WorldWideScience

Sample records for sandy soils contaminated

  1. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  2. Using humic acid for remediation of sandy soils contaminated by heavy metal

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper presents the development of a new remediation technology for contaminated sandy soil using humic acid (HA). Distribution of amount of Cr (VI) in the aqueous or solid system containing humic acid and sandy soil, was studied using batch experiments, es-pecially for effects of reaction time, pH, concentrations, temperature and irradiation on the reduction of Cr (VI), and the optimum reaction conditions. The results indicated a significant increase of the adsorption of Cr (VI) because of the complexion reaction between HA and Cr (VI) that occurred under acidic condition. The reaction mechanisms of HA with chromium on sand surfaces were certified. Thus it came to a conclusion that HA could be used effectively on remediation of Cr (VI)-contaminated soil and groundwater in a wide range of pH, with or without sunlight. These results suggest that the organic-inorganic complex-such as sandy soils coated with humic substances-is important as a metal reservoir in the environment.

  3. Chemical contamination of soils in the New York City area following Hurricane Sandy.

    Science.gov (United States)

    Mandigo, Amy C; DiScenza, Dana J; Keimowitz, Alison R; Fitzgerald, Neil

    2016-10-01

    This paper presents a unique data set of lead, arsenic, polychlorinated biphenyl (PCB), and polycyclic aromatic hydrocarbon (PAH) concentrations in soil samples collected from the metropolitan New York City area in the aftermath of Hurricane Sandy. Initial samples were collected by citizen scientists recruited via social media, a relatively unusual approach for a sample collection project. Participants in the affected areas collected 63 usable samples from basements, gardens, roads, and beaches. Results indicate high levels of arsenic, lead, PCBs, and PAHs in an area approximately 800 feet south of the United States Environmental Protection Agency (US EPA) Superfund site at Newtown Creek. A location adjacent to the Gowanus Canal, another Superfund site, was found to have high PCB concentrations. Areas of high PAH contamination tended to be near high traffic areas or next to sites of known contamination. While contamination as a direct result of Hurricane Sandy cannot be demonstrated conclusively, the presence of high levels of contamination close to known contamination sites, evidence for co-contamination, and decrease in number of samples containing measureable amounts of semi-volatile compounds from samples collected at similar locations 9 months after the storm suggest that contaminated particles may have migrated to residential areas as a result of flooding.

  4. Transport of humic and fulvic acids in relation to metal mobility in a copper-contaminated acid sandy soil

    NARCIS (Netherlands)

    Weng, L.; Fest, E.P.M.J.; Filius, J.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2002-01-01

    The transport of inorganic and organic pollutants in water and soil can be strongly influenced by the mobility of natural dissolved organic matter (DOM). In this paper, the transport of a humic acid (HA) and a fulvic acid (FA) in a copper-contaminated acid sandy soil was studied. The data showed

  5. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil.

    Science.gov (United States)

    Cartmill, Andrew D; Cartmill, Donita L; Alarcón, Alejandro

    2014-01-01

    A greenhouse experiment was conducted to determine the effect of the application of controlled release fertilizer [(CRF) 0, 4,6, or 8 kg m(-3)] on Lolium multiflorum Lam. survival and potential biodegradation of petroleum hydrocarbons (0, 3000, 6000, or 15000 mg kg(-1)) in sandy soil. Plant adaptation, growth, photosynthesis, total chlorophyll, and proline content as well as rhizosphere microbial population (culturable heterotrophic fungal and bacterial populations) and total petroleum hydrocarbon (TPH)-degradation were determined. Petroleum induced-toxicity resulted in reduced plant growth, photosynthesis, and nutrient status. Plant adaptation, growth, photosynthesis, and chlorophyll content were enhanced by the application of CRF in contaminated soil. Proline content showed limited use as a physiological indicator of petroleum induced-stress in plants. Bacterial and filamentous fungi populations were stimulated by the petroleum concentrations. Bacterial populations were stimulated by CRF application. At low petroleum contamination, CRF did not enhance TPH-degradation. However, petroleum degradation in the rhizosphere was enhanced by the application of medium rates of CRF, especially when plants were exposed to intermediate and high petroleum contamination. Application of CRF allowed plants to overcome the growth impairment induced by the presence of petroleum hydrocarbons in soils.

  6. Leaching and ponding of viral contaminants following land application of biosolids on sandy-loam soil.

    Science.gov (United States)

    Wong, Kelvin; Harrigan, Tim; Xagoraraki, Irene

    2012-12-15

    Much of the land available for application of biosolids is cropland near urban areas. Biosolids are often applied on hay or grassland during the growing season or on corn ground before planting or after harvest in the fall. In this study, mesophilic anaerobic digested (MAD) biosolids were applied at 56,000 L/ha on a sandy-loam soil over large containment lysimeters seeded to perennial covers of orchardgrass (Dactylis glomerata L.), switchgrass (Panicum virgatum), or planted annually to maize (Zea mays L.). Portable rainfall simulators were to maintain the lysimeters under a nearly saturated (90%, volumetric basis) conditions. Lysimeter leachate and surface ponded water samples were collected and analyzed for somatic phage, adenoviruses, and anionic (chloride) and microbial (P-22 bacteriophage) tracers. Neither adenovirus nor somatic phage was recovered from the leachate samples. P-22 bacteriophage was found in the leachate of three lysimeters (removal rates ranged from 1.8 to 3.2 log(10)/m). Although the peak of the anionic tracer breakthrough occurred at a similar pore volume in each lysimeter (around 0.3 pore volume) the peak of P-22 breakthrough varied between lysimeters (worm holes or other natural phenomena. The concentration of viral contaminants collected in ponded surface water ranged from 1 to 10% of the initial concentration in the applied biosolids. The die off of somatic phage and P-22 in the surface water was fit to a first order decay model and somatic phage reached background level at about day ten. In conclusion, sandy-loam soils can effectively remove/adsorb the indigenous viruses leached from the land-applied biosolids, but there is a potential of viral pollution from runoff following significant rainfall events when biosolids remain on the soil surface.

  7. Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil.

    Science.gov (United States)

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2017-06-01

    The aim of the study was to compare the usefulness of 1 M HCl with aqua regia, EDTA, and CaCl2 for the extraction of phytoavailable forms of Cu, Ni, and Zn on coarse-textured soils contaminated with these metals. Two microplot experiments were used for the studies. Reed canary grass (Phalaris arundinacea), maize (Zea mays), willow (Salix viminalis), spartina (Spartina pectinata), and miscanthus (Miscanthus × giganteus) were used as test plants. They were grown on soil artificially spiked with Cu, Ni, and Zn. The experimental design included a control and three increasing doses of metals. Microplots (1 m(2) × 1 m deep) were filled with sandy soil (clay-6%, pH 5.5, Corg-0.8%). Metals in the form of sulfates were dissolved in water and applied to the plot using a hand liquid sprayer. During the harvest, samples were collected from aboveground parts, roots, and the soil and then tested for their Cu, Zn, and Ni contents. The metal content of the soil was determined using four tested extractants. It was found that Cu and Ni were accumulated in roots in bigger amounts than Zn. The usefulness of the extractants was evaluated based on the correlation between the content of metals in the soil and the plant (n = 32). This study demonstrated that 1 M HCl, aqua regia, and EDTA were more efficient or equally useful for the assessment of the phytoavailability of Cu, Ni, and Zn as CaCl2. Due to the ease of performing determinations and their low cost, 1 M HCl can be recommended to assess the excess of Cu, Ni, and Zn in the coarse-textured soils.

  8. PCDD/PCDF behavior in low-temperature pyrolysis of PCP-contaminated sandy soil.

    Science.gov (United States)

    Thuan, Ngo Thi; Dien, Nguyen Thanh; Chang, Moo Been

    2013-01-15

    This study investigates the behavior of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) formation, dechlorination and destruction in PCP-contaminated sandy soil by low-temperature thermal treatment. Experimental tests were carried out in a nitrogen atmosphere in the temperature range of 200-400 °C with a treatment time of 30 min. 70% of PCP removal from the soil was achieved, resulting in 1436±230 ng/kg, the highest PCDD/F formation at 250 °C; however, the highest toxic concentration was measured around 4.20±0.62 ng TEQ/kg at 300 °C with 80% PCP removal from the soil. Further analysis has revealed that OCDD is the most dominant congener that is supposed to be formed from the pyrolysis of PCP, while OCDF is the second prevailing congener, possibly due to pyrolysis of 2,3,4,5-TeCP being a main byproduct of PCP pyrolysis. Detection of less chlorinated dioxins and furans over 300 °C indicates the dechlorination of highly chlorinated dioxins and furans, especially octachlorinated dibenzo-p-dioxin (OCDD) at 350 °C and 400 °C. Desorption from soil was supposed as a main mechanism for the distribution of PCDD/Fs in the gaseous phase, and not much difference in dioxins and furan levels was observed at 350 °C and 400 °C in the gaseous phase. Therefore, 350 °C is the most appropriate temperature to remove most PCP and PCDD/Fs from soil, as well as to meet PCDD/F emission standards (0.1 ng I-TEQ/Nm(3)). Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Thallium dynamics in contrasting light sandy soils--soil vulnerability assessment to anthropogenic contamination.

    Science.gov (United States)

    Vanek, Ales; Chrastný, Vladislav; Komárek, Michael; Galusková, Ivana; Drahota, Petr; Grygar, Tomás; Tejnecký, Václav; Drábek, Ondrej

    2010-01-15

    The influence of different soil conditions and the presence of LMWOA (Low Molecular Weight Organic Acids) on anthropogenic Tl dynamics were discussed in this study. A shift from the "labile" to the residual fraction during the ageing was identified, indicating Tl incorporation into stable phases (e.g., illite and/or amorphous silicates). The increased water-soluble Tl concentration (1.8-fold, in maximum) after the split application of LMWOA (simulating root exudation) was observed in all soils; partial dissolution of relatively "insoluble" Tl-bearing phases (silicates and eventually oxides) in the presence of LMWOA is suggested. Thermodynamic modeling showed that Tl mobilization in the presence of citric and oxalic acids was indirect and could be attributed to complexation of major elements (Ca, Mg, Al) originating from the dissolution of various soil phases. On the contrary, H(+)-promoted dissolution by acetic acid was assumed as the predominant mechanism of Tl mobilization. Manganese(III,IV) oxides, illite and probably amorphous silicates were evaluated as the dominant phases responsible for Tl retention in the soils. In carbonate-rich soils, Tl coprecipitation with the newly formed carbonates seems to be an important factor influencing Tl release. Therefore, we suggest data on CEC, pH(ZPC) and soil mineralogy to be critical for assessment of Tl behavior in soil systems.

  10. Extraction of bitumen, crude oil and its products from tar sand and contaminated sandy soil under effect of ultrasound.

    Science.gov (United States)

    Abramov, O V; Abramov, V O; Myasnikov, S K; Mullakaev, M S

    2009-03-01

    In the present paper, the kinetics of the water extraction of bitumen from tar sand and crude oil or residual fuel oil from model contaminated soils under the effect of ultrasound is studied. The influence of process temperature, ultrasound power, the nature, and properties of the components of heterogeneous mixtures being separated, and the concentration of added alkaline reagents on the rate and degree of oil recovery is investigated. A functional form of the dependencies of separation efficiency on the mean size of solid particles and the temperature of a working medium is found. Optimum concentrations of reagents in the process solution are determined. It is shown that the spent solution of sodium silicate can be multiply used for separation, its reuse even speeding up the yield of oil in the initial period. Taking into account obtained results, a multipurpose pilot plant with a flow-type reactor for ultrasonic extraction of petroleum and its products from contaminated soils was manufactured and tested. During tests, the purification of sandy soil contaminated with residual fuel oil was carried out which verified the results of laboratory studies.

  11. Effect of Application of Increasing Concentrations of Contaminated Water on the Different Fractions of Cu and Co in Sandy Loam and Clay Loam Soils

    Directory of Open Access Journals (Sweden)

    John Volk

    2016-12-01

    Full Text Available This study aimed to establish the fate of copper (Cu and cobalt (Co in sandy loam and clay loam soils that had been irrigated with increasing concentrations of contaminated water. A sequential extraction procedure was used to determine the fractions of Cu and Co in these soils. The concentration of bioavailable Cu and Co on clay loam was 1.7 times that of sandy loam soil. Cu on sandy loam soil was largely in the organic > residual > exchangeable > water-soluble > carbonate fractions, whereas on clay loam soil the element was largely in organic > exchangeable > residual > carbonate > water-soluble fractions. Co was largely observed in the exchangeable, water-soluble, and carbonate fractions, but with no particular trend observed in both soil types. When crops are grown on sandy soils that have a low capacity to hold heavy metals, the resulting effect would be high uptake of the heavy metals in crop plants. Because the predominant forms of Cu and Co vary in soils, it is expected that the metals will behave differently in the soils.

  12. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site.

    Science.gov (United States)

    Lu, Zhe; Zeng, Fangang; Xue, Nandong; Li, Fasheng

    2012-09-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles (200 μm coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0-20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 μg/g in profile 1 and 10.8 to 0.143 μg/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand>coarse sand>silt>clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay>silt>coarse sand>fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites.

  13. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhe [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Zeng, Fangang [School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Xue, Nandong [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Li, Fasheng, E-mail: ligulax@vip.sina.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China)

    2012-09-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles (< 2 {mu}m clay, 2-20 {mu}m silt, 20-200 {mu}m fine sand, and > 200 {mu}m coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0-20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 {mu}g/g in profile 1 and 10.8 to 0.143 {mu}g/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand > coarse sand > silt > clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites. -- Highlights: Black-Right-Pointing-Pointer PAH concentrations varied largely in different sized fractions. Black-Right-Pointing-Pointer The highest PAH concentrations were associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Black-Right-Pointing-Pointer Soil organic

  14. Spatial and temporal variability of water repellency in a sandy soil contaminated with tar oil and heavy metals.

    Science.gov (United States)

    Buczko, Uwe; Bens, Oliver; Durner, Wolfgang

    2006-12-15

    Water repellency can induce preferential flow and thus affect water flow and contaminant transport at hazardous waste sites. Since the spatial patterns of water repellency are mostly unknown, it is problematic to use numerical transport models to predict leachate composition. In this study, the spatial variability of soil water repellency was studied at an industrial site contaminated with tar oil, chromium, copper and arsenic. The persistence of water repellency was assessed by the water drop penetration time (WDPT), and the degree of water repellency was quantified by the ethanol percentage (EP) test. Measurements were made at the soil surface along 3.5-12.1 m long transects at different times between March and October 2002. The spatial variability of WDPT, EP, water content, and organic matter content was quantified by variogram analyses. Both the persistence and the degree of water repellency varied seasonally, with the highest water repellency during the summer months. The correlation lengths of WDPT values ranged between 16 and 406 cm, whereas EP values showed no spatial correlation. For field-moist samples, a critical soil water threshold, below which water repellency prevails, was estimated to be 2.5-4%. For oven dry samples, the WDPT values were dependent on the water content prior to drying. The wide range of correlation lengths and the temporal dynamics of spatial repellency patterns suggest that simulations of solute leaching must consider the spatial and temporal variability of soil hydrophobic properties.

  15. (Contaminated soil)

    Energy Technology Data Exchange (ETDEWEB)

    Siegrist, R.L.

    1991-01-08

    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  16. Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil.

    Science.gov (United States)

    Cutright, Teresa; Gunda, Nagaraju; Kurt, Firat

    2010-08-01

    Phytoremediation is a promising means for the treatment of contamination arising from heavy metal spills. Although several species have been identified as hyperaccumulators, most of the studies were performed with only one heavy metal. Experiments were conducted with two cultivars of H. annuus exposed to different combinations of metal contamination (30 mg/kg Cd, Cr, Ni, As, and/or Fe). Cultivar efficiency was based on total metal uptake, as well as translocation and selectivity of each metal. The results for each cultivar were also compared after 0.1 g/kg or 0.3 g/kg EDTA was added to enhance metal bioavailability. The key finding was that H. annuus achieved hyperaccumulator status for multiple metals simultaneously: Cd, Cr, and As.

  17. Measured and Estimated Volatilisation of Naphthalene from a Sandy Soil

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Christensen, Thomas Højlund

    1994-01-01

    The non-steady-state fluxes of naphthalene from an artificially contaminated sandy soil at different water contents were measured in the laboratory, at 10°C. The soil contained 1.1% of organic carbon and the water content varied between 2.8 and 14% w/w. The diffusive flux of naphthalene from the ...... the fluxes by a factor of 1.5 to 6.4. The largest deviation between predicted and observed dynamic fluxes was found at high water contents. For the cover soil, half-life times of 1 to 2 days were estimated by the model for naphthalene degradation....

  18. Organic matter dynamics in coarse sandy calcareous soils

    NARCIS (Netherlands)

    Pronk, A.A.; Reuler, van H.

    2011-01-01

    The decomposition of organic matter in coarse sandy calcareous soils (beach sand) is thought to be much higher than in acid fine sandy soils but relatively little research is performed on these soils. Laboratory incubation experiments in which the release of soil carbon (C) is determined may overest

  19. Remediation of sandy soils using surfactant solutions and foams.

    Science.gov (United States)

    Couto, Hudson J B; Massarani, Guilio; Biscaia, Evaristo C; Sant'Anna, Geraldo L

    2009-05-30

    Remediation of sandy soils contaminated with diesel oil was investigated in bench-scale experiments. Surfactant solution, regular foams and colloidal gas aphrons were used as remediation fluids. An experimental design technique was used to investigate the effect of relevant process variables on remediation efficiency. Soils prepared with different average particle sizes (0.04-0.12 cm) and contaminated with different diesel oil contents (40-80 g/kg) were used in experiments conducted with remediation fluids. A mathematical model was proposed allowing for the determination of oil removal rate-constant (k(v)) and oil content remaining in the soil after remediation (C(of)) as well as estimation of the percentage of oil removed. Oil removal efficiencies obtained under the central experimental design conditions were 96%, 88% and 35% for aphrons, regular foams and surfactant solutions, respectively. High removal efficiencies were obtained using regular foams and aphrons, demanding small amounts of surfactant.

  20. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Science.gov (United States)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  1. Soil-water characteristics of sandy soil and soil cement with and without vegetation

    OpenAIRE

    2014-01-01

    The use of soil cement as a growth medium was examined in this study. During the monitoring, green soil cement revealed diverse ecological values. The survival rates of plants in each soil conditions were higher than 80%,which was very promising. Furthermore, the survival rates dropped when the soil density reached95%, which means soil density might influence the survival rate of plant. Plant growth rates in sandy soil were higher than that in soil cement. In particular, low soil density faci...

  2. Retention of pesticides in sandy soil columns modified with a wood barrier

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Martin, M. J.; Rodriguez-Cruz, M. S.; Ordax, J. M.; Arienzo, M.

    2009-07-01

    Wood residues can be used as low-cost potential sorbents of hydrophobic pesticides in technologies aimed to prevent soil and water contamination and reduce the risk of environmental pollution produced by point pollution sources of these compounds. The objective of this work was to study the effect of a pine or oak sawdust barrier on the retention of Iinuron, alachlor and metalaxyl, with different hydrophobic character, in a sandy soil. (Author)

  3. Screening of cellulose decomposing fungi in sandy dune soil of Horqin Sandy Land

    Institute of Scientific and Technical Information of China (English)

    ShaoKun Wang; XueYong Zhao; XiaoAn Zuo; XinPing Liu; Hao Qu; Wei Mao; JianYing Yun

    2015-01-01

    Cellulose decomposing fungi play an important role in litter decomposition and are decisive in nutrient cycling in sandy land ecosystems. Thirty-one strains were isolated to select efficient cellulose decomposers, and four efficient cellulose decomposing fungi (NM3-1, NM3-2, NM3-3, and NM3-4) were screened using a CMC (carboxymethyl cellulose) carbon source in dune soil of Horqin Sandy Land. They were identified as Asperigillus calidoustus, Fusarium oxysporum, Fusarium solani, and Hypocrea lixii by rDNA-ITS molecular biological methods. Cloth decomposition rates were 15.71%, 15.89%, 17.29%, and 17.89%by the four efficient decomposers incubated for 30 days, respectively. Screening of efficient cellulose decomposers can not only increase the dune soil functional microbe bank, but can also accelerate litter decom-position and available nutrient input in the Horqin Sandy Land.

  4. Microfungi diversity isolation from sandy soil of Acapulco touristic beaches

    Science.gov (United States)

    Microscopic fungi diversity in marine sandy soil habitats is associated with key functions of beach ecosystems. There are few reports on their presence in Mexican beaches. Although standard methods to obtain the fungi from soil samples are established, the aim of this pilot study was to test the pla...

  5. The biogenic emission potential of nitric oxide from sandy soils

    Science.gov (United States)

    Yu, J. B.; Meixner, F. X.; Sun, Z. G.; Chen, X. B.; Mamtimin, B.

    2009-04-01

    There are about 160.9 Mha of sandy land in China, about 17.6% of total Chinese area, which mainly distributed in 35°-50° N. The western Songnen Plain, which located in the semi-arid region of Northeastern China, is one of the main sandy soil distribution regions. The changes of land use in sandy soil are accompanied by changes in biogeochemical cycles of nutrients, particularly of the air-surface exchange of trace gases like nitric oxide. Our study, based on results obtained by a laboratory incubation technique, focuses on (a) NO production and consumption in sandy soils from two types of land use as function of soil temperature and soil moisture, and (b) The biogenic emission potential of nitric oxide from sandy soils in semi-arid region. At 25˚C, average NO production (in terms of mass of N) was 0.016,and 0.013 ng kg-1s-1 in sandy soils from soybean land (SL) and man-made forest (MF), re¬spectively. NO consumption rate constant ranged from 0.26×10-6 to 7.28×10-6 m3 kg-1s-1. At 25˚C and under optimum soil moisture conditions for NO production, the NO compensation point mixing ratio was about 266 and 161 ug m-3 (465,and 281 ppb) for soils of SL and MF, respectively. Statistically sound relationships have been observed between NO fluxes and soil moisture (optimum curves). NO fluxes also increased exponentially with soil temperature at any given soil moisture. The optimum soil moisture for which maximum NO flux was observed was independent of soil temperature. The maximum of NO flux potentials for SL and MF soils (at 25°C) were 59.6 and 36.5 ng m-2s-1 at water-filled pore space (%WFPS) of 26 and 24, respectively. The NO flux potential was about 2 times larger for cropland soil than for man-made forest soils, most likely due to fertilizer application to the cropland soils.

  6. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In ord

  7. Competition between n-alkane-assimilating yeasts and bacteria during colonization of sandy soil microcosms.

    Science.gov (United States)

    Schmitz, C; Goebel, I; Wagner, S; Vomberg, A; Klinner, U

    2000-07-01

    An n-alkane-assimilating strain of Candida tropicalis was selected in sandy soil inoculated with microorganisms from contaminated sites. Competition experiments with n-alkane utilizers from different strain collections confirmed that yeasts overgrow bacteria in sandy soil. Acidification of the soil is one of the colonization factors useful for the yeasts. It can be counteracted by addition of bentonite, a clay mineral with high ion exchange capacity, but not, however, by kaolin. Strains of different yeast species showed different levels of competitiveness. Strains of Arxula adeninivorans, Candida maltosa, and Yarrowia lipolytica overgrew strains of C. tropicalis, C. shehatae or Pichia stipitis. Two strains of C. maltosa and Y. lipolytica coexisted during several serial transfers under microcosm conditions.

  8. Considering temperature dependence of thermo-physical properties of sandy soils in two scenarios of oil pollution

    Institute of Scientific and Technical Information of China (English)

    Aleksey V.Malyshev; Anatoly M.Timofeev

    2014-01-01

    We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollu tion, and also determined the temperature dependencies of these changed thermophysical properties. In the first pollution scenario, the oil product was introduced into wet river sand, and in the second case, dry sand was contaminated by the oil product and was then moistened with water. By considering these two scenarios as multicomponent dispersion systems with varying degrees of contamination and humidity, and by using a polystructural granular model with pore spaces and closed inclusions, we calculated that the heat conductivity of the sandy soil increased under the first pollution scenario and decreased under the second, but the change in the volumetric heat capacity of the sandy soil was proportional only to the amount of oil pollution, not the manner in which it was introduced. We also determined the temperature dependencies of these two thermophysical properties of sandy soil when polluted by oil, of which information will be useful for future containment and remediation of oil contaminated soil.

  9. Phosphorus leaching from a sandy soil in the presence of modified and un-modified adsorbents.

    Science.gov (United States)

    Moharami, Somayeh; Jalali, Mohsen

    2014-10-01

    Phosphorus (P) leaching from a sandy soil was investigated in the presence of modified and unmodified clay minerals and nanoparticles (NPs). Compared with control soil, amended soil with NPs had the highest percentage of P retention than amended soil with clay minerals. Among the adsorbents used, the highest percentage of P retention was produced by Al₂O₃-chitosan while the lowest percentage of P retention was by zeolite. Data measured for P leaching after using adsorbents were used to predict P leaching using transport model. PHREEQC model was able to model P leaching from control and amended soil. After leaching, P values in control and amended soil were fractionated by a sequential extraction procedure. Concentration of P in Ca-bound fraction (HCl-P) after application of modified and unmodified clay minerals and NPs (except TiO₂ and Al₂O₃) increased and decreased, respectively. Saturation indices (SIs) and P speciation were assessed using the Visual MINTEQ version 2.3 program. According to the SIs, leaching P from control and amended soil with different adsorbent was controlled by dissolution of hydroxyapatite. The results indicated that used adsorbents can reduce P leaching from the sandy soil. Thus, retention of P by amended soil reduced a risk in terms of groundwater contamination with P.

  10. Morphology of rain water channelization in systematically varied model sandy soils

    OpenAIRE

    Wei, Y.; Cejas, C. M.; Barrois, R.; Dreyfus, R.; Durian, D. J.

    2014-01-01

    We visualize the formation of fingered flow in dry model sandy soils under different raining conditions using a quasi-2d experimental set-up, and systematically determine the impact of soil grain diameter and surface wetting property on water channelization phenomenon. The model sandy soils we use are random closely-packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates into a shallow top layer of soil and...

  11. Different Behavior of Enteric Bacteria and Viruses in Clay and Sandy Soils after Biofertilization with Swine Digestate

    Science.gov (United States)

    Fongaro, Gislaine; García-González, María C.; Hernández, Marta; Kunz, Airton; Barardi, Célia R. M.; Rodríguez-Lázaro, David

    2017-01-01

    Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling. PMID:28197137

  12. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    Science.gov (United States)

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content.

  13. Relationships between water infiltration and oil spill migration in sandy soils

    Science.gov (United States)

    Kessler, Avner; Rubin, Hillel

    1987-06-01

    This article summarizes a study directed towards the prediction of oil spill migration in sandy soils. Such a prediction is needed for the design of remedial measures against soil and groundwater contamination. The geneal approach in this study is to convert available data concerning water infiltration into equivalent unknown data concerning oil spillage. This information is then fed into a numerical model by which the oil spill migration is simulated. Laboratory measurements including retention curve, hydraulic conductivity and infiltration rate, were made separately for water and kerosene in order to evaluate and confirm the suggested approach.

  14. Deep Compaction Control of Sandy Soils

    Directory of Open Access Journals (Sweden)

    Bałachowski Lech

    2015-02-01

    Full Text Available Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  15. Mitigation of Liquefaction in Sandy Soils Using Stone Columns

    Science.gov (United States)

    Selcuk, Levent; Kayabalı, Kamil

    2010-05-01

    Soil liquefaction is one of the leading causes of earthquake-induced damage to structures. Soil improvement methods provide effective solutions to reduce the risk of soil liquefaction. Thus, soil ground treatments are applied using various techniques. However, except for a few ground treatment methods, they generally require a high cost and a lot of time. Especially in order to prevent the risk of soil liquefaction, stone columns conctructed by vibro-systems (vibro-compaction, vibro-replacement) are one of the traditional geotechnical methods. The construction of stone columns not only enhances the ability of clean sand to drain excess pore water during an earthquake, but also increases the relative density of the soil. Thus, this application prevents the development of the excess pore water pressure in sand during earthquakes and keeps the pore pressure ratio below a certain value. This paper presents the stone column methods used against soil liquefaction in detail. At this stage, (a) the performances of the stone columns were investigated in different spacing and diameters of columns during past earthquakes, (b) recent studies about design and field applications of stone columns were presented, and (c) a new design method considering the relative density of soil and the capacity of drenage of columns were explained in sandy soil. Furthermore, with this new method, earthquake performances of the stone columns constructed at different areas were investigated before the 1989 Loma Prieta and the 1994 Northbridge earthquakes, as case histories of field applications, and design charts were compiled for suitable spacing and diameters of stone columns with consideration to the different sandy soil parameters and earhquake conditions. Key Words: Soil improvement, stone column, excess pore water pressure

  16. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  17. Trends in soil organic matter contents in Dutch grasslands and maize fields on sandy soils

    NARCIS (Netherlands)

    Hanegraaf, M.C.; Hoffland, E.; Kuikman, P.J.; Brussaard, L.

    2009-01-01

    There is considerable concern in Europe that soil organic matter (SOM) contents are declining, which would threaten both agriculture and the environment. We performed a trend analysis of SOM contents in sandy soils, using historic data from routine agricultural soil analyses. Data were selected from

  18. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M; Ouedraogo, T; Kumar, L; Sanou, S; van Langevelde, F; Kiema, A; van de Koppel, J; van Andel, J; Hearne, J; Skidmore, AK; de Ridder, N; Stroosnijder, L; Prins, HHT

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  19. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  20. Nitrate leaching to groundwater at experimental farm "De Marke" and other Dutch sandy soils

    NARCIS (Netherlands)

    Hack-ten Broeke, M.J.D.

    2001-01-01

    This study focuses on nitrate leaching to the groundwater as a result of the land use system of experimental farm 'De Marke', translated to other sandy soils in the Netherlands. The land use was extrapolated to five major sandy soil map units, selected from the 1: 50 000 Soil Map of the Netherlands,

  1. Release behavior of copper and zinc from sandy soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-kui; XIA Yi-ping

    2005-01-01

    The concentrations and chemical forms of copper(Gu) and zinc(Zn) in surface soils directly influence the movement of Gu and Zn. In this study, thirteen sandy soil samples with a wide range of total Cu and Zn concentrations were collected for evaluating the relationships between Cu and Zn release and extraction time, ratio of soil to water, pH and electrolyte types. The results indicated that Cu released in batch extraction that represents long-term leaching was mainly from exchangeable, and carbonate bound Cu fractions, and Zn released in the batch extraction was mainly from its carbonate bound fraction. However, the Cu and Zn leached from the soils using the column leaching that represents short-term leaching were mainly from their exchangeable fractions. Soil column leaching at different pH values indicated that the amounts of leached Zn and Cu were greatly affected by pH. The Cu and Zn release experiments with varying extraction times and ratio of soil to water suggest that long-term water-logging in the soils after rain may increase contact time of the soils with water and the release of Cu and Zn to water from the soils, and total amounts of Cu or Zn released from the soils increase, but the Cu or Zn concentration in the surface runoff decrease with increasing rainfall intensity. The increased Ca concentration in soil solution increased stability of organic matter-mineral complexes and might decrease the dissolution of organic matter, and thus decreased the release of Cu-binding component of organic matter. However, high concentration of Na in the soil solution increased the dispersion of the organic matter-mineral complexes and increased dissolution of organic matter and the release of Cu from the soils.

  2. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth

    Institute of Scientific and Technical Information of China (English)

    GONG Zongqiang; LI Peijun; B.M.Wilke; Kassem Alef

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soft for a remediation purpose, with some of the oft remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soft was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soft properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soft, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth ofA. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oft addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oft in the soils was proved by the soft organic carbon content.

  3. Extraction Efficiency of Belonolaimus longicaudatus from Sandy Soil.

    Science.gov (United States)

    McSorley, R; Frederick, J J

    1991-10-01

    Numbers of Belonolaimus longicaudatus extracted from sandy soils (91-92% sand) by sieving and centrifugation were only 40-55% of those extracted by sieving and incubation on a Baermann tray. Residues normally discarded at each step of the sieving plus Baermann tray extraction procedure were examined for nematodes to obtain estimates of extraction efficiencies. For third-stage and fourth-stage juveniles, males, and females, estimates of extraction efficiency ranged from 60 to 65% in one experiment and 73 to 82% in another. Estimated extraction efficiencies for second-stage juveniles were lower (33% in one experiment, 67% in another) due to losses during sieving. When sterilized soil was seeded with known numbers of B. longicaudatus, 60% of second-stage juveniles and 68-76% of other stages were recovered. Most stages of B. longicaudatus could be extracted from these soils by sieving plus Baermann incubation with an efficiency of 60-70%.

  4. Phytotoxicity and uptake of nitroglycerin in a natural sandy loam soil.

    Science.gov (United States)

    Rocheleau, Sylvie; Kuperman, Roman G; Dodard, Sabine G; Sarrazin, Manon; Savard, Kathleen; Paquet, Louise; Hawari, Jalal; Checkai, Ronald T; Thiboutot, Sonia; Ampleman, Guy; Sunahara, Geoffrey I

    2011-11-15

    Nitroglycerin (NG) is widely used for the production of explosives and solid propellants, and is a soil contaminant of concern at some military training ranges. NG phytotoxicity data reported in the literature cannot be applied directly to development of ecotoxicological benchmarks for plant exposures in soil because they were determined in studies using hydroponic media, cell cultures, and transgenic plants. Toxicities of NG in the present studies were evaluated for alfalfa (Medicago sativa), barnyard grass (Echinochloa crusgalli), and ryegrass (Lolium perenne) exposed to NG in Sassafras sandy loam soil. Uptake and degradation of NG were also evaluated in ryegrass. The median effective concentration values for shoot growth ranged from 40 to 231 mg kg(-1) in studies with NG freshly amended in soil, and from 23 to 185 mg kg(-1) in studies with NG weathered-and-aged in soil. Weathering-and-aging NG in soil did not significantly affect the toxicity based on 95% confidence intervals for either seedling emergence or plant growth endpoints. Uptake studies revealed that NG was not accumulated in ryegrass but was transformed into dinitroglycerin in the soil and roots, and was subsequently translocated into the ryegrass shoots. The highest bioconcentration factors for dinitroglycerin of 685 and 40 were determined for roots and shoots, respectively. Results of these studies will improve our understanding of toxicity and bioconcentration of NG in terrestrial plants and will contribute to ecological risk assessment of NG-contaminated sites.

  5. Maize productivity and mineral N dynamics following different soil fertility management practices on a depleted sandy soil in Zimbabwe

    NARCIS (Netherlands)

    Chikowo, R.; Mapfumo, P.; Nyamugafata, P.; Giller, K.E.

    2004-01-01

    There is a need for an improved understanding of nitrogen (N) dynamics in depleted sandy soils in southern Africa. A field experiment was conducted to evaluate the performance of different soil fertility improvement practices on a degraded granitic sandy soil in Zimbabwe. Legumes capable of accumula

  6. Study on Washing Aeolian Sandy Soil Contaminated by Crude Oil Using Orthogonal Experiment%正交试验法洗涤原油污染风砂土的初步研究

    Institute of Scientific and Technical Information of China (English)

    谢绿武; 郭亮; 石海良; 蒋小川; 赵红艳

    2011-01-01

    Self-made sodium humate, sodium hydroxide and commercial sodium humate were taken as the detergents to wash aeolian sandy soil polluted by crude oil. The orthogonal experiment was designed to obtain the optimal tern- perature, washing times and detergent types. The results showed that the most significant factor was washing times, the second one was detergent type, and the effect of wash temperature was the smallest. The best technics was using commercial sodium humate as detergent to wash polluted soil for 3 times under the condition of 60℃.%利用正交试验设计,选用市售腐植酸钠、自制腐植酸钠和碱水作为洗涤剂,在不同温度和洗涤次数的条件下对落地原油中度污染的土壤进行洗涤,分析洗涤剂种类、洗涤温度和洗涤次数3个因素对洗涤效果的影响。结果表明:洗涤次数对洗涤效果影响最为显著,洗涤剂种类次之,洗涤温度影响最小。试验最优方案为选用市售腐植酸钠,在60℃下洗涤3次(即A3B1C3)。

  7. Phytostabilization of metal contaminated soils.

    Science.gov (United States)

    Alkorta, I; Becerril, J M; Garbisu, C

    2010-01-01

    The contamination of soils with heavy metals represents a worldwide environmental problem of great concern. Traditional methods for the remediation of metal contaminated soils are usually very expensive and frequently induce adverse effects on soil properties and biological activity. Consequently, biological methods of soil remediation like phytoremediation (the use of green plants to clean up contaminated sites) are currently receiving a great deal of attention. In particular, chemophytostabilization of metal contaminated soils (the use of metal tolerant plants together with different amendments like organic materials, liming agents, or phosphorus compounds and such) to reduce metal mobility and bioavailability in soils appears most promising for sites contaminated with high levels of several metals when phytoextraction is not a feasible option. During chemophytostabilization processes, one must at all times be cautious with a possible future reversal of soil metal immobilization, with concomitant adverse environmental consequences.

  8. Estimation of nitrogen pools in irrigated potato production on sandy soil using the model SUBSTOR.

    Directory of Open Access Journals (Sweden)

    Rishi Prasad

    Full Text Available Recent increases in nitrate concentrations in the Suwannee River and associated springs in northern Florida have raised concerns over the contributions of non-point sources. The Middle Suwannee River Basin (MSRB is of special concern because of prevalent karst topography, unconfined aquifers and sandy soils which increase vulnerability of the ground water contamination from agricultural operations--a billion dollar industry in this region. Potato (Solanum tuberosum L. production poses a challenge in the area due to the shallow root system of potato plants, and low water and nutrient holding capacity of the sandy soils. A four-year monitoring study for potato production on sandy soil was conducted on a commercial farm located in the MSRB to identify major nitrogen (N loss pathways and determine their contribution to the total environmental N load, using a partial N budget approach and the potato model SUBSTOR. Model simulated environmental N loading rates were found to lie within one standard deviation of the observed values and identified leaching loss of N as the major sink representing 25 to 38% (or 85 to 138 kg ha(-1 N of the total input N (310 to 349 kg ha(-1 N. The crop residues left in the field after tuber harvest represented a significant amount of N (64 to 110 kg ha(-1 N and posed potential for indirect leaching loss of N upon their mineralization and the absence of subsequent cover crops. Typically, two months of fallow period exits between harvest of tubers and planting of the fall row crop (silage corn. The fallow period is characterized by summer rains which pose a threat to N released from rapidly mineralizing potato vines. Strategies to reduce N loading into the groundwater from potato production must focus on development and adoption of best management practices aimed on reducing direct as well as indirect N leaching losses.

  9. Phosphorus fractions in sandy soils of vineyards in southern Brazil

    Directory of Open Access Journals (Sweden)

    Djalma Eugênio Schmitt

    2013-04-01

    Full Text Available Phosphorus (P applications to vineyards can cause P accumulation in the soil and maximize pollution risks. This study was carried out to quantify the accumulation of P fractions in sandy soils of vineyards in southern Brazil. Soil samples (layers 0-5, 6-10 and 11-20 cm were collected from a native grassland area and two vineyards, after 14 years (vineyard 1 and 30 years (vineyard 2 of cultivation, in Santana do Livramento, southern Brazil, and subjected to chemical fractionation of P. Phosphorus application, especially to the 30-year-old vineyard 2, increased the inorganic P content down to a depth of 20 cm, mainly in the labile fractions extracted by anion-exchange resin and NaHCO3, in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH, and in the non-labile fraction extracted by 1 mol L-1 HCl, indicating the possibility of water eutrophication. Phosphorus application and grapevine cultivation time increased the P content in the organic fraction extracted by NaHCO3 from the 0-5 cm layer, and especially in the moderately labile fraction extracted by 0.1 mol L-1 NaOH, down to a depth of 20 cm.

  10. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    Science.gov (United States)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  11. Morphology of Rain Water Channeling in Systematically Varied Model Sandy Soils

    Science.gov (United States)

    Wei, Yuli; Cejas, Cesare M.; Barrois, Rémi; Dreyfus, Rémi; Durian, Douglas J.

    2014-10-01

    We visualize the formation of fingered flow in dry model sandy soils under different rain conditions using a quasi-2D experimental setup and systematically determine the impact of the soil grain diameter and surface wetting properties on the water channeling phenomenon. The model sandy soils we use are random closely packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates a shallow top layer of soil and creates a horizontal water wetting front that grows downward homogeneously until instabilities occur to form fingered flows. For hydrophobic sandy soils, in contrast, we observe that rain water ponds on the top of the soil surface until the hydraulic pressure is strong enough to overcome the capillary repellency of soil and create narrow water channels that penetrate the soil packing. Varying the raindrop impinging speed has little influence on water channel formation. However, varying the rain rate causes significant changes in the water infiltration depth, water channel width, and water channel separation. At a fixed rain condition, we combine the effects of the grain diameter and surface hydrophobicity into a single parameter and determine its influence on the water infiltration depth, water channel width, and water channel separation. We also demonstrate the efficiency of several soil water improvement methods that relate to the rain water channeling phenomenon, including prewetting sandy soils at different levels before rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel particles as soil modifiers.

  12. Effects of Soil properties on phosphorus subsurface migration in sandy soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-Kui

    2008-01-01

    The soil factors influencing the potential migration of dissolved and particulate phosphorus (P) from structurallyweak sandy subsoils were evaluated by means of soil column leaching experiments.Soil colloids were extracted from two types of soils to make the colloid-bound forms of P solution.Eight sandy soils with diverse properties were collected for packing soil columns.The effects of influent solutions varying in concentrations of colloids,P,and electrolyte,on the transport of P and quality of leachates were characterized.P migration in the soils was soil property-dependent.High soil electrical conductivity values retarded the mobility of colloids and transportability of colloid-associated P (particulate P).Soil electrical conductivity was negatively correlated with colloids and reactive particulate P (RPP) concentrations in the leachates,whereas,the total reactive P (TRP) and dissolved reactive P (DRP) concentrations in the leachates were mainly controlled by the P adsorption capacity and the P levels in the subsoil.The reactive particulate P in the leachates was positively correlated with the colloidal concentration.Increased colloidal concentration in the influent could significantly increase the colloidal concentration in the leachates.Elevated P concentration in the influent had little effect on P recovery in the leachates,but it resulted in significant increases in the absolute P concentration in the leachates.

  13. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    Science.gov (United States)

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required.

  14. Heterogeneous water flow and pesticide transport in cultivated sandy soils : description of model concepts

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2011-01-01

    There is ample experimental evidence that complications in water flow and pesticide transport can occur in cultivated humic-sandy and loamy-sandy soils. As a result, pesticide leaching to groundwater and water courses can be higher than expected. We made an inventory of mechanistic/deterministic mod

  15. IMPROVEMENT OF SANDY SOIL WITH WATER-CONSERVING MEMBRANE AND ITS EFFECT ON CROP GROWTH

    Institute of Scientific and Technical Information of China (English)

    LI Xiu-jun; CUI Xiang-hao; LI Qu-sheng

    2005-01-01

    Water-conserving membrane is a new material of improving sandy soil. It is based on the rule that a compound with organic and inorganic components can produce colloid after its integrating with Ca2+ in soil. The water-conserving membrane will obstruct capillary and increase viscidity of sandy soil, so as to decrease leakage and evaporation in sandy soil. The water-conserving membrane contains polyacrylic acid (PAA) and bentonite. When PAA concentration and Ph of solution are different, water-conserving membrane can be made in different depth of soil. This experiment shows that the solution with 0.2% PAA does not harm and poison the crops, on the contrary,promotes crop germination. The solution with 0.2% or 0.4% PAA can accelerate corn growth. Accordingly, different crops need the application of the different PAA concentrations in the cultivation. Therefore, on the basis of different vadose coefficient in sandy soil, the solution with different PAA concentration can improve sandy soil and increase its water-conserving competence very well. The solution can be used to improve sandy soil and control desert enlargement in arid, semi-arid and semi-humid areas.

  16. Regional scale assessment of soil predictors of groundwater phosphate (P) levels in acidic sandy agricultural soils

    Science.gov (United States)

    Mabilde, Lisa

    2016-04-01

    Possible factors affecting the leaching of P to the groundwater in the Belgian sandy area are examined via regression analysis. The main objective is to investigate the dependency of phreatic groundwater phosphate concentrations (Flemish VMM monitoring net, monitoring period 2010-2013) on soil phosphate saturation degree (PSD) (1994-1997 mapping for Flemish Land Agency) (n = 1032). Additionally explored parameters include: depth distributions of Fe- and Al-oxides, sorbed P and phosphate sorption capacity (PSC) and soil pH. Interpolated data of these soil parameters in 3 depth layers (0-30, 30-60, 60-90 cm) were generated by ordinary kriging. Secondly, we assessed the significance of other edaphic factors potentially controlling the groundwater P: topsoil organic carbon content (OC %), soil clay content and fluctuation of the groundwater table. Overall, the mean PSD halved with each 30 cm depth layer (56 > 24 > 13 %) and was correlated to groundwater PO43- level. The statistical significance of the correlation with groundwater PO43- concentrations increased with depth layer. The poor correlation (R2 = 0.01) between PSD and groundwater phosphate concentration indicates that many factors, other than soil P status, control the transport of P from soil solution to the groundwater in Belgian sandy soils. A significant (PStructural equation modeling for example could be used to understand the practical importance of individual soil, management and hydrological potential predictors of groundwater PO4.

  17. Inhibiting water evaporation of sandy soil by the soil particles modified with Japanese wax

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zeng-Zhi; WANG Hong-Juan; Li Cui-Lan

    2009-01-01

    This study was conducted to resolve the problems of water conservation of sandy soil in desertification areas. The surface of soil particles was modified by molecules of natural Japanese wax through some specially screened surfactant. The modified particles were then well sprayed onto the sand, which was placed in an artificial climate box with simulating desert environment, to form a soil film with effect of suppressing water and gas-permeability. Structure of soil film was analyzed by means of X-ray diffraction (XRD) and infrared spectrometry (IR). And its mechanism of water inhibition was illustrated with DSC and TG curves. Its influence on grass-planting was tested through the instruments of water detector. The results show that sorbitol anhydride stearate(Span 80)could well disperse the Japanese wax and make it combine with the clay which is also dispersed. The pores among soil particles grew smaller and turned from hydrophilic into hydrophobic, in which way resistance to water penetrating through the film was increased. Experimental grass grows normally on sandy soil with the soil film in the artificial desert climate box, indicating that the soil particles modified with Japanese wax is an effective method to inhibit water evaporation.

  18. Trade-offs between soil hydrology and plant disease effects after biochar amendment in sandy soil

    Science.gov (United States)

    Verheijen, Frank; Silva, Flavio; Amaro, Antonio; Pinto, Gloria; Mesquita, Raquel; Jesus, Claudia; Alves, Artur; Keizer, Jacob

    2015-04-01

    Biochar can affect multiple soil-based ecosystem services to varying extents, leading to trade-offs. Improvements in plant-available water have predominantly been found at high biochar application rates in sandy soils. Reductions in plant diseases after biochar application have been found in various horticultural plants, and trees such as maple and oak, mostly at relatively low biochar application rates. Serious damage to Eucalyptus globulus has been reported since 1999 when frequent and severe defoliation of young trees was observed, and eucalypts are the major tree species in commercial forestry plantations of Portugal, forming an important economic activity. Here we investigated simultaneous effects on plant available water and on disease suppression of eucalypt, in a completely randomised full factorial greenhouse pot experiment, using a range of woody feedstock biochar concentrations in sandy soil. Treatments included plant inoculation with the fungus Neofusicoccum kwambonambiense and cycles of acute drought stress. Preliminary results showed delayed wilting for plants treated with 3-6% biochar, but also increased stem lesion length. These results suggest a trade-off between effects on water availability and disease for Eucalyptus globulus plants in the selected sandy soil amended with this specific biochar, at the selected application rates.

  19. Quantitative Retrieval of Soil Nutrient in Sandy Land Based on BJ-1 Multispectral Image

    Science.gov (United States)

    Wu, Junjun; Li, Zengyuan; Gao, Zhihai; Wang, Bengyu; Bai, Lina; Sun, Bin; Li, Changlong; Ding, Xiangyuan

    2014-11-01

    To research an indicator for sandy information, this paper conducts a study on soil nutrient in sandy land. Firstly, the difference of soil nutrient between sandy land and the other was analyzed. Secondly, the correlation between soil nutrient index and band was studied. Then the best inversion band and model was determined and evaluated. Finally, the distribution of soil nutrient was obtained. As the result indicated that the divergence of total nitrogen in different land was the maximum among the three nutrient indicators. With the development of desertification, total nitrogen declined dramatically. The correlation coefficient between each band and total nitrogen was relatively higher, and it reached 0.6. In addition, taking the reciprocal for the sum of three bands as the independent variable was an excellent choice, it could reflect the sandy information better than the single band. The quantitative retrieval model was checked by independent sample, and RMSE was 0.0407.

  20. Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2009-01-01

    the water retention curve), both exhibiting similar and exponential relationships with D50. Under variably saturated conditions, higher Dp and ka in coarser sand (larger D50) were observed due to rapid gas diffusion and advection through the less tortuous large-pore networks. In addition, soil compaction......The soil gas diffusion coefficient (Dp) and air permeability (ka) and their dependency on soil air content ( ) control gas diffusion and advection in soils. This study investigated the effects of average particle size (D50) and dry bulk density ( b) on Dp and ka for six sandy soils under variably...... saturated conditions. Data showed that particle size markedly affects the effective diameter of the drained pores active in leading gas through the sample at –100 cm H2O of soil water matric potential (calculated from Dp and ka) as well as the average pore diameter at half saturation (calculated from...

  1. Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel.

    Science.gov (United States)

    Borowik, Agata; Wyszkowska, Jadwiga; Wyszkowski, Mirosław

    2017-09-10

    This study determined the susceptibility of cultured soil microorganisms to the effects of Ekodiesel Ultra fuel (DO), to the enzymatic activity of soil and to soil contamination with PAHs. Studies into the effects of any type of oil products on reactions taking place in soil are necessary as particular fuels not only differ in the chemical composition of oil products but also in the composition of various fuel improvers and antimicrobial fuel additives. The subjects of the study included loamy sand and sandy loam which, in their natural state, have been classified into the soil subtype 3.1.1 Endocalcaric Cambisols. The soil was contaminated with the DO in amounts of 0, 5 and 10 cm(3) kg(-1). Differences were noted in the resistance of particular groups or genera of microorganisms to DO contamination in loamy sand (LS) and sandy loam (SL). In loamy sand and sandy loam, the most resistant microorganisms were oligotrophic spore-forming bacteria. The resistance of microorganisms to DO contamination was greater in LS than in SL. It decreased with the duration of exposure of microorganisms to the effects of DO. The factor of impact (IFDO) on the activity of particular enzymes varied. For dehydrogenases, urease, arylsulphatase and β-glucosidase, it had negative values, while for catalase, it had positive values and was close to 0 for acid phosphatase and alkaline phosphatase. However, in both soils, the noted index of biochemical activity of soil (BA) decreased with the increase in DO contamination. In addition, a positive correlation occurred between the degree of soil contamination and its PAH content.

  2. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1996-01-01

    .), or it was applied to ryegrass one month after sowing. In a sandy loam soil, 62% of the incorporated urine N and 78% of the incorporated urea N was recovered in three cuts of herbage after 5 months. In a sandy soil, 51-53% of the labelled N was recovered in the herbage and the distribution of labelled N in plant...... and soil was not significantly different for incorporated urine and urea. Almost all the supplied labelled N was accounted for in soil and herbage in the sandy loam soil, whereas 33-34% of the labelled N was unaccounted for in the sandy soil. When the stored urine was applied to the soil surface, 20...... unaccounted for was probably mainly lost by ammonia volatilization. Significantly more urine- than urea-derived N (36 and 19%, respectively) was immobilized in the sandy loam soil, whereas the immobilization of N from urea and urine was similar in the sandy soil (13-16%). The distribution of urine N, whether...

  3. Solute leaching in a sandy soil with a water-repellent surface layer: a simulation.

    NARCIS (Netherlands)

    Rooij, de G.H.; Vries, de P.

    1996-01-01

    Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field

  4. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    for each rotation: mouldboard ploughing to a depth of 20 cm (MP); harrowing to a depth of 8–10 cm (H); and direct drilling (D) at two experimental sites with a sandy loam soil and different water budgets in Denmark. The Muencheberg soil quality rating (M-SQR) method and simpler soil quality indices (i...

  5. Measurement and Computation of Movement of Bromide Ions and Carbofuran in Ridged HUmic-Sandy Soil

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2010-01-01

    Water flow and pesticide transport in the soil of fields with ridges and furrows may be more complex than in the soil of more level fields. Prior to crop emergence, the tracer bromide ion and the insecticide carbofuran were sprayed on the humic-sandy soil of a potato field with ridges and furrows. R

  6. Bioremediation of Creosote - contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    Bioremediation of creosote-contaminated soil was studied employing the methods of soil microbial biology and using new gas chromatography-mass spectrometry-mass spectrometry analytical approach. The changes of the soil microbial community under the polycyclic aromatic hydrocarbons (PAH) pollution impact were analyzed and described, as well as the changes during the bioremediation experiments. Laboratory-scale bioremediation experiments using the soil microbial community (consisted of bacteria...

  7. Recharge in northern clime calcareous sandy soils: soil water chemical and carbon-14 evolution

    Science.gov (United States)

    Reardon, E. J.; Mozeto, A. A.; Fritz, P.

    1980-11-01

    Chemical analyses were performed on soil water extracted from two cores taken from a sandy calcareous soil near Delhi, Ontario. Calcite saturation is attained within the unsaturated zone over short distances and short periods of time, whereas dolomite undersaturation persists to the groundwater table. The progressive dissolution of dolomite by soil water, within the unsaturated zone, after calcite saturation is reached results in calcite supersaturation. Deposition of iron and manganese oxyhydroxide phases occurs at the carbonate leached/unleached zone boundary. This is a result of soil water neutralization due to carbonate dissolution during infiltration but may also reflect the increased rate of oxidation of dissolved ferrous and manganous ions at higher pH's. The role of bacteria in this process has not been investigated. The depth of the carbonate leached/unleached zone boundary in a calcareous soil has important implications for 14C groundwater dating. The depth of this interface at the study site (-2 m) does not appear to limit 14C diffusion from the root zone to the depth at which carbonate dissolution occurs. Thus, soil water achieves open system isotopic equilibrium with the soil CO 2 gas phase. It is calculated that in soils with similar physical properties to the study soil but with depths of leaching of 5 m or more, complete 14C isotopic equilibration of soil water with soil gas would not occur. Soil water, under these conditions would recharge to the groundwater exhibiting some degree of closed system 14C isotopic evolution.

  8. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha-1 yr-1 (7.5 ton ha-1 yr-1). The soils were characterized for chemical and physical properties. Tomato was planted...... in a greenhouse using soil samples from the field and vegetative and yield parameters (plant height, stem diameter, leaf number, and fruit yield), water productivity, and harvest index were evaluated. All compost types significantly increased soil total carbon, total nitrogen, pH, electrical conductivity...

  9. Transport and Retention of Toxoplasma gondii Oocysts in Loamy Sand and Sandy Loam Soils

    Science.gov (United States)

    Kinsey, E. N.; Korte, C.; L'Ollivier, C.; Dubey, J. P.; Aurélien, D.; Darnault, C. J. G.

    2016-12-01

    Toxoplasma gondii is one of the most prevalent parasites affecting warm-blooded animals and humans. It has a complex life cycle that involves a wide variety of intermediate hosts with felids as a definitive host. Humans may contract it through consumption of infected, undercooked meat or by water or food sources contaminated with the oocyst form of the parasite. Infection of pregnant women can cause stillbirth, neurological effects or blindness. Because of the prevalence of cats, including on farms where oocyst-contaminated cat feces, animal feed, soil and water have been found, T. gondii is spread almost throughout the entire globe. It has been implicated or suspected in waterborne infections since the 1990s. This study aims to characterize the transport and retention of T. gondii oocysts in field soils. The four soils used were collected from fallow and cultivated fields in Illinois and Utah, USA. They are classified as loamy sands and sandy loams. Soil columns were subjected to continuous artificial rainfall until they reached steady state at which point pulses that included 2.5 million T. gondii oocysts (Me49 strain) and KBr as a tracer were added. After the pulse infiltrated, continuous rainfall was resumed. Rain applied all columns was a 1 mM KCl solution. Leachate samples were collected, analyzed using qPCR for T. gondii and bromide ions and breakthrough curves were produced. Soil was sliced into 1 to 2 cm sections, for which water content and T. gondii concentration were measured to access degree of saturation and oocyst retention.

  10. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-04-01

    Soil piping is a complex land degradation process, which involves the hydraulic removal of soil particles by subsurface flow. This process is frequently underestimated and omitted in most soil erosion studies. However, during the last decades several studies reported the importance of soil piping in various climatic zones and for a wide range of soil types. Compared to sheet, rill and gully erosion, very few studies focused on the factors controlling piping and, so far, there is no research study dealing with the effects of plant roots on piping susceptibility of soils having a low cohesion. The objective of this study is therefore to assess the impact of grass root density (RD) on soil piping in sandy soils using the pinhole test. The pinhole test involves a water flow passing through a hole of 1 mm diameter in a soil specimen (sampled using a metal ring with a diameter of 5 cm and a length of 8 cm), under varying hydraulic heads (50 mm, 180 mm, 380 mm and 1020 mm; Nadal-Romero et al., 2011). To provide a quantitative assessment piping susceptibility of the soil sample, the pipeflow discharge (cm3 s-1) and the sediment discharge (g s-1) were measured every minute during a five minute test. Bare and root-permeated samples were tested, using a sandy soil with a sand, silt, clay content of respectively, 94%, 4% and 2%. The root-permeated topsoil samples were taken in field plots sown with a mixture of grasses with fibrous roots. All soil samples were placed on a sandbox with a 100 mm head for 24 hours to ensure a similar water content for all samples. In total, 67 pinhole tests (lasting 5 minutes each) were conducted, i.e. 43 root-permeated soil samples with RD ranging from 0.01 to 0.93 kg m-3 and 24 root-free soil samples as a reference. Clear piping erosion could be observed in 65% of the root-free soil samples, whereas only 17% of rooted soil samples revealed clear piping erosion during the tests. Statistical analyses show that there is a negative correlation (-0

  11. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    Directory of Open Access Journals (Sweden)

    Silva João Eudes da

    2002-01-01

    Full Text Available Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.

  12. Improvement of Water Movement in an Undulating Sandy Soil Prone to Water Repellency

    NARCIS (Netherlands)

    Oostindie, K.; Dekker, L.W.; Wesseling, J.G.; Ritsema, C.J.

    2011-01-01

    The temporal dynamics of water repellency in soils strongly influence water flow. We investigated the variability of soil water content in a slight slope on a sandy fairway exhibiting water-repellent behavior. A time domain reflectometry (TDR) array of 60 probes measured water contents at 3-h

  13. Rain water transport and storage in a model sandy soil with hydrogel particle additives.

    Science.gov (United States)

    Wei, Y; Durian, D J

    2014-10-01

    We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.

  14. Contribution of individual sorbents to the control of heavy metal activity in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2001-01-01

    A multisurface model is used to evaluate the contribution of various sorption surfaces to the control of heavy metal activity in sandy soil samples at pH 3.7-6.1 with different sorbent contents. This multisurface model considers soil as a set of independent sorption surfaces, i.e. organic matter (NI

  15. Factors affecting N immobilisation/mineralisation kinetics for cellulose-, glucose- and straw-amended sandy soils

    NARCIS (Netherlands)

    Vinten, A.J.A.; Whitmore, A.P.; Bloem, J.; Howard, R.; Wright, F.

    2002-01-01

    The kinetics of nitrogen immobilization/mineralization for cellulose-, glucose- and straw-amended sandy soils were investigated in a series of laboratory incubations. Three Scottish soils expected to exhibit a range of biological activity were used: aloamy sand, intensively cropped horticultural soi

  16. Irrigation and nitrogen use efficiency of Thuja occidentalis grown on sandy soils

    NARCIS (Netherlands)

    Pronk, A.A.

    2004-01-01

    A combined conifer growth - soil water and nitrogen balance model was calibrated to simulate dry mass production and partitioning, water and nitrogen demand and nitrogen losses for Thuja occidentalis grown for two years on a sandy soil. Light interception was successfully described by the row-of-cub

  17. Assessing the biological activity of oil-contaminated soddy-podzolic soils with different textures

    Science.gov (United States)

    Vershinin, A. A.; Petrov, A. M.; Akaikin, D. V.; Ignat'ev, Yu. A.

    2014-02-01

    The respiratory activity features in oil-contaminated soddy-podzolic soils of different textures have been studied. Unidirectional processes occur in contaminated loamy and loamy sandy soddy-podzolic soils; their intensities depend on the soil parameters. The mineralization rates of the oil products and the activity of the microflora in loamy soils exceed the corresponding parameters for loamy sandy soils. The long-term impact of oil and its transformation products results in more important disturbances of the microbial community in light soils. It has been shown that light soils containing 9% oil require longer time periods or more intensive remediation measures for the restoration of soil microbial cenoses disturbed by the pollutant.

  18. Effect of Coated Urea with Humic-Calcium on Transformation of Nitrogen in Coastal Sandy Soil: A Soil Column Method

    Directory of Open Access Journals (Sweden)

    Sulakhudin

    2010-01-01

    Full Text Available Effect of Coated Urea with Humic-Calcium on Transformation of Nitrogen in Coastal Sandy Soil: A Soil ColumnMethod (Sulakhudin, A Syukur, D Shiddieq and T Yuwono: In coastal sandy soil, mainly nitrogen losses due toleaching resulted to low fertilizer efficiency. Slow-release N fertilizers are proposed to minimize these losses, andhumic-calcium coated urea has been examined. A soil column method was used to compare the effects of coated ureawith humic-calcium on transformation and leaching loss of N in coastal sandy soil. The experiment aid to compare twokinds sources of humic substances (cow manure and peat which mixed with calcium as coated urea on transformation,vertical distribution and leaching N in coastal sandy soil. The concentration of humic-calcium coated urea i.e.1%, 5%and 10% based on their weight. The results showed that urea coated with humic-calcium from cow manure (UCHMand humic-calcium from peat (UCHP increased the N total and available N in the soil and decreased leaching loss ofN from the soil column. Compared to UCHP, UCHM in all concentration showed N-nitrate higher than N-ammonium onincubation length 2, 4 and 6 weeks. The N leached from a costal sandy soil with application coated urea with UCHMranged from 21.18% to 23.72% of the total N added as fertilizer, for coated urea with UCHP they ranged between21.44% and 23.25%, whereas for urea (control reached 29.48%. Leaching losses of mineral N were lower when ureacoated with UCHM compared to urea coated with UCHP or urea fertilizer. The study concluded that the UCHM isbetter than UCHP in decreasing N leached from coastal sandy soil

  19. Copper Accumulation, Availability and Adsorption Capacity in Sandy Soils of Vineyards with Different Cultivation Duration

    Science.gov (United States)

    Mallmann, F. J. K.; Miotto, A.; Bender, M. A.; Gubiani, E.; Rheinheimer, D. D. S.; Kaminski, J.; Ceretta, C. A.; Šimůnek, J.

    2015-12-01

    Bordeaux mixture is a copper-based (Cu) fungicide and bactericide applied in vineyards to control plant diseases. Since it is applied several times per year, it accumulates in large quantities on plants and in soil. This study evaluates the Cu accumulation in, and desorption kinetics and adsorption capability of a sandy Ultisol in a natural field and in 3 vineyards for 5 (V1), 11 (V2), and 31 (V3) years in South of Brazil. Soil samples were collected in 8 depths (0-60 cm) of all four soil profiles, which all displayed similar soil properties. The following soil properties were measured: pH, organic matter (OM), soil bulk density, Cu total concentration, and Cu desorption and adsorption curves. A two first-order reactions model and the Langmuir isotherm were fitted to the desorption and adsorption curves, respectively. An increase in the total mass of Cu in the vineyards followed a linear regression curve, with an average annual increase of 7.15 kg ha-1. Cu accumulated down to a depth of 5, 20, and 30 cm in V1, V2 and V3, respectively, with the highest Cu content reaching 138.4 mg kg-1 in the 0-5 cm soil layer of V3. Cu desorption parameters showed a high correlation with its total concentration. Approximately 57 and 19% of total Cu were immediately and slowly available, respectively, indicating a high potential for plant absorption and/or downward movement. Cu concentrations extracted by EDTA from soil layers not affected by anthropogenic Cu inputs were very low. The maximum Cu adsorption capacity of the 0-5 and 5-10 cm soil layers increased with the vineyard age, reaching concentrations higher than 900 mg kg-1. This increase was highly related to OM and pH, which both increased with cultivation duration. Despite of low clay content of these soils, there is low risk of groundwater Cu contamination for actual conditions. However, high Cu concentrations in the surface layer of the long-term vineyards could cause toxicity problems for this and for companion crops.

  20. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... and significantly decreased bulk density, with no effect on plant available water compared to the control. Fresh and dry fruit weights were significantly increased after compost addition. Plant height, leaf number, stem diameter, and total biomass did not significantly improve after compost addition. Spent mushroom...

  1. Effects of Carboxymethylcelluloses (CMC) on Some Hydraulic Properties of Sandy Soil

    Institute of Scientific and Technical Information of China (English)

    ANDRY Henintsoa; INOUE Mitsuhiro; MORITANI Shigeoki; UZOMA Kingsley Chinyere

    2010-01-01

    The property of hydrophilic polymers capable absorbing huge volumes of water led to many practical applications of these new materials in arid regions for improving the water retention in sandy soils. Effects of four carboxymethylcelluloses (CMC), mixed at various rates with the sandy soil, on the water-holding capacity and hydraulic conductivity (Ks) when leached with distilled water (simulating rain), tap water, and saline water were evaluated. The maximum water absorption of CMCs ranged between 80 and 100 kg. kg-1 of polymer; however, the absorbent swelling capacity decreased significantly with increasing the salt concentration in the solution. The water absorption capacity of CMCs decreased significantly when incorporated in the sandy soil compared to that of the absorbent alone. Application of CMC increased significantly the available water content up to 3 ±0.5 times. All soils treated with CMCs showed a significant lower in Ks compared to the control soil. Meanwhile, Ks was found increased with increasing the salt concentration in the leaching solution. This understanding of characteristics of the absorbents and the interactions among absorbents, soil, and irrigation water quality would be of help in water management of sandy soil.

  2. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    Science.gov (United States)

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  3. Desorption kinetics of benzene in a sandy soil in the presence of powdered activated carbon.

    Science.gov (United States)

    Choi, J-W; Kim, S-B; Kim, D-J

    2007-02-01

    Desorption kinetics of benzene was investigated with a modified biphasic desorption model in a sandy soil with five different powdered activated carbon (PAC) contents (0, 1, 2, 5, 10% w/w) as sorbents. Sorption experiments followed by series dilution desorption were conducted for each sorbent. Desorption of benzene was successively performed at two stages using deionized water and hexane. Modeling was performed on both desorption isotherm and desorption rate for water-induced desorption to elucidate the presence of sorption-desorption hysteresis and biphasic desorption and if present to quantify the desorption-resistant fraction (q (irr)) and labile fraction (F) of desorption site responsible for rapid process. Desorption isotherms revealed that sorption-desorption exhibited a severe hysteresis with a significant fraction of benzene being irreversibly adsorbed onto both pure sand and PAC, and that desorption-resistant fraction (q (irr)) increased with PAC content. Desorption kinetic modeling showed that desorption of benzene was biphasic with much higher (4-40 times) rate constant for rapid process (k (1)) than that for slow process (k (2)), and that the difference in the rate constant increased with PAC content. The labile fraction (F) of desorption site showed a decreasing tendency with PAC. The experimental results would provide valuable information on remediation methods for soils and groundwater contaminated with BTEX.

  4. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  5. Application of Wenner Configuration to Estimate Soil Water Content in Pine Plantations on Sandy Land

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To estimate the mean value of surface soil water content rapidly, accurately, and nonintrusively, field investigations on soil electrical resistivity (SER) with the Yokogawa 324400 earth resistivity meter and the surface (0-150 cm) soil water content (SWC) with time domain reflectometry (TDR), together with the abiotic factors including soil texture, structure,and salinity concentrations were conducted in the Mongolian pine (Pinus sylvestris var. mongolica) plantations on a sandy land. The measurement of SER was based on the 4-probe Wenner configuration method. Relationships between the values of SWC and SER were obtained based on analysis of the abiotic factors of the research site, which play a key role in affecting the soil electrical resistivity. Results indicate that the SER meter could be used to estimate the mean value of SWC in the Mongolian pine plantations on the sandy land during the growing seasons. The bulky nature of the equipment simplified the cumbersome measurements of soil water content with the general methods. It must be noted that the Wenner configuration method could only provide the mean values of the SWC, and the soil texture, structure,temperature, and solute concentrations influenced the SER and further affected the estimation of the SWC by the SER meter. Therefore, the results of this study could be applied on a sandy land during the growing seasons only. However,the SWC of other soil types also may be obtained according to the individual soil types using the procedures of this study.

  6. Experiments on the movement of pesticides in sandy soils to groundwater : prospects of testing preferential transport models

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2012-01-01

    Many agricultural areas with humic-sandy and loamy-sandy soils are used also for the extraction of water for drinking-water supply. Model concepts have been developed for the fast preferential transport of plant protection products (pesticides) in such soils, e.g. by fingered and funneled flow. An i

  7. Effect of Land Cover Change on Soil Phosphorus Fractions in Southeastern Horqin Sandy Land, Northern China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qiong; ZENG De-Hui; FAN Zhi-Ping; D.K.LEE

    2008-01-01

    In the past 50 years, large areas of the Horqin sandy land were afforested to prevent desertification. Although the afforestation policy appears successful, many people now doubt whether it is suitable to plant trees with high density on the poor soils in semiarid regions. Little is known about the impacts of afforestation on the sandy soil properties, although the evaluation of these impacts is fundamental to judge the rationality of afforestation policy. Soil phosphorus (P) fractions, acid phosphomonoesterase activities, and other soil chemical properties were compared among five adjoining typical ecosystems on poor sandy soils in southeastern Horqin sandy land. The ecosystems studied are natural elm savanna, degraded grassland, Mongolian pine (Pinus sylvestris var. Mongolica) plantation, Chinese pine (Pinus tabulaeformis) plantation, and mixed plantation of Mongolian pine and poplar (Populus simonii). The results showed that organic P dominated soil P (47%-65%) was the principal source of available P. The degradation of elm savanna to grassland significantly reduced soil pH and resulted in an overall reduction in soil fertility, although slightly increased labile inorganic P. Grassland afforestation had no significant influence on soil pH, organic carbon, and total N but significantly reduced total P. Impacts of grassland afforestation on soil P fractions depended on tree species. Natural elm savanna had higher soil P conserving ability than artificial plantations. Therefore, with the aim of developing a sustainable ecosystem, we suggested that vegetations with low nutrient demand (particularly P) and efficient nutrient cycling would be more suitable for ecosystem restoration in the semiarid region.

  8. Soil Inorganic Nitrogen and Microbial biomass Carbon and Nitrogen Under Pine Plantations in Zhanggutai Sandy Soil

    Institute of Scientific and Technical Information of China (English)

    YU Zhan-Yuan; CHEN Fu-Sheng; ZENG De-Hui; ZHAO Qiong; CHEN Guang-Sheng

    2008-01-01

    The dynamics of soil inorganic nitrogen (NH+4-N and NO-3N) and microbial biomass carbon (Cmic) and nitrogen (Nmic) under 30-year-old fenced Pinus sylvestris L. var. mongolica Litvin (SF), unfenced P. sylvestris L. var. mongolica Litvin (SUF), and unfenced Pinus densiflora Siebold et Zucc. (DUF) plantations in the Zhanggutai sandy soil of China were studied during Apr. to Oct. 2004 by the in situ closed-top core incubation method. All mentioned C and N indices in each stand type fluctuated over time. The ranges of inorganic N, Cmic, and Nmic contents in the three stand types were 0.7-2.6, 40.0-128.9, and 5.4-15.2 μg g-1, respectively. The average contents of soil NH+4-N and Cmic under the three 30-year-old pine plantations were not different. However, soil NO-3-N and total inorganic N contents decreased in the order of SUF > SF > DUF, the Nmic content was in the order of SF = SUF > DUF, and the Cmic:Nmic ratio was in the order of SUF = DUF > SF. Seasonal variations were observed in soil inorganic N, microbial biomass, and plant growth. These seasonal variations had certain correlations with microbe and plant N use in the soil, and their competition for NH+4-N was mostly regulated by soil N availability. The influence of tree species on inorganic N and Nmic were mainly because of differences in litter quality. Lack of grazing decreased the Cmic:N ratio owing to decreased carbon output and increased the ability of soil to supply N. The soil N supply under the P. sylvestris var. mongolica plantation was lower than under the P. densiflora plantation.

  9. Distribution of transformed organic matter in structural units of loamy sandy soddy-podzolic soil

    Science.gov (United States)

    Kogut, B. M.; Yashin, M. A.; Semenov, V. M.; Avdeeva, T. N.; Markina, L. G.; Lukin, S. M.; Tarasov, S. I.

    2016-01-01

    The effect of land use types and fertilizing systems on the structural and aggregate composition of loamy sandy soddy-podzolic soil and the quantitative parameters of soil organic matter has been studied. The contribution of soil aggregates 2-1 mm in size to the total Corg reserve in the humus horizon is higher than the contributions of other aggregates by 1.3-4.2 times. Reliable correlations have been revealed between the contents of total (Corg), labile (Clab), and active (C0) organic matter in the soil. The proportion of C0 is 44-70% of Clab extractable by neutral sodium pyrophosphate solution. The contributions of each of the 2-1, 0.5-0.25, and humus horizon of loamy sandy soddy-podzolic soil, the active, slow, and passive pools contain 6-11, 34-65, and 26-94% of the total Corg, respectively.

  10. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    Science.gov (United States)

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  11. The effect of soil type on the bioremediation of petroleum contaminated soils.

    Science.gov (United States)

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil.

  12. Heavy metal contamination in sandy beach macrofauna communities from the Rio de Janeiro coast, Southeastern Brazil.

    Science.gov (United States)

    Cabrini, Tatiana M B; Barboza, Carlos A M; Skinner, Viviane B; Hauser-Davis, Rachel A; Rocha, Rafael C; Saint'Pierre, Tatiana D; Valentin, Jean L; Cardoso, Ricardo S

    2017-02-01

    We evaluated concentrations of eight heavy metals Cr, Zn, Pb, Ni, Cu, Cd, Co and V, in tissues of representative macrofauna species from 68 sandy beaches from the coast of Rio de Janeiro state. The links between contamination levels and community descriptors such as diversity, evenness, density and biomass, were also investigated. Metal concentrations from macrofaunal tissues were compared to maximum permissible limits for human ingestion stipulated by the Brazilian regulatory agency (ANVISA). Generalized linear models (GLM's) were used to investigate the variability in macrofauna density, richness, eveness and biomass in the seven different regions. A non-metric multidimensional scaling analysis (n-MDS) was used to investigate the spatial pattern of heavy metal concentrations along the seven regions of Rio de Janeiro coast. Variation partitioning was applied to evaluate the variance in the community assemblage explained by the environmental variables and the heavy metal concentrations. Our data suggested high spatial variation in the concentration of heavy metals in macrofauna species from the beaches of Rio de Janeiro. This result highlighted a diffuse source of contamination along the coast. Most of the metals concentrations were under the limits established by ANVISA. The variability in community descriptors was related to morphodynamic variables, but not with metal contamination values, indicating the lack of direct relationships at the community level. Concentration levels of eight heavy metals in macrofauna species from 68 sandy beaches on Rio de Janeiro coast (Brazil) were spatially correlated with anthropogenic activities such as industrialization and urbanization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland.

    Science.gov (United States)

    Zuo, Xiaoan; Wang, Shaokun; Lv, Peng; Zhou, Xin; Zhao, Xueyong; Zhang, Tonghui; Zhang, Jing

    2016-01-01

    The trait-based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gene sequencing. We also examined associations of soil fungal diversity with plant functional diversity reflected by the dominant species' traits in community (community-weighted mean, CWM) and the dispersion of functional trait values (FD is). We further used the structure equation model (SEM) to evaluate how plant richness, biomass, functional diversity, and soil properties affect soil fungal diversity in sandy grassland restoration. Soil fungal richness in mobile dune and semifixed dune was markedly lower than those of fixed dune and grassland (P functional diversity explained nearly 70% variances of soil fungal richness. Strong association of soil fungal richness with the dominant species in the community supported the mass ratio hypothesis. Our results clearly highlight the role of plant functional diversity in enhancing associations of soil fungal diversity with community structure and soil properties in sandy grassland ecosystems.

  14. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    Science.gov (United States)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    Sandy soils are used in agriculture in many regions of the world. The share of sandy soils in Poland is about 55%. The aim of this study was to assess spatial variability of soil physical and chemical properties affecting soil quality and crop yields in the scale of field (40 x 600 m) during three years of different weather conditions. The experimental field was located on the post glacial and acidified sandy deposits of low productivity (Szaniawy, Podlasie Region, Poland). Physical soil quality indicators included: content of sand, silt, clay and water, bulk density and those chemical: organic carbon, cation exchange capacity, acidity (pH). Measurements of the most soil properties were done at spring and summer each year in topsoil and subsoil layer in 150 points. Crop yields were evaluated in places close to measuring points of the soil properties. Basic statistics including mean, standard deviation, skewness, kurtosis minimal, maximal and correlations between the soil properties and crop yields were calculated. Analysis of spatial dependence and distribution for each property was performed using geostatistical methods. Mathematical functions were fitted to the experimentally derived semivariograms that were used for mapping the soil properties and crop yield by kriging. The results showed that the largest variations had clay content (CV 67%) and the lowest: sand content (5%). The crop yield was most negatively correlated with sand content and most positively with soil water content and cation exchange capacity. In general the exponential semivariogram models fairly good matched to empirical data. The range of semivariogram models of the measured indicators varied from 14 m to 250 m indicate high and moderate spatial variability. The values of the nugget-to-sill+nugget ratios showed that most of the soil properties and crop yields exhibited strong and moderate spatial dependency. The kriging maps allowed identification of low yielding sub-field areas that

  15. Irrigation initiation timing in soybean grown on sandy soils in Northeast Arkansas

    Science.gov (United States)

    Irrigation initiation timing was evaluated in furrow-irrigated soybean field with sandy soils in Mississippi County, AR. A major objective of this 2015 study was to validate and expand irrigation timing recommendations that pair plant growth measures with weather cues including use of local weather ...

  16. Effects of DCD addition to slurry on nitrate leaching in sandy soils

    NARCIS (Netherlands)

    Corré, W.J.; Zwart, K.B.

    1995-01-01

    The effects of the addition of the nitrification inhibitor dicyandiamide (DCD) to cattle slurry, applied in autumn to an arable sandy soil, were investigated in a three-year field experiment in the Netherlands. Treatments included application of slurry with DCD in November and December, application

  17. Transport of water and solutes in wettable and water repellent sandy soils

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.

    1996-01-01

    The research yielded the following conclusions and results: preferential flow can be expected in recently deposited, loosely packed, wettable dune sands; preferential flow is common in most water-repellent sandy soils; distribution flow in topsoils isa process of major importance, resulting in a

  18. Biochar and Mill Ash Use as Soil Amendments to Grow Sugarcane in Sandy Soils of South Florida

    Science.gov (United States)

    Alvarez-Campos, O.; Lang, T. A.; Bhadha, J. H.; McCray, M.; Gao, B.; Glaz, B.; Daroub, S. H.

    2015-12-01

    The use of agricultural and urban organic residues as amendments provides an option to improve sugarcane production in sandy soils located northwest of the Everglades Agricultural Area, while reducing waste. This study was conducted to determine the effect of mill ash and three biochars on sugarcane yield and sandy soil properties. Mill ash and biochars produced from hardwood yard waste (HY), barn shavings with horse manure (HM), and rice hulls (RH) were incorporated at 1% and 2% (by weight) to sandy soils in a lysimeter experiment. A control without amendment and an often-used commercial practice of mill ash applied at 6% (AS6) were also included. Results showed that RH2 and AS6 produced greater biomass and sucrose yield compared with the control. According to critical nutrient level analysis, RH and AS amendments also resulted in the highest silicon content, which had a positive correlation with increasing sugarcane yield. In addition, RH2 and AS6 increased total phosphorus, Mehlich-3 phosphorus, and cation exchange capacity (CEC) compared with the control. While CEC remained constant with AS2 and AS6 applications, CEC significantly increased over time with RH2. Moreover, higher amendment applications increased soil organic matter compared with the control and did not decrease over time, which suggests a positive influence for long term carbon sustainability and nutrient cycling in sandy soils. Overall, RH2 and AS6 have the most potential to be used as amendments in sandy soils of South Florida due to their positive effects on soil properties, which improved sugarcane yield. However, no negative consequences were found with the application of any other amendment in terms of sugarcane growth and soil quality. Future research should focus on the use of RH and AS amendments on long-term field-scale studies, and the economic feasibility of a single year application on plant and ratoon cane yields.

  19. Temporal stability of electrical conductivity in a sandy soil

    Science.gov (United States)

    Pedrera-Parrilla, Aura; Brevik, Eric C.; Giráldez, Juan V.; Vanderlinden, Karl

    2016-07-01

    Understanding of soil spatial variability is needed to delimit areas for precision agriculture. Electromagnetic induction sensors which measure the soil apparent electrical conductivity reflect soil spatial variability. The objectives of this work were to see if a temporally stable component could be found in electrical conductivity, and to see if temporal stability information acquired from several electrical conductivity surveys could be used to better interpret the results of concurrent surveys of electrical conductivity and soil water content. The experimental work was performed in a commercial rainfed olive grove of 6.7 ha in the `La Manga' catchment in SW Spain. Several soil surveys provided gravimetric soil water content and electrical conductivity data. Soil electrical conductivity values were used to spatially delimit three areas in the grove, based on the first principal component, which represented the time-stable dominant spatial electrical conductivity pattern and explained 86% of the total electrical conductivity variance. Significant differences in clay, stone and soil water contents were detected between the three areas. Relationships between electrical conductivity and soil water content were modelled with an exponential model. Parameters from the model showed a strong effect of the first principal component on the relationship between soil water content and electrical conductivity. Overall temporal stability of electrical conductivity reflects soil properties and manifests itself in spatial patterns of soil water content.

  20. Parameters of the occurrence of internal erosion processes in salty-sandy soils

    OpenAIRE

    Gajić Grozdana

    2005-01-01

    The study was aimed at defining the conditions of the occurrence of internal erosion in silty-sandy soils. The susceptibility of this soil to internal erosion depends on the porosity, particle-size composition and hydro-geo-mechanical parameters. Internal erosion stability was analyzed by the introduction of the coefficient of particle composition as the critical particle-size condition, which is in fact the coefficient of internal erosion (Kue). Based on the study results, mathematical model...

  1. Fire impacts on water repellency of sandy soils in SW Spanish coast

    Science.gov (United States)

    Jordán, Antonio; Zavala, Lorena M.; Gordillo-Rivero, Ángel J.; Muñoz-Rojas, Miriam; Keesstra, Saskia; Cerdá, Artemi

    2017-04-01

    Although water repellency of sandy soils from dune areas and their consequences (irregular wetting front, preferential flow pathways) are well studied, there is not much information about the effect of fire on hydrophobicity and its consequences in these areas. In this paper we study the in-depth variation of water repellency of burnt sandy soils from south-western Spain. Generally, it was observed that water repellency from unburnt forest soils is relatively higher than in shrublands and grasslands (where the lowest values were observed). However, the impact of fire caused a strong increase of hydrophobicity in the first two cases, with no major differences between them. This study confirms the presence of natural water repellency in sandy soils, as well as some of its consequences (irregular infiltration or increased surface water flow) depending on the type of vegetation, although the differences observed in burnt soils suggest that, although the composition of vegetation is important in the formation of natural water repellency, organic matter content is much more important in the case of burnt soils.

  2. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field......, it was found that soil pH, rather than biochar rates, was a driving environmental variable. For ASA, the methodological approach was challenged by product sorption, but results did not suggest that biochar significantly stimulated the enzyme activity. Crop yields of maize in field experiments with 10–100 Mg...

  3. Sustainable long-term intensive application of manure to sandy soils without phosphorus leaching

    DEFF Research Database (Denmark)

    Asomaning, Samuel K.; Abekoe, Mark K.; Dowuona, G.N.N.

    2015-01-01

    Long-term application of manure to sandy soils to ensure high crop productivity may lead to phosphorus (P) leaching, which, in turn, may deteriorate the quality of recipient waters because of eutrophication. The risk of P leaching depends on contents of aluminum (Al) and iron (Fe) oxides...... soils, whereas in the deepest soil layers the P contents in the cultivated and uncultivated soils were almost the same indicating very limited downward P transport despite long-term manure application. This was supported by comparable P concentrations in groundwater taken under cultivated...

  4. Impact of biochar addition on thermal properties of a sandy soil: modelling approach

    Science.gov (United States)

    Usowicz, Boguslaw; Lipiec, Jerzy; Lukowski, Mateusz; Bis, Zbigniew; Marczewski, Wojciech; Usowicz, Jerzy

    2017-04-01

    Adding biochar can alter soil thermal properties and increase the water holding capacity and reduce the mineral soil fertilization. Biochar in the soil can determine the heat balance on the soil surface and the temperature distribution in the soil profile through changes in albedo and the thermal properties. Besides, amendment of soil with biochar results in improvement of water retention, fertility and pH that are of importance in sandy and acid soils, widely used in agriculture. In this study we evaluated the effects of wood-derived biochar (0, 10, 20, and 40 Mg ha-1) incorporated to a depth of 0-15 cm on the thermal conductivity, heat capacity, thermal diffusivity and porosity in sandy soil under field conditions. In addition, soil-biochar mixtures of various percentages of biochar were prepared to determine the thermal properties in function of soil water status and density in laboratory. It was shown that a small quantity of biochar added to the soil does not significantly affect all the thermal properties of the soil. Increasing biochar concentration significantly enhanced porosity and decreased thermal conductivity and diffusivity with different rate depending on soil water status. The soil thermal conductivity and diffusivity varied widely and non-linearly with water content for different biochar content and soil bulk density. However, the heat capacity increased with biochar addition and water content linearly and was greater at higher than lower soil water contents. The measured and literature thermal data were compared with those obtained from the analytic model of Zhang et al. (2013) and statistical-physical model (Usowicz et al., 2016) based on soil texture, biochar content, bulk density and water content.

  5. Adsorption capacity of chosen sandy ground with respect to contaminants relocating with groundwater

    Directory of Open Access Journals (Sweden)

    Aniszewski Andrzej

    2017-03-01

    Full Text Available One of the most important problems concerning contaminant transport in the ground is the problem related to the definition of parameters characterizing the adsorption capacity of ground for the chosen contaminants relocating with groundwater. In this paper, for chloride and sulfate indicators relocating in sandy ground, the numerical values of retardation factors (Ra (treated as average values and pore groundwater velocities with adsorption (ux/Ra (in micro-pore ground spaces are taken into consideration. Based on 2D transport equation the maximal dimensionless concentration values (C*max c in the chosen ground cross-sections were calculated. All the presented numerical calculations are related to the unpublished measurement series which was marked in this paper as: October 1982. For this measurement series the calculated concentration values are compared to the measured concentration ones (C*max m given recently to the author of this paper. In final part of this paper the parameters characterizing adsorption capacity (Ra, ux/Ra are also compared to the same parameters calculated for the two earlier measurement series. Such comparison also allowed for the estimation of a gradual in time depletion of adsorption capacity for the chosen sandy ground.

  6. Soil erosion rates by wind-driven rain from a sandy soil in Denmark

    Science.gov (United States)

    Fister, W.; Kuhn, N. J.; Itin, N.; Tesch, S.; Heckrath, G.; Ries, J. B.

    2012-04-01

    Soil erosion by wind and water is able to cause severe soil loss from agricultural fields. Laboratory studies in recent years have shown that wind most probably has an increasing effect on soil erosion rates by water. However, field studies have so far not been able to quantify and proof this assumption explicitly. Especially the differentiation between the influence of windless and wind-driven erosion seems to be the major issue. The objectives of this study were, therefore, to explicitly investigate the importance of wind-driven rain in relation to erosion rates without the effect of wind by applying a newly developed Portable Wind and Rainfall Simulator (PWRS) that is able to simulate the processes both separately and simultaneously. The PWRS was used on bare sandy soil near Viborg, Denmark. Prior to simulation the soil was ploughed and after consolidation harrowed to create surface structures and roughness representing typical conditions after seed bed preparation. To facilitate the separation of specific influences by wind-driven rain and to avoid systematic errors a defined order of four consecutive test runs was established: 0) single wind test run for 10 min, 1) single rainfall test run on dry soil, 2) single rainfall test run on moist soil, 3) simultaneous wind and rainfall test run (wind-driven rainfall). Each rainfall simulation lasted for 30 minutes with a 30 min break in between to allow for initial drainage of the soil and for remounting sediment catchers. By utilizing a gutter in combination with wedge-shaped sediment traps it was possible to separate between splash and runoff erosion from the 2.2 m2 plot. The results show a wide range of soil detachment raging from zero up to more than 500 g m-2 in 30 minutes. Five out of nine test sequences support the theory that wind-driven rain causes more erosion than windless rain. The relation between the two processes is therefore not as clear as expected and seems to be dominated by the natural variability

  7. Review of soil contamination guidance

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1981-08-01

    A review of existing and proposed radioactive soil contamination standards and guidance was conducted for United Nuclear Corporation (UNC), Office of Surplus Facilities Management. Information was obtained from both government agencies and other sources during a literature survey. The more applicable standards were reviewed, evaluated, and summarized. Information pertaining to soil contamination for both facility operation and facility decommissioning was obtained from a variety of sources. These sources included: the Code of Federal Regulations, regulatory guides, the Federal Register, topical reports written by various government agencies, topical reports written by national laboratories, and publications from the American National Standards Institute (ANSI). It was difficult to directly compare the standards and guidance obtained from these sources since each was intended for a specific situation and different units or bases were used. However, most of the information reviewed was consistent with the philosophy of maintaining exposures at levels as low as reasonably achievable (ALARA).

  8. Vertical distribution of soil moisture and surface sandy soil wind erosion for different types of sand dune on the southeastern margin of the Mu Us Sandy Land, China

    Institute of Scientific and Technical Information of China (English)

    ChaoFeng Fu; JingBo Zhao; FanMin Mei; TianJie Shao; Jun Zuo

    2015-01-01

    Soil moisture is a critical state affecting a variety of land surface and subsurface processes. We report investigation results of the factors controlling vertical variation of soil moisture and sand transport rate of three types of dunes on the south-eastern margin of the Mu Us Sandy Land. Samples were taken from holes drilled to a depth of 4 m at different topographic sites on the dunes, and were analyzed for soil moisture, grain-size distribution and surface sediment discharge. The results show that: (1) The average soil moisture varies in different types of dunes, with the following sequences ordered from highest to lowest: in the shrubs-covered dunes and the trees-covered dunes the sequence is from inter-dunes lowland to windward slope to leeward slope. The average moisture in the bare-migratory sand dunes is sequenced from inter-dunes lowland to leeward slope to windward slope. (2) Vegetation form and surface coverage affect the range of soil moisture of different types of dunes in the same topographic position. The coefficient of variation of soil moisture for shrubs-covered dunes is higher than that of other types of dune. (3) The effect of shrubs on dune soil moisture is explained in terms of the greater ability of shrubs to trap fine-grained atmospheric dust and hold moisture. (4) The estimated sand transport rates over sand dunes with sparse shrubs are less than those over bare-migratory dunes or sand dunes with sparse trees, indi-cating that shrubs are more effective in inhibiting wind erosion in the sandy land area.

  9. Spectral induced polarization (SIP) measurement of NAPL contaminated soils

    Science.gov (United States)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2010-12-01

    The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the

  10. Parameters of the occurrence of internal erosion processes in salty-sandy soils

    Directory of Open Access Journals (Sweden)

    Gajić Grozdana

    2005-01-01

    Full Text Available The study was aimed at defining the conditions of the occurrence of internal erosion in silty-sandy soils. The susceptibility of this soil to internal erosion depends on the porosity, particle-size composition and hydro-geo-mechanical parameters. Internal erosion stability was analyzed by the introduction of the coefficient of particle composition as the critical particle-size condition, which is in fact the coefficient of internal erosion (Kue. Based on the study results, mathematical models and the functional correlation between water regime and resistant characteristics of silty-sandy soils, we defined the parameters of the occurrence of initial internal erosion and analyzed the effects of the practical application of the study results.

  11. Volatilisation of o-Xylene from Sandy Soil

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Christensen, Thomas Højlund; Brun, Adam

    1994-01-01

    The diffusive release of o-xylene from two soils with different contents of organic carbon (1.1 % and 0.11 % TOC) and with two different water contents (app. 5 % w/w and 15 % w/w was studied in the laboratory. The soils were spiked with o-xylene in the laboratory. The fluxes were measured over...

  12. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    Science.gov (United States)

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (bank soil (bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport

  13. Geochemistry Of Lead In Contaminated Soils: Effects Of Soil Physico-Chemical Properties

    Science.gov (United States)

    Saminathan, S.; Sarkar, D.; Datta, R.; Andra, S. P.

    2006-05-01

    Lead (Pb) is an environmental contaminant with proven human health effects. When assessing human health risks associated with Pb, one of the most common exposure pathways typically evaluated is soil ingestion by children. However, bioaccessibility of Pb primarily depends on the solubility and hence, the geochemical form of Pb, which in turn is a function of site specific soil chemistry. Certain fractions of ingested soil-Pb may not dissociate during digestion in the gastro-intestinal tract, and hence, may not be available for transport across the intestinal membrane. Therefore, this study is being currently performed to assess the geochemical forms and bioaccessibility of Pb in soils with varying physico-chemical properties. In order to elucidate the level of Pb that can be ingested and assimilated by humans, an in-vitro model that simulates the physiological conditions of the human digestive system has been developed and is being used in this study. Four different types of soils from the Immokalee (an acid sandy soil with minimal Pb retention potential), Millhopper (a sandy loam with high Fe/Al content), Pahokee (a muck soil with more than 80% soil organic matter), and Tobosa series (an alkaline soil with high clay content) were artificially contaminated with Pb as lead nitrate at the rate equivalent to 0, 400, 800, and 1200 mg/kg dry soil. Analysis of soils by a sequential extraction method at time zero (immediately after spiking) showed that Immokalee and Millhopper soils had the highest amount of Pb in exchangeable form, whereas Pahokee and Tobosa soils had higher percentages of carbonate-bound and Fe/Al-bound Pb. The results of in-vitro experiment at time zero showed that majority of Pb was dissolved in the acidic stomach environment in Immokalee, Millhopper, and Tobosa, whereas it was in the intestinal phase in Pahokee soils. Because the soil system is not in equilibrium at time zero, the effect of soil properties on Pb geochemistry is not clear as yet. The

  14. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil.

    Science.gov (United States)

    Chen, G C; He, Z L; Stoffella, P J; Yang, X E; Yu, S; Calvert, D

    2006-01-01

    There is increasing concern over P leaching from sandy soils applied with water-soluble P fertilizers. Laboratory column leaching experiments were conducted to evaluate P leaching from a typical acidic sandy soil in Florida amended with DPR fertilizers developed from dolomite phosphate rock (DPR) and N-Viro soil. Ten leaching events were carried out at an interval of 7 days, with a total leaching volume of 1,183 mm equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachates were collected and analyzed for total P and inorganic P. Phosphorus in the leachate was dominantly reactive, accounting for 67.7-99.9% of total P leached. Phosphorus leaching loss mainly occurred in the first three leaching events, accounting for 62.0-98.8% of the total P leached over the whole period. The percentage of P leached (in the total P added) from the soil amended with water-soluble P fertilizer was higher than those receiving the DPR fertilizers. The former was up to 96.6%, whereas the latter ranged from 0.3% to 3.8%. These results indicate that the use of N-Viro-based DPR fertilizers can reduce P leaching from sandy soils.

  15. Changes in physical properties of sandy soil after long-term compost treatment

    Science.gov (United States)

    Aranyos, József Tibor; Tomócsik, Attila; Makádi, Marianna; Mészáros, József; Blaskó, Lajos

    2016-07-01

    Studying the long-term effect of composted sewage sludge application on chemical, physical and biological properties of soil, an experiment was established in 2003 at the Research Institute of Nyíregyháza in Hungary. The applied compost was prepared from sewage sludge (40%), straw (25%), bentonite (5%) and rhyolite (30%). The compost was ploughed into the 0-25 cm soil layer every 3rd year in the following amounts: 0, 9, 18 and 27 Mg ha-1 of dry matter. As expected, the compost application improved the structure of sandy soil, which is related with an increase in the organic matter content of soil. The infiltration into soil was improved significantly, reducing the water erosion under simulated high intensity rainfall. The soil compaction level was reduced in the first year after compost re-treatment. In accordance with the decrease in bulk density, the air permeability of soil increased tendentially. However, in the second year the positive effects of compost application were observed only in the plots treated with the highest compost dose because of quick degradation of the organic matter. According to the results, the sewage sludge compost seems to be an effective soil improving material for acidic sandy soils, but the beneficial effect of application lasts only for two years.

  16. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland

    OpenAIRE

    Zuo, Xiaoan; Wang, Shaokun; Lv, Peng; Zhou, Xin; Zhao, Xueyong; Zhang, Tonghui; Zhang, Jing

    2015-01-01

    Abstract The trait‐based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gen...

  17. Spatial patterns of wetting characteristics in grassland sandy soil

    Directory of Open Access Journals (Sweden)

    Orfánus Tomáš

    2016-06-01

    Full Text Available In grasslands where organic and inorganic resources are alternating at scales of individual plants, the transient character is given to certain wetting properties of soil, which then become highly variable both in space and in time. The objective of presented study was to study wetting pattern within two soil horizons at 5-cm and 10-cm depths respectively and to examine how the wetting patterns relate to hydraulic conductivity determined by Minidisc infiltrometer at suction −2 cm, K(−2 cm. This characteristics is implicitly independent on antecedent soil water content (SWC since it relates to steady infiltration phase but can be influenced by present soil water repellency (SWR. Field measurements were performed on July 27–28, 2010 on the grassland experimental site located near the village Sekule in Southwest Slovakia. The water drop penetration time (WDPT, SWC and tension Minidisc infiltration measurements were carried out on the 0.64 m2 plot in a regular 8 × 8 grid. The results showed that SWR and SWC influence each other and cause correlation between spatial patterns of studied soil wetting characteristics and between characteristics measured at the two soil depths. Further, it was found out, that calculation of K(−2 cm according to Zhang may cause apparent correlation of K(−2 cm with antecedent SWC, which is the artificial effect of sorptivity parameter in the equation on steady stage of infiltration process. This pseudocorrelation has disappeared after adopting of Minasny and McBratney (2000 approaches by calculation of K(−2 cm.

  18. Response of corn silage (Zea mays L.) to zinc fertilization on a sandy soil under field and

    National Research Council Canada - National Science Library

    Saad Drissi; Abdelhadi Aït Houssa; Ahmed Bamouh; Mohamed Benbella

    2017-01-01

    The purpose of the experiments was to evaluate zinc (Zn) fertilization effect on growth, yield and yield components of corn silage grown on a sandy soil under field and outdoor container conditions...

  19. Leaching behaviour of azoxystrobin in sandy loam soil

    African Journals Online (AJOL)

    Mr HMM Mzimela

    2014-08-01

    Aug 1, 2014 ... harmful pesticide residues on the crops and in the soil. Recent studies have ... roots and translocate to stems and leaves via xylem, or through leaf ... Analysis of azoxystrobin was carried out on gas liquid chromatograph (GLC) ...

  20. Mycorrhizal population on various cropping systems on sandy soil in dryland area of North Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    WAHYU ASTIKO

    2016-01-01

    Full Text Available Abstract. Astiko W, Fauzi MT, Sukartono. 2016. Mycorrhizal population on various cropping systems on sandy soil in dryland area of North Lombok, Indonesia. Nusantara Bioscience 8: 66-70. Inoculation of arbuscular mycorrhizal fungi (AMF on maize in sandy soil is expected to have positive implications for the improvement of AMF population and nutrient uptake. However, how many increases in the AMF population and nutrient uptake in the second cycle of a certain cropping system commonly cultivated by the farmers after growing their corn crop have not been examined. Since different cropping systems would indicate different increases in the populations of AMF and nutrient uptake. This study aimed to determine the population AMF and nutrient uptake on the second cropping cycle of corn-based cropping systems which utilized indigenous mycorrhizal fungi on sandy soil in dryland area of North Lombok, West Nusa Tenggara, Indonesia. For that purpose, an experiment was conducted at the Akar-Akar Village in Bayan Sub-district of North Lombok, designed according to the Randomized Complete Block Design, with four replications and six treatments of cropping cycles (P0 = corn-soybean as a control, in which the corn plants were not inoculated with AMF; P1 = corn-soybean, P2 = corn-peanut, P3 = corn-upland rice, P4 = corn-sorghum, and P5 = corn-corn, in which the first cycle corn plants were inoculated with AMF. The results indicated that the mycorrhizal populations (spore number and infection percentage were highest in the second cycle sorghum, achieving 335% and 226% respectively, which were significantly higher than those in the control. Increased uptake of N, P, K and Ca the sorghum plants at 60 DAS of the second cropping cycle reached 200%; 550%; 120% and 490% higher than in the control. The soil used in this experiment is rough-textured (sandy loam, so it is relatively low in water holding capacity and high porosity.

  1. Effect of Corn Residue Biochar on the Hydraulic Properties of Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Avanthi Deshani Igalavithana

    2017-02-01

    Full Text Available Biochar has an ability to alter the biological, chemical, and physical properties of soil due to its physicochemical properties such as surface area, porosity, nutrient retention ability, available nutrient contents, aromaticity, etc. The present study was designed to evaluate the impact of physical properties and application rate of biochar on the hydraulic properties of a sandy loam soil in the short term. Biochar was produced at 500 °C from dried corn residue (BC500. The BC500 was incorporated at the rates of 0, 2.5%, 5.0%, 7.5%, and 10% (w·w−1 into the sandy loam soil and filled up to a height of 4 cm, in cores having 5 cm diameter and height. Each treatment was performed in triplicate and equilibrated for 30 days. Then saturated hydraulic conductivity (Ksat, water holding capacity (WHC, and bulk density were determined in each sample after four days of saturation at room temperature in a water bath. The BC500 particle size distribution, pores, and surface functional groups were assessed. The Ksat exhibited a highly significant exponential reduction from 0% to 7.5% of BC500 application and approached an asymptote at 10% BC500. Bulk density showed a significant negative correlation to biochar application rate. The WHC and BC500 application rate illustrated a strong positive relationship. Biochar surface was free from hydrophobic functional groups. The addition of BC500 has a positive influence on soil hydraulic properties, primarily due to the increased soil porosity. The BC500 is composed of a microporous structure and hydrophilic surface that retain water in sandy textured soils. The application of BC500 would be a wise investment to maximize the water use efficiency in soils for agricultural production.

  2. Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Guiwei, Q. [Department of Agricultural and Environmental Chemistry, Instituto Superior de Agronomia, Technical University of Lisbon (TULisbon), Tapada da Ajuda, 1349-017 Lisboa (Portugal); Soil and Environmental College, Shenyang Agricultural University, 110161 Shenyang, Liaoning Province (China); Varennes, A. de, E-mail: adevarennes@isa.utl.pt [Department of Agricultural and Environmental Chemistry, Instituto Superior de Agronomia, Technical University of Lisbon (TULisbon), Tapada da Ajuda, 1349-017 Lisboa (Portugal); Martins, L.L.; Mourato, M.P.; Cardoso, A.I. [Department of Agricultural and Environmental Chemistry, Instituto Superior de Agronomia, Technical University of Lisbon (TULisbon), Tapada da Ajuda, 1349-017 Lisboa (Portugal); Mota, A.M. [Department of Chemical Engineering, Instituto Superior Tecnico, Technical University of Lisbon (TULisbon), Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Pinto, A.P. [Instituto de Ciencias Agrarias Mediterranicas (ICAM), University of Evora, R. Romao Ramalho no. 59, 7000 Evora (Portugal); Goncalves, M.L. [Department of Chemical Engineering, Instituto Superior Tecnico, Technical University of Lisbon (TULisbon), Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2010-01-15

    Contamination of soils with cadmium (Cd) is a serious global issue due to its high mobility and toxicity. We investigated the application of insoluble polyacrylate polymers to improve soil and plant health. Sorghum was grown in a Cd-contaminated sandy soil. Polyacrylate polymers at 0.2% (w/w) were added to half of the soil. Control soil without plants was also included in the experiment. Growth of sorghum was stimulated in the polymer-amended soil. The concentration of Cd in the shoots, and the activities of catalase and ascorbate peroxidase decreased in plants from polymer-amended soil compared with unamended control. The amount of CaCl{sub 2}-extractable Cd in the polymer-amended soil was 55% of that in the unamended soil. The Cd extracted in sorghum shoots was 0.19 mg per plant grown on soil without polymer and 0.41 mg per plant grown on polymer-amended soil. The total amount of Cd removed from each pot corresponded to 1.5 and more than 6% of soil CaCl{sub 2}-extractable Cd in unamended and polymer-amended soil, respectively. The activities of soil acid phosphatase, {beta}-glucosidase, urease, protease and cellulase were greatest in polymer-amended soil with sorghum. In conclusion, the application of polyacrylate polymers to reduce the bioavailable Cd pool seems a promising method to enhance productivity and health of plants grown on Cd-contaminated soils.

  3. Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil.

    Science.gov (United States)

    Guiwei, Q; de Varennes, A; Martins, L L; Mourato, M P; Cardoso, A I; Mota, A M; Pinto, A P; Gonçalves, M L

    2010-01-15

    Contamination of soils with cadmium (Cd) is a serious global issue due to its high mobility and toxicity. We investigated the application of insoluble polyacrylate polymers to improve soil and plant health. Sorghum was grown in a Cd-contaminated sandy soil. Polyacrylate polymers at 0.2% (w/w) were added to half of the soil. Control soil without plants was also included in the experiment. Growth of sorghum was stimulated in the polymer-amended soil. The concentration of Cd in the shoots, and the activities of catalase and ascorbate peroxidase decreased in plants from polymer-amended soil compared with unamended control. The amount of CaCl(2)-extractable Cd in the polymer-amended soil was 55% of that in the unamended soil. The Cd extracted in sorghum shoots was 0.19 mg per plant grown on soil without polymer and 0.41 mg per plant grown on polymer-amended soil. The total amount of Cd removed from each pot corresponded to 1.5 and more than 6% of soil CaCl(2)-extractable Cd in unamended and polymer-amended soil, respectively. The activities of soil acid phosphatase, beta-glucosidase, urease, protease and cellulase were greatest in polymer-amended soil with sorghum. In conclusion, the application of polyacrylate polymers to reduce the bioavailable Cd pool seems a promising method to enhance productivity and health of plants grown on Cd-contaminated soils.

  4. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil

    Science.gov (United States)

    2015-04-01

    FOLSOMIA CANDIDA IN A NATURAL SANDY LOAM SOIL ECBC-TR-1272 Carlton T. Phillips Ronald T. Checkai Roman G. Kuperman Michael Simini Jan E...SUBTITLE Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil 5a. CONTRACT NUMBER 5b...2,4-dinitrotoluene (2,4-DNT) Folsomia candida octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) 2,6-dinitrotoluene

  5. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio and the voids inside the pseudo-grains (matrix void ratio. The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling.

  6. Measurement and computation of movement of bromide ions and carbofuran in ridged humic-sandy soil.

    Science.gov (United States)

    Leistra, Minze; Boesten, Jos J T I

    2010-07-01

    Water flow and pesticide transport in the soil of fields with ridges and furrows may be more complex than in the soil of more level fields. Prior to crop emergence, the tracer bromide ion and the insecticide carbofuran were sprayed on the humic-sandy soil of a potato field with ridges and furrows. Rainfall was supplemented by sprinkler irrigation. The distribution of the substances in the soil profile of the ridges and furrows was measured on three dates in the potato growing season. Separate ridge and furrow systems were simulated by using the pesticide emission assessment at regional and local scales (PEARL) model for pesticide behavior in soil-plant systems. The substances travelled deeper in the furrow soil than in the ridge soil, because of runoff from the ridges to the furrows. At 19 days after application, the peak of the bromide distribution was measured to be in the 0.1-0.2 m layer of the ridges, while it was in the 0.3-0.5 m layer of the furrows. After 65 days, the peak of the carbofuran distribution in the ridge soil was still in the 0.1 m top layer, while the pesticide was rather evenly distributed in the top 0.6 m of the furrow soil. The wide ranges in concentration measured with depth showed that preferential water flow and substance transport occurred in the sandy soil. Part of the bromide ion distribution was measured to move faster in soil than the computed wave. The runoff of water and pesticide from the ridges to the furrows, and the thinner root zone in the furrows, are expected to increase the risk of leaching to groundwater in ridged fields, in comparison with more level fields.

  7. Comparison of germination and seed vigor of sunflower in two contaminated soils of different texture

    Science.gov (United States)

    Zhao, Xin; Han, Jaemaro; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Phytoremediation as an emerging low-cost and ecologically friendly alternative to the conventional soil remediation technologies has gained a great deal of attention and into lots of research. As a kind of the methods that use of green plants to remediate heavy metals contaminated soils, the early growth status of plant seeds in the contaminated environmental directly affects the effect of phytoremediation. Germination test in the water (aqueous solution of heavy metal) is generally used for assessing heavy metal phytotoxicity and possibility of plant growth, but there is a limit. Because soil is commonly main target of phytoremediation, not the water. The bioavailability of heavy metals in the soil also depends on the texture. So soil texture is an important factor of phytoremediation effect. Sunflower is the representative species which have good tolerance to various heavy metals; furthermore, the seeds of sunflower can be used as the raw-material for producing bio-diesel. The objectives of this research were to investigate germination rate of sunflowers in various heavy metal contaminated soils and to compare the seedling vigor index (SVI) of sunflower in two contaminated soils of different texture. Sunflower (Helianthusannuus L.) seeds were obtained from a commercial market. In order to prove the soil texture effect on heavy metal contaminated soil, germination tests in soil were conducted with two different types of soil texture (i.e., loam soil and sandy loam soil) classified by soil textural triangle (defined by USDA) including representative soil texture of Korea. Germination tests in soil were conducted using KS I ISO 11260-1 (2005) for reference that sunflower seeds were incubated for 7 days in dark at 25 ± 1 Celsius degree. The target heavy metals are Nickel (Ni) and Zinc (Zn). The Ni and Zn concentrations were 0, 10, 50, 100, 200, 300, 500 mg-Ni/kg-dry soil, and 0, 10, 50, 100, 300, 500, 900 mg-Zn/kg-dry soil, respectively. After germination test for 7

  8. [Effects of land use and management on soil quality of Heerqin sandy land].

    Science.gov (United States)

    Su, Yongzhong; Zhao, Halin

    2003-10-01

    The changes of soil physical, chemical and biological properties under different land use and management lasted for 14 years were investigated on the Heerqin sandy land. The results showed that among various land use systems marked differences exhibited in soil quality indicators, including soil particle composition, porosity distribution, bulk density, water-holding capacity, organic matter and nutrient contents, pH, and enzyme activities. Most of these soil quality indicators were the highest in the orchard intercropped with crops and perennial grass (agroforestry systems), intermediate in the well-management irrigated farmland, and the lowest in the less-management dry farmland. Compared to the primary grassland soil, although some soil properties, including porosity distribution, water-holding capacity, phosphorus content, and enzyme activities, were improved in the well-management systems, soil organic matter and nitrogen contents were significantly lower. It suggested that a long-term input of organic matter was needed for the restoration and reestablishment of soil carbon and nitrogen pools in the seriously degraded ecosystem. Inappropriate land use and management could rapidly worsen soil quality, and hence, from a perspective of soil resource conservation, a preferable way for preventing soil degradation and achieving sustainable land use should be to give up the cultivation of degraded dry farmlands, and to adopt more effective and appropriate soil management and cultivation practices.

  9. Assessment of Fate of Thiodicarb Pesticide in Sandy Clay Loam Soil

    Directory of Open Access Journals (Sweden)

    M. A. Bajeer

    2015-06-01

    Full Text Available In present study the fate of thiodicarb pesticide in sandy clay loam soil was investigated through its adsorption and leaching using HPLC. Experimental results revealed that thiodicarb follows first order kinetic with rate constant value of 0.711 h-1 and equilibrium study showed that Freundlich model was best fitted with multilayer adsorption capacity 3.749 mol/g and adsorption intensity 1.009. Therefore, adsorption of thiodicarb was multilayer, reversible and non-ideal. Leaching study has indicated intermediate mobility of thiodicarb with water due to its solubility, while field study showed the non-leacher nature. However both adsorption and leaching were heavily affected by soil characteristics. As the soil taken was sandy clay loam hence due to clay texture adsorption was higher because of vacant sites existing and greater surface area. For this the pesticide has remained adsorbed in above 20 cm soil layer as clearly seen from field study, minor amount was recorded in third layer of soil having 21-30 cm depth. The leached amount of thiodicarb in first and last part of water was 1.075 and 0.003 ng/µl. The general trend observed for adsorption in column and field soil was decreased downwards from 2.027 to 0.618 and 5.079 to 0.009 ng/µl.

  10. Remediation of heavy metal contaminated soil | Nanda |

    African Journals Online (AJOL)

    Remediation of heavy metal contaminated soil. ... in intensive research aiming at understanding metal interactions in soil and their removal in an efficient way. ... This paper investigates the plant-microbial interactions in reclaiming the metal ...

  11. Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils

    DEFF Research Database (Denmark)

    Masis Melendez, Federico; Deepagoda Thuduwe Kankanamge Kelum, Chamindu; de Jonge, Lis Wollesen

    2014-01-01

    Accurate prediction of saturated hydraulic conductivity (Ksat) is essential for the development of better distributed hydrological models and area-differentiated risk assessment of chemical leaching. The saturated hydraulic conductivity is often estimated from basic soil properties such as particle...... size distribution or, more recently, soil-air permeability. However, similar links to soil gas diffusivity (Dp/Do) have not been fully explored even though gas diffusivity is a direct measure of connectivity and tortuosity of the soil pore network. Based on measurements for a coarse sandy soil....../Do model to measured data, and subsequently linked to the cementation exponent of the wellestablished Revil and Cathles predictive model for saturated hydraulic conductivity. Furthermore, a two-parameter model, analogue to the Kozeny-Carman equation, was developed for the Ksat - Dp/Do relationships. All 44...

  12. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per;

    2015-01-01

    properties of soils, especially on water retention at low matric potentials. To overcome this knowledge gap, the effects of combined BC (0 to 100 Mg ha-1) and manure (21 and 42 Mg ha-1) applications on water vapor sorption and specific surface area was investigated for a sandy loam soil. In addition......, potential impacts of BC aging were evaluated. All considered BC-amendment rates led to a distinct increase of water retention, especially for low matric potentials. The observed increases were attributed to a significant increase of soil organic matter contents and specific surface areas in BCamended soils......Over the last few years, the application of biochar (BC) as a soil amendment to sequester carbon and mitigate global climate change has received considerable attention. While positive effects of biochar on plant nutrition are well documented, little is known about potential impacts on the physical...

  13. Effect of pH on bacteriophage transport through sandy soils

    Science.gov (United States)

    Kinoshita, Takashi; Bales, Roger C.; Maguire, Kimberley M.; Gerba, Charles P.

    1993-01-01

    Effects of pH and hydrophobicity on attachment and detachment of PRD-1 and MS-2 in three different sandy soils were investigated in a series of laboratory-column experiments. Concentrations of the lipid-containing phage PRD-1 decreased 3–4 orders of magnitude during passage through the 10–15-cm-long columns. Attachment of the lipid-containing phage PRD-1 was insensitive to pH and was apparently controlled by hydrophobic interactions in soil media. The less-hydrophobic phage MS-2 acted conservatively; it was not removed in the columns at pH's 5.7–8.0. The sticking efficiency (α) in a colloid-filtration model was between 0.1 and 1 for PRD-1, indicating a relatively high removal efficiency. Phage attachment was reversible, but detachment under steady-state conditions was slow. An increase in pH had a moderate effect on enhancing detachment. Still, these soils should continue to release phage to virus-free water for days to weeks following exposure to virus-containing water. In sandy soils with a mass-fraction organic carbon as low as a few hundredths of a percent, pH changes in the range 5.7–8.0 should have little effect on retention of more-hydrophobic virus (e.g., PRD-1), in that retardation will be dominated by hydrophobic effects. Sharp increases in pH should enhance detachment and transport of virus previously deposited on soil grains. A more hydrophilic virus (e.g., MS-2) will transport as a conservative tracer in low-carbon sandy soil.

  14. Mobilization and Mobility of Colloidal Phosphorus in Sandy Soils

    OpenAIRE

    Ilg, Katrin

    2007-01-01

    erschienen in: Journal of Environmental Quality. - 2005(34)3, S. 926-935; Soil Science Society of America Journal. - 2007(71)2, S. 298-305 Die Auswaschung von Phosphor (P) trägt zur Verlagerung von P aus terrestrischen in aquatische Ökosysteme bei. Neben der gelösten Form kann P im Sickerwasser auch an Kolloide gebunden auftreten. Die Sorption von P an potentiell dispergierbare Bestandteile der Bodenmatrix, z.B. Eisen- und Aluminiumoxide und -hydroxide, beeinflusst deren Oberflächenladung ...

  15. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    Science.gov (United States)

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-01

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor.

  16. Microbial sewage contamination associated with Superstorm Sandy flooding in New York City

    Science.gov (United States)

    O'Mullan, G.; Dueker, M.; Sahajpal, R.; Juhl, A. R.

    2013-05-01

    The lower Hudson River Estuary commonly experiences degraded water quality following precipitation events due to the influence of combined sewer overflows. During Super-storm Sandy large scale flooding occurred in many waterfront areas of New York City, including neighborhoods bordering the Gowanus Canal and Newtown Creek Superfund sites known to frequently contain high levels of sewage associated bacteria. Water, sediment, and surface swab samples were collected from Newtown Creek and Gowanus Canal flood impacted streets and basements in the days following the storm, along with samples from the local waterways. Samples were enumerated for the sewage indicating bacterium, Enterococcus, and DNA was extracted and amplified for 16S ribosomal rRNA gene sequence analysis. Waterways were found to have relatively low levels of sewage contamination in the days following the storm. In contrast, much higher levels of Enterococci were detected in basement and storm debris samples and these bacteria were found to persist for many weeks in laboratory incubations. These data suggest that substantial sewage contamination occurred in some flood impacted New York City neighborhoods and that the environmental persistence of flood water associated microbes requires additional study and management attention.

  17. Grape yield, and must compounds of 'Cabernet Sauvignon' grapevine in sandy soil with potassium contents increasing

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2016-08-01

    Full Text Available ABSTRACT: Content of exchangeable potassium (K in t soil may influence on its content in grapevines leaves, grape yield, as well as, in must composition. The study aimed to assess the interference of exchangeable K content in the soil on its leaf content, production and must composition of 'Cabernet Sauvignon' cultivar. In September 2011, in Santana do Livramento (RS five vineyards with increasing levels of exchangeable K in the soil were selected. In the 2012/13 and 2013/14 harvests, the grape yield, yield components, total K content in the leaves in full bloom and berries veraison were evaluated. Values of total soluble sugar (TSS, pH, total titratable acidity (TTA, total polyphenols and anthocyanins were evaluated in the must. Exchangeable K content increase in soil with sandy surface texture increased its content in leaves collected during full flowering and in berries and must pH; however, it did not affect production of the 'Cabernet Sauvignon'.

  18. Influence of biochar on the physical, chemical and retention properties of an amended sandy soil

    Science.gov (United States)

    Baiamonte, Giorgio; De Pasquale, Claudio; Parrino, Francesco; Crescimanno, Giuseppina

    2017-04-01

    Soil porosity plays an important role in soil-water retention and water availability to crops, potentially affecting both agricultural practices and environmental sustainability. The pore structure controls fluid flow and transport through the soil, as well as the relationship between the properties of individual minerals and plants. Moreover, the anthropogenic pressure on soil properties has produced numerous sites with extensive desertification process close to residential areas. Biochar (biologically derived charcoal) is produced by pyrolysis of biomasses under low oxygen conditions, and it can be applied for recycling organic waste in soils and increase soil fertility, improving soil structure and enhancing soil water storage and soil water movement. Soil application of biochar might have agricultural, environmental and sustainability advantages over the use of organic manures or compost, as it is a porous material with a high inner surface area. The main objectives of the present study were to investigate the possible application of biochar from forest residues, derived from mechanically chipped trunks and large branches of Abies alba M., Larix decidua Mill., Picea excelsa L., Pinus nigra A. and Pinus sylvestris L. pyrolysed at 450 °C for 48h, to improve soil structural and hydraulic properties (achieving a stabilization of soil). Different amount of biochar were added to a desertic sandy soil, and the effect on soil porosity water retention and water available to crops were investigated. The High Energy Moisture Characteristic (HEMC) technique was applied to investigate soil-water retention at high-pressure head levels. The adsorption and desorption isotherms of N2 on external surfaces were also determined in order to investigate micro and macro porosity ratio. Both the described model of studies on adsorption-desorption experiments with the applied isotherms model explain the increasing substrate porosity with a particular attention to the macro and micro

  19. Transfer of cadmium from a sandy acidic soil to man: A population study

    Energy Technology Data Exchange (ETDEWEB)

    Staessen, J.A.; Celis, H.G.; Fagard, R.H.; Lijnen, P.J.; Thijs, L.B.; Amery, A.K. (Univ. of Leuven (Belgium)); Vyncke, G. (Ministry of the Flemish Community, Hasselt (Belgium)); Lauwerys, R.R.; Roels, H.A. (Univ. of Louvain, Brussels (Belgium)); Claeys, F. (Ministry of Health and Social Affairs, Brussels (Belgium)); Dondeyne, F. (Ministry of the Flemish Community, Brussels (Belgium)); Ide, G. (LISEC Research Centre for Ecology and Forestry, Genk (Belgium)); Rondia, D.; Sartor, F. (Univ. of Liege, (Belgium))

    1992-06-01

    This population study included 230 subjects (age range 20-83 years) who consumed vegetables grown in kitchen gardens on a sandy acidic soil (mean pH {approximately}6.3). The study investigated the association between the Cd (cadmium) levels in blood and urine and the Cd concentration in the soil (range 0.2-44 ppm). Seventy-six subjects were current smokers and 122 participants lived in a district with known Cd pollution. Urinary Cd in the 230 subjects averaged 8.7 nmole/24 hr, (range 1.3 to 47 nmole/24 hr) after age adjustment positively correlated with the Cd level in the soil; a twofold increase of the Cd concentration in the soil was accompanied by a 7% rise in urinary Cd in men and by a 4% rise in women. Blood Cd averaged 11.5 nmole/liter (range 1.8-41 nmole/liter) and was negatively associated with the Cd level in the soil. After adjustment for significant covariates (smoking and serum {gamma}-glutamyl transpeptidase in both sexes, and age and serum ferritin in women), a twofold increase in the Cd concentration in the soil was accompanied by a 6% decrease in blood Cd in men and by a 10% decrease in women. In conclusion, in a rural population, consuming vegetables grown on a sandy acidic soil, 2 to 4% of the variance of urinary Cd was directly related to the Cd level in the soil. The negative correlation with blood Cd, a measure of more recent exposure, was biased by the implementation of preventive measures in the polluted district.

  20. Soil development in OSL dated sandy dune substrates under Quercus robur Forest (Netherlands)

    Science.gov (United States)

    van Mourik, J. M.; Nierop, Ir. K.; Verstraten, J. M.

    2009-04-01

    Coastal dune landscapes are very dynamic. The present distribution of vegetation and soil is the result of over 2000 years of natural processes and human management. The initial soil development was controlled by an increase of the organic matter content, which consisted mainly of decomposed roots of grasses (rhizomull), and a decrease of the soil pH to 3-4 by decalcification. This stage was followed by the development of a deciduous forest, which was dominated by Quercus robur. Since 1600 AD, a large part of the deciduous forest that dominated the east side of the coastal dune landscape transferred in expensive residential areas and urbanizations. Nevertheless some parts of the oak forest belt remained. The present forest soils are acid and the controlling soil processes are leaching of sesquioxides and storage of organic matter in mormoder humus forms. The sustainability of ecosystems is closely related to the quality of the humus form, controlling nutrient cycling and water supply. Therefore, improve of knowledge of humus form development and properties is important. We applied soil micromorphology and pyrolysis-gas chromatography/mass spectrometry (GC/MS) to investigate more details of humus form development at two locations (Duivendrift and Hoek van Klaas) in the coastal dune area of the Amsterdamse Waterleidingduinen (near Haarlem, the Netherlands). However, to understand forest soil development, including the organic matter composition in the humus form, the age of the substrate and the forest is required. Therefore, we used tradition techniques as pollen analysis and radiocarbon dating but also the recently introduced optical stimulated luminescence (OSL) dating technique. OSL dating works excellent for aeolian sandy deposits with a high percentage of quartz grains. The OSL age is defined as the time after the last bleaching by solar radiation of mineral grains. Or in other words, the start of a stable period without sand drifting. In the Ah horizons we

  1. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  2. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  3. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater. PMID:24587723

  4. Zeolite and Hucalcia as Coating Material for Improving Quality of NPK Fertilizer in Costal Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sulakhudin

    2011-05-01

    Full Text Available he growth and yield of plants are mainly a function of the quantity of fertilizer and water. In coastal sandy soil, nutrient losses and dry soils are seriously problems. The objective of the research was to study effect of zeolite and hucalci concentrations as NPK coating materials on NPK qualities i.e. water adsorption and release of N, P and K. The research used a coastal sandy soil as media. It was conducted in a laboratory of Soil Science Department, Gadjah Mada University from July to August 2009. Experimental design used was a factorial in a completely randomized design. The first factor was hucalci concentration, consisted of 10% (H1, 20% (H2, and 30% (H3. The second factor was zeolite concentration, consisted of 25% (Z1, 50% (Z2, 75% (Z3, and 100% (Z4. NPK fertilizer (without coating used as a control. The results showed that hucalci and zeolite had a capability to increase water adsorption and to retard the release of N, P, K. The coated NPK with hucalci 30% and zeolite 100% had the highest quality in water absorption, water retention and release of nutrients.

  5. Response of the microbial community to copper oxychloride in acidic sandy loam soil.

    Science.gov (United States)

    Du Plessis, K R; Botha, A; Joubert, L; Bester, R; Conradie, W J; Wolfaardt, G M

    2005-01-01

    Determining the response of different microbial parameters to copper oxychloride in acidic sandy loam soil samples using cultivation-dependent and direct microscopic techniques. Culturable microbial populations were monitored for 245 days in a series of soil microcosms spiked with different copper oxychloride concentrations. Microbial populations responded differently to additional Cu. Protistan numbers and soil metabolic potential decreased. Experiments with more soil samples revealed that metabolic potential was not significantly affected by protista was noted in soil containing only 15 mg kg(-1) EDTA-extractable Cu. The negative impact on protistan numbers was less severe in soils with a higher phosphorous and zinc content. Bacterial populations responded differently, and protista were most sensitive to elevated Cu levels. Protistan numbers in soil from uncultivated land were higher and seemed to be more sensitive to additional Cu than the numbers of these organisms in soil originating from cultivated land. Protistan sensitivity to small increases in Cu levels demonstrates the vulnerability of the soil ecosystem to Cu perturbations, especially when the importance of protista as link in the flow of energy between trophic levels is considered.

  6. Does thermal carbonization (Biochar of organic material increase more merits for their amendments of sandy soil?

    Directory of Open Access Journals (Sweden)

    Y. Wu

    2014-02-01

    Full Text Available Organic materials (e.g. furfural residue are generally believed to improve the physical and chemical properties of the soils with low fertility. Recently, biochar have been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC content and cation exchange capacity (CEC, and enhanced the available phosphorus (P in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5–0.8 (soil pH: 8.3–8.6, while 5% biochar decreased by 0.25–0.4 due to the loss of acidity in pyrolysis process. With respect to available P, 5% of the furfural addition increased available P content by 4–6 times in comparison to 2–5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP, biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar addition at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar have different amendments depending on soil properties: furfural was more effectively to decrease pH and to increase available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.

  7. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Imran, Muhammad; Dhavamani, Jeyakumar; Ismail, Iqbal M. I.; Basahi, Jalal M.; Almeelbi, Talal

    2017-01-01

    We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg−1 soil on Cynodon dactylon litter (3 g kg−1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems. PMID:28155886

  8. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Imran, Muhammad; Dhavamani, Jeyakumar; Ismail, Iqbal M. I.; Basahi, Jalal M.; Almeelbi, Talal

    2017-02-01

    We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg‑1 soil on Cynodon dactylon litter (3 g kg‑1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems.

  9. Transformers as a potential for soil contamination

    Directory of Open Access Journals (Sweden)

    N. Stojić

    2014-10-01

    Full Text Available The aim of this paper is to investigate the presence of PCBs and heavy metals in the surrounding soil and also in the soil of the receiving pit located below the PCB contaminated transformer. Concentrations of PCBs in our samples are ranged from 0,308 to 0,872 mg/kg of absolutely dry soil.

  10. A Bioassay Technique to Study Clomazone Residues in Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Jelena Gajić Umiljendić

    2013-01-01

    Full Text Available A bioassay test was conducted to evaluate the sensitivity of maize, sunflower and barley toclomazone residues in sandy loam soil. Clomazone was applied at different rates from 0.12 to12 mg a.i./kg of soil. The parameters measured 14 days after treatment were: shoot height, freshand dry weight, and content of pigments (carotenoids, chlorophyll a and chlorophyll b. Theresults showed that the lowest clomazone concentration caused a significant reduction in allmeasured parameters for barley and sunflower shoots. Fresh weight of maize shoots was notsensitive to clomazone residual activity in soil while the other parameters were highly inhibited.Nomenclature: clomazone (2-(2-chlorbenzyl-4,4-dimethyl-1,2-oxazolidin-3-one, maize(Zea mays L., sunflower (Helianthus annuus L., barley (Hordeum vulgare L.

  11. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    Science.gov (United States)

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  12. A Leguminous Shrub (Caragana microphylla) in Semiarid Sandy Soils of North China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong-Hui; SU Yong-Zhong; CUI Jian-Yuan; ZHANG Zhi-Hui; CHANG Xue-Xiang

    2006-01-01

    Caragana microphylla Lam., a pioneer leguminous shrub species for vegetation re-establishment, is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region. Some soil chemical and physical properties were measured under the canopy of C. microphylla and in the adjacent open areas to determine the effects of individual shrubs on soil properties. The influence of isolated C. microphylla on chemical and physical properties of the topsoil was significantly different between plots under the shrub canopy and in the shrub interspaces. Beneath the shrub canopy greater amounts of fine particle fractions, a higher water-holding capacity, and a lower bulk density, as well as higher aboveground and belowground litter biomass were found. Soil organic C and total N concentrations were 23%-31.6% and 14%-27.2% higher under the shrub canopies than in the shrub interspaces, respectively, giving rise to "islands of fertility". In a desertified sandy grassland ecosystem, C. microphylla was believed to play a major role in organic C sequestration, N accumulation, and the hydrologic cycle. Additionally, it has been found to be of ecological importance for vegetative restoration and reversal of desertification.

  13. Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils

    Energy Technology Data Exchange (ETDEWEB)

    Wick, A.F.; Stahl, P.D.; Ingram, L.J. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2009-11-15

    Minimal research has been conducted on aggregate, C, and N in coarse-textured soils used to reclaim surface coal mine lands. Furthermore, little is known about the contribution different plant communities make to the recovery of aggregation in these soils. Two chronosequences of semiarid reclaimed sites with sandy loam soils were sampled under shrub- and grass-dominated communities. Aggregation, aggregate fractions, and associated C and N were measured. No definitive trends of increasing macroaggregates between sites were observed undershrubs; however, macro- and microaggregation was greater in the 16-yr-old (0.20 and 0.23 kg aggregate kg{sup -1} soil, respectively) than in the 5-yr-old soils (0.02 and 0.08 kg aggregate kg{sup -1} soil, respectively) under grasses. Although C and N concentrations were drastically reduced (50-75%) with mining activity between the <1-yr-old and native soils, aggregate C and N concentrations tinder shrubs and grasses were similar to each other and to the native soils in the 5-yr-old site. Sods under grass in the 16-yr-old site had lower available and aggregate-occluded C and N concentrations than the 5-yr-old site, while C and N concentrations did not change between 5- and 16-yr-old soils under shrubs. Conversely, aggregate C and N pool sizes under shrubs and grasses both increased with site age to conditions similar to those observed in the native soil. Reclaimed shrub site soils had consistently higher C concentrations in the older reclaimed sites (10 and 16 yr old) than the soils under grasses, indicating greater accumulation and retention of C and N in organic material under shrub than grass communities in semiarid reclaimed sites.

  14. Contribution of individual sorbents to the control of heavy metal activity in sandy soil.

    Science.gov (United States)

    Weng, L; Temminghoff, E J; Van Riemsdijk, W H

    2001-11-15

    A multisurface model is used to evaluate the contribution of various sorption surfaces to the control of heavy metal activity in sandy soil samples at pH 3.7-6.1 with different sorbent contents. This multisurface model considers soil as a set of independent sorption surfaces, i.e. organic matter (NICA-Donnan), clay silicate (Donnan), and iron hydroxides (DDL, CD-MUSIC). The activities of Cu2+, Cd2+, Zn2+, Ni2+, and Pb2+ in equilibrium with the soil have been measured using a Donnan membrane technique. The metal activities predicted by the model agree with those measured reasonably well over a wide concentration range for all the metals of interest except for Pb. The modeling results suggest that soil organic matter is the most important sorbent that controls the activity of Cu2+, Cd2+, Zn2+, and Ni2+ in these sandy soils. When metal loading is high in comparison with soil organic matter content, the contribution of clay silicates to metal binding becomes more important. Adsorption to iron hydroxides is found not significant in these samples for Cu, Cd, Zn, and Ni. However, for Pb the model estimates strong adsorption on iron hydroxides. The model predicts that acidification will not only lead to increased solution concentrations but also to a shift toward more nonspecific cation-exchange type binding especially for the metals Cd, Zn, and Ni. Lowering the pH has led to a loss of 56% of Cd, 69% of Zn, and 66% of Ni during 16 years due to increased leaching.

  15. Influence of manganese fertilizer on efficiency of grapes on sandy soils of the Chechen Republic

    Directory of Open Access Journals (Sweden)

    Batukaev A.A.

    2014-01-01

    Full Text Available As a result of the studies, there has been obtained new information about the manganese influence on productivity of grape plantations, on sandy soils of the Chechen Republic. Manganese fertilizing of 4 kg active ingredient per 1 ha, against the background of nitrogen 90 kg, phosphorus 90 kg and potassium 90 kg/ha, made it into a phase of grape sap flow, which contributes to higher yields, increase of the sugar content of the berries and a significant decrease in juice acidity, in comparison with other options.

  16. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    OpenAIRE

    Baille Wiebke; Jebeli Alireza; Schanz Tom

    2016-01-01

    In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains) during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand gra...

  17. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    Science.gov (United States)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    superficial velocity of the supercritical carbon dioxide; therefore, the mass transfer resistance can be reduced increasing such velocity. In this work, higher values of superficial velocity were investigated. The experimental apparatus includes a pump, an extraction vessel, an adjustable restrictor and a trap to collect the extracted substance. Liquid carbon dioxide coming from a cylinder with a dip-tube is cooled by a cryostatic bath and then it is compressed by a pneumatic drive pump (the max- imum available pressure is 69 MPa). Subsequently, the pressurised current flows into 1 a heating coil and then into the extraction vessel, which is contained in a stove; the outlet flow is depressurised in an adjustable restrictor and the extracted substance is collected in a trap by dissolution into a solvent. The extracted naphthalene quantity was obtained by weighting the solvent and measuring the naphthalene concentration with a gas chromatograph. The soil sample is a sandy soil geologically representative of the North of Italy that was sampled and physically and chemically characterized: particle-size distribution analysis, diffractometric analysis, Cation Exchange Capac- ity, Total Organic Carbon, iron content and manganese content in order to evaluate the potential sorption degree. The soil was artificially polluted by means of a naphta- lene and methylene chloride solution. The experimental work consists in a number of naphthalene extractions from the spiked soil, that were carried out at different operat- ing conditions, temperature, pressure and flow rate by means of supercritical carbon dioxide evaluating the corresponding recovery efficiencies. The results obtained were analysed and compared in order to determine which parameters influence the system. [1] G. A. Montero, T.D. Giorgio, and K. B. Schnelle, Jr..Removal of Hazardous ,1994, Contaminants form Soils by Supercritical Fluid Extraction. Innovations in Supercriti- cal Fluids. ACS Symposium Series, 608, 280-197. 2

  18. Variation in soil water content to rainfall under Caragana microphylla shrub in Horqin Sandy Land

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to investigate the spatio-temporal variability of soil water content to rainfall under Caragana microphylla shrub in Horqin Sandy Land,a plot of 25 m × 25 m,where there were 6 shrub canopies of C. microphylla,was sited for measuring soil water content at two soil layers of 0-20 cm (top layer) and 20-40 cm (lower layer). Soil water content was measured on the 1st,5th,10th and 15th day after a 42 mm rainfall in Naiman of Inner Mongolia. The results showed that soil water contents at both layers under C. microphylla shrub were gradually decreased after the rain. Soil water content at the top layer outside the shrub canopy was higher than that inside the shrub canopy within 5 days,and became similar inside and outside the shrub canopy on the 10th day after the 42 mm rainfall,and it was lower outside than that inside the shrub canopy on the 15th day. The soil water content at lower layer in the area without shrubs was higher than that under shrub canopy all along. All the measured values of soil water content can be fitted to a variogram model. There was significant autocorrelation of the values of soil water content between top layer and lower layer,except for the fourth measured values of soil water content at top layer. The range and spatial dependence of soil water content at top layer were lower than that at lower layer.

  19. Cumulative effects of sewage sludge and effluent mixture application on soil properties of a sandy soil under a mixture of star and kikuyu grasses in Zimbabwe

    Science.gov (United States)

    Madyiwa, S.; Chimbari, M.; Nyamangara, J.; Bangira, C.

    Although sewage effluent and sludge provides nutrients for plant growth, its continual use over extended periods can result in the accumulation of heavy metals in soils and in grass to levels that are detrimental to the food chain. This study was carried in 2001 out at Firle farm, owned by the Municipality of Harare, to assess heavy metal loading on a sandy soil and uptake of the metals by pasture grass consisting of a mixture of Cynodon nlemfuensis (star grass) and Pennisetum clandestinum Chiov (kikuyu grass) following sewage effluent and sludge application for 29 years. Firle Farm receives treated effluent and sludge emanating from domestic and industrial sources. Soil and grass samples were taken from the study area, consisting of 3 ha of non-irrigated area (control) and 1.3 ha of irrigated area. Both the soil and grass samples were tested for Cu, Zn, Ni and Pb using atomic absorption spectrophotometry. Sewage sludge addition resulted in high levels of soil pollution, especially in the 20 cm horizon, in the irrigated area when compared to the control. Grasses took up moderate levels of Cu and Zn, and limited levels of Pb. Nickel was not detectable in grasses despite high levels in the irrigated soil. Copper uptake was several times higher than the suggested potentially toxic level of 12 mg/kg [Soil Science Society of America, Micronutrients in agriculture, second ed., Wisconsin, USA, 1991]. Lead uptake averaged 1.0 mg/kg, which was below 10 mg/kg the suggested limit for agronomic crops [E.M. Seaker, Zinc, copper, cadmium and lead in minespoil, water and plants from reclaimed mine land amended with sewage sludge, 1991]. Cu and Zn showed relatively higher mobility down the soil profile than Ni and Pb. Even then, the concentrations in the lower soil layers were very small, suggesting that the metals were unlikely to contaminate groundwater. There was no direct correlation between metal levels in soils and grasses. It was postulated that it is the bio

  20. A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.; Hazen, T.

    1994-06-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation.

  1. Cleanup of contaminated soil -- Unreal risk assumptions: Contaminant degradation

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, A. [New Jersey Department of Environmental Protection, Ewing, NJ (United States)

    1995-12-31

    Exposure assessments for development of risk-based soil cleanup standards or criteria assume that contaminant mass in soil is infinite and conservative (constant concentration). This assumption is not real for most organic chemicals. Contaminant mass is lost from soil and ground water when organic chemicals degrade. Factors to correct for chemical mass lost by degradation are derived from first-order kinetics for 85 organic chemicals commonly listed by USEPA and state agencies. Soil cleanup criteria, based on constant concentration, are then corrected for contaminant mass lost. For many chemicals, accounting for mass lost yields large correction factors to risk-based soil concentrations. For degradation in ground water and soil, correction factors range from greater than one to several orders of magnitude. The long exposure durations normally used in exposure assessments (25 to 70 years) result in large correction factors to standards even for carcinogenic chemicals with long half-lives. For the ground water pathway, a typical soil criterion for TCE of 1 mg/kg would be corrected to 11 mg/kg. For noncarcinogens, correcting for mass lost means that risk algorithms used to set soil cleanup requirements are inapplicable for many chemicals, especially for long periods of exposure.

  2. Recurring fingered flow pathways in a water repellent sandy field soil

    Directory of Open Access Journals (Sweden)

    C. J. Ritsema

    1997-01-01

    Full Text Available Field evidence of finger formation and reformation during Successive rain events over an eight months' observation period from June 1994 until January 1995 is presented. Fingered flow pathways were monitored in a no-tilled, grass-covered water repellent sandy field soil using an automated, stand-alone TDR device. Within a 2 m long and 0.7 m deep transect, 98 three-wire probes were installed horizontally at depths of 4, 12, 20, 30, 40, 55, and 70 cm. The horizontal distance between two adjacent probes was IS cm. Finger formation occurred during distinct rainy periods and was most pronounced under heavy rainfall with initially wet topsoil conditions. The percentage of water infiltrated and transported preferentially through the fingers to the deep subsoil varied between 0 and 80%, depending on the wetting history of the soil and the rainfall characteristics.

  3. Phytoremediation for phenanthrene and pyrene contaminated soils

    Institute of Scientific and Technical Information of China (English)

    GAO Yan-zheng; ZHU Li-zhong

    2005-01-01

    Phytoremediation of soil contaminated with phenanthrene and pyrene was investigated using twelve plant species. Plant uptake and accumulation of these chemicals were evaluated. At the end of the experiment(45 d), the remaining respective concentrations of soil phenanthrene and pyrene in spiked vegetated soils, with initial phenanthrene of 133.3 mg/kg and pyrene of 171.5 mg/kg, were 8.71-16.4and 44.9-65.0 mg/kg, generally 4.7%-49.4% and 7.1%-35.9% lower than their concentrations in the nonvegetated soils. The loss of phenanthrene and pyrene in vegetated spiked soils were 88.2%-93.0% and 62.3%-73.8% of the added amounts of these contaminants, respectively. Although plant uptake and accumulation of these compounds were evident, and root concentrations and RCFs(root concentration factors; defined as the ratio of PAH concentrations in roots and in the soils on a dry weight basis) of these compounds significantly positively correlated to root lipid contents, plant uptake and accumulation only accounted for less than 0.01% and 0.23% of the enhanced loss of these chemicals in vegetated versus non-vegetated soils. In contrast, plant-promoted microbial biodegradation was the dominant mechanism of the phytoremediation for soil phenanthrene and pyrene contamination. Results from this study suggested a feasibility of the establishment of phytoremediation for soil PAH contamination.

  4. Influence of tebuconazole and copper hydroxide on phosphatase and urease activities in red sandy loam and black clay soils

    OpenAIRE

    B. Anuradha; Rekhapadmini, A.; Rangaswamy, V.

    2016-01-01

    The efficacy of two selected fungicides i.e., tebuconazole and coppoer hydroxide, was conducted experiments in laboratory and copper hydroxide on the two specific enzymes phosphatase and urease were determined in two different soil samples (red sandy loam and black clay soils) of groundnut (Arachis hypogaea L.) from cultivated fields of Anantapuramu District, Andhra Pradesh. The activities of the selected soil enzymes were determined by incubating the selected fungicides-treated (1.0, 2.5, 5....

  5. Redistribution of contaminants from pig slurry after direct injection into soil

    DEFF Research Database (Denmark)

    Amin, Mostofa; Bech, T B; Forslund, A;

    2010-01-01

    The redistribution of pig manure-borne contaminants after direct injection to soil was investigated in a field study. The spatial distribution of Escherichia coli, Salmonella Typhimurium Bacteriophage 28B and other slurry components in and around the injection slit was measured on day 0.15, 1, 6......, 18, and 46/49 at Silstrup (sandy clay loam) and Estrup (sandy loam), Denmark. Transport of the slurry components away from the slit was slower at Silstrup in comparison to Estrup, probably because of a higher slurry dry matter content and soil clay content. Slurry NH4-N dissipated and....../or was nitrified gradually at Silstrup and more rapidly at Estrup, but had disappeared completely at both sites within 49 days. The rate of disappearance of E. coli at Estrup was lower than at Silstrup. Survival of E. coli was high in the upper soil layer at both sites. The overall persistence of the bacteriophage...

  6. Temporal stability of the apparent electrical conductivity measured in seasonally dry sandy soil

    Science.gov (United States)

    Pedrera, Aura; Brevik, Eric C.; Giráldez, Juan V.; Vanderlinden, Karl

    2016-04-01

    Soil is spatially heterogeneous due to differences in parent material, climate, topography, time and management practices. The use of non-invasive and non-contact geophysical methods facilitates the exploration of natural landscapes or cropped areas. Electromagnetic induction (EMI) sensors which measure the soil apparent electrical conductivity (ECa) express soil spatial variability in terms of spatial soil ECa variability. In an agricultural context, knowledge and understanding of the soil spatial variability will allow us to delimit areas where precision agriculture techniques could be used to improve management practices. These practices enhance soil and water conservation, especially for sandy soils in Mediterranean climates where soils are dry for substantial periods of time. The first objective of this work was to apply principal component analysis (PCA) to see if a temporally stable component could be found. The second objective was to see if temporal stability information acquired from several ECa surveys could be used to better interpret results of a single survey in terms of relationships between ECa and soil water content (SWC). The experimental catchment, "La Manga", is located in SW Spain and covers 6.7 ha of a rainfed olive orchard. Soil profile samples were collected at 41 locations on a pseudo-regular grid. Samples were analyzed in the laboratory for soil texture, stone content, and bulk density (ρb). The catchment was sampled for gravimetric SWC at the 0-0.1 and 0.1-0.2 m depth intervals at the same 41 locations on 18 occasions. At the same 41 locations ECa was measured during 9 of the 18 SWC surveys using a DUALEM-21S EMI sensor. In addition, 7 field-wide ECa surveys were conducted. Soil ECa values were used to delimit three areas in the orchard, based on the spatial distribution of the first principal component (PC), which represented the spatial ECa pattern. Soil properties were studied within each area, and using analysis of variance

  7. Retention and transport of mecoprop on acid sandy-loam soils

    Science.gov (United States)

    Paradelo Núñez, Remigio; Conde Cid, Manuel; Abad, Elodie Martin; Fernández Calviño, David; Nóvoa Muñoz, Juan Carlos; Arias Estévez, Manuel

    2017-04-01

    Interaction with soil components is one of the key processes governing the fate of agrochemicals in the environment. In this work, we have studied the adsorption/desorption and transport of mecoprop in four acid sandy-loam soils with different organic matter contents. Kinetics of adsorption and adsorption/desorption at equilibrium have been studied in batch experiments, whereas transport was studied in laboratory columns. Adsorption and desorption are linear or nearly-linear. The kinetics of mecoprop adsorption are relatively fast in all cases (less than 24 h). Adsorption and desorption were adequately described by the linear and Freundlich models, with KF values that ranged from 0.7 to 8.8 Ln µmol1-n kg-1 and KD values from 0.3 to 3.6 L kg-1. High desorption percentages (>50%) were found, indicative of a high reversibility of the adsorption process. The results of the transport experiments showed that the retention of mecoprop by soil was very low (less than 6.2%). The retention of mecoprop by the soils in all experiments increased with organic matter content. Overall, it was observed that mecoprop was weakly adsorbed by the soils, what would result in a high risk of leaching of this compound.

  8. Use of arsenic contaminated irrigation water for lettuce cropping: effects on soil, groundwater, and vegetal.

    Science.gov (United States)

    Beni, Claudio; Marconi, Simona; Boccia, Priscilla; Ciampa, Alessandra; Diana, Giampietro; Aromolo, Rita; Sturchio, Elena; Neri, Ulderico; Sequi, Paolo; Valentini, Massimiliano

    2011-10-01

    The present study investigated the effects of using arsenic (As) contaminated irrigation water in Lactuca sativa L. cropping. Two different arsenic concentrations, i.e., 25 and 85 μg L(-1) and two different soils, i.e., sandy and clay loam, were taken into account. We determined the arsenic mobility in the different soil fractions, its amount in groundwater, and the phytotoxicity and genotoxicity. Nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP) were used to assess the lettuce metabolic profile changes and the arsenic uptake by the plant, respectively, as a function of the various conditions studied, i.e., As content and type of soil. Data indicated that at both concentrations in sandy soil, arsenic is in part quickly leached and thus present in groundwater and in part absorbed by the vegetable, being therefore readily available for assimilation by consumption. NMR results reported a large modification of the metabolic pattern, which was depending on the pollutant amount. In clay loam soil, the groundwater had a low As content with respect to sandy soil, and NMR and ICP performed on the lettuce did not reveal severe changes related to As, most likely because the metalloid is bound to the colloidal fraction.

  9. [Effects of degraded sandy grassland afforestation on soil quality in semi-arid area of northern China].

    Science.gov (United States)

    Hu, Ya-lin; Zeng, De-hui; Fan, Zhi-ping; Ai, Gui-yan

    2007-11-01

    By the methods of field survey and incubation test, this paper studied the effects of degraded sandy grassland afforestation with Mongolian pine on the soil physical, chemical and biological properties in 0-10 cm layer on Keerqin sandy land. The results showed that after 32 years afforestation, soil organic C, total N and total P decreased by 21%, 42% and 45%, respectively. In May and November, soil NH4+ -N content was significantly higher under Mongolian pine plantation than under grassland (P = 0.001; P = 0.019), but in May, August and November, soil NO3- -N content was in adverse (P soil C mineralization rate was higher under Mongolian pine plantation than under grassland, but the difference in N mineralization rate was not significant (P > 0.05). In May and August, soil microbial biomass C under Mongolian pine plantation and grassland had little difference, but in November, it was significantly higher under Mongolian pine plantation than under grassland. Soil nutrients- and moisture contents were the important factors affecting soil microbial biomass C. Soil urease and invertase activities decreased but catalase activity increased under Mongolian pine plantation, compared with those under grassland. It was suggested that 32 years afforestation of degraded sandy grassland with Mongolian pine on Keerqin sandy land led to a definite degradation of soil quality. Owing to the changes of vegetation, the test indicators of soil quality had different seasonal dynamic characteristics under Mongolian pine plantation and grassland. As a means of degraded ecosystem restoration in semi-arid area of Northern China, afforestation had its definite limitations.

  10. Imazaquin degradation and metabolism in a sandy loam soil amended with farm litters

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Imazaquin applied in legume crops has a long residual time in soil,which often impacts safety of the susceptible crops.To increase safety of imazaquin application,two composted litters,bovine manure (BM) and chicken manure (CM),were used to determine their effects on imazaquin environmental behavior by incorporating each kind of manure into the tested sandy loam soil at 10% (w/w).The degradation of imazaquin in BM- and CM-amended soil was about 2.4 and 1.5 times,respectively,faster than that in unamended soil.The half-lives of imazaquin in BM-amended soil varied between 6.7 and 15.4 d over the temperature range of 20 to 40℃,and the degradation rate constant (k) increased by a factor of about 1.5 for every 10℃ change.Higher mix ratio did not significantly increase the degradation,and the optimal active degradation of imazaquin was observed approximately at the mix ratio of 10:1 of soil to BM.The different moisture levels had negligible effect on imazaquin degradation.In both unamended and BM-amended treatments.two metabolites were observed at 5,10 and 30 d after treatment.One metabolite at retention time (RT) of 8.4 min was identified as 2-(4-hydroxyl-5-oxo-2-imidazolin-2-y1) quinoline acid,originating from the loss of isopropyl group and hydroxylation at the 4-position of imidazolinone ring.The other at RT of 12.9 min was identified as quinolinc-2,3-dicarboxylic anhydride,resulting from detachment of imidazolinone ring and the forming of dicarboxylic anhydride.This finding suggested that the addition of farm litters into soil might be a good management option since it can not only increase soil fertility but also contribute to increase safety of imazaquin application to the following susceptible crops.

  11. Organic contaminants in soil, desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the soil matri

  12. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  13. Fungal Bioremediation of Creosote-contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    The influence of two ligninolytic fungi (Pleurotus ostreatus and Irpex lacteus) on bioremediation of creosote-contaminated soil was studied. The thesis describes the polycyclic aromatic hydrocarbon concentration decrease during the laboratory-scale experiments and reveals the changes in the present soil microbial community under the influence of either fungus. The thesis compares different impact on PAH concentrations and soil microbial community depending on the fungus applied.

  14. Mechanochemical remediation of PCB contaminated soil.

    Science.gov (United States)

    Wang, Haizhu; Hwang, Jisu; Huang, Jun; Xu, Ying; Yu, Gang; Li, Wenchao; Zhang, Kunlun; Liu, Kai; Cao, Zhiguo; Ma, Xiaohui; Wei, Zhipeng; Wang, Quhui

    2017-02-01

    Soil contaminated by polychlorinated biphenyls (PCBs) is a ubiquitous problem in the world, which can cause significant risks to human health and the environment. Mechanochemical destruction (MCD) has been recognized as a promising technology for the destruction of persistent organic pollutants (POPs) and other organic molecules in both solid waste and contaminated soil. However, few studies have been published about the application of MCD technology for the remediation of PCB contaminated soil. In the present study, the feasibility of destroying PCBs in contaminated soil by co-grinding with and without additives in a planetary ball mill was investigated. After 4 h milling time, more than 96% of PCBs in contaminated soil samples were destroyed. The residual concentrations of PCBs decreased from 1000 mg/kg to below the provisional Basel Convention limit of less than 50 mg/kg. PCDD/F present in the original soil at levels of 4200 ng TEQ/kg was also destroyed with even a slightly higher destruction efficiency. Only minor dechlorinations of the PCBs were observed and the destruction of the hydrocarbon skeleton is proposed as the main degradation pathway of PCBs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai;

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... region-water retention curve increased with increasing biochar rates....

  16. Uncertainty of Deardorff’s soil moisture model based on continuous TDR measurements for sandy loam soil

    Directory of Open Access Journals (Sweden)

    Brandyk Andrzej

    2016-03-01

    Full Text Available Knowledge on soil moisture is indispensable for a range of hydrological models, since it exerts a considerable influence on runoff conditions. Proper tools are nowadays applied in order to gain in-sight into soil moisture status, especially of uppermost soil layers, which are prone to weather changes and land use practices. In order to establish relationships between meteorological conditions and topsoil moisture, a simple model would be required, characterized by low computational effort, simple structure and low number of identified and calibrated parameters. We demonstrated, that existing model for shallow soils, considering mass exchange between two layers (the upper and the lower, as well as with the atmosphere and subsoil, worked well for sandy loam with deep ground water table in Warsaw conurbation. GLUE (Generalized Likelihood Uncertainty Estimation linked with GSA (Global Sensitivity Analysis provided for final determination of parameter values and model confidence ranges. Including the uncertainty in a model structure, caused that the median soil moisture solution of the GLUE was shifted from the one optimal in deterministic sense. From the point of view of practical model application, the main shortcoming were the underestimated water exchange rates between the lower soil layer (ranging from the depth of 0.1 to 0.2 m below ground level and subsoil. General model quality was found to be satisfactory and promising for its utilization for establishing measures to regain retention in urbanized conditions.

  17. Influence of legume crops on content of organic carbon in sandy soil

    Directory of Open Access Journals (Sweden)

    Hajduk Edmund

    2015-06-01

    Full Text Available The paper presents the results of a 3-year field experiment designed to evaluate the content of organic carbon in brown soil (Haplic Cambisol Dystric developed from a light loamy sand under legumes cultivation. Experimental factors were: species of legume crop (colorful-blooming pea (Pisum sativum, chickling vetch (Lathyrus sativus, narrow-leafed lupin (Lupinus angustifolius, methods of legumes tillage (legumes in pure culture and in mixture with naked oats and mineral N fertilization (0, 30, 60, 90 kg N·ha−1. Cultivation of legumes on sandy soil did not result in an increase of organic carbon content in the soil after harvest as compared to the initial situation, i.e. 7.39 vs. 7.76 g·kg−1 dry matter (DM, on average, respectively. However, there was the beneficial effect of this group of plants on soil abundance in organic matter, the manifestation of which was higher content of organic carbon in soils after legume harvest as compared to soils with oats grown (7.21 g·kg−1 DM, on average. Among experimental crops, cultivation of pea exerted the most positive action to organic carbon content (7.58 g·kg−1, after harvest, on average, whereas narrow-leaved lupin had the least effect on organic carbon content (7.23 g·kg−1, on average. Pure culture and greater intensity of legume cultivation associated with the use of higher doses of mineral nitrogen caused less reduction in organic carbon content in soils after harvest.

  18. Multiple benefits of manure: the key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms

    NARCIS (Netherlands)

    Zingore, S.; Delve, R.J.; Nyamangara, J.; Giller, K.E.

    2008-01-01

    Manure is a key nutrient resource on smallholder farms in the tropics, especially on poorly buffered sandy soils, due to its multiple benefits for soil fertility. Farmers preferentially apply manure to fields closest to homesteads (homefields), which are more fertile than fields further away (outfie

  19. Characterisation of phosphate solubilising bacteria in sandy loam soil under chickpea cropping system.

    Science.gov (United States)

    Singh, Machiavelli; Tejo Prakash, N

    2012-06-01

    With the aim to explore the possible role of phosphate-solubilizing bacteria (PSB) in phosphorus (P) cycling in agricultural soils, we isolated PSB inhabiting naturally in the sandy loam soils under chickpea cropping of Patiala (Punjab State). A total of 31 bacterial isolates showing solubilizing activities were isolated on Pikovskaya agar plates. The potent phosphate solubilizers were selected for further characterization. These isolates were shown to belong to the genera Pseudomonas and Serratia by partial sequencing analysis of their respective 16S rDNA genes. ERIC-PCR based fingerprinting was done for tracking the survival of introduced populations of the PSB during mass inoculation of these strains under chickpea plots. The results showed positive correlation (r(2) = 0.853) among soil phosphatase activity and phosphate solubilizers population, which was also positively correlated (r(2) = 0.730) to available phosphorus. Identification and characterization of soil PSB for the effective plant growth-promotion broadens the spectrum of phosphate solubilizers available for field application.

  20. Environmental adaptability of Canavalia virosa and Flemingia congesta to sandy ash soil of Merapi Volcano, Java

    Directory of Open Access Journals (Sweden)

    S. S. Wardoyo

    2016-07-01

    Full Text Available Studies on volcanic ash of Mount Merapi erupted in 2010 are limited to only characterization of mineralogical, physical, chemical, and biological properties of the volcanic ash. In order to speed up rehabilitation of soils affected by the volcanic ash, it is necessary to study the application of suitable plant species, which is called bio-mechanic conservation. The purpose of this study was to test the environmental adaptability of Canavalia virosa and Flemingia congesta in sandy soil covered by volcanic ash of Mount Merapi. This study was carried out using 2x4 Split-plot randomized block design with three replicates. The main plot of the design was plant species (Canavalia virosa and Flemingia congesta, while the sub plot was the dose of organic matter application (0, 20, 40, and 60 t / ha. Soil parameters measured were N-total, P-total, available P, available K, and organic matter contents. Plant parameters measured were plant dry weight and plant height. The results showed no significant differences in soil N, P and K contents of all treatments tested in this study after 9 weeks, except C organic content. Canavalia virosa grew well until 9 weeks, whereas Flemingia congesta started to die a 9 weeks after planting.

  1. CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Durham, L.A.; Johnson, R.L.; Rieman, C.; Kenna, T.; Pilon, R.

    2003-02-27

    The U.S. Army Corps of Engineers (USACE) is conducting a cleanup of radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The largest cost element for most of the FUSRAP sites is the transportation and disposal of contaminated soil. Project managers and engineers need an estimate of the volume of contaminated soil to determine project costs and schedule. Once excavation activities begin and additional remedial action data are collected, the actual quantity of contaminated soil often deviates from the original estimate, resulting in cost and schedule impacts to the project. The project costs and schedule need to be frequently updated by tracking the actual quantities of excavated soil and contaminated soil remaining during the life of a remedial action project. A soil volume estimate tracking methodology was developed to provide a mechanism for project managers and engineers to create better project controls of costs and schedule. For the FUSRAP Linde site, an estimate of the initial volume of in situ soil above the specified cleanup guidelines was calculated on the basis of discrete soil sample data and other relevant data using indicator geostatistical techniques combined with Bayesian analysis. During the remedial action, updated volume estimates of remaining in situ soils requiring excavation were calculated on a periodic basis. In addition to taking into account the volume of soil that had been excavated, the updated volume estimates incorporated both new gamma walkover surveys and discrete sample data collected as part of the remedial action. A civil survey company provided periodic estimates of actual in situ excavated soil volumes. By using the results from the civil survey of actual in situ volumes excavated and the updated estimate of the remaining volume of contaminated soil requiring excavation, the USACE Buffalo District was able to forecast and update project costs and schedule. The soil volume

  2. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    OpenAIRE

    Silva João Eudes da; Castro Fernando

    2002-01-01

    Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were sub...

  3. Biochar application does not improve the soil hydrological function of a sandy soil

    NARCIS (Netherlands)

    Jeffery, S.; Meinders, M.B.C.; Stoof, C.R.; Bezemer, T.M.; Van de Voorde, T.F.J.; Mommer, L.; Van Groenigen, J.W.

    2015-01-01

    Biochar application to soil is currently being widely posited as a means to improve soil quality and thereby increase crop yield. Next to beneficial effects on soil nutrient availability and retention, biochar is assumed to improve soil water retention. However, evidence for such an effect in the

  4. Effect of Plant-derived Hydrophobic Compounds on Soil Water. Repellency in Dutch Sandy Soils

    NARCIS (Netherlands)

    Mao, J.|info:eu-repo/dai/nl/363508287; Dekker, S.C.|info:eu-repo/dai/nl/203449827; Nierop, K.G.J.|info:eu-repo/dai/nl/182329895

    2013-01-01

    Soil water repellency or hydrophobicity is a common and important soil property, which may diminish plant growth and promotes soil erosion leading to environmentally undesired situations. Hydrophobic organic compounds in the soil are derived from vegetation (leaves, roots, mosses) or microorganisms

  5. Effect of Plant-derived Hydrophobic Compounds on Soil Water. Repellency in Dutch Sandy Soils

    NARCIS (Netherlands)

    Mao, J.; Dekker, S.C.; Nierop, K.G.J.

    2013-01-01

    Soil water repellency or hydrophobicity is a common and important soil property, which may diminish plant growth and promotes soil erosion leading to environmentally undesired situations. Hydrophobic organic compounds in the soil are derived from vegetation (leaves, roots, mosses) or microorganisms

  6. Comparison of split nitrogen appliacation strategies in leek (Allium porrum) to reduce N fertilization on sandy soils in the Netherlands

    NARCIS (Netherlands)

    Geel, van W.C.A.; Meurs, E.J.J.; Radersma, S.; Grashoff, C.

    2006-01-01

    High nitrogen (N) fertilization to maximize production of leek (Allium porrum L.) combined with low N recovery can lead to considerable nitrogen pollution of the environment. A field trial was conducted in 2002 and 2003 on a sandy soil in the Netherlands. To synchronize N supply and N demand, two st

  7. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling

    NARCIS (Netherlands)

    Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Munoz-Carpena, R.; Icerman, J.

    2009-01-01

    Tomato production systems in Florida are typically intensively managed with high inputs of fertilizer and irrigation and on sandy soils with low inherent water and nutrient retention capacities; potential nutrient leaching losses undermine the sustainability of such systems. The objectives of this 3

  8. Strategies to optimize allocation of limited nutrients to sandy soils of the Sahel: a case study from Niger, West Africa

    NARCIS (Netherlands)

    Gandah, M.; Brouwer, J.; Hiernaux, P.; Duivenbooden, van N.

    2003-01-01

    Soils used for rainfed cereal production in Niger are sandy, deficient in major nutrients (N and P), and also low in organic matter content. Scarce rainfall with an unpredictable distribution in space and time makes crop and nutrient management difficult. Observations were made in 1996 and 1997 on m

  9. Some aspects of remediation of contaminated soils

    Science.gov (United States)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  10. Bioremediation of glyphosate-contaminated soils.

    Science.gov (United States)

    Ermakova, Inna T; Kiseleva, Nina I; Shushkova, Tatyana; Zharikov, Mikhail; Zharikov, Gennady A; Leontievsky, Alexey A

    2010-09-01

    Based on the results of laboratory and field experiments, we performed a comprehensive assessment of the bioremediation efficiency of glyphosate-contaminated soddy-podzol soil. The selected bacterial strains Achromobacter sp. Kg 16 (VKM B-2534D) and Ochrobactrum anthropi GPK 3 (VKM B-2554D) were used for the aerobic degradation of glyphosate. They demonstrated high viability in soil with the tenfold higher content of glyphosate than the recommended dose for the single in situ treatment of weeds. The strains provided a two- to threefold higher rate of glyphosate degradation as compared to indigenous soil microbial community. Within 1-2 weeks after the strain introduction, the glyphosate content of the treated soil decreased and integral toxicity and phytotoxicity diminished to values of non-contaminated soil. The decrease in the glyphosate content restored soil biological activity, as is evident from a more than twofold increase in the dehydrogenase activity of indigenous soil microorganisms and their biomass (1.2-fold and 1.6-fold for saprotrophic bacteria and fungi, respectively). The glyphosate-degrading strains used in this study are not pathogenic for mammals and do not exhibit integral toxicity and phytotoxicity. Therefore, these strains are suitable for the efficient, ecologically safe, and rapid bioremediation of glyphosate-contaminated soils.

  11. Grass Cover Influences Hydrophysical Parameters and Heterogeneity of Water Flow in a Sandy Soil

    Institute of Scientific and Technical Information of China (English)

    L. LICHNER; D. J. ELDRIDGE; K. SCHACHT; N. ZHUKOVA; L. HOLKO; M. (S)(I)R; J. PECHO

    2011-01-01

    Vegetation cover has a major effect on water flow in soils.Two sites,separated by distance of about 50 m,were selected to quantify the influence of grass cover on hydrophysical parameters and heterogeneity of water flow in a sandy soil emerging during a heavy rain following a long hot,dry period.A control soil (pure sand) with limited impact of vegetation or organic matter was obtained by sampling at 50 cm depth beneath a glade area,and a grassland soil was covered in a 10 cm thick humic layer and colonised by grasses.The persistence of water repellency was measured using the water drop penetration time test,sorptivity and unsaturated hydraulic conductivity using a mini disk infiltrometer,and saturated hydraulic conductivity using a double-ring infiltrometer.Dye tracer experiments were used to assess the heterogeneity of water flow,and both the modified method for estimating effective cross section and an original method for assessing the degree of preferential flow were used to quantify this heterogeneity from the images of dyed soil profiles.Most hydrophysical parameters were substantially different between the two surfaces.The grassland soil had an index of water repellency about 10 times that of pure sand and the persistence of water repellency almost 350 times that of pure sand.Water and ethanol sorptivities in the grassland soil were 7% and 43%,respectively,of those of the pure sand.Hydraulic conductivity and saturated hydraulic conductivities in the grassland soil were 5% and 16% of those of the pure sand,respectively.Dye tracer experiments revealed a stable flow with "air-draining" condition in pure sand and well-developed preferential flow in grassland soil,corresponding to individual grass tussocks and small micro-depressions.The grassland soil was substantially more water repellent and had 3 times the degree of preferential flow compared to pure sand.The results of this study reinforce our view that the consequences of any change in climate

  12. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D

    2017-01-01

    Soil structure is a key soil physical property that affects soil water balance, gas transport, plant growth and development, and ultimately plant yield. Biochar has received global recognition as a soil amendment with the potential to ameliorate the structure of degraded soils. We investigated how...... corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... to significant increase in soil water retention compared to the CT and BC-10 as a result of increased microporosity (pores biochar had minimal impact. No significant influence of biochar was observed for ka and Dp/D0 for the BC treatments compared to the CT despite...

  13. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per;

    2012-01-01

    carbon (CCC resistance and resilience of the three soils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile...... at both soil-water potentials than the MCC and CCC soils possibly due to higher biotic binding of soil particles by the greater organic carbon content. The water dispersible clay was negatively correlated with the level of clay saturation by organic carbon. The resistance of the soils to compaction......, quantified by both the compression index and a proposed functional index, was significantly greater for the MFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles...

  14. Arsenic solid-phase speciation and reversible binding in long-term contaminated soils.

    Science.gov (United States)

    Rahman, M S; Clark, M W; Yee, L H; Comarmond, M J; Payne, T E; Kappen, P; Mokhber-Shahin, L

    2017-02-01

    Historic arsenic contamination of soils occurs throughout the world from mining, industrial and agricultural activities. In Australia, the control of cattle ticks using arsenicals from the late 19th to mid 20th century has led to some 1600 contaminated sites in northern New South Wales. The effect of aging in As-mobility in two dip-site soil types, ferralitic and sandy soils, are investigated utilizing isotopic exchange techniques, and synchrotron X-ray adsorption spectroscopy (XAS). Findings show that historic soil arsenic is highly bound to the soils with >90% irreversibly bound. However, freshly added As (either added to historically loaded soils or pristine soils) has a significantly higher degree of As-accessibility. XAS data indicates that historic soil arsenic is dominated as Ca- (svenekite, & weilite), Al-(mansfieldite), and Fe- (scorodite) like mineral precipitates, whereas freshly added As is dominated by mineral adsorption surfaces, particularly the iron oxy-hydroxides (goethite and hematite), but also gibbsite and kaolin surfaces. SEM data further confirmed the presence of scorodite and mansfieldite formation in the historic contaminated soils. These data suggest that aging of historic soil-As has allowed neoformational mineral recrystallisation from surface sorption processes, which greatly reduces As-mobility and accessibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Phytoremediation of soils contaminated by cadmium

    Science.gov (United States)

    Watai, H.; Miyazaki, T.; Fujikawa, T.; Mizoguchi, M.

    2004-12-01

    Phytoremediation is a technique to clean up soils contaminated with heavy metals. Advantages of this method are that (1) This technique is suitable to cleanup soils slightly contaminated with heavy metals in relatively wide area. (2) The expense for clean up is lower than civil engineering techniques. (3) This method can remove heavy metals fundamentally from contaminated. (4) The heavy metals are able to recycle by ashing of plants. Many researches have been done on the phytoremediation up to now, but almost all these researches were devoted to clarify the phytoremediation from the view point of plants themselves. However, few efforts have been devoted to analyze the migrations of heavy metals in soils during the phytoremediation process. The objective of this study is to clarify the features of Cd migration when plant roots are absorbing Cd from the ambient soils. Especially, we focused on finding the Cd migration pattern by changing the soil condition such as plant growing periods, planting densities, and the initial Cd concentration in soils. We planted sunflowers in columns filled with Cd contaminated soils because sunflower is a well-known hyperaccumulator of Cd from soils. By cutting the shoots of plants at the soil surface, and by keeping the plant roots in the soils without disturbance, the Cd concentrations, moisture contents, pH distributions, EC distributions, and dry weight of residual roots in the soils were carefully analyzed. The experimental results showed that (1)The growth of the planted sunflowers were suffered by applying of Cd. (2)The decrease of suction was affected by water uptake by roots at the depth from 0 to 5 cm. Water contents with plants in soils decrease more than without plants. (3)Cd adsorption by roots was predominant within 5cm from soil surface. In addition, it was also shown that there was an optimal Cd concentration where Cd is most effectively adsorbed by the plant. In this experiment we found that 40 to 60 mg kg-1 was the

  16. Effect of soil pH on sorption of salinomycin in clay and sandy soils

    African Journals Online (AJOL)

    use

    Full Length Research Paper. Effect of ... In this study, sorption of salinomycin was measured in four agricultural soils, a clay soil with low organic ... Key words: Salinomycin, sorption, pH, desorption, environmental pollution, phosphate buffer.

  17. Dissolved Organic Carbon Dynamics Along Terrestrial-aquatic Flowpaths in a Catchment Dominated by Sandy Soils

    Science.gov (United States)

    Wickland, K.; Walker, J. F.; Hood, K.; Butler, K. D.

    2015-12-01

    Aquatic systems receive significant amounts of terrestrially-derived dissolved organic carbon (DOC) from their watersheds. The amount and nature received depends on terrestrial carbon source strength, processing and losses of carbon during transport, and hydrologic connectivity between terrestrial and aquatic systems. While much research has been done on terrestrial DOC dynamics along terrestrial-aquatic flowpaths, there is still considerable uncertainty in many areas including the importance of different carbon sources, microbial metabolism and sorption of DOC, and processing of carbon in groundwater. Here we investigate DOC dynamics in soils, groundwater, and stream waters at the USGS Water, Energy, and Biogeochemical (WEBB) Program research site in northern Wisconsin. This site is well-suited for studying DOC dynamics as soils are sandy and homogenous with small DOC sorption potential, and previous work has characterized the hydrology of the region in detail. We collected water samples over two years from soil pit lysimeters along a series of hillslope transects, from shallow and deep groundwater wells, and from a first-order stream receiving these waters. We measured DOC concentration, DOC optical properties, and biodegradability of DOC. Combined with historical DOC and companion water chemistry data we characterize DOC generation and loss along the following flowpaths: 1) infiltration through the unsaturated zone to the groundwater table, 2) shallow groundwater flow, and 3) long groundwater flowpaths of different origin (lake-derived vs. terrestrial-derived water).

  18. Effects of freeze-thaw on soil nitrogen and phosphorus availability at the Keerqin Sandy Lands, China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qiong; ZENG De-hui; FAN Zhi-ping

    2008-01-01

    A laboratory simulated freeze-thaw was conducted to determine the effects of freeze-thaw on soil nutrient availability in temperate semi-arid regions. Soil samples were collected from sandy soils (0-20 cm) of three typical ecosystems (grassland, Mongolian pine plantation and poplar plantation) in southeastern Keerqin Sandy Lands of China and subjected to freeze-thaw treatment (-12℃ for 10 days, then 20℃ for 10 days) or incubated at constant temperature (20℃ for 20 days). Concentrations of the soil NO3--N, NH4+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P (MBP) were determined on three occasions: at the start of the incubation, immediate post-thawing and at the 10th day post-thawing. The results showed that soil net nitrification and N mineralization rates at three sites were negatively affected by freeze-thaw treatment, and decreased by 50%-85% as compared to the control, of which the greatest decline occurred in the soil collected from poplar plantation. In contrast, the concentration of soil NH4+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P were insignificantly influenced by freeze-thaw except that LPi and NH4+-N showed a slight increase immediate post-thawing. The effects of freeze-thaw on soil N transformation were related to soil biological processes and the relatively constant available P was ascribed to severe soil aridity.

  19. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  20. Chelant soil-washing technology for metal-contaminated soil.

    Science.gov (United States)

    Voglar, David; Lestan, Domen

    2014-01-01

    We demonstrate here, in a pilot-scale experiment, the feasibility of ethylenediaminetetraacetate (EDTA)based washing technology for soils contaminated with potentially toxic metals. Acid precipitation coupled to initial alkaline toxic metal removal and an electrochemical advanced oxidation process were used for average recovery of 76 +/- 2% of EDTA per batch and total recycle of water in a closed process loop. No waste water was generated; solid wastes were efficiently bitumen-stabilized before disposal. The technology embodiment, using conventional process equipment, such as a mixer for soil extraction, screen for soil/gravel separation, filter chamber presses for soil/liquid and recycled EDTA separation and soil rinsing, continuous centrifuge separator for removal of precipitated metals and electrolytic cells for process water cleansing, removed up to 72%, 25% and 66% of Pb, Zn and Cd from garden soil contaminated with up to 6960, 3797 and 32.6 mg kg(-1) of Pb, Zn and Cd, respectively, in nine 60kg soil batches. Concentrations of Pb and Zn remaining in the remediated soil and bioaccessible from the simulated human intestinal phase soil were reduced by 97% and 96% and were brought under the level of determination for Cd. In the most cost-effective operation mode, the material and energy costs of remediation amounted to 50.5 Euros ton(-1) soil and the total cost to 299 Euros ton(-1).

  1. [Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil].

    Science.gov (United States)

    Wang, Ji-Dong; Qi, Bing-Jie; Zhang, Yong-Chun; Zhang, Ai-Jun; Ning, Yun-Wang; Xu, Xian-Ju; Zhang, Hui; Ma, Hong-Bo

    2012-04-01

    Soil samples (0-80 cm) were collected from a 30-year fertilization experimental site in Xuzhou, Jiangsu Province of East China to study the variations of the pH, calcium carbonate and active calcium carbonate contents, and pH buffer capacity of sandy loam calcareous fluvor-aquic soil under different fertilization treatments. Thirty-year continuous application of different fertilizers accelerated the acidification of topsoil (0-20 cm), with the soil pH decreased by 0.41-0.70. Under different fertilization, the soil pH buffer capacity (pHBC) varied from 15.82 to 21.96 cmol x kg(-1). As compared with no fertilization, single N fertilization decreased the pHBC significantly, but N fertilization combined with organic fertilization could significantly increase the pHBC. The soil pHBC had significant positive correlations with soil calcium carbonate and active calcium carbonate contents, but less correlation with soil organic matter content and soil cation exchange capacity, suggesting that after a long-term fertilization, the sandy loam calcareous fluvor-aquic soil was still of an elementary calcium carbonate buffer system, and soil organic matter and cation exchange capacity contributed little to the buffer system. The soil calcium carbonate and active calcium carbonate contents were greater in 0-40 cm than in 40-80 cm soil layer. Comparing with soil calcium carbonate, soil active calcium carbonate was more sensitive to reflect the changes of soil physical and chemical properties, suggesting that the calcium carbonate buffer system could be further classified as soil active calcium carbonate buffer system.

  2. Contamination of soils. La contaminacion del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Maroto, J.M.; Garcia-Delgado, R.A.; Garcia-Herruzo, F.; Gomez-La Hoz, C. (Universidad de Malaga. Departamento de Ingenieria Quimica (Spain))

    1993-01-01

    The contamination of soils has received less attention from the public opinion than atmospheric pollution and water pollution. This article makes a review of different transfer pathways and decontamination techniques. Detoxification techniques can be broken down into two different groups. : Those implying excavation and transportation of the soil and those not requiring excavation. At the present time there is an increasing trend of giving up those techniques requiring immobilization or on site treatment. (Author) (32 refs.)

  3. Quasi 3D modelling of water flow in the sandy soil

    Science.gov (United States)

    Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim

    2016-04-01

    Monitoring and modeling tools may improve irrigation strategies in precision agriculture. Spatial interpolation is required for analyzing the effects of soil hydraulic parameters, soil layer thickness and groundwater level on irrigation management using hydrological models at field scale. We used non-invasive soil sensor, a crop growth (LINGRA-N) and a soil hydrological model (Hydrus-1D) to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. In the first step, the sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models at one soil column. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. In the second step, to predict Ks over the whole field, the spatial distributions of Ks and its relationship between co-located soil ECa measured by a DUALEM-21S sensor were investigated. Measured groundwater levels and soil layer thickness were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m in aim of digital elevation maps. In the third step, a quasi 3D modelling approach was conducted using interpolated data as input hydraulic parameter, geometric information and boundary conditions in the integrated model. In addition, three different irrigation scenarios namely current, no irrigation and optimized irrigations were carried out to find out the most efficient irrigation regime. In this approach, detailed field scale maps of soil water stress, water storage and crop yield were produced at each specific time interval to evaluate the best and most efficient distribution of water using standard gun sprinkler irrigation. The results show that the effect of the position of the groundwater level was dominant in soil-water content prediction and associated water stress. A time-dependent sensitivity analysis of the hydraulic

  4. Using a local-interaction model to determine the resistance to penetration of projectiles into sandy soil

    Science.gov (United States)

    Kotov, V. L.; Balandin, V. V.; Bragov, A. M.; Linnik, E. Yu.; Balandin, V. V.

    2013-07-01

    A local-interaction model describing the penetration of axisymmetric projectiles into sandy soil at a constant velocity is studied experimentally and theoretically. Two approaches to the determination of the parameters of the quadratic local-interaction model are considered. The first approach is based on the use of the solution of the problem of spherical-cavity expansion taking into account the dynamic compressibility and shear resistance of soil. In the second approach, model parameters are determined based on the experimental dependence of the resistance to penetration of conical projectiles into a sandy soil on the impact velocity. Good agreement was obtained between the results of experiments, two-dimensional numerical calculations, and calculations for the local interaction model based on the solution of the spherical-cavity expansion problem and used to determine the maximum resistance to penetration of conical and spherical projectiles.

  5. Artificial Management Improves Soil Moisture, C, N and P in an Alpine Sandy Meadow of Western China

    Institute of Scientific and Technical Information of China (English)

    WU Gao-Lin; LI Wei; ZHAO Ling-Ping; SHI Zhi-Hua

    2011-01-01

    Regeneration of degraded grassland ecosystems is a significant issue in restoration ecology globally.To understand the effects of artificial management measures on alpine meadows, we surveyed topsoil properties including moisture, organic carbon (SOC), nitrogen (N), and phosphorus (P) contents five years after fencing and fencing + reseeding management practices in a sandy meadow in the eastern Qinghai-Tibetan Plateau, northwestern China.Both the fencing and fencing + reseeding management practices significantly increased soil moisture storage, SOC, total N, available N, total P, and available P, as compared to the unmanaged control.Fencing plus reseeding was more effective than fencing alone for improving soil C, N, and P contents.These suggested that rehabilitation by reseeding and fencing generally had favorable effects on the soil properties in degraded sandy alpine meadows, and was an effective approach for restoration of degraded meadow ecosystems of the Qinghai-Tibetan Plateau.

  6. The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil

    Directory of Open Access Journals (Sweden)

    M.E El-Hadad

    2011-03-01

    Full Text Available In a greenhouse experiment, the nematicidal effect of some bacterial biofertilizers including the nitrogen fixing bacteria (NFB Paenibacillus polymyxa (four strains, the phosphate solubilizing bacteria (PSB Bacillus megaterium (three strains and the potassium solubilizing bacteria (KSB B. circulans (three strains were evaluated individually on tomato plants infested with the root-knot nematode Meloidogyne incognita in potted sandy soil. Comparing with the uninoculated nematode-infested control, the inoculation with P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2, increased the counts of total bacteria and total bacterial spores in plants potted soil from 1.2 to 2.6 folds estimated 60 days post-inoculation. Consequently, the inoculation with P. polymyxa NFB7 increased significantly the shoot length (cm, number of leaves / plant, shoot dry weight (g / plant and root dry weight (g / plant by 32.6 %, 30.8 %, 70.3 % and 14.2 %, respectively. Generally, the majority treatments significantly reduced the nematode multiplication which was more obvious after 60 days of inoculation. Among the applied strains, P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2 inoculations resulted in the highest reduction in nematode population comparing with the uninoculated nematode-infested control. They recorded the highest reduction in numbers of hatched juveniles/root by 95.8 %, females/root by 63.75 % and juveniles/1kg soil by 57.8 %. These results indicated that these bacterial biofertilizers are promising double purpose microorganisms for mobilizing of soil nutrients (nitrogen, phosphate and potassium and for the biological control of M. incognita.

  7. Potential of Ranunculus acris L. for biomonitoring trace element contamination of riverbank soils: photosystem II activity and phenotypic responses for two soil series.

    Science.gov (United States)

    Marchand, Lilian; Lamy, Pierre; Bert, Valerie; Quintela-Sabaris, Celestino; Mench, Michel

    2016-02-01

    Foliar ionome, photosystem II activity, and leaf growth parameters of Ranunculus acris L., a potential biomonitor of trace element (TE) contamination and phytoavailability, were assessed using two riverbank soil series. R. acris was cultivated on two potted soil series obtained by mixing a TE (Cd, Cu, Pb, and Zn)-contaminated technosol with either an uncontaminated sandy riverbank soil (A) or a silty clay one slightly contaminated by TE (B). Trace elements concentrations in the soil-pore water and the leaves, leaf dry weight (DW) yield, total leaf area (TLA), specific leaf area (SLA), and photosystem II activity were measured for both soil series after a 50-day growth period. As soil contamination increased, changes in soluble TE concentrations depended on soil texture. Increase in total soil TE did not affect the leaf DW yield, the TLA, the SLA, and the photosystem II activity of R. acris over the 50-day exposure. The foliar ionome did not reflect the total and soluble TE concentrations in both soil series. Foliar ionome of R. acris was only effective to biomonitor total and soluble soil Na concentrations in both soil series and total and soluble soil Mo concentrations in the soil series B.

  8. Enhanced retention of linuron, alachlor and metalaxyl in sandy soil columns intercalated with wood barriers.

    Science.gov (United States)

    Rodríguez-Cruz, M S; Ordax, J M; Arienzo, M; Sánchez-Martín, M J

    2011-03-01

    A study has been made of the effect a reactive barrier made of pine (softwood) or oak (hardwood) wood intercalated in a sandy soil column has on the retention of linuron, alachlor and metalaxyl (pesticides with contrasting physicochemical characteristics). The leaching of pesticides has been carried out under a saturated flow regime and breakthrough curves (BTCs) have been obtained at flow rates of 1 m Lmin(-1) (all pesticides) and 3 m Lmin(-1) (linuron). The cumulative curves in the unmodified soil indicate a leaching of pesticides >80% of the total amount of compound added. After barrier intercalation, linuron leaching decreases significantly and a modification of the leaching kinetics of alachlor and metalaxyl has been observed. The theoretical R factors increased ∼2.6-3.3, 1.2-1.6-fold, and 1.4-1.7-fold and the concentration of the maximum peak decreased ∼6-12-fold, 2-4-fold and 1.2-2-fold for linuron, alachlor and metalaxyl, respectively. When considering the three pesticides, significant correlations have been found between the theoretical retardation factor (R) and the pore volume corresponding to the maximum peaks of the BTCs (r=0.77; pmetalaxyl. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Predicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Tests

    Directory of Open Access Journals (Sweden)

    Mahmoud Hassanlourad

    2014-12-01

    Full Text Available In this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty and three relative densities (%30, %50, and %90 were injected with the sodium silicate grout with three different concentrations (water to sodium silicate ratio of 0.33, 1, and 2. A multi-layer Perceptron type of the artificial neural network was trained and tested using the results of 138 experimental tests. The multi-layer Perceptron included one input layer, two hidden layers and one output layer. The input parameters consisted of initial relative densities of grouted samples, the average size of particles (D50, the ratio of the grout water to sodium silicate and the grout pressure. The output parameter was the grout injection radius. The results of the experimental tests showed that the radius of grout injection is a complicated function of the mentioned parameters. In addition, the results of the trained artificial neural network showed to be reasonably consistent with the experimental results.

  10. Evaluation of soil washing for radiologically contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, D. II

    1994-03-01

    Soil washing has been applied internationally to decontaminate soils due to the widespread increase in environmental awareness manifested in the United States by promulgation of the Comprehensive Environmental Response, Compensation and Liability Act, yet we continue to lack understanding on why the technique works in one application and not in another. A soil washing process typically integrates a variety of modules, each designed to decontaminate the matrix by destroying a particular phase or segregating a particle size fraction in which the contaminants are concentrated. The more known about how the contaminants are fixed, the more likely the process will succeed. Much can be learned from bioavailability studies on heavy metals in soils. Sequential extraction experiments designed to destroy one fixation mechanism at a time can be used to determine how contaminants are bound. This knowledge provides a technical basis for designing a processing strategy to efficiently decontaminate soil while creating a minimum of secondary wastes. In this study, a soil from the Idaho National Engineering Laboratory was physically and chemically characterized, then sequentially extracted to determine if soil washing could be effectively used to remove cesium, cobalt and chromium.

  11. Exploring the potential of near-surface geophysical methods to delineate a shallow hardpan in a southeastern U.S. sandy coastal plain soil

    Science.gov (United States)

    A hardpan, which is a dense soil layer near the ground surface, is an undesirable feature of many soils in the Southeast U.S., especially sandy Coastal Plain soils. Shallow hardpans restrict root growth and water penetration through the soil profile, in turn reducing the effective crop root zone and...

  12. Effects of Nitramine Explosive CL-20 on the Soil Microinvertebrate Community in a Sandy Loam Soil

    Science.gov (United States)

    2013-09-01

    by individually combining and gently mixing CL-20- amended soil concentrates with clean SSL field soil in a plastic bag . This approach ensured that...Hawari, J.; Spain, J.C. Biodegradation of the Nitramine Explosive CL- 20. Appl. Environ. Microbiol. 2003, 69, 1871–1874. U.S. Department of

  13. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  14. Sorption/desorption of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane(4,4'-DDT) on a sandy loam soil.

    Science.gov (United States)

    Erdem, Ziya; Cutright, Teresa J

    2015-02-01

    1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane(4,4'-DDT) is a pesticide well-known for its negative health and environmental effects. Despite being banned by a majority of world countries more than 30 years ago, its persistence in the environment is a continuing problem even today. The objective of the study was the investigation of sorption/desorption behavior of 4,4'-DDT in sandy loam soil. The impact of contaminant concentration and age was observed with three different experiments. The sorption percentages at the end of the short time step (8 h) were 50 and 92 %, for initial concentrations 2.26 and 5.28 mg/L, respectively. When freshly spiked soil was subjected to a conventional sorption study, 82 to 99.6 % of the initial aqueous DDT concentrations were sorbed within 24 h. When modeled with a Freundlich isotherm, the log K f was found to be 3.62. After six consecutive 24 h desorption steps, 33 to 96.6 % still remained in the soil. This was more pronounced for soils that had been aged for 60 days. After seven consecutive 24 h desorption steps of aged soil, the percent remaining sorbed to the soil were 44, 64, and 77 %, for 25, 250, and 500 mg/kg, respectively. All results show that 4,4-DDT has a tendency of sorbing to the soil rapidly and showing resistance to desorption. When comparing desorption values, aged soils were seen to desorb less than non-aged soils. This result was attributed to stronger binding to soil with increased contact time.

  15. Remediation of plutonium-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Amos, S.; Coudace, I.; Voss, J

    2005-07-15

    The effectiveness of paramagnetic separation to remove plutonium from soils from the Aldermaston (UK) site has been investigated and reported to the commissioners of the project, AWE plc, and also subsequently at the WM'05 Conference (Tucson, AZ). The results showed that plutonium can be effectively concentrated in soils using magnetic separation and size fractionation. The work also investigated other methods to enhance the separation process. These approaches were: the use of sodium hexametaphosphate (ca. 1% by weight soil) to disperse the clay minerals; roasting to remove organic matter and to oxidise any organically-compIexed plutonium; ultrasonic vibration to break physical bonds between any plutonium oxide and soil particles; leaching of the <75mm fractions with selected reagents to extract plutonium. As a result of this work, engineering concepts are being developed which will enable more than 95% of some of the AWE contaminated soils to be rated for free release. (author)

  16. ELECTROKINETIC REMEDIATION STUDY FOR CADMIUM CONTAMINATED SOIL

    Directory of Open Access Journals (Sweden)

    P. Bala Ramudu

    2007-09-01

    Full Text Available This paper presents the results of an experimental research undertaken to evaluate different purging solutions to enhance the removal of cadmium from spiked contaminated field soil by electrokinetic remediation. Three experiments were conducted when soil was saturated with deionised water and subsequently deionised water, ammonium citrate and sodium citrate were used as purging solutions at anode end. One experiment was conducted when the soil was saturated with ammonium citrate and itself was used as the purging solution. Results showed that 49% reduction of cadmium concentration was achieved in the case of soil saturated (washed with ammonium citrate as well as purging solution also was ammonium citrate. The soil pH and washing solutions were the most important factors in controlling the removal of cadmium in electrokinetic remediation process.

  17. Hurricane Sandy science plan: impacts of environmental quality and persisting contaminant exposure

    Science.gov (United States)

    Caskie, Sarah A.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry

  18. Field performance of nine soil water content sensors on a sandy loam soil in new brunswick, maritime region, Canada.

    Science.gov (United States)

    Chow, Lien; Xing, Zisheng; Rees, Herb W; Meng, Fanrui; Monteith, John; Stevens, Lionel

    2009-01-01

    An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada) using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE) of 15.78, 16.93, and 17.65%, and a r(2) of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917), and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r(2) of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region.

  19. Field Performance of Nine Soil Water Content Sensors on a Sandy Loam Soil in New Brunswick, Maritime Region, Canada

    Directory of Open Access Journals (Sweden)

    Lionel Stevens

    2009-11-01

    Full Text Available An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE of 15.78, 16.93, and 17.65%, and a r2 of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917, and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r2 of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region.

  20. Effects of PAH-Contaminated Soil on Rhizosphere Microbial Communities

    DEFF Research Database (Denmark)

    Pritchina, Olga; Ely, Cairn; Smets, Barth F.

    2011-01-01

    Pearson correlation coefficient. Rhizosphere microbial communities of zucchini and pumpkin grown in the media amended with highest degree of contaminated soil clustered separately, whereas communities of these plants grown in unamended or amended with lower concentrations of contaminated soil, grouped...

  1. Remediation of contaminated soil using soil washing-a review

    Directory of Open Access Journals (Sweden)

    N.Karthika

    2016-01-01

    Full Text Available Pb, Zn, Ni, Cu, Mn and Cd are heavy metals occur naturally as trace elements in many soils. The present paper reviews the remediation of heavy metals of contaminated soil by soil washing using different agents. It was noted that the contact time, pH, concentration of extract ant and agitation speed were affected the process while remediation, so accordingly select the conditions to obtain efficiency which is mainly depend upon the type of soil, contaminationtype, contamination period and metals present in it.EDTA is effective when compared with other chelating agents for heavy metals especially for lead but it has low biodegradation. Because of the nature of low biodegradability, EDTA can be reusedfurther by membrane separation and electrochemical treatment, or degraded by advanced oxidation processes.

  2. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg(-1) soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg(-1) soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions.

  3. Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil.

    Science.gov (United States)

    Samarajeewa, A D; Velicogna, J R; Princz, J I; Subasinghe, R M; Scroggins, R P; Beaudette, L A

    2017-01-01

    Silver nano-particles (AgNPs) are widely used in a range of consumer products as a result of their antimicrobial properties. Given the broad spectrum of uses, AgNPs have the potential for being released to the environment. As a result, environmental risks associated with AgNPs need to be assessed to aid in the development of regulatory guidelines. Research was performed to assess the effects of AgNPs on soil microbial activity and diversity in a sandy loam soil with an emphasis on using a battery of microbial tests involving multiple endpoints. The test soil was spiked with PVP coated (0.3%) AgNPs at the following concentrations of 49, 124, 287, 723 and 1815 mg Ag kg(-1) dry soil. Test controls included an un-amended soil; soil amended with PVP equivalent to the highest PVP concentration of the coated AgNP; and soil amended with humic acid, as 1.8% humic acid was used as a suspension agent for the AgNPs. The impact on soil microbial community was assessed using an array of tests including heterotrophic plate counting, microbial respiration, organic matter decomposition, soil enzyme activity, biological nitrification, community level physiological profiling (CLPP), Ion Torrent™ DNA sequencing and denaturing gradient gel electrophoresis (DGGE). An impact on microbial growth, activity and community diversity was evident from 49 to 1815 mg kg(-1) with the median inhibitory concentrations (IC50) as low as 20-31 mg kg(-1) depending on the test. AgNP showed a notable impact on microbial functional and genomic diversity. Emergence of a silver tolerant bacterium was observed at AgNP concentrations of 49-287 mg kg(-1) after 14-28 days of incubation, but not detectable at 723 and 1815 mg kg(-1). The bacterium was identified as Rhodanobacter sp. The study highlighted the effectiveness of using multiple microbial endpoints for inclusion to the environmental risk assessment of nanomaterials.

  4. Spatial and temporal variation of nitrogen exported by runoff from sandy agricultural soils

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The eutrophication problem has drawn attention to nutrient leaching from agricultural soils.and an understanding of spatial and temporal variability is needed to develop decision-making tools.Thus,eleven sites were selected to monitor,over a two-year period,spatial and temporal variation of runoff discharge and various forms of N in surface runoff in sandy agricultural soils.Factors influencing the variation of runoff discharge and various forms of N in surface runoff were analyzed.Variation of annual rainfall was small among 11 situs.especially between 2001 and 2002.However,variation of annual discharge was significant among the sites.The results suggest that rainfall patterns and land usc had significant effect on discharge.The concentrations of total N,total kjeldahl N (TKN),organic matter-associated N (OM-N),NO3--N,and NH4+-N in the runoff ranged widely from 0.25 to 54.1,0.15 to 20.3,0.00 to 14.6,0.00 to 45.3,and 0.00 to 19.7 mg/L,respectively.Spatial and temporal variations in the N concentration and runoff discharge were noted among the different sites.Annual loads of N in the runoff varied widely among monitoring sites and depend mainly on runoff discharge.High loads of total N,OM-N,NO3--N,and NH4+-N in the runoff either in citrus groves or on vegetable farms occurred from June to October for each year,which coincided with the rainy season in the region.This study found that N in surface runoff was related to rainfall intensity,soil N level,and fertilizer use.

  5. Spatial and temporal variation of nitrogen exported by runoff from sandy agricultural soils.

    Science.gov (United States)

    Zhang, Ming-Kui; Wang, Li-Ping; He, Zhen-Li

    2007-01-01

    The eutrophication problem has drawn attention to nutrient leaching from agricultural soils, and an understanding of spatial and temporal variability is needed to develop decision-making tools. Thus, eleven sites were selected to monitor, over a two-year period, spatial and temporal variation of runoff discharge and various forms of N in surface runoff in sandy agricultural soils. Factors influencing the variation of runoff discharge and various forms of N in surface runoff were analyzed. Variation of annual rainfall was small among 11 sites, especially between 2001 and 2002. However, variation of annual discharge was significant among the sites. The results suggest that rainfall patterns and land use had significant effect on discharge. The concentrations of total N, total kjeldahl N (TKN), organic matter-associated N (OM-N), NO3(-)-N, and NH4(+)-N in the runoff ranged widely from 0.25 to 54.1, 0.15 to 20.3, 0.00 to 14.6, 0.00 to 45.3, and 0.00 to 19.7 mg/L, respectively. Spatial and temporal variations in the N concentration and runoff discharge were noted among the different sites. Annual loads of N in the runoff varied widely among monitoring sites and depend mainly on runoff discharge. High loads of total N, OM-N, NO3(-)-N, and NH4(+)-N in the runoff either in citrus groves or on vegetable farms occurred from June to October for each year, which coincided with the rainy season in the region. This study found that N in surface runoff was related to rainfall intensity, soil N level, and fertilizer use.

  6. Effect of biochar and compost application on quantity, quality and stability of organic carbon in sandy soil

    Science.gov (United States)

    Holes, Annamaria; Szegi, Tamas; Fuchs, Marta; Micheli, Erika; Aleksza, Laszlo

    2014-05-01

    Nowadays the amount of waste is increasing as a consequence of civilization development. Significant proportion of municipal waste is biodegradable. For the treatment of these wastes composting and pyrolysis can be one solution. Many studies were published on the effects of composts in soils, but on combined application of biochars and composts only a limited number of articles are available. Total carbon content, water soluble organic carbon content and organic matter quality have decisive role in the utilization of soils. In our study the effects of combined application of biochars and compost on organic carbon quality, quantity and stability were measured in sandy soil. The sandy soil was mixed with different proportions (1w/w%, 2,5w/w%, 5w/w%, 10w/w%) of biochars. Two types of biochars produced by pyrolization were used: plant origin biochar (POB) and animal origin biochar (AOB). 20w/w% urban green compost was mixed into each sample in addition to biochars. After the 30 days of wet incubation soil organic carbon (SOC) content was determined by Walkley-Black method, while for the SOC quality measurements E4/E6 method was used. The dissolved organic carbon (DOC) was extracted from the soil samples by cold water, and determined by titrimetric method. The future purpose of our study is to find the optimal compost-biochar treatment in order to improve soil fertility and maximize crop yield.

  7. Breakdown of low-level total petroleum hydrocarbons (TPH) in contaminated soil using grasses and willows.

    Science.gov (United States)

    McIntosh, Patrick; Kuzovkina, Yulia A; Schulthess, Cristian P; Guillard, Karl

    2016-01-01

    A phytoremediation study targeting low-level total petroleum hydrocarbons (TPH) was conducted using cool- and warm-season grasses and willows (Salix species) grown in pots filled with contaminated sandy soil from the New Haven Rail Yard, CT. Efficiencies of the TPH degradation were assessed in a 90-day experiment using 20-8.7-16.6 N-P-K water-soluble fertilizer and fertilizer with molasses amendments to enhance phytoremediation. Plant biomass, TPH concentrations, and indigenous microbes quantified with colony-forming units (CFU), were assessed at the end of the study. Switchgrass grown with soil amendments produced the highest aboveground biomass. Bacterial CFU's were in orders of magnitude significantly higher in willows with soil amendments compared to vegetated treatments with no amendments. The greatest reduction in TPH occurred in all vegetated treatments with fertilizer (66-75%) and fertilizer/molasses (65-74%), followed sequentially by vegetated treatments without amendments, unvegetated treatments with amendments, and unvegetated treatments with no amendment. Phytoremediation of low-level TPH contamination was most efficient where fertilization was in combination with plant species. The same level of remediation was achievable through the addition of grasses and/or willow combinations without amendment, or by fertilization of sandy soil.

  8. PCDD/F formation during thermal desorption of p,p'-DDT contaminated soil.

    Science.gov (United States)

    Zhao, Zhonghua; Ni, Mingjiang; Li, Xiaodong; Buekens, Alfons; Yan, Jianhua

    2017-05-01

    Thermal treatment of polychlorinated biphenyls (PCB) contaminated soil was shown in earlier work to generate polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). In this study, the PCDD/F were studied arising during the remediation of p,p'-DDT contaminated soil by thermal desorption. Three kinds of soil (sandy, clayey and lateritic soil) were tested to investigate the effect of soil texture on PCDD/F formation. Those soils were artificially polluted with p,p'-DDT, obtaining a concentration level of 100 mg/kg. Thermal desorption experiments were conducted for 10 min at 300 °C in an air atmosphere. The total concentration of PCDD/F generated for three soils were 331, 803 and 865 ng/kg, respectively, and TeCDD and TeCDF were dominant among all PCDD/F congeners. After thermal desorption, the total amount of PCDD/F generated both in soil and in off-gas correlated positively with the amount of DDT added to soil. In addition, a possible pathway of the formation of PCDD/F was presented.

  9. Evaluation of Soil Quality Indicators in Sugarcane Management in Sandy Loam Soil

    Institute of Scientific and Technical Information of China (English)

    S.A.C.SANT'ANNA; M.F.FERNANDES; W.M.P.M.IVO; J.L.S.COSTA

    2009-01-01

    An important factor for the sustainability of soils highly susceptible to degradation is the use of monitoring tools that promptly and realistically reflect changes imposed on soil by different cropping systems.To select soil quality indicator variables in sugarcane (Saccharum offcinarum L.) production areas that fulfill the criteria of sensitivity to management practices and between-season consistency in the management discrimination,ten composite soil samples (0-10 cm) were collected in July 2005 (rainy season) and again in March 2006 (dry season) from areas under cultivation of organic sugarcane (OS),green sugarcane (GS),burned sugarcane (BS) and from an adjacent native forest (NF) area at Usina Triunfo,Boca da Mata,Alagoas,Brazil.Microbial biomass-C (MBC),total organic C (TOC),soil enzyme activity expressed as the rate of fluorescein diacetate (FDA) hydrolysis,mean weight diameter of water-stable soil aggregates (MWD),and percentage of water-stable macroaggregates (PWSA) were analyzed.Although MBC and TOC were higher in NF than in the cultivated areas,no differences were observed in these C pools between the three sugarcane systems.The response of FDA to the site management was dependent on the sampling time.In the rainy period,the activity followed the order:NF > OS > GS > BS,whereas in the dry season,only NF differed from the other treatments.Irrespective of the sampling time,MWD and PWSA decreased in the order NF > OS = GS > BS.The variables MWD and PWSA are quite sensitive for discriminating between site management histories regardless the sampling season.

  10. Rapid bioassay for oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, J. [ALS Environmental, Edmonton, AB (Canada); Oosterbroek, L. [HydroQual, Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation described a study conducted to develop a rapid bioassay for soils contaminated with oil. The bioassay method was designed for a weight of evidence (WoE) approach and eco-contact guideline derivation protocol. Microtox bioassays were conducted on cyclodextrin extracts of soil quantified by solvent extraction and gas chromatography. The method was demonstrated using straight {beta}-cyclodextrin soil extracts and activated {beta}-cyclodextrin soil extracts. An analysis of the methods showed that the activation step weakens or breaks the cyclodextrin and polycyclic hydrocarbon (PHC) inclusion complex. The released PHC became toxic to the microtox organism. Results from the bioassays were then correlated with earthworm reproduction bioassay results. tabs., figs.

  11. Landfarming in a PAH-contaminated soil.

    Science.gov (United States)

    Picado, A; Nogueira, A; Baeta-Hall, L; Mendonça, E; de Fátima Rodrigues, M; do Céu Sàágua, M; Martins, A; Anselmo, A M

    2001-01-01

    The present work describes a coke oven soil treatability study by land-farming, conducted on-site in a field scale facility covering 100 m2. The soil contamination was mainly due to high concentrations of polynuclear aromatic hydrocarbons (PAHs) up to 1,140 mg/Kg dry weight (sigma EPA). Along the treatment process the soil was characterised at the chemical, microbiological and ecotoxicological levels. After 3 months a reduction of 63% in total PAHs concentration was observed, being detected a more pronounced reduction for PAHs with 2, 3 and 4 rings (79%). Concomitantly, a change in the composition of the microbial population was observed with a significant increase in the PAHs degrading and total heterotrophic colonies. Concerning the ecotoxicity and genotoxicity data no effect was detected in the treated soil samples eluates.

  12. A genetic-algorithm approach for assessing the liquefaction potential of sandy soils

    Directory of Open Access Journals (Sweden)

    G. Sen

    2010-04-01

    Full Text Available The determination of liquefaction potential is required to take into account a large number of parameters, which creates a complex nonlinear structure of the liquefaction phenomenon. The conventional methods rely on simple statistical and empirical relations or charts. However, they cannot characterise these complexities. Genetic algorithms are suited to solve these types of problems. A genetic algorithm-based model has been developed to determine the liquefaction potential by confirming Cone Penetration Test datasets derived from case studies of sandy soils. Software has been developed that uses genetic algorithms for the parameter selection and assessment of liquefaction potential. Then several estimation functions for the assessment of a Liquefaction Index have been generated from the dataset. The generated Liquefaction Index estimation functions were evaluated by assessing the training and test data. The suggested formulation estimates the liquefaction occurrence with significant accuracy. Besides, the parametric study on the liquefaction index curves shows a good relation with the physical behaviour. The total number of misestimated cases was only 7.8% for the proposed method, which is quite low when compared to another commonly used method.

  13. The effect of nitrogen fertilization on morphology traits of sweet sorghum cultivated on sandy soil

    Directory of Open Access Journals (Sweden)

    Ewelina Szydełko-Rabska

    2015-01-01

    Full Text Available The paper presents results of the experiment conducted in 2010-2012 on the influence of nitrogen fertilizer type (ammonium sulfate, calcium nitrate, ammonium nitrate and urea on sweet sorghum cultivated on sandy soil. Selected morphological traits and fresh and dry matter biomass were analyzed. Although fertilization significantly increased fresh and dry aboveground biomass, it did not affect sweet sorghum yield. Fresh aboveground biomass was highest under fertilization with ammonium nitrate (59.3 t ha-1. Fertilization influenced also yield growth rate, which ranged from 23.3 t ha-1 (under fertilization with urea to 26.5 t ha-1 (under fertilization with ammonium nitrate. The highest dry matter content (26.1% and dry matter yield (15.3 t ha-1 were obtained under ammonium sulfate. Nitrogen efficiency was affected by nitrogen fertilization and ranged from 40.4 (under fertilization with urea to 52.4 kg D.M. kg-1 N (under fertilization with ammonium sulfate. On the contrary, nitrogen physiological efficiency was not affected.

  14. Feasilbility of phytoextraction to remediate cadmium and zinc contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Romkens, P.F.A.M.; Fokkema, M.J.; Song, J.; Luo, Y.M.; Japenga, J.; Zhao, F.J.

    2008-01-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and

  15. Optimization of nitrogen for soil bioventing of gasoline contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Shewfelt, K.; Zytner, R. G. [University of Guelph, School of Engineering, Guelph, ON (Canada); Lee, H. [University of Guelph, Dept. of Environmental Biology, Guelph, ON (Canada)

    2005-01-01

    Bioventing, a promising in situ technology that uses low or intermittent airflow rates to produce oxygen-rich conditions in the aerated zone of the soil, promotes the growth of indigenous microorganisms, which degrade hydrocarbon contaminants that are frequently found around underground storage tanks. This study was undertaken to determine the optimum form and concentration of nitrogen that will effectively stimulate naturally occurring bacteria and fungi to obtain the highest degradation possible in a soil system using bioventing to treat gasoline-contaminated soil. Results showed that biodegradation was limited at high C:N ratios by the availability of nitrogen and at low C:N ratios by acidification. Aerobic bacteria were responsible for most of the biodegradation that occurred. Indigenous fungi had no significant effect on the rate of biodegradation. 47 refs., 7 tabs., 1 fig.

  16. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total dissolve

  17. Hydrodispersive characterization of a sandy porous medium by tracer tests carried out in laboratory on undisturbed soil samples

    Science.gov (United States)

    Ferrante, Aldo Pedro; Fallico, Carmine; Rios, Ana C.; Fernanda Rivera, Maria; Santillan, Patricio; Salazar, Mario

    2013-04-01

    The contamination of large areas and correspondent aquifers often imposes to implement some recovery operations which are generally complex and very expensive. Anyway, these interventions necessarily require the preventive characterization of the aquifers to be reclaimed and in particular the knowledge of the relevant hydrodispersive parameters. The determination of these parameters requires the implementation tracer tests for the specific site (Sauty JP, 1978). To reduce cost and time that such test requires tracer tests on undisturbed soil samples, representative of the whole aquifer, can be performed. These laboratory tests are much less expensive and require less time, but the results are certainly less reliable than those obtained by field tests for several reasons, including the particular scale of investigation. In any case the hydrodispersive parameters values, obtained by tests carried out in laboratory, can provide useful information on the considered aquifer, allowing to carry out initial verifications on the transmission and propagation of the pollutants in the aquifer considered. For this purpose, tracer tests with inlet of short time were carried out in the Soil Physics Laboratory of the Department of Soil Protection (University of Calabria), on a series of sandy soil samples with six different lengths, repeating each test with three different water flow velocities (5 m/d; 10 m/s and 15 m/d) (J. Feyen et al., 1998). The lengths of the samples taken into account are respectively 15 cm, 24 cm, 30 cm, 45 cm, 60 cm and 75 cm, while the solution used for each test was made of 100 ml of water and NaCl with a concentration of this substance corresponding to 10 g/L. For the porous medium taken into consideration a particle size analysis was carried out, resulting primarily made of sand, with total porosity equal to 0.33. Each soil sample was placed in a flow cell in which was inlet the tracer from the bottom upwards, measuring by a conductivimeter the

  18. Optimization of Composting for Explosives Contaminated Soil

    Science.gov (United States)

    1991-09-30

    mixture developed a very strong ammonia odor, while the MAIV-2 mixture had only a mild ammonia odor. 6.1.6.2 Amendment mixtures The three amendment...water, concentrated, dried, formed into pellets, and packaged for resale. Liquors from the reclaiming operation were returned to the washout tank. A...mixture consisted of 1 E cubic yard of contaminated soil, 3/10 yards of sawdust, 40 lb of ammonia sulfide (21:0:0), 10 gallons of sodium acetate (solution

  19. Developing technology of remediation of oil-contaminated soils

    OpenAIRE

    Shevchyk, Lesya; Romaniuk, Olga

    2013-01-01

    Abstract ? The results of developing technologies for cleaning of soils from oil pollution on the example of Boryslav are shown. The prospects of tree species for the remediation of oil-contaminated soils are studied. The best results of cleaning oil contaminated soils with the application of Hippophae rhamnoides L. plants were obtained. It is a promising measure for restoring the oil-contaminated soils, attractive both from environmental and economical point of view.

  20. Effects of peat and weathered coal on the growth of Pinus sylvestris var. Mongolica seedlings on aeolian sandy soil

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke'erqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal wereadded to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. Mongolica seedlings and plastic pots wereused in the experiment. The experimental results indicat ed that: 1) the peat and weathered coal could significantly improve the physical and chemical properties of aeolian sandy soil, and thus promoted the growth of seedlings;2) the effect of peat on seedling growth, including height, base diam eter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass;3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. Sylvestris var. Mo ngolica seedlings.

  1. Improvement of Faba Bean Yield Using Rhizobium/Agrobacterium Inoculant in Low-Fertility Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sameh H. Youseif

    2017-01-01

    Full Text Available Soil fertility is one of the major limiting factors for crop’s productivity in Egypt and the world in general. Biological nitrogen fixation (BNF has a great importance as a non-polluting and a cost-effective way to improve soil fertility through supplying N to different agricultural systems. Faba bean (Vicia faba L. is one of the most efficient nitrogen-fixing legumes that can meet all of their N needs through BNF. Therefore, understanding the impact of rhizobial inoculation and contrasting soil rhizobia on nodulation and N2 fixation in faba bean is crucial to optimize the crop yield, particularly under low fertility soil conditions. This study investigated the symbiotic effectiveness of 17 Rhizobium/Agrobacterium strains previously isolated from different Egyptian governorates in improving the nodulation and N2 fixation in faba bean cv. Giza 843 under controlled greenhouse conditions. Five strains that had a high nitrogen-fixing capacity under greenhouse conditions were subsequently tested in field trials as faba bean inoculants at Ismaillia Governorate in northeast Egypt in comparison with the chemical N-fertilization treatment (96 kg N·ha−1. A starter N-dose (48 kg N·ha−1 was applied in combination with different Rhizobium inoculants. The field experiments were established at sites without a background of inoculation under low fertility sandy soil conditions over two successive winter growing seasons, 2012/2013 and 2013/2014. Under greenhouse conditions, inoculated plants produced significantly higher nodules dry weight, plant biomass, and shoot N-uptake than non-inoculated ones. In the first season (2012/2013, inoculation of field-grown faba bean showed significant improvements in seed yield (3.73–4.36 ton·ha−1 and seed N-yield (138–153 Kg N·ha−1, which were higher than the uninoculated control (48 kg N·ha−1 that produced 2.97 Kg·ha−1 and 95 kg N·ha−1, respectively. Similarly, in the second season (2013

  2. Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions.

    Science.gov (United States)

    Neculita, Carmen-Mihaela; Zagury, Gérald J; Deschênes, Louise

    2005-01-01

    A four-step novel sequential extraction procedure (SEP) was developed to assess Hg fractionation and mobility in three highly contaminated soils from chlor-alkali plants (CAPs). The SEP was validated using a certified reference material (CRM) and pure Hg compounds. Total, volatile, and methyl Hg concentrations were also determined using single extractions. Mercury was separated into four fractions defined as water-soluble (F1), exchangeable (F2) (0.5 M NH4Ac-EDTA and 1 M CaCl2 were tested), organic (F3) (successive extractions with 0.2 M NaOH and CH3COOH 4% [v/v]), and residual (F4) (HNO3 + H2SO4 + HClO4). The soil characterization revealed extremely contaminated (295 +/- 18 to 11 500 +/- 500 mg Hg kg(-1)) coarse-grained sandy soils having an alkaline pH (7.9-9.1), high chloride concentrations (5-35 mg kg(-1)), and very low organic carbon content (0.00-18.2 g kg(-1)). Methyl Hg concentrations were low (0.2-19.3 microg kg(-1)) in all soils. Sequential extractions indicated that the majority of the Hg was associated with the residual fraction (F4). In Soils 1 and 3, however, high percentages (88-98%) of the total Hg were present as volatile Hg. Therefore, in these two soils, a high proportion of volatile Hg was present in the residual fraction. The nonresidual fraction (F1 + F2 + F3) was most abundant in Soil 1 (14-42%), suggesting a higher availability of Hg in this soil. The developed and validated SEP was reproducible and efficient for highly contaminated samples. Recovery ranged between 93 and 98% for the CRM and 70 and 130% for the CAP-contaminated soils.

  3. Procedures for sampling radium-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Fleischhauer, H.L.

    1985-10-01

    Two procedures for sampling the surface layer (0 to 15 centimeters) of radium-contaminated soil are recommended for use in remedial action projects. Both procedures adhere to the philosophy that soil samples should have constant geometry and constant volume in order to ensure uniformity. In the first procedure, a ''cookie cutter'' fashioned from pipe or steel plate, is driven to the desired depth by means of a slide hammer, and the sample extracted as a core or plug. The second procedure requires use of a template to outline the sampling area, from which the sample is obtained using a trowel or spoon. Sampling to the desired depth must then be performed incrementally. Selection of one procedure over the other is governed primarily by soil conditions, the cookie cutter being effective in nongravelly soils, and the template procedure appropriate for use in both gravelly and nongravelly soils. In any event, a minimum sample volume of 1000 cubic centimeters is recommended. The step-by-step procedures are accompanied by a description of the minimum requirements for sample documentation. Transport of the soil samples from the field is then addressed in a discussion of the federal regulations for shipping radioactive materials. Interpretation of those regulations, particularly in light of their application to remedial action soil-sampling programs, is provided in the form of guidance and suggested procedures. Due to the complex nature of the regulations, however, there is no guarantee that our interpretations of them are complete or entirely accurate. Preparation of soil samples for radium-226 analysis by means of gamma-ray spectroscopy is described.

  4. Ecological evaluation of oil-contaminated soils (Sakhalin) using enchytraeidae

    Science.gov (United States)

    Kovaleva, E. I.; Yakovlev, A. S.; Nikolaenko (Kegiyan), M. G.; Makarov, A. O.; Makarov, A. A.

    2017-03-01

    The ecological status of oil-contaminated soils of Sakhalin and their background analogues has been evaluated with the use of soil invertebrates. The survival rates of Enchytraeus albidus in soils with different textures and the contents of organic carbon and nutrients have been compared. The indicative role of soil mesofauna ( Enchytraeus albidus) for the ecological evaluation of oil-contaminated soils with due account for their properties has been shown. The permissible residual concentration of oil hydrocarbons in some soils of Sakhalin—acid brown forest soils (Umbrisols), high-moor peat soils (Histosols), acid meadow alluvial soils (Fluvisols), cultivated meadow soddy soils (Anthrosols), and mucky-podzolic surface-gleyed soils (Gleysols)— has been determined from data on the response of Enchytraeus albidus to different levels of the soil contamination with oil hydrocarbons.

  5. Seasonal fluctuations in water repellency and infiltration in a sandy loam soil after a forest fire in Galicia (NW Spain

    Directory of Open Access Journals (Sweden)

    M. Rodríguez-Alleres

    2013-05-01

    Full Text Available The aim of this work was to analyze, after a wildfire of moderate severity, the temporal fluctuations in water repellency and infiltration in a sandy loam soil under a mixed plantation of pine and eucalyptus and the comparison with an adjacent area not affected by the fire. In the burnt area and in a neighboring area not affected by the fire were collected during one year (1, 4, 6, 8 and 12 months after the fire 10 soil samples along a transect of 18 m at four depths: 0-2, 2-5, 5-10 and 10-20 cm. Soil water repellency was determined using the water drop penetration time test (WDPT test and the infiltration was measured with a mini-disc infiltrometer (pressure head h0 = -2 cm.The results show a temporal pattern of soil water repellency in the burnt and unburnt areas. Significant correlations between water repellency and soil moisture were observed, with higher correlation coefficients in the unburned area and in the surface soil layer.Soil water infiltration was significantly lower than would be expected by the coarse texture of the soil in both burnt and unburnt areas. Temporal fluctuations in unburnt soil infiltration seem to be clearly related to the transient nature of the soil water repellency, with no infiltration in samples extremely repellent. In the burned area, the soil infiltration showed much more variability and temporal fluctuations appear to be less dependent on the persistence of water repellency and more dependent on environmental conditions.The unburnt area show significant and negative correlations of soil water repellency with hydraulic conductivity and sorptivity and positive of these two parameters with soil moisture. These relationships were not observed in the burnt area. The temporal fluctuations of soil water repellency have an evident impact on soil infiltration and seem to be more influent than the effects of fire.

  6. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  7. Bench Scale Treatability Studies of Contaminated Soil Using Soil Washing Technique

    Directory of Open Access Journals (Sweden)

    M. K. Gupta

    2010-01-01

    Full Text Available Soil contamination is one of the most widespread and serious environmental problems confronting both the industrialized as well as developing nations like India. Different contaminants have different physicochemical properties, which influence the geochemical reactions induced in the soils and may bring about changes in their engineering and environmental behaviour. Several technologies exist for the remediation of contaminated soil and water. In the present study soil washing technique using plain water with surfactants as an enhancer was used to study the remediation of soil contaminated with (i an organic contaminant (engine lubricant oil and (ii an inorganic contaminant (heavy metal. The lubricant engine oil was used at different percentages (by dry weight of the soil to artificially contaminate the soil. It was found that geotechnical properties of the soil underwent large modifications on account of mixing with the lubricant oil. The sorption experiments were conducted with cadmium metal in aqueous medium at different initial concentration of the metal and at varying pH values of the sorbing medium. For the remediation of contaminated soil matrices, a nonionic surfactant was used for the restoration of geotechnical properties of lubricant oil contaminated soil samples, whereas an anionic surfactant was employed to desorb cadmium from the contaminated soil matrix. The surfactant in case of soil contaminated with the lubricant oil was able to restore properties to an extent of 98% vis-à-vis the virgin soil, while up to 54% cadmium was desorbed from the contaminated soil matrix in surfactant aided desorption experiments.

  8. Lead Contamination of Soil Along Road and Its Remediation

    Institute of Scientific and Technical Information of China (English)

    徐佩; 廖超林

    2004-01-01

    With a rapid development of road systems and an associated drastic increase in number of automobiles, the traffic has induced more and more obvious environmental pollution such as noise, dust, emission and heavy metal contamination. Lead, as one of the most harmful heavy metal contaminants, can execute a significant impact on soil quality and plant growth, depending on its form, as well as its transport and accumulation in soil. This paper describes the source and characteristics of Pb contaminant in soil along a road, and reviews the results of research on remediation of Pb-contaminated soils, aiming at identifying promising approaches to soil remediation along roads.

  9. Enzyme activity and microorganisms diversity in soil contaminated with the Boreal 58 WG herbicide.

    Science.gov (United States)

    Kucharski, Jan; Tomkiel, Monika; Baćmaga, Małgorzata; Borowik, Agata; Wyszkowska, Jadwiga

    2016-07-02

    Next-generation herbicides are relatively safe when used properly, but the recommended rates are relatively low, which can lead to overdosing. This study evaluated the responses of soil-dwelling microorganisms and soil enzymes to contamination with the Boreal 58 WG herbicide. The analyzed product contains active ingredients flufenacet and isoxaflutole. All tests were performed under laboratory conditions. The analyzed material was sandy clay. Boreal 58 WG was introduced to soil in four doses. Soil without the addition of the herbicide served as the control. The soil was mixed with the tested herbicide, and its moisture content was maintained at 50% of capillary water capacity. Biochemical and microbiological analyses were performed on experimental days 0, 20, 40, 80 and 160. Accidental contamination of soil with the Boreal 58 WG herbicide led to a relatively minor imbalance in the soil microbiological and biochemical profile. The herbicide dose influenced dehydrogenase activity in only 0.84%, urease activity in 2.04%, β-glucosidase activity in 8.26%, catalase activity in 12.40%, arylsulfatase activity in 12.54%, acid phosphatase activity in 42.11%, numbers of organotrophic bacteria in 18.29%, actinomyces counts in 1.31% and fungi counts in 6.86%.

  10. Statistical sampling strategies for survey of soil contamination

    NARCIS (Netherlands)

    Brus, D.J.

    2011-01-01

    This chapter reviews methods for selecting sampling locations in contaminated soils for three situations. In the first situation a global estimate of the soil contamination in an area is required. The result of the surey is a number or a series of numbers per contaminant, e.g. the estimated mean con

  11. Using Biochar composts for improving sandy vineyard soils while reducing the risk of

    Science.gov (United States)

    Kammann, Claudia; Mengel, Jonathan; Mohr, Julia; Muskat, Stefan; Schmidt, Hans-Peter; Löhnertz, Otmar

    2016-04-01

    In recent years, biochar has increasingly been discussed as an option for sustainable environmentalmanagement, combining C sequestration with the aim of soil fertility improvement. Biochar has shownpositive effects in viticulture before (Genesio et al. 2015) which were largely attributed to improved water supply to the plants. However, in fertile temperate soils, the use of pure, untreated biochar does not guarantee economic benefits on the farm level (Ruysschaert et al., 2016). Hence, recent approaches started introducing biochar in management of nutrient-rich agricultural waste, e.g. in compost production (Kammann et al. 2015). Compost is frequently used in German vineyards for humus buildup and as a slow-release organic fertilizer. This, and increasingly mild, precipitation-rich winters, promoting mineralization, increase the risk of unwanted nitrate leaching losses into surface and ground waters during winter. To investigate if biochar pure, or biochar-compost mixtures and -products may have the potential to reduce nitrate leaching, we set up the following experiment: Either 30 or 60 t ha-1 of the following additives were mixed into the top 30 cm of sandy soil in large (120 L) containers, and planted with oneRiesling grapevine (Clone 198-30 GM) per container: Control (no addition), pure woody biochar, pure compost, biochar-compost (produced from the same organic feedstock than the compost, with 20 vol. - % of a woody biochar added), and pure compost plus pure biochar (same mixing ratio as in the former product). Once monthly, containers were exposed to simulated heavy rainfall that caused drainage. Leachates were collected from an outlet at the bottom of the containers, and analyzed for nutrients. The nutrient-rich additives containing compost all improved grape biomass and yield, most markedly pure compost and biochar-compost; same amendments were not significantly different. However,while the addition of the lower amount (30 t ha-1) of compost reduced nitrate

  12. Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar

    Science.gov (United States)

    Cely, P.; Tarquis, A. M.; Paz-Ferreiro, J.; Méndez, A.; Gascó, G.

    2014-06-01

    The effect of biochar on the soil carbon mineralization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on physicochemical properties and CO2 emissions of a sandy loam soil. For this purpose, soil was amended with three different biochars (BI, BII and BIII) at a rate of 8 wt% and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coefficients (r2) greater than 0.97. Results show a negative priming effect in the soil after addition of BI and a positive priming effect in the case of soil amended with BII and BIII. These results can be related to different biochar properties such as carbon content, carbon aromaticity, volatile matter, fixed carbon, easily oxidized organic carbon or metal and phenolic substance content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.

  13. Soil Moisture Eff ects on Sand Saltation and Dust Emission Observed over the Horqin Sandy Land Area in China

    Institute of Scientific and Technical Information of China (English)

    LI Xiaolan; ZHANG Hongsheng

    2014-01-01

    In this study, the eff ects of soil moisture on sand saltation and dust emission over the Horqin Sandy Land area are investigated, based on observations of three dust events in 2010. The minimum friction velocity initiating the motion of surface particles, namely, the threshold friction velocity, is estimated to be 0.34, 0.40, and 0.50 m s−1 under the very dry, dry, and wet soil conditions, respectively. In comparison with the observations during the dust events under the very dry and dry soil conditions, the dust emission fl ux during the wet event is smaller, but the saltation activities of sand particles (d≧50 µm) are stronger. The size distributions of airborne dust particles (0.1≦d≦20 µm) show that concentrations of the fi ner dust particles (0.1≦d≦0.3 µm) have a secondary peak under dry soil conditions, while they are absent under wet soil conditions. This suggests that the surface soil particle size distribution can be changed by soil moisture. Under wet soil conditions, the particles appear to have a larger size, and hence more potential saltating particles are available. This explains the occurrence of stronger saltation processes observed under wet soil conditions.

  14. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    the highest potential for accumulation from soil, and concentrations in leaves may be several hundred times higher than in soil. However, for most contaminants the accumulation in vegetables or fruits is much lower. Lipophilic (log KOW > 3) contaminants are mainly transported to leaves by attached soil...

  15. Geoelectric assessment of soil properties modification due to underground water contamination

    Science.gov (United States)

    Chitea, F.; Ioane, D.; Georgescu, P.; Mezincescu, M.

    2009-04-01

    Geophysical investigations, including resistivity and conductivity measurements, have been carried out in an agricultural area with variations of crop growth, located in the vicinity of the Petrobrazi oil refinery, Romania. The scientific project was devoted to the geoelectric assessment of soil and underground water contamination with oil derived products, based on the physical properties modification due to high resistivity contaminants. The shallow geological structure consists of soil (1 m), loess (0.5 m), sandy gravels (20 m) and clay, the oil contaminants being displaced horizontally by the aquifer dynamics with ca 100 m/year at a mean depth of 5 m, at the limit between the vadose and saturated zones. Due to sudden increase of underground contaminantion during technical accidents within the refinery, when the contaminant height above the aquifer reached 4.5 m, and oscilations of water table level associated with seasonal high precipitation regime, the geological formations within the vadose zone were upward polluted. More of that, due to capillarity processes developed on more then 70 years of industrial activity, this upward contamination affected also the soil layer. Results of 3D multielectrode resistivity measurements using the AGI SuperSting showed significant variations of this physical parameter between the surface and 1 m depth. The southern sector, affected by high contamination at the aquifer depth displays high resistivity values, the highest geoelectric anomalies being interpreted as small areas where oil derived products accumulated as a consequence of vertical migration. The soil of the southern sector is characterised by low resistivity values, suggesting that upward contamination processes were much weaker. In the area surveyed with the multielectrode system, conductivity measurements were carried out using a high resolution conductivity meter. Variations of soil quality between the northern sector and the southern one have been observed also

  16. Bioamendment of petroleum contaminated ultisol:effect on oil content, heavy metals and pH of tropical soil

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of organic amendments on the oil content,heavy metals concentration and pH of petroleum contaminated sandy loam ultisol obtained from Rumuekpe oil field in Emohua Local Government Area of Rivers State, Nigeria was determined. Petroleum contaminated soils were treated with wood ash, compost and sawdust. The addition of organic amendments resulted in a significant(at 95% probability level) decrease in oil content by 92% for composting,81% for soil treated with sawdust and 58% for soil with ash supplementation, over 6 months. The effect of treatments on the iron(Fe), copper(Cu) and lead(Pb) concentration was significant at P<0.001. The remediation also affected the pH of soil. This initial pH of 5.6 was depressed by the application of compost and sawdust supplements respectively to a final pH of 5.2 and 5.3. On the other hand, amending the soil with wood ash raised the pH from 5.6 to 6.2. Increased acidity caused a decrease in the heavy metals concentration in the contaminated soil. Soil treatment with compost generally gave the best remediation results, followed by sawdust and then ash. Adjusting the pH of oil contaminated soil to high acidic levels may promote the availability and migration of heavy metals in remediated soils and not necessarily the rate of oil mineralization.

  17. Preliminary study of radium-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Healy, J.W.; Rodgers, J.C.

    1978-10-01

    A preliminary study was made of the potential radiation exposures to people from radium-226 contamination in the soil in order to provide guidance on limits to be applied in decontaminating land. Pathways included were inhalation of radium from resuspension; ingestion of radium with foods; external gamma radiation from radium daughters; inhalation of radon and daughter, both in the open air and in houses; and the intake of /sup 210/Pb and /sup 210/Po from both inhalation and ingestion. The depth of the contaminated layer is of importance for external exposure and especially for radon emanation. The most limiting pathway was found to be emanation of the radon into buildings with limiting values comparable to those found naturally in many areas.

  18. Influence of tebuconazole and copper hydroxide on phosphatase and urease activities in red sandy loam and black clay soils.

    Science.gov (United States)

    Anuradha, B; Rekhapadmini, A; Rangaswamy, V

    2016-06-01

    The efficacy of two selected fungicides i.e., tebuconazole and coppoer hydroxide, was conducted experiments in laboratory and copper hydroxide on the two specific enzymes phosphatase and urease were determined in two different soil samples (red sandy loam and black clay soils) of groundnut (Arachis hypogaea L.) from cultivated fields of Anantapuramu District, Andhra Pradesh. The activities of the selected soil enzymes were determined by incubating the selected fungicides-treated (1.0, 2.5, 5.0, 7.5 and 10.0 kg ha(-1)) and -untreated groundnut soil samples at 10 day intervals. By determining the effective concentration, the rate of selected enzyme activity was estimated by adding the suitable substrate at 10, 20, 30 and 40 days of soil incubation. Both the enzyme activities were increased up to 5.0 kg ha(-1) level of fungicide in both soil samples significantly at 10 days of soil incubation and further enhanced up to 20 days of incubation. The activity of the phosphatase and urease decreased progressively at 30 and 40 days of incubation. From overall studies, higher concentrations (7.5 and 10.0 kg ha(-1)) of both tebuconazole and copper hydroxide were toxic to phosphatase and urease activities, respectively, in both soil samples.

  19. METHODOLOGICAL PROPOSAL FOR CONTAMINATED SOIL RECOVERY

    Directory of Open Access Journals (Sweden)

    José Antonio Fabelo Falcón

    2017-01-01

    Full Text Available The contamination of soils, by different substances and / or products is becoming more extensive throughout the world, its determination, minimization and treatment to reach the recovery of them is a necessity, even though it is not granted the level of importance required by the countries concerned. The objective of this work is to propose a methodology for the recovery of soils with a high degree of efficiency and effectiveness in the selection of procedures, regardless of the types of pollutants and land use once recovered. The methodological proposal involves the stages of diagnosis, characterization, selection of the technology and its technical and economic validation at the laboratory and pilot plant level. Subsequently, the technology of the treatment is designed, along with the elaboration of an objective study of each particular case and an essential economic and technical feasibility analysis for the different scales of the development of the technological process.

  20. DNA Damage Caused By Pesticide-contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    K.KRISHNAMURTHI; S. SARAVANA DEVI; T. CHAKRABARTI

    2006-01-01

    Objective To determine the DNA damaging potential and the genotoxicity of individual compounds in pesticide contaminated soil. Methods In the present study, DNA damaging potential of pesticide-contaminated soil and the genotoxicity of individual compounds present in the soil were assessed using fluorimetric analysis of DNA unwinding assay. Results The contaminated soil sample showed 79% (P<0.001) of DNA strand break, whereas technical grade of major carbaryl and α-naphthol constituents of the contaminated soil showed 64% (P<0.01) and 60% (P<0.02) damage respectively. Conclusion Our results indicate that the toxicity caused by contaminated soil is mainly due to carbaryl and α -napthol, which are the major constituents of the soil sample analyzed by GC-MS.

  1. Soils as a buffer of contaminants in catchments

    Science.gov (United States)

    Evrard, Olivier

    2014-05-01

    Human activities deliver large quantities of contaminants into the environment through atmospheric emissions or direct releases. As many of those contaminants are particle-reactive, they bind strongly to the finest particles or on their organic matter fraction once they deposit onto soils. Contaminants may subsequently migrate in depth of the soil depending on their physico-chemical characteristics. They may also be redistributed along hillslopes in association with particles during soil erosion events and may be subsequently supplied to rivers, preventing to meet the international environmental targets (e.g. in the framework of the EU Water Framework Directive). In regions where soil erosion rates are low to moderate, a large quantity of particle-reactive contaminants may accumulate in soils that constitute a reservoir of pollutants that may be delivered to rivers during decades or centuries. This session will focus on the specific role played by soils as a reservoir of contaminants at the catchment scale. A better understanding of this role and a quantification of the persistence of contaminants in this reservoir will provide crucial insights to guide the implementation of efficient mitigation measures. Contributions to this session may address any aspect of particle-borne contaminant transfer at the catchment scale, with an emphasis on the role played by soils in their storage and transfer. Field-based or modeling studies may focus either on specific pollutants or on a wider range of substances, e.g. metals, radionuclides, organic contaminants. Key themes may include: • Contaminant budget at the hillslope vs. the catchment scales; • Evaluation of the contribution of the regional vs. local contamination sources; • Evaluation of the contaminant removal from soils by degradation vs. soil erosion; • Quantifying the persistence of contaminants in soils; • Discrimination between the legacy and the contemporary supply of contaminants to soils.

  2. Effects of grazing strategy on limiting nitrate leaching in grazed grass-clover pastures on coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Eriksen, Jørgen; Søegaard, Karen;

    2012-01-01

    Urinations of ruminants on grazed pastures increase the risk of nitrate leaching. The study investigated the effect of reducing the length of the grazing season on nitrate leaching from a coarse sandy, irrigated soil during 2006–2007 and 2007–2008. In both years, precipitation was above the long-term...... mean. The experiment was initiated in a 4-yr-old grass-clover sward in south Denmark. Three treatments were as follows grazing only (G), spring cut followed by grazing (CG) and both spring and autumn cuts with summer grazing (CGC). Nitrate leaching was calculated by extracting water isolates from 80 cm...

  3. Eleven years' effect of conservation practices for temperate sandy loams: I. Soil physical properties and topsoil carbon content

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl

    2017-01-01

    experiments were conducted in 11- to 12-yr-old experiments on two Danish sandy loams at Foulum and Flakkebjerg. Three crop rotations/residue management treatments were compared and tillage was included as a splitplot factor. The tillage systems were moldboard plowing to a depth of 20 cm (MP), direct drilling...... their important role in soil structure formation and stabilization. Our study showed benefits of combining key CA elements, although longer-term studies are most likely needed to reveal the full potential....

  4. PARTICULAR ASPECTS OF APPLICABILITY OF PROVISIONS OF THE PHYSICAL AND CHEMICAL THEORY OF EFFECTIVE STRESSES TO SANDY SOILS

    Directory of Open Access Journals (Sweden)

    Potapov Aleksandr Dmitrievich

    2012-10-01

    V.I. Osipov. The analysis of several genetic types of quaternary sands, performed by the authors, makes it possible to use the number of contacts to identify the morphology of sand grains within the framework of the analysis of soils. The authors demonstrate that the employment of the formulas developed by academician V.I. Osipov in the calculation of the number of contacts between particles in natural sandy soils is virtually impossible due to the fact that no natural sand particles can boast an ideal spherical shape. The number of contacts between the sand particles may increase due to the defects of their shape and the nature of the particle surface. In this study, the shape and nature of the surface of sand grains represent those of the sands of various origins. The authors have employed a composite index of morphology that takes account of the shape and nature of the surface throughout the amount of sand under research. Similar calculations that take account of the morphology of grains were performed for selected fractions of sands to eliminate the influence of grain size on the packing of sands. The analysis of provisions of the physical and chemical theory of effective stresses of soils and the study of multiple types of natural sands demonstrate that further research of formation and phases of coagulation contacts between particles of soil requires a detailed study of structural features of sands. These structural features include the grain size, homogeneity, the shape and nature of the surface of sand grains. Both individual particles of sand and sandy soil are to be subjected to morphological assessments. The parameters to be assessed will include density and composition of sandy soils, as the soil porosity affects the formation of true contacts between particles of sand and determines their number. Mineral composition is an important factor affecting the shape and nature of the surface of sand grains. The research performed by the authors contemplates

  5. Soil contamination in China: current status and mitigation strategies.

    Science.gov (United States)

    Zhao, Fang-Jie; Ma, Yibing; Zhu, Yong-Guan; Tang, Zhong; McGrath, Steve P

    2015-01-20

    China faces great challenges in protecting its soil from contamination caused by rapid industrialization and urbanization over the last three decades. Recent nationwide surveys show that 16% of the soil samples, 19% for the agricultural soils, are contaminated based on China’s soil environmental quality limits, mainly with heavy metals and metalloids. Comparisons with other regions of the world show that the current status of soil contamination, based on the total contaminant concentrations, is not worse in China. However, the concentrations of some heavy metals in Chinese soils appear to be increasing at much greater rates. Exceedance of the contaminant limits in food crops is widespread in some areas, especially southern China, due to elevated inputs of contaminants, acidic nature of the soil and crop species or cultivars prone to heavy metal accumulation. Minimizing the transfer of contaminants from soil to the food chain is a top priority. A number of options are proposed, including identification of the sources of contaminants to agricultural systems, minimization of contaminant inputs, reduction of heavy metal phytoavailability in soil with liming or other immobilizing materials, selection and breeding of low accumulating crop cultivars, adoption of appropriate water and fertilizer management, bioremediation, and change of land use to grow nonfood crops. Implementation of these strategies requires not only technological advances, but also social-economic evaluation and effective enforcement of environmental protection law.

  6. Mixed contaminant interactions in soil: Implications for bioavailability ...

    African Journals Online (AJOL)

    user

    natural communities under realistic exposure conditions and remediation endpoints. In this paper, .... The intro- duction of HMs in soils through contamination eventually ..... for the attenuation of persistent OCs (for example, PAHs) in soils and ...

  7. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    Science.gov (United States)

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  8. Vermiremediation of Soils Contaminated with Mixture of Petroleum ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: In this paper, vermiremediation, a biological technique was utilized in order to clean-up soil contaminated with gasoline, diesel and spent engine oil using an earthworm ... spilled in soils of mechanic workshops where different ...

  9. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    Science.gov (United States)

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  10. Monitoring of radionuclides contamination of soils in Shatsk National Natural Park (Volyn Region, Ukraine) during 1994-2001

    Energy Technology Data Exchange (ETDEWEB)

    Hrabovskyy, V. E-mail: grabovsky@rd.wups.lviv.ua; Dzendzelyuk, O.; Katerynchuk, I.; Furgala, Y

    2004-07-01

    The results of studies of radionuclide contamination of the soils in the western part of the territory of Shatsk National Natural Park (ShNNP), Volyn region, Ukraine, performed during 1994-2001 are presented. Based on the experimental results, the three-dimensional plot of the {sup 137}Cs density contamination for the soils at the territory under investigation has been constructed. The monitoring during 1994-2001 of the {sup 137}Cs vertical distributions in the different kinds of soils from the Park and the forecasting of the distribution changes of the depth down to 50 cm for the sod loamy sandy gleyed loamy sand soil of the Park up to 2086 have been performed.

  11. Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach.

    Science.gov (United States)

    Yao, Jun; Tian, Lin; Wang, Yanxin; Djah, Atakora; Wang, Fei; Chen, Huilun; Su, Chunli; Zhuang, Rensheng; Zhou, Yong; Choi, Martin M F; Bramanti, Emilia

    2008-02-01

    A multi-channel thermal activity monitor was applied to study soil microbial activity in Wuhan brown sandy soil in the presence of different concentrations of hexavalent chromium (K(2)Cr(2)O(7)). In order to stimulate the soil microbial activity, 5.0mg of glucose and 5.0mg of ammonium sulfate were added to a 1.20-g soil sample under a controlled humidity of 35%. The results show that the poisonous species of K(2)Cr(2)O(7) at an half inhibitory concentration (IC(50)) value of 4.27 microg mL(-1) against soil microbe, and an increase of the amount of hexavalent chromium is associated to a decrease in the microbial activity of the soil, probably due to an increase in the toxicity of hexavalent chromium, affecting strongly the life in this soil microbial environment. Our work also suggests that microcalorimetry is a fast, simple and more sensitive method that can be easily performed to study the toxicity of different species of heavy metals on microorganism compared to other biological methods.

  12. Calculation of dose distribution above contaminated soil

    Science.gov (United States)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  13. Diffusion and emissions of 1,3-dichloro propene in Florida sandy soil in microplots affected by soil moisture, organic matter, and plastic film.

    Science.gov (United States)

    Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse

    2004-04-01

    The main objective of this study was to determine the influence of soil moisture, organic matter amendment and plastic cover (a virtually impermeable film, VIF) on diffusion and emissions of (Z)- and (E)-1,3-dichloropropene (1,3-D) in microplots of Florida sandy soil (Arredondo fine sand). Upward diffusion of the two isomers in the Arredondo soil without a plastic cover was greatly influenced by soil-water content and (Z)-1,3-D diffused faster than (E)-1,3-D. In less than 5 h after 1,3-D injection to 30 cm depth, (Z)- and (E)-1,3-D in air dry soil had diffused to a 10 cm depth, whereas diffusion for the two isomers was negligible in near-water-saturated soil, even 101 h after injection. The diffusion rate of (Z)- and (E)-1,3-D in near-field-capacity soil was between the rates in the two water regimes. Yard waste compost (YWC) amendment greatly reduced diffusion of (Z)- and (E)-1,3-D, even in air-dry soil. Although upward diffusion of (Z)- and (E)-1,3-D in soil with VIF cover was slightly less than in the corresponding bare soil; the cover promoted retention of vapors of the two isomers in soil pore air in the shallow subsurface. More (Z)-1,3-D vapor was found initially in soil pore air than (E)-1,3-D although the difference declined thereafter. As a result of rapid upward movement in air-dry bare soil, (Z)- and (E)-1,3-D were rapidly volatilized into the atmosphere, but emissions from the near-water-saturated soil were minimal. Virtually impermeable film and YWC amendment retarded emissions. This study indicated that adequate soil water in this sandy soil is needed to prevent rapid emissions, but excess soil water slows diffusion of (Z)- and (E)-1,3-D. Thus, management for optimum water in soil is critical for pesticidal efficacy and the environment.

  14. Petroleum Contaminated Soil Treatment Using Surfactant and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Ilza Lobo

    2010-12-01

    Full Text Available The process of washing soil with surfactants, sodium lauryl ether sulphate (LESS and sodium lauryl sulphate (SDS was combined with chemical oxidation using hydrogen peroxide, with a view to in situ remediation of clay soil contaminated with hydrocarbons oil. The evaluation of the efficiency of the procedure was the removal of polyaromatic hydrocarbons and the comparison of physical and chemical characteristics of contaminated soil and uncontaminated from the same region. The combination of these two techniques, soil washing and application of an oxidizing agent, presented as a process of effective remediation for soils contaminated with petroleum products in subtropical regions.

  15. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land.

    Science.gov (United States)

    Gommers, A; Gäfvert, T; Smolders, E; Merckx, R; Vandenhove, H

    2005-01-01

    The feasibility of willow short rotation coppice (SRC) for energy production as a revaluation tool for severely radiocaesium-contaminated land was studied. The effects of crop age, clone and soil type on the radiocaesium levels in the wood were assessed following sampling in 14 existing willow SRC fields, planted on radiocaesium-contaminated land in Sweden following Chernobyl deposition. There was only one plot where willow stands of different maturity (R6S2 and R5S4: R, root age and S, shoot age) and clone (Rapp and L78183 both of age category R5S4) were sampled and no significant differences were found. The soils differed among others in clay fraction (3-34%), radiocaesium interception potential (515-6884 meq kg(-1)), soil solution K (0.09-0.95 mM), exchangeable K (0.58-5.77 meq kg(-1)) and cation exchange capacity (31-250 meq kg(-1)). The soil-to-wood transfer factor (TF) of radiocaesium differed significantly between soil types. The TF recorded was generally small (0.00086-0.016 kg kg(-1)), except for willows established on sandy soil (0.19-0.46 kg kg(-1)). Apart from the weak yet significant exponential correlation between the Cs-TF and the solid/liquid distribution coefficient (R2 = 0.54) or the radiocaesium interception potential, RIP (R2 = 0.66), no single significant correlations between soil characteristics and TF were found. The wood-soil solution 137Cs concentration factor (CF) was significantly related to the potassium concentration in the soil solution. A different relation was, however, found between the sandy Trödje soils (CF = 1078.8 x m(K)(-1.83), R2 = 0.99) and the other soils (CF = 35.75 x m(K)(-0.61), R2 =0.61). Differences in the ageing rate of radiocaesium in the soil (hypothesised fraction of bioavailable caesium subjected to fast ageing for Trödje soils only 1% compared to other soils), exchangeable soil K (0.8-1.8 meq kg(-1) for Trödje soils and 1.5-5.8 meq kg(-1) for the other soils) and the ammonium concentration in the soil solution

  16. Vegetation pattern variation, soil degradation and their relationship along a grassland desertification gradient in Horqin Sandy Land, northern China

    Science.gov (United States)

    Zuo, Xiaoan; Zhao, Halin; Zhao, Xueyong; Guo, Yirui; Yun, Jianying; Wang, Shaokun; Miyasaka, Takafumi

    2009-09-01

    The Horqin Sandy Land is one of the most severely desertified regions in northern China. Plant communities and soil conditions at five stages of grassland desertification (potential, light, moderate, severe and very severe) were selected for the study of vegetation pattern variation relating to soil degradation. The results showed that vegetation cover, species richness and diversity, aboveground biomass (AGB), underground biomass, litter, soil organic carbon (C), total nitrogen (N), total phosphorus (P), electrical conductivity, very fine sand (0.1-0.05 mm) content and silt (0.05-0.002 mm) content decreased with the desertification development. Plant community succession presented that the palatable herbaceous plants gave place to the shrub species with asexual reproduction and sand pioneer plants. The decline of vegetation cover and AGB was positively related to the loss of soil organic C and total N with progressive desertification ( P < 0.01). The multivariate statistical analysis showed that plant community distribution, species diversity and ecological dominance had the close relationship with the gradient of soil nutrients in the processes of grassland desertification. These results suggest that grassland desertification results in the variation of vegetation pattern which presents the different composition and structure of plant community highly influenced by the soil properties.

  17. Contrasting Hydraulic Strategies during Dry Soil Conditions in Quercus rubra and Acer rubrum in a Sandy Site in Michigan

    Directory of Open Access Journals (Sweden)

    Julia E. Thomsen

    2013-12-01

    Full Text Available Correlation analyses were carried out for the dynamics of leaf water potential in two broad-leaf deciduous tree species in a sandy site under a range of air vapor pressure deficits and a relatively dry range of soil conditions. During nights when the soil is dry, the diffuse-porous, isohydric and shallow-rooted Acer rubrum does not recharge its xylem and leaf water storage to the same capacity that is observed during nights when the soil is moist. The ring-porous, deep-rooted Quercus rubra displays a more anisohydric behavior and appears to be capable of recharging to capacity at night-time even when soil moisture at the top 1 m is near wilting point, probably by accessing deeper soil layers than A. rubrum. Compared to A. rubrum, Q. rubra displays only a minimal level of down-regulation of stomatal conductance, which leads to a reduction of leaf water potential during times when vapor pressure deficit is high and soil moisture is limiting. We determine that the two species, despite typically being categorized by ecosystem models under the same plant functional type—mid-successional, temperate broadleaf—display different hydraulic strategies. These differences may lead to large differences between the species in water relations, transpiration and productivity under different precipitation and humidity regimes.

  18. Functional Diversity and Microbial Activity of Forest Soils that Are Heavily Contaminated by Lead and Zinc.

    Science.gov (United States)

    Pająk, Marek; Błońska, Ewa; Frąc, Magdalena; Oszust, Karolina

    The objective of this study was to assess the impact of metal contamination on microbial functional diversity and enzyme activity in forest soils. This study involved the evaluation of the influence of the texture, carbon content and distance to the source of contamination on the change in soil microbial activity, which did not investigate in previous studies. The study area is located in southern Poland near the city of Olkusz around the flotation sedimentation pond of lead and zinc at the Mining and Metallurgical Company "ZGH Bolesław, Inc.". The central point of the study area was selected as the middle part of the sedimentation pond. The experiment was conducted over a regular 500 × 500-m grid, where 33 sampling points were established. Contents of organic carbon and trace elements (Zn, Pb and Cd), pH and soil texture were investigated. The study included the determination of dehydrogenase and urease activities and microbial functional diversity evaluation based on the community-level physiological profiling approach by Biolog EcoPlate. The greatest reduction in the dehydrogenase and urease activities was observed in light sandy soils with Zn content >220 mg · kg(-1) and a Pb content > 100 mg · kg(-1). Soils with a higher concentration of fine fraction, despite having the greatest concentrations of metals, were characterized by high rates of Biolog®-derived parameters and a lower reduction of enzyme activity.

  19. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  20. REMEDIATION OF SOILS CONTAMINATED WITH MOTOR OIL BY HIGHLY BIODEGRADABLE SURFACTANTS

    Directory of Open Access Journals (Sweden)

    Ignacio Moya-Ramírez

    2014-06-01

    Full Text Available The remediation of a sandy soil contaminated with motor oil was studied by applying two different washing procedures: one discontinuous and the other continuous. In addition the capacity of three highly biodegradable surfactants, two synthetic (Glucopon 600 and Findet 1214N/23 and a biosurfactant from Bacillus subtilis, to enhance oil removal was tested. The results obtained with the continuous procedure were much better than those achieved with the discontinuous one, even in experiments conducted with distilled water. Both the addition of surfactants and the rise in temperature significantly increased the removal of the pollutant in experiments conducted with the discontinuous procedure, but the biosurfactant showed a higher capacity for soil remediation than the synthetic surfactants at concentrations close to its CMC. Conversely, when the continuous method was used, surfactant concentration seems to have a lower effect on motor oil removal, at least below the CMC.

  1. [Effects of Different Residue Part Inputs of Corn Straws on CO2 Efflux and Microbial Biomass in Clay Loam and Sandy Loam Black Soils].

    Science.gov (United States)

    Liu, Si-yi; Liang, Ai-zhen; Yang, Xue-ming; Zhang, Xiao-ping; Jia, Shu-xia; Chen, Xue-wen; Zhang, Shi-xiu; Sun, Bing-jie; Chen, Sheng-long

    2015-07-01

    The decomposed rate of crop residues is a major determinant for carbon balance and nutrient cycling in agroecosystem. In this study, a constant temperature incubation study was conducted to evaluate CO2 emission and microbial biomass based on four different parts of corn straw (roots, lower stem, upper stem and leaves) and two soils with different textures (sandy loam and clay loam) from the black soil region. The relationships between soil CO2 emission, microbial biomass and the ratio of carbon (C) to nitrogen (N) and lignin of corn residues were analyzed by the linear regression. Results showed that the production of CO2 was increased with the addition of different parts of corn straw to soil, with the value of priming effect (PE) ranged from 215. 53 µmol . g-1 to 335. 17 µmol . g -1. Except for corn leaves, the cumulative CO2 production and PE of clay loam soil were significantly higher than those in sandy loam soil. The correlation of PE with lignin/N was obviously more significant than that with lignin concentration, nitrogen concentration and C/N of corn residue. The addition of corn straw to soil increased the contents of MBC and MBN and decreased MBC/MBN, which suggested that more nitrogen rather than carbon was conserved in microbial community. The augmenter of microbial biomass in sandy loam soil was greater than that in clay loam soil, but the total dissolved nitrogen was lower. Our results indicated that the differences in CO2 emission with the addition of residues to soils were primarily ascribe to the different lignin/N ratio in different corn parts; and the corn residues added into the sandy loam soil could enhance carbon sequestration, microbial biomass and nitrogen holding ability relative to clay loam soil.

  2. Separation and Screening Microorganism From Element Strontium Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Ya-ping

    2013-01-01

    Studies of environmental bioremediation are also attractived greatly in recent years.For contaminated soil of Sr,it is more important that find some microbes which have high biosorption for element Sr.Thus,this work is to separate and screen microbes from contaminated soil of Sr.

  3. Accumulation of heavy metals in oil-contaminated peat soils

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Savichev, A. T.; Trofimov, S. Ya.; Shishkonakova, E. A.

    2012-10-01

    X-ray fluorescence and X-ray radiometry represent easy and simple methods to determine concentrations of heavy metals in the ash of peat soils contaminated with oil and can be applied for soil monitoring purposes. Oil spills on peat bogs produce two contamination zones differing in the composition of heavy metals. In the zone of primary contamination, the peat surface is covered by a bitumen crust with V, Ni, Sr, Ba, Ce, and La accumulating there. This zone adjoins the zone of secondary peat contamination, where heavy alkaline-earth metals (Sr, Ba) and lanthanides (Ce and La) are accumulated to a lesser extent. Biological preparations recommended for remediation of oil-contaminated peat soils should be tolerant to high concentrations of heavy metals, particularly, V, Ni, and Ba that are present in the oil contaminated soils in relatively high amounts.

  4. Chemical oxidation of cable insulating oil contaminated soil

    NARCIS (Netherlands)

    Jinlan Xu,; Pancras, T.; Grotenhuis, J.T.C.

    2011-01-01

    Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical oxidati

  5. Organic contaminants in urban soils: major inputs and potential risks

    OpenAIRE

    Cachada, Anabela Ferreira de Oliveira

    2014-01-01

    Urban soil quality may be severely affected by hydrophobic organic contaminants (HOCs), impairing environmental quality and human health. A comprehensive study was conducted in two contrasting Portuguese urban areas (Lisbon and Viseu) in order to assess the levels and potential risks of these contaminants, to identify sources and study their behaviour in soils. The concentrations of HOCs were related to the size of the city, with much higher contamination levels observed in ...

  6. Biodegradation and bioremediation of endosulfan contaminated soil.

    Science.gov (United States)

    Kumar, Mohit; Lakshmi, C Vidya; Khanna, Sunil

    2008-05-01

    Among the three mixed bacterial culture AE, BE, and CE, developed by enrichment technique with endosulfan as sole carbon source, consortium CE was found to be the most efficient with 72% and 87% degradation of alpha-endosulfan and beta-endosulfan, respectively, in 20 days. In soil microcosm, consortium AE, BE and CE degraded alpha-endosulfan by 57%, 88% and 91%, respectively, whereas beta-endosulfan was degraded by 4%, 60% and 67% after 30 days. Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., isolated and identified on the basis of 16s rDNA gene sequence, individually showed in situ biodegradation of alpha-endosulfan in contaminated soil microcosm by 61, 73, and 74, respectively, whereas degradation of beta-endosulfan was 63, 75, and 62, respectively, after 6 weeks of incubation over the control which showed 26% and 23 % degradation of alpha-endosulfan and beta-endosulfan, respectively. Population survival of Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., by plate count on Luria Broth with carbenicillin showed 75-88% survival of these isolates as compared to 36-48% of survival obtained from PCR fingerprinting. Arthrobacter sp. oxidized endosulfan to endosulfan sulfate which was further metabolized but no known metabolite of endosulfan sulfate was detected.

  7. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Directory of Open Access Journals (Sweden)

    Brent F Kim

    Full Text Available Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  8. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Science.gov (United States)

    Kim, Brent F; Poulsen, Melissa N; Margulies, Jared D; Dix, Katie L; Palmer, Anne M; Nachman, Keeve E

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  9. Developing an integration tool for soil contamination assessment

    Science.gov (United States)

    Anaya-Romero, Maria; Zingg, Felix; Pérez-Álvarez, José Miguel; Madejón, Paula; Kotb Abd-Elmabod, Sameh

    2015-04-01

    In the last decades, huge soil areas have been negatively influenced or altered in multiples forms. Soils and, consequently, underground water, have been contaminated by accumulation of contaminants from agricultural activities (fertilizers and pesticides) industrial activities (harmful material dumping, sludge, flying ashes) and urban activities (hydrocarbon, metals from vehicle traffic, urban waste dumping). In the framework of the RECARE project, local partners across Europe are focusing on a wide range of soil threats, as soil contamination, and aiming to develop effective prevention, remediation and restoration measures by designing and applying targeted land management strategies (van Lynden et al., 2013). In this context, the Guadiamar Green Corridor (Southern Spain) was used as a case study, aiming to obtain soil data and new information in order to assess soil contamination. The main threat in the Guadiamar valley is soil contamination after a mine spill occurred on April 1998. About four hm3 of acid waters and two hm3 of mud, rich in heavy metals, were released into the Agrio and Guadiamar rivers affecting more than 4,600 ha of agricultural and pasture land. Main trace elements contaminating soil and water were As, Cd, Cu, Pb, Tl and Zn. The objective of the present research is to develop informatics tools that integrate soil database, models and interactive platforms for soil contamination assessment. Preliminary results were obtained related to the compilation of harmonized databases including geographical, hydro-meteorological, soil and socio-economic variables based on spatial analysis and stakeholder's consultation. Further research will be modellization and upscaling at the European level, in order to obtain a scientifically-technical predictive tool for the assessment of soil contamination.

  10. Critical evaluation of soil contamination assessment methods for trace metals.

    Science.gov (United States)

    Desaules, André

    2012-06-01

    Correctly distinguishing between natural and anthropogenic trace metal contents in soils is crucial for assessing soil contamination. A series of assessment methods is critically outlined. All methods rely on assumptions of reference values for natural content. According to the adopted reference values, which are based on various statistical and geochemical procedures, there is a considerable range and discrepancy in the assessed soil contamination results as shown by the five methods applied to three weakly contaminated sites. This is a serious indication of their high methodological specificity and bias. No method with off-site reference values could identify any soil contamination in the investigated trace metals (Pb, Cu, Zn, Cd, Ni), while the specific and sensitive on-site reference methods did so for some sites. Soil profile balances are considered to produce the most plausible site-specific results, provided the numerous assumptions are realistic and the required data reliable. This highlights the dilemma between model and data uncertainty. Data uncertainty, however, is a neglected issue in soil contamination assessment so far. And the model uncertainty depends much on the site-specific realistic assumptions of pristine natural trace metal contents. Hence, the appropriate assessment of soil contamination is a subtle optimization exercise of model versus data uncertainty and specification versus generalization. There is no general and accurate reference method and soil contamination assessment is still rather fuzzy, with negative implications for the reliability of subsequent risk assessments.

  11. Experimental studies on the physico-mechanical properties of jet-grout columns in sandy and silty soils

    Science.gov (United States)

    Akin, Muge K.

    2016-04-01

    The term of ground improvement states to the modification of the engineering properties of soils. Jet-grouting is one of the grouting methods among various ground improvement techniques. During jet-grouting, different textures of columns can be obtained depending on the characteristics of surrounding subsoil as well as the adopted jet-grouting system for each site is variable. In addition to textural properties, strength and index parameters of jet-grout columns are highly affected by the adjacent soil. In this study, the physical and mechanical properties of jet-grout columns constructed at two different sites in silty and sandy soil conditions were determined by laboratory tests. A number of statistical relationships between physical and mechanical properties of soilcrete were established in this study in order to investigate the dependency of numerous variables. The relationship between qu and γd is more reliable for sandy soilcrete than that of silty columns considering the determination coefficients. Positive linear relationships between Vp and γd with significantly high determination coefficients were obtained for the jet-grout columns in silt and sand. The regression analyses indicate that the P-wave velocity is a very dominant parameter for the estimation of physical and mechanical properties of jet-grout columns and should be involved during the quality control of soilcrete material despite the intensive use of uniaxial compressive strength test. Besides, it is concluded that the dry unit weight of jet-grout column is a good indicator of the efficiency of employed operational parameters during jet-grouting.

  12. Toxocara (Nematoda: Ascaridida) and other soil-transmitted helminth eggs contaminating soils in selected urban and rural areas in the Philippines.

    Science.gov (United States)

    Paller, Vachel Gay V; de Chavez, Emmanuel Ryan C

    2014-01-01

    The extent of contamination of soils with soil transmitted helminthes (STH) eggs, particularly Toxocara, was determined in selected urban and rural towns of Laguna, Philippines. Soil samples were collected from public schools, house yards, and empty lots. Results revealed that, of the 1480 soil samples collected, 460 (31%) were positive for STH eggs. Toxocara sp. was the most prevalent (77%), followed by Ascaris sp. (11%), hookworms/strongyles/free-living nematodes (7%), and Trichuris sp. (5%). Some soil physicochemical parameters were also determined and associated with Toxocara eggs prevalence and density in soil. Results revealed that Toxocara sp. eggs were most prevalent in less acidic, relatively high temperature and high moisture soil conditions. They were also prevalent in sandy, silty, and loamy soil textures but less prevalent in clayey. No significant differences were found between depth 1 (0-5 cm) and depth 2 (6-10 cm). This study revealed that Toxocara sp. eggs are ubiquitous and the extent of contamination in soils from the selected towns of Laguna is relatively high. Hence, the data generated in this study can be used in promoting public awareness, particularly for pet owners and local health officials, for effective prevention and control of this parasitosis.

  13. Toxocara (Nematoda: Ascaridida and Other Soil-Transmitted Helminth Eggs Contaminating Soils in Selected Urban and Rural Areas in the Philippines

    Directory of Open Access Journals (Sweden)

    Vachel Gay V. Paller

    2014-01-01

    Full Text Available The extent of contamination of soils with soil transmitted helminthes (STH eggs, particularly Toxocara, was determined in selected urban and rural towns of Laguna, Philippines. Soil samples were collected from public schools, house yards, and empty lots. Results revealed that, of the 1480 soil samples collected, 460 (31% were positive for STH eggs. Toxocara sp. was the most prevalent (77%, followed by Ascaris sp. (11%, hookworms/strongyles/free-living nematodes (7%, and Trichuris sp. (5%. Some soil physicochemical parameters were also determined and associated with Toxocara eggs prevalence and density in soil. Results revealed that Toxocara sp. eggs were most prevalent in less acidic, relatively high temperature and high moisture soil conditions. They were also prevalent in sandy, silty, and loamy soil textures but less prevalent in clayey. No significant differences were found between depth 1 (0–5 cm and depth 2 (6–10 cm. This study revealed that Toxocara sp. eggs are ubiquitous and the extent of contamination in soils from the selected towns of Laguna is relatively high. Hence, the data generated in this study can be used in promoting public awareness, particularly for pet owners and local health officials, for effective prevention and control of this parasitosis.

  14. Determinants of oral bioavailability of soil-borne contaminants

    OpenAIRE

    Oomen, Agnes Guadalupe

    2001-01-01

    Children ingest soil, either accidentally via hand-to-mouth behavior or deliberately. In this manner, a child ingests on average between 50 and 200 mg soil/day, although amounts of as much as 60 g/day have also been observed. Hence, soil ingestion can be a main route of exposure to soil-borne contaminants to children. To estimate the health risk associated to this exposure route, and to assess intervention values for contaminants in soils, one needs to know the oral bioavailability of the soi...

  15. Spectral induced polarization signature of contaminated soil

    Science.gov (United States)

    Schwartz, N.; Huisman, J. A.; Shefer, I.; Furman, A.

    2012-04-01

    Spectral induced polarization (SIP) signatures of porous media contaminated with non aqueous phase liquids (NAPL) were measured using an accurate impedance meter. The samples were prepared by mixing air-dried sand with 15% by weight of bentonite clay, tap water and either diesel fuel or motor oil. Next, the soil was packed in a column and left for 24 hr before electrical measurements were performed. For all the samples, water saturation was constant (Sw = 0.47) and the NAPL saturation was 0 (control), 5, or 15 percent. Counter-intuitively, the results show that addition of NAPL to the porous media resulted in an increase of the real part of the complex conductivity. Evidently, for each type of contaminant, an increase in the contaminant saturation resulted in an increase in the real part of the conductivity. The imaginary part of the complex conductivity showed a reversed behavior: higher NAPL saturation resulted in a reduction of the imaginary part of the complex conductivity. For both the real and the imaginary part of the complex conductivity, the effect of NAPL on the complex electrical conductivity was more significant for motor oil than for diesel fuel. In addition to the electrical measurements, we also performed an extraction experiment to examine the effect of the presence of NAPL on the electrical conductivity (EC) of the pore water. The results from the extraction experiment showed that addition of NAPL to the porous media resulted in an increase of the pore water EC. We argue that this increase in the real part of the complex conductivity is related to adsorption of organic polar compounds from the NAPL onto the mineral surface and the associated release of inorganic ions from the mineral surface to the pore water. These exchange processes affect both the surface and the pore water conductivity. In addition, we suggest that the decrease in polarization (associated with the imaginary part of the complex conductivity) of the NAPL contaminated porous media

  16. Relative bioavailability of arsenic contaminated soils in a mouse model

    Science.gov (United States)

    Exposure to As contaminated soils compels extensive soil cleanups so that human health risks are minimized. In order to improve exposure estimates and potentially reduce remediation costs, determination of the bioavailability of As in soils is needed. The objective of this study ...

  17. Relative bioavailability of arsenic contaminated soils in a mouse model

    Science.gov (United States)

    Exposure to As contaminated soils compels extensive soil cleanups so that human health risks are minimized. In order to improve exposure estimates and potentially reduce remediation costs, determination of the bioavailability of As in soils is needed. The objective of this study ...

  18. The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management

    DEFF Research Database (Denmark)

    Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl; Schjønning, Per

    2016-01-01

    was sampled at the 0–10, 10–20 and 25–30 cm depths of a sandy loam soil at Flakkebjerg, Denmark in 2013. We used the experimental plots of a long-term field experiment with mouldboard ploughing (MP) and direct drilling (DD) treatments. The residue management included straw removal (−S) and straw retention (+S...... decreased clay dispersibility (p = 0.09) and increased soil friability (p b 0.05) compared with the MP soil. Direct drilling with straw removal (DD − S) resulted in higher workability compared with mouldboard ploughing with straw removal (MP − S) (p b 0.05). We defined non-complexed clay as NCC = clay −10...

  19. Changes in the sorption, desorption, distribution, and availability of copper, induced by application of sewage sludge on Chilean soils contaminated by mine tailings

    Institute of Scientific and Technical Information of China (English)

    Tatiana Garrido; Jorge Mendoza; Francisco Arriagada

    2012-01-01

    The effect of mine tailings and sewage sludge was evaluated on sorption,desorption,availability and distribution of copper in two soils,one high (sandy soil) and one low in copper (clay soil).In both soils contaminated by mine tailings the copper sorption capacity and the affinity of the substrate for the metal decreased substantially compared to the uncontaminated soils,however,the sorption remained always high in the clay soil substrates.In the substrates with sandy soil,the high Cu content and lower clay content were determining factors in the lower magnitude of the sorption.Similarly,metal desorption was closely related to these two parameters,and it was higher in clay soil with lower pH.In general,the application of sewage sludge favored the sorption of Cu in soils contaminated and uncontaminated with mine tailings,and in all cases desorption decreased,an effect that remained for at least 30 days.Simple extraction of Cu with CaCl2 and diethylenetriaminepentaacetic acid gave contradictory results,so a careful choice of the procedure is required,depending on the level of metal in the soil and on the acting principle of the extracting agent.In that relation,more complete information on the changes in the metal forms was obtained by application of the sequential extraction procedure proposed by the European Community Bureau of Reference.

  20. Initial soil formation and humus accumulation on the spoil heaps of sandy quarry, Russian-North-West

    Science.gov (United States)

    Abakumov, E.

    2009-04-01

    The accumulation and transformation of organic matter were studied in chronoseries of different aged (3-, 10-, 20-, 30-, 43-, and 60-year-old) soils and a reference (mature) plot. The ecogenetic succession of plants on sand quarry dumps was started from grass plant community and finished on the Scotch Pine forest on the 60-years old plot. The pedogenesis rate was closely related to the rate of phytocenosis development, and the thicknesses of organic and mineral horizons increased synchronously. The profile distribution of organic matter in young soils was estimated as an ectomorphic distribution, and the humus stocks in the mineral horizons of the same soils were comparable with the reserves of organic matter in the litters. The illuvial (Bs) horizons of the soils under study played a significant role in the accumulation of organic carbon; the resistance of organic matter to mineralization increased with age. In the soil chronoseries, the caloricity of litter organic matter increased, as well as the content of energy accumulated in the litters. The composition of humus differed strongly between the eluvial and illuvial horizons; in the chronosequence, the relative content of humic acids increased in the E horizon, and that of fulvic acids increased in the B horizon. On the base of C-13 NMR study of humic substances the humic and fulvic acid are different in organic, eluvial and illuvial horizons in terms of different structural components content. The effect of the phytocenosis on the soil was increasingly mediated with time. The accumulation and transformation of organic matter were the leading pedogenic processes at all stages. The main conclusion of investigation is that the 60 years is enough for formation of embrio-profile of podzol soil on the dumps of quaternary sands of former sandy quarry in the south taiga, North-West of Russia.

  1. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  2. Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil.

    Science.gov (United States)

    Kogbara, Reginald B; Al-Tabbaa, Abir

    2011-05-01

    Stabilisation/solidification (S/S) is an effective technique for reducing the leachability of contaminants in soils. Very few studies have investigated the use of ground granulated blast furnace slag (GGBS) for S/S treatment of contaminated soils, although it has been shown to be effective in ground improvement. This study sought to investigate the potential of GGBS activated by cement and lime for S/S treatment of a mixed contaminated soil. A sandy soil spiked with 3000mg/kg each of a cocktail of heavy metals (Cd, Ni, Zn, Cu and Pb) and 10,000mg/kg of diesel was treated with binder blends of one part hydrated lime to four parts GGBS (lime-slag), and one part cement to nine parts GGBS (slag-cement). Three binder dosages, 5, 10 and 20% (m/m) were used and contaminated soil-cement samples were compacted to their optimum water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability and acid neutralisation capacity (ANC) tests with determination of contaminant leachability at the different acid additions. UCS values of up to 800kPa were recorded at 28days. The lowest coefficient of permeability recorded was 5×10(-9)m/s. With up to 20% binder dosage, the leachability of the contaminants was reduced to meet relevant environmental quality standards and landfill waste acceptance criteria. The pH-dependent leachability of the metals decreased over time. The results show that GGBS activated by cement and lime would be effective in reducing the leachability of contaminants in contaminated soils. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Screening of plants for phytoremediation of oil-contaminated soil.

    Science.gov (United States)

    Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko

    2016-01-01

    Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.

  4. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  5. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.......S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  6. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil.

    Science.gov (United States)

    García Frutos, F Javier; Escolano, Olga; García, Susana; Babín, Mar; Fernández, M Dolores

    2010-11-15

    The objectives of soil remediation processes are usually based on threshold levels of soil contaminants. However, during remediation processes, changes in bioavailability and metabolite production can occur, making it necessary to incorporate an ecotoxicity assessment to estimate the risk to ecological receptors. The evolution of contaminants and soil ecotoxicity of artificially phenanthrene-contaminated soil (1000 mg/kg soil) during soil treatment through bioventing was studied in this work. Bioventing was performed in glass columns containing 5.5 kg of phenanthrene-contaminated soil and uncontaminated natural soil over a period of 7 months. Optimum conditions of mineralisation (humidity=60% WHC; C/N/P=100:20:1) were determined in a previous work. The evolution of oxygen consumption, carbon dioxide production, phenanthrene concentration and soil toxicity were studied on sacrificed columns at periods of 0, 3 and 7 months. Toxicity to soil and aquatic organisms was determined using a multispecies system in the soil columns (MS-3). In the optimal bioventing treatability test, we obtained a reduction rate in phenanthrene concentration higher that 93% after 7 months of treatment. The residual toxicity obtained at the end of the treatment was not attributed to the low phenanthrene concentration, but to the ammonia used to restore the optimal C/N ratio.

  7. Biosurfactant technology for remediation of cadmium and lead contaminated soils.

    Science.gov (United States)

    Juwarkar, Asha A; Nair, Anupa; Dubey, Kirti V; Singh, S K; Devotta, Sukumar

    2007-08-01

    This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.

  8. Impacts of grass removal on wetting and actual water repellency in a sandy soil

    National Research Council Canada - National Science Library

    Klaas Oostindie; Louis W. Dekker; Jan G. Wesseling; Violette Geissen; Coen J. Ritsema

    2017-01-01

    Soil water content and actual water repellency were assessed for soil profiles at two sites in a bare and grasscovered plot of a sand pasture, to investigate the impact of the grass removal on both properties...

  9. Effects of dune stabilization on vegetation characteristics and soil properties at multiple scales in Horqin Sandy Land, Northern China

    Institute of Scientific and Technical Information of China (English)

    XiaoAn Zuo; XueYong Zhao; ShaoKun Wang; Xin Zhou; Peng Lv; Jing Zhang

    2015-01-01

    Ecological patterns and processes in dune ecosystems have been a research focus in recent years, however information on how dune stabilization influences vegetation and soil at different spatial scales is still lacking. In this study, we measured vegetation characteristics and soil properties across three spatial scales (10, 100 and 1,000 m2) along gradient dune stabi-lization stages (mobile dune, semi-fixed dune and fixed dune) in Horqin Sandy Land, Northern China. Vegetation cover over all scales significantly increased with degree of dune stabilization, as well as species richness and C/N ratio at 10 m2 scale. Species richness significantly increased with the increase in measured scales at each stage of dune stabilization and was higher in fixed dune than that in mobile dune and semi-fixed dune at 100 and 1,000 m2 scales. Over all scales, aboveground biomass was lower in mobile dune than that in semi-fixed dune and fixed dune, and soil organic C, total N, EC, very fine sand and silt+clay contents were higher in fixed dune than those in mobile dune and semi-fixed dune. These results suggest that along the gradient dune stabilization, species richness has strong spatial scale-dependence, but vege-tation cover, aboveground biomass and soil properties is generally scale independent (i.e., the pattern of response is con-sistent across all scales). Effect of dune stabilization on vegetation and soil over all spatial scales results in the positive correlation among vegetation cover, species richness, biomass, soil organic C, total N, C/N, EC, very fine sand and silt+clay along the gradient dune stabilization. In addition, species richness at the smallest scale (10 m2) has more sensitive response to dune stabilization. Thus, the monitoring strategies at small scales are essential to detect changes of species diversity in semiarid dune ecosystems.

  10. Reduced nitrogen leaching by intercropping maize with red fescue on sandy soils in North Europe

    DEFF Research Database (Denmark)

    Manevski, Kiril; Børgesen, Christen Duus; Andersen, Mathias Neumann

    2015-01-01

    Aim To study maize (Zea mays L.) growth and soil nitrogen (N) dynamics in monocrop and intercropped systems in a North European climate and soil conditions with the support of a simulation model. Methods Field data for 3 years at two sites/soil types in Denmark and three main factors: (i) cropping...

  11. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...

  12. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid

  13. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility.

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid phase. The

  14. Leaching of human pathogens in repacked soil lysimeters and contamination of potato tubers under subsurface drip irrigation in Denmark

    DEFF Research Database (Denmark)

    Forslund, Anita; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    to groundwater. However, viruses may leach to groundwater and represent a health risk as for some viruses only few virus particles are needed to cause human disease. The bacterial pathogens and the phage 28B were found on the potato samples harvested just after the application of microbial tracers was terminated......The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O...... loam soil. The added bacterial pathogens were not found in any leachate samples during the entire study period of 212 days. Under the study conditions with repacked soil, limited macropores and low water velocity, bacterial pathogens seemed to be retained in the soil matrix and died-off before leaching...

  15. Aggregation of Diesel Contaminated Soil for Bioremediation

    Institute of Scientific and Technical Information of China (English)

    Yu Ying; Shi Xiu-hong; Li Song; Xu Jing-gang

    2014-01-01

    Diesel contaminated soil (DCS) contained a large amount of the hydrocarbons and salt which was dominated by soluble sodium chloride. Aggregation process which made the desired aggregate size distribution could speed up the degradation rate of the hydrocarbons since the aggregated DCS had better physical characteristics than the non-aggregated material. Artificial aggregation increased pores >30 µm by approximately 5% and reduced pores <1 µm by 5%, but did not change the percentage of the pores between 1 and 30 µm. The saturated hydraulic conductivity of non-aggregated DCS was 5×10-6 m• s-l, but it increased to 1×10-5 m• s-l after aggregation. The compression index of the non-aggregated DCS was 0.0186; however, the artificial aggregates with and without lime were 0.031 and 0.028, respectively. DCS could be piled 0.2 m deep without artificial aggregation; however, it could be applied 0.28 m deep when artificial aggregates were formed without limiting O2 transport.

  16. Soil Contamination and Remediation Strategies. Current research and future challenge

    Science.gov (United States)

    Petruzzelli, G.

    2012-04-01

    Soil contamination: the heritage of industrial development Contamination is only a part of a whole set of soil degradation processes, but it is one of paramount importance since soil pollution greatly influences the quality of water, food and human health. Soil contamination has been identified as an important issue for action in the European strategy for soil protection, it has been estimated that 3.5 million of sites are potentially contaminated in Europe. Contaminated soils have been essentially discovered in industrial sites landfills and energy production plants, but accumulation of heavy metals and organic compounds can be found also in agricultural land . Remediation strategies. from incineration to bioremediation The assessment of soil contamination is followed by remedial action. The remediation of contaminated soils started using consolidates technologies (incineration inertization etc.) previously employed in waste treatment,. This has contributed to consider a contaminated soil as an hazardous waste. This rough approximation was unfortunately transferred in many legislations and on this basis soil knowledge have been used only marginally in the clean up procedures. For many years soil quality has been identified by a value of concentration of a contaminant and excavation and landfill disposal of soil has been largely used. In the last years the knowledge of remediation technology has rapidly grown, at present many treatment processes appear to be really feasible at field scale, and soil remediation is now based on risk assessment procedures. Innovative technologies, largely dependent on soil properties, such as in situ chemical oxidation, electroremediation, bioventing, soil vapor extraction etc. have been successfully applied. Hazardous organic compounds are commonly treated by biological technologies, biorememdiation and phytoremediation, being the last partially applied also for metals. Technologies selection is no longer exclusively based on

  17. Changes in soil and vegetation on moving sand dunes after exclosure in Horqin Sandy Land, Northern China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the semiarid Horqin Sandy Land of northern China, land desertification is the main causation in vegetation degradation and formation of moving dunes. A study was conducted from 1996 to 2005 to monitor the changes of vegetation characteristics and soil properties after moving dunes were fenced. The changes were compared between moving sand dunes with exclosure and without exclosure to evaluate the effectiveness of vegetation and soil restoration after exclosure establishment. The results show that exlosure establishment facilitated the colonization and development of plant species by ameliorating stressful environmental conditions. Species diversity, average coverage, and plant density significantly increased after exclosure of moving sand dunes along sequence compared with sand dunes without exclosure. Vegetation recovery on moving sand dunes accelerated by exclosure resulted in significant changes in soil properties including increased silt and clay contents, organic C and total N and decreased sand content, especially at the 0-5 cm depth. The results implied that moving sand dunes can be rapidly fixed by construction of exclosure.

  18. Kinetics of Cd Release from Some Contaminated Calcareous Soils

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi Tabar, S.; Jalali, M., E-mail: jalali@basu.ac.ir [Bu-Ali Sina University, Department of Soil Science, College of Agriculture (Iran, Islamic Republic of)

    2013-03-15

    Contamination of soils with heavy metals may pose long-term risk to groundwater quality leading to health implications. Bioavailability of heavy metals, like cadmium (Cd) is strongly affected by sorption and desorption processes. The release of heavy metals from contaminated soils is a major contamination risks to natural waters. The release of Cd from contaminated soils is strongly influenced by its mobility and bioavailability. In this study, the kinetics of Cd desorption from ten samples of contaminated calcareous soils, with widely varying physicochemical properties, were studied using 0.01 M EDTA extraction. The median percentage of Cd released was about 27.7% of the total extractable Cd in the soils. The release of Cd was characterized by an initial fast release rate (of labile fractions) followed by a slower release rate (of less labile fractions) and a model of two first-order reactions adequately describes the observed release of Cd from the studied soil samples. There was positive correlation between the amount of Cd released at first phase of release and Cd in exchangeable fraction, indicating that this fraction of Cd is the main fraction controlling the Cd in the kinetic experiments. There was strongly negative correlation between the amount of Cd released at first and second phases of release and residual fraction, suggesting that this fraction did not contribute in Cd release in the kinetic experiments. The results can be used to provide information for evaluation of Cd potential toxicity and ecological risk from contaminated calcareous soils.

  19. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    Science.gov (United States)

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of past copper contamination and soil structure on copper leaching from soil

    DEFF Research Database (Denmark)

    Paradelo, M; Møldrup, Per; Arthur, Emmanuel

    2013-01-01

    Copper contamination affects biological, chemical, and physical soil properties and associated ecological functions. Changes in soil pore organization as a result of Cu contamination can dramatically affect flow and contaminant transport in polluted soils. This study assessed the influence of soil......, and dissolved organic carbon (DOC) and Cu losses. The 5% arrival time (t0.05) and apparent dispersivity (λapp) for tracer breakthrough were calculated by fitting the experimental data to a nonparametric, double-lognormal probability density function. Soil bulk density, which did not follow the Cu gradient...

  1. Humus-assisted cleaning of heavy metal contaminated soils

    Science.gov (United States)

    Borggaard, Ole K.; Rasmussen, Signe B.

    2016-04-01

    Contamination of soils with non-degradable heavy metals (HMs) because of human acticities is globally a serious problem threatening human health and ecosystem functioning. To avoid negative effects, HMs must be removed either on-site by plant uptake (phytoremediation) or off-site by extraction (soil washing). In both strategies, HM solubility must be augmented by means of a strong ligand (complexant). Often polycarboxylates such as EDTA and NTA are used but these ligands are toxic, synthetic (non-natural) and may promote HM leaching. Instead naturally occurring soluble humic substances (HS) were tested as means for cleaning HM contaminated soils; HS samples from beech and spruce litter, compost percolate and processed cow slurry were tested. Various long-term HM contaminated soils were extracted with solutions of EDTA, NTA or HS at different pH by single-step and multiple-step extraction mode. The results showed that each of the three complexant types increased HM solubility but the pH-dependent HM extraction efficiency decreased in the order: EDTA ≈ NTA > HS. However, the naturally occurring HS seems suitable for cleaning As, Cd, Cu and Zn contaminated soils both in relation to phytoremediation of moderately contaminated soils and washing of strongly contaminated soils. On the other hand, HS was found unsuited as cleaning agent for Pb polluted calcareous soils. If future field experiments confirm these laboratory results, we have a new cheap and environmentally friendly method for solving a great pollution problem, i.e. cleaning of heavy metal contaminated soils. In addition, humic substances possess additional benefits such as improving soil structure and stimulating microbial activity.

  2. Quantifying Diffuse Contamination: Method and Application to Pb in Soil.

    Science.gov (United States)

    Fabian, Karl; Reimann, Clemens; de Caritat, Patrice

    2017-06-20

    A new method for detecting and quantifying diffuse contamination at the continental to regional scale is based on the analysis of cumulative distribution functions (CDFs). It uses cumulative probability (CP) plots for spatially representative data sets, preferably containing >1000 determinations. Simulations demonstrate how different types of contamination influence elemental CDFs of different sample media. It is found that diffuse contamination is characterized by a distinctive shift of the low-concentration end of the distribution of the studied element in its CP plot. Diffuse contamination can be detected and quantified via either (1) comparing the distribution of the contaminating element to that of an element with a geochemically comparable behavior but no contamination source (e.g., Pb vs Rb), or (2) comparing the top soil distribution of an element to the distribution of the same element in subsoil samples from the same area, taking soil forming processes into consideration. Both procedures are demonstrated for geochemical soil data sets from Europe, Australia, and the U.S.A. Several different data sets from Europe deliver comparable results at different scales. Diffuse Pb contamination in surface soil is estimated to be contamination sources and can be used to efficiently monitor diffuse contamination at the continental to regional scale.

  3. Impacts of grass removal on wetting and actual water repellency in a sandy soil

    Directory of Open Access Journals (Sweden)

    Oostindie Klaas

    2017-03-01

    Full Text Available Soil water content and actual water repellency were assessed for soil profiles at two sites in a bare and grasscovered plot of a sand pasture, to investigate the impact of the grass removal on both properties. The soil of the plots was sampled six times in vertical transects to a depth of 33 cm between 23 May and 7 October 2002. On each sampling date the soil water contents were measured and the persistence of actual water repellency was determined of field-moist samples. Considerably higher soil water contents were found in the bare versus the grass-covered plots. These alterations are caused by differences between evaporation and transpiration rates across the plots. Noteworthy are the often excessive differences in soil water content at depths of 10 to 30 cm between the bare and grass-covered plots. These differences are a consequence of water uptake by the roots in the grass-covered plots. The water storage in the upper 19 cm of the bare soil was at least two times greater than in the grass-covered soil during dry periods. A major part of the soil profile in the grass-covered plots exhibited extreme water repellency to a depth of 19 cm on all sampling dates, while the soil profile of the bare plots was completely wettable on eight of the twelve sampling dates. Significant differences in persistence of actual water repellency were found between the grass-covered and bare plots.

  4. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study.

    Directory of Open Access Journals (Sweden)

    Weiwei Lu

    Full Text Available This study examined the effect of nitrogen (N on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant straw in absence (BC0 and presence (BCN of N and monitored for dynamics of carbon dioxide (CO2 flux, phospholipid fatty acids (PLFAs profile and dissolved organic carbon (DOC content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05, and the proportions of decomposed biochar carbon (C were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05 higher than DOC in biochar (1.75% and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05 increased the proportion of gram-positive (G+ bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G- bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil.

  5. Approaches to bioremediation of fossil fuel contaminated soil: An ...

    African Journals Online (AJOL)

    Biological methods for combating pollutants generated within the fossil fuels ... metabolism of fossil fuel contaminants in soil and water bodies is presented. ... Keywords: Fossil fuels, coal, petroleum hydrocarbons, biodegradation, pollutants

  6. Seed Burial Depth and Soil Water Content Affect Seedling Emergence and Growth of Ulmus pumila var. sabulosa in the Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Jiao Tang

    2016-01-01

    Full Text Available We investigated the effects of seed burial depth and soil water content on seedling emergence and growth of Ulmus pumila var. sabulosa (sandy elm, an important native tree species distributed over the European-Asian steppe. Experimental sand burial depths in the soil were 0.5, 1.0, 1.5, 2.0 and 2.5 cm, and soil water contents were 4%, 8%, 12% and 16% of field capacity. All two-way ANOVA (five sand burial depths and four soil water contents results showed that seed burial depths, soil water content and their interactions significantly affected all the studied plant variables. Most of the times, seedling emergence conditions were greater at the lower sand burial depths (less than 1.0 cm than at the higher (more than 1.0 cm seed burial depths, and at the lower water content (less than 12% than at the higher soil water content. However, high seed burial depths (more than 1.5 cm or low soil water content (less than 12% reduced seedling growth or change in the root/shoot biomass ratios. In conclusion, the most suitable range of sand burial was from 0.5 to 1.0 cm soil depth and soil water content was about 12%, respectively, for the processes of seedling emergence and growth. These findings indicate that seeds of the sandy elm should be kept at rather shallow soil depths, and water should be added up to 12% of soil capacity when conducting elm planting and management. Our findings could help to create a more appropriate sandy elm cultivation and understand sparse elm woodland recruitment failures in arid and semi-arid regions.

  7. Consequences of trace-element contamination of soils

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1972-01-01

    The chemical composition of the bulk of the food eaten has been profoundly modified by the intensification of the means of food production and as a result of the general contamination of the environment. Contamination of the soil in urban and industrial areas with potentially toxic trace elements is an important aspect of environmental pollution which can affect the composition of food. Contamination of soils with elements such as copper, lead and zinc appears to be largely irreversible and sources of this kind of contamination are discussed. Evidence is presented that the trace-element content (B, Cu, Pb, Mo, Ni, Zn) of plants grown on contaminated soils can be enhanced and that deleterious effects on plant growth are possible.

  8. Assessing soil and groundwater contamination in a metropolitan redevelopment project.

    Science.gov (United States)

    Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun

    2013-08-01

    The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).

  9. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.;

    2015-01-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...... nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used...... as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two...

  10. Decreasing the contamination and toxicity of a heavily contaminated soil by in situ bioremediation

    Science.gov (United States)

    Groudev, Stoyan; Georgiev, Plamen; Spasova, Irena; Nikolova, Marina

    2013-04-01

    An experimental plot of 140 m2 consisting of acidic soil heavily contaminated with uranium, non-ferrous metals (mainly Cu, Zn and Cd) and arsenic was treated in situ under real field conditions using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. The treatment was connected with solubilization and removal of contaminants from the top soil layers (horizon A) due to the joint action of the soil microorganisms (mainly acidophilic chemolithotrophic bacteria) and leach solutions (diluted sulphuric acid). The dissolved contaminants were transferred to the soil horizon B and were removed from the soil profile through a system of drainage collecting pipes. The contaminated soil effluents were treated by means of a multi-component passive system consisting of an anoxic alkalizing drain, a permeable reactive multibarrier and a rock filter. The contamination and toxicity of the soil were regularly tested during the cleaning procedure and were considerably decreased at the end of the treatment.

  11. Restoring Eroded Lands in Southern Iceland: Efficacy of Domestic, Organic Fertilizers in Sandy Gravel Soils

    OpenAIRE

    Brenner, Julia Miriam, 1989-

    2016-01-01

    Since settlement Iceland has faced severe soil degradation due to a combination of natural stressors – glacial flooding, volcanic eruption, and heavy wind – and anthropogenic stressors – grazing livestock, wood harvesting, and land use change. Declining soil stability under these conditions resulted in extensive soil erosion: 40% of Iceland now has considerable, severe, or extremely severe erosion. Fertilizers have been utilized for land reclamation in Iceland for many years, but they have mo...

  12. Comparison of wastewater-associated contaminants in the bed sediment of Hempstead Bay, New York, before and after Hurricane Sandy

    Science.gov (United States)

    Fisher, Shawn C.; Phillips, Patrick; Brownawell, Bruce J.; Browne, James

    2016-01-01

    Changes in bed sediment chemistry of Hempstead Bay (HB) have been evaluated in the wake of Hurricane Sandy, which resulted in the release of billions of liters of poorly-treated sewage into tributaries and channels throughout the bay. Surficial grab samples (top 5 cm) collected before and (or) after Hurricane Sandy from sixteen sites in HB were analyzed for 74 wastewater tracers and steroid hormones, and total organic carbon. Data from pre- and post-storm comparisons of the most frequently detected wastewater tracers and ratios of steroid hormone and of polycyclic aromatic hydrocarbon concentrations indicate an increased sewage signal near outfalls and downstream of where raw sewage was discharged. Median concentration of wastewater tracers decreased after the storm at sites further from outfalls. Overall, changes in sediment quality probably resulted from a combination of additional sewage inputs, sediment redistribution, and stormwater runoff in the days to weeks following Hurricane Sandy.

  13. Mercury species in formerly contaminated soils and released soil gases.

    Science.gov (United States)

    Sysalová, Jiřina; Kučera, Jan; Drtinová, Barbora; Červenka, Rostislav; Zvěřina, Ondřej; Komárek, Josef; Kameník, Jan

    2017-02-01

    Total mercury (T-Hg), elemental mercury (Hg(0)), methylmercury (MeHg(+)), phenylmercury (PhHg(+)), and gaseous elemental mercury (GEM) species were determined in soils formerly contaminated by different processes from two sites in the Czech Republic. Analytical methods involved atomic absorption spectrometry (AAS) using a single-purpose Advanced Mercury Analyser AMA-254 and radiochemical neutron activation analysis (RNAA) for T-Hg determination, a thermal desorption method was used for Hg(0) determination, gas chromatography coupled with atomic fluorescence spectrometry (GC-AFS) was employed for assay of MeHg(+) and PhHg(+), while GEM measurement was carried out using a portable Zeeman-AAS device Lumex RA-915(+). The first sampling site was in the surroundings of a former PhHgCl-based fungicide processing plant next to Příbram (central Bohemia). Although the use of Hg-based fungicides as seed mordant have been banned, and their production stopped at the end of 1980's, highly elevated Hg contents in soil are still observed in the vicinity of the former plant, reaching T-Hg values >13mgkg(-1). The second sampling site was an abandoned mining area named Jedová hora Hill near Hořovice (central Bohemia), where cinnabar (HgS) was occasionally mined as by-product of Fe ores hematite and siderite. Mining activities have been stopped here in 1857. Very high contents of T-Hg are still found at this site, up to 144mgkg(-1). In most cases we found a statistically significant correlation between T-Hg and Hg(0) values regardless of the pollution source. On the contrary, insignificant correlation was observed neither between T-Hg and GEM values, nor between GEM and Hg(0). Concentrations of the investigated organomercury species were above a limit of detection (LOD) only in the most contaminated samples, where their levels were about two to three orders of magnitude lower compared to those of T-Hg.

  14. Biosurfactant-facilitated remediation of metal-contaminated soils.

    OpenAIRE

    R. M. Miller

    1995-01-01

    Bioremediation of metal-contaminated wastestreams has been successfully demonstrated. Normally, whole cells or microbial exopolymers are used to concentrate and/or precipitate metals in the wastestream to aid in metal removal. Analogous remediation of metal-contaminated soils is more complex because microbial cells or large exopolymers do not move freely through the soil. The use of microbially produced surfactants (biosurfactants) is an alternative with potential for remediation of metal-con...

  15. Uptake by Plants of Radiostrontium from Contaminated Soils

    DEFF Research Database (Denmark)

    Andersen, A. J.

    1965-01-01

    In a recent report from this department it was shown that the extractability of radiostrontium from contaminated soil samples was effectively reduced by heat treatment and by the addition of phosphate to the soil. It was pointed out that, under emergency conditions, heat......-treatment of the contaminated soil surface and heavy phosphate application might thus reduce the uptake by plants of radiostrontium more efficiently than liming, which is only effective in soils of low calcium status. In the investigation reviewed here the influence of heat treatment and superphosphate application on the plant...... uptake of radiostrontium was examined in pot experiments. For comparison the effect of applying calcium carbonate to the contaminated soil surface was also determined....

  16. The evolution of sandy soils under the influence of vegetation succession and anthropogenic activities - case study from Błędów Desert

    Science.gov (United States)

    Gus, Magdalena; Drewnik, Marek

    2016-04-01

    Sandy areas are an important source of research about early stages of the soils formation process and their further development. The rate of succession is reflecting the influence of vegetation on chemical and physical properties of soils which as the time goes undergo the evolution process caused by other environmental factors. The Błędów Desert (Poland, Central Europe) is an example of this kind of area, where sandy soils evolved into Podzols, but as a result of human activities conducted since Middle Ages soil cover has been destroyed to bedrock. Currently progressing vegetation succession occurred in two ways: primary, which took place in areas covered by loose sand and secondary, in the areas with fossil soils. Presently the Błędów Desert is a suitable example to study soil changes in both cases mentioned above. The main aim of the study was to present diversity and characteristics of soils in The Błędów Desert in relation to their development stages and vegetation succession. During field studies soil profiles were described and selected for the detailed studies and soils samples were taken for laboratory analysis, including a determination of basic physical and chemical analysis as well as for micromorphological analysis (selected profiles). Podzols located near the boundary of the study area was selected as a reference soils. The results proved the complexity of the soil process formation, which strongly depends on the vegetation succession and human activities including human-induced aeolian processes. Results confirmed the presence of buried soils, which together with the contemporary soils formed a soil sequence. Moreover, research shows that the dominant soil-forming processes at the Błędów Desert are humus accumulation and podzolization. To summarize, The Błędów Desert is a dynamic environment undergoing rapid changes of soil cover under the influence of the interaction of vegetation, anthropopression and aeolian processes.

  17. Assessing soil water repellency of a sandy field with visible near infrared spectroscopy

    DEFF Research Database (Denmark)

    Knadel, Maria; Masis Melendez, Federico; de Jonge, Lis Wollesen

    2016-01-01

    Soil water repellency (WR) is a widespread phenomenon caused by aggregated organic matter (OM) and layers of hydrophobic organic substances coating the surface of soil particles. These substances have a very low surface free energy, reducing a soil’s water attraction. There is focus on WR due...

  18. Phytoremediation Potential of Lead-Contaminated Soil Using Tropical Grasses

    Science.gov (United States)

    The global problem concerning contamination of the environment because of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contribute...

  19. Characterization of a soil contaminated by oilfield brine

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mutairi, K.; Harris, T. [Univ. of Tulsa, OH (United States)

    1995-12-01

    Brine contamination of soil is a common environmental problem associated with the onshore production of oil and gas. A site of extensive contamination in Oklahoma has been characterized using conductimetry, direct potentiometry (pH- and chloride-selective electrodes), and atomic absorption spectrophotometry (for Na{sup +} and Ca{sup 2+}) to determine the extent of the contamination and the efficacy of various remediation technologies.

  20. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    Science.gov (United States)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  1. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    Directory of Open Access Journals (Sweden)

    R. Schulin

    2012-07-01

    Full Text Available Large areas of land are restored with un-weathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils as they only depend on atmospheric nitrogen (N fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites the experimental Chicken Creek Catchment (CCC in eastern Germany and a nearby experimental site (ES with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5×10 cm with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P

  2. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    Directory of Open Access Journals (Sweden)

    B. Felderer

    2013-03-01

    Full Text Available Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC in eastern Germany and a nearby experimental site (ES with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P

  3. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    Science.gov (United States)

    Felderer, B.; Boldt-Burisch, K. M.; Schneider, B. U.; Hüttl, R. F. J.; Schulin, R.

    2013-03-01

    Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P) is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N) fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC) in eastern Germany and a nearby experimental site (ES) with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm) with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P concentrations. In

  4. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  5. Validated sampling strategy for assessing contaminants in soil stockpiles

    NARCIS (Netherlands)

    Lamé, F.; Honders, T.; Derksen, G.B.; Gadella, M.

    2005-01-01

    Dutch legislation on the reuse of soil requires a sampling strategy to determine the degree of contamination. This sampling strategy was developed in three stages. Its main aim is to obtain a single analytical result, representative of the true mean concentration of the soil stockpile. The

  6. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  7. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  8. Validated sampling strategy for assessing contaminants in soil stockpiles

    NARCIS (Netherlands)

    Lamé, F.; Honders, T.; Derksen, G.B.; Gadella, M.

    2005-01-01

    Dutch legislation on the reuse of soil requires a sampling strategy to determine the degree of contamination. This sampling strategy was developed in three stages. Its main aim is to obtain a single analytical result, representative of the true mean concentration of the soil stockpile. The developme

  9. Mobility of Arsenic and Heavy Metals in a Sandy-Loam Textured and Carbonated Soil

    Institute of Scientific and Technical Information of China (English)

    GARCIA; M.DIEZ; F.MARTIN; M.SIMóN; C.DORRONSORO

    2009-01-01

    The continued effect of the pyrite-tailing oxidation on the mobility of arsenic,lead,zinc,cadmium,and copper was studied in a carbonated soil under natural conditions,with the experimcntal plot preserved with a layer of tailing covering the soil during three years.The experimental area is located in Southern Spain and was affected by a pyrite-mine spill.The climate in the area is typically Mediterranean,which determines the rate of soil alteration and element mobility.The intense alteration processes that occurred in the soil during three years caused important changes in its morphology and a strong degradation of the main soil properties.In this period,lead concentrated in the first 5 mm of the soil,with concentrations higher than 1500 mg kg-1,mainly associated to the neoformation of plumbojarosite.Arsenic was partially leached from the first 5 mm and mainly concentrated between 5-10 mm in the soil,with maximum values of 1 239 mg kg-1;the retention of arsenates was related to the neoformation of iron hydroxysulfates (jarosite,schwertmannite) and oxyhydroxides (goethite,ferrihydrite),both with a variable degree of crystallinity.The mobility of Zn,Cd,and Cu was highly affected by pH,producing a stronger leaching in depth;their retention was related to the forms of precipitated aluminium and,in the case of Cu,also to the neoformation of hydroxysulfate.

  10. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Aziz, H.M.M.; Hasaneen, M.N.A.; Ome, A.M.

    2016-11-01

    Nanofertilizers have become a pioneer approach in agriculture research nowadays. In this paper we investigate the delivery of chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK) for wheat plants by foliar uptake. Chiotsan-NPK nanoparticles were easily applied to leaf surfaces and entered the stomata via gas uptake, avoiding direct interaction with soil systems. The uptake and translocation of nanoparticles inside wheat plants was investigated by transmission electron microscopy. The results revealed that nano particles were taken up and transported through phloem tissues. Treatment of wheat plants grown on sandy soil with nano chitosan-NPK fertilizer induced significant increases in harvest index, crop index and mobilization index of the determined wheat yield variables, as compared with control yield variables of wheat plants treated with normal non-fertilized and normal fertilized NPK. The life cycle of the nano-fertilized wheat plants was shorter than normal-fertilized wheat plants with the ratio of 23.5% (130 days compared with 170 days for yield production from date of sowing). Thus, accelerating plant growth and productivity by application of nanofertilizers can open new perspectives in agricultural practice. However, the response of plants to nanofertilizers varies with the type of plant species, their growth stages and nature of nanomaterials. (Author)

  11. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil

    Directory of Open Access Journals (Sweden)

    Mohammed N. A. Hasaneen

    2016-03-01

    Full Text Available Nanofertilizers have become a pioneer approach in agriculture research nowadays. In this paper we investigate the delivery of chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK for wheat plants by foliar uptake. Chiotsan-NPK nanoparticles were easily applied to leaf surfaces and entered the stomata via gas uptake, avoiding direct interaction with soil systems. The uptake and translocation of nanoparticles inside wheat plants was investigated by transmission electron microscopy. The results revealed that nano particles were taken up and transported through phloem tissues. Treatment of wheat plants grown on sandy soil with nano chitosan-NPK fertilizer induced significant increases in harvest index, crop index and mobilization index of the determined wheat yield variables, as compared with control yield variables of wheat plants treated with normal non-fertilized and normal fertilized NPK. The life cycle of the nano-fertilized wheat plants was shorter than normal-fertilized wheat plants with the ratio of 23.5% (130 days compared with 170 days for yield production from date of sowing. Thus, accelerating plant growth and productivity by application of nanofertilizers can open new perspectives in agricultural practice. However, the response of plants to nanofertilizers varies with the type of plant species, their growth stages and nature of nanomaterials.

  12. Evaluation Of Onion Production On Sandy Soils By Use Of Reduced Tillage And Controlled Traffic Farming With Wide Span Tractors

    Directory of Open Access Journals (Sweden)

    Pedersen Hans Henrik

    2015-09-01

    Full Text Available Growing of vegetables is often characterised by intensive field traffic and use of heavy machines. By implementing controlled traffic farming (CTF, compaction of the growth zone can be avoided. An experiment was established in an onion field on a coarse sandy loam. Treatments were applied in the field that for five years had been managed by seasonal CTF (SCTF, where harvest is performed by random traffic due to lack of suitable harvest machines. The main treatment was compaction with a fully loaded potato harvester. The split treatment in the crossed split plot design was mechanical loosening. Bulk density, macroporosity, penetration resistance, water retention characteristics and yield were measured. Mechanical loosening caused improvements in the physical soil measurements and more roots were found in the upper soil layers. The highest yield was however found in the CTF simulation plots (19% higher than in the SCTF simulated plots. Using wide span tractors as a harvest platform will enable CTF in vegetable production. Avoidance of compaction will enable reduced tillage intensity and productivity can be improved both through higher yield of the area that is cropped and by a larger percentage of fields can be cropped area as less area will be needed for tracks.

  13. ENGINEERING BULLETIN: SEPARATION/CONCENTRATION TECHNOLOGY ALTERNATIVES FOR THE REMEDIATION OF PESTICIDE-CONTAMINATED SOIL

    Science.gov (United States)

    Pesticide contamination includes a wide variety of compounds and may result from manufacturing improper storage, handling, disposal; or agricultural processes. It can occur in soil and can lead to secondary contamination of groundwater. Remediation of pesticide-contaminated soils...

  14. Phosphate reactivity in long-term poultry litter-amended southern Delaware sandy soils

    Science.gov (United States)

    Arai, Y.; Livi, K.J.T.; Sparks, D.L.

    2005-01-01

    Eutrophication caused by dissolved P from poultry litter (PL)-amended agricultural soils has been a serious environmental concern in the Delaware-Maryland-Virginia Peninsula (Delmarva), USA. To evaluate state and federal nutrient management strategies for reducing the environmental impact of soluble P from long-term PL-amended Delaware (DE) soils, we investigated (i) inorganic P speciation; (ii) P adsorption capacity; and (iii) the extent of P desorption. Although the electron microprobe (EMP) analyses showed a strong correlation between P and Al/Fe, crystalline Al/Fe-P precipitates were not detected by x-ray diffraction (XRD). Instead, the inorganic P fractionation analyses showed high levels of oxalate extractable P, Al, and Fe fractions (615-858, 1215-1478, and 337-752 mg kg-1, respectively), which were susceptible to slow release during the long-term (30-d) P desorption experiments at a moderately acidic soil pHwater. The labile P in the short-term (24-h) desorption studies was significantly associated with oxalate and F extractable Fe and Al, respectively. This was evident in an 80% reduction maximum in total desorbable P from NH4 oxalate/F pretreated soils. In the adsorption experiments, P was strongly retained in soils at near targeted pH of lime (???6.0), but P adsorption gradually decreased with decreasing pH near the soil pHwater (???5.0). The overall findings suggest that P losses from the can be suppressed by an increase in the P retention capacity of soils via (i) an increase in the number of lime applications to maintain soil pHwater at near targeted pH values, and/or (ii) alum/iron sulfate amendments to provide additional Al- and Fe-based adsorbents. ?? Soil Science Society of America.

  15. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils.

    Science.gov (United States)

    Ruttens, Ann; Boulet, Jana; Weyens, Nele; Smeets, Karen; Adriaensen, Kristin; Meers, Erik; Van Slycken, Stijn; Tack, Filip; Meiresonne, Linda; Thewys, Theo; Witters, Nele; Carleer, Robert; Dupae, Joke; Vangronsveld, Jaco

    2011-01-01

    Phytoremediation, more precisely phytoextraction, has been placed forward as an environmental friendly remediation technique, that can gradually reduce increased soil metal concentrations, in particular the bioavailable fractions. The aim of this study was to investigate the possibilities of growing willows and poplars under short rotation coppice (SRC) on an acid, poor, sandy metal contaminated soil, to combine in this way soil remediation by phytoextraction on one hand, and production of biomass for energy purposes on the other. Above ground biomass productivities were low for poplars to moderate for willows, which was not surprising, taking into account the soil conditions that are not very favorable for growth of these trees. Calculated phytoextraction efficiency was much longer for poplars than these for willows. We calculated that for phytoextraction in this particular case it would take at least 36 years to reach the legal threshold values for cadmium, but in combination with production of feedstock for bioenergy processes, this type of land use can offer an alternative income for local farmers. Based on the data of the first growing cycle, for this particular case, SRC of willows should be recommended.

  16. Toxicity tests of soil contaminated by recycling of scrap plastics.

    Science.gov (United States)

    Wong, M H; Chui, V W

    1990-03-01

    The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high concentrations of Cu, Ni, and Mn. Water extracts from the contaminated soil retarded root growth of Brassica chinensis (Chinese white cabbage) and Cynodon dactylon (Bermuda grass) where their seeds were obtained commercially. The contaminated populations of C. dactylon, Panicum repen (panic grass), and Imperata cylindrica (wooly grass) were able to withstand higher concentrations of Cu, Ni, and Mn, especially C. dactylon, when compared with their uncontaminated counterparts.

  17. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  18. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore......, the volume of pores > 30 μm was more than 0.03 m3 m-3 larger for MP than for D in spring 2014 at the 4- to 8-cm depth. At the 18- to 27-cm depth, direct drilling resulted in a better air permeability and pore continuity index (e.g., air permeability of 18.2 and 11.2 mm2 for D and MP, respectively at −10 k...

  19. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    OpenAIRE

    Wuthiphun, L.; Towatana, P.; Arrykul, S.; Chongsuvivatwong, V

    2007-01-01

    Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash) on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil cove...

  20. Evaluation of sprayable fixatives on a sandy soil for potential use in a dirty bomb response.

    Science.gov (United States)

    Fritz, Brad G; Whitaker, John D

    2008-06-01

    After the events of 11 September 2001, the possibility of a dirty bomb being detonated within the United States seems more realistic. Development of tools for use in response to a dirty bomb detonation has become a topic of both discussion and research. While it has been reported that the health risk to the public from such an event would likely be small, it is thought that the psychological impact could be considerable. One response option that has been considered is adapting sprayable solutions for the purpose of fixing contamination in place, thereby limiting the spread of contamination by wind and rain and facilitating subsequent cleanup. This work evaluated two commercially available particle fixatives (IsoFIX-HT and IsoFIX-RC) for their effectiveness in preventing dispersal of simulated contamination. Nonradioactive cesium chloride and cobalt oxide particles were selected as the simulated contamination and applied to the surface of three outdoor test plots. Two test plots were treated with fixatives; the third plot provided a control. Samples were collected over 95 days to observe changes in tracer concentration on the surface of the test plots. One fixative (IsoFIX-RC) effectively held the tracer in place with no net loss of tracer, while the other fixative (IsoFIX-HT) had no impact on the loss of tracer relative to the control. Under the conditions tested, IsoFIX-RC appears capable of fixing surface contamination in place for at least several months.

  1. Numerical Simulation of Preferential Flow of Contaminants in Soil

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simple modeling approach was suggested to simulate preferential transport of water and contaminants in soil.After saturated hydraulic conductivity was interpolated by means of Krige interpolation method or scaling method, and then zoned,the locations where saturated hydraulic conductivity was larger represented regions where preferential flow occurred,because heterogeneity of soil,one of the mechanisms resulting in preferential flow,could be reflected through the difference in saturated hydraulic conductivity.The modeling approach was validated through numerical simulation of contaminant transport in a two-dimensional hypothetical soil profile.The results of the numerical simulation showed that the approach suggested in this study was feasible.

  2. Soil Seed Bank and Plant Community Development in Passive Restoration of Degraded Sandy Grasslands

    Directory of Open Access Journals (Sweden)

    Renhui Miao

    2016-06-01

    Full Text Available To evaluate the efficacy of passive restoration on soil seed bank and vegetation recovery, we measured the species composition and density of the soil seed bank, as well as the species composition, density, coverage, and height of the extant vegetation in sites passively restored for 0, 4, 7, and 12 years (S0, S4, S7, and S12 in a degraded grassland in desert land. Compared with S0, three more species in the soil seed bank at depths of 0–30 cm and one more plant species in the community was detected in S12. Seed density within the topsoil (0–5 cm was five times higher in S12 than that in S0. Plant densities in S7 and S12 were triple and quadruple than that in S0. Plant coverage was increased by 1.5 times (S4, double (S7, and triple (S12 compared with S0. Sørensen’s index of similarity in species composition between the soil seed bank and the plant community were high (0.43–0.63, but it was lower in short-term restoration sites (S4 and S7 than that in no and long-term restoration sites (S0 and S12. The soil seed bank recovered more slowly than the plant community under passive restoration. Passive restoration is a useful method to recover the soil seed bank and vegetation in degraded grasslands.

  3. Bioremediation potential of diesel-contaminated Libyan soil.

    Science.gov (United States)

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil.

  4. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    Groundwater risk assessment of contaminated soils implies determination of the solute concentration leaching out of the soil. Determination based on estimation techniques or simple experimental batch approach has proven inadequate. Two chemical equilibrium soil column leaching tests...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...... to measure solute phase concentration of PAHs in contaminated soils. Overall a reliable and reproducable system for determining solute concentration of a wide range of organic compounds in contaminated soils has been developed....

  5. Remediation of PCB contaminated soils at Saglek, Labrador

    Energy Technology Data Exchange (ETDEWEB)

    Maskell, B.; Bordin, D. [Bennett Environmental Inc., Oakville, ON (Canada)

    2005-07-01

    Polychlorinated biphenyl (PCB) contaminated soils were discovered in Saglek in 1986. This paper describes a contract awarded to Bennett Environmental Inc., by the Department of National Defense for the removal of all contaminated soils and debris in the area. Key tasks included removal of all stockpiles of PCB contaminated soil; collection, cleaning and sorting of debris for containerization and removal; remediation of potential contaminated soils beneath the stockpiles; and reinstatement of the staging and clean stone deposition zone area to its natural state. Planning of the project was outlined, including details of partnering sessions and workshops, as well as details of community meetings held in Nain. Details of startup and pre-environmental monitoring were also provided. An outline of the containerization unit used during the project was presented, as well as ship cycle times and soil sampling procedures. Washing and water treatment procedures were reviewed, as well as details of the on-site laboratory, equipped with personal exposure monitoring; an ambient air monitoring network; water sampling and analysis; and continuous monitoring to assess potential exposure to PCB to conform to alarm levels and implement mitigation measures. Shipping procedures were reviewed as well as soil treatment processes at a facility in Cornwall, Ontario. It was concluded that the remediation of the site was successful. All contaminated material was removed and treated. 1 ref., 4 figs.

  6. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Thinh Nguyen Van

    2016-11-01

    Full Text Available Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As, chromium (Cr, cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg−1. Manganese and iron concentrations averaged 811 µg·g−1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  7. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam.

    Science.gov (United States)

    Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi

    2016-11-05

    Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg(-1). Manganese and iron concentrations averaged 811 µg·g(-1) and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  8. Microemulsion-enhanced remediation of soils contaminated with organochlorine pesticides.

    Science.gov (United States)

    Zhang, Yanlin; Wong, Jonathan W C; Zhao, Zhenyong; Selvam, Ammaiyappan

    2011-12-01

    Soil contaminated by organic pollutants, especially chlorinated aromatic compounds such as DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane), is an environmental concern because of the strong sorption of organochlorine pesticide onto the soil matrix and persistence in the environment. The remediation of organochlorine pesticide contaminated soils through microemulsion is an innovative technology to expedite this process. The remediation efficiency was evaluated by batch experiments through studying the desorption of DDT and hexachlorocyclohexane (y-HCH) and sorption of microemulsion composed of Triton X-100, 1-pentanol and linseed oil in the soil-surfactant-water suspension system. The reduction of desorption efficiency caused by the sorption loss of microemulsion components onto the soil could be corrected by the appropriate adjustment of C/S (Cosurfactant/Surfactant) and O/S (Oil/Surfactant) ratio. The C/S and O/S ratios of 1:2 and 3:20 were suitable to desorb DDT and gamma-HCH from the studied soils because of the lower sorption of Triton X-100 onto the soil. Inorganic salts added in microemulsion increased the pesticides desorption efficiency of pesticides and calcium chloride has a stronger ability to enhance the desorption of DDT than sodium chloride. From the remediation perspective, the balance of surfactant or cosurfactant sorbed to soil and desorption efficiency should be taken into consideration to enhance the remediation of soils contaminated by organochlorine pesticides.

  9. Effects of charcoal-enriched goat manure on soil fertility parameters and growth of pearl millet (Pennisetum glaucum L. in a sandy soil from northern Oman

    Directory of Open Access Journals (Sweden)

    Melanie Willich

    2016-12-01

    Full Text Available The effect of charcoal feeding on manure quality and its subsequent application to enhance soil productivity has received little attention. The objectives of the present study therefore were to investigate the effects of (i charcoal feeding on manure composition, and (ii charcoal-enriched manure application on soil fertility parameters and growth of millet (Pennisetum glaucum L.. To this end, two experiments were conducted: First, a goat feeding trial where goats were fed increasing levels of activated charcoal (AC; 0, 3, 5, 7, and 9% of total ration; second, a greenhouse pot experiment using the manure from the feeding trial as an amendment for a sandy soil from northern Oman. We measured manure C, N, P, and K concentrations, soil fertility parameters and microbial biomass indices, as well as plant yield and nutrient concentrations. Manure C concentration increased significantly (P<0.001 from 45.2% (0% AC to 60.2% (9% AC with increasing dietary AC, whereas manure N, P, and K concentrations decreased (P<0.001 from 0% AC (N: 2.5%, P: 1.5%, K: 0.8% to 9% AC (N: 1.7%, P: 0.8%, K: 0.4%. Soil organic carbon, pH, and microbial biomass N showed a response to AC-enriched manure. Yield of millet decreased slightly with AC enrichment, whereas K uptake was improved with increasing AC. We conclude that AC effects on manure quality and soil productivity depend on dosage of manure and AC, properties of AC, trial duration, and soil type.

  10. Contamination of urban garden soils with copper and boron

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1966-06-04

    Spectrochemical analyses of garden soils sampled in the Edinburgh and Dundee areas indicate that there is substantial contamination of urban soils with copper and boron. These soils were analyzed spectrochemically with respect to total copper and water-extractable boron content with the view of comparing the levels obtained in urban areas with levels in arable soils in rural areas. The results indicate that urban garden soils contain about four times as much copper and two to three times as much water-soluble boron as rural arable soils. The existence of such a marked disparity between the levels of two potentially toxic elements in urban and rural areas is evidence of slow poisoning of the soil environment in built-up areas and is cause for concern. While the major source of contamination of soils with copper and boron is still a matter for speculation, it is probable that the addition of soot to garden soils and the fall-out of sooty material in built-up areas where atmospheric pollution is a problem make a substantial contribution to the water-extractable boron content of urban soils. Three samples of soot from domestic chimneys, obtained from independent sources, were found on analysis to contain 640, 650 and 555 p.p.m. water-extractable boron, and it is evident that the addition to soil of even small amounts of soot with a boron content of this order would have a marked effect on its water-extractable boron content.

  11. Chemical fingerprinting of hydrocarbon-contamination in soil.

    Science.gov (United States)

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  12. Metagenomic analysis of microbial community in uranium-contaminated soil.

    Science.gov (United States)

    Yan, Xun; Luo, Xuegang; Zhao, Min

    2016-01-01

    Uranium tailing is a serious pollution challenge for the environment. Based on metagenomic sequencing analysis, we explored the functional and structural diversity of the microbial community in six soil samples taken at different soil depths from uranium-contaminated and uncontaminated areas. Kyoto Encyclopedia of Genes and Genomes Orthology (KO) groups were obtained using a Basic Local Alignment Search Tool search based on the universal protein resource database. The KO-pathway network was then constructed using the selected KOs. Finally, alpha and beta diversity analyses were performed to explore the differences in soil bacterial diversity between the radioactive soil and uncontaminated soil. In total, 30-68 million high-quality reads were obtained. Sequence assembly yielded 286,615 contigs; and these contigs mostly annotated to 1699 KOs. The KO distributions were similar among the six soil samples. Moreover, the proportion of the metabolism of other amino acids (e.g., beta-alanine, taurine, and hypotaurine) and signal transduction was significantly lower in radioactive soil than in uncontaminated soil, whereas the proportion of membrane transport and carbohydrate metabolism was higher. Additionally, KOs were mostly enriched in ATP-binding cassette transporters and two-component systems. According to diversity analyses, Actinobacteria and Proteobacteria were the dominant phyla in radioactive and uncontaminated soil, and Robiginitalea, Microlunatus, and Alicyclobacillus were the dominant genera in radioactive soil. Taken together, these results demonstrate that soil microbial community, structure, and functions show significant changes in uranium-contaminated soil. The dominant categories such as Actinobacteria and Proteobacteria may be applied in environmental governance for uranium-contaminated soil in southern China.

  13. Agronomic assessment of pyrolysed food waste digestate for sandy soil management.

    Science.gov (United States)

    Opatokun, Suraj Adebayo; Yousef, Lina F; Strezov, Vladimir

    2017-02-01

    The digestate (DFW) of an industrial food waste treatment plant was pyrolysed for production of biochar for its direct application as bio-fertilizer or soil enhancer. Nutrient dynamics and agronomic viability of the pyrolysed food waste digestate (PyD) produced at different temperatures were evaluated using germination index (GI), water retention/availability and mineral sorption as indicators when applied on arid soil. The pyrolysis was found to enrich P, K and other micronutrients in the biochar at an average enrichment factor of 0.87. All PyD produced at different temperatures indicated significantly low phytotoxicity with GI range of 106-168% and an average water retention capacity of 40.2%. Differential thermogravimetric (DTG) thermographs delineated the stability of the food waste digestate pyrolysed at 500 °C (PyD500) against the degradation of the digestate food waste despite the latter poor nutrient sorption potential. Plant available water in soil is 40% when treated with 100 g of digestate per kg soil, whereas PyD500 treated soil indicated minimal effect on plant available water, even with high application rates. However, the positive effects of PyD on GI and the observed enrichment in plant macro and micronutrients suggest potential agronomic benefits for PyD use, in addition to the benefits from energy production from DFW during the pyrolysis process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Electrokinetic remediation of oil-contaminated soils.

    Science.gov (United States)

    Korolev, Vladimir A; Romanyukha, Olga V; Abyzova, Anna M

    2008-07-01

    This investigation was undertaken to determine the factors influencing electrokinetic remediation of soils from petroleum pollutants. The remediation method was applied in two versions: (i) static and (ii) flowing, when a sample was washed with leaching solution. It was found that all the soils studied can be purified using this technique. It was also observed that the mineral and grain-size composition of soils, their properties, and other parameters affect the remediation efficiency. The static and flowing versions of the remediation method removed 25-75% and 90-95% of the petroleum pollutants, respectively from the soils under study.

  15. Evaluation of soil amendments as a remediation alternative for cadmium contaminated soils under cacao plantations

    Science.gov (United States)

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils...

  16. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  17. Seasonal differences in tillage draught on a sandy loam soil with long-term additions of animal manure and mineral fertilizers

    DEFF Research Database (Denmark)

    Peltre, Clément; Nyord, T.; Christensen, B.T.;

    2016-01-01

    Energy requirements for soil tillage are closely linked to soil properties, such as clay, water and soil organic carbon (SOC) contents. Long-term application of inorganic fertilizer and organic amendments affects SOC content but little is known about seasonal differences in tillage draught...... requirements of soils subject to contrasting nutrient management regimes. We assessed autumn and spring tillage draught following harvest of early-sown and timely sown winter wheat grown on a sandy loam in the Askov Long-Term Experiment on Animal Manure and Mineral Fertilizers. Draught force was related...... to soil texture, soil water and SOC content, shear strength and bulk density, nutrient management, and yield of the preceding winter wheat. Contents of clay and SOC ranged from 8.9 to 10.6% and from 0.98 to 1.36%, respectively. In the autumn and spring, SOC normalized by clay content explained 38 and 5...

  18. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils

    Science.gov (United States)

    Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...

  19. Electrokinetics removal of lead from lead-contaminated red soils

    Institute of Scientific and Technical Information of China (English)

    刘云国; 李欣; 曾光明; 黄宝荣; 张慧智

    2003-01-01

    Ex-situ electroremediation tests were conducted on the lead-contaminated red soils to find out the optimum condition for the most efficient removal of lead pollution from the red soil,and to examine the relation of the pH of the soil with the electroremediation efficiency.The results show that the electroremediation technology is efficient to remedy Pb contaminated red soils,and the removal efficiency can be enhanced by controlling pH value in the cathode reservoir with HNO3.The average removal efficiency of Pb is enhanced from 24.5% to 79.5%,and the energy consumption reaches 285kW·h per m3 red soil.

  20. Growth, Yield and WUE of Drip and Sprinkler Irrigated Okra Grown On Sandy Soil Under Semi-Arid Conditions in Southeast Ghana

    DEFF Research Database (Denmark)

    Plauborg, Finn

    Vegetable production systems at the Keta sand spit, Southeast Ghana, are typically managed with excessive amounts of irrigation water and fertilizers on sandy soils with low inherent water and nutrient retention capacities. The shallow groundwater which is the primary irrigation water resource...... is prone to salinization from the Keta lagoon, the Atlantic Ocean and brackish water underneath (Kortatsi and Agyeku, 1999). To ensure the sustainability of vegetable production at the Keta spit, introduction of water saving irrigation systems and improved irrigation management schemes are important. Thus...... for the drip irrigated okra crop was 269 mm compared to 379 mm for sprinkler. By adopting drip irrigation to okra, the seasonal crop water use could be reduced close to 30 %. From the results it is concluded that on rough textured sandy soil drip irrigation with frequent weekly fertigation resulted...

  1. Clinoptilolite zeolite influence on inorganic nitrogen in silt loam and sandy agricultural soils

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral Clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4...

  2. Clinoptilolite zeolite influence on nitrogen in a manure-amended sandy agricultural soil

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4-...

  3. Origin and fate of organic matter in sandy soils along a primary vegetation succession

    NARCIS (Netherlands)

    Nierop, K.

    1999-01-01

    Until now little is known about the role vegetation plays in the organic matter formation, particularly at the molecular level. Most ecosystems have a long history, which is unknown or too complex to find distinct relations between vegetation and the chemical composition of soil organic matter. To g

  4. Water quality and surfactant effects on the water repellency of a sandy soil

    Science.gov (United States)

    Differences in irrigation water quality may affect the water repellency of soils treated or untreated with surfactants. Using simulated irrigations, we evaluated water quality and surfactant application rate effects upon the water repellency of a Quincy sand (Xeric Torripsamment). We used a split ...

  5. Amelioration of sandy soils in drought stricken areas through use of ...

    African Journals Online (AJOL)

    ACSS

    moisture retention, pH, N, P, Ca and Mg content, and subsequently, maize dry matter yield. Averaged over 2 ... increased soil quality persisted for at least. 3 years. ..... improve its ability to support a growing crop. ... A combination of these.

  6. Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar

    DEFF Research Database (Denmark)

    Bruun, Esben W.; Petersen, Carsten; Strobel, Bjarne W.

    2012-01-01

    Biochar amendment to soil may affect N turnover and retention, and may cause translocation of dissolved and particulate C. We investigated effects of three fine particulate biochars made of wheat (Triticum aestivum L.) straw (one by slow pyrolysis and two by fast pyrolysis) on N and C leaching fr...

  7. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The res

  8. Towards improved nitrogen management in silage maize production on sandy soils.

    NARCIS (Netherlands)

    Schroder, J.J.

    1998-01-01

    Maize has become a highly appreciated crop in Dutch dairy farming during the last 25 years. The current cropping technique, however, is associated with a low recovery of soil mineral nitrogen (N) and serious losses of N to the environment. This gave rise to the research described in this thesis whic

  9. Altered humin compositions under organic and inorganic fertilization on an intensively cultivated sandy loam soil

    Science.gov (United States)

    Humin is the largest and also the least understood fraction of soil organic matter. The humin structure and its correlation with microbiological properties are particularly uncertain. We applied advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to investigate the structural chan...

  10. Effect of Soil Surface Evaporation with Fly Ash as Sandy Soil Amendment%施用粉煤灰对沙土土面蒸发的影响

    Institute of Scientific and Technical Information of China (English)

    成钢; 赵亮; 孙鹏程; 唐泽军

    2011-01-01

    Based on evaporation experiment in natural condition, research were carried out to study the effect of water retention capacity of sandy soil under four fly ash application rate (10%, 20%, 30%, 40%). Results showed that, the usage of fly ash reduced evaporation capability and enhance water reten- tion capacity of sandy soil. The evaporation capability always reduced by the effort of fly ash application throughout the experiment, and showed that less evaporation effect with increasing fly ash application rate. As total evaporation, compared with controlled experiment, the total evaporation of three treatments of 20%, 30%, 40% reduced 8.3%, 13.0%, 27.2% except 10% treatment has similar evaporation.%通过自然条件下蒸发试验,研究了4种粉煤灰施用率对沙土土面蒸发的影响。结果表明,粉煤灰的施用减弱了沙土土面蒸发水平,增强了沙土的保水性能。通过对蒸发过程的日观察,粉煤灰的施用始终表现出减弱沙土蒸发的能力,且呈现出随粉煤灰施用率增多而蒸发能力愈弱的特点。施用率10%处理土壤总蒸发量与对照试验大致相同,施用率20%、30%、40%三种处理总蒸发量分别较对照试验减少8.3%、13.0%、27.2%。

  11. Use of passive sampling devices to determine soil contaminant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.A. [Clemson Univ., Pendleton, SC (United States)]|[Washington State Univ., Richland, WA (United States); Hooper, M.J. [Clemson Univ., Pendleton, SC (United States); Weisskopf, C.P. [Washington State Univ., Richland, WA (United States)

    1996-12-31

    The effective remediation of contaminated sites requires accurate identification of chemical distributions. A rapid sampling method using passive sampling devices (PSDs) can provide a thorough site assessment. We have been pursuing their application in terrestrial systems and have found that they increase the ease and speed of analysis, decrease solvent usage and overall cost, and minimize the transport of contaminated soils. Time and cost savings allow a higher sampling frequency than is generally the case using traditional methods. PSDs have been used in the field in soils of varying physical properties and have been successful in estimating soil concentrations ranging from 1 {mu}g/kg (parts per billion) to greater than 200 mg/kg (parts per million). They were also helpful in identifying hot spots within the sites. Passive sampling devices show extreme promise as an analytical tool to rapidly characterize contaminant distributions in soil. There are substantial time and cost savings in laboratory personnel and supplies. By selectively excluding common interferences that require sample cleanup, PSDs can be retrieved from the field and processed rapidly (one technician can process approximately 90 PSDs in an 8-h work day). The results of our studies indicate that PSDs can be used to accurately estimate soil contaminant concentrations and provide lower detection limits. Further, time and cost savings will allow a more thorough and detailed characterization of contaminant distributions. 13 refs., 4 figs., 2 tabs.

  12. Environmental projects. Volume 14: Removal of contaminated soil and debris

    Science.gov (United States)

    Kushner, Len

    1992-01-01

    Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.

  13. Risks, media and the social amplification of soil contamination

    Energy Technology Data Exchange (ETDEWEB)

    Ouboter, S. [NOK, Networkorganisation for Environmental Quality, Gouda (Netherlands)

    2003-07-01

    Soil experts think of the risks of contaminated sites in terms of adverse effects of toxic substances on human health or environmental quality. In other words, the risk is attributed to the contamination. Social scientists define risk as a situation or event in which something of human value (including humans themselves) has been put at stake and where the outcome is uncertain. Since situations or events are constructions of the human mind, risks are also constructed. A relevant question for a psychologist is to learn how these constructions evolve in the mind of an individual and how this perceived risk influences the individuals' behaviour and well-being. A relevant question for a sociologist is how individuals with their own perceptions, feelings and behaviour interact. Many soil contamination experts experienced that one a site is seen as contaminated by a loathsome source, a chain of adverse reactions can easily put a stigma on that specific location and groups of people associated with that contaminated site. The case of Love Canal is worldwide known as an example of this phenomenon, but many countries have their own national symbol, like Lekkerkerk in the Netherlands. Modern media play an important role in this process. This process is often believed to be irrational and therefore uncontrollable. The question of this workshop is to what level technical soil experts can influence the psychological and social effects of soil contamination, using the social amplification metaphor. (orig.)

  14. Soil contamination with emissions of non-ferrous metallurgical plants

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Plekhanova, I. O.; Prokopovich, E. V.; Savichev, A. T.

    2011-02-01

    The upper soil horizons are strongly contaminated in the area influenced by the Mid-Urals copper smelter. In the technogenic desert and impact zones, the contents of a number of elements (Cu, Zn, As, Pb, P, and S) by many times exceed their clarke values and the maximum permissible concentrations (or provisional permissible concentrations). The degree of technogeneity (Tg) for these elements is very high in these zones. In the far buffer zone, Tg is about zero for many elements and increases up to Tg = 27-42% for four heavy elements (Cu, Zn, Pb, and As) and up to 81-98% for P and S. The buffer capacity of the humus horizon depends on the soil's location within the technogeochemical anomaly and also on the particular pollutant. In the impact zone, it is equal to 70-77% for lead and arsenic, although other technogenic elements (Zn, Cr, S, and P) are poorly retained and readily migrate into the deeper horizons (the buffer capacity is equal to 14-25%). Nearly all the heavy metals enter the soil in the form of sulfides. The soils in the area affected by the Noril'sk mining and smelting metallurgical enterprise are subdivided into two groups according to the degree of their contamination, i.e., the soils within Noril'sk proper and the soils in its suburbs to a distance of 4-15 km. The strongest soil contamination is recorded in the city: the clarke values are exceeded by 287, 78, 16, 4.1, and 3.5 times for Cu, Ni, Cr, Fe, and S, respectively. The major pollutants enter the soil from the ferruginous slag. The soil's contamination degree is lower in the suburbs, where heavy metal sulfides reach the soils with the aerial emission from the enterprise.

  15. Soil disturbance alters plant community composition and decreases mycorrhizal carbon allocation in a sandy grassland.

    Science.gov (United States)

    Schnoor, Tim Krone; Mårtensson, Linda-Maria; Olsson, Pål Axel

    2011-11-01

    We have studied how disturbance by ploughing and rotavation affects the carbon (C) flow to arbuscular mycorrhizal (AM) fungi in a dry, semi-natural grassland. AM fungal biomass was estimated using the indicator neutral lipid fatty acid (NLFA) 16:1ω5, and saprotrophic fungal biomass using NLFA 18:2ω6,9. We labeled vegetation plots with (13)CO(2) and studied the C flow to the signature fatty acids as well as uptake and allocation in plants. We found that AM fungal biomass in roots and soil decreased with disturbance, while saprotrophic fungal biomass in soil was not influenced by disturbance. Rotavation decreased the (13)C enrichment in NLFA 16:1ω5 in soil, but (13)C enrichment in the AM fungal indicator NLFA 16:1ω5 in roots or soil was not influenced by any other disturbance. In roots, (13)C enrichment was consistently higher in NLFA 16:1ω5 than in crude root material. Grasses (mainly Festuca brevipila) decreased as a result of disturbance, while non-mycorrhizal annual forbs increased. This decreases the potential for mycorrhizal C sequestration and may have been the main reason for the reduced mycorrhizal C allocation found in disturbed plots. Disturbance decreased the soil ammonium content but did not change the pH, nitrate or phosphate availability. The overall effect of disturbance on C allocation was that more of the C in AM fungal mycelium was directed to the external phase. Furthermore, the functional identity of the plants seemed to play a minor role in the C cycle as no differences were seen between different groups, although annuals contained less AM fungi than the other groups.

  16. Bioremediation of industrially contaminated soil using compost and plant technology.

    Science.gov (United States)

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-05

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting.

  17. Transport of contaminants from energy-process-waste leachates through subsurface soils and soil components: laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wangen, L.E.; Stallings, E.A.; Walker, R.D.

    1982-08-01

    The subsurface transport and attenuation of inorganic contaminants common to a variety of energy process waste leachates are being studied using laboratory column methods. Anionic species currently being emphasized are As, B, Mo, and Se. Transport of the cations Cd and Ni is also being studied. The solid adsorbents consist of three soil mineral components (silica sand, kaolinite, and goethite), and four subsurface soils (a dunal sand, an oxidic sandy clay loam, an acidic clay loam, and an alkaline clay loam). Breakthrough patterns of these species from packed soil columns are followed by monitoring eluent concentrations vs time under carefully controlled laboratory conditions. This report describes the experimental methods being used, the results of preliminary batch adsorption studies, and the results of column experiments completed through calendar year 1981. Using column influent concentrations of about 10 mg/l, adsorption (mmoles/100 g) has been determined from the eluent volume corresponding to 50% breakthrough. On silica sand, kaolinite, dunal sand, and goethite, respectively, these are 2.0 x 10/sup -4/, 0.020, 0.013, and 0.31 for cadmium, 4.4 x 10/sup -4/, 0.039, 0.020, and 0.98 for nickel. On kaolinite, dunal sand, and goethite, respectively, adsorption values (mmoles/100 g) are As (0.24, 0.019, and 20.5), B (0.041, 0.0019, and 1.77), Mo (0.048, 0.0010, and 5.93), and Se (0.029, 0.00048, and 1.30). Arsenic is the most highly adsorbed contaminant species and goethite has the largest adsorption capacity of the adsorbents.

  18. Environmental analyses of the parasitic profile found in the sandy soil from the Santos municipality beaches, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Silvana Rocha

    2011-10-01

    Full Text Available The environmental contamination by geohelminths represents a world public health problem and has been well documented by several authors. However, few papers describe the presence of such contamination in saline soils of coastal beaches. A study was performed on the beaches of the municipality of Santos in the period between May 2004 to April 2005 with the aim of determining the degree of contamination, and the correlation between contamination level and seasonal conditions and characteristics of the environment. Of the 2,520 samples analyzed, 18.2% (458 were contaminated, 32.3% (148 of which were localized in children's recreational areas (playgrounds. The parasite profile found in the analyzed samples indicated the presence of several zoonotic parasites: Ancylostoma larvae (82.5%, Toxocara sp. eggs (59.4%, Ancylostomidae-like eggs (37.1%, coccid oocysts (13.5%, Trichostrongylus sp. eggs and larvae, Ascaris lumbricoides eggs, (11.6%, Entamoeba sp. cysts (10.0%, Strongyloides sp. (4.8%, several free nematoids and some non-identified parasitic structures (3.3%. It was established that the highest frequency of parasitic structures occurred in the months between May and October 2004, and from February to March 2005. An increase in the diversity of parasitic forms was documented in the months between February to December 2004 and from January to April 2005, these periods having the highest rainfall.

  19. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  20. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant

    Directory of Open Access Journals (Sweden)

    Jorfi

    2014-10-01

    Full Text Available Background Polycyclic aromatic hydrocarbons (PAHs are persistence organic chemicals with proved carcinogenic and mutagenic hazards. These compounds are usually adsorbed in soils in vicinity of oil and gas industries. Bioremediation of PAHs contaminated soils is difficult due to hydrophobic nature of PAHs. Objectives The main purpose of the current study was to determine the pyrene removal efficiency in synthetically contaminated soil, using biosurfactant. Materials and Methods Four pure bacterial strains capable of pyrene degradation were isolated from contaminated soils via enrichment techniques. The soil samples were spiked with an initial pyrene concentration of 500 mg/kg and subjected to bioremediation using a mixed culture comprised of previously isolated strains, in addition to application of biosurfactant during 63 days. Results The pyrene removal efficiency in samples containing biosurfactant, without biosurfactant and controls, were 86.4%, 59.8% and 14%, respectively, after 63 days. The difference of pyrene removal efficiency between the biosurfactant-containing samples and the ones without it was significant (P < 0.05. Conclusions Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa significantly improved pyrene removal in contaminated soils.

  1. Soil contamination by petroleum products. Southern Algerian case

    Science.gov (United States)

    Belabbas, Amina; Boutoutaou, Djamel; Segaï, Sofiane; Segni, Ladjel

    2016-07-01

    Contamination of soil by petroleum products is a current problem in several countries in the world. In Algeria, this negative phenomenon is highly remarked in Saharan region. Numerous studies at the University of Ouargla that we will review in this paper, have tried to find an effective solution to eliminate the hydrocarbons from the soil by the technique of "biodegradation" which is a natural process based on microorganisms such as Bacillus megaterium and Pseudomonas aeruginosa. Presence of aboriginal strain Bacillus megaterium in the soil samples with different ages of contamination has shown a strong degradation of pollutants. This strain chosen for its short time of generation which is performing as seen the best yields of elimination of hydrocarbons assessed at 98 % biostimule by biosurfactant, also 98% on a sample wich bioaugmente by urea, and 86 % of the sample which biostimule by nutrient solution. The rate of biodegradation of the contaminated soil by crude oil using the strain Pseudomonas aeruginosa is higher in the presence of biosurfactant 53 % that in his absence 35 %. Another elimination technique wich is washing the contaminated soil's sample by centrifugation in the presence of biosurfactant where The rate of hydrocarbons mobilized after washing soil by centrifugation is of 50 % and 76 % but without centrifugation it was of 46% to 79%. Those processes have great capacity in the remobilization of hydrocarbons and acceleration of their biodegradation; thus, they deserve to be further developed in order to prevent environmental degradation in the region of Ouargla.

  2. Fate of carbosulfan and monocrotophos in sandy loam soils of Pakistan under field conditions at different watertable depths.

    Science.gov (United States)

    Tariq, Muhammad Ilyas; Afzal, Shahzad; Shahzad, Farina

    2010-05-01

    Information regarding pesticide mobility is critical for the evaluation of pesticide management practices. For this purpose, lysimetric studies were conducted to develop assessment schemes to protect groundwater from unacceptable effects caused by pesticide use. By using these studies, specific monitoring actions and prevention measures for the protection of waters can be studied, and the results thus obtained can provide the local authorities and the decision makers with an identification tool for demarcating risk areas. Pesticide residues were found at the bottom of lysimeters in the following pattern i.e., 1.52 > 2.1 > 2.74 m which could represent an "index of risk" for groundwater pollution. Regressions built for carbofuran and monocrotophos against watertable depths showed a decreasing trend of pesticide in higher watertable treatments. These findings support the existence of a significant role for chromatographic flow in sandy texture soil. Moreover, the higher values of pesticide residue at the bottom of lysimeters reflect that chromatographic flow as well as preferential flow pattern prevails during higher precipitation events. The precipitation received during the study was higher than the 10 year average and can be considered relatively as a worst case scenario. Finally, the authors have recommended a standardized pesticide monitoring scheme for groundwater in accordance with the already validated generic schemes in developed countries.

  3. Crop residues as driver for N2O emissions from a sandy loam soil

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Petersen, Søren O.; Chirinda, Ngonidzashe

    2017-01-01

    Nitrogen (N) cycling within agriculture constitutes a source of direct and indirect emissions of the potent greenhouse gas nitrous oxide (N2O). We analysed relationships between N2O emissions and C and N balances of four arable cropping systems under conventional or organic management within a long......-term experiment on a loamy sand soil at Foulum in Denmark. All cropping systems included winter wheat, a leguminous crop (faba bean or grass-clover), potato and spring barley grown in different 4-crop rotations varying in strategies for N supply (fertilizer/manure type and rate, use of catch crops and green...... manure). Crops in both organic and conventional systems received N at rates below the optimum for crop production. Soil N2O emissions were monitored in 2008–2009 in six selected crops which could be combined with data from other monitoring programs to calculate N2O emission factors for each of the 16...

  4. Olive Mill Effluent Spreading Effects on Water Retention of Tunisian Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Hamdi SAHRAOUI

    2014-01-01

    Full Text Available Olive mill effluents (OME are characterized by their nutrients content and their adhesive and hydrophobic properties. An experiment was carried out at an olive growing area in Tunisia, “Sidi Bou Ali”, to identify the impact of spreading over OME on physical soil characteristics. Three treatments were in situ monitored, namely T0 (Control, T1 (25 m3/ha and T2 (50 m3/ha, over a period of 4 months. Measurements were conducted monthly corresponding respectively to D1, D2, D3 and D4. Water retention curves were established by a physical capillary model in porous medium. Results showed that the two applied OME doses induced a decrease in water retention, especially for potential matrixes above pF 2 corresponding to the water available range. No significant differences were found between the treated soil plots T1 and T2.doi:10.14456/WJST.2014.27

  5. INTENSITY OF SOIL CONTAMINATION IN INDUSTRIAL CENTERS OF KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Amanzhol Iztileu

    2013-06-01

    Full Text Available For Kazakhstan, with its vast territory, the problem of disposal of solid waste from metallurgical, energy and petrochemical industries is becoming more acute. Failure to comply with hygiene requirements for the placement and operation of landfills increases the area of contaminated land and could become a threat to the public of environmental safety of industrial centers. The aim of the study was to evaluate the soil contamination in the towns and cities of Kazakhstan and the allocation of areas of risk to public health. The content of heavy metals in the soil (manganese, zinc, copper, cobalt, nickel, lead, cadmium, mercury, selenium, tin, arsenic, vanadium were determined by atomic absorption spectrometer MGA-915M. Evaluation of the results was performed with respect to the MPC substances in the soil, the toxicity of the components. Summarized metal soil pollution index (IZ was obtained by the sum of the rate of excess metal concentration above the level of its world-Clark. To assess the different risk residence zones scale with 5 levels of purity up to 2 - very clean, 2.8 net, 8-16 acceptable, 16-32 moderately dangerous, dangerous 32-128 was chosen. We developed the original software product using GIS technology to provide environmental information on an electronic map of the city in the form of color patches (polygons, matching levels summarized indicator of soil contamination. Found that the most contaminated soil were village Glubokoe where pollution reached dangerous or extremely dangerous levels, Aktau and Zhanaozen in which moderately hazardous contamination was detected throughout; Ust-Kamenogorsk and village Sholakkorgan where moderately hazardous contamination was noted in the fourth part of the urban area. The most common heavy metal toxicity 1-2 class that exceeded MCL in soils, were lead, copper and zinc, and in village Glubokoe - chromium and arsenic, in Aktau - cadmium. Visualization of environmental pollution in some urban

  6. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  7. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil.

    Science.gov (United States)

    Weng, Liping; Temminghoff, Erwin J M; Lofts, Stephen; Tipping, Edward; Van Riemsdijk, Willem H

    2002-11-15

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The results show that the DOM-complexed species is generally more significant for Cu and Pb than for Cd, Zn, and Ni. The ability of two advanced models for ion binding to humic substances, e.g., model VI and NICA-Donnan, in the simulation of metal binding to natural DOM was assessed by comparing the model predictions with the measurements. Using the default parameters of fulvic and humic acid, the predicted concentrations of free metal ions from the solution speciation calculation using the two models are mostly within 1 order of magnitude difference from the measured concentrations, except for Ni and Pb in a few samples. Furthermore, the solid-solution partitioning of the metals was simulated using a multisurface model, in which metal binding to soil organic matter, dissolved organic matter, clay, and iron hydroxides was accounted for using adsorption and cation exchange models (NICA-Donnan, Donnan, DDL, CD-MUSIC). The model estimation of the dissolved concentration of the metals is mostly within 1 order of magnitude difference from those measured except for Ni in some samples and Pb. The solubility of the metals depends mainly on the metal loading over soil sorbents, pH, and the concentration of inorganic ligands and DOM in the soil solution.

  8. Modeling Tractive Force Requirements of Wheel tractors For Disc Ploughing in Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    S O Nkakini

    2012-10-01

    Full Text Available Tractive force models at different tillage speeds were developed using dimensional analysis, describing the tractor tyre - soil interaction. In this research study, disc ploughing on an experimental plot at twenty different soil moisture levels in loamy sand soil was carried out using trace tractor techniques. The independent variables: drawbar pull force, rolling (motion resistance, wheel slip, moisture content, cone index, wheel numeric, contact pressure, speed, width of plough, depth of plough, and dependent variable (Tractive force were measured and compared to computed values. High coefficients of determination R2 = 0.9492, 0.9555 and 0.9447 for ploughing at tillage speeds of 1.94m/s, 2.22m/s and 2.5m/s were obtained respectively. Standard errors of 0.3672552, 0.8628 and 0.8047 and the percentage (% errors of -2.272608059 and 2.45655144,-2.304946155 and 2.523126085,-1.424947801 and 2.020155232 at minimum and maximum values, were obtained. These results are clear evidence of the test of goodness of fit of the models between predictive and measured parameters for ploughing at different tillage speeds. The models were verified and validated by comparing the predicted with the measured tractive forces, and shown to closely followed the experimental results.

  9. Assessment of Escherichia coli O157:H7 transference from soil to iceberg lettuce via a contaminated field coring harvesting knife.

    Science.gov (United States)

    Yang, Yang; Luo, Yaguang; Millner, Patricia; Turner, Ellen; Feng, Hao

    2012-02-15

    The potential for lettuce field-coring harvesting knives to cross-contaminate lettuce heads with pathogens was evaluated. Rings and blades of the harvest knives artificially contaminated with Escherichia coli O157:H7 (EHEC), were used to core three successive heads of iceberg lettuce. The coring rings and blades were inoculated by dipping into soils containing EHEC at concentration ranges of 1-10(5) MPN/g soil. Factors that influenced EHEC transference from soil to iceberg lettuce via contaminated coring knife blade, included water content (WC) of clay and sandy soils, EHEC concentration, and degree of blade contact (stem, medium, and heavy) with edible tissue. High moisture content clay soil was positively associated with high pathogen transference. No EHEC were detected on any cut heads when clay soil contaminated with 10(5) MPN/g EHEC had WC of 20% or less, or when the knife blade was dipped into sandy soil contaminated with EHEC at the same level, regardless of percent WC. The extent to which the harvesting knife blade cut across edible lettuce tissues was also an important factor in the amount of pathogen transference that occurred. EHEC were detectable on first and second sequentially cut lettuce heads when medium-contact was made between knife blade and edible tissues and on all three sequentially cut lettuce heads using the heavy-contact cutting scenario, when the blade was contaminated with 10(4) cfu/g EHEC in clay soil (25% WC). However, when the blade, contaminated at the same soil EHEC level, was used to cut only the stem and had no contact with the edible portion of the lettuce head, no pathogen transference was detected. Under the current CIF harvesting practice, the cutting blade has a higher potential than the coring ring to be contaminated by the soil, but less opportunity to transfer pathogens to harvested lettuce. However, once contaminated, the coring ring has much higher potential than the blade to transfer pathogens to the harvested lettuce.

  10. Plant enhanced degradation of phenanthrene in the contaminated soil

    Institute of Scientific and Technical Information of China (English)

    LIAO Min; XIE Xiao-mei

    2006-01-01

    The degradative characteristics ofphenanthrene, microbial biomass carbon, plate counts of heterotrophic bacteria and most probable number (MPN) of phenanthrene degraders in non-rhizosphere or rhizosphere soils with uninoculating or inoculating phenanthrene degraders were measured. At the initial concentration of 20 mg phenanthrene/kg soil, the half-lives of phenanthrene in uninoculated non-rhizosphere soil, uninoculated rhizosphere soil, inoculated non-rhizosphere soil, and inoculated rhizosphere soil were measured to be 81.5, 47.8, 15.1 and 6.4 d, respectively, and corresponding kinetic data fitted first-order kinetics. The highest degradation rate of phenanthrene was observed in inoculated rhizosphere soil. The degradative characteristics of phenanthrene were closely related to the effects of vegetation on soil microbial process. Vegetation could enhance the magnitude ofrhizosphere microbial communities, microbial biomass content, and heterotrophic bacterial community, but barely influence those community components responsible for phenanthrene degradation. Results suggested that combination of vegetation and inoculation with degrading microorganisms of target organic contaminants was a better pathway to enhance degradation of the organic contaminants in soil.

  11. [Feasibility of applying ornamental plants in contaminated soil remediation].

    Science.gov (United States)

    Liu, Jia-Nü; Zhou, Qi-Xing; Sun, Ting; Wang, Xiao-Fei

    2007-07-01

    Phytoremediation is one of the effective ways in resolving problems of contaminated soils, but limited hyperaccumulation plant species were reported and documented. This shortage could be offset if remediation plants can be screened out from various ornamental plants. In addition, such doing can beautify the environment while bring some economic effects. Starting from the importance of phytoremediation, this paper generalized the characters and standards of remediation plants. Through describing the resources of ornamental plants and their functions on environmental protection, particularizing their superiorities to other plants, and analyzing their endurance, accumulation traits and remediation types, the feasibility of applying ornamental plants in the practices of contaminated soil remediation was discussed. To screening out hyperaccumulators from ornamental plants would be an entirely new research area in the remediation of contaminated soils.

  12. Low-cost in-soil organic contaminant sensor

    Science.gov (United States)

    Brossia, Charles E.; Wu, Samuel C.

    1991-03-01

    The First Omega Group Inc. has developed a low cost optical fiber sensing technique for detecting the presence of oils gasoline organic solvents and other oily contaminants in soils. The sensing means consists of a continuous optical fiber having a portion of its surface specially processed to render it sensitive to the presence of soil contandnants. The processed area of the fiber is positioned within the environment that is at risk of contaniination. Contact by a contaminant with the processed area of the optical fiber changes the attenuation of infrared light through the processed area in a characteristic way and in real time. The change in light attenuation is detected using a conven tional photo detector to provide indication of contamination within the soil.

  13. Response of corn silage (Zea mays L. to zinc fertilization on a sandy soil under field and

    Directory of Open Access Journals (Sweden)

    Saad Drissi

    2017-04-01

    Full Text Available The purpose of the experiments was to evaluate zinc (Zn fertilization effect on growth, yield and yield components of corn silage grown on a sandy soil under field and outdoor container conditions. Six rates of Zn supply (0 or control; 1.5; 3; 5; 10 and 50 mg kg−1 were tested. They were split at three different times during the growing season: (i 50% immediately after sowing, (ii 25% at 4–5 leaf stage and (iii 25% at 8–9 leaf stage. These Zn rates were applied to the soil surface as a solution of Zn sulfate (ZnSO4·7H2O. Zn deficiency symptoms appeared at an earlier stage (4–5 leaf stage as white stripes between the midrib and the margin of leaves for a Zn rate below or equal to 5 mg kg−1. Severity of these symptoms manifested more in container than in field. For both experiments, Zn supply induced a significant increase in stem height and leaf area. Furthermore, in both experiments, control plants showed a notable delay in achieving anthesis, silking, pollination and kernels maturity. The maximum shoot dry weight at harvest was recorded with Zn supply of 5 mg kg−1 in field experiment and 10 mg kg−1 in containers experiment. The shoot dry weight was especially linked to kernels dry weight. This latter was mainly enhanced through two compounds: 1000 kernels dry weight and pollination rate. On the other hand, outdoor container results can be used to help predict field plant responses to Zn except for control treatment.

  14. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil

    Science.gov (United States)

    Ndiaye, Babacar; Esteves, Michel; Vandervaere, Jean-Pierre; Lapetite, Jean-Marc; Vauclin, Michel

    2005-06-01

    The study was aimed at evaluating the effect of rainfall and tillage-induced soil surface characteristics on infiltration and runoff on a 2.8 ha catchment located in the central region of Senegal. This was done by simulating 30 min rain storms applied at a constant rate of about 70 mm h -1, on 10 runoff micro-plots of 1 m 2, five being freshly harrowed perpendicularly to the slope and five along the slope (1%) of the catchment. Runoff was automatically recorded at the outlet of each plot. Hydraulic properties such as capillary sorptivity and hydraulic conductivity of the sandy loam soil close to saturation were determined by running 48 infiltration tests with a tension disc infiltrometer. That allowed the calculation of a mean characteristic pore size hydraulically active and a time to ponding. Superficial water storage capacity was estimated using data collected with an electronic relief meter. Because the soil was subject to surface crusting, crust-types as well as their spatial distribution within micro-plots and their evolution with time were identified and monitored by taking photographs at different times after tillage. The results showed that the surface crust-types as well as their tillage dependent dynamics greatly explain the decrease of hydraulic conductivity and sorptivity as the cumulative rainfall since tillage increases. The exponential decaying rates were found to be significantly greater for the soil harrowed along the slope (where the runoff crust-type covers more than 60% of the surface after 140 mm of rain) than across to the slope (where crusts are mainly of structural (60%) and erosion (40%) types). That makes ponding time smaller and runoff more important. Also it was shown that soil hydraulic properties after about 160 mm of rain were close to those of untilled plot not submitted to any rain. That indicates that the effects of tillage are short lived.

  15. A laboratory test of NOM-assisted remediation of arsenic and copper contaminated soils

    DEFF Research Database (Denmark)

    Rasmussen, Signe Bonde; Jensen, Julie Katrine; Borggaard, Ole K.

    2015-01-01

    Soils contaminated by arsenic (As) and copper (Cu) must be remediated because As and Cu are non-degradable and toxic. On moderately contaminated soils, As and Cu may be removed by in-situ plant uptake (phytoremediation), whereas strongly contaminated soils must be removed and cleaned by soil...

  16. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    Science.gov (United States)

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties.

  17. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  18. Nitrogen fertilization in the growth phase of 'Chardonnay' and 'Pinot Noir' vines and nitrogen forms in sandy soil of the Pampa Biome

    Directory of Open Access Journals (Sweden)

    Felipe Lorensini

    Full Text Available ABSTRACT Information on nitrogen fertilization in growing vines is still a very limited subject, especially for crops on sandy soils in the Pampa Biome in Rio Grande do Sul, where viticulture has expanded considerably in the last decade. This study aimed to assess the impact of N doses on growth of young plants of Chardonnay and Pinot Noir vines and N forms present in sandy soil in the Pampa Biome. The experiment was conducted from October 2011 to December 2012 in a vineyard in Santana do Livramento, in Southern Rio Grande do Sul State, in soil with 82 g kg-1 clay in the 0-20 cm layer. Vines of Chardonnay and Pinot Noir varieties were subjected to applications of 0, 10, 20, 40, 60, and 80 kg N ha-1 year-1. Total N in leaves, SPAD readings, stem diameter, plant height, and dry matter of the pruned material were evaluated in two growth cycles and three times. Soil samples were collected at 0-10 and 10-20 cm depths at four crop growth stages, in which N-NH4 +, N-NO3 -, and total N were analyzed and the mineral N was calculated. The N levels applied to young vines, although they did not provide relevant changes in the N-NH4 +, N-NO3 -, and mineral N contents in the soil, were able to increase the N content in the leaves, increasing plant vigor. because the reason is that there was an increase in stem diameter, plant height, and dry matter of pruned material in most evaluation periods. These parameters suggest better growth patterns and uniformity of young grapevines with possible positive effects in anticipation of production, demonstrating the importance of nitrogen fertilization strategies to the growing vines in the sandy soil conditions of the Pampa Biome.

  19. Effects of Two Kinds of Biochars on Soil Cu Availability in Contaminated Soil

    Directory of Open Access Journals (Sweden)

    WANG Xiao-qi

    2016-07-01

    Full Text Available This paper is aimed to research the impacts of different biochars(0,1%,2%,4%, including maize biochar and phytolacca root biochar, on rape growth and the soil Cu availability in the Cu-contaminated red soil via a series of pot experiments. The results showed that, compared with the control, the addition of two kinds of biochars could increase the biomass of the rape. In low Cu-contaminated red soil, added 4% maize biochar and phytolacca root biochar increased the biomass by 21.2 times and 67.9 times; however, the biomass were increased by 8.6 times and 109.6 times under high Cu-contaminated soil. The addition of phytolacca root biochar could increase the soil pH significantly, which has been increased by 0.4~1.6 units with the addition of phytolacca root biochar in low Cu-contaminated red soil, and it had 0.25~1.35 units more than that with maize biochar; In high Cu-contaminated red soil, with the addition of phytolacca root biochar, soil pH was increased by 0.33~1.52 units, which was 0.3~1.25 units higher than maize biochar. There was a significant effect on reducing the soil Cu availability with the addition of the two biochars. Among them, 4% addition of maize biochar and phytolacca root biochar could reduce soil available Cu content by 21.9% and 45.2% in low Cu-contaminated soil, however, it was decreased by 41.9% and 53.8% in high Cu-contaminated soil. Both of the two biochars were able to reduce the Cu accumulation in rape, where there was a decrease by 21.2% and 67.8% with he addition of 4% maize biochar and phytolacca root biochar under low Cu-contaminated soil, and it was decreased by 19.9% and 66.8% in high Cu-contaminated soil respectively. Both of the biochars could ameliorate the acidity and Cu availability in the red soil, enhance the biomass of the rape and reduce the Cu accumulation in rape, but phytolacca root biochar had more effective influence than maize biochar.

  20. Remediation of oil-contaminated soil in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Fritt-Rasmussen, Janne; Rodrigo, Ana P.

    Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients...... have been made with excavated oil-contaminated soil from the Greenlandic town Sisimiut to study different low-tech and low-cost solutions for remediation of oil-contamination....

  1. Remediation of oil-contaminated soil in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Fritt-Rasmussen, Janne; Rodrigo, Ana

    Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients....... Experiments have been made with excavated oil-contaminated soil from the Greenlandic town Sisimiut to study different low-tech and low-cost solutions for remediation of oil-contamination...

  2. Human exposure to soil contaminants in subarctic Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Ellen Stephanie Reyes

    2015-05-01

    Full Text Available Background: Chemical contaminants in the Canadian subarctic present a health risk with exposures primarily occurring via the food consumption. Objective: Characterization of soil contaminants is needed in northern Canada due to increased gardening and agricultural food security initiatives and the presence of known point sources of pollution. Design: A field study was conducted in the western James Bay Region of Ontario, Canada, to examine the concentrations of polychlorinated biphenyls, dichlorodiphenyltrichloroethane and its metabolites (ΣDDT, other organochlorines, and metals/metalloids in potentially contaminated agriculture sites. Methods: Exposure pathways were assessed by comparing the estimated daily intake to acceptable daily intake values. Ninety soil samples were collected at random (grid sampling from 3 plots (A, B, and C in Fort Albany (on the mainland, subarctic Ontario, Canada. The contaminated-soil samples were analysed by gas chromatography with an electron capture detector or inductively coupled plasma mass spectrometer. Results: The range of ΣDDT in 90 soil samples was below the limit of detection to 4.19 mg/kg. From the 3 soil plots analysed, Plot A had the highest ΣDDT mean concentration of 1.12 mg/kg, followed by Plot B and Plot C which had 0.09 and 0.01 mg/kg, respectively. Concentrations of other organic contaminants and metals in the soil samples were below the limit of detection or found in low concentrations in all plots and did not present a human health risk. Conclusions: Exposure analyses showed that the human risk was below regulatory thresholds. However, the ΣDDT concentration in Plot A exceeded soil guidelines set out by the Canadian Council of Ministers of the Environment of 0.7 mg/kg, and thus the land should not be used for agricultural or recreational purposes. Both Plots B and C were below threshold limits, and this land can be used for agricultural purposes.

  3. Practical remediation of the PCB-contaminated soils

    OpenAIRE

    Ido, Akiko; Niikawa, Miki; Ishihara, Shinji; Sawama, Yoshinari; Nakanishi, Tsuyoshi; Monguchi, Yasunari; Sajiki, Hironao; Nagase, Hisamitsu

    2015-01-01

    A practical method for the elimination of PCBs from PCB-contaminated soil has been developed by the combination of Soxhlet extraction using a newly-developed modified Soxhlet extractor possessing an outlet valve on the extraction chamber with the chemical degradation. Various types of PCBs contaminated in soils could be completely extracted in refluxing hexane, and the subsequent hydrodechlorination could also be completed within 1 h in a hexane–MeOH (1 : 5) solution in the presence of Pd/C a...

  4. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  5. Determination of Selenium Toxicity for Survival and Reproduction of Enchytraeid Worms in a Sandy Loam Soil

    Science.gov (United States)

    2016-07-01

    active radiation (PAR) light intensity of 12.8  0.7 µM m2/s (985  52 lux ), and mean temperature of 21.6  0.1 C. The soil moisture level was...PAR light intensity of 12.8  0.7 µM m2/s (985  52 lux ), and a mean temperature of 21.6  0.1 °C, for the duration of the 28 d test. The containers

  6. Eco-toxicity of petroleum hydrocarbon contaminated soil

    Institute of Scientific and Technical Information of China (English)

    Jingchun Tang; Min Wang; Fei Wang; Qing Sun; Qixing Zhou

    2011-01-01

    Total petroleum hydrocarbons (TPH) contaminated soil samples were collected from Shengli Oilfield of China.Toxicity analysis was carried out based on earthworm acute toxicity, plant growth experiment and luminescent bacteria test.The soil was contaminated bypetroleum hydrogcarbons with TPH concentration of 10.57%.With lethal and sub-lethal rate as endpoint, earthworm test showed that the LD50 (lethal dose 50%) values in 4 and 7 days were 1.45% and 1.37% respectively, and the inhibition rate of earthworm body weight increased with higher oil concentration.TPH pollution in the soil inhibited seed germination in both wheat and maize experiment when the concentration of petroleum was higher than 0.1%.The EC50 (effective concentration 50%) for germination is 3.04% and 2.86% in maize and wheat, respectively.While lower value of ECs0 for root elongation was to be 1.11% and 1.64% in maize and wheat,respectively, suggesting higher sensitivity of root elongation on petroleum contamination in the soil.The ECs0 value in luminescent bacteria test was 0.47% for petroleum in the contaminated soil.From the experiment result, it was concluded that TPH content of 1.5% is considered to be a critical value for plant growth and living of earthworm and 0.5% will affect the activity of luminescent bacteria.

  7. Arsenic removal from contaminated soil using phosphoric acid and phosphate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Laboratory batch experiments were conducted to study Arsenic (As) removal from a naturally contaminated soil using phosphoric acid (H3PO4) and potassium dihydrogen phosphate (KH2PO4). Both H3PO4 and KH2PO4 proved to clearly reduce toxicity of the soil in terms of soil As content, attaining more than 20% As removal at a concentration of 200 mmol/L, although soil As tolerance limit of 30 mg/kg, according to Chinese Environmental quality standard for soil (EQSS), was not satisfied by using these two extractants. At the same time, acidification of soil and dissolution of soil components (Ca, Mg, and Si) resulted from using these two extractants, especially H3PO4. The effectiveness of these two extractants could be attributed to the replacement of As by phosphate ions (PO43-). The function of H3PO4 as an acid to dissolve soil components had little effects on As removal. KH2PO4 almost removed as much As as H3PO4, but it did not result in serious damage to soils, indicating that it was a more promising extractant. The results of a kinetic study showed that As removal reached equilibrium after incubation for 360 min, but dissolution of soil components, especially Mg and Ca, was very rapid. Therefore dissolution of soil components would be inevitable if As was further removed. Elovich's model best described the kinetic data of As removal among the four models used in the kinetic study.

  8. Influence of zeolite and cement additions on mechanical behavior of sandy soil

    Institute of Scientific and Technical Information of China (English)

    Hossein Mola-Abasi; Issa Shooshpasha

    2016-01-01

    It is well known that the cemented sand is one of economic and environmental topics in soil stabili-zation. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS) and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30%after 28 days. The rate of strength improvement is approximately between 20%and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.

  9. Influence of zeolite and cement additions on mechanical behavior of sandy soil

    Directory of Open Access Journals (Sweden)

    Hossein Mola-Abasi

    2016-10-01

    Full Text Available It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30% after 28 days. The rate of strength improvement is approximately between 20% and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.

  10. Remediation of Oil-Contaminated Soil in Greenland

    OpenAIRE

    Fritt-Rasmussen, Janne; Jensen, Pernille Erland

    2013-01-01

    This paper present the recent research conducted at the Arctic Technology Centre, where different solutions for remediation of excavated oil contaminated soil in Greenlandic towns were tested.In the first work, soil polluted by light oil was treated with two different nutrient sources (substrate and N:P:K), stabilizer (crab shells) and heating (20°C). In this work a clear reduction in hydrocarbon content was observed during the treatment period of 730 days. No significant difference in degrad...

  11. Hazard assessment of chemical contaminants in soil.

    Science.gov (United States)

    Poels, C L; Veerkamp, W

    1992-12-01

    Disposal practices, accidental spills, leakages and local aerial deposition occurring in the past have led to local soil pollution in many cases. Especially in situations where people live on or nearby such locations this has created concern about possible adverse effects on human health. A stepped approach to the hazard assessment of polluted soil, as developed by a Task Force from the European Chemical Industry Ecology and Toxicology Centre (ECETOC), is described. In an early phase in the assessment process the potential exposure of humans is estimated. The Human Exposure to Soil Pollutants (HESP) model can be applied for this purpose. The model calculates the total exposure of adults and children resulting from pollutants present in soil, via 10 different exposure routes. The estimated exposure can be used to indicate the potential significant exposure routes and to carry out a preliminary hazard assessment. The model is also able to predict pollutant concentrations in soil which do not exceed accepted maximum exposure levels for humans in both standardised and site specific situations. The stepped approach is cost-effective and provides an objective basis for decisions and priority setting.

  12. Removal of Pyrene from Contaminated Soils by White Clover

    Institute of Scientific and Technical Information of China (English)

    XU Sheng-You; CHEN Ying-Xu; LIN Kuang-Fei; CHEN Xin-Cai; LIN Qi; LI Feng; WANG Zhao-Wei

    2009-01-01

    Phytoremediation has been used as an emerging technology for remediation of soil contamination with polycyclic aromatic hydrocarbons (PAHs),ubiquitous persistent environmental pollutants derived from natural and anthropogenic processes,in the last decade.In this study,a pot experiment was conducted to investigate the potential of phytoremediation of pyrcne from spiked soils planted with white clover (Trifolium repens) in the greenhouse with a series of pyrene concentrations ranging from 4.22 to 365.38 mg kg-1.The results showed that growth of white clover on pyrenecontaminated soils was not affected.The removal of pyrene from the spiked soils planted with white clover was obviously higher than that from the unplanted soils.At the end of the experiment (60 d),the average removal ratio of pyrene in the spiked soils with white clover was 77%,which was 31% and 57% higher than those of the controls with or without micobes,respeetivcly.Both roots and shoots of white clover took up pyrene from the spiked soils and pyrene uptake increased with the soil pyrene concentration.However,the plant-enhanced dissipation of soil pyrene may be the result of plant-promoted microbial degradation and direct uptake and accumulation of pyrene by white clover were only a small part of the pyrene dissipation.Bioconcentration factors of pyrene (BCFs,ratio of pyrene,on a dry weight basis,in the plant to that in the soil) tended to decrease with increase in the residual soil pyrene concentration.Therefore,removal of pyrene in the contaminated soils was feasible using white clove.

  13. Distribution of chromium contamination and microbial activity in soil aggregates.

    Science.gov (United States)

    Tokunaga, Tetsu K; Wan, Jiamin; Hazen, Terry C; Schwartz, Egbert; Firestone, Mary K; Sutton, Stephen R; Newville, Matthew; Olson, Keith R; Lanzirotti, Antonio; Rao, William

    2003-01-01

    Biogeochemical transformations of redox-sensitive chemicals in soils can be strongly transport-controlled and localized. This was tested through experiments on chromium diffusion and reduction in soil aggregates that were exposed to chromate solutions. Reduction of soluble Cr(VI) to insoluble Cr(II) occurred only within the surface layer of aggregates with higher available organic carbon and higher microbial respiration. Sharply terminated Cr diffusion fronts develop when the reduction rate increases rapidly with depth. The final state of such aggregates consists of a Cr-contaminated exterior, and an uncontaminated core, each having different microbial community compositions and activity. Microbial activity was significantly higher in the more reducing soils, while total microbial biomass was similar in all of the soils. The small fraction of Cr(VI) remaining unreduced resides along external surfaces of aggregates, leaving it potentially available to future transport down the soil profile. Using the Thiele modulus, Cr(VI) reduction in soil aggregates is shown to be diffusion rate- and reaction rate-limited in anaerobic and aerobic aggregates, respectively. Thus, spatially resolved chemical and microbiological measurements are necessary within anaerobic soil aggregates to characterize and predict the fate of Cr contamination. Typical methods of soil sampling and analyses that average over redox gradients within aggregates can erase important biogeochemical spatial relations necessary for understanding these environments.

  14. Environmental effects of soil contamination by shale fuel oils.

    Science.gov (United States)

    Kanarbik, Liina; Blinova, Irina; Sihtmäe, Mariliis; Künnis-Beres, Kai; Kahru, Anne

    2014-10-01

    Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)--'VKG D' and 'VKG sweet'--in different soil matrices under natural climatic conditions. Dynamics of SFOs' hydrocarbons (C10-C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons' content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak.

  15. Phytoremediation and its models for organic contaminated soils

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Soil pollution has been attracting considerable public attentions over the last decades. Sorts of traditional physiochemical methods have been used to remove the organic pollutants from soils. However, the enormous costs and low efficiencies associated with these remediation technologies limit their availabilities. Phytoremediation is an emerging technology that uses plants to cleanup pollutants in soils. As overwhelmingly positive results have been shown, phytoremediation is a most economical and effective remediation technique for organic contaminated soils. In this paper phytoremediation and its models for organic contaminated soils is overviewed. The mechanisms of phytoremediation mainly include the direct plant uptake of organic pollutants, degradation by plant-derived degradative enzymes, and stimulated biodegradation in plant rhizosphere. Phytoremediation efficiency is tightly related to physicochemical properties of organic pollutants, environmental characteristics, and plant types. It is no doubt that soil amendments such as surfactants change the solubilities and availabilities of organic pollutants in soils. However, little information is available about effects of soil amendments on phytoremediation efficiencies. Phytoremediation models have been developed to simulate and predict the environmental behavior of organic pollutants, and progress of models is illustrated. In many ways phytoremediation is still in its initial stage, and recommendations for the future research on phytoremediation are presented.

  16. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  17. Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Munkholm, Lars Juhl

    2016-01-01

    treatment (labelled M8-1), the soil was loaded only in the first year. A tricycle-like machine with a single pass of wide tyres each carrying 12 Mg (treatment S12) was included at one site. Traffic treatments were applied in a randomized block design with four replicates and with treatments repeated in four...... strength measure predicting resistance to subsoil compaction. The tyre inflation pressure and/or the mean ground pressure were the main predictors of PR in the upper soil layers. For deeper soil layers, PR correlated better to the wheel load. The number of wheel passes (M-treatments vs the S12 treatment......-pressure tyres by crab steering/dog-walk machinery....

  18. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.

    2015-01-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...

  19. Degradation of toxaphene in aged and freshly contaminated soil.

    Science.gov (United States)

    Lacayo-Romero, Martha; van Bavel, Bert; Mattiasson, Bo

    2006-04-01

    Degradation of toxaphene in soil from both newly contaminated (from Sweden) and aged spills (from Nicaragua) were studied. The newly contaminated soil contained approximately 11 mg kg(-1) toxaphene while the aged Nicaraguan soil contained approximately 100 mg kg(-1). Degradation was studied in anaerobic bioreactors, some of which were supplied with lactic acid and others with Triton X-114. In this study we found that the lower isomers Parlar 11, 12 were degraded while the concentration of isomer Parlar 15 increased. This supported an earlier evaluation which indicated that less chlorinated isomers are formed from more heavily isomers. Lactic acid when added to the soil, interfere with the degradation of toxaphene. Lactic acid was added; several isomers appeared to degrade rather slowly in newly contaminated Swedish soil. The Swedish soil, without any external carbon source, showed the slowest degradation rate of all the compounds studied. When Triton X-114 at 0.4 mM was added, the degradation rate of the compounds increased. This study illustrates that biodegradation of toxaphene is a complex process and several parameters have to be taken into consideration. Degradation of persistent pollutants in the environment using biotechnology is dependent on bioavailability, carbon sources and formation of metabolites.

  20. Bioremediation of Copper Contaminated Soil Using Bacteria

    Directory of Open Access Journals (Sweden)

    Parul Bhatt Kotiyal

    2013-04-01

    Full Text Available Bioremediation is the use of living organisms (primarily microorganisms for removal of a pollutant from the biosphere. It relies on biological processes to minimize an unwanted environment impact of the pollutants. The microorganisms in particular have the abilities to degrade, detoxify and even accumulate the harmful organic as well as inorganic compounds. Five soil samples were collected from Selaqui industrial area, from different places at a depth of 0-15 cm. These soil samples were subjected to dilution (1:10, then from these dilution 4 and 5 were used for inoculation. Nutrient agar plates were prepared to be used as media. Replica of each dilution was prepared. After 24 hours of incubation at 28 degree centigrade bacterial colonies were observed on the plates. These cultures were purified to get 10 bacterial cultures. Further these cultures were inoculated in 10ml of nutrient broths each and after dense growth were inoculated in 10gm of soil samples in petriplates and were incubated for four days and then copper was estimated by Atomic Absorption Spectrometry technique and compared with the levels of copper obtained that were not inoculated with bacterial strains. The soil samples collected are all alkaline in nature; all the 10 isolated bacteria are gram negative and are chained cocci in structure. Sample 1 and 2, both dilutions have shown reduction in the amount of copper as compared to original soil samples without bacterial inoculation. According to this research sample 1 and sample 2 have shown reduction in the copper levels as compared to the raw soil samples that is without bacterial inoculation in them.

  1. Persistence, distribution, and emission of Telone C35 injected into a Florida sandy soil as affected by moisture, organic matter, and plastic film cover.

    Science.gov (United States)

    Thomas, J E; Ou, L T; Allen, L H; McCormack, L A; Vu, J C; Dickson, D W

    2004-05-01

    With the phase-out of methyl bromide scheduled for 2005, alternative fumigants are being sought. This study of Telone C35, a mixture of (Z)- and (E)-1,3-dichloropropene (1,3-D) with chloropicirin (CP), focuses on its emissions, distribution, and persistence in Florida sandy soil in microplots with different soil-water and organic matter carbon (C) content with and without two different plastic film mulches. The addition of CP did not affect the physical behavior of the isomers of 1,3-D. Slower subsurface dispersion and longer residence time of the mixed fumigant occurred at higher water content. An increase in the percent organic carbon in the soil led to a more rapid decrease for chloropicirin than for 1,3-dichloropene isomers. The use of a virtually impermeable film (VIF) for soil cover provided a more even distribution and longer persistence under all the conditions studied in comparison to polyethylene (PE) film cover or no cover. The conditions of near field capacity water content, low organic matter, and a virtually impermeable film cover yielded optimum conditions for the distribution, emission control, and persistence of Telone C35 in a Florida sandy soil.

  2. Heat-Activated Persulfate Oxidation of Chlorinated Solvents in Sandy Soil

    Directory of Open Access Journals (Sweden)

    Jialu Liu

    2014-01-01

    Full Text Available Heat-activated persulfate oxidative treatment of chlorinated organic solvents containing chlorinated ethenes and ethanes in soil was investigated with different persulfate dosages (20 g/L, 40 g/L, and 60 g/L and different temperatures (30°C, 40°C, and 50°C. Chlorinated organic solvents removal was increased as persulfate concentration increase. The persulfate dosage of 20 g/L with the highest OE (oxidant efficiency value was economically suitable for chlorinated organic solvents removal. The increasing temperature contributed to the increasing depletion of chlorinated organic solvents. Chlorinated ethenes were more easily removed than chlorinated ethanes. Moreover, the persulfate depletion followed the pseudo-first-order reaction kinetics (kps=0.0292 [PS]0+0.0008, R2=0.9771. Heat-activated persulfate appeared to be an effective oxidant for treatment of chlorinated hydrocarbons.

  3. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    Science.gov (United States)

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  4. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  5. Assessing Metal Contamination in Lead Arsenate Contaminated Orchard Soils Using Near and Mid-Infrared Diffuse Reflectance Spectroscopy

    Science.gov (United States)

    Historic use of lead-arsenate as pesticide in apple orchards left many soils contaminated with arsenic (As) and lead (Pb). Notorious health effects and their severe soil contamination are of primary concerns for major regulatory agencies, and community at large. Wet chemistry methods for soil anal...

  6. Bioremediation of mercury: not properly exploited in contaminated soils!

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Bahar, Md Mezbaul; Labbate, Maurizio; Krishnan, Kannan; Andrews, Stuart; Naidu, Ravi; Megharaj, Mallavarapu

    2017-02-01

    Contamination of land and water caused by heavy metal mercury (Hg) poses a serious threat to biota worldwide. The seriousness of toxicity of this neurotoxin is characterized by its ability to augment in food chains and bind to thiol groups in living tissue. Therefore, different remediation approaches have been implemented to rehabilitate Hg-contaminated sites. Bioremediation is considered as cheaper and greener technology than the conventional physico-chemical means. Large-scale use of Hg-volatilizing bacteria are used to clean up Hg-contaminated waters, but there is no such approach to remediate Hg-contaminated soils. This review focuses on recent uses of Hg-resistant bacteria in bioremediation of mercury-contaminated sites, limitation and advantages of this approach, and identifies the gaps in existing research.

  7. Radionuclide contaminated soil: Laboratory study and economic analysis of soil washing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmann, M.; Zhou, H.; Patel, B.; Bowerman, B.; Brower, J.

    1996-05-20

    The objective of the work discussed in this report is to determine if soil washing is a feasible method to remediate contaminated soils from the Hazardous Waste Management Facility (HWMF) at Brookhaven National Laboratory (BNL). The contaminants are predominantly Cs-137 and Sr-90. The authors have assumed that the target activity for Cs-137 is 50 pCi/g and that remediation is required for soils having greater activities. Cs-137 is the limiting contaminant because it is present in much greater quantities than Sr-90. This work was done in three parts, in which they: estimated the volume of contaminated soil as a function of Cs-137 content, determined if simple removal of the fine grained fraction of the soil (the material that is less than 0.063 mm) would effectively reduce the activity of the remaining soil to levels below the 50 pCi/g target, assessed the effectiveness of chemical and mechanical (as well as combinations of the two) methods of soil decontamination. From this analysis the authors were then able to develop a cost estimate for soil washing and for a baseline against which soil washing was compared.

  8. Impact of slurry management strategies on potential leaching of nutrients and pathogens in a sandy soil amended with cattle slurry.

    Science.gov (United States)

    Fangueiro, D; Surgy, S; Napier, V; Menaia, J; Vasconcelos, E; Coutinho, J

    2014-12-15

    For farmers, management of cattle slurry (CS) is now a priority, in order to improve the fertilizer value of the slurry and simultaneously minimize its environmental impact. Several slurry pre-treatments and soil application methods to minimize ammonia emissions are now available to farmers, but the impact of such management strategies on groundwater is still unclear. A laboratory experiment was performed over 24 days in controlled conditions, with undisturbed soil columns (sandy soil) in PVC pipes (30 cm high and 5.7 cm in diameter). The treatments considered (4 replicates) were: a control with no amendment (CTR), injection of whole CS (WSI), and surface application of: whole CS (WSS), acidified (pH 5.5) whole CS (AWSS), the liquid fraction obtained by centrifugation of CS (LFS), and acidified (pH 5.5) liquid fraction (ALFS). An amount of CS equivalent to 240 kg N ha(-1) was applied in all treatments. The first leaching event was performed 72 h after application of the treatments and then leaching events were performed weekly to give a total of four irrigation events (IEs). All the leachates obtained were analyzed for mineral and organic nitrogen, electrical conductivity (EC), pH, total carbon, and phosphorus. Total coliforms and Escherichia coli were also quantified in the leachates obtained in the first IE. The results show that both acidification and separation had significant effects on the composition of the leachates: higher NO3(-) concentrations were observed for the LFS and ALFS relative to all the other treatments, throughout the experiment, and lower NO3(-) concentrations were observed for acidified relative to non-acidified treatments at IE2. Acidification of both the LF and WS led to higher NH4(+) concentrations as well as an increase of EC for treatment ALFS relative to the control, in the first IE, and lower pH values in the AWSS. Furthermore, the E. coli and total coliform concentrations in AWSS, LFS, and ALFS were significantly higher than in

  9. Evaluation of soil flushing of complex contaminated soil: An experimental and modeling simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sung Mi; Kang, Christina S. [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Jonghwa [Department of Industrial Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Han S., E-mail: hankim@konkuk.ac.kr [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2015-04-28

    Highlights: • Remediation of complex contaminated soil achieved by sequential soil flushing. • Removal of Zn, Pb, and heavy petroleum oils using 0.05 M citric acid and 2% SDS. • Unified desorption distribution coefficients modeled and experimentally determined. • Nonequilibrium models for the transport behavior of complex contaminants in soils. - Abstract: The removal of heavy metals (Zn and Pb) and heavy petroleum oils (HPOs) from a soil with complex contamination was examined by soil flushing. Desorption and transport behaviors of the complex contaminants were assessed by batch and continuous flow reactor experiments and through modeling simulations. Flushing a one-dimensional flow column packed with complex contaminated soil sequentially with citric acid then a surfactant resulted in the removal of 85.6% of Zn, 62% of Pb, and 31.6% of HPO. The desorption distribution coefficients, K{sub Ubatch} and K{sub Lbatch}, converged to constant values as C{sub e} increased. An equilibrium model (ADR) and nonequilibrium models (TSNE and TRNE) were used to predict the desorption and transport of complex contaminants. The nonequilibrium models demonstrated better fits with the experimental values obtained from the column test than the equilibrium model. The ranges of K{sub Ubatch} and K{sub Lbatch} were very close to those of K{sub Ufit} and K{sub Lfit} determined from model simulations. The parameters (R, β, ω, α, and f) determined from model simulations were useful for characterizing the transport of contaminants within the soil matrix. The results of this study provide useful information for the operational parameters of the flushing process for soils with complex contamination.

  10. Review: Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils

    Institute of Scientific and Technical Information of China (English)

    JING Yan-de; HE Zhen-li; YANG Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.

  11. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*

    Science.gov (United States)

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. PMID:17323432

  12. Assessment of combined electro–nanoremediation of molinate contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Helena I., E-mail: hrg@campus.fct.unl.pt [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Fan, Guangping [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (ISSCAS), East Beijing Road, Nanjing 210008 (China); Mateus, Eduardo P. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias-Ferreira, Celia [CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Ribeiro, Alexandra B. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-09-15

    Molinate is a pesticide widely used, both in space and time, for weed control in rice paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of concern in ground and surface waters, soils and sediments. Previous works have showed that molinate can be removed from soils through electrokinetic (EK) remediation. In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning between soil and water and its degradation rates in different matrices is quite challenging. A system combining nZVI and EK was also set up in order to study the nanoparticles and molinate transport, as well as molinate degradation. Results showed that molinate could be degraded by nZVI in soils, even though the process is more time demanding and degradation percentages are lower than in an aqueous solution. This shows the importance of testing contaminant degradation, not only in aqueous solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most significant factor influencing iron and molinate transport. The main advantage of the simultaneous use of both methods is the molinate degradation instead of its accumulation in the catholyte. - Highlights: • Molinate is degraded in soil by zero valent iron nanoparticles (nZVI). • Higher contact time of nZVI with soil facilitates molinate degradation. • Soil type was the most significant factor influencing iron and molinate transport. • When using nZVI and EK molinate is not only transported to catholyte, but also degraded.

  13. Influence of soil structure on contaminant leaching from injected slurry.

    Science.gov (United States)

    Amin, M G Mostofa; Pedersen, Christina Østerballe; Forslund, Anita; Veith, Tamie L; Laegdsmand, Mette

    2016-12-15

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persistence of nitrogen, microorganisms (bacteriophage, E. coli, and Enterococcus) and a group of steroid hormone (estrogens) were investigated after injection of swine slurry into either intact (structured) or disturbed (homogeneous repacked) soil. The slurry was injected into hexaplicate soil columns at a rate of 50 t ha(-1) and followed with four irrigation events: 3.5-h period at 10 mm h(-1) after 1, 2, 3, and 4 weeks. The disturbed columns delayed the leaching of a conservative tracer and microorganisms in the first irrigation event compared to the intact columns due to the effect of disturbed macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils. In contrast, NO3-N leaching from the intact soil was higher for all events except the first event, probably due to a lower nitrification rate in the disturbed soil. A week after the last irrigation event, the redistribution of all slurry constituents except NO3-N in most of the sections of the soil column was higher for the disturbed soil. Total recovery of E. coli was significantly higher from the disturbed soil and total leaching of mineral nitrogen was significantly lower

  14. Remediation of Oil-Contaminated Soil in Greenland

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Jensen, Pernille Erland

    2013-01-01

    This paper present the recent research conducted at the Arctic Technology Centre, where different solutions for remediation of excavated oil contaminated soil in Greenlandic towns were tested. In the first work, soil polluted by light oil was treated with two different nutrient sources (substrate....... The degradation proceeded further at the elevated temperature and even more when heat and nutrients were combined. In the second work, a nutrient rich soil highly polluted by weathered heavy oil was aerated by insertion of air-channels, and heated to 20°C. Between 19 % and 34 % of the oil pollution was removed...

  15. Contaminant and other elements in soil (CCQM-K127)

    Science.gov (United States)

    Rocio Arvizu Torres, M.; Manzano, J. Velina Lara; Valle Moya, Edith; Horvat, Milena; Jaćimović, Radojko; Zuliani, Tea; Vreča, Polona; Acosta, Osvaldo; Bennet, John; Snell, James; Almeida, Marcelo D.; de Sena, Rodrigo C.; Dutra, Emily S.; Yang, Lu; Li, Haifeng

    2017-01-01

    Non-contaminated soils contain trace and major elements at levels representing geochemical background of the region. The main sources of elements as contaminants/pollutants in soils are mining and smelting activities, fossil fuel combustion, agricultural practices, industrial activities and waste disposal. Contaminated/polluted sites are of great concern and represent serious environmental, health and economic problems. Characterization and identification of contaminated land is the first step in risk assessment and remediation activities. It is well known that soil is a complex matrix with huge variation locally and worldwide. According to the IAWG's five year plan, it is recommended to have a key comparison under the measurement service category of soils and sediments for the year 2015. Currently 13 NMI has claimed calibration and measurement capabilities (CMCs) in category 13 (sediments, soils, ores, and particulates): 29 CMCs in soil and 96 CMCs in sediments. In this regard this is a follow-up comparison in the category 13; wherein three key comparisons have been carried out during the years 2000 (CCQM-K13), 2003 (CCQM-K28) and 2004 (CCQM-K44). Since it is important to update the capabilities of NMIs in this category. CENAM and JSI proposed a key comparison in this category and a pilot study in parallel. The proposed study was agreed by IAWG members, where two soils samples were used in both CCQM-K127 representing a non-contaminated soil with low contents of elements (arsenic, cadmium, iron, lead and manganese), and a contaminated soil with much higher content of selected elements (arsenic, cadmium, iron and lead). This broadens the scope and a degree of complexity of earlier measurements in this field. National metrology institutes (NMIs)/designate institutes (DIs) should, therefore, demonstrate their measurement capabilities of trace and major elements in a wide concentration ranges, representing background/reference sites as well as highly contaminated soils

  16. Impact of Offshore Wind Energy Plants on the Soil Mechanical Behaviour of Sandy Seafloors

    Science.gov (United States)

    Stark, Nina; Lambers-Huesmann, Maria; Zeiler, Manfred; Zoellner, Christian; Kopf, Achim

    2010-05-01

    Over the last decade, wind energy has become an important renewable energy source. Especially, the installation of offshore windfarms offers additional space and higher average wind speeds than the well-established windfarms onshore. Certainly, the construction of offshore wind turbines has an impact on the environment. In the framework of the Research at Alpha VEntus (RAVE) project in the German offshore wind energy farm Alpha Ventus (north of the island Borkum in water depths of about 30 m) a research plan to investigate the environmental impact had been put into place. An ongoing study focuses on the changes in soil mechanics of the seafloor close to the foundations and the development of scour. Here, we present results of the first geotechnical investigations after construction of the plants (ca. 1 - 6 months) compared to geotechnical measurements prior to construction. To study the soil mechanical behaviour of the sand, sediment samples from about thirty different positions were measured in the laboratory to deliver, e.g., grain size (0.063 - 0.3 mm), friction angles (~ 32°), unit weight (~ 19.9 kN/m³) and void ratios (~ 0.81). For acoustic visualisation, side-scan-sonar (towed and stationary) and multibeam-echosounders (hull mounted) were used. Data show a flat, homogenous seafloor prior to windmill erection, and scouring effects at and in the vicinity of the foundations afterwards. Geotechnical in-situ measurements were carried out using a standard dynamic Cone Penetration Testing lance covering the whole windfarm area excluding areas in a radius 50 %) occur above all close to the foundations. Furthermore, patterns of relatively soft zones (qsbc.: 50 - 80 kPa) and hard zones (qsbc. > 100 kPa) were mapped during the high-resolution surveys close to the foundation. Beside that, a very soft sediment layer (0.03 - 0.05 m) drapes most of the soft zones. This may be recently eroded and re-deposited sediment, whereas the hard zones may indicate areas of sediment

  17. Bioventing of gasoline-contaminated soil under varied laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hallman, M.; Shewfelt, K. [Univ. of Guelph, School of Engineering, Guelph, Ontario (Canada); Lee, H. [Univ. of Guelph, Dept. of Environmental Biology, Guelph, Ontario (Canada); Zytner, R.G. [Univ. of Guelph, School of Engineering, Guelph, Ontario (Canada)

    2002-06-15

    Bioventing is becoming a popular in situ soil remediation technology for the treatment of hydrocarbon-contaminated soil. Bioventing relies on enhancing the growth of indigenous microorganisms, which can mineralize the contaminant in the presence of sufficient nutrients. Although bioventing is currently being used as a remediation technology, there are some important questions that remain to be answered in order to optimize the process. These questions include the optimum soil moisture content, type and amount of nutrients necessary, and the best means of producing these conditions in the field. To address these questions, two distinct phases of experiments were conducted. The first experimental phase was designed to determine the optimum moisture content, C:N ratio and form of nitrogen supply for this soil. Using approximately 200g of contaminated soil in each of a series of sealed respirometers, microbial degradation of gasoline under bioventing conditions was quantified for C:N ratios of 5, 10 and 20:1, using varying mixtures of NH{sub 4}{sup +} - and NO{sub 3}{sup -} -N. The results of the studies indicated that the optimum soil moisture content was 15 wt%, with a C:N ratio of 10:1, using a 100% ammonium application. Using the results of the first phase, a second phase of laboratory research was initiated. Five mesoscale reactors have been developed to simulate the bioventing process that takes place in the field. These reactors are filled with approximately 4kg of gasoline-contaminated soil. The initial results are favourable. (author)

  18. Phytoremediation of contaminated soils and groundwater: lessons from the field

    Energy Technology Data Exchange (ETDEWEB)

    Vangronsveld, J.; van der Lelie, D.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; Mench, M.

    2009-11-01

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

  19. pH-dependent leaching behaviour and other performance properties of cement-treated mixed contaminated soil.

    Science.gov (United States)

    Kogbara, Reginald B; Al-Tabbaa, Abir; Yi, Yaolin; Stegemann, Julia A

    2012-01-01

    Portland cement has been widely used for stabilisation/solidification (S/S) treatment of contaminated soils. However, there is a dearth of literature on pH-dependent leaching of contaminants from cement-treated soils. This study investigates the leachability of Cu, Pb, Ni, Zn and total petroleum hydrocarbons (TPH) from a mixed contaminated soil. A sandy soil was spiked with 3000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel, and treated with ordinary Portland cement (CEM I). Four different binder dosages, 5%, 10%, 15% and 20% (m/m) and different water contents ranging from 13%-19% dry weight were used in order to find a safe operating envelope for the treatment process. The pH-dependent leaching behaviour of the treated soil was monitored over an 84-day period using a 3-point acid neutralisation capacity (ANC) test. The monolithic leaching test was also conducted. Geotechnical properties such as unconfined compressive strength (UCS), hydraulic conductivity and porosity were assessed over time. The treated soils recorded lower leachate concentrations of Ni and Zn compared to the untreated soil at the same pH depending on binder dosage. The binder had problems with Pb stabilisation and TPH leachability was independent of pH and binder dosage. The hydraulic conductivity of the mixes was generally of the order, 10(-8) m/sec, while the porosity ranged from 26%-44%. The results of selected performance properties are compared with regulatory limits and the range of operating variables that lead to acceptable performance described.

  20. pH-dependent leaching behaviour and other performance properties of cement-treated mixed contaminated soil

    Institute of Scientific and Technical Information of China (English)

    Reginald B. Kogbara; Abir Al-Tabbaa; Yaolin Yi; Julia A. Stegemann

    2012-01-01

    Portland cement has been widely used for stabilisation/solidification (S/S) treatment of contaminated soils.However,there is a dearth of literature on pH-dependent leaching of contaminants from cement-treated soils.This study investigates the leachability of Cu,Pb,Ni,Zn and total petroleum hydrocarbons (TPH) from a mixed contaminated soil.A sandy soil was spiked with 3000 mg/kg each of Cd,Cu,Pb,Ni and Zn,and 10,000 mg/kg of diesel,and treated with ordinary Portland cement (CEM I).Four different binder dosages,5%,10%,15% and 20% (m/m) and different water contents ranging from 13%-19% dry weight were used in order to find a safe operating envelope for the treatment process.The pH-dependent leaching behaviour of the treated soil was monitored over an 84-day period using a 3-point acid neutralisation capacity (ANC) test.The monolithic leaching test was also conducted.Geotechnical properties such as unconfined compressive strength (UCS),hydraulic conductivity and porosity were assessed over time.The treated soils recorded lower leachate concentrations of Ni and Zn compared to the untreated soil at the same pH depending on binder dosage.The binder had problems with Pb stabilisation and TPH leachability was independent of pH and binder dosage.The hydraulic conductivity of the mixes was generally of the order,10-8 m/sec,while the porosity ranged from 26%-44%.The results of selected performance properties are compared with regulatory limits and the range of operating variables that lead to acceptable performance described.

  1. Laboratory investigations on the role of sediment surface and ground water chemistry in transport of bacteria through a contaminated Sandy Aquifer

    Science.gov (United States)

    Scholl, M.A.; Harvey, R.W.

    1992-01-01

    The effects of pH and sediment surface characteristics on sorption of indigenous groundwater bacteria were determined using contaminated and uncontaminated aquifer material from Cape Cod, MA. Over the pH range of the aquifer (5-7), the extent of bacterial sorption onto sediment in uncontaminated groundwater was strongly pH-dependent, but relatively pH-insensitive in contaminated groundwater from the site. Bacterial sorption was also affected by the presence of oxyhydroxide coatings (iron, aluminum, and manganese). Surface coating effects were most pronounced in uncontaminated groundwater (pH 6.4 at 10??C). Desorption of attached bacteria (up to 14% of the total number of labeled cells added) occurred in both field and laboratory experiments upon adjustment of groundwater to pH 8. The dependence of bacterial sorption upon environmental conditions suggests that bacterial immobilization could change substantially over relatively short distances in contaminated, sandy aquifers and that effects caused by changes in groundwater geochemistry can be significant.

  2. Laboratory testing of the Monotonic behavior of partially saturated sandy soil

    Directory of Open Access Journals (Sweden)

    Della Noureddine

    2010-12-01

    Full Text Available

    This paper presents a laboratory study on the influence of the saturation evaluated in term of Skempton's pore pressur coefficientBon the behavior of Chlef sand. The study is based on drained and unnonno drained compression tests which were carried out for Skempton's pore pressure coefficient varying between 13 and 90%.The tests were conducted on medium dense sand samples having an initial relative density Id = 0.50 at an effective stress of 100 kPa. The paper is composed of two parts. The first one presents the characteristics of the sand used in this study. The second provides an analysis of the experimental results and discusses the influence of Skempton's pore pressure coefficient (B on the mechanical characteristics of the sand. The tests show that the increase in the Skempton' S pore pressure coefficient (B reduces the soil dilatancy and amplifies the phase of contractancy and reduces the frictional and characteristic angle of the sand. The residual strength decreases with the increase ininin the Skempton's pore pressure coefficient B.

  3. Deep soil mixing for reagent delivery and contaminant treatment

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.; Gardner, F.G. [Oak Ridge National Lab., Grand Junction, CO (United States); Cline, S.R.; West, O.R. [Oak Ridge National Lab., TN (United States)] [and others

    1997-12-31

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy`s Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd{sup 3}), there are few alternatives for soils of this type.

  4. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  5. Chemical methods and phytoremediation of soil contaminated with heavy metals.

    Science.gov (United States)

    Chen, H M; Zheng, C R; Tu, C; Shen, Z G

    2000-07-01

    The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.

  6. in situ immobilization of Cadmium and zinc in contaminated soils

    NARCIS (Netherlands)

    Osté, L.A.

    2001-01-01

    Keywords: beringite, cadmium, DOC, DOM, earthworms, immobilization, leaching, lime, manganese oxides, metal binding, metal uptake, organic matter partitioning, pH, soil contamination, remediation, sorption, Swiss chard, zeolites, zinc.It is generally assumed that a decrease in metal c

  7. Evaluating Mediterranean Soil Contamination Risks in Selected Hydrological Scenarios.

    NARCIS (Netherlands)

    Rosa, de la D.; Crompvoets, J.

    1997-01-01

    This paper reports an attempt of predicting the contamination risk of soils and water as they respond to hydrological changes in the agricultural lands of Sevilla province, Spain. Based on land evaluation methodologies, a semi-empirical model (named Pantanal, as module of the integrated package Micr

  8. SUMMARY PAPER: IN SITU BIOREMEDIATION OF CONTAMINATED VADOSE ZONE SOIL

    Science.gov (United States)

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attem...

  9. Chemical speciation and behaviour of cyanide in contaminated soils

    NARCIS (Netherlands)

    Meeussen, J.C.L.

    1992-01-01

    Cyanide is present as a contaminant of the soil on several hundred (former) industrial sites in the Netherlands. The risk for the occurrence of adverse effects on human health and the environment strongly depends on the chemical form in which cyanide is present and on the behaviour of this

  10. LINKING WATERFOWL WITH CONTAMINANT SPECIATION IN RIPARIAN SOILS

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 38, Linking Waterfowl with Contaminant Speciation in Riparian Soils, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U...

  11. Proximal spectral sensing to monitor phytoremediation of metal - contaminated soils

    NARCIS (Netherlands)

    Rathod, P.H.; Rossiter, D.; Noomen, M.; van der Meer, F.D.

    2013-01-01

    Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal

  12. Chemical speciation studies on DU contaminated soils using flow field flow fractionation linked to inductively coupled plasma mass spectrometry (FlFFF-ICP-MS).

    Science.gov (United States)

    Brittain, S R; Cox, A G; Tomos, A D; Paterson, E; Siripinyanond, A; McLeod, C W

    2012-03-01

    Flow field flow fractionation (FlFFF) in combination with inductively coupled plasma mass spectrometry (ICP-MS) was used to study the chemical speciation of U and trace metals in depleted uranium (DU) contaminated soils. A chemical extraction procedure using sodium pyrophosphate, followed by isolation of humic and fulvic substances was applied to two dissimilar DU contaminated sample types (a sandy soil and a clay-rich soil), in addition to a control soil. The sodium pyrophosphate fractions of the firing range soils (Eskmeals and Kirkcudbright) were found to contain over 50% of the total U (measured after aqua regia digestion), compared to approximately 10% for the control soil. This implies that the soils from the contaminated sites contained a large proportion of the U within more easily mobile soil fractions. Humic and fulvic acid fractions each gave characteristic peak maxima for analytes of interest (Mn, Fe, Cu, Zn, Pb and U), with the fulvic acid fraction eluting at a smaller diameter (approximately 2.1 nm on average) than the humic fraction (approximately 2.4 nm on average). DU in the fulvic acid fraction gave a bimodal peak, not apparent for other trace elements investigated, including natural U. This implies that DU interacts with the fulvic acid fraction in a different way to all other elements studied. This journal is © The Royal Society of Chemistry 2012

  13. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  14. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.

    Science.gov (United States)

    Wang, Yiwen; Ma, Fujun; Zhang, Qian; Peng, Changsheng; Wu, Bin; Li, Fasheng; Gu, Qingbao

    2017-04-01

    Soil washing is a promising way to remediate arsenic-contaminated soils. Most research has mostly focused on seeking efficient extractants for removing arsenic, but not concerned with any changes in soil properties when using this technique. In this study, the removal of arsenic from a heavily contaminated soil employing different washing solutions including H3PO4, NaOH and dithionite in EDTA was conducted. Subsequently, the changes in soil physicochemical properties and phytotoxicity of each washing technique were evaluated. After washing with 2 M H3PO4, 2 M NaOH or 0.1 M dithionite in 0.1 M EDTA, the soil samples' arsenic content met the clean-up levels stipulated in China's environmental regulations. H3PO4 washing decreased soil pH, Ca, Mg, Al, Fe, and Mn concentrations but increased TN and TP contents. NaOH washing increased soil pH but decreased soil TOC, TN and TP contents. Dithionite in EDTA washing reduced soil TOC, Ca, Mg, Al, Fe, Mn and TP contents. A drastic color change was observed when the soil sample was washed with H3PO4 or 0.1 M dithionite in 0.1 M EDTA. After adjusting the soil pH to neutral, wheat planted in the soil sample washed by NaOH evidenced the best growth of all three treated soil samples. These results will help with selecting the best washing solution when remediating arsenic-contaminated soils in future engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The effectiveness of surface liming in ameliorating the phytotoxic effects of soil contaminated by copper acid leach pad solution in an arid ecosystem

    Science.gov (United States)

    Golos, Peter

    2016-04-01

    Revegetation of sites following soil contamination can be challenging especially in identifying the most effective method for ameliorating phytotoxic effects in arid ecosystems. This study at a copper mine in the Great Sandy Desert of Western Australia investigated vegetation restoration of a site contaminated by acid (H2SO4) leach pad solution. Elevated soil copper at low soil pH is phytotoxic to plant roots inhibiting root elongation. In arid ecosystems where rapid root growth is crucial for seedling survival post germination physical or chemical barriers to root growth need to be identified and ameliorated. Initial attempt at rehabilitation of contaminated site with hydrated lime (CaOH2) at 2 tonnes/ha followed by ripping to 30 cm depth then seeding was ineffective as successful seedling emergence was followed by over 90% seedling mortality which was 10-fold greater than seedling mortality in an uncontaminated reference site. High mortality was attributed to seedling roots being impededed as soil water was more than 3-fold greater at 5 to 40 cm depth in contaminated site than reference site. In response to high seedling mortality after emergence test pits were dug to 1 m deep to collect soil samples at 10 cm intervals for phytotoxicity testing and to measure soil pH-CaCl2, copper (DPTA ion extraction), electrical conductivity and gravimetric water content in three replicate pits at three replicate sites. Also, soil impedance was measured down the soil profile at 5 cm intervals at six replicate points/pit. For phytotoxicity testing soil samples were placed into three replicate plastic pots/sample and seeded with 10 seeds of Avena sativa and watered daily. Seedlings were harvested after at least two weeks after seedling emergence and rooting depth in pots measured. There was no difference in seedling emergence and survival of seedlings between contaminated and uncontaminated soil samples however mean seedling root growth was significantly lower in soil samples

  16. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii

    Science.gov (United States)

    Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons(PAHs) co-contaminated s...

  17. Dieldrin uptake by vegetable crops grown in contaminated soils.

    Science.gov (United States)

    Donnarumma, Lucia; Pompi, Valter; Faraci, Alessandro; Conte, Elisa

    2009-06-01

    The aim of these trials was to study the distribution of dieldrin in soil and its translocation to roots and the aerial parts of vegetable crops grown in greenhouses and fields. The main objectives were to characterize dieldrin accumulation in plant tissues in relation to the levels of soil contamination; uptake capability among plants belonging to different species, varieties and cultivars. The presence of the contaminant was quantified by gas chromatography-electron capture detector (GC-ECD) and confirmed by gas chromatography-mass spectrometer (GC-MS). The results showed a translocation of residues in cucurbitaceous fruits and flowers confirming that zucchini, cucumber and melon are crops with high uptake capability. The maximum level of dieldrin residue at 0.01 mg/kg was found to be a threshold value to safeguard the quality production of cucurbits. Tomato, lettuce and celery were identified as substitute crops to grow in contaminated fields.

  18. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    Science.gov (United States)

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  19. Guidelines for Posting Soil Contamination Areas

    Energy Technology Data Exchange (ETDEWEB)

    Mcnaughton, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Eisele, William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-01

    All soil guidelines were determined using RESRAD, version 6.1. All offsite guidelines are based on 15 mrem/year. This dose rate is sufficiently low to protect human health and is in accordance with DOE guidance and the proposed EPA 40-CFR-196 regulations for members of the public (never promulgated). For those onsite areas where general employees (non-radiological workers) could have routine access, soil concentrations should be based on a dose rate of 30 mrem/year (approximately one-third of the onsite LANL non-radiological worker dose of 100 mrem/year). In this case, soil concentration guidelines may be obtained by doubling the 15 mrem/year guidelines. Several scenarios were developed to provide maximum flexibility for application of the guidelines. The offsite guidelines were developed using: residential scenarios for both adults and children; a construction worker scenario; a resource user (e.g., a hunter) scenario; a child playing within canyon reaches scenario, a trail using jogger within canyon reaches scenario, and a trail using hiker within canyon reaches scenario. The residential guidelines represent the lowest values from both the adult residential scenario and the child residential scenario.

  20. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil

    NARCIS (Netherlands)

    Zutphen, M. van; Heron, G.; Enfield, C.G.; Christensen, T.H.

    1998-01-01

    A 2D-laboratory box experiment (12 x 56 x 116 cm) was conducted to simulate the enhancement of soil vapor extraction by the application of low frequency electrical heating Uoule heating) for the remediation of a low permeable, silty soil contaminated with trichloroethylene. Joule heating enlarged th