assessed. Treated wastewater was evaluated for crop irrigation, and was categorized according to the irrigation water class 'Increasing Problem to Severe Problem' with respect to salinity and specific ion toxicity. Sandy loam soils showed 96% chemical oxygen demand (COD) removal while clay loam soils removed 99% of COD, and the colour removal in both the cases was found to be 100%. Application of wastewater resulted in an increase of pH value, ranging from 6.2-7.6; the electrical conductivity (ECe) of saturated extracts was found to be 0.6-1.7 dS m(-1), and exchangeable sodium percentage (ESP) ranged from 7.8-11.1% in soils. Similarly, an increase in the organic carbon, available nitrogen, phosphorus and potash content of soils was observed when irrigated with wastewater. Wastewater irrigation showed increased grain and straw yield of jowar, wheat and moong. These results permit successful utilization of pulp and paper mill wastewater for crop production without damaging the soils.

  9. Performance Characteristics of Agricultural Field Machineries In South- East Nigeria

    Directory of Open Access Journals (Sweden)

    Oduma O

    2017-06-01

    theoretical field capacities range of 0.759 to 0.902ha/hr and 0.758 to1.039ha/hr respectively; and the highest pulverizing efficiency was achieved on the clay-loam soil with a Massey Ferguson tractor. The planter recorded 80.63 to 89.37 field efficiency,1.012 to1.481ha/hr effective field capacity and theoretical field capacity of 1.22 to 1.716ha/hr. Ploughing gave the highest average fuel consumption rate of 22.72L/ha (8.89L/hr, followed by harrowing with average consumption of 19.57L/ha (8.04L/hr, ridging recorded 19.42L/ha (7.97L/hr, rotovator had 16.79L/ha (7.19L/hr and least was planter with average consumption rate of 15.10L/ha (6.26L/hr. More so, all implements recorded highest tyre slippage in sandy-clay soil, followed by loamy-sandy and the least slippage was recorded in the clay-loam soil. Results finally revealed that the highest draft force (10.8kN/m was obtained by the plough, followed by the harrow and ridger with equal draft force values of 10.5kN/m respectively and least draft was recorded by the rotovator (5.1kN/m.

  10. Contribution of ants in modifying of soil acidity and particle size distribution

    Science.gov (United States)

    Morgun, Alexandra; Golichenkov, Maxim

    2015-04-01

    Being a natural body, formed by the influence of biota on the upper layers of the Earth's crust, the soil is the most striking example of biogenic-abiogenic interactions in the biosphere. Invertebrates (especially ants that build soil nests) are important agents that change soil properties in well developed terrestrial ecosystems. Impact of soil microorganisms on soil properties is particularly described in numerous literature and concerns mainly chemical properties and general indicators of soil biological activity. Influence of ants (as representatives of the soil mesofauna) mostly appears as mechanical movement of soil particles and aggregates, and chemical effects caused by concentration of organic matter within the ant's nest. The aim of this research was to evaluate the effect of ants on physical and chemical soil attributes such as particle size distribution and soil acidity. The samples were taken from aerial parts of Lasius niger nests, selected on different elements of the relief (summit position, slope, terrace and floodplain) in the Arkhangelsk region (north of the European part of Russia) and compared with the specimens of the upper horizons of the reference soils. Particle size distribution was determined by laser diffraction method using laser diffraction particle size analyzer «Analysette 22 comfort» (FRITSCH, Germany). The acidity (pH) was determined by potentiometry in water suspension. Particle size distribution of the samples from the nests is more variable as compared to the control samples. For example, the content of 5-10 μm fraction ranges from 9% to 12% in reference soils, while in the anthill samples the variation is from 8% to 15%. Similarly, for 50-250 μm fraction - it ranges from 15% to 18% in reference soils, whereas in anthills - from 6% to 29%. The results of particle size analysis showed that the reference sample on the terrace has silty loam texture and nests soil L. niger are medium loam. The reference soil on the slope is

  11. Relationships between soil moisture-holding properties and soil texture, organic matter content, and bulk density

    Science.gov (United States)

    Riley, H. C. F.

    1981-01-01

    Specimens from the surface horizon and the subsoil of 62 soil horizons in Hedmark and Oppland were investigated to study how the mechanical composition of the soil, the organic matter content and the bulk density affect their porosity and air capacity and their total and available water content. Most of the specimens belonged to the loam group, and a smaller number was from sandy and silty types of soil. Equations were established to make it possible to calculate the water retention curves and the amount of available water from the above mentioned parameters. As a rule, errors derived from the equations are no greater than those which are found in similar research in other countries.

  12. Mineralization of 14C-ring Labelled 2,4-D in Egyptian Soils Under Aerobic and Anaerobic Conditions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Obiectives To study the mineralization of 2,4-D in clay and clay loam Egyptian soils under subtropical conditions over a period of 90 d. Methods Using 14C-ring labelled pesticide, laboratory studies under aerobic and anaerobic conditions were conducted. 14C-activity in solutions was directly determined by liquid scintillation counting. Unextractable soil residues were determined by combustion.The nature of methanolic 14C-residues was determined by thin layer and high performance liquid chromatographic analysis. Results Under aerobic conditions 10%-14% of applied dose was mineralized during 90 d irrespective of soil type. The soil extractable pesticide residues decreased with time and the bound residues gradually increased. The highest binding capacity of about 26%-29% was observed in clay soil under aerobic conditions after 90 d. A good balance sheet was obtained and the percentage recovery was generally between 91% and 100%. Conclusion The mineralization of 2,4-D in clay soil was higher than that in clay loam soil under anaerobic conditions.Under aerobic conditions, the soil type had no influence on mineralizaion capacity of 2,4-D during 90 d. The soil binding increased with time whereby the extractable 14C-residues simultaneously decreased.Chromatographic analysis of the methanol extractable 14C-residues of soils revealed the presence of 2,4-D as a main product together with 2,4-dichlorophenol.

  13. Study on the Characteristics of Soil Moisture of Artificial Robinia pseudoacacia Forest Land in Different Latitudinal Zones of Northern Shaanxi

    Institute of Scientific and Technical Information of China (English)

    Yu; ZHENG; Xia; ZHANG; Xiangwen; XIN; Sha; XUE

    2014-01-01

    This article studies the soil moisture conditions of 30 years artificial Robinia pseudoacacia in the north of Shaanxi under different climate conditions in order to explore the relationship between soil moisture and impact factor of Robinia pseudoacacia in this area,and variation characteristics of soil moisture in the Loess Plateau region. The results show that soil moisture content decreases with increase of soil depth, and in 40- 50 cm depth the jump point of moisture reduction appears significantly. Soil moisture was lower than the growth critical moisture in 5 samples to the north of Chunhua,and has different degrees of deficit. Soil moisture deficit degree was more than 50% in sandy loam and light loam soils such as Yulin,Shenmu and Suide. With the increasing of latitude,both of soil accumulative storage and net rainfall tends to decrease,but the relationship between them is significant correlation,indicating that that climate conditions are the major factors causing significant difference of soil moisture.

  14. Chlortetracycline and tylosin runoff from soils treated with antimicrobial containing manure.

    Science.gov (United States)

    Hoese, A; Clay, S A; Clay, D E; Oswald, J; Trooien, T; Thaler, R; Carlson, C G

    2009-05-01

    This study assessed the runoff potential of tylosin and chlortetracycline (CTC) from soils treated with manure from swine fed rations containing the highest labeled rate of each chemical. Slurry manures from the swine contained either CTC at 108 microg/g or tylosin at 0.3 microg/g. These manures were surface applied to clay loam, silty clay loam, and silt loam soils at a rate of 0.22 Mg/ha. In one trial, tylosin was applied directly to the soil surface to examine runoff potential of water and chemical when manure was not present. Water was applied using a sprinkler infiltrometer 24-hr after manure application with runoff collected incrementally every 5 min for about 45 min. A biofilm crust formed on all manure-treated surfaces and infiltration was impeded with > 70% of the applied water collected as runoff. The total amount of CTC collected ranged from 0.9 to 3.5% of the amount applied whereas tylosin ranged from 8.4 to 12%. These data indicate that if surface-applied manure contains antimicrobials, runoff could lead to offsite contamination.

  15. Abundance of plankton population densities in relation to bottom soil textural types in aquaculture ponds

    Directory of Open Access Journals (Sweden)

    F. Siddika

    2012-06-01

    Full Text Available Plankton is an important food item of fishes and indicator for the productivity of a water body. The present study was conducted to evaluate the effects of bottom soil textural conditions on abundance of plankton in aquaculture pond. The experiment was carried out using three treatments, i.e., ponds bottom with sandy loam (T1, with loam (T2 and with clay loam (T3. The ranges of water quality parameters analyzed were suitable for the growth of plankton during the experimental period. Similarly, chemical properties of soil were also within suitable ranges and every parameter showed higher ranges in T2. A total 20 genera of phytoplankton were recorded belonged to Chlorophyceae (7, Cyanophyceae (5, Bacillariophyceae (5, Euglenophyceae (2 and Dinophyceae (1. On the other hand, total 13 genera of zooplankton were recorded belonged to Crustacea (7 and Rotifera (6. The highest ranges of phytoplankton and zooplankton densities were found in T2 where low to medium-type bloom was observed during the study period. Consequently, the mean abundance of plankton (phytoplankton and zooplankton density was significantly highest in T2. The highest abundance of plankton in the T2 indicated that pond bottom with loamy soil is suitable for the growth and production of plankton in aquaculture ponds.

  16. Abundance of macrozoobenthos in relation to bottom soil textural types and water depth In aquaculture ponds

    Directory of Open Access Journals (Sweden)

    N. Nupur

    2013-12-01

    Full Text Available The present experiment was conducted to evaluate the effects of bottom soil textural classes and different water depths on abundance of macrozoobenthos in aquaculture ponds. Three treatments, i.e., ponds bottom with sandy loam (T1, with loam (TS2 and with clay loam (T3 were considered in this experiment. Samples were collected from three different depths (60.96 cm, 106.68 cm and 152.40 cm with three replications. The ranges of water quality parameters were suitable for the growth of macrozoobenthos during the experimental period. Similarly, chemical properties of soil were also within suitable ranges and every parameter showed comparatively higher ranges in T2. Eight genera were recorded belonging to major groups of Chironomidae, Oligochaeta, Mollusca and Ceratoponogonidae. The highest population densities of Oligochaeta (1200±4.25 per m2, Chironomidae (1422±4.88 per m2, Ceratopogonidae (399±1.56 per m2 and Mollusca (977±2.24 per m2 were found in T2. The population densities of macrozoobenthos showed fortnightly variations in all the treatments. Among the three depths, significantly highest densities of macrozoobenthos were recorded in 106.68 cm in every treatment. The mean abundance of macrozoobenthos was significantly highest in T2. The present study indicates that loamy soil pond bottom along with water depth 106.68 cm is suitable for the growth and production of macrozoobenthos in aquaculture ponds.

  17. Biochar and biological carbon cycling in temperate soils

    Science.gov (United States)

    McCormack, S. A.; Vanbergen, A. J.; Bardgett, R. D.; Hopkins, D. W.; Ostle, N.

    2012-04-01

    Production of biochar, the recalcitrant residue formed by pyrolysis of plant matter, is suggested as a means of increasing storage of stable carbon (C) in the soil (1). Biochar has also been shown to act as a soil conditioner, increasing the productivity of certain crops by reducing nutrient leaching and improving soil water-holding capacity. However, the response of soil carbon pools to biochar addition is not yet well understood. Studies have shown that biochar has highly variable effects on microbial C cycling and thus on soil C storage (2,3,4). This discrepancy may be partially explained by the response of soil invertebrates, which occupy higher trophic levels and regulate microbial activity. This research aims to understand the role of soil invertebrates (i.e. Collembola and nematode worms) in biochar-mediated changes to soil C dynamics across a range of plant-soil communities. An open-air, pot-based mesocosm experiment was established in May, 2011 at the Centre for Ecology and Hydrology, Edinburgh. Three treatments were included in a fully-factorial design: biochar (presence [2 % w/w] or absence), soil type (arable sandy, arable sandy loam, grassland sandy loam), and vegetation type (Hordeum vulgare, Lolium perenne, unvegetated). Monitored parameters include: invertebrate and microbial species composition, soil C fluxes (CO2 and trace gas evolution, leachate C content, primary productivity and soil C content), and soil conditions (pH, moisture content and water-holding capacity). Preliminary results indicate that biochar-induced changes to soil invertebrate communities and processes are affected by pre-existing soil characteristics, and that soil texture in particular may be an important determinant of soil response to biochar addition. 1. Lehmann, 2007. A handful of carbon. Nature 447, 143-144. 2. Liang et al., 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 41, 206-213. 3. Van Zwieten et al., 2010. Influence of

  18. Plant uptake and geochemical phase distribution of Cd, Pb and Zn from soils after application of baghouse dust from the electric arc furnace production of steel

    Energy Technology Data Exchange (ETDEWEB)

    Rule, J.H. [Old Dominion Univ., Norfolk, VA (United States). Dept. of Chemistry and Biochemistry; Adriano, D.C. [Georgia Univ., Savannah River Ecology Laboratory, Aiken (United States)

    1997-12-31

    The objectives of this study are to determine the uptake of Cd, Pb and Zn from two soils (silt loam and sandy loam) by the common dandelion, Taraxacum officinale Weber, and ragweed, Ambrosia artemisiifolia L., after application of varying rates of flue dust, to determine the geochemical phase distribution of Cd, Pb and Zn of treated soils, to examine the effect of pH on the phase distribution and plant uptake and to measure the correlation between plant uptake and metals in the geochemical phases. Carbonate, including metal hydroxides, was the major geochemical phase for the metals in the flue dust and treated soils. Especially for the plants grown on the silt loam, yield decreased dramatically as flue dust treatment rate increased and a significant pH effect was observed. Plant uptake of the metals increased with increasing treatment level but the pattern of uptake varied with the element and plant species. Concentrations of the metals were generally greater in plant roots than leaves or stems. Due to very low biomass at high treatment levels, neither species seems to have potential for stabilization of highly contaminated soils but further studies are warranted on the use of the dandelion as a phyto-monitor. Typically, there was a significant correlation between plant concentrations and levels in all soil geochemical phases for all metals. The results of this study confirm the utility of selective sequential chemical extractants in predicting plant uptake of trace metals from contaminated soils

  19. Minimum quantity of urban refuse compost affecting physical and chemical soil properties

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi

    Full Text Available The increasing production of urban waste requires urgent responses because of various environmental problems that arise when urban refuse is stored in landfills or incinerated. Recycling of domestic waste and composting of its organic fraction has been indicated as a possible disposal solution. A three-year experiment was conducted to quantify the minimum rate of urban refuse compost (URC addition able to improve some physical and chemical soil properties at the lowest cost and environmental impact. URC was added to a silty clay soil and to a sandy loam soil 0%, 3%, 6%, 9% rate (w/w. Samplings were made 12, 24 and 36 months after URC application. To study the only effect of compost on soil due to its interaction with the soil matrix, each soil-compost mixture was divided into three boxes and kept outdoors weed free. After 12 months, 3% URC resulted the minimum quantity able to ameliorate several soil properties. In silty clay soil this rate significantly ameliorated microaggregate stability and hydraulic conductivity, but negative effects were observed on electrical conductivity. After 24 months, 3% rate significantly increased soil organic matter content. In the sandy loam soil, after 12 months, 3% rate of URC determined a positive effect on organic matter and cone resistance in dry soil condition. Electrical conductivity increased at 3% URC addition. The minimum URC quantity affecting hydraulic conductivity and plastic limit was 6%, and 9% for the liquid limit. Under these experimental conditions, the lowest rate (3% of URC incorporation to soils appears to be the minimum quantity able to improve most of the soil properties influencing fertility. What the results show is that, to achieve sustainability of urban refuse compost application to agricultural soil, further research is needed to investigate soil property changes in the range between 0% and 3%.

  20. Minimum quantity of urban refuse compost affecting physical and chemical soil properties

    Directory of Open Access Journals (Sweden)

    Andrea Rocchini

    2011-02-01

    Full Text Available The increasing production of urban waste requires urgent responses because of various environmental problems that arise when urban refuse is stored in landfills or incinerated. Recycling of domestic waste and composting of its organic fraction has been indicated as a possible disposal solution. A three-year experiment was conducted to quantify the minimum rate of urban refuse compost (URC addition able to improve some physical and chemical soil properties at the lowest cost and environmental impact. URC was added to a silty clay soil and to a sandy loam soil 0%, 3%, 6%, 9% rate (w/w. Samplings were made 12, 24 and 36 months after URC application. To study the only effect of compost on soil due to its interaction with the soil matrix, each soil-compost mixture was divided into three boxes and kept outdoors weed free. After 12 months, 3% URC resulted the minimum quantity able to ameliorate several soil properties. In silty clay soil this rate significantly ameliorated microaggregate stability and hydraulic conductivity, but negative effects were observed on electrical conductivity. After 24 months, 3% rate significantly increased soil organic matter content. In the sandy loam soil, after 12 months, 3% rate of URC determined a positive effect on organic matter and cone resistance in dry soil condition. Electrical conductivity increased at 3% URC addition. The minimum URC quantity affecting hydraulic conductivity and plastic limit was 6%, and 9% for the liquid limit. Under these experimental conditions, the lowest rate (3% of URC incorporation to soils appears to be the minimum quantity able to improve most of the soil properties influencing fertility. What the results show is that, to achieve sustainability of urban refuse compost application to agricultural soil, further research is needed to investigate soil property changes in the range between 0% and 3%.

  1. Fungal communities associated with degradation of polyester polyurethane in soil.

    Science.gov (United States)

    Cosgrove, Lee; McGeechan, Paula L; Robson, Geoff D; Handley, Pauline S

    2007-09-01

    Soil fungal communities involved in the biodegradation of polyester polyurethane (PU) were investigated. PU coupons were buried in two sandy loam soils with different levels of organic carbon: one was acidic (pH 5.5), and the other was more neutral (pH 6.7). After 5 months of burial, the fungal communities on the surface of the PU were compared with the native soil communities using culture-based and molecular techniques. Putative PU-degrading fungi were common in both soils, as soil, and only a few species in the PU communities were detectable in the soil, indicating that only a small subset of the soil fungal communities colonized the PU. Soil type influenced the composition of the PU fungal communities. Geomyces pannorum and a Phoma sp. were the dominant species recovered by culturing from the PU buried in the acidic and neutral soils, respectively. Both fungi degraded Impranil and represented >80% of cultivable colonies from each plastic. However, PU was highly susceptible to degradation in both soils, losing up to 95% of its tensile strength. Therefore, different fungi are associated with PU degradation in different soils but the physical process is independent of soil type.

  2. Prediction of Nitrogen Responses of Corn by Soil Nitrogen Mineralization Indicators

    Directory of Open Access Journals (Sweden)

    R.R. Simard

    2001-01-01

    Full Text Available Soil nitrogen mineralization potential (Nmin has to be spatially quantified to enable farmers to vary N fertilizer rates, optimize crop yields, and minimize N transfer from soils to the environment. The study objectives were to assess the spatial variability in soil Nmin potential based on clay and organic matter (OM contents and the impact of grouping soils using these criteria on corn grain (Zea mays L. yield, N uptake response curves to N fertilizer, and soil residual N. Four indicators were used: OM content and three equations involving OM and clay content. The study was conducted on a 15-ha field near Montreal, Quebec, Canada. In the spring 2000, soil samples (n = 150 were collected on a 30- x 30-m grid and six rates of N fertilizer (0 to 250 kg N ha-1 were applied. Kriged maps of particle size showed areas of clay, clay loam, and fine sandy loam soils. The Nmin indicators were spatially structured but soil nitrate (NO3– was not. The N fertilizer rate to reach maximum grain yield (Nmax, as estimated by a quadratic model, varied among textural classes and Nmin indicators, and ranged from 159 to 250 kg N ha-1. The proportion of variability (R2 and the standard error of the estimate (SE varied among textural groups and Nmin indicators. The R2 ranged from 0.53 to 0.91 and the SE from 0.13 to 1.62. Corn grain N uptake was significantly affected by N fertilizer and the pattern of response differed with soil texture. For the 50 kg N ha-1 rate, the apparent Nmin potential (ANM was significantly larger in the clay loam (122 kg ha-1 than in the fine sandy loam (80 kg ha-1 or clay (64 kg ha-1 soils. The fall soil residual N was not affected by N fertlizer inputs. Textural classes can be used to predict Nmax. The Nmin indicators may also assist the variable rate N fertilizer inputs for corn production.

  3. Acid-activated biochar increased sulfamethazine retention in soils.

    Science.gov (United States)

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils.

  4. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Thinh Nguyen Van

    2016-11-01

    Full Text Available Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As, chromium (Cr, cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg−1. Manganese and iron concentrations averaged 811 µg·g−1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  5. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam.

    Science.gov (United States)

    Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi

    2016-11-05

    Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg(-1). Manganese and iron concentrations averaged 811 µg·g(-1) and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  6. Soil Moisture Sensing via Swept Frequency Based Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Greg A. Holt

    2012-01-01

    SFI instrument over a range of soil types, at varying levels of moisture. This testing protocol was developed to provide the best possible comparison between SFI to TDT than would otherwise be possible by using soil moisture as the bench mark, due to variations in soil density between soil water content levels which are known to impact the calibration between TDR’s estimate of soil water content from the measured propagation delay which is converted to an apparent permittivity measurement. This experimental decision, to compare propagation delay of TDT to FDT, effectively removes the errors due to variations in packing density from the evaluation and provides a direct comparison between the SFI instrument and the time domain technique of TDT. The tests utilized three soils (a sand, an Acuff loam and an Olton clay-loam that were packed to varying bulk densities and prepared to provide a range of water contents and electrical conductivities by which to compare the performance of the SFI technology to TDT measurements of propagation delay. For each sample tested, the SFI instrument and the TDT both performed the measurements on the exact same probe, thereby both instruments were measuring the exact same soil/soil-probe response to ensure the most accurate means to compare the SFI instrument to a high-end TDT instrument. Test results provided an estimated instrumental accuracy for the SFI of +/−0.98% of full scale, RMSE basis, for the precision delay lines and +/−1.32% when the SFI was evaluated on loam and clay loam soils, in comparison to TDT as the bench-mark. Results from both experiments provide evidence that the low-cost SFI approach is a viable alternative to conventional TDR/TDT for high accuracy applications.

  7. Comparison of glyphosate and Roundup preparations influence on inorganic pyrophosphatase activity and available phosphorus content in sandy loam

    Directory of Open Access Journals (Sweden)

    Maciej Płatkowski

    2016-03-01

    Full Text Available The aim of the study was to compare the effect of glyphosate and its formulations: Roundup 360 SL (containing isopropylamine salt of glyphosate and polyethoxylated tallow amine and Roundup TransEnergy 450 SL (containing potassium salt of glyphosate and polyethoxylated ether amine on inorganic pyrophosphatase activity and available phosphorus content in soil. The experiment was carried out on loamy sand with organic carbon content 10.9 g·kg-1. Glyphosate and its salts amounts added to soil were: 0 (control, 1, 10, 100 mg·kg-1. Samples were adjusted to 60% maximum water capacity and they were incubated in temperature 20°C. Inorganic pyrophosphatase and available phosphorus content were measured on days 1, 7, 14, 28 and 56. The obtained results show that the observed effect of glyphosate and its formulations depended on the dosage and day of experiment. The largest changes of the measured parameters were observed after application of Roundup 360 SL – formulation containing glyphosate isopro­pylamine salt and polyethoxylated tallow amine. The positive statistically significant correlation between inorganic pyrophosphatase activity and available phosphorus content was reported only in soil treated with Roundup 360 SL.

  8. Comparison of biodegradation of low-weight hydroentangled raw cotton nonwoven fabric and that of commonly used disposable nonwoven fabrics in the aerobic Captina silt loam soil

    Science.gov (United States)

    The increasing use of disposable nonwovens made of petroleum-based materials generates a large amount of non-biodegradable, solid waste in the environment. As an effort to enhance the usage of biodegradable cotton in nonwovens, this study analyzed the biodegradability of mechanically pre-cleaned gr...

  9. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    Science.gov (United States)

    2006-05-01

    Carlton T. Phillips Jan E. Kolakowski Carl W. Kurnas RESEARCH AND TECHNOLOGY DIRECTORATE May 2006 20060828026 Approved for public release; distribution is...pp 2365-2370. Haley, M.V.; Checkai, R.T.; Kurnas , C.W.; Wentsel, R.S.; Nwanguma, R.O.; Sadusky, M. 1993. Toxicity determination of explosive...M.; Phillips, C.T.; Kolakowski, J.E.; Kurnas C.W.; Sunahara, G.I. 2003. Survival and reproduction of Enchytraeus crypticus (Oligochaeta

  10. Amending soils with sediment material from constructed wetlands increases phosphorus sorption

    Science.gov (United States)

    Laakso, Johanna; Uusitalo, Risto; Leppänen, Janette; Yli-Halla, Markku

    2017-04-01

    Sediment of agricultural constructed wetlands (CWs) is comprised of matter eroded from surrounding fields. This material is rich in aluminium (Al) and iron (Fe) (hydr)oxides that have a high affinity for phosphorus (P). Sediment material returned to fields could therefore affect soil P retention characteristics. We incubated a clay soil with a high soil test P (STP, 24 mg PAc l-1; extracted with pH 4.65 ammonium acetate buffer) and a sandy loam with excessive STP (210 mg PAc l-1) for three weeks with increasing amounts of CW sediment: 0, 2, 5, 10 and 50% of the sample volume. After incubation, the soil-sediment mixtures were studied with the quantity/intensity (Q/I) technique, using chemical extractions and by exposing the mixtures to simulated rainfall. Sorption affinity for P regularly increased with increasing the sediment share of the mixtures, the 0% sediment content having the lowest and 50% sediment content the highest P sorption. With 0% sediment application, the value of equilibrium P concentration (EPC0) determined by Q/I technique, was 0.69 and 44.3 mg l-1 for clay soil and sandy loam, respectively. With 2-5% sediment amendment, the EPC0 decreased 13-36% for clay soil and 13-54% for sandy loam. The 50% sediment mixtures had EPC0 of 0.05 mg l-1 for both soils. At a practically feasible sediment addition rate of 5%, dissolved reactive P (DRP) in percolating water from simulated rainfall decreased by 55% in the clay soil and 54% in sandy loam (p<0.001 in both cases). Particulate-P (PP) also showed a decreasing trend with increasing sediment addition rate. Upon prolonged simulated rainfall, the decreasing effect of sediment on DRP and PP declined somewhat. The effects of sediment addition can be attributed partly to increased salt concentrations in the sediment, which have a short-term effect on P mobilisation, but mostly to increased concentrations of Al and Fe (hydr)oxides, increasing long-term P sorption capacity. Amending the soils with sediment material

  11. Evaluation of Soil Manipulation to Prepare Engineered Earthen Waste Covers for Revegetation.

    Science.gov (United States)

    Waugh, W Joseph; Benson, Craig H; Albright, William H; Smith, Gregory M; Bush, Richard P

    2015-11-01

    Seven ripping treatments designed to improve soil physical conditions for revegetation were compared on a test pad simulating an earthen cover for a waste disposal cell. The field test was part of study of methods to convert compacted-soil waste covers into evapotranspiration covers. The test pad consisted of a compacted layer of fine-textured soil simulating a barrier protection layer overlain by a gravelly sand bedding layer and a cobble armor layer. Treatments included combinations of soil-ripping implements (conventional shank [CS], wing-tipped shank [WTS], and parabolic oscillating shank with wings [POS]), ripping depths, and number of passes. Dimensions, dry density, moisture content, and particle size distribution of disturbance zones were determined in two trenches excavated across rip rows. The goal was to create a root-zone dry density between 1.2 and 1.6 Mg m and a seedbed soil texture ranging from clay loam to sandy loam with low rock content. All treatments created V-shaped disturbance zones as measured on trench faces. Disturbance zone size was most influenced by ripping depth. Winged implements created larger disturbance zones. All treatments lifted fines into the bedding layer, moved gravel and cobble down into the fine-textured protection layer, and thereby disrupted the capillary barrier at the interface. Changes in dry density within disturbance zones were comparable for the CS and WTS treatments but were highly variable among POS treatments. Water content increased in the bedding layer and decreased in the protection layer after ripping. The POS at 1.2-m depth and two passes created the largest zone with a low dry density (1.24 Mg m) and the most favorable seedbed soil texture (gravely silt loam). However, ripping also created large soil aggregates and voids in the protection layer that may produce preferential flow paths and reduce water storage capacity.

  12. Tolerância da cultura do tomate à salinidade do solo em ambiente protegido Tolerance of tomato crop to salinity of soil in protected ambient

    Directory of Open Access Journals (Sweden)

    Pedro R. F. Medeiros

    2012-01-01

    Full Text Available Com o intuito de contribuir com os dados disponíveis na literatura sobre tolerância das culturas à salinidade do solo oriunda de sais fertilizantes, o presente trabalho tem, como objetivo, determinar a tolerância da cultura do tomate a salinidade do solo, a partir de dois manejos de fertirrigação e seis níveis iniciais de salinidade (1,0; 2,0; 3,0; 4,0; 5,0 e 6,0 dS m-1 a partir das variáveis produção e componentes de produção, em ambiente protegido com solo franco-argiloso. O experimento foi realizado no Departamento de Engenharia de Biossistemas da ESALQ/USP, Piracicaba,SP. O delineamento estatístico foi aleatorizado em blocos, com 4 repetições, concluindo que a produção e os componentes de produção da cultura do tomate foram afetados estatisticamente, tanto pelo tipo de manejo de fertirrigação quanto pelos níveis de salinidade do solo, com redução na tolerância da cultura do tomate, passando a ser classificada sensível à salinidade do solo.In order to contribute to data available in the literature on tolerance of crops to soil salinity derived from fertilizer salts, the present study aims to determine the tolerance of tomato crop to the soil salinity, based on two managements of fertirrigation and six initial levels of salinity (1.0; 2.0; 3.0; 4.0; 5.0 and 6.0 dS m-1 from the variables production and components of production, in a protected environment with sandy-clay soil. The experiment was conducted at the Department of Biosystems Engineering of ESALQ/USP, Piracicaba/SP. The experimental design was in randomized blocks, with 4 repetitions. Concluding that the production and the components of production of tomato crop were significantly affected both by the type of management of fertirrigation and by the levels of soil salinity, with a reduction in the tolerance of tomato crop, being classified as sensitive to soil salinity.

  13. Fate of {sup 14}C-triclocarban in biosolids-amended soils

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Elizabeth Hodges, E-mail: lizah@ufl.edu [Soil and Water Science Department, University of Florida, 408 Newell Hall, Gainesville, Florida, 32611 (United States); Department of Health Sciences, University of Alaska Anchorage, DPL 404, 3211 Providence Drive, Anchorage, AK 99508-4614 (United States); O' Connor, George A., E-mail: gao@ufl.edu [Soil and Water Science Department, P.O. Box 110510, University of Florida, Gainesville, FL 32611-01519 (United States); McAvoy, Drew C., E-mail: mcavoy.dc@pg.com [Environmental Safety Department, P.O. Box 538707, The Procter and Gamble Company, Cincinnati, OH, 45253-8707 (United States)

    2010-06-01

    Triclocarban (TCC) is an antibacterial compound commonly detected in biosolids at parts-per-million concentrations. Approximately half of the biosolids produced in the United States are land-applied, resulting in a systematic release of TCC into the soil environment. The extent of biosolids-borne TCC environmental transport and potential human/ecological exposures will be greatly affected by its bioavailability and the rate of degradation in amended soils. To investigate these factors, radiolabeled TCC ({sup 14}C-TCC) was incorporated into anaerobically digested biosolids, amended to two soils, and incubated under aerobic conditions. The evolution of {sup 14}CO2 (biodegradation) and changes in chemical extractability (bioavailability) was measured over time. Water extractable TCC over the study period was low and significantly decreased over the first 3 weeks of the study (from 14% to 4% in a fine sand soil and from 3 to < 1% in a silty clay loam soil). Mineralization (i.e. ultimate degradation), as measured by evolution of {sup 14}CO{sub 2}, was < 4% over 7.5 months. Methanol extracts of the amended soils were analyzed by radiolabel thin-layer chromatography (RAD-TLC), but no intermediate degradation products were detected. Approximately 20% and 50% of the radioactivity in the amended fine sand and silty clay loam soils, respectively, was converted to bound residue as measured by solids combustion. These results indicate that biosolids-borne TCC becomes less bioavailable over time and biodegrades at a very slow rate.

  14. Mineralization of soil organic matter in biochar amended agricultural landscape

    Science.gov (United States)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  15. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging.

    Science.gov (United States)

    Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M L; Hallin, Emil

    2015-07-17

    Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed.

  16. Root system distribution and yield of 'Conilon' coffee propagated by seeds or cuttings

    Directory of Open Access Journals (Sweden)

    Fábio Luiz Partelli

    2014-05-01

    Full Text Available The objective of this work was to evaluate the root system distribution and the yield of 'Conilon' coffee (Coffea canephora propagated by seeds or cuttings. The experiment was carried out with 2x1 m spacing, in an Oxisol with sandy clay loam texture. A randomized complete block design was used, following a 2x9x6 factorial arrangement, with two propagation methods (seeds and cuttings, nine sampling spacings (0.15, 0.30, 0.45, 0.60, 0.75, and 0.90 m between rows, and 0.15, 0.30, and 0.45 between plants within rows, six soil depths (0.10-0.20, 0.20-0.30, 0.30-0.40, 0.40-0.50, and 0.50-0.60 m, and six replicates. Soil cores (27 cm3 with roots were taken from 12 experimental units, 146 months after planting. The surface area of the root system and root diameter, length, and volume were assessed for 13 years and, then, correlated with grain yield. The highest fine root concentration occurred at the superficial soil layers. The variables used to characterize the root system did not differ between propagation methods. Moreover, no differences were observed for net photosynthetic CO2 assimilation rate, stomatal conductance, internal CO2 concentrations, and instantaneous water-use efficiency in the leaves. Cutting-propagated plants were more productive than seed-propagated ones.

  17. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils

    DEFF Research Database (Denmark)

    Woldetsadik, Desta; Drechsel, Pay; Keraita, Bernard

    2016-01-01

    To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam....... Ammonium nitrate extraction results indicated that faecal matter biochar, cow manure biochar and lime si