WorldWideScience

Sample records for sandy loam soil

  1. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  2. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils.

    Science.gov (United States)

    Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David

    2011-07-01

    To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in

  3. effect of tractor forward speed on sandy loam soil physical ...

    African Journals Online (AJOL)

    Dr Obe

    Ilorin on a sandy loam soil to evaluate the effect of the imposition of different .... of the blade is 10.5cm. ... arranged in an inverted cone shape with ... replicates were taken for each speed run. The ..... Thakur, T. C; A. Yadav; B. P. Varshney and.

  4. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1996-01-01

    The fate of nitrogen from N-15-labelled sheep urine and urea applied to two soils was studied under field conditions. Labelled and stored urine equivalent to 204 kg N ha(-1) was either incorporated in soil or applied to the soil surface prior to sowing of Italian ryegrass (Lolium multiflorum L...... and soil was not significantly different for incorporated urine and urea. Almost all the supplied labelled N was accounted for in soil and herbage in the sandy loam soil, whereas 33-34% of the labelled N was unaccounted for in the sandy soil. When the stored urine was applied to the soil surface, 20...... was applied to growing ryegrass at the sandy loam soil, the immobilization of urine-derived N was significantly reduced compared to application prior to sowing. The results indicated that the net mineralization of urine N was similar to that of urea in the sandy soil, but only about 75% of the urine N was net...

  5. influence of tillage practices on physical properties of a sandy loam

    African Journals Online (AJOL)

    DR. AMINU

    many regions of the world if the mechanics of tillage effects on soil physical properties is to be well understood. Thus, the ... tillage systems on water storage of a sandy loam soil after 22 years of ..... Soil infiltration ... and processes. Academy ...

  6. Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan.

    Science.gov (United States)

    Tariq, Muhammad Ilyas; Afzal, Shahzad; Hussain, Ishtiaq

    2006-02-01

    The present study evaluated the influence of temperature, moisture, and microbial activity on the degradation and persistence of commonly used cotton pesticides, i.e., carbosulfan, carbofuran, lambda-cyhalothrin, endosulfan, and monocrotophos, with the help of laboratory incubation and lysimeter studies on sandy loam soil (Typic Ustocurepts) in Pakistan. Drainage from the lysimeters was sampled on days 49, 52, 59, 73, 100, 113, and 119 against the pesticide application on days 37, 63, 82, 108, and 137 after the sowing of cotton. Carbofuran, monocrotophos, and nitrate were detected in the drainage samples, with an average value, respectively, of 2.34, 2.6 microg/L, and 15.6 mg/L for no-tillage and 2.16, 2.3 microg/L, and 13.4 mg/L for tillage. In the laboratory, pesticide disappearance kinetics were measured with sterile and nonsterile soils from 0 to 10 cm in depth at 15, 25, and 35 degrees C and 50% and 90% field water capacities. Monocrotophos and carbosulfan dissipation followed first-order kinetics while others followed second-order kinetics. The results of incubation studies showed that temperature and moisture contents significantly reduced the t(1/2) (half-life) values of pesticides in sterile and nonsterile soil, but the effect of microbial activity was nearly significant that might be due to less organic carbon (0.3%). The presence of carbofuran and monocrotophos in the soil profile (0-10, 10-30, 30-60, 60-90, 90-150 cm) and the higher concentrations of endosulfan and lambda-cyhalothrin in the top layer (0-10 cm) showed the persistence of the pesticides. The detection of endosulfan and lambda-cyhalothrin in the 10-30 cm soil layer might be due to preferential flow. The data generated from this study could be helpful for risk assessment studies of pesticides and for validating pesticide transport models for sandy loam soils in cotton-growing areas of Pakistan.

  7. Crop uptake and leaching losses of 15N labelled fertilizer nitrogen in relation to waterlogging of clay and sandy loam soils

    International Nuclear Information System (INIS)

    Webster, C.P.; Belford, R.K.; Cannell, R.Q.

    1986-01-01

    Ammonium nitrate fertilizer, labelled with 15 N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha -1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freely drained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheater at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1-2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer

  8. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    Science.gov (United States)

    2006-05-01

    high bioavailability of organic compounds. However, amended SSL soil was analyzed for presence of metabolic transformation products from nitroaromatic...Phillips, C.; Checkai, R. 1999. Comparison of malathion toxicity using enchytraeid reproduction test and earthworm toxicity test in different soil ...OF TNT IN AMENDED SANDY LOAM SOIL ON TOXICITY TO THE ENCHYTRAEID WORM, ENCHYTRAEUS CRYPTICUS Roman G. Kuperman Ronald T. Checkai Michael Simini

  9. Assessment of structural stability of a degraded sandy clay loam soil ...

    African Journals Online (AJOL)

    The effects of bare, two legumes and four grasses cover treatments on the structural stability of a sandy clay loam Ultisol were studied within a two year period. The experiment was of a randomised complete block design with seven treatments. The legume treatments were Centrosema pubescens (Ce) and Pueraria ...

  10. Pore structure characteristics after two years biochar application to a sandy loam field

    DEFF Research Database (Denmark)

    Sun, Zhencai; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2015-01-01

    the effects of birch wood biochar (20, 40, and 100 Mg ha−1) applied to a sandy loam on soil total porosity and pore structure indices. Bulk and intact soil samples were collected for physicochemical analyses and water retention and gas diffusivity measurements between pF 1.0 and pF 3.0. Biochar application...

  11. Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils

    Energy Technology Data Exchange (ETDEWEB)

    Wick, A.F.; Stahl, P.D.; Ingram, L.J. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2009-11-15

    Minimal research has been conducted on aggregate, C, and N in coarse-textured soils used to reclaim surface coal mine lands. Furthermore, little is known about the contribution different plant communities make to the recovery of aggregation in these soils. Two chronosequences of semiarid reclaimed sites with sandy loam soils were sampled under shrub- and grass-dominated communities. Aggregation, aggregate fractions, and associated C and N were measured. No definitive trends of increasing macroaggregates between sites were observed undershrubs; however, macro- and microaggregation was greater in the 16-yr-old (0.20 and 0.23 kg aggregate kg{sup -1} soil, respectively) than in the 5-yr-old soils (0.02 and 0.08 kg aggregate kg{sup -1} soil, respectively) under grasses. Although C and N concentrations were drastically reduced (50-75%) with mining activity between the <1-yr-old and native soils, aggregate C and N concentrations tinder shrubs and grasses were similar to each other and to the native soils in the 5-yr-old site. Sods under grass in the 16-yr-old site had lower available and aggregate-occluded C and N concentrations than the 5-yr-old site, while C and N concentrations did not change between 5- and 16-yr-old soils under shrubs. Conversely, aggregate C and N pool sizes under shrubs and grasses both increased with site age to conditions similar to those observed in the native soil. Reclaimed shrub site soils had consistently higher C concentrations in the older reclaimed sites (10 and 16 yr old) than the soils under grasses, indicating greater accumulation and retention of C and N in organic material under shrub than grass communities in semiarid reclaimed sites.

  12. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects...... of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field...... plots with or without biochar (20 Mg ha−1); however, in the same plots, volumetric water contents increased by 7.5 % due to biochar (P = 0.007). Crop yields (oat) were not significantly different in the first year after biochar application, but in the second year, total yields of spring barley increased...

  13. Effects of a novel poly (AA-co-AAm)/AlZnFe₂O₄/potassium humate superabsorbent hydrogel nanocomposite on water retention of sandy loam soil and wheat seedling growth.

    Science.gov (United States)

    Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer

    2012-10-25

    A novel poly(acrylic acid-co-acrylamide)AlZnFe₂O₄/potassium humate( )superabsorbent hydrogel nanocomposite (PHNC) was synthesized and its physical properties characterized using SEM, Energy Dispersive X-ray (EDX) and FTIR spectroscopic techniques. Air dried sandy loam soil was amended with 0.1 to 0.4 w/w% of PHNC to evaluate its soil moisture retention attributes. Effect of PHNC amendment on pH, electrical conductivity (EC), porosity, bulk density and hydraulic conductivity of sandy loam soil was also studied. The soil amendment with 0.1 to 0.4 w/w% of PHNC remarkably enhanced the moisture retention at field capacity as compared to the un-amended soils. Seed germination and seedling growth of wheat (Triticum aestivum L.) was considerably increased and a delay by 6-9 days in wilting of seedlings was observed in the soil amended with PHNC, resulting in improved wheat plant establishment and growth.

  14. ELASTOPLASTICIDAD DE UN SUELO FRANCO ARENOSO DE SABANA I SANDY LOAM SAVANNA SOIL ELASTOPLASTICITY

    Directory of Open Access Journals (Sweden)

    Américo Hossne García

    2018-04-01

    Full Text Available The knowledge of elastoplastic properties is important for calculating soil elastic and plastic deformations experienced by static or dynamic loads generated, for example, by farm implements and root growth. The objective of this study was to determine the soil elastoplastic parameters: Young’s modulus (E, the shear modulus (G, bulk modulus (K and Poisson’s ratio (υ of a sandy-loam soil from a savanna in Monagas State, Venezuela. Triaxial tests and regression analyses were used to interpret the variance between them. The results show that E varied from 4693.39 to 36669.35 kPa; G from 700 to 5000 kPa; K from 500 to 2000 kPa and υ had a value of 0.50. It is concluded that these soils are incompressible under plastic conditions, i.e. easily deformable. The Poisson’s ratio varied significantly with soil water content. The Young modulus, bulk modulus and the shear modulus showed high variation with respect to water content. Both the Young’s modulus and Poisson’s ratio increased, at low soil water content, with the rise in chamber pressure .

  15. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore...... characteristics of two Danish sandy loams. Rotation R2 is a rotation of winter crops (mainly cereals) with residues retained, rotation R3 a mix of winter and spring crops (mainly cereals) with residues removed, and rotation R4 the same mix of winter and spring crops, but with residues retained. Each rotation...... included the tillage treatments: moldboard plowing to 20-cm depth (MP), harrowing to 8- to 10-cm depth (H) and direct drilling (D). Soil cores were taken from the topsoil (4–8, 12–16, 18–27 cm) in mid-autumn 2013 and early spring 2014. Water retention, air permeability, and gas diffusivity was determined...

  16. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  17. Field Performance of Nine Soil Water Content Sensors on a Sandy Loam Soil in New Brunswick, Maritime Region, Canada

    Directory of Open Access Journals (Sweden)

    Lionel Stevens

    2009-11-01

    Full Text Available An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE of 15.78, 16.93, and 17.65%, and a r2 of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917, and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r2 of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region.

  18. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D

    2017-01-01

    Soil structure is a key soil physical property that affects soil water balance, gas transport, plant growth and development, and ultimately plant yield. Biochar has received global recognition as a soil amendment with the potential to ameliorate the structure of degraded soils. We investigated how...... corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... to significant increase in soil water retention compared to the CT and BC-10 as a result of increased microporosity (pores biochar had minimal impact. No significant influence of biochar was observed for ka and Dp/D0 for the BC treatments compared to the CT despite...

  19. Uncertainty of Deardorff’s soil moisture model based on continuous TDR measurements for sandy loam soil

    Directory of Open Access Journals (Sweden)

    Brandyk Andrzej

    2016-03-01

    Full Text Available Knowledge on soil moisture is indispensable for a range of hydrological models, since it exerts a considerable influence on runoff conditions. Proper tools are nowadays applied in order to gain in-sight into soil moisture status, especially of uppermost soil layers, which are prone to weather changes and land use practices. In order to establish relationships between meteorological conditions and topsoil moisture, a simple model would be required, characterized by low computational effort, simple structure and low number of identified and calibrated parameters. We demonstrated, that existing model for shallow soils, considering mass exchange between two layers (the upper and the lower, as well as with the atmosphere and subsoil, worked well for sandy loam with deep ground water table in Warsaw conurbation. GLUE (Generalized Likelihood Uncertainty Estimation linked with GSA (Global Sensitivity Analysis provided for final determination of parameter values and model confidence ranges. Including the uncertainty in a model structure, caused that the median soil moisture solution of the GLUE was shifted from the one optimal in deterministic sense. From the point of view of practical model application, the main shortcoming were the underestimated water exchange rates between the lower soil layer (ranging from the depth of 0.1 to 0.2 m below ground level and subsoil. General model quality was found to be satisfactory and promising for its utilization for establishing measures to regain retention in urbanized conditions.

  20. Plant uptake and soil retention of phthalic acid applied to Norfolk sandy loam

    International Nuclear Information System (INIS)

    Dorney, J.R.; Weber, J.B.; Overcash, M.R.; Strek, H.J.

    1985-01-01

    Plant uptake and soil retention of 14 C carboxyl-labeled phthalic acid were studied at application rates of 0.6, 6.0, 60.0, and 600.0 ppm (soil dry weight) to Norfolk sandy loam (Typic Paleudult, fine loamy, kaolinitic, thermic). Height and dry weight of corn (Zea mays L. Pioneer 3368A) (21 day), tall fescue (Festuca arundinacea Schreb. Kentucky 31) (45 day) immature soybean (Glycine max (L.) Merr. Altoona) (21 day) plant, mature soybean plant, and mature wheat (Triticum aestivum L. Butte) straw were not affected by phthalic acid applied to soil. In addition, soybean seed and wheat seed dry weight were unaffected. Immature wheat (40 day) height decreased at the 600 ppm rate. Plant uptake of phthalic acid ranged from 0 to 23 ppm and was significantly above background for all plants and plant materials except soybean pods. Fescue and immature plants exhibited the highest concentration of phthalic acid while mature wheat plants and wheat seeds exhibited the least. Most of the phthalic acid volatilized or was decomposed from the soil by the end of the study; an average of only 5.7% of the originally applied chemical was recovered in both soil or plants. An average of 0.02% of the originally applied phthalic acid leached out of the treated zone. Considering the low toxicity of phthalic acid and its relatively rapid disappearance from soil, it is unlikely to become a health hazard from contaminated plants. However, plant uptake of other toxic organics could potentially become a hazard on soils treated with sludge containing significant quantities of these substances

  1. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  2. Depth distribution of preferential flow patterns in a sandy loam soil as affected by tillage

    Directory of Open Access Journals (Sweden)

    C. T. Petersen

    1997-01-01

    Full Text Available Dye-tracer studies using the anionic dye Brilliant Blue FCF were conducted on a structured sandy loam soil (Typic Agrudalf. 25 mm of dye solution was applied to the surface of 11 1.6 x 1.6 m field plots, some of which had been subjected to conventional seed bed preparation (harrowing while others had been rotovated to either 5 or 15 cm depth before sowing. The soil was excavated to about 160 cm depth one or two days after dye application. Flow patterns and structural features appearing on vertical or horizontal cross sections were examined and photographed. The flow patterns were digitized, and depth functions for the number of activated flow pathways and the degree of dye coverage were calculated. Dye was found below 100 cm depth on 26 out of 33 vertical cross sections made in conventionally tilled plots showing that preferential flow was a prevailing phenomenon. The depth-averaged number of stained flow pathways in the 25-100 cm layer was significantly smaller in a plot rotovated to 5 cm depth than in a conventionally tilled plot, both under relatively dry initial soil conditions and when the entire soil profiles were initially at field capacity. There were no examples of dye penetration below 25 cm depth one month after deep rotovation. Distinct horizontal structures in flow patterns appearing at 20-40 cm depth coupled with changes in flow domains indicated soil layering with abrupt changes in soil structure and hydraulic properties.

  3. Evaluation of Diuron Tolerance and Biotransformation by Fungi from a Sugar Cane Plantation Sandy-Loam Soil.

    Science.gov (United States)

    Perissini-Lopes, Bruna; Egea, Tássia Chiachio; Monteiro, Diego Alves; Vici, Ana Cláudia; Da Silva, Danilo Grünig Humberto; Lisboa, Daniela Correa de Oliveira; de Almeida, Eduardo Alves; Parsons, John Robert; Da Silva, Roberto; Gomes, Eleni

    2016-12-14

    Microorganisms capable of degrading herbicides are essential to minimize the amount of chemical compounds that may leach into other environments. This work aimed to study the potential of sandy-loam soil fungi to tolerate the herbicide Herburon (50% diuron) and to degrade the active ingredient diuron. Verticillium sp. F04, Trichoderma virens F28, and Cunninghamella elegans B06 showed the highest growth in the presence of the herbicide. The evaluation of biotransformation showed that Aspergillus brasiliensis G08, Aspergillus sp. G25, and Cunninghamella elegans B06 had the greatest potential to degrade diuron. Statistical analysis demonstrated that glucose positively influences the potential of the microorganism to degrade diuron, indicating a cometabolic process. Due to metabolites founded by diuron biotransformation, it is indicated that the fungi are relevant in reducing the herbicide concentration in runoff, minimizing the environmental impact on surrounding ecosystems.

  4. Cadmium phytoextraction from loam soil in tropical southern China by Sorghum bicolor.

    Science.gov (United States)

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-06-03

    The cadmium (Cd) uptake characteristics by Sorghum bicolor cv. Nengsi 2# and Cowley from the acidic sandy loam soil (pH = 6.1) during the entire growth period (100 days) were investigated in pot outdoors in a tropical district of southern China, Hainan Island. The Cd-spiked levels in soil were set as 3 and 15 mg/kg. Correspondingly, the available Cd levels in soil extracted by Mehlich III solution were 2.71 and 9.41 mg/kg, respectively. Basically, two varieties in a full growth period (100 days) did not show a significant difference in their growth and Cd uptake. Under high Cd stress, the plant growth was inhibited and its biomass weight and height decreased by 38.7-51.5% and 27.6-28.5%, respectively. However, S. bicolor showed higher bioaccumulation capability of Cd from soil to plant [bioconcentration factor (BCF)>4], and higher transfer capability of Cd from roots to shoots [translocation factor (TF)>1] under high Cd stress; Cd contents in the roots, stems, and leaves of S. bicolor reached 43.79-46.07, 63.28-70.60, and 63.10-66.06 mg/kg, respectively. S. bicolor exhibited the potential phytoextraction capability for low or moderate Cd-contamination in acidic sandy loam soil.

  5. THE EFFECT OF SALINITY-SODICITY AND GLYPHOSATE FORMULATIONS – AVANS PREMIUM 360 SL ON PHOSPHOMONOESTERASE ACTIVITIES IN SANDY LOAM

    Directory of Open Access Journals (Sweden)

    Maciej Płatkowski

    2016-01-01

    Full Text Available The aim of study was to determine the influence of NaCl and glyphosate-based herbicide Avans Premium 360 SL on acid and alkaline phosphomonoesterase activities in sandy loam. The experiment was carried out in laboratory conditions on sandy loam with Corg content 10.90 g/kg. Soil was divided into half kilogram samples and adjusted to 60% of maximum water holding capacity. In the experiment dependent variables were: I – dosages of Avans Premium 360 SL (0, a recommended field dosage – FD, a tenfold higher dosage – 10 FD and hundredfold higher dosage – 100 FD, II – amount of NaCl (0, 3% and 6%, III – day of experiment (1, 7, 14, 28 and 56. On days of experiment the activity of alkaline and acid phosphomonoesterase activity was assayed spectrophotometrically. The obtained result showed that the application of Avans Premium 360 SL decreased in acid and alkaline phosphomonoesterase activity in clay soil. Significant interaction effect between the dosage of Avans Premium 360 SL, NaCl amount and day of experiment was reported in the experiment. The inhibitory effect of Avans Premium 360 SL was the highest in soil with NaCl at the amount of 6%.

  6. Direct and Indirect Short-term Effects of Biochar on Physical Characteristics of an Arable Sandy Loam

    DEFF Research Database (Denmark)

    Sun, Zhencai; Moldrup, Per; Elsgaard, Lars

    2013-01-01

    Biochar addition to agricultural soil is reported in several studies to reduce climate gas emissions, boost carbon storage, and improve soil fertility and crop productivity. These effects may be partly related to soil physical changes resulting from biochar amendment, but knowledge of how biochar...... application mechanistically affects soil physical characteristics is limited. This study investigated the effect of biochar application on soil structural and functional properties, including specific surface area, water retention, and gas transport parameters. Intact soil cores were taken from a field...... experiment on an arable sandy loam that included four reference plots without biochar and four plots with 20 tons ha(-1) biochar incorporated into the upper 20 cm 7 months before sampling. Water retention was measured at matric potentials ranging from wet (pF 1.0) to extremely dry conditions (pF similar to 6...

  7. Influence of N,K and CaSO4 on utilisation of sulfur by rice in red sandy loam soil

    International Nuclear Information System (INIS)

    Patnaik, M.C.; Sathe, Arun

    1993-01-01

    A greenhouse study with rice on red sandy loam soil showed that uptake of sulphur increased from both native as well as applied source with increase in the application of sulphur from 20-60 kg S ha -1 through gypsum. The grain yields were influenced by nitrogen application but there was only relative increase with the application of potassium and sulphur. There was positive effect of applied nitrogen and sulphur for the total sulphur removal by the rice crop. The per cent sulphur utilisation decreased with increase in sulphur application from 20-60 kg S ha -1 through gypsum but increased with increase in the application of nitrogen from 0-150 kg N ha -1 . Sulphur utilization by rice crop was more in potassium treated pots compared to that without its application. (author). 7 refs., 3 tabs

  8. Phosphorus application to cotton enhances growth, yield, and quality characteristics on a sandy loam soil

    International Nuclear Information System (INIS)

    Ahmad, M.; Ranjha, A.M.

    2009-01-01

    Phosphorus (P) is the second most limiting nutrient in cotton (Gossypium hirsutum L.) production after nitrogen. Under wheat-cotton cropping system of Pakistan most of the farmers apply P fertilizer only to wheat crop. A field experiment was conducted to evaluate the effect of fertilizer P on the growth, yield and fibre quality of cotton on a sandy loam calcareous soil at farmer's field in cotton growing area of district Khanewal, Punjab. Five levels of P (0, 17, 26, 34 and 43 kg P ha /sup -1/) along with 120 kg N and 53 kg K ha/sup -1/ were applied. The response of cotton growth parameters was greater than quality components to P addition in calcareous soil. There was significant increase in the growth and yield parameters with each additional rate of P. The response of number of bolls per plant, boll weight and seed cotton yield was to the tune of 88.23, 16.82 and 42%, respectively at P application rate of 34 kg ha/sup -1/. Cotton quality components (lint %age, fiber length and fiber strength) improved from 2 to 5% where 43 kg P ha/sup -1/ was added. The lint and seed P concentration was little affected by P application as compared to stem and leaves showing its essentiality for cell division and development of meristematic tissue. Phosphorus use, thus not only valuable for wheat crop but also its application to cotton crop is of vital importance in improving both lint yield and quality. (author)

  9. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study.

    Directory of Open Access Journals (Sweden)

    Weiwei Lu

    Full Text Available This study examined the effect of nitrogen (N on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant straw in absence (BC0 and presence (BCN of N and monitored for dynamics of carbon dioxide (CO2 flux, phospholipid fatty acids (PLFAs profile and dissolved organic carbon (DOC content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05, and the proportions of decomposed biochar carbon (C were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05 higher than DOC in biochar (1.75% and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05 increased the proportion of gram-positive (G+ bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G- bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil.

  10. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    Science.gov (United States)

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. The influence of reduced tillage on water regime and nutrient leaching in a loamy soil

    OpenAIRE

    Baigys, Giedrius; Gaigalis, Kazimieras; Kutra, Ginutis

    2006-01-01

    The effect of tillage technologies and terms on soil moisture regime and nitrate leaching was studied in field trials carried out on 0.76-1.36-ha fields. The study site was arranged in Pikeliai village (Kėdainiai district). The soil prevailing in the study site is Endocalcari - Endohypogleic Cambisol, sandy light loam and sandy loam on deeper layers of sandy loam and sandy light loam. The arable horizon contains sandy light loam, which is characteristic of the soils prevailing in the Middle L...

  12. Radiological aspects of choice of a system of cultivation of sod-podzolic sandy loam soils with different degree of humidity on lands of Mogilev region contaminated with 137Cs

    International Nuclear Information System (INIS)

    Lazarevich, S.S.; Ermolenko, A.V.; Shapsheeva, T.P.

    2010-01-01

    In the conditions of the Republic of Belarus there were presented data about the influence of technological factors on entry of 137Cs into plant products (grain and green mass). In course of the study there were analyzed the following variants of soil cultivation: moldboard plowing; subsurface chisel soil tillage; subsurface surface soil tillage; minimal tillage. There were presented data on specific activity of 137Cs in plant product samples of oat (Avena sativa) grain; field pea (Pisum arvense L.) and oat mixture grain and green mass; wheat (Triticum aestivum) grain. There were determined the main principles of influence of cultivation systems of sod-podzolic sandy loam soil with different degree of humidity on transition of 137Cs into plants depending on the degree of soil and crop humidity. On the automorphic soil there was revealed a tendency of increased transition of 137Cs into grain and green mass after application of subsurface surface soil tillage system

  13. Plasticity and density-moisture-resistance relations of soils amended with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mapfuno, E.; Chanasyk, D.S. [University of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources

    1998-06-01

    The objective of this study was to investigate the impact of fly ash amendments on the plasticity, water retention and penetration resistance-density-moisture relationships of three soils of sandy loam, loam and clay loam textures in order to determine the potential compaction of these soil/fly ash mixtures if they were worked at different moisture ranges. For all three soils the addition of fly ash decreased the plasticity index, but slightly increased the Proctor maximum density. This implies that fly ash amendments reduce the range of moisture within which soils are most susceptible to compaction. However, for the sandy loam and loam textured soils amended with fly ash, cultivation must be avoided at moisture contents close to field capacity since maximum densification occurs at these moisture contents. In all three soils the addition of fly ash increased water retention, especially in the sandy loam. Fly ash amendments increased penetration resistance of the clay loam, but increased penetration resistance of the sandy loam.

  14. Influence of salinity on bioremediation of oil in soil

    International Nuclear Information System (INIS)

    Rhykerd, R.L.; Weaver, R.W.; McInnes, K.J.

    1995-01-01

    Spills from oil production and processing result in soils being contaminated with oil and salt. The effect of NaCl on degradation of oil in a sandy-clay loam and a clay loam soil was determined. Soils were treated with 50 g kg -1 non-detergent motor oil (30 SAE). Salt treatments included NaCl amendments to adjust the soil solution electrical conductivities to 40, 120, and 200 dS m -1 . Soils were amended with nutrients and incubated at 25 o C. Oil degradation was estimated from the quantities of CO 2 evolved and from gravimetric determinations of remaining oil. Salt concentrations of 200 dS m -1 in oil amended soils resulted in a decrease in oil mineralized by 44% for a clay loam and 20% for a sandy-clay loam soil. A salt concentration of 40 dS m -1 reduced oil mineralization by about 10% in both soils. Oil mineralized in the oil amended clay-loam soil was 2-3 times greater than for comparable treatments of the sandy-clay loam soil. Amending the sandy-clay loam soil with 5% by weight of the clay-loam soil enhanced oil mineralization by 40%. Removal of salts from oil and salt contaminated soils before undertaking bioremediation may reduce the time required for bioremediation. (author)

  15. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  16. Jatropha curcas L. root structure and growth in diverse soils.

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  17. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2013-01-01

    Full Text Available Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots. The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14±5% (mean ± standard deviation. Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  18. Passive Microwave Observation of Soil Water Infiltration

    Science.gov (United States)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  19. Physical-hydraulic properties of a sandy loam typic paleudalf soil under organic cultivation of 'montenegrina' mandarin (Citrus deliciosa Tenore¹

    Directory of Open Access Journals (Sweden)

    Caroline Valverde dos Santos

    2014-12-01

    Full Text Available Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina' under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT, between the wheel tracks (BWT, and in the area under the line projection of the canopy (CLP, with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT, which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

  20. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    Science.gov (United States)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  1. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Plauborg, Finn; Jacobsen, Sven-Erik

    2012-01-01

    Quinoa (Chenopodium quinoa Willd.) is believed to be tolerant to abiotic stress including salinity, drought and poor soil quality. To investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (cv. Titicaca) was grown...... in field lysimeters with sand, sandy loam and sandy clay loam soil. Despite application of the same amount of nitrogen (120 kg N ha−1) to all plots, there were large differences in crop nitrogen-uptake for sandy clay loam (134 kg ha−1), sandy loam (102 kg ha−1) and sand (77 kg ha−1) under full irrigation....... This lead to higher interception of photosynthetic active radiation and higher seed yield on sandy clay loam (3.3 Mg ha−1) and sandy loam (3.0 Mg ha−1) than on sand (2.3 Mg ha−1). The soil with higher clay content had also the highest transpiration, crop evapotranspiration and yield due to the higher uptake...

  2. Determination of Selenium Toxicity for Survival and Reproduction of Enchytraeid Worms in a Sandy Loam Soil

    Science.gov (United States)

    2016-07-01

    LOAM SOIL ECBC-TR-1388 Roman G. Kuperman Ronald T. Checkai Michael Simini Carlton T. Phillips RESEARCH AND TECHNOLOGY DIRECTORATE Richard M...plastic wrap was stretched over the top of each container and secured with a rubber band. Three pinholes were made in the plastic wrap to 6...172–178. Glover, J.; Levander, O.; Parizek, J.; Vouk, V. Selenium. In Handbook on the Toxicology of Metals; Friberg, L., Norberg, G.F., Vouk, V.B

  3. Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material.

    Science.gov (United States)

    Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer

    2012-08-03

    The use of some novel and efficient crop nutrient-based superabsorbent hydrogel nanocomposites (SHNCs), is currently becoming increasingly important to improve the crop yield and productivity, due to their water retention properties. In the present study a poly(Acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite was synthesized and its physical properties characterized using Energy Dispersive X-ray (EDX), FE-SEM and FTIR spectroscopic techniques. The effects of different levels of SHNC were studied to evaluate the moisture retention properties of sandy loam soil (sand 59%, silt 21%, clay 19%, pH 7.4, EC 1.92 dS/m). The soil amendment with 0.1, 0.2, 0.3 and 0.4 w/w% of SHNC enhanced the moisture retention significantly at field capacity compared to the untreated soil. Besides, in a separate experiment, seed germination and seedling growth of wheat was found to be notably improved with the application of SHNC. A delay in wilting of seedlings by 5-8 days was observed for SHNC-amended soil, thereby improving wheat plant growth and establishment.

  4. Effect of organic amendments on nitrate leaching mitigation in a sandy loam soil of Shkodra district, Albania

    Directory of Open Access Journals (Sweden)

    Erdona Demiraj

    2018-03-01

    Full Text Available European lacustrine systems are frequently exposed to nitrate (NO3– pollution causing eutrophication processes. An example of these lakes is Shkodra Lake, a large, shallow lake shared by Albania and Montenegro, in the Balkans Peninsula. Shkodra Lake is a natural sink that collects NO3– from agricultural activities, widely diffused in the surrounding area. The additions of wheat straw and biochar have been suggested to increase soil NO3– retention of agricultural lands. To better understand the role of these two organic soil amendments in mitigating NO3– leaching from arable lands, a pot experiment using a representative sandy loam soil of the Skodra Lake basin was performed. More specifically, a greenhouse experiment with Lolium multiflorum L. and Zea mays L., was carried out for three months, to evaluate the concentrations of NO3–-N in leachate and the cumulative leaching losses of NO3–-N, after wheat straw (10 Mg ha–1 and biochar (10 Mg ha–1 soil addition, under the same rate of NPK fertiliser (300 kg ha–1. The effect of the two organic amendments on nitrate retention, was evaluated according to two methods: i Soil NO3–-N leaching with distilled water; and ii Soil NO3–-N extraction with 2M KCl. The leached NO3–-N and the Potentially Leachable NO3–-N (2M KCl extraction were respectively determined. N uptake by plants, as well as the Nitrogen Use Efficiency were also calculated. A retention effect on nitrate was found in Lolium multiflorum L. and wheat straw treatments compared to control, by reducing leached NO3–-N almost to 35%. In SBFL (soil+biochar+fertiliser+Lolium treatment, biochar effectively reduced the total amount of nitrate in leachate of 27% and 26% compared to SFL (soil+fertiliser+Lolium and SSFL (soil+straw+fertiliser+Lolium treatments, respectively. The potentially leachable NO3–-N was two to four times higher than the leached NO3–-N. The amount of potentially leachable NO3–-N per hectare ranged

  5. Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar

    DEFF Research Database (Denmark)

    Bruun, Esben W.; Petersen, Carsten; Strobel, Bjarne W.

    2012-01-01

    Biochar amendment to soil may affect N turnover and retention, and may cause translocation of dissolved and particulate C. We investigated effects of three fine particulate biochars made of wheat (Triticum aestivum L.) straw (one by slow pyrolysis and two by fast pyrolysis) on N and C leaching from...... repacked sandy soil columns (length: 51 cm). Biochar (2 wt%), ammonium fertilizer (NH4+, amount corresponding to 300 kg N ha-1) and an inert tracer (bromide) were added to a 3-cm top layer of sandy loam, and the columns were then irrigated with constant rate (36 mm d-1) for 15 d. The total amount...... of leachate came to about 3.0 water filled pore volumes (WFPVs). Our study revealed a high mobility of labile C components originating from the fine particulate fast pyrolysis biochar. This finding highlights a potential risk of C leaching coupled with the use of fast pyrolysis biochars for soil amendment...

  6. Suitability of soils of the university of Nigeria, Nsukka for the ...

    African Journals Online (AJOL)

    The Nkpologu series of valley bottom, plain and gentle slopes (0-6%) are suitable due to favorable topography, moderately heavy soil textures (sandy clay loam to sandy loam at the topsoil, and sandy clay at the subsoil), and relative soil fertility (with average topsoil % base sat. on the basis of ECEC of 45.08% and O.M. ...

  7. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    Science.gov (United States)

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  8. The impacts of pyrolysis temperature and feedstock type on biochar properties and the effects of biochar application on the properties of a sandy loam

    Science.gov (United States)

    Aston, Steve; Doerr, Stefan; Street-Perrott, Alayne

    2013-04-01

    The production of biochar and its application to soil has the potential to make a significant contribution to climate change mitigation whilst simultaneously improving soil fertility, crop yield and soil water-holding capacity. Biochar is produced from various biomass feedstock materials at varying pyrolysis temperatures, but relatively little is known about how these parameters affect the properties of the resultant biochars and their impact on the properties of the soils to which they are subsequently applied. Salix viminalis, M. giganteus and Picea sitchensis feedstocks were chipped then sieved to 2 - 5 mm, oven dried to constant weight, then pyrolyzed at 350, 500, 600 and 800° C in a nitrogen-purged tube furnace. Biochar yields were measured by weighing the mass of each sample before and after pyrolysis. Biochar hydrophobicity was assessed by using a goniometer to measure water-droplet contact-angles. Cation-exchange-capacity (CEC) was measured using the ammonium acetate method. Biochars were also produced in a rotary kiln from softwood pellets at 400, 500, 600 and 700° C then ground to 0.4 - 1 mm and applied to a sandy loam at a rate of 50 g kg-1. Bulk densities of these soil-biochar mixtures were measured on a tapped, dry, basis. The water-holding-capacity (WHC) of each mixture was measured gravimetrically following saturation and free-draining. The filter paper method was used to assess how pyrolysis temperature influences the effect of biochar application on matric suction. For all feedstocks, large decreases in biochar yield were observed between the pyrolysis temperatures of 350° C and 500° C. For Salix viminalis and M. giganteus feedstocks, subsequent reductions in the yield with increasing pyrolysis temperature were much lower. There were significant differences in hydrophobicity between biochars produced from different biomass and mean biochar hydrophobicity decreased with increasing pyrolysis temperature for all feedstocks. Results for CEC and WHC

  9. Residues of Avermectin B1a in rotational crops and soils following soil treatment with [14C]Avermectin B1a

    International Nuclear Information System (INIS)

    Moye, H.A.; Malagodi, M.H.; Yoh, H.; Leibee, G.L.; Ku, C.C.; Wislocki, P.G.

    1987-01-01

    [ 14 C]Avermectin B 1 a was applied twelve times to muck and sandy loam soils and three times to sandy soil at 0.025-0.030 lb/acre per application. These applications simulated the intended use of avermectin B 1 a on celery, vegetables, and cotton, respectively. Following three aging periods in each soil type, sorghum, lettuce, and carrot or turnip seeds were planted and harvested at one-fourth, half, and full size. Analysis of these crops by oxidative combustion demonstrated that crops grown in muck, sandy loam, and sandy soils contained radiolabeled residues ranging from below the limit of quantitation (BLQ) to 7.4 μg/kg of avermectin B 1 a equivalents, BLQ to 11.6 μg/kg, and BLQ to 3.54 μg/kg, respectively. There was a general trend of decreasing residue concentrations with increasing preharvest intervals in crops grown in all soils. The radioactivity present in muck and sandy loam soils disappeared with half-lives ranging from 103 to 267 days and from 102 to 132 days, respectively

  10. Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte.

    Science.gov (United States)

    Hultine, K R; Koepke, D F; Pockman, W T; Fravolini, A; Sperry, J S; Williams, D G

    2006-03-01

    We investigated hydraulic constraints on water uptake by velvet mesquite (Prosopis velutina Woot.) at a site with sandy-loam soil and at a site with loamy-clay soil in southeastern Arizona, USA. We predicted that trees on sandy-loam soil have less negative xylem and soil water potentials during drought and a lower resistance to xylem cavitation, and reach E(crit) (the maximum steady-state transpiration rate without hydraulic failure) at higher soil water potentials than trees on loamy-clay soil. However, minimum predawn leaf xylem water potentials measured during the height of summer drought were significantly lower at the sandy-loam site (-3.5 +/- 0.1 MPa; all errors are 95% confidence limits) than at the loamy-clay site (-2.9 +/- 0.1 MPa). Minimum midday xylem water potentials also were lower at the sandy-loam site (-4.5 +/- 0.1 MPa) than at the loamy-clay site (-4.0 +/- 0.1 MPa). Despite the differences in leaf water potentials, there were no significant differences in either root or stem xylem embolism, mean cavitation pressure or Psi(95) (xylem water potential causing 95% cavitation) between trees at the two sites. A soil-plant hydraulic model parameterized with the field data predicted that E(crit) approaches zero at a substantially higher bulk soil water potential (Psi(s)) on sandy-loam soil than on loamy-clay soil, because of limiting rhizosphere conductance. The model predicted that transpiration at the sandy-loam site is limited by E(crit) and is tightly coupled to Psi(s) over much of the growing season, suggesting that seasonal transpiration fluxes at the sandy-loam site are strongly linked to intra-annual precipitation pulses. Conversely, the model predicted that trees on loamy-clay soil operate below E(crit) throughout the growing season, suggesting that fluxes on fine-textured soils are closely coupled to inter-annual changes in precipitation. Information on the combined importance of xylem and rhizosphere constraints to leaf water supply across soil

  11. Effect of Irrigation Water Type on Infiltration Rates of Sandy Soil

    International Nuclear Information System (INIS)

    Al-Omran, A.M.; Al-Matrood, S.M.; Choudhary, M.I.

    2004-01-01

    A laboratory experiment was conducted to test the effect of three water types (tap water, well water and sewage water) on the infiltration rate of three soils varying in texture (sand. loamy sand and sandy loam). A stationary rainfall simulator dispensing water at a rate of 45 mm h-1, connected to the different sources of water, was used to measure the infiltration rates. A total of 5 runs were carried out using each water quality. The volume of runoff against the time was recorded at each 5 minute interval. The infiltration rate was calculated as the difference between the water applied and the excesses water measured as surface runoff. Infiltration rate at first run were rapid in all the three soils and then progressively declined as the number of runs increased. The same trend was observed for each water quality tested. The reduction in infiltration rate with increasing number of runs for prewetted surface than for the initial dry surface was attributed to break down and settling of fine particles that took place earlier during prewetting. The infiltration curves for all the three soils when irrigared with different qualities of water was not distinguishable. The relationship between infiltration rate as function of time for the treatments applied were tested using Kostiakov equation I=bt-n. The infiltration data gave a coefficient of determination R2 >0.90 for all the treatments. The infiltration parameters B, and n varied strongly with respect to soil texture. Values of B decreased with changing soil textures, being highest for the sandy soil, and lowest for the sandy loamy soil, whereas n values showed the opposite trend. It was concluded that effect of soil texture on the infiltration rate was very pronounced while water qualities showed a little effect. (author)

  12. A discrete element model for soil-sweep interaction in three different soils

    DEFF Research Database (Denmark)

    Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs

    2013-01-01

    . To serve the model development, the sweep was tested in three different soils (coarse sand, loamy sand, and sandy loam). In the tests, soil cutting forces (draught and vertical forces) and soil disturbance characteristics (soil cross-section disturbance and surface deformation) resulting from the sweep...... were measured. The measured draught and vertical forces were used in calibrations of the most sensitive model parameter, particle stiffness. The calibrated particle stiffness was 0.75 × 103 N m−1 for the coarse sand, 2.75 × 103 N m−1 for the loamy sand, and 6 × 103 N m−1 for the sandy loam...

  13. Migration of 137Cs and 90Sr in undisturbed soil profiles under controlled and close-to-real conditions

    International Nuclear Information System (INIS)

    Forsberg, S.; Rosen, K.; Fernandez, V.; Juhan, H.

    2000-01-01

    Migration of 137 Cs and 90 Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil-plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30-40 cm depth in 1997 and 1998. The total deposition of 137 Cs ranged from 24 to 45 MBq/m 2 , and of 90 Sr from 23 to 52 MBq/m 2 . It was shown that migration of 137 Cs was fastest in sandy loam, and of 90 Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137 Cs and 90 Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137 Cs and 90 Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137 Cs and 90 Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils

  14. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 μm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam...... physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil...

  15. Volatilization of gasoline from soil

    International Nuclear Information System (INIS)

    Arthus, P.

    1993-05-01

    Gasoline contaminated soil threatens water resources and air quality. The extent of the threat depends on gasoline behavior in soil, which is affected by various mechanisms such as volatilization. To quantify volatilization, gasoline spills were simulated in the laboratory using a synthetic gasoline and three dry soils. Total gasoline and individual gasoline compound concentrations in soil were monitored as a function of depth and time. The time to reduce overall gasoline concentration in coarse sand, sandy loam, and silt loam to 40% of initial concentration, averaged between surface and a 200-mm depth, ranged from 0.25 d to 10 d. A wicking phenomenon which contributed to gasoline flux toward the atmosphere was indicated by behavior of a low-volatility gasoline compound. Based on separate wicking experiments, this bulk immiscible movement was estimated at an upward velocity of 0.09 m/d for Delhi sandy loam and 0.05 m/d for Elora silt loam. 70 refs., 24 figs., 34 tabs

  16. Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils

    Science.gov (United States)

    Ahmed, Ahmed S. F.; Raghavan, Vijaya

    2018-01-01

    Amendment of soil with biochar has been shown to enhance fertility and increase crop productivity, but the specific influence of biochar on soil workability remains unclear. Select physico-mechanical and chemical properties of clay loam and sandy loam soils were measured after amendment with wood-derived biochar of two particle size ranges (0.5-425 and 425-850 µm) at five dosages ranging from 0.5 to 10% dry weight. Whereas the clay loam soil workability decreased when the finer wood-derived biochar was applied at rates of 6 or 10%, soil fertility was not enhanced. The sandy loam soil, due to Proctor compaction, significantly decreased in bulk density with 6 and 10% wood-derived biochar amendments indicating higher soil resistance to compaction.

  17. [Characteristics of N2, N2O, NO, CO2 and CH4 Emissions in Anaerobic Condition from Sandy Loam Paddy Soil].

    Science.gov (United States)

    Cao, Na; Wang, Rui; Liao, Ting-ting; Chen, Nuo; Zheng, Xun-hua; Yao, Zhi-sheng; Zhang, Hai; Butterbach-Bahl, Klaus

    2015-09-01

    Understanding the characteristics of the production of nitrogen gases (N2, N2O and NO), CO2 and CH4 in anaerobic paddy soils is not only a prerequisite for an improved mechanistic understanding of key microbial processes involved in the production of atmospheric greenhouse gases (GHG), but might also provide the basis for designing greenhouse gas mitigation strategies. Moreover, quantifying the composition fractions of denitrification gaseous products is of key importance for improving parameterization schemes of microbial processes in process-oriented models which are increasingly used for assessing soil GHG emissions at site and national scales. In our experiments we investigated two sandy loam soils from two paddy fields. The initial concentrations of soil nitrate and dissolved organic carbon (DOC) were set at approximately 50 mg.kg-1 and mg.kg-1, respectively, by adding a mixture solution of KNO3 and glucose. The emissions of N2, N2O NO, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each soil sample were measured simultaneously, using a gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that the accumulative emissions of N2, N2O and NO of the two soil samples for the entire incubation period were 6 - 8, 20, and 15 - 18 mg.kg-1, respectively. By measuring the cumulative emissions of denitrification gases (N, = N2 + N2O + NO) we were able to explain 95% to 98% of observed changes in s1ifr nilrate concentrations. The mass fractions of N2, N2O and NO emissions to Nt were approximately 15% -19%, 47% -49%, and 34% -36%, respectively. Thus, in our experiments N2O and NO were the main products of denitrification for the entire incubation period. However, as the temporal courses of hourly or daily production of the denitrification gases showed, NO production dominated and peaked firstly, and then N2O, before finally N2 became the dominant product. Our results show the high temporal dynamic of

  18. Structural Stability and Hydraulic Conductivity Of Nkpologu Sandy ...

    African Journals Online (AJOL)

    Studies were conducted in the runoff plots at the University of Nigeria Nsukka Teaching and Resesarch Farm in 2010 and 2011 to monitor the changes in structural stability and saturated hydraulic conductivity (Ksat) of Nkpologu sandy loam soil under different cover management practices. The management practices were ...

  19. Interaction of the Bored Sand and Gravel Drain Pile with the Surrounding Compacted Loam Soil and Foundation Raft Taking into Account Rheological Properties of the Loam Soil and Non-Linear Properties of the Drain Pile

    Science.gov (United States)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Anzhelo, G. O.; Buslov, A. S.

    2018-01-01

    The task of the interaction of the sand and gravel drain pile with the surrounding loam soil after its preliminary deep compaction and formation of the composite ground cylinder from the drain pile and surrounding compacted loam soil (cells) is considered in the article. It is seen that the subsidence and carrying capacity of such cell considerably depends on physical and mechanical properties of the compacted drain piles and surrounding loam soil as well as their diameter and intercellular distance. The strain-stress state of the cell is considered not taking into account its component elements, but taking into account linear and elastic-plastic properties of the drain pile and creep flow of the surrounding loam soil. It is stated that depending on these properties the distribution and redistribution of the load on a cell takes place from the foundation raft between the drain pile and surrounding soil. Based on the results of task solving the formulas and charts are given demonstrating the ratio of the load between the drain pile and surrounding loam soil in time.

  20. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Science.gov (United States)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  1. Adsorption-Desorption of Hexaconazole in Soils with Respect to Soil Properties, Temperature, and pH

    Directory of Open Access Journals (Sweden)

    Maznah Zainol

    2016-06-01

    Full Text Available The effect of temperature and pH on adsorption-desorption of fungicide hexaconazole was studied in two Malaysian soil types; namely clay loam and sandy loam. The adsorption-desorption experiment was conducted using the batch equilibration technique and the residues of hexaconazole were analysed using the GC-ECD. The results showed that the adsorption-desorption isotherms of hexaconazole can be described with Freundlich equation. The Freundlich sorption coefficient (Kd values were positively correlated to the clay and organic matter content in the soils. Hexaconazole attained the equilibrium phase within 24 h in both soil types studied. The adsorption coefficient (Kd values obtained for clay loam soil and sandy loam soil were 2.54 mL/g and 2.27 mL/g, respectively, indicating that hexaconazole was weakly sorbed onto the soils due to the low organic content of the soils. Regarding thermodynamic parameters, the Gibb’s free energy change (ΔG analysis showed that hexaconazole adsorption onto soil was spontaneous and exothermic, plus it exhibited positive hysteresis. A strong correlation was observed between the adsorption of hexaconazole and pH of the soil solution. However, temperature was found to have no effect on the adsorption of hexaconazole onto the soils; for the range tested.

  2. Effects of soil type, moisture content, redox potential and methyl bromide fumigation on Kd values of radio-selenium in soil

    International Nuclear Information System (INIS)

    Ashworth, D.J.; Moore, J.; Shaw, G.

    2008-01-01

    Understanding the processes that determine the solid-liquid partitioning (K d value) of Se is of fundamental importance in assessing the risk associated with the disposal of radio-selenium-containing waste. Using a mini-column (rather than batch) approach, K d values for 75 Se were determined over time in relation to soil moisture content (field capacity or saturated), redox potential and methyl bromide fumigation (used to disrupt the soil microbial population) in three contrasting soil types: clay loam, organic and sandy loam. The K d values were generally in the range 50-500 L kg -1 , with mean soil K d increasing with increasing organic matter content. Saturation with water lowered the measured redox potentials in the soils. However, only in the sandy loam soil did redox potential become negative, and this led to an increase in 75 Se K d value in this soil. Comparison of the data with the Eh-pH stability diagram for Se suggested that such strong reduction may have been consistent with the formation of the insoluble Se species, selenide. These findings, coupled with the fact that methyl bromide fumigation had no discernible effect on 75 Se K d value in the sandy loam soil, suggest that geochemical, rather than microbial, processes controlled 75 Se partitioning. The inter-relations between soil moisture content, redox potential and Se speciation should be considered in the modelling and assessment of radioactive Se fate and transport in the environment

  3. Strength Characteristics of Reinforced Sandy Soil

    OpenAIRE

    S. N. Bannikov; Mahamed Al Fayez

    2005-01-01

    Laboratory tests on determination of reinforced sandy soil strength characteristics (angle of internal friction, specific cohesive force) have been carried out with the help of a specially designed instrument and proposed methodology. Analysis of the obtained results has revealed that cohesive forces are brought about in reinforced sandy soil and an angle of internal soil friction becomes larger in comparison with non-reinforced soil.

  4. Study on Soil Mobility of Two Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Mária Mörtl

    2016-01-01

    Full Text Available Movement of two neonicotinoid insecticide active ingredients, clothianidin (CLO and thiamethoxam (TMX, was investigated in different soil types (sand, clay, or loam and in pumice. Elution profiles were determined to explore differences in binding capacity. Soil characterized by high organic matter content retained the ingredients, whereas high clay content resulted in long release of compounds. Decrease in concentration was strongly influenced by soil types: both CLO and TMX were retained in loam and clay soils and showed ready elution through sandy soil and pumice. Elution capability of the active ingredients in sandy soil correlated with their water solubility, indicating approximately 30% higher rapidity for TMX than for CLO. Soil organic carbon-water partitioning coefficients (Koc determined were in good agreement with literature values with somewhat lower value for CLO in sandy soil and substantially higher values for TMX in clay soil. High mobility of these neonicotinoid active ingredients in given soil types urges stronger precautionary approach taken during their application.

  5. Transformation of the herbicide [14C]glufosinate in soils

    International Nuclear Information System (INIS)

    Smith, A.E.

    1989-01-01

    The degradation of 2 μg/g [ 14 C]glufosinate (DL-homoalan-4-ylmethylphosphinic acid) was studied in clay, clay loam, and sandy loam soils at 85% field capacity and at 20 degree C. Over a 4-week period the soils were extracted and analyzed for transformation products by radiochemical and gas chromatographic techniques. In all soils there was release of [ 14 C]carbon dioxide and formation of [ 14 C]-3-(hydroxymethylphosphinyl)propionic acid (MPPA) as major degradation products. Within 21 days, about 55% of the applied 14 C herbicide had been transformed to MPPA in the sandy loam and 19% to [ 14 C]carbon dioxide. After 28 days, approximately 45% of the 14 C herbicide had been transformed to MPPA in the clay and clay loam and 10% released as [ 14 C]carbon dioxide. At all samplings, other 14 C transformation products appeared to be insignificant

  6. Dynamic chemical characteristics of soil solution after pig manure application: a column study.

    Science.gov (United States)

    Hao, Xiuzhen; Zhou, Dongmei; Sun, Lei; Li, Lianzhen; Zhang, Hailin

    2008-06-01

    When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.

  7. Evaluation of the ecotoxicological impact of the organochlorine chlordecone on soil microbial community structure, abundance, and function.

    Science.gov (United States)

    Merlin, Chloé; Devers, Marion; Béguet, Jérémie; Boggio, Baptiste; Rouard, Nadine; Martin-Laurent, Fabrice

    2016-03-01

    The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring (14)C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and (14)C-compounds mineralizing activity). Mineralization of (14)C-chlordecone was inferior below 1 % of initial (14)C-activity. Less than 2 % of (14)C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial (14)C-activity). Only 23 % of the remaining (14)C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of (14)C-sodium acetate and (14)C-2,4-D was insensitive to chlordecone exposure in silty loam soil. However, mineralization of (14)C-sodium acetate was significantly reduced in soil

  8. Mucilage from seeds of chia (Salvia hispanica L.) used as soil conditioner; effects on the sorption-desorption of four herbicides in three different soils.

    Science.gov (United States)

    Di Marsico, A; Scrano, L; Amato, M; Gàmiz, B; Real, M; Cox, L

    2018-06-01

    The objective of this work was to determine the effect of the mucilage extracted from Chia seeds (Salvia hispanica L.) as soil amendment on soil physical properties and on the sorption-desorption behaviour of four herbicides (MCPA, Diuron, Clomazone and Terbuthylazine) used in cereal crops. Three soils of different texture (sandy-loam, loam and clay-loam) were selected, and mercury intrusion porosimetry and surface area analysis were used to examine changes in the microstructural characteristics caused by the reactions that occur between the mucilage and soil particles. Laboratory studies were conducted to characterise the selected herbicides with regard their sorption on tested soils added or not with the mucilage. Mucilage amendment resulted in a reduction in soil porosity, basically due to a reduction in larger pores (radius>10μm) and an important increase in finer pores (radius<10μm) and in partcles' surface. A higher herbicide sorption in the amended soils was ascertained when compared to unamended soils. The sorption percentage of herbicides in soils treated with mucilage increased in the order; sandy-loam. The increase in the organic carbon content upon amendment and the natural clay content of the soils are revealed to be responsible for the higher adsorption of Diuron when compared with Terbuthylazine, Clomazone and MCPA. Desorption of the herbicides was highly inhibited in the soils treated with mucilage; only Terbuthylazine showed a slight desorption in the case of loam and clay loam-soils. This study leads to the conclusion that mucilage from Chia seeds used as soil conditioner can reduce the mobility of herbicides tested in agricultural soils with different physico-chemical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A Comparative Study of the Persistence, Movement and Metabolism of Six Insecticides in Soils and Plants

    International Nuclear Information System (INIS)

    Fuhremann, T.W.; Lichtenstein, E.P.

    1981-01-01

    Full text: Two soil types and oat plants grown in these soils were incubated under identical environmental conditions. The insecticides used in order to increase the water solubility were 14 C-DDT, 14 C-lindane, 14 C-fonofos, 14 C-parathion, 14 C-phorate and 14 C-carbofuran. Total amounts of 14 C-residues recovered from insecticide-treated loam soils plus oats grown in these soils were similar with DDT and oarbofuran. They were also higher than those observed with the other insecticides. While most of the 14 C-DDT residues remained in the soils, most of the 14 C-carbofuran residues were recovered from oat leaves in the form of carbofuran and 3-hydroxycarbofuran. 14 C-residues of all insecticides were more persistent in loam than in sandy soil and sand-grown oats took up more 14 C-insecticide residues than loamgrown oats. The more water-soluble insecticides, 14 C-phorate and Ccarbofuran were more mobile and were metabolized to a greater extent than insecticides of lower water solubilities. Unextractable (bound) 14 C-residues in loam soil ranged from 2.8% to 29.1% of the applied doses of 14 C-DDT and 14 C-parathion, respectively. Bound 14 C-residues were lower in the sandy soil than in the loam soil, however, plant-bound 14 C-residues were higher in oats grown in the sandy soil than in loam grown oats. Insecticide metabolites recovered from soils and plants were identified and quantitated whenever possible. The oxygen analog metabolites of the organophosphorus insecticides were most abundant in the sandy soil and in oats grown therein. Data illustrate the importance of chemical structure, water solubility and soil type in predicting the comparative environmental behaviour of pesticides. (author)

  10. The behavior and bioactivity of imazaquin in soils

    International Nuclear Information System (INIS)

    McKinnon, E.J.

    1989-01-01

    Laboratory studies were conducted to determine the adsorption and relative mobility of 14 C-labelled imazaquin (2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imadazol-2-yl]-3-quinolinecarboxylic acid) and 14 C labelled metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide) on Norfolk sand loan (Typic Paleudult), Rion sandy clay loam (Typic Hapludult), Cape Fear sandy clay loam (Typic Umbraquult) and Webster clay loam (Typic Hapluquoll). Imazaquin was more mobile than metolachlor on all four soils. Soils high in humic matter content retained between 45 and 48% of the applied imazaquin and 93 and 97% of the applied metolachlor. The relative order of mobility of imazaquin in the soils was Rion = Norfolk > Cape Fear = Webster. The order for metolachlor in the soils was Rion > Norfolk > Cape Fear > Webster. Adsorption of imazaquin and metolachlor was inversely related to their mobility in the soil columns. Adsorption of imazaquin increased as the suspension pH decreased

  11. Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2014-04-01

    Full Text Available Segmented mesocosms (n = 3 packed with sand, sandy loam or clay loam soil were used to determine the effect of soil texture and depth on transport of two septic tank effluent (STE-borne microbial pathogen surrogates—green fluorescent protein-labeled E. coli (GFPE and MS-2 coliphage—in soil treatment units. HYDRUS 2D/3D software was used to model the transport of these microbes from the infiltrative surface. Mesocosms were spiked with GFPE and MS-2 coliphage at 105 cfu/mL STE and 105–106 pfu/mL STE, respectively. In all soils, removal rates were >99.99% at 25 cm. The transport simulation compared (1 optimization; and (2 trial-and-error modeling approaches. Only slight differences between the transport parameters were observed between these approaches. Treating both the die-off rates and attachment/detachment rates as variables resulted in an overall better model fit, particularly for the tailing phase of the experiments. Independent of the fitting procedure, attachment rates computed by the model were higher in sandy and sandy loam soils than clay, which was attributed to unsaturated flow conditions at lower water content in the coarser-textured soils. Early breakthrough of the bacteria and virus indicated the presence of preferential flow in the system in the structured clay loam soil, resulting in faster movement of water and microbes through the soil relative to a conservative tracer (bromide.

  12. Empirical Models for Power and Energy Requirements II : A Powered Implement Operation in Serdang Sandy Clay Loam, Malaysia

    Directory of Open Access Journals (Sweden)

    A. F. Kheiralla

    2017-12-01

    Full Text Available Power and energy requirements were measured with an instrumented tractor for rotary tilling in Serdang sandy clay loam soil.  The effects of travel speed and rotor speed upon the measured data were investigated.  Power model from orthogonal regression analysis was formulated based on linear and quadratic functions of travel speed and bite length.  Fuel consumption model from regression analysis was formulated based on linear tractor PTO power as well as linear equivalent tractor PTO power.  Fuel consumption rates predicted by ASAE D497.3 were found to be 25% to 28% overestimates of the values predicted by the model developed.  However, fuel consumption rates reported by OECD Tractor Test were found to be 1% to 9% lower than the fuel consumption rates predicted by the model developed.  A comparison of power and energy requirements for both powered and draught implements showed that the disk harrow was the most energy efficient implement in terms of fuel consumption and specific energy followed by the rotary tiller, disk plough and mouldboard.  Finally, average PTO power, fuel consumption, wheel slip, wheel power and specific energy for a powered implement are presented.

  13. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Directory of Open Access Journals (Sweden)

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  14. Toxicity of Fipronil in Mississippi Soil Types Against Reticulitermes flavipes (Isoptera: Rhinotermitidae)

    Science.gov (United States)

    J. E. Mulrooney; P. D. Gerard

    2007-01-01

    Three soils (a silt loam, loamy sand, sandy loam) found in Mississippi and pure silica sand were treated with fipronil and bioassayed using eastern subterranean termites, Reticulitermes flavipes. Soils were treated with aqueous solutions of Termidor (fipronil) at concentrations of 0, 0.12, 0.25,2.5, 5.0 and 20.0 ppm (wt AI: wt soil) that brought the soils to 15%...

  15. Effects of biochar, compost and biochar-compost on growth and nutrient status of maize in two Mediterranean soils

    Science.gov (United States)

    Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    During the past years, studies have shown that biochar alone or combined with compost, has the potential to improve soil fertility and maize yield mostly on tropical soils whereas experiments on Mediterranean soils are rare. Therefore, the influence of biochar, compost and mixtures of the two, on maize (Zea mays L.) growth and nutrient status were investigated, in this study. Biochars were produced from 2 feedstocks: grape pomace (GP) and rice husks (RH) pyrolyzed at 300°C. Maize was grown for 30 days in a greenhouse pot trial on two Mediterranean soils amended with biochar or/with compost at application rates of 0% and 2% (w/w) (equivalent to 0 and 16 t ha-1) and N fertilization. Total aboveground dry matter yield of maize was significantly improved relative to the control for all organic amendments, with increases in yield 43-60.8%, in sandy loam soil, while, in loam soil a statistically significant increase of 70.6-81.3% was recorded for all the amendments apart from compost. Some morphological traits, such as aboveground height of plants, shoot diameter and belowground dry matter yield were significantly increased by the organic treatments. Aboveground concentration of P was significantly increased from 1.46 mg g-1 at control to 1.69 mg g-1 at 2% GP biochar in sandy loam soil, whereas GP biochar combined with compost gave an increase of 2.03 mg g-1 compared to control 1.23 mg g-1. K and Mn concentrations of above ground tissues were significantly increased only in sandy loam soil, while Fe in both soils. N concentration of aboveground tissues declined for all the amendments in loam soil and in sandy loam soil apart from compost amendment. Significant positive impacts of amended soils on nutrients uptake were observed in both soils as compared to the control related to the improved dry matter yield of plant. The current study demonstrated that maize production could be greatly improved by biochar and compost because of the nutrients they supply and their

  16. Adsorption-desorption characteristics of Ni, Zn and Pb in soils of a landfill environment in Metro Manila, Philippines

    International Nuclear Information System (INIS)

    Castañeda, Soledad S.; Cuarto, Christina D.; David, Carlos Primo C.

    2015-01-01

    This study investigated the sorption-desorption characteristics of Ni, Zn, and Pb on two soil types in the environment of a municipal waste disposal facility. Batch experiments were carried out in ambient temperature and in unadjusted and close to soil field pH conditions. The kinetics of of adsorption fitted a pseudo second-order model. Rate constants were calculated and an empirical model for predicting adsorption of metal ions at a given time was derived from these constants. The equilibrium sorption capacities for the heavy metals in the clay and sandy loam soils were estimated using the Linear, Freundlich, and Langmuir isotherm models. The sorption process of Ni, Pb, and Zn in both soils generally fitted well with the Freundlich isotherm model at moderate to high initial concentration range of the metals. The Langmuir isotherm was applicable to the adsorption of Ni and Zn only. The adsorption capacity of the clay soil for the metals followed the order Zn > Pb > Ni. In the sandy loam soil, the adsorption capacity for the metals under the same conditions followed the order Pb > Zn > Ni. The adsorption capacities for the metals were in order of 1mg/g in both the landfill clay soil and the Lukutan River sandy loam soil, with slightly higher values for the clay soil. Desorption was minimal, less than 1% in the clay soil and about 2% in the sandy loam soil. Sorption reversibility tests showed that the retention of the metals in both soils follows the order Ni> Pb> Zn. (author)

  17. Investigation of the variation of the specific heat capacity of local soil samples from the Niger delta, Nigeria with moisture content

    International Nuclear Information System (INIS)

    Ofoegbu, C.O.; Adjepong, S.K.

    1987-11-01

    Results of an investigation of the variation, with moisture content, of the specific heat capacity of samples of three texturally different types of soil (clayey, sandy and sandy loam) obtained from the Niger delta area of Nigeria, are presented. The results show that the specific heat capacities of the soils studied, increase with moisture content. This increase is found to be linear for the entire range of moisture contents considered (0-25%), in the case of the sandy loam soil while for the clayey and sandy soils the specific heat capacity is found to increase linearly with moisture content up to about 15% after which the increase becomes parabolic. The rate of increase of specific heat capacity with moisture content appears to be highest in the clayey soil and lowest in the sandy soil. It is thought that the differences in the rates of increase of specific heat capacity with moisture content, observed for the soils, reflect the soils' water-retention capacities. (author) 3 refs, 5 figs

  18. Soil physical effects on longleaf pine performance in the West Gulf Coastal Plain

    Science.gov (United States)

    Mary Anne S. Sayer; James D. Haywood; Shi-Jean Susana Sung

    2015-01-01

    We summarize 8 years of soil physical property responses to herbicide manipulation of the understory in two young longleaf pine stands growing on either Ruston fine sandy loam or Beauregard silt loam soils. We also describe relationships between pine sapling vigor and the soil physical environment across a 3-year period on the Ruston soil and a 2-year period on the...

  19. Lysimeter experiments to determine the ability of soil to reduce concentrations of BOD, available P and inorganic N in dirty water.

    Science.gov (United States)

    Brookman, S K E; Chadwick; Retter, A R

    2005-11-01

    Lysimeter experiments were conducted to determine the ability of different soils to reduce levels of biochemical oxygen demand (BOD) and concentrations of molybdate reactive phosphorus (MRP) and ammonium-N (NH4(+)-N) in dirty water and the impact of applications on nitrate leaching. An additional experiment investigated the effect of dirty water components on leaching quality. This information is required to assess the potential risk of dirty water applications on polluting groundwater and to assess the use of such soils in the development of treatment systems for dirty water. Intact and disturbed soil lysimeters, 0.5 and 1m deep were constructed from four soils; a coarse free-draining sandy loam, a sandy loam over soft sandstone, a calcareous silty clay over chalk and a sandy loam over granite. For the coarse free-draining sandy loam, lysimeters were also constructed from disturbed soil with and without the addition of lime, to assess if this could increase phosphorus immobilisation. Levels of BOD and concentrations of MRP, NH4(+)-N and nitrate (NO3(-)-N) of leachates were measured following dirty water applications at 2 and 8 mm day(-1) under laboratory conditions. Under the daily 2mm application, all soils were effective at treating dirty water, reducing concentrations of BOD, MRP and NH4(+)- N by > or = 98% but NO3(-)-N concentrations increased up to 80 mg l(-1) from the 0.5 m deep lysimeters of the sandy loam over granite. Soils were less effective at reducing levels of BOD, MRP and NH4(+)- N at the 8 mm daily rate of application, with maximum NO3(-)-N concentrations of leachates of 200 mg l(-1) from disturbed soils.

  20. soil failure crescent radii measurement for draft in tillage study

    African Journals Online (AJOL)

    user

    1986-09-01

    Sep 1, 1986 ... SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY. FEDERAL UNIVERSITY OF TECHNOLOGY. OWERRI. ABSTRACT. Field clay loam and sandy loam soils were tilled with a chisel .... modified earth moving equation proposed by Mckyes and All was: ... applications of analytical mechanics.

  1. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China.

    Science.gov (United States)

    Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying

    2016-01-01

    Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

  2. The Effects of Land Configuration and Wood-Shavings Mulch on the Properties of a Sandy Loam Soil in Northeast Nigeria. 2. Changes in Physical Properties

    Directory of Open Access Journals (Sweden)

    Chiroma, AM.

    2006-01-01

    Full Text Available Mulching and ridge tillage are proven technologies for improving soil productivity in semi-arid regions. Yet data quantifying the combined influences of these practices are limited. Our objectives were to determine the changes in selected physical properties of a sandy loam after 4-years of annual tillage and wood-shavings mulching. The tillage and wood-shavings treatments consisted of: Flat bed (FB, Open ridge (OR, Tiedridge (TR, FBM, ORM and TRM were same as FB, OR and TR, respectively except that wood-shavings at a rate of 10 t/ha were surface applied ≈ 2 weeks after sowing each year to serve as both a mulch and an organic amendment. At the end of the trial in 2002, bulk density, penetration resistance, total porosity and soil water content from each of 0-0.075, 0.075-0.15 and 0.15-0.30 m depths were determined. Composite samples from the surface (0.075 and 0.075-0.15 m layers from 3 replicates of each treatment were also collected for the determination of wet aggregate stability and from 0-0.15 m and 0.15-0.30 m layers for determination of saturated hydraulic conductivity (Ksat. After 4 years of annual tillage and addition of woodshavings, soil bulk density and penetration resistance were consistently lower and total porosity higher in the FBM, ORM and TRM treatments than in the FB, OR and TR treatments. Penetration resistance in all treatments was strongly related to soil water content. A 'hoe pan' was established below 0.15 m depth beneath the furrows of the ridged treatments. This could be attributed to human traffic during field operations and ponding of water, which occurred in the furrows following heavy rains. Wet aggregate stability estimated as the proportion of aggregates of size > 0.25 mm (macro-aggregates in the 0-0.15 m layer were significantly (P< 0.05 higher under FBM, ORM and TRM than under FB, OR or TR treatments. Ksat was not influenced by either tillage or wood-shavings treatments but were higher for the mulched plots

  3. Adsorption behavior of endosulfan on alluvial soil

    International Nuclear Information System (INIS)

    Ashraf, M.; Sherazi, S.T.H.; Nizamani, S.M.; Bhanger, M.I.

    2012-01-01

    The present study was carried out to assess the behavior of endosulfan pesticide in alluvial soil under laboratory conditions. Sandy loam soil was studied to evaluate the fate of applied endosulfan with respect to soil properties. Known amount of endosulfan was added on alluvial soil in PVC column and eluted with 1000 ml of water. Eluents were collected in 10 parts, each of 100 ml. The soil in the column was divided in to three equal parts, each of 10 cm. Each part of the soil and eluents were analyzed for the determination of Endosulfan level using GC- mu ECD and GC-MS techniques. The kinetic and equilibrium adsorption characteristics of endosulfan on sandy loam soil was also studied and found that it follows Ho's pseudo second order and Freundlich isotherm. The present study revealed that a-and beta-Endosulfan was determined efficiently with their degraded products in alluvial soil under laboratory conditions with above mentioned instruments. (author)

  4. Modeling Phytoremediation of Cadmium Contaminated Soil with Sunflower (Helianthus annus) Under Salinity Stress

    International Nuclear Information System (INIS)

    Motesharezadeh, B.; Navabzadeh, M.; Liyaghat, A. M.

    2016-01-01

    This study was carried out as a factorial experiment with 5 levels of cadmium (Cd) (o, 25, 50, 75, and 100 mg/kg), 5 levels of salinity (Control, 4, 5, 6, and 7 dS/m), and two soil textures (sandy loam and clay loam). The results showed that the amount of Cd in root and shoot of sunflower increased as soil salinity and Cd concentration increased. The best concentrations for Cd phytoremediation were 75 mg/kg in sandy loam and 100 mg/kg in clay loam. Mass-Hoffman model in simulating transpiration Cd stress as well as Homaee model in simulating salt stress indicated the best results in light soils. By multiplying the salinity stress model by Cd stress model, the simultaneous model for each soil was calculated. These models in light soil (r2=0.68) and heavy soil (r2=0.81) were compatible with measured values. In the heavy soil, absorbed Cd by plant along with increased salinity reflected low changes, but changes in Cd absorbed by plants in the heavy soil were more uniform than in the light soil. In conclusion, for estimating the Cd uptake, the model had a better performance in the heavy soil (under salt stress).

  5. Influence of Soil Based Growing Media on Vegetative Propagation of Selected Cultivars of Olea Europaea

    International Nuclear Information System (INIS)

    Ahmed, M. I.; Ashraf, M. I.; Malik, S. U.; Husaain, Q.

    2016-01-01

    Pothwar region of Pakistan is a natural habitat of Olea spp. There is a high demand of certified olive plants to establish olive orchids in the region, because native wild species are non-fruit bearing. Plants of certified fruit bearing olive (Olea europaea L.) cultivars are rarely available. Vegetative propagation of olive is highly responsive to texture of soil based growing media. This study examined the effect of growing media composition (soil texture and nutrients) on vegetative propagation of five cultivars of olive. The experiment was carried out in randomized complete block design (RCBD) with two factors factorial having 25 repeats of each four treatments. Plant growth and survival data were collected and analyzed for the influence of soil attributes. In sandy loam soil, cv. Bari-1 had 82 percent plant survival, highest number of roots per plant (3.5), and longest root length (13.01 cm). Highest number of shoots per plant (4.25) and maximum shoot length (15.64 cm) were also recorded for Bari-1 with sandy loam growing media. Silt loam soil is least suitable growing media for vegetative propagation of olive. In the silt loam soil, plants survival rate was 59 percent for cv. Gemlik, number of roots per plant was 1.5 for cv. Ottobrattica, minimum root length 5.65 cm, minimum number of shoots per plant one, and minimum shoot length 7.42 cm were recorded for cv. Pendolino with silt loam soil. Results suggested that sandy loam growing media is better than the others for vegetative propagation of olive. Cultivar Bari-1 performed better than the others examined in this study by indicating highest (1) survival percentage, (2) root and shoot length, and (3) number of roots and shoots produced within a specific period of time. (author)

  6. Determining photon energy absorption parameters for different soil samples

    International Nuclear Information System (INIS)

    Kucuk, Nil; Cakir, Merve; Tumsavas, Zeynal

    2013-01-01

    The mass attenuation coefficients (μ s ) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137 Cs and 60 Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ x 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137 Cs. The effective atomic numbers (Z eff ) and the effective electron densities (N eff ) were determined experimentally and theoretically using the obtained μ s values for the soil samples. Furthermore, the Z eff and N eff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. (author)

  7. Effect of Tractor Forward Speed on Sandy Loam Soil Physical ...

    African Journals Online (AJOL)

    Results indicate significant differences in soil physical conditions arising from different levels of tractor forward speed. A forward speed of approximately 7km/h resulted in appreciable amelioration of soil structure as reflected in improvements in the soil strength properties and maximum reduction in clod mean weight ...

  8. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    Science.gov (United States)

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  9. Impact of tillage intensity on clay loam soil structure

    DEFF Research Database (Denmark)

    Daraghmeh, Omar; Petersen, Carsten; Munkholm, Lars Juhl

    Soil structure and structural stability are key parameters in sustainable soil management and optimum cropping practices. Locally and temporally adapted precision tillage may improve crop performance while at the same time reduce environmental impacts. The main objective of this study...... was to improve the knowledge of precision tillage practices through characterizing the effect of varied tillage intensities on structural properties of a clay loam soil. A field experiment was conducted using a randomized complete block design with two main factors, i.e. operational speed (OS, 2 levels......) and rotovating speed (RS, 3 levels). The tillage was conducted using a PTO-driven rotovator equipped to measure angular velocity. The effect of traffic compaction, made directly after tillage, was measured on soil taken from wheel track (WT) compared with soil outside wheel track (NWT). Soil samples from 0-3 cm...

  10. Changes in labile soil organic matter fractions following land use change from monocropping to poplar-based agroforestry systems in a semiarid region of Northeast China.

    Science.gov (United States)

    Mao, Rong; Zeng, De-Hui; Li, Lu-Jun; Hu, Ya-Lin

    2012-11-01

    Labile fractions of soil organic matter (SOM) respond rapidly to land management practices and can be used as a sensitive indicator of changes in SOM. However, there is little information about the effect of agroforestry practices on labile SOM fractions in semiarid regions of China. In order to test the effects of land use change from monocropping to agroforestry systems on labile SOM fractions, we investigated soil microbial biomass C (MBC) and N, particulate organic matter C (POMC) and N (POMN), as well as total organic C (TOC) and total N (TN) in the 0- to 15-cm and the 15- to 30-cm layers in 4-year-old poplar-based agroforestry systems and adjoining monocropping systems with two different soil textures (sandy loam and sandy clay loam) in a semiarid region of Northeast China. Our results showed that poplar-based agroforestry practices affected soil MBC, POMC, and POMN, albeit there was no significant difference in TOC and TN. Agroforestry practices increased MBC, POMC, and POMN in sandy clay loam soils. However, in sandy loam soils, agroforestry practices only increased MBC and even decreased POMC and POMN at the 0- to 15-cm layer. Our results suggest that labile SOM fractions respond sensitively to poplar-based agroforestry practices and can provide early information about the changes in SOM in semiarid regions of Northeast China and highlight that the effects of agroforestry practices on labile SOM fractions vary with soil texture.

  11. Interaction Among Machine Traffic, Soil Physical Properties and Loblolly Pine Root Prolifereation in a Piedmont Soil

    Science.gov (United States)

    Emily A. Carter; Timothy P. McDonald

    1997-01-01

    The impact of forwarder traffic on soil physical properties was evaluated on a Gwinnett sandy loam, a commonly found soil of the Piedmont. Soil strength and saturated hydraulic conductivity were significantly altered by forwarder traffic, but reductions in air-filled porosity also occurred. Bulk density did not increase significantly in trafficked treatments. The...

  12. Sorção do imazapyr em solos com diferentes texturas Imazapyr sorption in soils with different textures

    Directory of Open Access Journals (Sweden)

    L.E. Firmino

    2008-06-01

    Full Text Available O conhecimento do comportamento de herbicidas no ambiente, sobretudo no solo, permite a predição de possíveis impactos do seu uso em sistemas agrícolas. Com o intuito de avaliar a sorção do herbicida imazapyr no solo, foi realizado um experimento, utilizando sorgo (Sorghum bicolor como planta bioindicadora. A sorção do imazapyr foi avaliada em areia lavada e em três solos, com as seguintes texturas: muito argilosa, franco-argilo-arenosa e areia-franca, provenientes, respectivamente, das cidades de Sete Lagoas, João Pinheiro e Rio Casca, em Minas Gerais. Foram determinados: o valor de I50 (dose que inibiu 50% no acúmulo de massa seca da planta-teste e a relação de sorção [RS = (I50 solo -I 50 areia/I50 areia]. Os valores de I50 observados foram: 29,41; 10,20 e 7,33 mg kg-1, e a relação de sorção (RS: 9,77; 2,73 e 1,68, respectivamente para os solos muito argiloso, franco-argilo-arenoso e areia franca. O herbicida imazapyr apresentou a seguinte ordem de sorção nos substratos: muito argiloso > franco-argilo-arenoso > areia-franca > areia lavada. Em solos arenosos e com baixos teores de matéria orgânica, a baixa sorção do imazapyr predispõe o produto à lixiviação no perfil do solo, podendo contaminar mananciais de águas subterrâneas.Knowledge about herbicide behavior in the environment, especially in soil, allows predicting possible impacts caused by its use in agricultural systems. An experiment using Sorghum bicolor as a bio-indicator was carried out to evaluate imazapyr sorption in soil. Sorption was evaluated in washed sand and in soils of 3 different textures: very clayed, sandy clayed loam and sandy loam, respectively from Sete Lagoas, João Pinheiro and Rio Casca - Minas Gerais. The value of I50, which inhibits 50% of dry biomass accumulation of the test-plant, and sorption relation (SR = I50 soil - I50 sand/I50 sand were determined. I50 values observed were 29.41, 10.20 and 7.33 mg kg-1 and SR values were 9

  13. KC-46A Formal Training Unit (FTU) and First Main Operating Base (MOB 1) Beddown EIS. Volume 1

    Science.gov (United States)

    2014-03-01

    discharged into the sanitary sewer system. Most of the sanitary sewer system at Altus AFB is over 45 years old and constructed of vitrified clay ...drained (USDA 2002a, 2003). The textures of the Tillman-Hollister soils range from clay loam to clay , with the Hollister subsurface soils being more clayey...range from sandy to sandy loam to sandy clay loam, with the Nobscot soils having a more sandy nature, especially in the surface soils (Altus AFB 2009a

  14. Final KC-46A Formal Training Unit (FTU) and First Main Operating Base (MOB 1) Beddown EIS

    Science.gov (United States)

    2014-03-01

    years old and constructed of vitrified clay pipe or concrete. Of the sanitary sewer lines field surveyed in 2004 and 2007, approximately 85 percent...Hollister soils are very deep and well-drained (USDA 2002a, 2003). The textures of the Tillman-Hollister soils range from clay loam to clay , with...The textures of the Miles-Nobscot soils range from sandy to sandy loam to sandy clay loam, with the Nobscot soils having a more sandy nature

  15. Structure and Composition of Leachfield Bacterial Communities: Role of Soil Texture, Depth and Septic Tank Effluent Inputs

    Directory of Open Access Journals (Sweden)

    Janet A. Atoyan

    2012-09-01

    Full Text Available Although groundwater quality depends on microbial processes in the soil treatment area (STA of onsite wastewater treatment systems (OWTS, our understanding of the development of these microbial communities is limited. We examined the bacterial communities of sand, sandy loam, and clay STAs at different depths in response to septic tank effluent (STE addition using mesocosms. Terminal restriction fragment length polymorphism (TRFLP analysis was used to compare the bacterial community structure and composition of STE, native soil prior to STE addition (UNX and soil exposed to STE (EXP. Principal component analysis separated communities with depth in sand but not in sandy loam or clay. Indices of richness, diversity, and evenness followed the order: sandy loam > sand > clay. Analysis of TRF peaks indicated that STE contributed least to the composition of STA bacterial communities (5%–16%, followed by UNX soil (18%–48%, with the highest proportion of the community made up of TRFs not detected previously in either UNX or STE (50%–82% for all three soils. Soil type and depth can have a marked effect on the structure and composition of STA bacterial communities, and on the relative contribution of native soil and STE to these communities.

  16. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  17. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  18. Electrochemical techniques implementation for corrosion rate measurement in function of humidity level in grounding systems (copper and stainless steel) in soil samples from Tunja (Colombia)

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Blanco, J.; Jimenez, C.; Vera-Monroy, S. P.; Mejía-Camacho, A.

    2017-12-01

    In this work, DC electrochemical techniques were used to determine the corrosion rate of copper and stainless-steel electrodes used in grounding, varying the level of humidity, in sandy loam and clay loam soils. The maximum corrosion potentials were: for copper -211 and -236mV and for stainless steel of -252 and -281mV, in sandy loam and clay loam respectively, showing that in sandy loam the values are higher, about 30mV. The mechanism by which steel controls corrosion is by diffusion, whereas in copper it is carried out by transfer of mass and charge, which affects the rate of corrosion, which in copper reached a maximum value of 5mm/yr and in Steel 0.8mm/yr, determined by Tafel approximations. The behaviour of the corrosion rate was mathematically adjusted to an asymptotic model that faithfully explains the C.R. as a function of humidity, however, it is necessary to define the relation between the factor □ established in the model and the precise characteristics of the soil, such as the permeability or quantity of ions present.

  19. Investigating the Effect of Soil Texture and Fertility on Evapotranspiration and Crop Coefficient of Maize Forage

    Directory of Open Access Journals (Sweden)

    M. Ghorbanian Kerdabadi

    2017-02-01

    Full Text Available Introduction: Crop coefficient varies in different environmental conditions, such as deficit irrigation, salinity and intercropping. The effect of soil fertility and texture of crop coefficient and evapotranspiration of maize was investigated in this study. Low soil fertility and food shortages as a stressful environment for plants that makes it different evapotranspiration rates of evapotranspiration calculation is based on the FAO publication 56. Razzaghi et al. (2012 investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (CV. Titicaca was grown in field lysimeters with sand, sandy loam and sandy clay loam soil. Zhang et al (2014 were investigated the Effect of adding different amounts of nitrogen during three years (from 2010 to 2012 on water use efficiency and crop evapotranspiration two varieties of winter wheat. The results of their study showed. The results indicated the following: (1 in this dry land farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic. Materials and Methods: The study was a factorial experiment in a completely randomized design with three soil texture treatment, including silty clay loam, loam and sandy-loam soil and three fertility treatment, including without fertilizer, one and two percent fertilizer( It was conducted at the experimental farm in

  20. EFFECT OF SOLE AND ASSOCIATIVE ACTIONS OF ELEMENTAL SULFUR AND INOCULATION SULFUR OXIDIZING BACTERIA ON GROWTH AND NUTRIENTS CONTENTS OF PEPPER PLANTS AND THE USED SOILS

    Directory of Open Access Journals (Sweden)

    S. A. Ibrahim

    2011-12-01

    Full Text Available A pot experiment was conducted to study the effect of elemental sulfur (E.S rate (2.5 g/kg soil and sulfur oxidizing bacteria on pepper plant and some chemical properties of two representative soil samples varying in their texture and CaCO3 content. Pepper was grown in Shobrakheet clay loam and Nobaria sandy loam soils for 50 days. Each soil was treated with elemental sulfur (2.5 g kg-1 soil and inoculated with two sulfur oxidizing bacteria (S.O.B. No.8 and S.O.B. ATCC 8158. Elemental sulfur with or without sulfur oxidizing bacteria increased shoot dry weights of pepper plants as compared with control. The highest effect was observed with E.S + ATCC 8158 treatment which resulted in increasing the pepper shoot dry weights from 1.36 to 2.08 g pot-1 with the clay loam soil and from 0.77 to 1.37 g pot-1 with the sandy loam soil. The same treatment resulted in the highest plant content of S, N, P, K and micronutrients.

  1. Radon emanation coefficients in sandy soils

    International Nuclear Information System (INIS)

    Holy, K.; Polaskova, A.; Baranova, A.; Sykora, I.; Hola, O.

    1998-01-01

    In this contribution the results of the study of an influence of the water content on the emanation coefficient for two sandy soil samples are reported. These samples were chosen on the because of the long-term continual monitoring of the 222 Rn concentration just in such types of soils and this radon concentration showed the significant variations during a year. These variations are chiefly given in connection with the soil moisture. Therefore, the determination of the dependence of the emanation coefficient of radon on the water content can help to evaluate the influence of the soil moisture variations of radon concentrations in the soil air. The presented results show that the emanation coefficient reaches the constant value in the wide interval of the water content for both sandy soil samples. Therefore, in the common range of the soil moisture (5 - 20 %) it is impossible to expect the variations of the radon concentration in the soil air due to the change of the emanation coefficient. The expressive changes of the radon concentration in the soil air can be observed in case of the significant decrease of the emanation coefficient during the soil drying when the water content decreases under 5 % or during the complete filling of the soil pores by the water. (authors)

  2. Comparison of germination and seed vigor of sunflower in two contaminated soils of different texture

    Science.gov (United States)

    Zhao, Xin; Han, Jaemaro; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Phytoremediation as an emerging low-cost and ecologically friendly alternative to the conventional soil remediation technologies has gained a great deal of attention and into lots of research. As a kind of the methods that use of green plants to remediate heavy metals contaminated soils, the early growth status of plant seeds in the contaminated environmental directly affects the effect of phytoremediation. Germination test in the water (aqueous solution of heavy metal) is generally used for assessing heavy metal phytotoxicity and possibility of plant growth, but there is a limit. Because soil is commonly main target of phytoremediation, not the water. The bioavailability of heavy metals in the soil also depends on the texture. So soil texture is an important factor of phytoremediation effect. Sunflower is the representative species which have good tolerance to various heavy metals; furthermore, the seeds of sunflower can be used as the raw-material for producing bio-diesel. The objectives of this research were to investigate germination rate of sunflowers in various heavy metal contaminated soils and to compare the seedling vigor index (SVI) of sunflower in two contaminated soils of different texture. Sunflower (Helianthusannuus L.) seeds were obtained from a commercial market. In order to prove the soil texture effect on heavy metal contaminated soil, germination tests in soil were conducted with two different types of soil texture (i.e., loam soil and sandy loam soil) classified by soil textural triangle (defined by USDA) including representative soil texture of Korea. Germination tests in soil were conducted using KS I ISO 11260-1 (2005) for reference that sunflower seeds were incubated for 7 days in dark at 25 ± 1 Celsius degree. The target heavy metals are Nickel (Ni) and Zinc (Zn). The Ni and Zn concentrations were 0, 10, 50, 100, 200, 300, 500 mg-Ni/kg-dry soil, and 0, 10, 50, 100, 300, 500, 900 mg-Zn/kg-dry soil, respectively. After germination test for 7

  3. An automated microinfiltrometer to measure small-scale soil water infiltration properties

    Directory of Open Access Journals (Sweden)

    Gordon Dennis C.

    2014-09-01

    Full Text Available We developed an automated miniature constant-head tension infiltrometer that measures very small infiltration rates at millimetre resolution with minimal demands on the operator. The infiltrometer is made of 2.9 mm internal radius glass tube, with an integrated bubbling tower to maintain constant negative head and a porous mesh tip to avoid air-entry. In the bubbling tower, bubble formation and release changes the electrical resistance between two electrodes at the air-inlet. Tests were conducted on repacked sieved sands, sandy loam soil and clay loam soil, packed to a soil bulk density ρd of 1200 kg m-3 or 1400 kg m-3 and tested either air-dried or at a water potential ψ of -50 kPa. The change in water volume in the infiltrometer had a linear relationship with the number of bubbles, allowing bubble rate to be converted to infiltration rate. Sorptivity measured with the infiltrometer was similar between replicates and showed expected differences from soil texture and ρd, varying from 0.15 ± 0.01 (s.e. mm s-1/2 for 1400 kg m-3 clay loam at ψ = -50 kPa to 0.65 ± 0.06 mm s-1/2 for 1200 kg m-3 air dry sandy loam soil. An array of infiltrometers is currently being developed so many measurements can be taken simultaneously.

  4. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  5. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-01-01

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  6. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil.

    Science.gov (United States)

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  7. Occurrence, fate, and persistence of gemfibrozil in water and soil.

    Science.gov (United States)

    Fang, Yu; Karnjanapiboonwong, Adcharee; Chase, Darcy A; Wang, Jiafan; Morse, Audra N; Anderson, Todd A

    2012-03-01

    Pharmaceuticals and personal care products (PPCPs) have emerged as a group of potential environmental contaminants of concern. The occurrence of gemfibrozil, a lipid-regulating drug, was studied in the influent and effluent at a wastewater treatment plant (WWTP) and groundwater below a land application site receiving treated effluent from the WWTP. In addition, the sorption of gemfibrozil in two loam soils and sand was assessed, and biological degradation rates in two soil types under aerobic conditions were also determined. Results showed that concentrations of gemfibrozil in wastewater influent, effluent, and groundwater were in the range of 3.47 to 63.8 µg/L, 0.08 to 19.4 µg/L, and undetectable to 6.86 µg/L, respectively. Data also indicated that gemfibrozil in the wastewater could reach groundwater following land application of the treated effluent. Soil-water distribution coefficients for gemfibrozil, determined by the batch equilibrium method, varied with organic carbon content in the soils. The sorption capacity was silt loam > sandy loam > sand. Under aerobic conditions, dissipation half-lives for gemfibrozil in sandy loam and silt loam soils were 17.8 and 20.6 days, respectively; 25.4 and 11.3% of gemfibrozil was lost through biodegradation from the two soils over 14 days. Copyright © 2011 SETAC.

  8. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils

    Science.gov (United States)

    Alice W. Ratcliff; Matt D. Busse; Carol J. Shestak

    2006-01-01

    Glyphosate applied at the recommended field rate to a clay loam and a sandy loam forest soil resulted in few changes in microbial community structure. Total and culturable bacteria, fungal hyphal length, bacterial:fungal biomass, carbon utilization profiles (BIOLOG), and bacterial and fungal phospholipid fatty acids (PLFA) were unaffected 1, 3, 7, or 30 days...

  9. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Lukshiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60 %) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  10. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Luksiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60%) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  11. Evaporation From Soil Containers With Irregular Shapes

    Science.gov (United States)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  12. Preparation of Sandy Soil Stabilizer for Roads Based on Radiation Modified Polymer Composite

    International Nuclear Information System (INIS)

    Elnahas, H.H.

    2016-01-01

    Radiation modified polymer composite (RMPC) was studied to build an extremely durable sandy road, construct a trail or bath, or control dust and erosion. A dilute solution of composite binds sandy soil fines through a coagulation bonding process. The result is a dense soil structure that has superior resistance to cracks and water penetration and can also solve erosion control problems. In erosion control applications, diluted composite is merely sprayed into sandy soil without compaction, effectively sealing the surface to prevent air-born dust or deterioration from erosion. The prepared composite has an elastic and melt-able film formation that imparts thermal compacting to the stabilized sandy soil after full dryness for sandy road leveling, repairing and restoration processes. The prepared composite is environmentally economical when compared with traditional sandy soil stabilizing (SSS) or sealing methods.

  13. Research Note:Determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin, Turkey

    Directory of Open Access Journals (Sweden)

    M. Tombul

    2004-01-01

    Full Text Available Spatial and temporal variations in soil hydraulic properties such as soil moisture q(h and hydraulic conductivity K(q or K(h, may affect the performance of hydrological models. Moreover, the cost of determining soil hydraulic properties by field or laboratory methods makes alternative indirect methods desirable. In this paper, various pedotransfer functions (PTFs are used to estimate soil hydraulic properties for a small semi-arid basin (Kurukavak in the north-west of Turkey. The field measurements were a good fit with the retention curve derived using Rosetta SSC-BD for a loamy soil. To predict parameters to describe soil hydraulic characteristics, continuous PTFs such as Rosetta SSC-BD (Model H3 and SSC-BD-q33q1500 (Model H5 have been applied. Using soil hydraulic properties that vary in time and space, the characteristic curves for three soil types, loam, sandy clay loam and sandy loam have been developed. Spatial and temporal variations in soil moisture have been demonstrated on a plot and catchment scale for loamy soil. It is concluded that accurate site-specific measurements of the soil hydraulic characteristics are the only and probably the most promising method to progress in the future. Keywords: soil hydraulic properties, soil characteristic curves, PTFs

  14. EFFECT OF IRRIGATION INTERVAL AND SOIL AMENDMENTS ON SOIL ORGANIC C, NITROGEN AND POTASSIUM OF SANDY SOIL AND GROWTH OF Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Djajadi

    2013-06-01

    Full Text Available Inherently, sandy soil is the unfertile soil with low in all aspects of soil fertility and has a low capacity to retain water applied nutrients. To improve the fertility of sandy soil as media growth of Jatropha curcas, clay and organic matter may have important role when they are incorporated to the sandy soil. This study investigated the effect of irrigation interval and incorporation of clay together with organic matter to sandy soil on soil organic C, N, and K and growth of J. curcas. The rates of clay and organic matter incorporated to top sandy soil were 5% clay + 0.8% organic matter and 10% clay + 1.6% organic matter. Two irrigation intervals tested were 10 day and 20 day. The results found that incorporation of 10% clay + 1.6% organic matter to sandy soil increased soil C organic, N total and exchangeable K which in turn increased number of leaves and number of lateral branches of J curcas. Irrigation intervals had no effect on all parameters observed.

  15. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions

    Directory of Open Access Journals (Sweden)

    F.Sh.F. Badawi

    2011-06-01

    Full Text Available The ability of tested rhizomicrobial isolates (Serratia marcescens and Trichoderma harzianum along with a strain of root nodule bacteria (Bradyrhizobium spp. to exhibit some PGP-properties was evaluated in vitro conditions. The main PGP-properties, namely the ability to solubilize-P and production of IAA, as well as production of siderophores and HCN were examined. Additionally, field trials were conducted on sandy loam soil at El-Tahrir Province during two successive summer seasons to study the effect of co-inoculation with Bradyrhizobium either individually or together with S. marcescens and/or T. harzianum on nodulation, some plant growth characters, peanut yield and its yield components. The in vitro experiment revealed that all of the tested microorganisms were apparently able to trigger PGP-properties. Phosphate solubilization was the common feature of the employed microorganisms. However, T. harzianum appeared to be superior to other microorganisms, and Bradyrhizobium displayed the lowest capacity. The ability of the microorganisms to produce indole compounds showed that S. marcescens was more effective in IAA production and followed by Bradyrhizobium. Capacity of S. marcescens and T. harzianum to excrete ferric-specific ligands (siderophores and HCN was detected, while Bradyrhizobium failed to produce such compounds. Results of field trials showed that the uninoculated peanut had the least nodulation status, N2-ase activity and all vegetative growth characters in both studied seasons. Bacterization of peanut seeds with bradyrhizobia exerted considerable improvement in number and mass of root nodules, increased the rate of acetylene reduction and all growth characters in comparison to the uninoculated control. The synergy inoculation between bradyrhizobia and any of the tested microorganisms led to further increases of all mentioned characters and strengthened the stimulating effect of the bacterial inoculation. However, the promotive

  16. Migration characteristics of cobalt-60 through sandy soil in high pH solution

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko

    1992-01-01

    Migration characteristics of 60 Co through sandy soil in high pH solution has been investigated by both column and batch techniques. The association of 60 Co with the sandy soil and its components were studied by sequential extraction techniques. The concentration profile of 60 Co in the sandy soil column was composed of two exponential curves showing that 60 Co would consist of immobile and mobile fractions. The immobile 60 Co was retained by the sandy soil and was distributed near the top. Though the mobile 60 Co was little sorbed by soil and migrated through the soil column, maximum concentration of 60 Co in the effluents decreased slightly with increasing path length of the soil column. The sequential extraction of 60 Co from the sandy soil and from its components showed that 60 Co was sorbed by both manganese oxide and clay minerals. And manganese oxide is one of the responsible soil components for the observed decrease in the maximum concentration of 60 Co in the effluents. Although the content of manganese oxide in the sandy soil was 0.13%, manganese oxide is the important component to prevent from the migration of 60 Co in the high pH solution. (author)

  17. Termite Infestation Associated with Type of Soil in Pulau Pinang, Malaysia (Isoptera: Rhinotermitidae)

    OpenAIRE

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-01-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  18. Termite infestation associated with type of soil in pulau pinang, malaysia (isoptera: rhinotermitidae).

    Science.gov (United States)

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-12-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  19. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    International Nuclear Information System (INIS)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R.; Topp, Edward

    2010-01-01

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. 14 C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable 14 C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  20. Apparent soil electrical conductivity in two different soil types

    Directory of Open Access Journals (Sweden)

    Wilker Nunes Medeiros

    Full Text Available ABSTRACT Mapping the apparent soil electrical conductivity (ECa has become important for the characterization of the soil variability in precision agriculture systems. Could the ECa be used to locate the soil sampling points for mapping the chemical and physical soil attributes? The objective of this work was to examine the relations between ECa and soil attributes in two fields presenting different soil textures. In each field, 50 sampling points were chosen using a path that presented a high variability of ECa obtained from a preliminary ECa map. At each sampling point, the ECa was measured in soil depths of 0-20, 0-40 and 0-60 cm. In addition, at each point, soil samples were collected for the determination of physical and chemical attributes in the laboratory. The ECa data obtained for different soil depths was very similar. A large number of significant correlations between ECa and the soil attributes were found. In the sandy clay loam texture field there was no correlation between ECa and organic matter or between ECa and soil clay and sand content. However, a significant positive correlation was shown for the remaining phosphorus. In the sandy loam texture field the ECa had a significant positive correlation with clay content and a significant negative correlation with sand content. The results suggest that the mapping of apparent soil electrical conductivity does not replace traditional soil sampling, however, it can be used as information to delimit regions in a field that have similar soil attributes.

  1. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2012-01-01

    carbon (CCCsoils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile strength...... the compression index and a proposed functional index,was significantly greater for theMFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles immediately after......To improve our understanding of how clay-organic carbon dynamics affect soil aggregate strength and physical resilience, we selected three nearby soils (MFC,Mixed Forage Cropping; MCC,Mixed Cash Cropping; CCC, Cereal Cash Cropping)with identical clay content and increasing contents of organic...

  2. Prediction of cesium-134 and strontium-85 crop uptake based on soil properties

    International Nuclear Information System (INIS)

    Roca, M.C.; Vallejo, V.R.; Roig, M.; Tent, J.; Vidal, M.; Rauret, G.

    1997-01-01

    Nowadays, there is still the need to improve the quantification of parameters that affect radionuclide mobility. With this aim, radiocesium and radiostrontium soil-to-plant transfer was measured in lysimeters in a Calcic Luvisol, loamy soil and in a Fluvisol, loam-sandy soil, using lettuce [Lactuca sativa L. cv. Kinemontepas] and pea plants [Pisum sativum L. cv. Kelvedon Wonder]. Weighted Concentration Ratios (WCR), expressed as kg soil/kg plant, were calculated for different growth stages. Weighted Concentration Ratios were in general higher for 85Sr than for 134Cs, and also higher in the loam-sandy than in the loamy soil. To predict plant uptake, we evaluated a set of soil properties to define a prediction factor for the relative transfer in the two soils using cation exchange capacity (CEC) and radionuclide available fraction (fav) for radiostrontium, and soil solution composition, solid-liquid distribution coefficient, and radionuclide available fraction for radiocesium. The ratios of WCR in the loam-sandy and loamy soil were compared with the prediction factor. There was good agreement in lettuce for 85Sr (ratio of WCR was 5.4 for seedling and 3.9 for commercial samples, whereas prediction factor was 3.1) and for 134Cs (ratio of WCR was 5.1 for seedling and 5.5 for commercial samples, the prediction factor being 5.1), although for pea only the relative root uptake of radiocesium in seedling pea was well predicted (the ratio of WCR was 8.8, the prediction factor being 9.1). These soil parameters improved former predictions based solely on the fav, although factors depending on plant physiology should be better evaluated

  3. Effects of Pisha sandstone content on solute transport in a sandy soil.

    Science.gov (United States)

    Zhen, Qing; Zheng, Jiyong; He, Honghua; Han, Fengpeng; Zhang, Xingchang

    2016-02-01

    In sandy soil, water, nutrients and even pollutants are easily leaching to deeper layers. The objective of this study was to assess the effects of Pisha sandstone on soil solute transport in a sandy soil. The miscible displacement technique was used to obtain breakthrough curves (BTCs) of Br(-) as an inert non-adsorbed tracer and Na(+) as an adsorbed tracer. The incorporation of Pisha sandstone into sandy soil was able to prevent the early breakthrough of both tracers by decreasing the saturated hydraulic conductivity compared to the controlled sandy soil column, and the impeding effects increased with Pisha sandstone content. The BTCs of Br(-) were accurately described by both the convection-dispersion equation (CDE) and the two-region model (T-R), and the T-R model fitted the experimental data slightly better than the CDE. The two-site nonequilibrium model (T-S) accurately fit the Na(+) transport data. Pisha sandstone impeded the breakthrough of Na(+) not only by decreasing the saturated hydraulic conductivity but also by increasing the adsorption capacity of the soil. The measured CEC values of Pisha sandstone were up to 11 times larger than those of the sandy soil. The retardation factors (R) determined by the T-S model increased with increasing Pisha sandstone content, and the partition coefficient (K(d)) showed a similar trend to R. According to the results of this study, Pisha sandstone can successfully impede solute transport in a sandy soil column. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30–70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below...

  5. CORRELATIONS BETWEEN PESTICIDE TRANSFORMATION RATE AND MICROBIAL RESPIRATION ACTIVITY IN SOIL OF DIFFERENT ECOSYSTEMS

    Science.gov (United States)

    Cecil sandy loam soils (ultisol) from forest (coniferous and deciduous), pasture, and arable ecosystems were sampled (0-10 cm) in the vicinity of Athens, GA, USA. Soil from each site was subdivided into three portions, consisting of untreated soil (control) as well as live and s...

  6. Leaching of human pathogens in repacked soil lysimeters and contamination of potato tubers under subsurface drip irrigation in Denmark

    DEFF Research Database (Denmark)

    Forslund, Anita; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O......, phage 28B was detected in low concentrations (2 pfu ml1) in leachate from both sandy loam soil and coarse sand lysimeters. After 27 days, phage 28B continued to be present in similar concentrations in leachate from lysimeters containing coarse sand, while no phage were found in lysimeters with sandy....... The findings of bacterial pathogens and phage 28 on all potato samples suggest that the main risk associated with subsurface drip irrigation with low quality water is faecal contamination of root crops, in particular those consumed raw....

  7. Effects Of Palm Oil Mill Effluents (Pome) On Soil Bacterial Flora And ...

    African Journals Online (AJOL)

    Sandy loam soil in Egbema, Rivers State was impacted with POME at different levels and analyzed for bacteriological quality and soil enzyme activities. Light application caused significant increase in total heterotrophic, phosphate solibilizing, nitrifying and lipolytic bacterial counts while heavy application caused a decrease ...

  8. Water and nutrient productivity in melon crop by fertigation under subsurface drip irrigation and mulching in contrasting soils

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio Câmara Monteiro

    2014-01-01

    Full Text Available Cropping intensification and technical, economic and environmental issues require efficient application of production factors to maintain the soil productive capacity and produce good quality fruits and vegetables. The production factors, water and NPK nutrients, are the most frequent limiting factors to higher melon yields. The objective of the present study was to identify the influence of subsurface drip irrigation and mulching in a protected environment on the water and NPK nutrients productivity in melon cropped in two soil types: sandy loam and clay. The melon crop cultivated under environmental conditions with underground drip irrigation at 0.20m depth, with mulching on sandy loam soil increased water and N, P2O5 and K use efficiency.

  9. Weeds of cereal stubble-fields on various soils in the Kielce region. P. 1. Podzolic and brown soils developed from sands and loams

    Directory of Open Access Journals (Sweden)

    Franciszek Pawłowski

    2013-12-01

    Full Text Available Occupying cereal stubble-fields weed flora is the most characteristic of the environmental (especially soil conditions. Because of its developing and accomplishing the reproductive stages there it can threatens cultivated plants. They are considered to complete the seed store in a soil by 393 min per ha. The results presented in the paper concern the species composition, number and constancy (S and indice of coverage (D of the cereal stubble-field weed species on various soils in the Kielce region (the central part of Poland. The report was based upon 885 phytosociological records collected in the 268 stands. The records were carried out after the crop harvest, in the latter part of September, in 1976-1980. Soil were chosen on the base of soil maps. The analyse of soil samples, taken at the investigation process, were done in order to confirm the soil quality. The worked out material was divided into three parts. The first part, including 369 phytosociological records collected in the 112 stands (in 90 localities concerns stubble-field weeds on podzolic and brown soils developed from sands (loose, weakly loamy and loamy and loams (light and medium. It was found that these soils were grown by 108 (loamy sands to 132 (weakly loamy sands weed species. Among them 66 species were common for all of the soils. Species composition was not differentiated by the soil type (brown, podzolic within kind of the. soil (sand or loams. Among soil examined, the brown loams was the most abundant with species of high constancy degree (30 species but brown loose sands and podzolic loamy sands was the poorest one with (16 species.

  10. South. Afr.J. Educ.Sci.Technol.2(1) (2007)

    African Journals Online (AJOL)

    PNR841, Pennisetum purpureum cvv. Napier SDPP 19 and Bana, Chloris gayana ... Bana, Napier, Sorghum bicolor, Chloris gayana and Cynodon inlemfluensis on the sandy, sandy loam and sandy clay loam soils. On the clay soil, the .... of experimental plots, which included seedbed preparation, planting, weeding and ...

  11. Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    Directory of Open Access Journals (Sweden)

    M.I. Choudhary

    1998-06-01

    Full Text Available Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4 soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions.

  12. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa ON, Canada K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada)

    2010-12-01

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. {sup 14}C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable {sup 14}C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  13. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    Science.gov (United States)

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  14. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Soil microbial and physical properties and their relations along a steep copper gradient

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    2012-01-01

    years; from background concentrations up to 3837 mg Cu kg–1) on soil microbial enzyme activity, physical properties and resilience to compression. Soil samples and cores were taken from a fallow sandy loam field in Denmark. Microbial activity was quantified using fluorescein diacetate (FDA...

  16. The antihistamine diphenhydramine is extremely persistent in agricultural soil

    International Nuclear Information System (INIS)

    Topp, Edward; Sumarah, Mark W.; Sabourin, Lyne

    2012-01-01

    The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT 50 ) of 14 C-diphenhydramine residues at 30 °C ranged from 88 ± 28 days in the clay loam to 335 ± 145 days in the loam soil. Mineralization of 14 C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation. -- Highlights: ► Diphenhydramine is a widely used antihistamine drug, is found in biosolids, and in runoff from biosolids-fertilized fields. ► The persistence of 14 C-diphenhydramine was evaluated in soils. ► Half lives ranged from 88 to 335 days. Diphenhydramine-N-oxide was the only detected transformation product. ► Soil-bound residues was a major sink.

  17. The antihistamine diphenhydramine is extremely persistent in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Edward, E-mail: ed.topp@agr.gc.ca; Sumarah, Mark W.; Sabourin, Lyne

    2012-11-15

    The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT{sub 50}) of {sup 14}C-diphenhydramine residues at 30 Degree-Sign C ranged from 88 {+-} 28 days in the clay loam to 335 {+-} 145 days in the loam soil. Mineralization of {sup 14}C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation. -- Highlights: Black-Right-Pointing-Pointer Diphenhydramine is a widely used antihistamine drug, is found in biosolids, and in runoff from biosolids-fertilized fields. Black-Right-Pointing-Pointer The persistence of {sup 14}C-diphenhydramine was evaluated in soils. Black-Right-Pointing-Pointer Half lives ranged from 88 to 335 days. Diphenhydramine-N-oxide was the only detected transformation product. Black-Right-Pointing-Pointer Soil-bound residues was a major sink.

  18. Applicability of zeolites in potassium and nitrate retention in different soil types

    Directory of Open Access Journals (Sweden)

    Pavlović Jelena B.

    2017-01-01

    Full Text Available Environmental protection and sustainable agricultural production require the use of inexpensive and environmentally acceptable soil supplements. Objectives of this study were to investigate the influence of the addition of the natural zeolite – clinoptilolite (NZ and its iron(III-modified form (FeZ on the potassium and nitrate leaching from sandy, silty loam and silty clay soils. The zeolites were added in two amounts: 0.5 (FeZ and 1.0 wt. % (NZ and FeZ. The experiments were carried out in columns organized in eight experimental systems containing unamended (control specimens and amended soils. The concentration of K+ and NO3–N in the leachates was monitored during 7 days. The obtained results indicate that the K+ and NO3–N leaching mainly depends on the soil type and pH of the soil. The NZ and FeZ addition has the highest impact on the K+ retention in the acidic sandy soil. The highest NO3–N retention is obtained with FeZ in acidic silty loam soil. The K+ leaching kinetics for all the studied soils follow the Avrami kinetics model with the parameter n < 1. This study demonstrates that NZ and FeZ can be a good soil supplement for the K+ retention for all studied soils and in the NO3–N retention for silty loam and silty clay soils. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172018

  19. Role of amino acid metabolites in the formation of soil organic matter

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1972-01-01

    Carbon-14 labelled cellulose or glucose were added to a medium loam and two sandy soils. The soils were incubated at 20°C for about 6 yr under laboratory conditions. Six to 12 per cent of the labelled carbon added to the soils was transformed into metabolites hydrolysable to amino acids during th...

  20. Effect of biosolids application on soil chemical properties and uptake ...

    African Journals Online (AJOL)

    Effect of biosolids application on soil chemical properties and uptake of some heavy metals by Cercis siliquastrum. ... and municipal solid waste compost (50% CM + 50% MC) at three levels of 0, 2.5 and 5 kg/shrub and three replicates in calcareous sandy loam soil at the botanical garden of Mobarekeh steel company.

  1. Persistence of bifenthrin in sandy loam soil as affected by microbial community.

    Science.gov (United States)

    Sharma, Divya; Singh, Shashi Bala

    2012-06-01

    Soil was fortified with bifenthrin at the level of 10 μg g(-1) soil. Soil samples were drawn at regular intervals of 0, 10, 20, 30 and 40 days. For extraction of bifenthrin, soil was extracted with acetone. Clean up was done by liquid-liquid partitioning with dichloromethane after diluting with brine solution. Quantification of bifenthrin residues was done by GC using mega bore column and ECD detector. Recovery of bifenthrin in soil ranged between 92.6 % and 93.8 % at 0.5 and 1.0 μg g(-1). The instrumental limit of detection of bifenthrin was 0.005 μg mL(-1) and LOQ for soil by this method was found to be 0.05 μg g(-1). The calibration curve was found to be linear within range the range of 0.01 and 0.10 μg mL(-1) concentration. The DT(50) (disappearance time for 50 % loss) of bifenthrin at the level of 10 μg g(-1) in sterile and non sterile soil were found to be 330 and 147 days, respectively. A vast difference in the half life of sterile and non sterile soil indicated the presence of potential microbes for bifenthrin degradation.

  2. INFLUENCE OF VERMICOMPOST ON THE PHYSICO-CHEMICAL AND BIOLOGICAL PROPERTIES IN DIFFERENT TYPES OF SOIL ALONG WITH YIELD AND QUALITY OF THE PULSE CROP-BLACKGRAM

    Directory of Open Access Journals (Sweden)

    K. Parthasarathi, M. Balamurugan, L. S. Ranganathan

    2008-01-01

    Full Text Available Field experiments were conducted during 2002-2003 on clay loam, sandy loam and red loam soil at Sivapuri, Chidambaram, Tamil Nadu, to evaluate the efficacy of vermicompost on the physico-chemical and biological characteristics of the soils and on the yield and nutrient content of blackgram - Vigna mungo, in comparison to inorganic fertilizers nitrogen, phosphorous, potassium. Vermicompost had increased the pore space, reduced particle and bulk density, increased water holding capacity, cation exchange capacity, reduced pH and electrical conductivity, increased organic carbon content, available nitrogen, phosphorous, potassium and microbial population and activity in all the soil types, particularly clay loam. The yield and quality (protein and sugar content in seed of blackgram was enhanced in soils, particularly clay loam soil. On the contrary, the application of inorganic fertilizers has resulted in reduced porosity, compaction of soil, reduced carbon and reduced microbial activity.

  3. Adsorption and diffusion of plutonium in soil

    International Nuclear Information System (INIS)

    Relyea, J.F.; Brown, D.A.

    1978-01-01

    The behavior of plutonium in soil--water systems was studied by measuring its apparent diffusion coefficient in the aqueous and solid phases and by finding the adsorption--desorption relationships between soil and solution. Apparent diffusion coefficients of plutonium in soil were measured using a quick-freeze method. Aqueous diffusion was studied in a capillary-tube diffusion cell. Adsorption studies were done by equilibrating a tagged soil--water mixture on a rotary shaker before centrifuging and sampling. As expected from high adsorption coefficients (Kd) (300--10,000), the apparent diffusion coefficients were low compared with normal soil cations (1.4 x 10 -8 cm 2 /sec in a sandy soil to less than 2.4 x 10 -11 cm 2 /sec in a silt loam). The Kd of plutonium in aqueous solution containing the chelate ethylenediaminetetraacetic acid (EDTA) was reduced compared with the Kd in dilute HNO 3 . As the EDTA concentration was increased, the Kd was decreased. The chelate diethylenetriaminepentaacetic acid (DTPA) reduced the Kd more than EDTA at comparable concentrations. The aqueous diffusion coefficients varied from 3.1 x 10 -7 cm 2 /sec in a solution extracted from the silt loam up to 2.7 x 10 -5 cm 2 /sec in a solution extracted from the sandy soil

  4. Dynamics of mineral N, water-soluble carbon and potential nitrification in band-steamed arable soil

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2010-01-01

    the effect of band-steaming on N and C dynamics in a sandy loam soil that was steamed in situ to maximal temperatures of 70-90°C using a prototype band-steamer. Soil samples (0-5 cm depth) were collected during 90 days from band-steamed soil, undisturbed control soil, and control soil treated just...

  5. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices (di...... that P improved soil quality compared to H and D, especially when combined with cover crop. We also conclude that D may benefit from cover crop to yield better soil friability and hence soil quality.......This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...... (direct drilling (D), harrowing (H) to a depth of 8 cm and ploughing to a depth of 20 cm (P)) as main plot. The soil was cropped with cover crop (+CC) or left without cover crop (-CC) as split plot treatments in the main plots with different tillage treatments. We assessed topsoil structural quality...

  6. the effects of 4 ratios of organic to inorganic manures on soil ...

    African Journals Online (AJOL)

    nkechi

    2011-05-02

    May 2, 2011 ... ON SOIL PHYSICOCHEMICAL PROPERTIES AND MAIZE YIELD. ... fertilizers with the uncombined ones were used for field ... ferallitic sandy loam classified as an ultisol. ... The pots were kept in the field moisture capacity ... the data fitted in the soil textural triangle to obtain ... Equivalent in t/ha pig manure.

  7. Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils

    Directory of Open Access Journals (Sweden)

    Yunhe Zhang

    2016-03-01

    Full Text Available A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a lab-scale pyrolyzer operated at 450 °C under a nitrogen environment and slow pyrolysis conditions. Two local arid soils used for crop production, a sandy loam and a clay loam, were amended with these biochars at a rate of 45 Mg·ha−1 and incubated for three weeks in a growth chamber. The soils were analyzed for multiple soil quality indicators including soil organic matter content, pH, electrical conductivity (EC, and available nutrients. Results showed that amendment with cotton gin trash biochar has the greatest impact on both soils, significantly increasing SOM and plant nutrient (P, K, Ca, Mn contents, as well as increasing the electrical conductivity, which creates concerns about soil salinity. Other biochar treatments significantly elevated soil salinity in clay loam soil, except for pecan shell biochar amended soil, which was not statistically different in EC from the control treatment. Generally, the effects of the biochar amendments were minimal for many soil measurements and varied with soil texture. Effects of biochars on soil salinity and pH/nutrient availability will be important considerations for research on biochar application to arid soils.

  8. Hydrogen peroxide treatment of TCE contaminated soil

    International Nuclear Information System (INIS)

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-01-01

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil

  9. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties.

    Science.gov (United States)

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-03-01

    The present study was carried out to evaluate the impact of the effluents and the solid wastes generated by a giant pulp and paper mill in the northeastern part of India on soil mineralogy of the area. The impacts were monitored by analysis of soil samples from seven sites located in the potential impact zone and a control site where any kind of effluent discharge or solid waste dumping was absent. The soil belonged to medium texture type (sandy clay loam, sandy loam, loamy sand, and silt loam), and the soil aggregate analysis indicated higher levels of organic carbon, pH, electrical conductivity, effective cation exchange capacity, and mean weight diameter at sites receiving effluents and solid wastes from the pulp and paper mill. Depletion in soil silica level and in feldspar and quartz contents and rise in iron and calcium contents at the sites receiving effluents from the pulp and paper mill indicated significant influence on soil mineralogy. The soil contained a mixture of minerals consisting of tectosilicates (with silicate frameworks as in quartz or feldspar), phylosilicates (layered clays like kaolinite, smectite, chlorite, illite, etc.), and carbonates. Absence of pure clay minerals indicated a state of heterogeneous intermediate soil clay transformation. The significance of the mixed mineralogy in relation to the disposal of effluents and dumping of solid wastes is discussed in details.

  10. Effects of plant cover on soil N mineralization during the growing season in a sandy soil

    Science.gov (United States)

    Yao, Y.; Shao, M.; Wei, X.; Fu, X.

    2017-12-01

    Soil nitrogen (N) mineralization and its availability plays a vital role in regulating ecosystem productivity and C cycling, particularly in semiarid and desertified ecosystems. To determine the effect of plant cover on N turnover in a sandy soil ecosystem, we measured soil N mineralization and inorganic N pools in soil solution during growing season in a sandy soil covered with various plant species (Artemisia desertorum, Salix psammophila, and Caragana korshinskii). A bare sandy soil without any plant was selected as control. Inorganic N pools and N mineralization rates decreased overtime during the growing season, and were not affected by soil depth in bare land soils, but were significantly higher at the 0-10 cm layer than those at the 10-20 cm soil layer under any plant species. Soil inorganic N pool was dominated by ammonium, and N mineralization was dominated by nitrification regardless of soil depth and plant cover. Soils under C. korshinskii have significant higher inorganic N pools and N mineralization rate than soils under bare land and A. desertorum and S. psammophila, and the effects of plant cover were greater at the 0-10 cm soil layer than at the 10-20 cm layer. The effects of C. korshinskii on soil inorganic N pools and mineralization rate varied with the stage of growing season, with greater effects on N pools in the middle growing season, and greater effects on mineralization rate at the last half of the growing season. The results from this study indicate that introduction of C. korshinskii has the potential to increase soil N turnover and availability in sandy soils, and thus to decrease N limitation. Caragana korshinskii is therefore recommend for the remediation of the desertified land.

  11. Effects of exchangeable Ca:Mg ratio on the dispersion of soils some ...

    African Journals Online (AJOL)

    The soils studied were acidic, low in nutrient level, showed high dispersion rate, high water- dispersible clay content and the textural class were loamy sand and sandy loam. The exchangeable Ca2+ and Mg2+ contents of the soils dominated the exchange complex. The cation exchange capacity (CEC) ranges between 4 ...

  12. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... compost had greater effect in improving tomato productivity. A decade-long application of composts on loamy sand improved basic chemical and physical properties which were reflected in increased fruit yield in tomato. Since no negative effect of compost was observed, we suggest that sandy soils may serve...... and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha-1 yr-1 (7.5 ton ha-1 yr-1). The soils were characterized for chemical and physical properties. Tomato was planted...

  13. Bioavailability of diuron, imazapic and isoxaflutole in soils of contrasting textures.

    Science.gov (United States)

    Inoue, Miriam H; Oliveira, Rubem S; Constantin, Jamil; Alonso, Diego G; Tormena, Cássio A

    2009-11-01

    This research was aimed at understanding the dynamics of the herbicides diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], imazapic [2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-5-methylnicotinic acid] and isoxaflutole [5-cyclopropyl-4-(2-methanesulfonyl-4-trifluoromethyl benzoyl)isoxazole] in two soils of different physico-chemical properties. To accomplish such intent, several greenhouse experiments were run. The bioavailability of diuron (0; 1.6 and 3.2 kg ha(-1)), imazapic (0; 98 and 122.5 g ha(-1)) and isoxaflutole (0; 35 and 70 g ha(-1)) was measured in samples from a sandy loam soil and a clay soil, by sowing a bioindicator (Brachiaria decumbens), at 0, 25, 50, 75 and 100 days after herbicides application (DAA). Diuron was very stable in clay soil, providing control equal to or higher than 92% of bioindicator, up to 100 DAA, as assumed by biomass accumulation. No differential effect was observed in sandy loam soil, even when 2x labeled rate were applied. Imazapic provided a short bioavailability in relation to B. decumbens, independent of rates applied. The persistence of isoxaflutole was longer in clay soil (28 to 30 days).

  14. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils.

    Science.gov (United States)

    Cycoń, Mariusz; Żmijowska, Agnieszka; Wójcik, Marcin; Piotrowska-Seget, Zofia

    2013-03-15

    The ability of diazinon-degrading Serratia marcescens to remove organophosphorus pesticides (OPPs), i.e. chlorpyrifos (CP), fenitrothion (FT), and parathion (PT) was studied in a mineral salt medium (MSM) and in three soils of different characteristics. This strain was capable of using all insecticides at concentration of 50 mg/l as the only carbon source when grown in MSM, and 58.9%, 70.5%, and 82.5% of the initial dosage of CP, FT, and PT, respectively was degraded within 14 days. The biodegradation experiment showed that autochthonous microflora in all soils was characterized by a degradation potential of all tested OPPs; however, the initial lag phases for degradation of CP and FT, especially in sandy soil, were observed. During the 42-day experiment, 45.3%, 61.4% and 72.5% of the initial dose of CP, FT, and PT, respectively, was removed in sandy soil whereas the degradation of CP, FT, and PT in the same period, in sandy loam and silty soils reached 61.4%, 79.7% and 64.2%, and 68.9%, 81.0% and 63.6%, respectively. S. marcescens introduced into sterile soils showed a higher degradation potential (5-13%) for OPPs removal than those observed in non-sterile soil with naturally occurring attenuation. Inoculation of non-sterile soils with S. marcescens enhanced the disappearance rates of all insecticides, and DT50 for CP, FT, and PT was reduced by 20.7, 11.3 and 13.0 days, and 11.9, 7.0 and 8.1 days, and 9.7, 14.5 and 12.6 days in sandy, sandy loam, and silty soils, respectively, in comparison with non-sterile soils with only indigenous microflora. This ability of S. marcescens makes it a suitable strain for bioremediation of soils contaminated with OPPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Migration of cesium-137 through sandy soil layer effect of fine silt on migration

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Wadachi, Yoshiki

    1983-01-01

    The migration of 137 Cs through sandy soil layer was studied with consideration of the migration of fine silt by column method. It was found that a portion of fine silt migrated through the soil layer accompanying with 137 Cs. The mathematical migration model of 137 Cs involved the migration of fine silt through such soil layer was presented. This model gave a good accordance between calculated concentration distribution curve in sandy soil layer and effluent curve and observed those. So, this model seems to be advanced one for evaluating migration of 137 Cs in sandy soil layer with silt. (author)

  16. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  17. Initial growth and yield structure of selected cultivars of cranberry (Vaccinium macrocarpon Ait. cultivated on mineral soils

    Directory of Open Access Journals (Sweden)

    Szwonek Eugeniusz

    2016-06-01

    Full Text Available A study was conducted to evaluate the possibility of cranberry cultivation on mineral soils and to assess the influence of vegetative biomass development, generative growth and yield components on the yielding of three cranberry cultivars originating in the USA (Stevens, Pilgrim and Ben Lear at two locations in Poland. The key biometrical traits involved in yield formation were taken into account, and the soil and plant chemical conditions were evaluated. All of the measured biometrical characteristics were strongly influenced by the location and the year of cultivation, and varietal differences were also noted. The most important determinants that explained yield variation were: the number of uprights per square meter, floral induction and berry set. However, the participation of each component in yield variation was strongly affected by the location, age of plantation and to a minor extent by the cultivar. The study confirmed the possibility of cranberry cultivation on mineral soils with a low pH. The biggest average yield of the three years was collected from cv. Stevens as cultivated on sandy soil in contrast to the same cultivar grown on sandy loam soil. In the case of sandy loam soil after acidification, cv. Pilgrim appeared to be a relatively better yielding cultivar.

  18. Cultivos de cobertura: efectos sobre la macroporosidad y la estabilidad estructural de un suelo franco-limoso Cover crops: effects on soil macroporosity and soil structural stability in a silt loam soil

    Directory of Open Access Journals (Sweden)

    María Florencia Varela

    2011-07-01

    Full Text Available Los suelos franco-limosos manejados con siembra directa a menudo poseen porosidad estructural baja e inestable. Con el objetivo de determinar la capacidad de los cultivos de cobertura (CC de mejorar la porosidad y estabilidad estructural de estos suelos se llevaron a cabo experimentos de campo y de invernáculo. Ambos tuvieron tratamientos con y sin CC (avena, Avena sativa L., en rotación con soja (Glicine max L. Merr.. Luego de los CC se midieron densidad aparente (DA, el índice de inestabilidad estructural (IE y en el ensayo de invernáculo además, se midió la evolución de la distribución de tamaño de poros (DTP. En ambos ensayos la introducción de CC no disminuyó la DA, aunque incrementó la estabilidad del suelo (PNo- till (NT silt loam topsoils have often a low and unstable structural porosity. The objective of this study was to determine the capability of cover crops (CC of improving the structural porosity and stability of silt loam soils under NT. Greenhouse and field experiments were carried out on a silt loam soil (Typic Argiudoll with and without CC (oat, Avena sativa L. in crop sequences with soybean (Glicine max L. Merr.. Soil bulk density (DA and aggregate instability index (IE were measured after the CC in both experiments. In the greenhouse experiment, soil pore size distribution (DTP was measured. The use of CC did not change DA, but soil IE was significantly lower in crop sequences with CC (P < 0.05 both under field and greenhouse conditions. Stability increases were likely due to the effect of CC residues and root mass. No differences in DTP were found between treatments, although a significant effect of sampling date was observed (P<0.05. Changes in DTP were due to significant increases in mesopore (517.5% and macropore (52.7% volumes. Such changes occurred in all the treatments, probably due to the soil wetting-drying cycles. The results found in this study agree with other studies carried out on silt loams in the

  19. Sustainable agriculture and soil conservation

    DEFF Research Database (Denmark)

    Olsen, Preben; Dubgaard, Alex

    , sandy soils in the West, (that had not been covered by ice) from more fertile soils being mostly sandy loams and finer textured soils covering the Eastern part of the study area. Several geological features such as pitting due to dead ice formation, smaller, terminal moraines in association with melt......, separate the moraine plateau. From the plateau several, minor erosion valleys, formed at the end of the glaciation some 10,000 years ago, feed into the two valleys. Very accurate soil type information is available for the area as intensive measurements within the area has formed the basis for a new...... methodology for soil classification in Denmark. The soil survey included a detailed mapping at field level, using the electromagnetic sensor, EM38. A high-resolution digital elevation model, obtained by use of laser scanning, is available for the study area. The original scanning has a horizontal resolution...

  20. Effect of ISPAD Anaerobic Digestion on Ammonia Volatilization from Soil Applied Swine Manure

    Directory of Open Access Journals (Sweden)

    Susan King

    2012-01-01

    Full Text Available Swine manure subjected to in-storage psychrophilic anaerobic digestion (ISPAD undergoes proteins degradation but limited NH3 volatilization, producing an effluent rich in plant-available nitrogen. Accordingly, ISPAD effluent can offer a higher fertilizer value during land application, as compared to manure of similar age stored in an open tank. However, this additional nitrogen can also be lost by volatilization during land application. The objective of this study was therefore to measure NH3 volatilization from both ISPAD and open tank swine manures when applied to 5 different soils, namely, washed sand, a Ste Rosalie clay, an Upland sandy loam, a St Bernard loam, and an Ormstown loam. This research was conducted using laboratory wind tunnels simulating land application. The five experimental soils offered similar pH values but different water holding capacity, cation exchange capacity, cation saturation, and organic matter. After 47 h of wind tunnel monitoring, the % of total available nitrogen (TAN or NH4 + and NH3 volatilized varied with both manure and soil type. For all soil types, the ISPAD manure consistently lost less NH3 as compared to the open tank manure, averaging 53% less. Lower volatile solids content improving manure infiltration into the soil and a more complex ionic solution explain the effect of the ISPAD manure advantages. This was reinforced by the St Bernard sandy loam losing the same nitrogen mass for both manures, because of its higher pH and buffer pH coupled with an intermediate CEC resulting in more soil solution NH3. Within each manure type, % TAN volatilized was highest for washed sand and lowest for the clay soil. As a result, ISPAD manure can offer up to 21% more plant-available nitrogen fertilizer especially when the manure is not incorporated into the soil following its application.

  1. Effect of successive cauliflower plantings and Rhizoctonia solani AG 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil

    NARCIS (Netherlands)

    Postma, J.; Scheper, R.W.A.; Schilder, M.T.

    2010-01-01

    Disease suppressiveness against Rhizoctonia solani AG 2-1 in cauliflower was studied in two marine clay soils with a sandy loam texture. The soils had a different cropping history. One soil had a long-term (40 years) cauliflower history and was suppressive, the other soil was conducive and came from

  2. Degradation of roxarsone in a silt loam soil and its toxicity assessment.

    Science.gov (United States)

    Liang, Tengfang; Ke, Zhengchen; Chen, Qing; Liu, Li; Chen, Guowei

    2014-10-01

    The land application of poultry or swine litter, containing large amounts of roxarsone, causes serious arsenic pollution in soil. Understanding biotransformation process of roxarsone and its potential risks favors proper disposal of roxarsone-contaminated animal litter, yet remains not achieved. We report an experimental study of biotransformation process of roxarsone in a silt loam soil under various soil moisture and temperature conditions, and the toxicity of roxarsone and its products from degradation. Results showed that soil moisture and higher temperature promoted roxarsone degradation, associating with emergent pentavalent arsenic. Analysis of fluorescein diacetate (FDA) hydrolysis activity revealed that roxarsone does not exert acute toxic on soil microbes. With the release of inorganic arsenic, FDA hydrolysis activity was inhibited gradually, as evidenced by ecotoxicological assessment using Photobacterium leiognathi. The results shade new lights on the dynamic roxarsone biotransformation processes in soil, which is important for guiding appropriate disposal of poultry or swine litter in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Proceedings of the International Symposium on Frozen Soil Impacts on Agricultural, Range, and Forest Lands Held at Spokane, Washington on March 21-22, 1990

    Science.gov (United States)

    1990-03-01

    the United States. The soils were: a Cecil sandy loam (clayey, kaolinitic, thermic Typic Hapludult) from Watkinsville, GA ; a Barnes loam (fine loamy...1987). GLEAMS user manual. Lab Note South East Watershed Research Laboratory 110 187 WGK, Tifton , Ge, 1987. Lane, L.J., and V. A. Ferreira, (1980...as caps for processed uranium mill tailings in the western United States. The purpose of these barriers is to control radon gas release. The soil

  4. Vertical movement of Azospirillum brasilense in soil

    International Nuclear Information System (INIS)

    Singh, Mohan; Lal, B.; Shrivastava, A.K.

    1993-01-01

    Plant growth promoting rhizobacteria like Azospirillum brasilense have considerable potential in increasing crop productivity. The success of bacterial inoculation in fields however, depends on their root colonizing ability. These bacteria, applied either through seed pelleting or directly to the soil are distributed along roots through active or passive movements. 32 P labelled A.brasilense has been used to study their movements in sandy loam soils. (author). 5 refs., 2 figs

  5. Effects of biochar addition to soil on nitrogen fluxes in a winter wheat lysimeter experiment

    Science.gov (United States)

    Hüppi, Roman; Leifeld, Jens; Neftel, Albrecht; Conen, Franz; Six, Johan

    2014-05-01

    Biochar is a carbon-rich, porous residue from pyrolysis of biomass that potentially increases crop yields by reducing losses of nitrogen from soils and/or enhancing the uptake of applied fertiliser by the crops. Previous research is scarce about biochar's ability to increase wheat yields in temperate soils or how it changes nitrogen dynamics in the field. In a lysimeter system with two different soils (sandy/silt loam) nitrogen fluxes were traced by isotopic 15N enriched fertiliser to identify changes in nitrous oxide emissions, leaching and plant uptake after biochar addition. 20t/ha woodchip-waste biochar (pH=13) was applied to these soils in four lysimeters per soil type; the same number of lysimeters served as a control. The soils were cropped with winter wheat during the season 2012/2013. 170 kg-N/ha ammonium nitrate fertiliser with 10% 15N was applied in 3 events during the growing season and 15N concentrations where measured at different points in time in plant, soil, leachate and emitted nitrous oxide. After one year the lysimeter system showed no difference between biochar and control treatment in grain- and straw yield or nitrogen uptake. However biochar did reduce nitrous oxide emissions in the silt loam and losses of nitrate leaching in sandy loam. This study indicates potential reduction of nitrogen loss from cropland soil by biochar application but could not confirm increased yields in an intensive wheat production system.

  6. Effects of Plant Residues in Two Types of Soil Texture on Soil characteristics and corn (Zea mays L. NS640 Yield in a Reduced -Tillage cropping System

    Directory of Open Access Journals (Sweden)

    E Hesami

    2018-05-01

    Full Text Available Introduction The impact of agronomy on the subsequent product in rotational cropping systems depends on factors such as plant type, duration of crop growth, soil moisture content, tillage type, irrigation method, the amount of nitrogen fertilizer, quantity and quality of returned crop residues to the soil. Prior cultivated crops improve the next crop yield by causing different conditions (nitrogen availability, organic matter and volume of available water in soil. This study was conducted due to importance of corn cultivation in Khuzestan and necessity of increasing the soil organic matter, moisture conservation and in the other hand the lack of sufficient information about the relationship between soil texture, type of preparatory crop in low-tillage condition and some soil characteristics and corn growth habits. The purpose of this experiment was to evaluate the effect of residue of preparatory crops in low plowing condition in two soil types on corn yield and some soil characteristics. Materials and Methods This experiment was carried out at Shooshtar city located in Khuzestan province. An experiment was performed by combined analysis in randomized complete block design in two fields and in two consecutive years with four replications. Two kinds of soil texture including: clay loam and clay sand. Five preparatory crops including: broad bean, wheat, canola, cabbage and fallow as control assigned as sub plots. SAS Ver. 9.1 statistical software was used for analysis of variance and comparison of means. Graphs were drawn using MS Excel software. All means were compared by Duncan test at 5% probability level. Results and Discussion The soil texture and the type of preparatory crop influenced the characteristics of the soil and corn grain yield. Returning the broad bean residue into two types of soil caused the highest grain yield of corn 10128.6 and 9547.9 kgha-1, respectively. The control treatment in sandy loam texture had the lowest corn seed

  7. Structural-functional concept of thermophysical condition of the soils of Altai Region

    OpenAIRE

    Makarychev, Sergey; Bolotov, Andrey

    2016-01-01

    The goal of this study was to reveal the quantitative interrelations between the thermophysical indices (thermal conductivity and thermal diffusivity) and physical soil properties such as; moisture content, density and detachability. According to the research targets, the soil samples including different genesis and soil particle size distribution were taken in different soil and climatic zones of the Altai Region. These were the sod-podzolic sandy loam soils of the dry steppes, chernozems an...

  8. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties

    International Nuclear Information System (INIS)

    Bending, Gary D.; Lincoln, Suzanne D.; Edmondson, Rodney N.

    2006-01-01

    The extent of within field variability in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican, and the role of intrinsic soil factors and technical errors in contributing to the variability, was investigated in sites on sandy-loam and clay-loam. At each site, 40 topsoil samples were taken from a 160x60 m area, and pesticides applied in the laboratory. Time to 25% dissipation (DT25) ranged between 13 and 61 weeks for diflufenican, 5.6 and 17.2 weeks for azoxystrobin, and 0.3 and 12.5 weeks for isoproturon. Variability in DT25 was higher in the sandy-loam in which there was also greatest variability in soil chemical and microbial properties. Technical error associated with pesticide extraction, analysis and lack of model fit during derivation of DT25 accounted for between 5.3 and 25.8% of the variability for isoproturon and azoxystrobin, but could account for almost all the variability for diflufenican. Azoxystrobin DT25, sorption and pH were significantly correlated. - Spatial variation determines risk assessment for pesticides in soil

  9. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties

    Energy Technology Data Exchange (ETDEWEB)

    Bending, Gary D. [Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF (United Kingdom)]. E-mail: gary.bending@warwick.ac.uk; Lincoln, Suzanne D. [Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF (United Kingdom); Edmondson, Rodney N. [Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF (United Kingdom)

    2006-01-15

    The extent of within field variability in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican, and the role of intrinsic soil factors and technical errors in contributing to the variability, was investigated in sites on sandy-loam and clay-loam. At each site, 40 topsoil samples were taken from a 160x60 m area, and pesticides applied in the laboratory. Time to 25% dissipation (DT25) ranged between 13 and 61 weeks for diflufenican, 5.6 and 17.2 weeks for azoxystrobin, and 0.3 and 12.5 weeks for isoproturon. Variability in DT25 was higher in the sandy-loam in which there was also greatest variability in soil chemical and microbial properties. Technical error associated with pesticide extraction, analysis and lack of model fit during derivation of DT25 accounted for between 5.3 and 25.8% of the variability for isoproturon and azoxystrobin, but could account for almost all the variability for diflufenican. Azoxystrobin DT25, sorption and pH were significantly correlated. - Spatial variation determines risk assessment for pesticides in soil.

  10. Effect of Calcium Levels on Strontium Uptake by Canola Plants Grown on Different Texture Soils

    International Nuclear Information System (INIS)

    El-Shazly, A.A.; Rezk, M. A.; Abdel-Sabour, M.F.; Mousa, E.A.; Mostafa, M.A.Z.; Lotfy, S.M.; Farid, I.M.; Abbas, M.H.H.; Abbas, H.H.

    2016-01-01

    Canola is considered aphytoremediator where, it can remove adequate quantities of heavy metals when grown on polluted soils.This study aimed to investigate growth performance of canola plants grown on clayey non-calcareous, sandy non-calcareous and sandy clay loam calcareous soils with different CaCO 3 contents. These soils were artificially contaminated with 100 mg Sr kg -1 and cultivated with canola plants under three levels of applied calcium i.e. 0, 60 and 85 mg Ca kg -1 in the form of CaCl 2 . The grown plants were kept under the green house conditions until (pot experiment) maturity. Afterwards, plants were harvested, separated into shoots, roots and seeds, and analyzed for their contents of calcium and strontium. Application of calcium to the sandy soil increased Ca uptake by canola plants whereas, Sr uptake, plant growth and seed yield were reduced. In the other soils, Ca and Sr uptake values were increased with minimized Ca rate. Such increases were associated with significant increases in the plant biomass and crop yield in the clayey soil; whereas, in the sandy clay loam calcareous soil, such increases were insignificant. Increasing the dose of the applied Ca (its higher rate) was associated with significant reduction in the plant growth and seed yield in these two soils. Both the biological concentration factor and the biological accumulation factors were relatively high (>1). The biological transfer factor was also high indicating high translocation of Sr from root to shoot. However, Sr translocation decreased with Ca applications. Accordingly canola plants are highly recommended for phytoextraction of Sr from polluted soils

  11. Migration of Co and Cs radionuclides through a loam soil column

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma bin Syed Ahmad; Shimooka, K.

    1990-01-01

    A soil column experiment was conducted to determine the migration of Co and Cs radionuclides through a loam soil. The different migration rates of the radionuclides at low and high concentrations were determined at pH 7. Retardation factor (Rf) both the radionuclides at low and high concentrations were determined by fitting adsorbed concentration distribution equations to observed values. The calculation shows that the Rf1=500 and Rf2=3 for Co at high and low concentrations, respectively. For Cs, the Rf1=600 and Rf2=5 at high and low concentrations, respectively. The results shows that major portions of both the radionuclides were adsorbed onto the soil layer at the top by ion exchange mechanism which resulted in the high retardation factor values. Minor portions had migrated downwards as insoluble cations, pseudocolloids and very fine silt particles resulting in the low retardation factor

  12. Mineralization of carbon and nitrogen from fresh and anaerobically stored sheep manure in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1995-01-01

    A sandy loam soil was mixed with three different amounts of quartz sand and incubated with ((NH4)-N-15)(2)SO4 (60 mu g N g(-1) soil) and fresh or anaerobically stored sheep manure (60 mu g g(-1) soil). The mineralization-immobilization of N and the mineralization of C were studied during 84 days...

  13. Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental release: design and first results

    International Nuclear Information System (INIS)

    Rauret, G.; Real, J.

    1995-01-01

    The behaviour of 134 Cs, 110m Ag and 85 Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author)

  14. Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental release: design and first results

    Energy Technology Data Exchange (ETDEWEB)

    Rauret, G. [Universitat de Barcelona (Spain). Dept. of Quimica Analitica; Vallejo, V.R. [Universitat de barcelona (Spain). Dept. of Biologia Vegetal; Cancio, D. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Real, J. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1995-12-31

    The behaviour of {sup 134}Cs, {sup 110m}Ag and {sup 85}Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author).

  15. Improved retention of imidacloprid (Confidor) in soils by adding vermicompost from spent grape marc.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2007-05-25

    Batch sorption experiments of the insecticide imidacloprid by ten widely different Spanish soils were carried out. The sorption was studied for the active ingredient and its registered formulation Confidor. The temperature effect was studied at 15 degrees C and 25 degrees C. The addition of a vermicompost from spent grape marc (natural and ground), containing 344 g kg(-1) organic carbon, on the sorption of imidacloprid by two selected soils, a sandy loam and a silty clay loam, having organic carbon content of 3.6 g kg(-1) and 9.3 g kg(-1), respectively, was evaluated. Prior to the addition of this vermicompost, desorption isotherms with both selected soils, were also performed. The apparent hysteresis index (AHI) parameter was used to quantify sorption-desorption hysteresis. Sorption coefficients, K(d) and K(f), for the active ingredient and Confidor(R) in the different soils were similar. Sorption decreased with increasing temperature, this fact has special interest in greenhouse systems. A significant correlation (R(2)=0.965; Pcharacteristics of soils could contribute to the retention capacity as well. The spent grape marc vermicompost was an effective sorbent of this insecticide (K(f)=149). The sorption of imidacloprid increased significantly in soils amended with this vermicompost. The most pronounced effect was found in the sandy loam soil with low OC content, where the addition of 5% and 10% of vermicompost increased K(f) values by 8- and 15-fold, respectively. Soil desorption of imidacloprid was slower for the soil with the higher OC and clay content.

  16. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    Several studies have identified optima in soil water content for aerobic microbial activity, and this has been ascribed to a balance between gas and solute diffusivity as limiting processes. We investigated the role of soil structure, as created by different tillage practices (moldboard ploughing......, MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...... content to a maximum and then decreased. This relationship was modelled with a second order polynomium. Model parameters did not show any tillage effect on the optimum water content, but the optimum coincided with a lower matric potential in ST (SAND: − 140 to –197 hPa; LOAM: − 37 to − 65 hPa) than in MP...

  17. Neutron Gauge Calibration Curve as Affected by Chloride Concentration and Bulk Density of Loam Soil

    International Nuclear Information System (INIS)

    AL-Hasani, A.A.; Fahad, A.A.; Shihab, R.M.

    2010-01-01

    chloride concentration and bulk density are considered among important factors affecting calibration curve of neutron gauge in the soil.The aim of this study was to investigate the effect of chloride concentration and bulk density of a loam soil on neutron gauge calibration curve.Sufficient amount of loam soil was air dried screened through a 2 mm sieve,and divided into three equal portions.Sodium chloride of 2.5 and 6.6g kg'-1 soil was added to the first and second portions,respectively.The third portion was left as a control.The soil then moistened and mixed well to make volumetric water content within the range of 0.01 to 0.24 cm 3 cm - 3. The moist soil was packed into an iron drum 0.80 m diameter and 1.00 m height to obtain bulk densities of 1.10 and 1.30 to 1.60 Mg m - 3 for uncompacted soil,respectively.Access tube 0.05 m inner diameter was installed in the center of the drum.Three readings from CPN 503 neutron gauge were taken at each 0.15,0.30, 0.45,and 0.75 m depth.Results indicated that the count (counts/standard count) for an aqueous solution decreased with the increase in chloride concentration.Similarly, the slope of the linear calibration curves of the investigated soil decreased with the increase in chloride concentration.Shifting of the curves was 9 to 10%for the uncompacted soil, whereas it was 12 to 14 % for the compacted of low and high concentration of chloride, respectively . Results of changing bulk density always reduced the slope value as compared with the uncorrected count ratio.

  18. Amelioration of sandy soils in drought stricken areas through use of ...

    African Journals Online (AJOL)

    ACSS

    improving N, P, Ca and Mg content in sandy soils, and consequently support crop growth and yield. ... stress, soil moisture conservation, soil fertility management ... water many times its own weight. ... improves the productivity of degraded,.

  19. Long-term effects of fallow, tillage and manure application on soil organic matter and nitrogen fractions and on sorghum yield under Sudano-Sahelian conditions

    NARCIS (Netherlands)

    Mando, A.; Ouattara, B.; Somado, A.E.; Wopereis, M.C.S.; Stroosnijder, L.; Breman, H.

    2005-01-01

    Soil organic matter (SOM) controls the physical, chemical and biological properties of soil and is a key factor in soil productivity. Data on SOM quantity and quality are therefore important for agricultural sustainability. In 1990, an experiment was set up at Saria, Burkina Faso on a sandy loam

  20. Fate of the antiretroviral drug tenofovir in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)

    2010-10-15

    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  1. Mobility and retention of micronutrients in soil : Part III. Investigation on the influence of various external factors, NPK-fertilizers and soil amending agents on the mobility and retention of manganese

    International Nuclear Information System (INIS)

    Das, S.K.; Santikari, A.K.; Banerji, K.C.

    1980-01-01

    Investigations on the mobility and retention of manganese through Sindri red sandy clay loam of pH 7.4 and Ranchi clay loam of pH 5.6 have been carried out using the radiotracer 54 Mn. The vertical distribution of manganese in these soils showed almost sharp fall upto a depth of 12 to 14 cm and thereafter it tended to attain the saturation. Variations have been marked in the degrees of manganese retention at the top surface layers of the concerned soils. Influence of various NPK fertilizers and soil amending agents, at various application levels, have been studied on the mobility, retention and leaching loss of manganese in the prementioned soils. Marked variations have been recorded and discussed. (author)

  2. Biodegradation of polyethylene glycol (PEG) in three tropical soils using radio labelled PEG

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, A.L. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil)]. E-mail: abdalla@cena.usp.br; Regitano, J.B.; Tornisielo, V.L.; Marchese, L. [Laboratory of Ecotoxicology, Piracicaba SP (Brazil); Pecanha, M.R.S.R.; Vitti, D.M.S.S. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil); Smith, T. [School of Agriculture, Policy and Development, University of Reading, Reading (United Kingdom)

    2005-08-19

    Polyethylene glycol (PEG) may be added to forage based diets rich in tannins for ruminant feeding because it binds to tannins and thus prevent the formation of potentially indigestible tannin-protein complexes. The objective of this work was to determine the in vitro biodegradation (mineralization, i.e., complete breakdown of PEG to CO{sub 2}) rate of PEG. {sup 14}C-Polyethylene glycol ({sup 14}C-PEG) was added to three different tropical soils (a sandy clay loam soil, SaCL; a sandy clay soil, SaC; and a sandy loam soil, SaL) and was incubated in Bartha flasks. Free PEG and PEG bound to tannins from a tannin rich local shrub were incubated under aerobic conditions for up to 70 days. The biodegradation assay monitored the {sup 14}CO{sub 2} evolved after degradation of the labelled PEG in the soils. After incubation, the amount of {sup 14}CO{sub 2} evolved from the {sup 14}C-PEG application was low. Higher PEG mineralization values were found for the soils with higher organic matter contents (20.1 and 18.6 g organic matter/kg for SaCL and SaC, respectively) than for the SaL soil (11.9 g organic matter/kg) (P < 0.05). The extent of mineralization of PEG after 70 days of incubation in the soil was significantly lower (P < 0.05) when it was added as bound to the browse tannin than in the free form (0.040 and 0.079, respectively). (author)

  3. Effectiveness of the GAEC cross-compliance standard Ploughing in good soil moisture conditions in soil structure protection

    Directory of Open Access Journals (Sweden)

    Maria Teresa Dell'Abate

    2011-08-01

    Full Text Available Researches have been carried out within the framework on the EFFICOND Project, focused at evaluating the effectiveness of the standards of Good Agricultural and Environmental Conditions (GAECs established for Cross Compliance implementation under EC Regulation 1782/2003. In particular the standard 3.1b deals with soil structure protection through appropriate machinery use, with particular reference to ploughing in good soil moisture conditions. The study deals with the evaluation of soil structure after tillage in tilth and no-tilth conditions at soil moisture contents other than the optimum water content for tillage. The Mean Weight Diameter (MWD of water stable aggregates was used as an indicator of tillage effectiveness. The study was carried out in the period 2008-2009 at six experimental farms belonging to Research Centres and Units of the Italian Agricultural Research Council (CRA with different pedo-climatic and cropping conditions. Farm management and data collection in the different sites were carried out by the local CRA researchers and technicians. The comparison of MWD values in tilth and no tilth theses showed statistically significant differences in most cases, depending on topsoil texture. On clay, clay loam, silty clay, and silty clay loam topsoils a general and significant increase of MWD values under no tilth conditions were observed. No significant differences were observed in silt loam and sandy loam textures, probably due to the weak soil structure of the topsoils. Moreover, ploughing in good soil moisture condition determined higher crop production and less weed development than ploughing in high soil moisture conditions.

  4. Development of an extraction method for perchlorate in soils.

    Science.gov (United States)

    Cañas, Jaclyn E; Patel, Rashila; Tian, Kang; Anderson, Todd A

    2006-03-01

    Perchlorate originates as a contaminant in the environment from its use in solid rocket fuels and munitions. The current US EPA methods for perchlorate determination via ion chromatography using conductivity detection do not include recommendations for the extraction of perchlorate from soil. This study evaluated and identified appropriate conditions for the extraction of perchlorate from clay loam, loamy sand, and sandy soils. Based on the results of this evaluation, soils should be extracted in a dry, ground (mortar and pestle) state with Milli-Q water in a 1 ratio 1 soil ratio water ratio and diluted no more than 5-fold before analysis. When sandy soils were extracted in this manner, the calculated method detection limit was 3.5 microg kg(-1). The findings of this study have aided in the establishment of a standardized extraction method for perchlorate in soil.

  5. Use of INAA in the preparation of a set soil Reference Materials with certified values of total element contents

    International Nuclear Information System (INIS)

    Kucera, J.; Horakova, J.; Soukal, L.

    1997-01-01

    A set of certified Reference Materials was prepared consisting of four natural agricultural soils with normal (n) and elevated (e) levels of element contents: CRM 7001 Light Sandy Soil (n), CRM 7002 Light Sandy Soil (e), CRM 7003 Silty Clay Loam (n), and CRM 7004 Loam (e). In these materials, certified and/or information values of the total contents of the elements As, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V and Zn, and their fractions extractable by aqua regia, boiling and cold 2M nitric acid were derived from an interlaboratory comparison in which 28 laboratories participated. Highly precise and accurate procedures of instrumental neutron activation analysis (INAA) were employed for homogeneity testing and also for certification of the total element contents. For comparation purposes, NIST SRM-2704 Buffalo River Sediment was analyzed by INAA, as well. The INAA results obtained compared very well with the certified and/or information values for four soil CRMs and also with NIST values for SRM-2704. From this agreement, a very high reliability of the new soil CRMs can be inferred. (author)

  6. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types

    International Nuclear Information System (INIS)

    Bhujbal, B.M.; Mistry, K.B.; Chapke, V.G.; Mutatkar, V.K.

    1977-01-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO 3 (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers. (author)

  7. THE PHYTOAVAILABILITY OF CADMIUM TO LETTUCE IN LONG-TERM BIOSOLIDS-AMENDED SOILS

    Science.gov (United States)

    A field study was conducted to assess the phytoavailability of Cd in long-term biosolids-amended field plots managed at high and low pH. The experiment, established 13-15 yr prior to the present cropping, on a Christiana fine sandy loam soil (a clayey, kaolinitic, mesic Typic Pa...

  8. Plant-uptake of uranium: Hydroponic and soil system studies

    Science.gov (United States)

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  9. Soil nitrogen dynamics and Capsicum Annuum sp. plant response to biochar amendment in silt loam soil

    Science.gov (United States)

    Horel, Agota; Gelybo, Gyorgyi; Dencso, Marton; Toth, Eszter; Farkas, Csilla; Kasa, Ilona; Pokovai, Klara

    2017-04-01

    The present study investigated the growth of Capsicum Annuum sp. (pepper) in small-scale experiment to observe changes in plant growth and health as reflected by leaf area, plant height, yield, root density, and nitrogen usage. Based on field conditions, part of the study aimed to examine the photosynthetic and photochemical responses of plants to treatments resulting from different plant growth rates. During the 12.5 week long study, four treatments were investigated with biochar amount of 0, 0.5%, 2.5%, and 5.0% (by weight) added to silt loam soil. The plants were placed under natural environmental conditions, such that photosynthetic activities from photosynthetically active radiation (PAR) and the plants photochemical reflectance index (PRI) could be continuously measured after exposure to sunlight. In this study we found that benefits from biochar addition to silt loam soil most distinguishable occurred in the BC2.5 treatments, where the highest plant yield, highest root density, and highest leaf areas were observed compared to other treatments. Furthermore, data showed that too low (0.5%) or too high (5.0%) biochar addition to the soil had diminishing effects on Capsicum Annuum sp. growth and yield over time. At the end of the 12th week, BC2.5 had 22.2%, while BC0.5 and BC5.0 showed 17.4% and 15.7% increase in yield dry weight respectively compared to controls. The collected data also showed that the PRI values of plants growing on biochar treated soils were generally lower compared to control treatments, which could relate to leaf nitrogen levels. Total nitrogen amount showed marginal changes over time in all treatments. The total nitrogen concentration showed 28.6% and 17.7% increase after the 6th week of the experiment for BC2.5 and BC5.0, respectively, while inorganic nutrients of NO3-N and NH4+-N showed a continuous decrease during the course of the study, with a substantial drop during the first few weeks. The present study provides evidence for impact

  10. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, Mathias Neumann; Lærke, Poul Erik

    2011-01-01

    Nitrogen (N) uptake (kg ha-1) of field-grown potatoes was measured in 4.32 m2 lysimeters that were filled with coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  11. Amounts of mercury in soil of some golf course sites

    Energy Technology Data Exchange (ETDEWEB)

    MacLean, A J; Stone, B; Cordukes, W E

    1973-01-01

    Mercurial compounds are widely used for controlling diseases of turfgrass of golf courses, but the fungicides are usually confined to the greens. Composite soil samples were obtained from three golf courses in the Ottawa and Ontario region of Canada. Samples from the turf and surface layer of soil were analyzed and high amounts of mercury were found. The soil of No.I course was a sand; No.II was a sandy loam in the surface and a loam below; and No. III was a loam in the surface layer and a clay loam below. The pH of the surface layer was 6.4 in No. I, 7.5 in No. II, and 6.0 in No. III. The amounts of Hg in the turf were high near the green but they decreased with distance. Fairway III contained the highest amounts of Hg and there was evidence of it leaching to a depth of 90 cm at the edge of the green. The particularly high amounts of Hg in no III were in accord with the liberal use of mercurial fungicides on this course in the period 1912-64. The leaching of Hg depends on amounts of organic matter and the clay in the soil.

  12. Final Environmental Assessment for Establishment of a New C-130 Landing Zone for 58 SOW

    Science.gov (United States)

    2013-10-01

    sand about 10 inches thick. The subsoil is brown light sandy clay loam about 12 inches thick. The substratum is pink loam and sandy loam that has a...Madurez series soils is light brown loamy fine sand approximately 10 inches thick, with a brown light sandy clay loam subsoil about 12 inches thick...Closure Opening/Comments Count Sanitary Can w/folded seam 3” dia. x 4” ht. 1 Potted meat cans w/solder 2” dia. x 1 5/8” ht. ”Est-20-A” on base 2

  13. Laboratory Study of the Influence of Substrate Type and Temperature on the Exploratory Tunneling by Formosan Subterranean Termite

    Directory of Open Access Journals (Sweden)

    Bal K. Gautam

    2012-06-01

    Full Text Available Using two-dimensional foraging arenas, laboratory tests were conducted to investigate the effect of soil type, soil moisture level and ambient temperature on the exploratory tunneling by Coptotermes formosanus Shiraki. In choice arenas consisting of two substrate types having two moisture levels each, and conducted at a constant temperature of 22 °C, a significantly greater proportion of termites aggregated in sand than in sandy loam. Similarly, the length of excavated tunnels was also increased in sand. In a given substrate, termite aggregation or tunnel length did not differ between 5% and 15% moisture levels. In no-choice tests, where three different substrates (sand, sandy loam and silt loam were tested at two temperatures (22 °C and 28 °C, excavations were significantly greater in sand than either sandy loam or silt loam at 22 °C. Fewer primary tunnels were constructed in sandy loam than in sand and fewer branched tunnels than either in sand or silt loam. No significant difference in either tunnel length or number of primary or branched tunnels was found between these two temperatures.

  14. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil

    International Nuclear Information System (INIS)

    Chen, G.C.; He, Z.L.; Stoffella, P.J.; Yang, X.E.; Yu, S.; Calvert, D.

    2006-01-01

    There is increasing concern over P leaching from sandy soils applied with water-soluble P fertilizers. Laboratory column leaching experiments were conducted to evaluate P leaching from a typical acidic sandy soil in Florida amended with DPR fertilizers developed from dolomite phosphate rock (DPR) and N-Viro soil. Ten leaching events were carried out at an interval of 7 days, with a total leaching volume of 1183 mm equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachates were collected and analyzed for total P and inorganic P. Phosphorus in the leachate was dominantly reactive, accounting for 67.7-99.9% of total P leached. Phosphorus leaching loss mainly occurred in the first three leaching events, accounting for 62.0-98.8% of the total P leached over the whole period. The percentage of P leached (in the total P added) from the soil amended with water-soluble P fertilizer was higher than those receiving the DPR fertilizers. The former was up to 96.6%, whereas the latter ranged from 0.3% to 3.8%. These results indicate that the use of N-Viro-based DPR fertilizers can reduce P leaching from sandy soils. - Fertilizers developed from dolomite phosphate rock (DPR) reduce phosphorus leaching from sandy soil

  15. Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2009-01-01

    The soil gas diffusion coefficient (Dp) and air permeability (ka) and their dependency on soil air content ( ) control gas diffusion and advection in soils. This study investigated the effects of average particle size (D50) and dry bulk density ( b) on Dp and ka for six sandy soils under variably...

  16. Effect of bovine manure on fecal coliform attachment to soil and soil particles of different sizes.

    Science.gov (United States)

    Guber, Andrey K; Pachepsky, Yakov A; Shelton, Daniel R; Yu, Olivia

    2007-05-01

    Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.

  17. Incorporation of digestate selectively affects physical, chemical and biochemical properties along with CO2 emissions in two contrasting agricultural soils in the Mediterranean area.

    Science.gov (United States)

    Badagliacca, Giuseppe; Petrovičová, Beatrix; Zumbo, Antonino; Romeo, Maurizio; Gullì, Tommaso; Martire, Luigi; Monti, Michele; Gelsomino, Antonio

    2017-04-01

    Soil incorporation of digestate represents a common practice to dispose the solid residues from biogas producing plants. Although the digestate constitutes a residual biomass rich in partially decomposed organic matter and nutrients, whose content is often highly variable and unbalanced, its potential fertilizer value can vary considerably depending on the recipient soil properties. The aim of the work was to assess short-term changes in the fertility status of two contrasting agricultural soils in Southern Italy (Calabria), olive grove on a clay acid soil (Typic Hapludalfs) and citrus grove on a sandy loam slightly calcareous soil (Typic Xerofluvents), respectively located along the Tyrrhenian or the Ionian coast. An amount of 30 t ha-1 digestate was incorporated into the soil by ploughing. Unamended tilled soil was used as control. The following soil physical, chemical and biochemical variables were monitored during the experimental period: aggregate stability, pH, electrical conductivity, organic C, total N, Olsen-P, N-NH4+, N-NO3-, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and the mineralization quotient (qM). Moreover, in the olive grove soil CO2 emissions have been continuously measured at field scale for 5 months after digestate incorporation. Digestate application in both site exerted a significant positive effect on soil aggregate stability with a greater increase in clay than in sandy loam soil. Over the experimental period, digestate considerably affected the nutrient availability, namely Olsen-P, N-NH4+, N-NO3-, along with the electrical conductivity. The soil type increased significantly the soil N-NH4+ content, which was always higher in the olive than in citrus grove soil. N-NO3- content was markedly increased soon after the organic amendment, followed by a seasonal decline more evident in the sandy loam soil. Moreover, soil properties as CaCO3 content and the pH selectively affected the Olsen-P dynamics. No appreciable

  18. Soils in an agricultural landscape of Jokioinen, south-western Finland

    Directory of Open Access Journals (Sweden)

    M. YLI-HALLA

    2008-12-01

    Full Text Available Eleven pedons in an agricultural landscape at elevations 80-130 m above sea level in Jokioinen, south-western Finland were investigated and classified according to Soil Taxonomy, the FAO-Unesco system (FAO, and the World Reference Base for Soil Resources system (WRB. The soils were related to geomorphology of the landscape which is characterized by clayey fields and forested bedrock high areas covered with glacial till. A Spodosol/Podzol was found in a coarse-sandy soil in an esker while the sandy loam in a bedrock high area soils did not have an E horizon. A man-made mollic epipedon was found in a cultivated soil which had a sandy plow layer while clayey plow layers were ochric epipedons. Cambic horizons, identified by structure and redox concentrations, were common in cultivated soils. In a heavy clay soil, small slickensides and wedge-shaped aggregates, i.e., vertic characteristics, were found. Histosols occurred in local topographic depressions irrespective of the absolute elevation. According to the three classification systems, the following catenas are recognized: Haplocryods - Dystro/Eutrocryepts -Haplocryolls - Cryaquepts - Cryosaprists (Soil Taxonomy, Podzols - Regosols - Cambisols - Histosols (FAO-Unesco, and Podzols - Cambisols - Phaeozems - Gleysols - Histosols (WRB.;

  19. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties.

    Science.gov (United States)

    Bending, Gary D; Lincoln, Suzanne D; Edmondson, Rodney N

    2006-01-01

    The extent of within field variability in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican, and the role of intrinsic soil factors and technical errors in contributing to the variability, was investigated in sites on sandy-loam and clay-loam. At each site, 40 topsoil samples were taken from a 160 x 60 m area, and pesticides applied in the laboratory. Time to 25% dissipation (DT25) ranged between 13 and 61 weeks for diflufenican, 5.6 and 17.2 weeks for azoxystrobin, and 0.3 and 12.5 weeks for isoproturon. Variability in DT25 was higher in the sandy-loam in which there was also greatest variability in soil chemical and microbial properties. Technical error associated with pesticide extraction, analysis and lack of model fit during derivation of DT25 accounted for between 5.3 and 25.8% of the variability for isoproturon and azoxystrobin, but could account for almost all the variability for diflufenican. Azoxystrobin DT25, sorption and pH were significantly correlated.

  20. Development of a low-cost soil moisture sensor for in-situ data collection by citizen scientists

    Science.gov (United States)

    Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Das, N.; Podest, E.; Hovhannesian, H.; Fairbanks, G.

    2017-12-01

    Soil moisture (SM) is identified as an Essential Climate Variable and it exerts a strong influence on agriculture, hydrology and land-atmosphere interaction. The aim of this project is to develop an affordable (low-cost), durable, and user-friendly, sensor and an associated mobile app to measure in-situ soil moisture by the citizen scientists or any K-12 students. The sensor essentially measures the electrical resistance between two metallic rods and the resistance is converted into SM based on soil specific calibration equations. The sensor is controlled by a micro-controller (Arduino) and a mobile app (available both for iOS and Android) reads the resistance from the micro-controller and converts it into SM for the soil type selected by the user. Extensive laboratory tests are currently being carried out to standardize the sensor and to calibrate the sensor for various soil types. The sensor will also be tested during field campaigns and recalibrated for field conditions. In addition to the development of the sensor and the mobile app, supporting documentation and videos are also being developed that show the step-by-step process of building the sensor from scratch and measurement protocols. Initial laboratory calibration and validation of the prototype suggested that the sensor is able to satisfactorily measure SM for sand, loam, sandy loam, sandy clay loam type of soils. The affordable and simple sensor will help citizen scientists to understand the dynamics of SM at their site and the in-situ data will further be utilized for validation of the satellite observations from the SMAP mission.

  1. Cesium-137 retention in irops obtained from various soils

    International Nuclear Information System (INIS)

    Gulyakin, I.V.; Yudintseva, E.V.; Gorina, L.I.

    1974-01-01

    A non-station experiment has shown that the accumulation of cesium-137 in a plant yield depends on the type of soil. The highest contents of cesium-137 were found in the yield of plants from soddy-podzolic sandy loam soils, and the lowest- in those from leached chernozem. The accumulation of radiocesium in the yield of the basic produce strongly depended on the plant species. The amount of cesium-137 differed 5- to 7-fold in different crops

  2. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types. [/sup 32/P-labelled fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Bhujbal, B M; Mistry, K B [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.; Chapke, V G; Mutatkar, V K [Fertilizer Corp. of India Ltd., Bombay

    1977-09-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO/sub 3/ (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers.

  3. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    .e. visual evaluation of soil structure (VESS), overall visual structure (OVS) and overall soil structure (OSS)) were employed to differentiate the effects of these alternative management practices on soil structural quality and relative crop yield (RY). A Pearson correlation was also employed to find...... the correlation between the soil quality indices and relative crop yield. Relevant soil properties for calculating the soil quality indices were measured or obtained from previous publications. Crop rotation affected the soil structure and RY. The winter-dominated crop rotation (R2) resulted in the poorest soil...... correlations were found in most cases between soil quality indices (including M-SQR) and RY. This highlights the influence of soil quality (as measured by the selected indicators) – and soil structure in particular – on crop yield potential....

  4. CONTRIBUTIONS TO IMPROVING CULTURE TEHNOLOGIES OF PEACHES GROWN ON SANDY SOILS THE SOUTH OF OLTENIA

    Directory of Open Access Journals (Sweden)

    Anica Durau

    2013-12-01

    Full Text Available Technological factors with major implications in obtaining high yields and quality in peaches grown on sandy soils are planting row distance and shape of the crown, soil maintenance system, chemical, organic and foliar fertilzation. A smal size combined with the flatening of the crowns of the tres alows a dense planting, also ensure proper mechanization of work and easy penetration of light to the leaves and fruits. Crown form vertical belt proved to be suitable for al planting distances studied, easily made and maintained, having fruit production ranged betwen 15.9 t / ha at a distance of 2 m, 10.3 t / ha at a distance of 2.5 m and 7.9 t / ha at a distance of 3 m. The state of soil nutrient supply influence sucesful peach crop on sandy soils. The fertilzer dose of technology to N10 P80 K10 kg s.a / ha production was 34.9 t / ha. Organic fertilzation also contributes to obtaining high yields of peach. In sandy soil conditions most fruit production of 9.6 t / ha was obtained by fertilzation with organic manure 60t/ha. Besides fertilzation, soil maintenance system is one important link in the technology peach crop on sandy soils. The results found that the biggest peach fruit production was obtained from field maintenance system black-8,2t/ha. Using technology in foliar peaches culture on sandy soils, is an important means of providing nutrients that lead to improved proceses of growth and fructification. The best way is with foliar fertilzation Folibor in dose 5l/ha, the production obtained was 12.4 t /ha.

  5. Effect of industrial, municipal and agricultural wastes on peanut in lateritic sandy loam soil

    International Nuclear Information System (INIS)

    Sarkar, S.; Khan, A.R.

    2002-06-01

    Modern agriculture, worldwide, depends upon the external application of plant nutrients supplied mostly through chemical fertilizer to meet the crop needs. The natural recycling cannot provide the very large amount of nutrients needed year after year in an intensive cropping system and nutrients being a major constraint harvesting the nutrient energy from biological and industrial waste are of prime importance for maximizing the food grain production in the world. A number of industrial wastes like fly ash from thermal power plants, paper factory sludge from paper factory, sewage sludge from municipal source and farmyard manure from livestock farming are the important waste resources, having potentiality in recycling in agricultural land. When these wastes are recycled through soil for crop production, due to the degradative and assimilative capacity of soil, the pollution hazards of these wastes can be minimized to a greater extent as compared to direct disposing of at the site. Fly ash is a waste product residue resulting from the combustion of pulverised coal in coal-fired power generating station. Physico - chemical analysis of fly ash has revealed the presence of both macro-micro nutrients, which can sustain plant growth. Its application in the agricultural land acts as a liming material and improves crop growth by neutralizing the soil acidity, increasing the water availability for the plants and supplement of nutrients (Adriano et al, 1980, Molliner and Street, 1982, Schnappinger et al, 1975). Application of paper factory sludge has been reported to increase the organic carbon content in soil and nutrient content like P, K, Ca, Mg and micronutrients (Guerini et al, 1994, Muse and Mitchell, 1995). Sludge application also improves the organic carbon content of the soil and availability of nutrients like Ca, K and Mg besides improvement of physical properties (Pitchel and Hayes, 1990). Much is known regarding crop performance and changes in physical and

  6. Predicting nitrous oxide emissions from manure properties and soil moisture: An incubation experiment

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Arthur, Emmanuel; Olesen, Jørgen Eivind

    2016-01-01

    Field-applied manure is a source of essential plant nutrients, but benefits may be partly offset by high rates of nitrous oxide (N2O) emissions, as modified by manure characteristics and soil properties. In a 28-d incubation experiment we quantified short-term emissions of N2O from a sandy loam...

  7. The fate of uranium contaminants of phosphate fertiliser: chemical partitioning of uranium in two New Zealand soils of volcanic origin and the effect on partitioning of amending one of those soils with uranium

    International Nuclear Information System (INIS)

    Taylor, M.D.

    1998-01-01

    This study assessed the chemical partitioning of U isotopes in Horomanga Sandy Loam and Te Kowhai silt loam, two agricultural soils derived from rhyolitic ash and receiving low level contamination from U impurities in phosphate fertiliser. To simulate future U additions, a sub-sample of the Horomanga soil was amended with 2.259 μg U g -1 soil before sequential extraction. The hypothesis that U additions will be strongly held on to the soil and are not available for leaching or plant uptake was tested. After extraction U was purified and determined by alpha spectrometry. Results were corrected for tailing, background, for losses in the purification process (using 232 U), and for soil moisture. It is concluded that only a small proportion of U in the two type of soils examined was derived from fertiliser and that very little U would be available to plants or to leaching

  8. Key parameters in testing biodegradation of bio-based materials in soil.

    Science.gov (United States)

    Briassoulis, D; Mistriotis, A

    2018-05-05

    Biodegradation of plastics in soil is currently tested by international standard testing methods (e.g. ISO 17556-12 or ASTM D5988-12). Although these testing methods have been developed for plastics, it has been shown in project KBBPPS that they can be extended also to lubricants with small modifications. Reproducibility is a critical issue regarding biodegradation tests in the laboratory. Among the main testing variables are the soil types and nutrients available (mainly nitrogen). For this reason, the effect of the soil type on the biodegradation rates of various bio-based materials (cellulose and lubricants) was tested for five different natural soil types (loam, loamy sand, clay, clay-loam, and silt-loam organic). It was shown that use of samples containing 1 g of C in a substrate of 300 g of soil with the addition of 0.1 g of N as nutrient strongly improves the reproducibility of the test making the results practically independent of the soil type with the exception of the organic soil. The sandy soil was found to need addition of higher amount of nutrients to exhibit similar biodegradation rates as those achieved with the other soil types. Therefore, natural soils can be used for Standard biodegradation tests of bio-based materials yielding reproducible results with the addition of appropriate nutrients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A Study on the Autecology of Reseda lutea L. (Resedaceae) Distributed in Western Anatolia

    OpenAIRE

    DOĞAN, Yunus

    2014-01-01

    The aim of this study was to determine the autecological characteristics of Reseda lutea L. (Resedaceae) distributed in Western Anatolia. The chemical and physical analysis was carried out on soil and plant samples collected from 54 different localities in Western Anatolia. The results show that the plant generally prefers sandy-loam and sandy-clayey-loam textural soils, with a slightly alkaline or medium alkaline pH. They prefer non-saline, calcareous soils which are poor in potassium and ph...

  10. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation.

    Science.gov (United States)

    Sandhu, Saroop S; Ussiri, David A N; Kumar, Sandeep; Chintala, Rajesh; Papiernik, Sharon K; Malo, Douglas D; Schumacher, Thomas E

    2017-10-01

    Biochar is a solid material obtained when biomass is thermochemically converted in an oxygen-limited environment. In most previous studies, the impacts of biochar on soil properties and organic carbon (C) were investigated under controlled conditions, mainly laboratory incubation or greenhouse studies. This 2-year field study was conducted to evaluate the influence of biochar on selected soil physical and chemical properties and carbon and nitrogen fractions for two selected soil types (clay loam and a sandy loam soil) under a corn (Zea mays L.)-soybean (Glycine max L.) rotation. The three plant based biochar materials used for this study were corn stover (CS), ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue (PW), and switchgrass (Panicum virgatum L.) (SG). Data showed that CS and SG significantly increased the pH of acidic soil at the eroded landscape position but produced no significant change in soil pH at the depositional landscape position. The effects of biochar treatments on cold water extractable C (WSC) and nitrogen (WSN) fractions for the 0-7.5 cm depth were depended on biochar and soil type. Results suggested that alkaline biochars applied at 10 Mg ha -1 can increase the pH and WSC fraction of acidic sandy loam soil, but the 10 Mg ha -1 rate might be low to substantially improve physical properties and hot water extractable C and N fractions of soil. Application of higher rates of biochar and long-term monitoring is needed to quantify the benefits of biochar under field conditions on soils in different environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    Directory of Open Access Journals (Sweden)

    Weijing Yao

    2018-04-01

    Full Text Available Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry injected into sand and sandy soil were explored. The investigated parameters were the dry density, wet density, moisture content, internal friction angle, and cohesion force. The results show that the consolidation effect of superfine cement is better than that of Portland cement due to the small size of superfine cement particles. The superfine cement can diffuse into the sand by infiltration, extrusion, and splitting. When the water–cement ratio of superfine cement slurry is less than 2:1 grouting into loose sand, the dry and wet density decrease with the increase in the water–cement ratio, while the moisture content and cohesive force gradually increase. When the water–cement ratio of superfine cement slurry is 1:1 grouting into loose sand and sandy soil, the dry density, wet density, and cohesive force of loose sand are larger than those of sandy soil. The results of the experiment may be relevant for engineering applications.

  12. Environmental Assessment for Proposed Demolition and Consolidation, Maxwell Air Force Base, Montgomery County, Alabama

    Science.gov (United States)

    2013-09-01

    51 3.11.2.2 SANITARY SEWER ...............................................................51 3.11.2.3 ELECTRICITY...72 4.2.11.2 SANITARY SEWER ...............................................................73 4.2.11.3...loam or sandy clay soils. The majority of the installation consists of the Amite-Cahaba association which is deep, well-drained, fine sandy loam

  13. Fuel consumption of tractor for different soil types in semi-arid regions; Consumo de combustivel de um trator agricola para diferentes tipos de solo em regioes semi-aridas

    Energy Technology Data Exchange (ETDEWEB)

    Montanha, Gustavo K. [Universidade Estadual Paulista (FAC/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], E-mail: gmontanha@fca.unesp.br; Guerra, Saulo P.S. [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Dept. de Gestao e Tecnologia Agroindustrial; Andrade-Sanchez, Pedro; Heun, John [The University of Arizona, Maricopa, AZ (United States); Monteiro, Leonardo A. [The University of Arizona (MAC/UA), Maricopa, AZ (United States). Maricopa Agricultural Center

    2010-07-01

    The appropriate use of agricultural machinery enables greater operational efficiency and higher productivity for the farmer. Some factors such as soil type can influence the fuel consumption, one of the biggest costs. This study aimed to compare the fuel consumption of a tractor operating in two different conditions of soil in semi-arid regions. The area used for testing is located in the city of Maricopa, in Arizona, belonging to 'The University of Arizona'. The area 1 is classified as sandy clay loam soil (52% sand, 35% clay, 13% silt). The area 2 is classified as a sandy loam soil (71% sand, 12% clay and 17% silt). The tractor 4 x 2 TDA, with 88 kw (120 hp) engine power equipped with auto pilot system and an implement for tillage were used in the experiment. A data acquisition system was installed in the tractor to collect the data generated by the GPS and fuel consumption sensor. The results showed significant statistical difference in fuel consumption between soil textures. (author)

  14. ACHIEVEMENTS AND PERSPECTIVES ON STONE FRUIT GROWING ON SANDY SOILS

    Directory of Open Access Journals (Sweden)

    Anica Durău

    2012-01-01

    Full Text Available Climatic conditions in the sandy soils of southern Oltenia encourage cultivation of tree species in terms of applying specific technologies. Possibility of poor sandy soils fertile capitalization, earliness in 7- 10 days of fruit ripening , high yields and quality are the main factors supporting the development of fruit growing in the sandy soils of southern Oltenia. The main objectives of the research were to CCDCPN Dăbuleni. Establish and improve stone fruit species assortment, adapted to the stress of the sandy soils, establishment and evaluation of the influence of stress on trees and their influence on the size and quality of production, development of technological links (planting distances, forms management, fertilization, getting high and consistent annual production of high quality, containing low as pesticide residues, to establish a integrated health control program of the trees with emphasis on biotechnical. Research has shown good stone species behavior, and their recommended proportion is 75% of all fruit trees (peach 36%, 14% apricot, plum15%, sweet and sour cherry fruit growing 10% of the total area. Results on peach varieties revealed: ’Redhaven’, ’Suncrest’, ’Loring’ with yields ranging from (24.8 t / ha to 29.0 t/ha with maturation period from July to August, and varieties ’NJ 244’, ’Fayette’, ’Flacara’ with productions ranging from (19.7 t / ha to 23.0 t/ha with maturation period from August to September. The sweet cherry varieties ’Van’, ’Rainier’, ’Stella’, with yields ranging from 17. 2 to 24.4 t / ha. In the range studied sour cherry were found ’Oblacinska’ varieties of 11.0 t / ha, ’Cernokaia’ with 10.5 t / ha, ’Schatten Morelle’ with 9.1 t / ha. Optimum planting density and shape of the peach crown found that the highest yields of fruit are produced in the form of vertical cordon crown, with values ranging from 15.9 t / ha at a distance of 2 m, 10.3 t / ha at a distance

  15. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations.

    Science.gov (United States)

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2017-07-01

    Olive mill waste water (OMWW) is an acidic (pH 4-5), saline (EC ∼ 5-10 mS cm -1 ), blackish-red aqueous byproduct of the three phase olive oil production process, with a high chemical oxygen demand (COD) of up to 220,000 mg L -1 . OMWW is conventionally disposed of by uncontrolled dumping into the environment or by semi-controlled spreading on agricultural soils. It was hypothesized that spreading such liquids on agricultural soils could result in the release and mobilization of indigenous soil metals. The effect of OMWW spreading on leaching of metal cations (Na, K, Mg, Mn, Fe, Cu, Zn) was tested in four non-contaminated agricultural soils having different textures (sand, clay loam, clay, and loam) and chemical properties. While the OMWW contributed metals to the soil solution, it also mobilized indigenous soil metals as a function of soil clay content, cation exchange capacity (CEC), and soil pH-buffer capacity. Leaching of soil-originated metals from the sandy soil was substantially greater than from the loam and clay soils, while the clay loam was enriched with metals derived from the OMWW. These trends were attributed to cation exchange and organic-metal complex formation. The organic matter fraction of OMWW forms complexes with metal cations; these complexes may be mobile or precipitate, depending on the soil chemical and physical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Transfer Factor of Radioactive Cs and Sr from Egyptian Soils to Roots and Leafs of Wheat Plant

    International Nuclear Information System (INIS)

    Abu Khadra, S.A.; Abdel Fattah, A.T.; Eissa, H.S.; Abdel Sabour, M.F.

    2009-01-01

    Transfer factors (TFs) of long lived radionuclide such as 137 Cs and 90 Sr from three different Egyptian soils type to wheat plant have been studied by radiotracer experiments. Most typical Egyptian soils (sandy, sandy loam and clayey) from three different locations (Al -Oboor, Abu- Zaabal and Shebeen cities) were selected for the experiments carried out under outdoor conditions. The plant selected was wheat because the high consumption of wheat in Egypt. In the present study radioactive strontium and caesium uptake from different types of soil was investigated .These radionuclide showed a considerable difference in their distribution within the plant .The results showed that soil type influences the transfer factors. Sandy soil resulted in the highest transfer factor for both (Cs and Sr) from soil to wheat. TFs for leafs were higher than those for roots in case of 90 Sr (for all types of soil). However, TFs of ( 137 Cs) for roots were higher than those for leafs for all soils. Grains of the wheat showed the lowest transfer factor for the Cs and Sr (for all types of soil)

  17. Analyzing the Sand-fixing Effect of Feldspathic Sandstone from the Texture Characteristics

    Science.gov (United States)

    Zhang, lu; Ban, Jichang

    2018-01-01

    The purpose of this research was aimed to study the sand fixing effect of feldspathic sandstone in Mu Us Sandy Land, to provide a scienticic basis for desertification control, soil and water conservation and development of farming there. Methods of mixing feldspathic sandstone and aeolian sandy soil according to 1: 0, 1: 1, 1: 2, 1: 5, and 0: 1 mass ratioes, the graded composition and characteristics were studied with laser particle size analyzer. The result showed that these features of sand-based, loosely structured, easy to wind erosion of aeolian sandy soil were changed before feldspathic sandstone and aeolian sandy soil compounding. The <0.05 mm particle mass increased with feldspathic sandstone mass increasing. The texture presented this kind of change from sand to sandy loam to loam to silt loam. The small particle size distribution, good homogeneity and other features of aeolian sandy soil were improved to a certain degree, and the particle size distribution became broad before feldspathic sandstone and aeolian sandy soil compounding. The particle grading was continuous, and the grading characteristic was good when m(F): m(S) was 1: 5(Cu was 54.71 and Cc was 2.54) or when m(F): m(S) was 1: 2(Cu was 76.21, Cc was 1.12). The conclusion is that feldspathic sandstone has sand-fixing effect in texture characteristics, which heightens with feldspathic sandstone mass increasing, and when the mass ratio of feldspathic sandstone: aeolian sandy soil is 1: 2 or 1: 5 which compound better.

  18. Humic substances as a washing agent for Cd-contaminated soils.

    Science.gov (United States)

    Meng, Fande; Yuan, Guodong; Wei, Jing; Bi, Dongxue; Ok, Yong Sik; Wang, Hailong

    2017-08-01

    Cost-effective and eco-friendly washing agents are in demand for Cd contaminated soils. Here, we used leonardite-derived humic substances to wash different types of Cd-contaminated soils, namely, a silty loam (Soil 1), a silty clay loam (Soil 2), and a sandy loam (Soil 3). Washing conditions were investigated for their effects on Cd removal efficiency. Cadmium removal was enhanced by a high humic substance concentration, long washing time, near neutral pH, and large solution/soil ratio. Based on the tradeoff between efficiency and cost, an optimum working condition was established as follows: humic substance concentration (3150 mg C/L), solution pH (6.0), washing time (2 h) and a washing solution/soil ratio (5). A single washing removed 0.55 mg Cd/kg from Soil 1 (1.33 mg Cd/kg), 2.32 mg Cd/kg from Soil 2 (6.57 mg Cd/kg), and 1.97 mg Cd/kg from Soil 3 (2.63 mg Cd/kg). Cd in effluents was effectively treated by adding a small dose of calcium hydroxide, reducing its concentration below the discharge limit of 0.1 mg/L in China. Being cost-effective and safe, humic substances have a great potential to replace common washing agents for the remediation of Cd-contaminated soils. Besides being environmentally benign, humic substances can improve soil physical, chemical, and biological properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Amelioration of sandy soils in drought stricken areas through use of ...

    African Journals Online (AJOL)

    Soil moisture shortage is a major limiting factor to agricultural production in eastern Africa, in view of increased drought incidences and seasonal rainfall variability. This study evaluated the potential for Ca-bentonite (a 2:1 clay mineral) as a possible amendment for increased moisture retention by sandy soils in drought ...

  20. Observed effects of soil organic matter content on the microwave emissivity of soils

    International Nuclear Information System (INIS)

    O'Neill, P.E.; Jackson, T.J.

    1990-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, a series of field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8%, 4.0%, and 6.1%) for a range of soil moisture values. Analyses of the observed data showed only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibited the same trends and type of response as the measured data when adjusted values for the input parameters were utilized

  1. Changes to soil water content and biomass yield under combined maize and maize-weed vegetation with different fertilization treatments in loam soil

    Directory of Open Access Journals (Sweden)

    Lehoczky Éva

    2016-06-01

    Full Text Available Especially during early developmental stages, competition with weeds can reduce crop growth and have a serious effect on productivity. Here, the effects of interactions between soil water content (SWC, nutrient availability, and competition from weeds on early stage crop growth were investigated, to better understand this problem. Field experiments were conducted in 2013 and 2014 using long-term study plots on loam soil in Hungary. Plots of maize (Zea mays L. and a weed-maize combination were exposed to five fertilization treatments. SWC was observed along the 0–80 cm depth soil profile and harvested aboveground biomass (HAB was measured.

  2. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil

    Science.gov (United States)

    The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy...

  3. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  4. Integrated assessment of space, time, and management-related variability of soil hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Es, H.M. van; Ogden, C.B.; Hill, R.L.; Schindelbeck, R.R.; Tsegaye, T.

    1999-12-01

    Computer-based models that simulate soil hydrologic processes and their impacts on crop growth and contaminant transport depend on accurate characterization of soil hydraulic properties. Soil hydraulic properties have numerous sources of variability related to spatial, temporal, and management-related processes. Soil type is considered to be the dominant source of variability, and parameterization is typically based on soil survey databases. This study evaluated the relative significance of other sources of variability: spatial and temporal at multiple scales, and management-related factors. Identical field experiments were conducted for 3 yr. at two sites in New York on clay loam and silt loam soils, and at two sites in Maryland on silt loam and sandy loam soils, all involving replicated plots with plow-till and no-till treatments. Infiltrability was determined from 2054 measurements using parameters, and Campbell's a and b parameters were determined based on water-retention data from 875 soil cores. Variance component analysis showed that differences among the sites were the most important source of variability for a (coefficient of variation, CV = 44%) and b (CV = 23%). Tillage practices were the most important source of variability for infiltrability (CV = 10%). For all properties, temporal variability was more significant than field-scale spatial variability. Temporal and tillage effects were more significant for the medium- and fine-textured soils, and correlated to initial soil water conditions. The parameterization of soil hydraulic properties solely based on soil type may not be appropriate for agricultural lands since soil-management factors are more significant. Sampling procedures should give adequate recognition to soil-management and temporal processes at significant sources of variability to avoid biased results.

  5. Effect of vermicomposts from wastes of the wine and alcohol industries in the persistence and distribution of imidacloprid and diuron on agricultural soils.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2009-06-24

    The persistence and distribution of diuron (D) and imidacloprid (I) in soils amended or not with winery vermicomposts were recorded for several months. Sandy loam (S1) and silty clay loam (S2) soils with organic carbon contents of Diuron was dissipated more rapidly except in the unamended soil S1 with DT(50) values of 259 days. The addition of vermicomposts to S1 soil decreased the persistence of D, and high amounts of DPMU (40%) and DPU (20%) metabolites were found. In unamended and amended S2 soils, the persistence of D was lower than in S1 (DT(50) < 42 days) but only DPMU was determined (up to 5%). Different simulation models from FOCUS guidelines were applied to the experimental data. No relationship between pesticide degradation and soil enzyme activities was found.

  6. Different Behavior of Enteric Bacteria and Viruses in Clay and Sandy Soils after Biofertilization with Swine Digestate

    Science.gov (United States)

    Fongaro, Gislaine; García-González, María C.; Hernández, Marta; Kunz, Airton; Barardi, Célia R. M.; Rodríguez-Lázaro, David

    2017-01-01

    Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling. PMID:28197137

  7. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    Science.gov (United States)

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  8. HPLC Analysis to Determine the Half-life and Bioavailability of the Termiticides Bifenthrin and Fipronil in Soil.

    Science.gov (United States)

    Manzoor, F; Pervez, M

    2017-12-05

    The aim of this study was to test the bioavailability and degradation in soil of the termiticides bifenthrin and fipronil, which are used to treat subterranean termites (Heterotermes indicola, Wasmann). Soil collected from different areas of Lahore was categorized as sandy clay loam (SCL) or sandy loam (SL). Laboratory bioassays were conducted to determine the bioavailability ratio of bifenthrin and fipronil in each type of soil after different periods of time. LT50 values were determined posttreatment at different time intervals. Regarding soil type, both termiticides were more effective in SL soil, compared with SCL soil posttreatment. There were significant differences in termite mortality in treated compared with untreated control samples (P bifenthrin (maximum, 1,002 and 1,262 d in SCL soil and SL soil, respectively) indicated that it persisted in both soil types at all concentrations. The maximum calculated half-life values of fipronil were 270 and 555 d in SCL and SL soil, respectively. At lower concentrations and over longer periods of time, fipronil completely degraded in SL soil, while a negligible amount was detected in SCL soil. Termiticide concentration decreased over time, as did the termiticide recovery rate. Overall, bifenthrin was more persistent than fipronil under all treatment conditions tested. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Influence of Long-term Application of Feedlot Manure Amendments on Water Repellency of a Clay Loam Soil.

    Science.gov (United States)

    Miller, Jim J; Beasley, Bruce W; Hazendonk, Paul; Drury, Craig F; Chanasyk, David S

    2017-05-01

    Long-term application of feedlot manure to cropland may increase the quantity of soil organic carbon (C) and change its quality, which may influence soil water repellency. The objective was to determine the influence of feedlot manure type (stockpiled vs. composted), bedding material (straw [ST] vs. woodchips [WD]), and application rate (13, 39, or 77 Mg ha) on repellency of a clay loam soil after 17 annual applications. The repellency was determined on all 14 treatments using the water repellency index ( index), the water drop penetration time (WDPT) method, and molarity of ethanol (MED) test. The C composition of particulate organic matter in soil of five selected treatments after 16 annual applications was also determined using C nuclear magnetic resonance-direct polarization with magic-angle spinning (NMR-DPMAS). Manure type had no significant ( > 0.05) effect on index and WDPT, and MED classification was similar. Mean index and WDPT values were significantly greater and MED classification more hydrophobic for WD than ST. Application rate had no effect on the index, but WDPT was significantly greater and MED classification more hydrophobic with increasing application rate. Strong ( > 0.7) but nonsignificant positive correlations were found between index and WDPT versus hydrophobic (alkyl + aromatic) C, lignin at 74 ppm (O-alkyl), and unspecified aromatic compounds at 144 ppm. Specific aromatic compounds also contributed more to repellency than alkyl, O-alkyl, and carbonyl compounds. Overall, all three methods consistently showed that repellency was greater for WD- than ST-amended clay loam soil, but manure type had no effect. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    OpenAIRE

    Weijing Yao; Jianyong Pang; Yushan Liu

    2018-01-01

    Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry inject...

  11. Effect of biochar amendment on nitrate retention in a silty clay loam soil

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2016-08-01

    Full Text Available Biochar incorporation into agricultural soils has been proposed as a strategy to decrease nutrient leaching. The present study was designed to assess the effect of biochar on nitrate retention in a silty clay loam soil. Biochar obtained from the pyrogasification of fir wood chips was applied to soil and tested in a range of laboratory sorption experiments. Four soil treatments were considered: soil only (control, soil with 2, 4 and 8% of biochar by mass. The Freundlich sorption isotherm model was used to fit the adsorbed amount of nitrate in the soil-biochar mixtures. The model performed very well in interpreting the experimental data according to a general linear regression (analysis of co-variance statistical approach. Nitrate retention in the soilbiochar mixtures was always higher than control, regardless the NO3 – concentration in the range of 0-400 mg L–1. Different sorption capacities and intensities were detected depending on the biochar application rate. The highest adsorption capacity was observed in the soils added with 2 and 4% of biochar, respectively. From the results obtained is possible to infer that nitrate retention is higher at lower biochar addition rate to soil (2 and 4% and at lower nitrate concentration in the soil water solution. These preliminary laboratory results suggest that biochar addition to a typical Mediterranean agricultural soil could be an effective management option to mitigate nitrate leaching.

  12. Combined mild soil washing and compost-assisted phytoremediation in treatment of silt loams contaminated with copper, nickel, and chromium.

    Science.gov (United States)

    Sung, Menghau; Lee, Chi-Yi; Lee, Suen-Zone

    2011-06-15

    A new soil remediation option, combining the soil washing process using pure water followed by the compost-assisted phytoextraction, is evaluated using silt loams contaminated with plating wastewater containing Cu, Ni, and Cr. Plants utilized in this study are the rapeseeds, sunflowers, tomatoes, and soapworts. Phytoextraction operation was carried out in pot experiments over a period of 4 months. Metal concentrations in roots and shoots of plants were analyzed upon completion of each pot experiment. Hypothesis testing was employed in assessing the significance of difference in the experimental data. Results indicated that the rapeseed, a hyperaccumulator, is most effective in extracting metals from the compost-amended silt loams. The fast-growing sunflowers and tomatoes are comparable to rapeseeds in accumulating metals despite their relatively low metal concentrations in tissues. Bioaccumulation coefficients obtained for all plants are less than one, indicating that phytostabilization rather than phytoextraction is the dominant mechanism at this simulated final-phase condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Investigation of the transport of actinide-bearing soil colloids in the soil-aquatic environment

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Campbell, M.J.; Kittrick, J.; Cheng, T.

    1980-04-01

    Uranium-233 particle size dependent distribution ratios for the 10 to 60 range were determined for muscatine silt loam, Burbank loamy sand, Ritzville silt loam, Fuquay sand, and Idaho sandy clay. A mathematical method for the analysis of centrifuge data was developed to determine particle size dependent distribution ratio for the 10 to 60 nm range. Comparison of the distribution ratio data for the 0 to 60 nm particle size range strongly suggests that particles in the 1 to 10 nm (8000 to 50,000 MW) range play a dominate role. Since these particles are probably humic acid polymers, future research should be focused on humic acid complexing of radionuclides. A mathematical analysis is given to demonstrate the role of humic acid complexing in the transport of radionuclides in the soil-aquatic environment

  14. Effect of soil pH on sorption of salinomycin in clay and sandy soils

    African Journals Online (AJOL)

    use

    The sorption of salinomycin to the sandy soil marginally increased as the pH decreased, while the sorption to the two .... plastic containers at room temperature for further analysis. ... The pH was adjusted eight times over 20 days to stabilize at.

  15. The water retention of a granite rock fragments in High Tatras stony soils

    OpenAIRE

    Novák, Viliam; Šurda, Peter

    2010-01-01

    The water retention capacity of coarse rock fragments is usually considered negligible. But the presence of rock fragments in a soil can play an important role in both water holding capacity and in hydraulic conductivity as well. This paper presents results of maximum water holding capacity measured in coarse rock fragments in the soil classified as cobbly sandy loam sampled at High Tatra mountains. It is shown, that those coarse rock (granite) fragments have the maximum retention capacity up...

  16. Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Nilsson, S Ingvar; Eriksen, Jørgen

    2009-01-01

    accumulated net S mineralization (SAccMin) and a number of soil physical and chemical properties were determined. Treatments and soil differences in SAccMin, as well as correlations with soil variables, were tested with single and multivariate analyses. Long-term FYM application resulted in a significantly (p......The long-term treatment effect (since 1957-1966) of farmyard manure (FYM) application compared with crop residue incorporation was investigated in five soils (sandy loam to silty clay) with regards to the net sulfur (S) mineralization potential. An open incubation technique was used to determine...... = 0.012) higher net S mineralization potential, although total amounts of C, N, and S were not significantly (p soils within this treatment. The measured soil variables were not significantly correlated...

  17. Effect of organic fertilization of soil, differentiated over many years, on the utilization of 15N-labelled urea

    International Nuclear Information System (INIS)

    Markgraf, G.; Winterfeld, C.

    1983-01-01

    Topsoil from samples with different organic fertilization of a soil fertility experiment started in 1936 at the Thyrow experimental site of the Berlin Humboldt University Crop Production Department was used for a pot experiment to study the N utilization of equal amounts of mineral fertilizer N (1.380 mg N/pot in the form of 15 N-labelled urea with an N frequency of 50 +- 0.5 atom per cent). The results showed that combined application of mineral NPK fertilization and high amounts of farmyard manure over a period of about 40 years on deep-loam fallow soil-sandy-rusty soil (diluvial sand to loamy-sandy soil) will lead to better utilization of the applied urea N as well as to higher N availability from the N pool of the soil. (author)

  18. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  19. Evaluation Of Onion Production On Sandy Soils By Use Of Reduced Tillage And Controlled Traffic Farming With Wide Span Tractors

    Directory of Open Access Journals (Sweden)

    Pedersen Hans Henrik

    2015-09-01

    Full Text Available Growing of vegetables is often characterised by intensive field traffic and use of heavy machines. By implementing controlled traffic farming (CTF, compaction of the growth zone can be avoided. An experiment was established in an onion field on a coarse sandy loam. Treatments were applied in the field that for five years had been managed by seasonal CTF (SCTF, where harvest is performed by random traffic due to lack of suitable harvest machines. The main treatment was compaction with a fully loaded potato harvester. The split treatment in the crossed split plot design was mechanical loosening. Bulk density, macroporosity, penetration resistance, water retention characteristics and yield were measured. Mechanical loosening caused improvements in the physical soil measurements and more roots were found in the upper soil layers. The highest yield was however found in the CTF simulation plots (19% higher than in the SCTF simulated plots. Using wide span tractors as a harvest platform will enable CTF in vegetable production. Avoidance of compaction will enable reduced tillage intensity and productivity can be improved both through higher yield of the area that is cropped and by a larger percentage of fields can be cropped area as less area will be needed for tracks.

  20. Expanded uncertainty estimation methodology in determining the sandy soils filtration coefficient

    Science.gov (United States)

    Rusanova, A. D.; Malaja, L. D.; Ivanov, R. N.; Gruzin, A. V.; Shalaj, V. V.

    2018-04-01

    The combined standard uncertainty estimation methodology in determining the sandy soils filtration coefficient has been developed. The laboratory researches were carried out which resulted in filtration coefficient determination and combined uncertainty estimation obtaining.

  1. Application of Modular Modeling System to Predict Evaporation, Infiltration, Air Temperature, and Soil Moisture

    Science.gov (United States)

    Boggs, Johnny; Birgan, Latricia J.; Tsegaye, Teferi; Coleman, Tommy; Soman, Vishwas

    1997-01-01

    Models are used for numerous application including hydrology. The Modular Modeling System (MMS) is one of the few that can simulate a hydrology process. MMS was tested and used to compare infiltration, soil moisture, daily temperature, and potential and actual evaporation for the Elinsboro sandy loam soil and the Mattapex silty loam soil in the Microwave Radiometer Experiment of Soil Moisture Sensing at Beltsville Agriculture Research Test Site in Maryland. An input file for each location was created to nut the model. Graphs were plotted, and it was observed that the model gave a good representation for evaporation for both plots. In comparing the two plots, it was noted that infiltration and soil moisture tend to peak around the same time, temperature peaks in July and August and the peak evaporation was observed on September 15 and July 4 for the Elinsboro Mattapex plot respectively. MMS can be used successfully to predict hydrological processes as long as the proper input parameters are available.

  2. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1995-01-01

    Two experiments were set up to investigate the influence of soil organic matter on growth of arbuscular mycorrhizal (AM) hyphae and concurrent changes in soil inorganic P, organic P and phosphatase activity. A sandy loam soil was kept for 14 months under two regimes (outdoor where surplus...... additions. In soil with added clover alkaline phosphatase activity increased due to the presence of mycorrhizal hyphae. We suggest that mycorrhizas may influence the exudation of acid phosphatase by roots. Hyphae of G. invermaium did apparently not excrete extracellular phosphatases, but their presence may...

  3. Inhibition effect of zinc in wastewater on the N2O emission from coastal loam soils.

    Science.gov (United States)

    Huang, Yan; Ou, Danyun; Chen, Shunyang; Chen, Bin; Liu, Wenhua; Bai, Renao; Chen, Guangcheng

    2017-03-15

    The effects of zinc (Zn) on nitrous oxide (N 2 O) fluxes from coastal loam soil and the abundances of soil nitrifier and denitrifier were studied in a tidal microcosm receiving livestock wastewater with different Zn levels. Soil N 2 O emission significantly increased due to discharge of wastewater rich in ammonia (NH 4 + -N) while the continuous measurements of gas flux showed a durative reduction in N 2 O flux by high Zn input (40mgL -1 ) during the low tide period. Soil inorganic nitrogen concentrations increased at the end of the experiment and even more soil NH 4 + -N was measured in the high-Zn-level treatment, indicating an inhibition of ammonia oxidation by Zn input. Quantitative PCR of soil amoA, narG and nirK genes encoding ammonia monooxygenase, nitrate reductase and nitrite reductase, respectively, showed that the microbial abundances involved in these metabolisms were neither affected by wastewater discharge nor Zn contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Study of sandy soil grain-size distribution on its deformation properties

    Science.gov (United States)

    Antropova, L. B.; Gruzin, A. V.; Gildebrandt, M. I.; Malaya, L. D.; Nikulina, V. B.

    2018-04-01

    As a rule, new oil and gas fields' development faces the challenges of providing construction objects with material and mineral resources, for example, medium sand soil for buildings and facilities footings of the technological infrastructure under construction. This problem solution seems to lie in a rational usage of the existing environmental resources, soils included. The study was made of a medium sand soil grain-size distribution impact on its deformation properties. Based on the performed investigations, a technique for controlling sandy soil deformation properties was developed.

  5. Pupation Behaviors and Emergence Successes of Ectropis grisescens (Lepidoptera: Geometridae) in Response to Different Substrate Types and Moisture Contents.

    Science.gov (United States)

    Wang, Huifang; Ma, Tao; Xiao, Qiang; Cao, Panrong; Chen, Xuan; Wen, Yuzhen; Xiong, Hongpeng; Qin, Wenquan; Liang, Shiping; Jian, Shengzhe; Li, Yanjun; Sun, Zhaohui; Wen, Xiujun; Wang, Cai

    2017-12-08

    Ectropis grisescens Warren (Lepidoptera: Geometridae) is one of the most severe pests of tea plants in China. This species commonly pupates in soil; however, little is known about its pupation ecology. In the present study, choice and no-choice tests were conducted to investigate the pupation behaviors and emergence success of E. grisescens in response to different substrates (sand, sandy loam 1, sandy loam 2, and silt loam) and moisture contents (5, 20, 35, 50, 65, and 80%). Moisture-choice bioassays showed that significantly more E. grisescens individuals pupated in or on soil (sandy loam 1 and 2 and silt loam) that was at the intermediate moisture levels, whereas 5%- and 35%-moisture sand was significantly more preferred over 80%-moisture sand for pupating. Substrate-choice bioassays showed that sand was most preferred by E. grisescens individuals at 20%- and 80%-moisture levels, but no preference was detected among the four substrates at 50%-moisture content. No-choice tests showed that the percentage of burrowed E. grisescens individuals and pupation depth were significantly lower when soil was dry (20% moisture) or wet (80% moisture). In addition, 20%-moisture sandy loam 2 and silt loam significantly decreased the body water content of pupae and emergence success of adults compared to 50%-moisture content. However, each measurement (percentage of burrowed individuals, pupation depth, body water content, or emergence success) was similar when compared among different moisture levels of sand. Interestingly, pupae buried with 80%-moisture soil exhibited significantly lower emergence success than that were unburied. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Soil Properties Control Glyphosate Sorption in Soils Amended with Birch Wood Biochar

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo, Marcos

    2016-01-01

    Abstract Despite a contemporary interest in biochar application to agricultural fields to improve soil quality and long-term carbon sequestration, a number of potential side effects of biochar incorporation in field soils remain poorly understood, e.g., in relation to interactions...... with agrochemicals such as pesticides. In a fieldbased study at two experimental sites in Denmark (sandy loam soils at Risoe and Kalundborg), we investigated the influence of birch wood biochar with respect to application rate, aging (7–19 months), and physico- chemical soil properties on the sorption coefficient......, Kd (L kg−1), of the herbicide glyphosate. We measured Kd in equilibrium batch sorption experiments with triplicate soil samples from 20 field plots that received biochar at different application rates (0 to 100 Mg ha−1). The results showed that pure biochar had a lower glyphosate Kd value as compared...

  7. Relation between soil P test values and mobilization of dissolved and particulate P from the plough layer of typical Danish soils from a long-term field experiment with applied P fertilizers

    DEFF Research Database (Denmark)

    Glaesner, N.; Kjaergaard, C.; Rubaek, G. H.

    2013-01-01

    Accumulation of phosphorus (P) in agricultural topsoils can contribute to leaching of P which may cause eutrophication of surface waters. An understanding of P mobilization processes in the plough layer is needed to improve agricultural management strategies. We compare leaching of total dissolved...... and particulate P through the plough layer of a typical Danish sandy loam soil subjected to three different P fertilizer regimes in a long-term field experiment established in 1975. The leaching experiment used intact soil columns (20cm diameter, 20cm high) during unsaturated conditions. The three soils had small...

  8. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  9. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  10. Phenanthrene sorption on biochar-amended soils

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo Pérez, Marcos

    2014-01-01

    on their influences on the sorption of environmental contaminants. In a field-based study at two experimental sites in Denmark, we investigated the effect of birch wood-derived biochar (Skogans kol) on the sorption of phenanthrene in soils with different properties. The soil sorption coefficient, Kd (L kg-1......), of phenanthrene was measured on sandy loam and loamy sand soils which have received from zero up to 100 t ha-1 of biochar. Results show that birch wood biochar had a higher Kd compared to soils. Furthermore, the application of birch wood biochar enhanced the sorption of phenanthrene in agricultural soils...... carbon, while it negatively correlated with clay content. The results also revealed that biochar-mineral interactions play an important role in the sorption of phenanthrene in biochar-amended soil....

  11. Clinoptilolite zeolite influence on inorganic nitrogen in silt loam and sandy agricultural soils

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral Clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4...

  12. Sorption and Migration Mechanisms of 237 Np through Sandy Soil

    International Nuclear Information System (INIS)

    Chantaraprachoom, Nanthavan; Tanaka, Tadao

    2003-06-01

    In order to evaluate migration behavior of radioactive nuclides in the disposal of low-level radioactive waste into a shallow land burial, the sorption characteristic and migration behavior of 237 Np through sandy soil was studied. Two experimental methods were performed by using batch and column systems. The distribution coefficients (K d ) obtained from the adsorption and desorption process are rather small about 16 and 21 cm 3 /g respectively. Size distribution of 237 Np species in the influent solution was measured by ultra-filtration technique. Migration mechanism of 237 Np was studied by column experiments. The experimental condition was the influence of volume of eluting solution; 100, 300, 500, 1000 and 2000 ml respectively. The result from five column experiments confirm that the sorption characteristics of 237 Np are mainly controlled by a reversible ion-exchange reaction and the migration of 237 Np in the sandy soil can be estimated by using the K d concept

  13. Two approaches for sequential extraction of radionuclides in soils: batch and column methods

    International Nuclear Information System (INIS)

    Vidal, M.; Rauret, G.

    1993-01-01

    A three-step sequential extraction designed by Community Bureau of Reference (BCR) is applied to two types of soil (sandy and sandy-loam) which had been previously contaminated with a radionuclide aerosol containing 134 Cs, 85 Sr and 110m Ag. This scheme is applied using both batch and column methods. The radionuclide distribution obtained with this scheme depends both on the method and on soil type. Compared with the batch method, column extraction is an inadvisable method. Kinetic aspects seem to be important, especially in the first and third fractions. The radionuclide distribution shows that radiostrontium has high mobility, radiocaesium is highly retained by clay minerals whereas Fe/Mn oxides and organic matter have an important role in radiosilver retention. (Author)

  14. Fates of nickel and fluoranthene during the bioremediation by Pleurotus eryngii in three different soils.

    Science.gov (United States)

    Tang, Xia; Dong, Shunwen; Shi, Wenjin; Gao, Ni; Zuo, Lei; Xu, Heng

    2016-11-01

    This study focused on the bioremediation role of Pleurotus eryngii in different characteristics soils contaminated with nickel (Ni) and fluoranthene. The results of bioremediation experiments showed that fluoranthene had a positive effect on the growth of P. eryngii, whereas Ni exerted a negative influence. The concentration of fluoranthene significantly decreased in inoculated soil accounting for 86.39-91.95% of initial concentration in soils and 71.46-81.76% in non-inoculated soils, which showed that the dissipation of fluoranthene was enhanced by mushroom inoculating. The highest removal rates of fluoranthene in sandy loam, loamy clay, and sandy soils reached to 87.81, 86.39, and 91.95%, respectively, which demonstrated that P. eryngii was more suitable for the bioremediation of sandy soil contaminated with fluoranthene. In addition, the presence of Ni tended to decrease the dissipation of fluoranthene in inoculated soil. Higher ligninolytic enzymes activities were detected in inoculated soils, resulting in the enhanced dissipation of fluoranthene in inoculated soils. Furthermore, P. eryngii had the ability to uptake Ni (4.88-39.53 mg kg -1 ) in co-contamination soil. In conclusion, the inoculating of P. eryngii was effective in remediating of Ni-fluoranthene co-contaminated soils. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biotreatment of hydrocarbons from petroleum tank bottom sludges in soil slurries

    International Nuclear Information System (INIS)

    Ferrari, M.D.; Neirotti, E.; Albornoz, C.; Mostazo, M.R.; Cozzo, M.

    1996-01-01

    Biotreatment of oil wastes in aqueous slurries prepared with sandy loam soil and inoculated with selected soil cultures was evaluated. After 90 days, oil removal was 47%. Removal of each hydrocarbon class was 84% for saturates, 20% for aromatics, and 44% for asphaltenes. Resins increased by 68%. The use of a soil with a lower level of fine particles or minor organic matter content, or reinoculation with fresh culture did not improve oil elimination. Residual oil recovered from slurries was biotreated. Oil removal was 22%. Slurry-phase biotreatment showed less variability and faster oil removal than solid-phase biotreatment. (author)

  16. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    International Nuclear Information System (INIS)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region dominated by dairy farming. No data from this area were used for calibrating the regression models. The model was validated by additional probability sampling. This sample was used to estimate errors in 1) the predicted areal fractions where the EU standard of 50 mg l -1 is exceeded for farms with low N surpluses (ALT) and farms with higher N surpluses (REF); 2) predicted cumulative frequency distributions of nitrate concentration for both groups of farms. Both the errors in the predicted areal fractions as well as the errors in the predicted cumulative frequency distributions indicate that the regression models are invalid for the sandy soils of this study area. - This study indicates that linear regression models that predict nitrate concentrations in the upper groundwater using residual soil N contents should be applied with care.

  17. Phosphorus distribution in sandy soil profile under drip irrigation system

    International Nuclear Information System (INIS)

    El-Gendy, R.W.; Rizk, M.A.; Abd El Moniem, M.; Abdel-Aziz, H.A.; Fahmi, A.E.

    2009-01-01

    This work aims at to studying the impact of irrigation water applied using drip irrigation system in sandy soil with snap bean on phosphorus distribution. This experiment was carried out in soils and water research department farm, nuclear research center, atomic energy authority, cairo, Egypt. Snap bean was cultivated in sandy soil and irrigated with 50,37.5 and 25 cm water in three water treatments represented 100, 75 and 50% ETc. Phosphorus distribution and direction of soil water movement had been detected in three sites on the dripper line (S1,S2 and S3 at 0,12.5 and 25 cm distance from dripper). Phosphorus fertilizer (super phosphate, 15.5% P 2 O 5 in rate 300 kg/fed)was added before cultivation. Neutron probe was used to detect the water distribution and movement at the three site along soil profile. Soil samples were collected before p-addition, at end developing, mid, and late growth stages to determine residual available phosphorus. The obtained data showed that using 50 cm water for irrigation caused an increase in P-concentration till 75 cm depth in the three sites of 100% etc treatment, and covered P-requirements of snap bean for all growth stages. As for 37.5 and 25 cm irrigation water cannot cover all growth stages for P-requirements of snap bean. It could be concluded that applied irrigation water could drive the residual P-levels till 75 cm depth in the three sites. Yield of the crop had been taken as an indicator as an indicator profile. Yield showed good response according to water quantities and P-transportation within the soil profile

  18. Estimación de la conductividad hidráulica saturada in situ en un suelo tratado con vinaza Field satured hydraulic conductivity estimation on vinasse trated soil

    Directory of Open Access Journals (Sweden)

    Ludwig M Rojas D

    2008-06-01

    Full Text Available Se estimaron los cambios en la conductividad hidráulica saturada mediante las técnicas de caída de carga" y "fuente localizada de agua en un suelo Ustipsamment típico arenoso isohipertérmico con dosis diluidas de vinazas. La investigación se realizó en el centro experimental de la Universidad Nacional de Colombia Sede Palmira (3° 25'39.81" N y 76° 25'45.70" o, 953 m.s.n.m, 24 °C y 60% HR, 1.020 mm. Los dos métodos no difirieron de forma significativa (pChanges of the satured hydraulic conductivity in a soil was estimated using the “falling head” and “point source” methods. The soil treated with vinasse was an Ustipsamment Typic Sandy Isohipertermic located at the experimental center of the National University of Colombia at Palmira (3° 25' 39.81" N, 76° 25' 45.70" W; 953 m.a.s.l., 24 °C, 60% RH. and 1020 mm.. The field methods used did not show statistical differences for the estimation of the satured hydraulic conductivity (p<0.05. However, a decreasing exponential relationship between hydraulic conductivity and vinasse concentration was found. The hydraulic conductivity was reduced about of 50% from the initial value to 2° Brix in a sandy soil, 5.3° brix to a sandy loam soil and 6.1° Brix to a clay loam soil.

  19. Improvement of Water Movement in an Undulating Sandy Soil Prone to Water Repellency

    NARCIS (Netherlands)

    Oostindie, K.; Dekker, L.W.; Wesseling, J.G.; Ritsema, C.J.

    2011-01-01

    The temporal dynamics of water repellency in soils strongly influence water flow. We investigated the variability of soil water content in a slight slope on a sandy fairway exhibiting water-repellent behavior. A time domain reflectometry (TDR) array of 60 probes measured water contents at 3-h

  20. Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters

    International Nuclear Information System (INIS)

    Thevenot, M.; Dousset, S.; Rousseaux, S.; Andreux, F.

    2008-01-01

    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron + metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching. - The application of organic amendments increased diuron leaching through a sandy-loam soil, in contrast to a clay-loam soil

  1. Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Thevenot, M. [UMR 1229 Microbiologie et Geochimie des Sols, CMSE, INRA - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France)], E-mail: mathieu.thevenot@u-bourgogne.fr; Dousset, S. [UMR 5561 Biogeosciences, CNRS - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France); Rousseaux, S. [EA 4149 Laboratoire de Recherche en Vigne et Vin, Institut Universitaire de la Vigne et du Vin, rue Claude Ladrey, 21000 Dijon (France); Andreux, F. [UMR 1229 Microbiologie et Geochimie des Sols, CMSE, INRA - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France)

    2008-05-15

    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron + metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching. - The application of organic amendments increased diuron leaching through a sandy-loam soil, in contrast to a clay-loam soil.

  2. Evaluation of soil fertility status of Regional Agricultural Research Station, Tarahara, Sunsari, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2017-10-01

    Full Text Available Soil fertility evaluation of an area or region is most basic decision making tool for the sustainable soil nutrient management. In order to evaluate the soil fertility status of the Regional Agricultural Research Station (RARS, Tarahara, Susari, Nepal. Using soil sampling auger 81 soil samples (0-20 cm were collected based on the variability of land. The collected samples were analyzed for their texture, structure, colour, pH, OM, N, P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu and Mn status. The Arc-GIS 10.1 software was used for the preparation of soil fertility maps. The soil structure was granular to sub-angular blocky and varied between brown- dark grayish brown and dark gray in colour. The sand, silt and clay content were 30.32±1.4%, 48.92±0.89% and 20.76±0.92%, respectively and categorized as loam, clay loam, sandy loam, silt loam and silty clay loam in texture. The soil was moderately acidic in pH (5.98±0.08. The available sulphur (2.15±0.21 ppm, available boron (0.08±0.01 ppm and available zinc (0.35±0.03 ppm status were very low, whereas extractable magnesium (44.33±6.03 ppm showed low status. Similarly, organic matter (2.80±0.07%, total nitrogen (0.09±0.004 %, extractable calcium (1827.90±45.80 ppm and available copper (1.15±0.04 ppm were medium in content. The available phosphorus (39.77±5.27 ppm, extractable potassium (134.12±4.91 ppm, and available manganese (18.15±1.15 ppm exhibits high status, while available iron (244.7±19.70 ppm was very high. The fertilizer recommendation can be done based on determined soil fertility status to economize crop production. Furthermore, research farm should develop future research strategy accordance with the prepared soil data base.

  3. Draft forces prediction model for standard single tines by using principles of soil mechanics and soil profile evaluation

    Directory of Open Access Journals (Sweden)

    Amer Khalid Ahmed Al-Neama

    2017-06-01

    Full Text Available This paper explains a model to predict the draft force acting on varying standard single tines by using principles of soil mechanics and soil profile evaluation. Draft force (Fd measurements were made with four standard single tines comprising Heavy Duty, Double Heart, Double Heart with Wings and Duck Foot. Tine widths were 6.5, 13.5, 45 and 40 cm, respectively. The test was conducted in a soil bin with sandy loam soil. The effects of forward speeds and working depths on draft forces were investigated under controlled lab conditions. Results were evaluated based on a prediction model. A good correlation between measured and predicted Fd values for all tines with an average absolute variation less than 15 % was found.

  4. Determination of Two Sulfonylurea Herbicides Residues in Soil Environment Using HPLC and Phytotoxicity of These Herbicides by Lentil Bioassay.

    Science.gov (United States)

    Mehdizadeh, Mohammad; Alebrahim, Mohammad Taghi; Roushani, Mahmoud

    2017-07-01

    A HPLC-UV detection system was used for determination of sulfosulfuron and tribenuron methyl residues from soils. The soils were fortified with sulfosulfuron and tribenuron methyl at rates of 26 and 15 g a.i. ha -1 respectively and samples were taken randomly on 0 (2 h), 1, 2, 4, 10, 20, 40, 60, 90 and 120 days after treatment. The final extracts were prepared for analysis by HPLC. The results showed that degradation of both herbicides in the silty loam soil was faster than sandy loam soil. Half-life of sulfosulfuron was ranged from 5.37 to 10.82 days however this value for tribenuron methyl was ranged from 3.23 to 5.72 days on different soils. The residue of both herbicides at 120 days after application in wheat field had no toxicitic effect on lentil. It was concluded that HPLC analysis procedure was an appropriate method for determination of these herbicides from soils.

  5. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  6. influence of some types of Algerian soil on the development of rot-knot nematodes Meloidogyne incognita, M. javanica and M. arenaria (Tylenchida,Meloidogynidae)

    International Nuclear Information System (INIS)

    Hammach, M.

    2010-01-01

    Crops under greenhouses offer the possibility of vegetables production of high added value by focusing on earliness. They help to spread the availability timing of vegetables and fruits in the market throughout the year. However, these crops are subject to numerous attacks entailing heavy losses of yield quantity and quality. The plant parasitic nematodes especially rot-knot nematodes of the genus Meloidogyne are considered dangerous enemies of these cultures. The evolution study of these nematodes in different soil types allows one to compare the migration and movement of these nematodes in sandy soils considered as light soils, in clay soils heavy and intermediate silty clay soils. These soils have also rates of organic matter and a percentage of magnesium and calcium that might provide better conditions to the survival and migration of second stage larvae inoculated at a rate of 650 juveniles per pot of 24 cm in diameter where plants of melon Cucumis melo var. (Charentais) known to be susceptible to Meloidogyne was cultivated. The results for the population development of Meloidogyne, after a growing period of 3 months show an increase in the number of eggs, juvenile stages, inflated, swollen females and males in the 3 types of soil and that independently of clay fraction although clay soil may asphyxiate Meloidogyne. The development of the three species of Meloidogyne studied in these soils, the parameters taken into consideration (index of galls, which were 1.58, 1.75 and 1.5 for the sandy clay and the middle ground soils, vigour index and the evolution of populations of Meloidogyne and roots and soil as well as parameters related to production reveal the adaptation of these root-knot nematodes to the clay and sandy loam soils. At the end of culture, the final populations are important in the soils studied; 2680 for soil S. (sandy), 2272 for soil A (clay) and 2327 for soil I (intermediate) with a multiplication rate almost similar ( 4.12, 3.49 and 3

  7. Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Munkholm, Lars Juhl

    2016-01-01

    . Undisturbed soil cores were used for quantifying the precompression stress (spc) of non-compacted soil. Tractor-trailer combinations for slurry application with wheel loads of 3, 6 and 8 Mg (treatments M3, M6, M8) were used for the experimental traffic in the spring at field-capacity. For one additional...

  8. Influence of ageing of residues on the availability of herbicides for leaching

    International Nuclear Information System (INIS)

    Walker, A.; Rodriguez-Cruz, M.S.; Mitchell, M.J.

    2005-01-01

    Losses by leaching of chlorotoluron, isoproturon and triasulfuron from small intact columns of a structured clay loam and an unstructured sandy loam soil were measured in five separate field experiments. In general, losses of all three herbicides were greater from the clay loam than from the sandy loam soil and the order between herbicides was always triasulfuron>>isoproturon>chlorotoluron. Differences between experiments were also consistent for every soil/herbicide combination. There was no relationship between total loss and either total rainfall or cumulative leachate volume. When weighting factors were applied to the rainfall data to make early rainfall more important than later rainfall, there were significant positive relationships between cumulative weighted rainfall and total losses. Also, there were significant negative correlations between total losses and the delay to accumulation of 25 mm rainfall (equivalent to one pore volume of available water) in the different experiments. In laboratory incubations, there was a more rapid decline in aqueous (0.01 M calcium chloride) extractable residues than in total solvent extractable residues indicating increasing sorption with residence time. However, the rate of change in water extractable residues could not completely explain the decrease in leachability with ageing of residues in the field. Short-term sorption studies with aggregates of the two soils indicated slower sorption by those of the clay loam than by those of the sandy loam suggesting that diffusion into and out of aggregates may affect availability for leaching in the more structured soil. Small scale leaching studies with aggregates of the soils also demonstrated reductions in availability for leaching as residence time in soil was increased, which could not be explained by degradation. These results therefore indicate that time-dependent sorption processes are important in controlling pesticide movement in soils, although the data do not give a

  9. Influence of ageing of residues on the availability of herbicides for leaching

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A.; Rodriguez-Cruz, M.S.; Mitchell, M.J

    2005-01-01

    Losses by leaching of chlorotoluron, isoproturon and triasulfuron from small intact columns of a structured clay loam and an unstructured sandy loam soil were measured in five separate field experiments. In general, losses of all three herbicides were greater from the clay loam than from the sandy loam soil and the order between herbicides was always triasulfuron>>isoproturon>chlorotoluron. Differences between experiments were also consistent for every soil/herbicide combination. There was no relationship between total loss and either total rainfall or cumulative leachate volume. When weighting factors were applied to the rainfall data to make early rainfall more important than later rainfall, there were significant positive relationships between cumulative weighted rainfall and total losses. Also, there were significant negative correlations between total losses and the delay to accumulation of 25 mm rainfall (equivalent to one pore volume of available water) in the different experiments. In laboratory incubations, there was a more rapid decline in aqueous (0.01 M calcium chloride) extractable residues than in total solvent extractable residues indicating increasing sorption with residence time. However, the rate of change in water extractable residues could not completely explain the decrease in leachability with ageing of residues in the field. Short-term sorption studies with aggregates of the two soils indicated slower sorption by those of the clay loam than by those of the sandy loam suggesting that diffusion into and out of aggregates may affect availability for leaching in the more structured soil. Small scale leaching studies with aggregates of the soils also demonstrated reductions in availability for leaching as residence time in soil was increased, which could not be explained by degradation. These results therefore indicate that time-dependent sorption processes are important in controlling pesticide movement in soils, although the data do not give a

  10. Factors affecting N immobilisation/mineralisation kinetics for cellulose-, glucose- and straw-amended sandy soils

    NARCIS (Netherlands)

    Vinten, A.J.A.; Whitmore, A.P.; Bloem, J.; Howard, R.; Wright, F.

    2002-01-01

    The kinetics of nitrogen immobilization/mineralization for cellulose-, glucose- and straw-amended sandy soils were investigated in a series of laboratory incubations. Three Scottish soils expected to exhibit a range of biological activity were used: aloamy sand, intensively cropped horticultural

  11. Determination of heavy metal content and physico-chemical properties of soils in the vicinity of Tasik Chini, Pahang

    International Nuclear Information System (INIS)

    Sahibin Abdul Rahim; Muhd Barzani Gasim; Mohd Nizam Mohd Said; Wan Mohd Razi Idris; Azman Hashim; Sharilnizam Yusof; Masniyana Jamil

    2008-01-01

    This study was carried out to determine heavy metal content and physico-chemical properties of soils influencing heavy metal accumulation in some series surrounding the Chini Lakes. A total of 15 topsoil sample were collected randomly from 6 stations. The physical properties that were analyzed include particle size distribution and soil organic matter. Meanwhile, the chemical characteristics determined were pH, electrical conductivity and cation exchange capacity. It was found that heavy metal content of Cd, Cr, Cu, Co, Pb, Zn and Mn were low whereas Fe content was high. The textures of soil studied were clay, loamy sand, sandy loam, clay loam and silty clay loam. The mean of organic matter ranged from 2.68 to 11.46 %. The soil pH showed that the soil studied was acidic with values ranged between 3.36 to 3.72. The range of electrical conductivity mean was between 2150 μScm -1 to 2403 μScm -1 . Cation exchange capacity mean ranged from 2.85 until 8.59 cmol/ kg. Correlation analysis showed that there were positive and negative significant correlations between soils parameters heavy metal concentration. Analysis of variance (ANOVA) showed that there were significant differences in organic matter percentage, pH, cation exchange capacity and heavy metals except cadmium between sampling station. (author)

  12. Transfer of 137Cs to plants from two types of soil

    International Nuclear Information System (INIS)

    Skowronska-Smolak, M.; Pietrzak-Flis, S.

    1994-01-01

    Transfer of 137 Cs from soil to plants was studied in two types of soil: sandy soil (I) and sandy loam soil (II). The study was performed on an experimental field for of 1991 (soil I) and for 1992-93 (soil II). Transfer of 137 Cs from soil I was examined for spring barley, spring wheat, red beet, lettuce and kale; transfer from soil II was examined for winter barley, grass, alfalfa, potato tubers, red beet, radish, bean, spinach and lettuce. 137 Cs and potassium in plants and soil were determined using gamma spectrometry. The soils were characterized by particle size distribution and such chemical properties as pH H 2 O , pH KCl , content of organic matter, Ca, Mg and exchangeable K. The concentration of 137 Cs in the soil I was over five times lower than in soil II, being equal to 8.84±0.32 Bq kg -1 and 50.38±2.21 Bq kg -1 , respectively. The soils differ in their chemical characteristics and texture. Soil I contains 6.47±0.21 g kg -1 potassium, 0.147±0.015 g kg -1 exchangeable potassium, 2.21±0.32 g kg -1 Ca, 0.055±0.013 g kg -1 Mg and 1.733% organic matter. Soil II contains 10.87±0.22 g kg -1 potassium, 0.082±0.007 g kg -1 exchangeable potassium, 1.62±0.16 g kg -1 Ca, 0.097±0.009 g kg -1 Mg and 2.307% organic matter; pH H2O of soil I was equal to 7.40 and of soil II - 6.56. The lowest concentrations of 137 Cs for both soils were observed in cereals (spring wheat - 0.67±0.06 Bq kg -1 dw and spring barley - 0.33± Bq kg -1 dw for soil I and winter barley - 0.79±0.20 Bq kg -1 dw for soil II). The highest concentrations of this isotope were found in red beet leaves (9.11±1.38 Bq kg -1 dw for soil I and 16.44±1.14 Bq kg -1 dw for soil II). Transfer of 137 Cs to plants from the sandy loam soil was from about 2 up to about 7 times lower than from the sandy soil. The lower transfer of 137 Cs from soil II to plants in comparison to soil I might be associated with the presence of clay which binds Cs strongly. The strong binding of Cs in soil II can also be

  13. Fate of fertilizer nitrogen in flooded rice soil - I. Leaching losses of nitrogen

    International Nuclear Information System (INIS)

    Daftardar, S.Y.; Deb, D.L.; Datta, N.P.

    1979-01-01

    A greenhouse experiment on rice (Oryza sativa L. cv IR 22) was conducted under flooded conditions using CO( 15 NH 2 ) 2 , 15 NH 4 NO 3 and NH 4 ( 15 NO 3 ) to study the leaching loss of added fertilizer nitrogen in two typical rice soils. The loss of nitrogen was in the order: NO 3 -N (4 to 25.6 percent) > amide-N (1.2 to 16.2 percent) > NH 4 -N (0.07 to 0.3 percent). The basal applied urea was lost by percolation in the first month while the basal applied NO 3 -N was lost in the first 8 days. Leaching loss did not occur after split application of fertilizer nitrogen at primordial initiation stage. The loss of nitrogen in kaolinitic Dapoli clay loam soil was about 2.5 to 4.5 times more than that in montmorillonitic Karjat sandy loam soil. Cropping reduced the percolation loss of N by 40 to 60 percent. (auth.)

  14. Mechanical impedance of soil crusts and water content in loamy soils

    Science.gov (United States)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  15. Gas transport and subsoil pore characteristics

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Keller, Thomas

    2013-01-01

    Arrangements of elementary soil particles during soil deposition and subsequent biological and physical processes in long-term pedogenesis are expected to lead to anisotropy of the non-tilled subsoil pore system. Soil compaction by agricultural machinery is known to affect soil pore characteristics...... were sampled in vertical and horizontal directions from 0.3, 0.5, 0.7 and 0.9 m depth (the two lower depths only in Sweden). In the laboratory, water retention, air permeability (ka) and gas diffusivity (Ds/D0) were determined. For the sandy clay loam, morphological characteristics of pores (effective......). In the sandy clay loam soil, dB and nB displayed significant anisotropy (FAcharacteristics because of its origin...

  16. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  17. Comparison of model microbial allocation parameters in soils of varying texture

    Science.gov (United States)

    Hagerty, S. B.; Slessarev, E.; Schimel, J.

    2017-12-01

    The soil microbial community decomposes the majority of carbon (C) inputs to the soil. However, not all of this C is respired—rather, a substantial portion of the carbon processed by microbes may remain stored in the soil. The balance between C storage and respiration is controlled by microbial turnover rates and C allocation strategies. These microbial community properties may depend on soil texture, which has the potential to influence both the nature and the fate of microbial necromass and extracellular products. To evaluate the role of texture on microbial turnover and C allocation, we sampled four soils from the University of California's Hastings Reserve that varied in texture (one silt loam, two sandy loam, and on clay soil), but support similar grassland plant communities. We added 14C- glucose to the soil and measured the concentration of the label in the carbon dioxide (CO2), microbial biomass, and extractable C pools over 7 weeks. The labeled biomass turned over the slowest in the clay soil; the concentration of labeled biomass was more than 1.5 times the concentration of the other soils after 8 weeks. The clay soil also had the lowest mineralization rate of the label, and mineralization slowed after two weeks. In contrast, in the sandier soils mineralization rates were higher and did not plateau until 5 weeks into the incubation period. We fit the 14C data to a microbial allocation model and estimated microbial parameters; assimilation efficiency, exudation, and biomass specific respiration and turnover for each soil. We compare these parameters across the soil texture gradient to assess the extent to which models may need to account for variability in microbial C allocation across soils of different texture. Our results suggest that microbial C turns over more slowly in high-clay soils than in sandy soils, and that C lost from microbial biomass is retained at higher rates in high-clay soils. Accounting for these differences in microbial allocation

  18. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction.

    Science.gov (United States)

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2012-08-15

    This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    detachment. Studies on necessary kinetic energy to detach one kilogram of sediments by raindrop impact have shown that the minimum energy is required for particles of 0.125 mm. Particles between 0.063 to 0.250 mm are the most vulnerable to detachment. This means that soils with high content of particles into vulnerable range, for example silty loam, loamy, fine sandy, and sandy loam are the most susceptible soils to detachment. Many aspects of soil behaviour in the field such as hydraulic conductivity water retention, soil crusting, soil compaction, and workability are influenced strongly by the primary particles. In tropical soils also a negative relation between structure stability and particles of silt, fine sand and very fine sand has been found, this is attributed to low cohesiveness of these particles. The ability of a structure to persist is known as its stability. There are two principal types of stability: the ability of the soil to retain its structure under the action of water, and the ability of the soil to retain its structure under the action of external mechanical stresses. (e.g. by wheels). Both types of stability are related with susceptibility to erosion

  20. Dielectrophoretic sample preparation for environmental monitoring of microorganisms: Soil particle removal.

    Science.gov (United States)

    Fatoyinbo, Henry O; McDonnell, Martin C; Hughes, Michael P

    2014-07-01

    Detection of pathogens from environmental samples is often hampered by sensors interacting with environmental particles such as soot, pollen, or environmental dust such as soil or clay. These particles may be of similar size to the target bacterium, preventing removal by filtration, but may non-specifically bind to sensor surfaces, fouling them and causing artefactual results. In this paper, we report the selective manipulation of soil particles using an AC electrokinetic microfluidic system. Four heterogeneous soil samples (smectic clay, kaolinitic clay, peaty loam, and sandy loam) were characterised using dielectrophoresis to identify the electrical difference to a target organism. A flow-cell device was then constructed to evaluate dielectrophoretic separation of bacteria and clay in a continous flow through mode. The average separation efficiency of the system across all soil types was found to be 68.7% with a maximal separation efficiency for kaolinitic clay at 87.6%. This represents the first attempt to separate soil particles from bacteria using dielectrophoresis and indicate that the technique shows significant promise; with appropriate system optimisation, we believe that this preliminary study represents an opportunity to develop a simple yet highly effective sample processing system.

  1. 15N Isotopic Study on Decomposition of Organic Residues Incorporated into Alluvial and Sandy Saline Soils

    International Nuclear Information System (INIS)

    El-Kholi, A. F.; Galal, Y. G. M.

    2004-01-01

    Incubation experiment was conducted to study the effect of the nitrogenous fertilizer on the decomposition and mineralization of organic residues (soybean powdered forage) as well as the release of the soil inorganic nitrogen. This technique was carried out using two types of soils, one is alluvial and the other is saline sandy soil collected from Fayoum governorate. Soybean forage has an organic carbon 23.1%, total N 1.6% and C/N ratio 14.4. Regarding the effect of incubation period on the two soil samples, the evolved NH 4 -N was generally reached its highest peak after 30-45 days, in the presence of either the added 15 No3-fertilizer solely or in combination with soybean forage. Reversible trend was occurred with regard to the evolved No3-N. The highest peak of evolved No3-N recorded in unfertilized control, as compared to 15 No3-N treatment, at 30 day incubation period indicated that the addition of labeled mineral fertilizer had appreciably enhanced the immobilization process. Net nitrification revealed that it was the highest in unfertilized control soil where it was significantly decreased in the treated two soil samples. Gross mineralization as affected by the addition of soybean forage in combination with labeled mineral fertilizer had been promoted by 75% in the alluvial soil and by 18% in the sandy saline soil, as compared with the soil samples received 15 No3-fertilizer only. Gross immobilization, in soil samples received 15 No3-fertilizer plus soybean forage had surpassed those received 15 No3-fertilizer only by 16% in the alluvial soil and by 25% in the sandy saline soil. (Authors)

  2. Response of soil microbiota to selected herbicide treatments.

    Science.gov (United States)

    Roslycky, E B

    1977-04-01

    Recommended concentrations of paraquat alone and its combination with each of linuron, diuron, atrazine, simazine, and simazine plus diuron exerted little effect on total populations of bacteria, actinomycetes, and fungi in Fox sandy loam under laboratory and simulated field conditions in 66 and 77 days, respectively. Respiration of the total microbiota in soil suspension was afeected by the combinations as well as individual herbicides in various concentrations. Yet, the inhibition of the O2 uptake by any of these herbicides, including some extreme concentrations, was not permanent, indicating adaptation, or suppression of specific organisms. Only linuron in concentrations up to 20 microng/ml stimulated respiration of the soil.

  3. Dissipation and leaching of pyroxasulfone and s-metolachlor

    Science.gov (United States)

    Pyroxasulfone dissipation and mobility in the soil was evaluated and compared to S-metolachlor in 2009 and 2010 at two field sites in northern Colorado, on a Nunn fine clay loam, and Olney fine sandy loam soil. Pyroxasulfone dissipation half-life (DT50) values varied from 47 to 134 d, and those of S...

  4. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    Science.gov (United States)

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (bank soil (bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport

  5. Evaluation of the 137Cs technique for estimating wind erosion losses for some sandy Western Australian soils

    International Nuclear Information System (INIS)

    Harper, R.J.; Gilkes, R.J.

    1994-01-01

    The utility of the caesium-137 technique, for estimating the effects of wind erosion, was evaluated on the soils of a semi-arid agricultural area near Jerramungup, Western Australia. The past incidence of wind erosion was estimated from field observations of soil profile morphology and an existing remote sensing study. Erosion was limited to sandy surfaced soils (0-4% clay), with a highly significant difference (P 137 Cs values between eroded and non-eroded sandy soils, with mean values of 243±17 and 386±13 Bq m -2 respectively. Non-eroded soils, with larger clay contents, had a mean 137 Cs content of 421±26 Bq m -2 , however, due to considerable variation between replicate samples, this value was not significantly different from that of the non-eroded sands. Hence, although the technique discriminates between eroded and non-eroded areas, the large variation in 137 Cs values means that from 27 to 96 replicate samples are required to provide statistically valid estimates of 137 Cs loss. The occurrence of around 18% of the total 137 Cs between 10 and 20 cm depth in these soils, despite cultivation being confined to the surface 9 cm, suggests that leaching of 137 Cs occurs in the sandy soils, although there was no relationship between clay content and 137 Cs value for either eroded or non-eroded soils. In a multiple linear regression, organic carbon content and the mean grain size of the eroded soils explained 35% of the variation in 137 Cs content. This relationship suggests that both organic carbon and 137 Cs are removed by erosion, with erosion being more prevalent on soils with a finer sand fraction. Clay and silt contents do not vary with depth in the near-surface horizons of the eroded sandy soils, hence it is likely that wind erosion strips the entire surface horizon with its 137 Cs content, rather than selectively winnowing fine material. 71 refs., 6 tabs., 2 fig

  6. The effect of flooding on soil proportion and plant growth. 2. Its effect on the changes in soil proportion

    International Nuclear Information System (INIS)

    Sisworo, E.L.

    1975-01-01

    An experiment has been carried out to study changes in soil proportion as affected by flooding. Barley plants were used as indicators. Black polyethylene columns were used as plant containers, and were filled with sandy loam Begbroke soil. Several parameters were used in the experiment, namely concentrations of oxygen carbon dioxide, ethylene, hydrogen sulfide, and organic acids. Oxygen concentration dropped to about 2% one day after flooding, while the concentration of carbon dioxide, ethylene and organic acids turned out to be slowly increased with the extension of flooding time. No hydrogen sulfide was detectable as affected by various flooding periods. Different concentrations of oxygen, carbon dioxide, and ethylene were observed between the top and the lower layers of soil. (author)

  7. Transport of water and solutes in wettable and water repellent sandy soils

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.

    1996-01-01

    The research yielded the following conclusions and results: preferential flow can be expected in recently deposited, loosely packed, wettable dune sands; preferential flow is common in most water-repellent sandy soils; distribution flow in topsoils isa process of major importance, resulting in a

  8. Improvement of Shear Strength of Sandy Soil by Cement Grout with Fly Ash

    Directory of Open Access Journals (Sweden)

    Haifaa Abdulrasool Ali

    2018-12-01

    Full Text Available The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51 cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c; (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c, while the soil samples were dehydrated for one day curing time. Fly ash class (F was used with cement grout as filler material; it was added to the mixture as a replacement material for cement in weight percentages; 10%, 25% and 40%. According to the results of tests, both shear strength and approximate volume of the effective grouted zone for treated samples soil with cement grout was increased when the water cement ratio decreased. Fly ash with cement grout needs to increase the water demand for the grout mixing to give best results in both shear strength and filling the soil voids.

  9. Aplicación potencial universal de bioindicadores del suelo: su evaluación en tres ecosistemas templados

    OpenAIRE

    González, Mirta G; Gallardo, Juan F; Gómez, Elena; Masciandaro, Grazia; Ceccanti, Brunello; Pajares, Silvia

    2007-01-01

    Three selected soils from three countries with temperate climates have been analyzed. Two of the soils are silty loams (Buenos Aires, Argentina, and Salamanca, Spain) and the third one is a sandy loam (Peccioli, Italy). Soil samples representing three agricultural managements were obtained from the top layer (0-10 cm), i.e. intensively cultivated, cultivated and undisturbed native soils. Soil organic carbon (SOC), total nitrogen (Nt), ATP, urease, protease, phosphatase, b-glucosidase, dehydro...

  10. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils

    DEFF Research Database (Denmark)

    Woldetsadik, Desta; Drechsel, Pay; Keraita, Bernard

    2016-01-01

    To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam...... and the applied treatments were 7 % w/w. The reduction of bioavailable Cd (ammonium nitrate extractable) and its phytoavailability for lettuce were used as assessment criteria in the evaluation of stabilization performance of each treatment. Moreover, the agronomic values of the treatments were also investigated...... extracts. The immobilization potential of faecal matter biochar and lime were superior than the other treatments. However, lime and egg shell promoted statistically lower yield and P, K and Zn concentrations response of lettuce plants compared to the biochar treatments. The lowest Cd and highest P tissue...

  11. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio and the voids inside the pseudo-grains (matrix void ratio. The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling.

  12. Enhancing crude oil degradation in a sandy soil: Effects of addition ...

    African Journals Online (AJOL)

    This study investigated the effects of the addition of poultry manure alone and in combination with surfactant (Goldcrew or Corexit) and/or alternate carbon substrate (glucose or starch) on crude oil degradation in a sandy soil. With poultry manure alone, optimal crude oil degradation was obtained at a concentration of 4.0% ...

  13. Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils

    Directory of Open Access Journals (Sweden)

    Johannes Carl Gottlieb Ottow

    2011-01-01

    Full Text Available Agricultural chemicals have been used extensively in modern agriculture and toxicological studies suggest a great potential for inducing undesirable effects on non target organisms. A model experiment was conducted in order to determine side effects of three nitrification inhibitors (NIs, 3,4dimethylpyrazolephosphate = DMPP, 4-Chlor-methylpyrazole phosphate = ClMPP and dicyandiamide = DCD on non target microbial processes in soils. Side effects and dose response curve of three NIs were quantified under laboratory conditions using silty clay, loam and a sandy soils. Dehydrogenase, dimethylsulfoxide reductase as well as nitrogenase activity (NA and potential denitrification capacity were measured as common and specific non target microbial processes. The influence of 5-1000 times the base concentration, dose response curves were examined, and no observable effect level = NOEL, as well as effective dose ED10 and ED50 (10% and 50% inhibition were calculated. The NOEL for microbial non target processes were about 30–70 times higher than base concentration in all investigated soils. The potential denitrification capacity revealed to be the most sensitive parameter. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils. The NOEL, ED10 and ED50 values were higher in clay than in loamy or sandy soil. The NIs was the most effective in sandy soils.

  14. Brief and vigorous N2O production by soil at spring thaw

    DEFF Research Database (Denmark)

    Christensen, Søren; Tiedje, James M.

    1990-01-01

    In an acid sandy loam soil (pH 3.8), field production of N2O was two orders of magnitude higher at thaw in the spring than at any time during the rest of the year. Soil thaw in midwinter did not result in any increase in N2O flux. Soil water content remained at, or above field capacity during...... measurements; nitrate was added in excess. This effect could be reproduced in the laboratory: thawing soil cores at controlled temperature, nitrate and moisture yielded a large flush of N2O compared to an unfrozen control. The results indicate the importance of microbial N2O production during thaw for total...

  15. Irrigation initiation timing in soybean grown on sandy soils in Northeast Arkansas

    Science.gov (United States)

    Irrigation initiation timing was evaluated in furrow-irrigated soybean field with sandy soils in Mississippi County, AR. A major objective of this 2015 study was to validate and expand irrigation timing recommendations that pair plant growth measures with weather cues including use of local weather ...

  16. Distribution of transformed organic matter in structural units of loamy sandy soddy-podzolic soil

    Science.gov (United States)

    Kogut, B. M.; Yashin, M. A.; Semenov, V. M.; Avdeeva, T. N.; Markina, L. G.; Lukin, S. M.; Tarasov, S. I.

    2016-01-01

    The effect of land use types and fertilizing systems on the structural and aggregate composition of loamy sandy soddy-podzolic soil and the quantitative parameters of soil organic matter has been studied. The contribution of soil aggregates 2-1 mm in size to the total Corg reserve in the humus horizon is higher than the contributions of other aggregates by 1.3-4.2 times. Reliable correlations have been revealed between the contents of total (Corg), labile (Clab), and active (C0) organic matter in the soil. The proportion of C0 is 44-70% of Clab extractable by neutral sodium pyrophosphate solution. The contributions of each of the 2-1, 0.5-0.25, and fractions to the total C0 reserve are 14-21%; the contributions of each of the other fractions are 4-12%. The chemically labile and biologically active components of humic substances reflect the quality changes of soil organic matter under agrogenic impacts. A conceptual scheme has been proposed for the subdivision of soil organic matter into the active, slow (intermediate), and passive pools. In the humus horizon of loamy sandy soddy-podzolic soil, the active, slow, and passive pools contain 6-11, 34-65, and 26-94% of the total Corg, respectively.

  17. [Soil moisture dynamics of artificial Caragana microphylla shrubs at different topographical sites in Horqin sandy land].

    Science.gov (United States)

    Huang, Gang; Zhao, Xue-yong; Huang, Ying-xin; Su, Yan-gui

    2009-03-01

    Based on the investigation data of vegetation and soil moisture regime of Caragana microphylla shrubs widely distributed in Horqin sandy land, the spatiotemporal variations of soil moisture regime and soil water storage of artificial sand-fixing C. microphylla shrubs at different topographical sites in the sandy land were studied, and the evapotranspiration was measured by water balance method. The results showed that the soil moisture content of the shrubs was the highest in the lowland of dunes, followed by in the middle, and in the crest of the dunes, and increased with increasing depth. No water stress occurred during the growth season of the shrubs. Soil moisture content of the shrubs was highly related to precipitation event, and the relationship of soil moisture content with precipitation was higher in deep soil layer (50-180 cm) than in shallow soil layer (0-50 cm). The variation coefficient of soil moisture content was also higher in deep layer than in shallow layer. Soil water storage was increasing in the whole growth season of the shrubs, which meant that the accumulation of soil water occurred in this area. The evapotranspiriation of the shrubs occupied above 64% of the precipitation.

  18. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics

    Science.gov (United States)

    Armenise, Elena; Simmons, Robert W.; Ahn, Sujung; Garbout, Amin; Doerr, Stefan H.; Mooney, Sacha J.; Sturrock, Craig J.; Ritz, Karl

    2018-01-01

    This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 min). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 to 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24-0.48 mm below the soil surface. This

  19. Transport of contaminants from energy-process-waste leachates through subsurface soils and soil components: laboratory experiments

    International Nuclear Information System (INIS)

    Wangen, L.E.; Stallings, E.A.; Walker, R.D.

    1982-08-01

    The subsurface transport and attenuation of inorganic contaminants common to a variety of energy process waste leachates are being studied using laboratory column methods. Anionic species currently being emphasized are As, B, Mo, and Se. Transport of the cations Cd and Ni is also being studied. The solid adsorbents consist of three soil mineral components (silica sand, kaolinite, and goethite), and four subsurface soils (a dunal sand, an oxidic sandy clay loam, an acidic clay loam, and an alkaline clay loam). Breakthrough patterns of these species from packed soil columns are followed by monitoring eluent concentrations vs time under carefully controlled laboratory conditions. This report describes the experimental methods being used, the results of preliminary batch adsorption studies, and the results of column experiments completed through calendar year 1981. Using column influent concentrations of about 10 mg/l, adsorption (mmoles/100 g) has been determined from the eluent volume corresponding to 50% breakthrough. On silica sand, kaolinite, dunal sand, and goethite, respectively, these are 2.0 x 10 -4 , 0.020, 0.013, and 0.31 for cadmium, 4.4 x 10 -4 , 0.039, 0.020, and 0.98 for nickel. On kaolinite, dunal sand, and goethite, respectively, adsorption values (mmoles/100 g) are As (0.24, 0.019, and 20.5), B (0.041, 0.0019, and 1.77), Mo (0.048, 0.0010, and 5.93), and Se (0.029, 0.00048, and 1.30). Arsenic is the most highly adsorbed contaminant species and goethite has the largest adsorption capacity of the adsorbents

  20. Andropogon scoparius uptake of 45Ca and production from two contrasting soil types

    International Nuclear Information System (INIS)

    Waller, S.S.; Dodd, J.D.

    1976-01-01

    Total foliage production of Andropogon scoparius was greater on the Heiden-Hunt clay soil complex (Udic chromusterts and pellusterts) than on he Tabor fine sandy loam (Udertic paleustalfs). Foliage production on both soil types increased as clipping frequency decreased. Foliage production and 45 C uptake exhibited a positive relationship with precipitation during the growing season. Total uptake and concentration were greater in the sand-grown clones than in the clay-grown clones. Foliage concentration was inversely related to stable soil Ca and reflected the ratio of radioactive to stable Ca in the soil. However, uptake at the end of the growing season was less than 0.20% of that applied on either soil type. Increased clipping frequency increased foliage 45 Ca concentration on both soil types

  1. Effect of Biochar on Soil Physical Characteristics

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C...... and B plots were placed in a mixed sequence (C-B-C-B-C-B-C-B) and at the same time the eight plots formed a natural pH gradient ranging from pH 7.7 to 6.3. We determined bulk density, saturated hydraulic conductivity (K-sat), soil water retention characteristics, soil-air permeability, and soil...

  2. Groundwater chemistry of Al under Dutch sandy soils: Effects of land use and depth

    NARCIS (Netherlands)

    Fest, E.P.M.J.; Temminghoff, E.J.M.; Griffioen, J.; Grift, B. van der; Riemsdijk, W.H. van

    2007-01-01

    Aluminium has received great attention in the second half of the 20th century, mainly in the context of the acid rain problem mostly in forest soils. In this research the effect of land use and depth of the groundwater on Al, pH and DOC concentration in groundwater under Dutch sandy soils has been

  3. Carbonate-silicate ratio for soil correction and influence on nutrition, biomass production and quality of palisade grass

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2011-10-01

    Full Text Available Silicates can be used as soil correctives, with the advantage of being a source of silicon, a beneficial element to the grasses. However, high concentrations of silicon in the plant would affect the digestibility of the forage. To evaluate the influence of the substitution of the calcium carbonate by calcium silicate on the nutrition, biomass production and the feed quality of the palisade grass [Urochloa brizantha (C. Hochstetter ex A. Rich. R. Webster], three greenhouse experiments were conducted in completely randomized designs with four replications. Experimental units (pots contained a clayey dystrophic Rhodic Haplustox, a sandy clay loam dystrophic Typic Haplustox and a sandy loam dystrophic Typic Haplustox. Each soil received substitution proportions (0, 25, 50, 75 and 100 % of the carbonate by calcium silicate. The increase in the proportion of calcium silicate elevated the concentrations and accumulations of Si, Ca, Mg, and B, reduced Zn and did not alter P in the shoot of plants. The effects of the treatments on the other nutrients were influenced by the soil type. Inclusion of calcium silicate also increased the relative nutritional value and the digestibility and ingestion of the forage, while the concentration and accumulation of crude protein and the neutral detergent and acid detergent fibers decreased. Biomass production and feed quality of the palisade grass were generally higher with the 50 % calcium silicate treatment.

  4. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-10-01

    Soil piping is an important land degradation process that occurs in a wide range of environments. Despite an increasing number of studies on this type of subsurface erosion, the impact of vegetation on piping erosion is still unclear. It can be hypothesized that vegetation, and in particular plant roots, may reduce piping susceptibility of soils because roots of vegetation also control concentrated flow erosion rates or shallow mass movements. Therefore, this paper aims to assess the impact of grass roots on piping erosion susceptibility of a sandy soil. The pinhole test was used as it provides quantitative data on pipeflow discharge, sediment concentration and sediment discharge. Tests were conducted at different hydraulic heads (i.e., 50 mm, 180 mm, 380 mm and 1020 mm). Results showed that the hydraulic head was positively correlated with pipeflow discharge, sediment concentration and sediment discharge, while the presence of grass roots (expressed as root density) was negatively correlated with these pipeflow characteristics. Smaller sediment concentrations and sediment discharges were observed in root-permeated samples compared to root-free samples. When root density exceeds 0.5 kg m- 3, piping erosion rates decreased by 50% compared to root-free soil samples. Moreover, if grass roots are present, the positive correlation between hydraulic head and both sediment discharge and sediment concentration is less pronounced, demonstrating that grass roots become more effective in reducing piping erosion rates at larger hydraulic heads. Overall, this study demonstrates that grass roots are quite efficient in reducing piping erosion rates in sandy soils, even at high hydraulic head (> 1 m). As such, grass roots may therefore be used to efficiently control piping erosion rates in topsoils.

  5. Comparison of neutron scattering, gravimetric and tensiometric methods for measuring soil water content in the field

    International Nuclear Information System (INIS)

    Jat, R.L.; Das, D.K.; Naskar, G.C.

    1975-01-01

    Water content of a sandy clay loam soil was measured by neutron scattering, gravimetric and tensiometric methods. Tensiometric measurement based on laboratory moisture retention curve gave comparatively higher moisture content than those obtained by other methods. No significant differences were observed among neutron meter, gravimetric and tensiometric measurement based on field calibration curve. Though for irrigation purposes all the methods can be used equally, use of tensiometric method with field calibration curve is suggested for easy and more accurate soil water content measurement where neutron meter is not available. (author)

  6. Estimating water retention curves and strength properties of unsaturated sandy soils from basic soil gradation parameters

    Science.gov (United States)

    Wang, Ji-Peng; Hu, Nian; François, Bertrand; Lambert, Pierre

    2017-07-01

    This study proposed two pedotransfer functions (PTFs) to estimate sandy soil water retention curves. It is based on the van Genuchten's water retention model and from a semiphysical and semistatistical approach. Basic gradation parameters of d60 as particle size at 60% passing and the coefficient of uniformity Cu are employed in the PTFs with two idealized conditions, the monosized scenario and the extremely polydisperse condition, satisfied. Water retention tests are carried out on eight granular materials with narrow particle size distributions as supplementary data of the UNSODA database. The air entry value is expressed as inversely proportional to d60 and the parameter n, which is related to slope of water retention curve, is a function of Cu. The proposed PTFs, although have fewer parameters, have better fitness than previous PTFs for sandy soils. Furthermore, by incorporating with the suction stress definition, the proposed pedotransfer functions are imbedded in shear strength equations which provide a way to estimate capillary induced tensile strength or cohesion at a certain suction or degree of saturation from basic soil gradation parameters. The estimation shows quantitative agreement with experimental data in literature, and it also explains that the capillary-induced cohesion is generally higher for materials with finer mean particle size or higher polydispersity.

  7. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    ), and moldboard plowing (MP) with and without a cover crop were evaluated in a long-term experiment on a sandy loam soil in Denmark. Chemical, physical, and biological soil properties were measured in the spring of 2012. The field measurements included mean weight diameter (MWD) after the drop-shatter test......, penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K......Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  8. Abundance of plankton population densities in relation to bottom soil textural types in aquaculture ponds

    Directory of Open Access Journals (Sweden)

    F. Siddika

    2012-06-01

    Full Text Available Plankton is an important food item of fishes and indicator for the productivity of a water body. The present study was conducted to evaluate the effects of bottom soil textural conditions on abundance of plankton in aquaculture pond. The experiment was carried out using three treatments, i.e., ponds bottom with sandy loam (T1, with loam (T2 and with clay loam (T3. The ranges of water quality parameters analyzed were suitable for the growth of plankton during the experimental period. Similarly, chemical properties of soil were also within suitable ranges and every parameter showed higher ranges in T2. A total 20 genera of phytoplankton were recorded belonged to Chlorophyceae (7, Cyanophyceae (5, Bacillariophyceae (5, Euglenophyceae (2 and Dinophyceae (1. On the other hand, total 13 genera of zooplankton were recorded belonged to Crustacea (7 and Rotifera (6. The highest ranges of phytoplankton and zooplankton densities were found in T2 where low to medium-type bloom was observed during the study period. Consequently, the mean abundance of plankton (phytoplankton and zooplankton density was significantly highest in T2. The highest abundance of plankton in the T2 indicated that pond bottom with loamy soil is suitable for the growth and production of plankton in aquaculture ponds.

  9. Garlic mustard and its effects on soil microbial communities in a sandy pine forest in central Illinois

    Science.gov (United States)

    Alexander B. Faulkner; Brittany E. Pham; Truc-Quynh D. Nguyen; Kenneth E. Kitchell; Daniel S. O' Keefe; Kelly D. McConnaughay; Sherri J. Morris

    2014-01-01

    This study evaluated the impacts of garlic mustard (Alliaria petiolata), an invasive species, on soil microbial community dynamics in a pine plantation on sandy soils in central Illinois. In situ soil carbon dioxide efflux was significantly greater in invaded sites. Similarly, in vitro carbon mineralization was significantly greater for soils...

  10. Environmental Assessment, Repair of the Dam at Non-Potable Reservoir #1, United States Air Force Academy, Colorado

    Science.gov (United States)

    2015-08-01

    expected and are not analyzed further in this EA. Utilities. The electrical, natural gas, water, and sanitary sewer requirements of the Proposed...therefore, no increase in utility usage or sanitary and solid waste generation would occur. Utility connections that run alongside the existing dam...for evaluation of the soils suitability for native revegetation. An acceptable topsoil shall have a loam, sandy loam, clay loam, or silt loam texture

  11. Enzyme Sorption onto Soil and Biocarbon Amendments Alters Catalytic Capacity and Depends on the Specific Protein and pH

    Science.gov (United States)

    Foster, E.; Fogle, E. J.; Cotrufo, M. F.

    2017-12-01

    Enzymes catalyze biogeochemical reactions in soils and play a key role in nutrient cycling in agricultural systems. Often, to increase soil nutrients, agricultural managers add organic amendments and have recently experimented with charcoal-like biocarbon products. These amendments can enhance soil water and nutrient holding capacity through increasing porosity. However, the large surface area of the biocarbon has the potential to sorb nutrients and other organic molecules. Does the biocarbon decrease nutrient cycling through sorption of enzymes? In a laboratory setting, we compared the interaction of two purified enzymes β-glucosidase and acid phosphatase with a sandy clay loam and two biocarbons. We quantified the sorbed enzymes at three different pHs using a Bradford protein assay and then measured the activity of the sorbed enzyme via high-throughput fluorometric analysis. Both sorption and activity depended upon the solid phase, pH, and specific enzyme. Overall the high surface area biocarbon impacted the catalytic capacity of the enzymes more than the loam soil, which may have implications for soil nutrient management with these organic amendments.

  12. [Soil sandy desertification and salinization and their interrelationships in Yanghuang irrigated area of Hongsipu, Ningxia of northwest China].

    Science.gov (United States)

    Yang, Xin-guo; Song, Nai-ping

    2011-09-01

    By the methods of controlled and typical sampling, this paper analyzed the texture, salinization characteristics, cation exchange capacity (CEC), and their correlations in the 0-40 cm soil profiles of corn land, medlar land, and non-utilized land in Yanghuang irrigated area of Hongsipu, Northwest China. Under controlled sampling, the salt content in the soil profiles was 0.69-1.30 g x kg(-1) (except in non-utilized land where the 0-10 cm soil salt content was up to 1.74 g x kg(-1)), with no obvious salinization. The sodium adsorption ratio and exchangeable sodium percentage in the 20-40 cm soil layer of medlar land were 12.18 and 14.1%, respectively, and the total content of clay and silt in the 0-40 cm soil profile of medlar land was up to 37.3% whereas that in the 0-20 cm soil layer of corn land was only 13.5%. In the 20-40 cm soil layer of corn land, the indices of sandy desertification and salinization had significant correlations under controlled sampling but no correlations under typical sampling, while the CEC and the sandy desertification and salinization indices had significant correlations under typical sampling. In different land use types in the study area, soil sandy desertification and salinization had complicated interrelationships, and CEC could be used as the indicator for the changes in soil environmental quality.

  13. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Directory of Open Access Journals (Sweden)

    Theeba Manickam

    2015-12-01

    Full Text Available The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit. Rice husk biochar was applied once to both soils at two doses (2% and 5%, in a pot set up that was carried out for two cropping seasons. Positive and significant crop yield effects were observed for both soils, biochars and crops. The yield effects varied with biochar type and dosage, with soil type and over the cropping seasons. The yield increases observed for the sandy soil were tentatively attributed to significant increases in plant-available water contents (from 4%–5% to 7%–8%. The yield effects in the acid sulfate soil were likely a consequence of a combination of (i alleviation of plant root stress by aluminum (Ca/Al molar ratios significantly increased, from around 1 to 3–5 and (ii increases in CEC. The agricultural benefits of rice husk biochar application to Malaysian soils holds promise for its future use.

  15. Assessment of microbial activity and biomass in different soils exposed to nicosulfuron

    Directory of Open Access Journals (Sweden)

    Ljiljana Šantrić

    2014-09-01

    Full Text Available The effects of the herbicide nicosulfuron on the abundance of cellulolytic and proteolytic microorganisms, activity of β-glucosidase and protease enzymes, and microbial phosphorus biomass were examined. A laboratory bioassay was set up on two types of agricultural soils differing in physicochemical properties. The following concentrations were tested: 0.3, 0.6, 3.0 and 30.0 mg a.i./kg of soil. Samples were collected 3, 7, 14, 30 and 45 days after treatment with nicosulfuron. The results showed that nicosulfuron significantly reduced the abundance of cellulolytic microorganisms in both soils, as well as microbial biomass phosphorus in sandy loam soil. The herbicide was found to stimulate β-glucosidase and protease activity in both types of soil and microbial biomass phosphorus in loamy soil. Proteolytic microorganisms remained unaffected by nicosulfuron.

  16. Simulation of chloride transport based description soil structure

    International Nuclear Information System (INIS)

    Mahmood-ul-Hassan, M.; Akhtar, M.S.; Gill, S.M.; Nabi, G.

    2003-01-01

    There is a need of environmental implications of rapid appearance of surface by applying chemical at depths below the vadose zone (tile line or shallow groundwater) for developing better insight into solute flow mechanism through the arable lands. Transport of chloride, a representative non-adsorbing solute, through a moderately structured silty clay loam soil (Gujranwala series, Typic Ustochrepts) and an un-structured sandy loam soil (Nabipur series, Typic Camborthid) was characterized and two existing models viz. convection dispersion equation (CDE) and preferential flow models were tested. The flux average of solute concentration in the outflow as a function of cumulative drainage was fitted to the models. The CDE fitted, relatively, better in the non-structured soil than in the moderately structured soil. Dispersivity value determined by CDE was very high for the structured soil which is physically not possible. The preferential flow model fitted well in the Gujranwala soil, but not in the Nabipur soil. The breakthrough characteristics i.e. drainage to peak concentration (Dp), symmetry coefficient (SC), skewness, and kurtosis were compared. Chloride breakthrough was earlier than expected based on piston flow. It indicated preferential flow in both the soils, yet, immediate appearance of the tracer in the Gujranwala soil demonstrated even larger magnitude of the preferential flow. Breakthrough curves' parameters indicated a large amount of the solute movement through the preferred pathways by passing the soil matrix in the Gujranwala soil. The study suggests that some soil structure parameters (size/shape and degree of aggregation) should be incorporated in the solute transport models.(author)

  17. Effect of intermediate soil cover on municipal solid waste decomposition.

    Science.gov (United States)

    Márquez-Benavides, L; Watson-Craik, I

    2003-01-01

    A complex series of chemical and microbiological reactions is initiated with the burial of refuse in a sanitary landfill. At the end of each labour day, the municipal solid wastes (MSW) are covered with native soil (or an alternative material). To investigate interaction between the intermediate cover and the MSW, five sets of columns were set up, one packed with refuse only, and four with a soil-refuse mixture (a clay loam, an organic-rich peaty soil, a well limed sandy soil and a chalky soil). The anaerobic degradation over 6 months was followed in terms of leachate volatile fatty acids, chemical oxygen demand, pH and ammoniacal-N performance. Results suggest that the organic-rich peaty soil may accelerate the end of the acidogenic phase. Clay appeared not to have a significant effect on the anaerobic degradation process.

  18. Adhesion of and to soil in runoff as influenced by polyacrylamide.

    Science.gov (United States)

    Bech, Tina B; Sbodio, Adrian; Jacobsen, Carsten S; Suslow, Trevor

    2014-11-01

    Polyacrylamide (PAM) is used in agriculture to reduce soil erosion and has been reported to reduce turbidity, nutrients, and pollutants in surface runoff water. The objective of this work was to determine the effect of PAM on the concentration of enteric bacteria in surface runoff by comparing four enteric bacteria representing phenotypically different motility and hydrophobicity from three soils. Results demonstrated that bacterial surface runoff was differentially influenced by the PAM treatment. Polyacrylamide treatment increased surface runoff for adhered and planktonic cells from a clay soil; significantly decreased surface runoff of adhered bacteria, while no difference was observed for planktonic bacteria from the sandy loam; and significantly decreased the surface runoff of planktonic cells, while no difference was observed for adhered bacteria from the clay loam. Comparing strains from a final water sample collected after 48 h showed a greater loss of while serovar Poona was almost not detected. Thus, (i) the PAM efficiency in reducing the concentration of enteric bacteria in surface runoff was influenced by soil type and (ii) variation in the loss of enteric bacteria highlights the importance of strain-specific properties that may not be captured with general fecal indicator bacteria. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Earthworm biomass as additional information for risk assessment of heavy metal biomagnification: a case study for dredged sediment-derived soils and polluted floodplain soils

    International Nuclear Information System (INIS)

    Vandecasteele, Bart; Samyn, Jurgen; Quataert, Paul; Muys, Bart; Tack, Filip M.G.

    2004-01-01

    The important role of earthworms in the biomagnification of heavy metals in terrestrial ecosystems is widely recognised. Differences in earthworm biomass between sites is mostly not accounted for in ecological risk assessment. These differences may be large depending on soil properties and pollution status. A survey of earthworm biomass and colonisation rate was carried out on dredged sediment-derived soils (DSDS). Results were compared with observations for the surrounding alluvial plains. Mainly grain size distribution and time since disposal determined earthworm biomass on DSDS, while soil pollution status of the DSDS was of lesser importance. Highest earthworm biomass was observed on sandy loam DSDS disposed at least 40 years ago. - Polluted clayey dredged sediment-derived soils have a relatively low risk for heavy metal biomagnification due to slow earthworm colonisation

  20. EXPERIMENTAL DETERMINATION OF VARIABILITY IN PERMEABILITY OF SANDY SILT SOIL MIXED WITH FLY ASH IN PROPORTIONATE

    OpenAIRE

    Rasna Sharma*, Dr. M.K. Trivedi

    2016-01-01

    This paper presents the experimental determination of variability in permeability of sandy silt soil by blending with fly ash. The grain size, porosity, structure of the soil, specific gravity of the soil, viscosity and temperature are important factors in varying the permeability of the soil. Permeability is the flow conduction property of the soil. The void ratio with in the soil plays a vital role in varying the permeability. By blending with finer grains like fly ash in the soil with sand...

  1. Biochar Effects on Soil Aggregate Properties Under No-Till Maize

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Naveed, Muhammad; Heckrath, Goswin Johann

    2014-01-01

    of biochar particles had higher TS and SRE probably because of bonding effects. Based on the improved soil aggregate properties, we suggest that biochar can be effective for increasing and sustaining overall soil quality, for example, related to minimizing the soil erosion potential.......Soil aggregates are useful indicators of soil structure and stability, and the impact on physical and mechanical aggregate properties is critical for the sustainable use of organic amendments in agricultural soil. In this work, we evaluated the short-term soil quality effects of applying biochar (0......–10 kg m−2), in combination with swine manure (2.1 and 4.2 kg m−2), to a no-till maize (Zea mays L.) cropping system on a sandy loam soil in Denmark. Topsoil (0–20 cm) aggregates were analyzed for clay dispersibility, aggregate stability, tensile strength (TS), and specific rupture energy (SRE) using end...

  2. Transport of atrazine and dicamba through silt and loam soils

    Science.gov (United States)

    Tindall, James A.; Friedel, Michael J.

    2016-01-01

    The objectives of this research were to determine the role of preferential flow paths in the transport of atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) and dicamba (3-6-dichloro-2-methoxybenzoic acid) through silt and loam soils overlying the High Plains aquifer in Nebraska. In a previous study, 3 of 6 study areas demonstrated high percentages of macropores; those three areas were used in this study for analysis of chemical transport. As a subsequent part of the study, 12 intact soil cores (30-cm diameter by 40-cm height), were excavated sequentially, two from each of the following depths: 0-40cm and 40-80cm. These cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties. Two undisturbed experimental field plots, each with a 3-m2 surface area, were installed in three study areas in Nebraska. Each was instrumented with suction lysimeters and tensiometers at depths of 10cm to 80cm in 10-cm increments. Additionally, each plot was planted with corn (Zea mays). A neutron probe access tube was installed in each plot to determine soil w ater content at 15-cm intervals. All plots were enclosed w ith a raised frame (of 8-cm height) to prevent surface runoff. All suction lysimeters were purged monthly for three months and were sampled immediately prior to pre-plant herbicide application to obtain background chemical concentrations. Atrazine and dicamba moved rapidly through the soil, but only after a heavy rainfall event, probably owing to the presence of preferential flow paths and lack of microbial degradation in these soil areas. Staining of laboratory cores showed a positive correlation between the percent area stained by depth and the subsequent breakthrough of Br- in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater

  3. Estimating water retention curves for sandy soils at the Doñana National Park, SW Spain

    Science.gov (United States)

    The determination of soil water retention curves (SWRC) in the laboratory is a slow and tedious task, which is especially challenging for sandy soils due to their low water retention capacity and large water content changes for small pressure head differences. Due to spatial variability within larg...

  4. Adsorption-desorption and leaching of pyraclostrobin in Indian soils.

    Science.gov (United States)

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T

    2013-01-01

    Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL(-1). The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL(-1). Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1-25.3%, 9.4-20.7% and 8.1-13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow

  5. Evaluation of the Removal of Hydrocarbons from Soil Media Using Persulfate Oxidation in the Presence of Mineral Siderite

    Directory of Open Access Journals (Sweden)

    Farzad Mohammadi

    2016-09-01

    Full Text Available Introduction and purpose: Soil contamination by petroleum is mostly resulted from oil exploration, refining processes, leaking of oil products from storage tanks, leaking from pipelines due to pipe friction and decay, refinery wastewater discharge and agricultural irrigation with such materials. Sodium persulfate (Na2S2O8, which is a chemical oxidant, could be activated in the presence of ferrous (Fe2+ and, leading to the treatment of a wide range of soil contaminants. Therefore, this study aimed to evaluate the removal of hydrocarbons from soil media using persulfate oxidation in the presence of mineral siderite. Methods: Initially, oil-contaminated soil was prepared in the form of two separate samples, including silt-clay and sandy-loam soils, which were orderly spiked with 5000 mg fuel oil per kilogram of dry soil. Following that, the effects of various factors, such as different concentrations of persulfate (100-500 mmol/L and siderite (0.1-0.5 g/L, pH (3-9 and temperature (20-60◦C and the removal of petroleum hydrocarbon were assessed.Results: In this study, the optimum condition for degeneration of total petroleum hydrocarbon in silt-clay soils was reported, as follows: temperature: 60◦C, pH: 3, and persulfate/siderite molar ratio of 400 mmol/L to 4.0 g/L. Meanwhile, the optimum condition for the removal of hydrocarbon from sandy-loam soils was pH: 3, temperature: 60◦C and persulfate/siderite molar ratio of 300 mmol/L to 3.0 g/L.Conclusion: According to the results of this study, the optimal amount of persulfate and siderite could be used to remove hydrocarbons from contaminated soils.

  6. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types.

    Directory of Open Access Journals (Sweden)

    Sammy Frenk

    Full Text Available Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials. Engineered nanoparticles (ENPs may thus find their way into the soil environment via wastewater, dumpsters and other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by measuring bacterial community activity, composition and size following exposure to copper oxide (CuO and magnetite (Fe3O4 nanosized (<50 nm particles. Two different soil types were examined: a sandy loam (Bet-Dagan and a sandy clay loam (Yatir, under two ENP concentrations (1%, 0.1%. Results indicate that the bacterial community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil. More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a significant decreased oxidative potential and changes to community composition. Fe3O4 changed the hydrolytic activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community. Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO. Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore, it is suggested that the clay fraction and organic matter in

  7. IMPACT OF THE REPEATED TRACTOR PASSES ON SOME PHYSICAL PROPERTIES OF SILTY LOAM SOIL

    Directory of Open Access Journals (Sweden)

    Dubravko Filipović

    2011-12-01

    Full Text Available The aim of this paper was to quantify soil compaction induced by tractor traffic on untilled wet silty loam soil (Mollic Fluvisol. Changes in penetration resistance, bulk density and total porosity were measured for detecting the soil compaction. Treatments include ten passes of a four-wheel drive tractor with the engine power of 54.0 kW and weight of 3560 kg (1580 kg on the front axle and 1980 kg on the rear axle, 2.41 m distance between axles. The tyres on the tractor were cross-ply, front 11.2-24 and rear 16.9-30, with the inflation pressure of 160 kPa and 100 kPa, respectively. The speed of tractor during passes over experimental plots was 5.0 km h-1. In comparison to control, each tractor pass induced an increase in soil penetration resistance at all depths, and the average increment ratios, determined as the average of all layers, were 9.8, 18.5 and 26.1% after one, five and ten passes, respectively. The bulk density also increased with number of tractor passes, but with less percentage increasing. The increment ratios comparison to the control were 3.6, 9.5 and 12.9% after one, five and ten passes, respectively. The total porosity decreased with the number of passes, and the decrement ratios were 4.5, 16.5 and 20.8% after one, five and ten passes, respectively.

  8. Use of neutron scattering meter to detect soil moisture distribution under trickle irrigation system in sandy soil of inshas, Egypt

    International Nuclear Information System (INIS)

    Abd El-moniem, M.; El-gendy, R.W.; Gadalla, A.M.; Hamdy, A.; Zeedan, A.

    2006-01-01

    This study aims to investigate the soil moisture distribution under different quantities of irrigation water in cultivated sandy soil with squash, using drip irrigation system. This study was carried out in Inshas sandy soil at the farm of Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. Three rates of applied irrigation water (100, 75 and 50 % ETc) were used. Three sites (0, 12.5 and 25 cm distances from the emitter between drippers and laterals lines) were chosen to measure soil moisture contents (horizontal and vertical directions within the soil depths). The obtained data pointed out that the maximum width, in onion shape of water distribution under drip irrigation system, was at 45 cm depth at 0 site. From the study of soil moisture distribution, the overlapping between each two neighbor drippers played a good role in increasing soil moisture content at the 25 site rather than the rest sites. Water distribution was affected with plant location within the wet area as well as the used irrigation water quantities. Water distribution between drippers and laterals did not differ much approximately. The highest soil moisture depletion was at 12.5 site (between drippers) for 100 and 75 % ETc rather than the rest treatments. 100 % ETc treatment introduced the highest soil moisture depletion in the first stage of plant growth season for the three sites (between drippers and laterals). In the last stage of plant growth season, water re-distribution phenomena resulted from the changeable total hydraulic potential, which played important role for interpretation of results

  9. Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau

    Directory of Open Access Journals (Sweden)

    Beibei Zhou

    2017-10-01

    Full Text Available The poor water retention capacity of sandy soils commonly aggregate soil erosion and ecological environment on the Chinese Loess Plateau. Due to its strong capacity for absorption and large specific surface area, the use of nanocarbon made of coconut shell as a soil amendment that could improve water retention was investigated. Soil column experiments were conducted in which a layer of nanocarbon mixed well with the soil was formed at a depth of 20 cm below the soil surface. Four different nanocarbon contents by weight (0%, 0.1%, 0.5%, and 1% and five thicknesses of the nanocarbon- soil mixture layer ranging from 1 to 5 cm were considered. Cumulative infiltration and soil water content distributions were determined when water was added to soil columns. Soil Water Characteristic Curves (SWCC were obtained using the centrifuge method. The principal results showed that the infiltration rate and cumulative infiltration increased with the increases of nanocarbon contents, to the thicknesses of the nano carbon-soil mixture layer. Soil water contents that below the soil-nano carbon layer decreased sharply. Both the Brooks-Corey and van Genuchten models could describe well the SWCC of the disturbed sandy soil with various nano carbon contents. Both the saturated water content (θs, residual water content (θr and empirical parameter (α increased with increasing nano carbon content, while the pore-size distribution parameter (n decreased. The available soil water contents were efficiently increased with the increase in nanocarbon contents.

  10. La gestión social del agua en las organizaciones de usuarios/as/as del territorio de la sub cuenca del río Pisque

    OpenAIRE

    Cachipuendo Ulcuango, Charles Jim

    2013-01-01

    The micro watershed of the Pisque river is located north of the Pichincha Province at 70 km from Quito, Ecuador’s capital. The natural flow of the river irrigates two cantones Cayambe and Pedro Moncayo. Based on the altitude and environmental conditions three specific zones can be differentiated, high, medium and low. These two cantons have an altitude between 2600–3000 above sea level and have mainly clayey, clayey-loam, sandy and sandy-loam soils. The region’s main crops are ...

  11. Effect of biochar on soil structural characteristics: water retention and gas transport

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C......-gas diffusivity on intact 100cm3 soil samples (5 replicates in each plot). We found that biochar application significantly decreased soil bulk density, hereby creating higher porosity. At the same soil-water matric potential, all the soil-gas phase parameters (air-filled porosity, air permeability and gas...

  12. Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar.

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Harchegani, Mahboobeh Kiani

    2016-01-15

    Many different amendments, stabilizers, and conditioners are usually applied for soil and water conservation. Biochar is a carbon-enriched substance produced by thermal decomposition of organic material in the absence of oxygen with the goal to be used as a soil amendment. Biochar can be produced from a wide range of biomass sources including straw, wood, manure, and other organic wastes. Biochar has been demonstrated to restore soil fertility and crop production under many conditions, but less is known about the effects of its application on soil erosion and runoff control. Therefore, a rainfall simulation study, as a pioneer research, was conducted to evaluate the performance of the application of vinasse-produced biochar on the soil erosion control of a sandy clay loam soil packed in small-sized runoff 0.25-m(2) plots with 3 replicates. The treatments were (i) no biochar (control), (ii) biochar (8 tha(-1)) application at 24h before the rainfall simulation and (iii) biochar (8 tha(-1)) application at 48 h before the rainfall simulation. Rainfall was applied at 50 mm h(-1) for 15 min. The mean change of effectiveness in time to runoff could be found in biochar application at 24 and 48 h before simulation treatment with rate of +55.10% and +71.73%, respectively. In addition, the mean runoff volume 24 and 48 h before simulation treatments decreased by 98.46% and 46.39%, respectively. The least soil loss (1.12 ± 0.57 g) and sediment concentration (1.44 ± 0.48 gl(-1)) occurred in the biochar-amended soil treated 48 h before the rainfall simulation. In conclusion, the application of vinasse-produced biochar could effectively control runoff and soil loss. This study provided a new insight into the effects of biochar on runoff, soil loss, and sediment control due to water erosion in sandy clay loam soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Comparison of phyto-accumulation of metals by Vigna unguiculata L ...

    African Journals Online (AJOL)

    Three viable seeds of bean and maize were planted in a set of 60 bags of sandy loam soil with no history of crude oil contamination, which served as control, 180 bags of sandy ... The values of Cu, Pb, Zn and Fe decreased in the crude oil contaminated soil and increased in both seedlings as the number of days increased.

  14. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  15. Movement of Cryptosporidium parvum Oocysts through Soils without Preferential Pathways: Exploratory Test

    Directory of Open Access Journals (Sweden)

    Christophe J. G. Darnault

    2017-06-01

    Full Text Available Groundwater contamination by oocysts of the waterborne pathogen Cryptosporidium parvum is a significant cause of animal and human disease worldwide. Although research has been undertaken in the past to determine how specific physical and chemical properties of soils affect the risk of groundwater contamination by C. parvum, there is as yet no clear conclusion concerning the range of mobility of C. parvum that one should expect in field soils. In this context, the key objective of this research was to determine the magnitude of C. parvum transport in a number of soils, under conditions in which fast and preferential transport has been successfully prevented. C. parvum oocysts were applied at the surface of different soils and subjected to artificial rainfall. Apparently for the first time, quantitative PCR was used to detect and enumerate oocysts in the soil columns and in the leachates. The transport of oocysts by infiltrating water, and the considerable retention of oocysts in soil was demonstrated for all soils, although differences in the degree of transport were observed with soils of different types. More oocysts were found in leachates from sandy loam soils than in leachates from loamy sand soils and the retention of oocysts in different soils did not significantly differ. The interaction of various processes of the hydrologic system and biogeochemical mechanisms contributed to the transport of oocysts through the soil matrix. Results suggest that the interplay of clay, organic matter, and Ca2+ facilitates and mediates the transfer of organic matter from mineral surfaces to oocysts surface, resulting in the enhanced breakthrough of oocysts through matrices of sandy loam soils compared to those of loamy sand soils. Although the number of occysts that penetrate the soil matrix account for only a small percentage of initial inputs, they still pose a significant threat to human health, especially in groundwater systems with a water table not

  16. Eleven years' effect of conservation practices for temperate sandy loams: I. Soil physical properties and topsoil carbon content

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl

    2017-01-01

    (D) and harrowing to a depth of 8 to 10 cm (H). Soil sampling and in-field measurements were performed in autumn 2013 and spring 2014. In the field, soil structure was visually evaluated and penetration resistance (PR) measured. Soil C, wet stability (clay dispersion and wet aggregate stability....... However, H and D in combination with residue retention gave the best structural stability. Residue retention alleviated negative effects of reduced tillage on PR and improved wet stability in the MP treatment at the Foulum site. Clay and SOC correlated well with soil physical parameters, confirming...... their important role in soil structure formation and stabilization. Our study showed benefits of combining key CA elements, although longer-term studies are most likely needed to reveal the full potential....

  17. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    Science.gov (United States)

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Impact of Poultry Litter Cake, Cleanout, and Bedding following Chemical Amendments on Soil C and N Mineralization

    OpenAIRE

    Watts, Dexter B.; Smith, Katy E.; Torbert, H. A.

    2012-01-01

    Poultry litter is a great alternative N source for crop production. However, recent poultry litter management changes, and increased chemical amendment use may impact its N availability. Thus, research was initiated to evaluate the effect that broiler cake and total cleanout litter amended with chemical additives have on C and N mineralization. A 35-day incubation study was carried out on a Hartsells fine sandy loam (fine-loamy, siliceous, subactive, thermic Typic Hapludults) soil common to t...

  19. Light Gray Surface-Gleyed Loamy Sandy Soils of the Northern Part of Tambov Plain: Agroecology, Properties, and Diagnostics

    Science.gov (United States)

    Zaidel'man, F. R.; Stepantsova, L. V.; Nikiforova, A. S.; Krasin, V. N.; Dautokov, I. M.; Krasina, T. V.

    2018-04-01

    Light gray soils of Tambov oblast mainly develop from sandy and loamy sandy parent materials; these are the least studied soils in this region. Despite their coarse texture, these soils are subjected to surface waterlogging. They are stronger affected by the agrogenic degradation in comparison with chernozems and dark gray soils. Morphology, major elements of water regime, physical properties, and productivity of loamy sandy light gray soils with different degrees of gleyzation have been studied in the northern part of Tambov Plain in order to substantiate the appropriate methods of their management. The texture of these soils changes at the depth of 70-100 cm. The upper part is enriched in silt particles (16-30%); in the lower part, the sand content reaches 80-85%. In the nongleyed variants, middle-profile horizons contain thin iron-cemented lamellae (pseudofibers); in surface-gleyed variants, iron nodules are present in the humus horizon. The removal of clay from the humus horizon and its accumulation at the lithological contact and in pseudofibers promote surface subsidence and formation of microlows in the years with moderate and intense winter precipitation. The low range of active moisture favors desiccation of the upper horizons to the wilting point in dry years. The yield of cereal crops reaches 3.5-4.5 t/ha in the years with high and moderate summer precipitation on nongleyed and slightly gleyed light gray soils and decreases by 20-50% on strongly gleyed light gray soils. On light gray soils without irrigation, crop yields are unstable, and productivity of pastures is low. High yields of cereals and vegetables can be obtained on irrigated soils. In this case, local drainage measures should be applied to microlows; liming can be recommended to improve soil productivity.

  20. Crop residues as driver for N2O emissions from a sandy loam soil

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Petersen, Søren O.; Chirinda, Ngonidzashe

    2017-01-01

    -term experiment on a loamy sand soil at Foulum in Denmark. All cropping systems included winter wheat, a leguminous crop (faba bean or grass-clover), potato and spring barley grown in different 4-crop rotations varying in strategies for N supply (fertilizer/manure type and rate, use of catch crops and green......-N leaching losses ranged from 39 to 56 kg N ha−1 y−1 and were lowest in rotations with catch crops; leaching was not correlated with N surplus or N input in fertilizer or manure. Crop yields of the organic rotations were 25 to 37% lower than in identical conventional rotations. As a consequence, yield...

  1. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration

    Directory of Open Access Journals (Sweden)

    Sonia Chamizo

    2018-06-01

    Full Text Available Cyanobacteria are ubiquitous components of biocrust communities and the first colonizers of terrestrial ecosystems. They play multiple roles in the soil by fixing C and N and synthesizing exopolysaccharides, which increase soil fertility and water retention and improve soil structure and stability. Application of cyanobacteria as inoculants to promote biocrust development has been proposed as a novel biotechnological technique for restoring barren degraded areas and combating desertification processes in arid lands. However, previous to their widespread application under field conditions, research is needed to ensure the selection of the most suitable species. In this study, we inoculated two cyanobacterial species, Phormidium ambiguum (non N-fixing and Scytonema javanicum (N-fixing, on different textured soils (from silt loam to sandy, and analyzed cyanobacteria biocrust development and evolution of physicochemical soil properties for 3 months under laboratory conditions. Cyanobacteria inoculation led to biocrust formation in all soil types. Scanning electron microscope (SEM images showed contrasting structure of the biocrust induced by the two cyanobacteria. The one from P. ambiguum was characterized by thin filaments that enveloped soil particles and created a dense, entangled network, while the one from S. javanicum consisted of thicker filaments that grouped as bunches in between soil particles. Biocrust development, assessed by chlorophyll a content and crust spectral properties, was higher in S. javanicum-inoculated soils compared to P. ambiguum-inoculated soils. Either cyanobacteria inoculation did not increase soil hydrophobicity. S. javanicum promoted a higher increase in total organic C and total N content, while P. ambiguum was more effective in increasing total exopolysaccharide (EPS content and soil penetration resistance. The effects of cyanobacteria inoculation also differed among soil types and the highest improvement in soil

  2. Long-Term Effects of Legacy Copper Contamination on Microbial Activity and Soil Physical Properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    Soils heavily contaminated with copper (Cu) are considered unsuitable for agricultural use due to adverse impacts on microbial activity, soil physical properties, and direct toxicity to crops. This study investigated effects of Cu pollution from timber preservation activities between 1911 and 1924...... on soil micro-organisms and subsequent effects on physical properties of a sandy loam soil. Tillage operations over the last 70 years have caused spreading of the initially localized contamination and have created a Cu concentration gradient from 20 to 3800 mg kg-1 across an agricultural field in Hygum......, Denmark. Soil samples obtained from the fallow field were used to determine total microbial activity using fluorescein diacetate and dehydrogenase assays. The physical properties measured included water-dispersible clay, bulk density, air permeability and air-filled porosity. Significant differences...

  3. Influence of Root Exudates and Soil on Attachment of Pasteuria penetrans to Meloidogyne arenaria.

    Science.gov (United States)

    Liu, Chang; Timper, Patricia; Ji, Pingsheng; Mekete, Tesfamariam; Joseph, Soumi

    2017-09-01

    The bacterium Pasteuria penetrans is a parasite of root-knot nematodes ( Meloidogyne spp.). Endospores of P. penetrans attach to the cuticle of second-stage juveniles (J2) and subsequently sterilize infected females. When encumbered by large numbers of spores, juveniles are less mobile and their ability to infect roots is reduced. This study looked at different factors that influence spore attachment of P. penetrans to the root-knot nematode Meloidogyne arenaria . Pretreatment of J2 with root exudates of eggplant ( Solanum melongena cv. Black beauty) reduced spore attachment compared with pretreatment with phosphate-buffered saline (PBS), suggesting that the nematode surface coat was altered or the spore recognition domains on the nematode surface were blocked. Spore attachment was equally reduced following exposure to root exudates from both host and nonhost plants for M. arenaria , indicating a common signal that affects spore attachment. Although phytohormones have been shown to influence the lipophilicity of the nematode surface coat, auxins and kinetins did not affect spore attachment compared with PBS. Root exudates reduced spore attachment more in sterilized soil than in natural soil. Sterilization may have eliminated microbes that consume root exudates, or altered the chemical components of the soil solution or root exudates. Root exudates caused a greater decrease in spore attachment in loamy sand than in a sandy loam soil. The sandy loam had higher clay content than the loamy sand, which may have resulted in more adsorption of compounds in the root exudates that affect spore attachment. The components of the root exudates could have also been modified by soil type. The results of this study demonstrate that root exudates can decrease the attachment of P. penetrans endospores to root-knot nematodes, indicating that when these nematodes enter the root zone their susceptibility to spore attachment may decrease.

  4. INFLUENCE OF ELEMENTAL SULFUR AND/OR INOCULATION WITH SULFUR OXIDIZING BACTERIA ON GROWTH, AND NUTRIENT CONTENT OF SORGHUM PLANTS GROWN ON DIFFERENT SOILS

    Directory of Open Access Journals (Sweden)

    Hala Kandil

    2011-12-01

    Full Text Available A pot experiment was conducted to study the effect of elemental sulfur(E.S rates (300 and 600 ppm and/or sulfur oxidizing bacteria (S.O.B. ATCC 8158 on growth and nutrients content of sorghum plants grown on different soils (sandy soils(I & II and clay loam soil.The obtained results could be summarized in the followings:Sorghum plants:Significant increases over the control were observed in fresh and dry weights of sorghum plant as well as its content of SO4=, N, P, K, Fe, Mn, Zn and Cu by using all the sulfur and/or the oxidizing bacteria treatments. Addition of E.S (300 & 600 ppm in combination with S.O.B. ATCC 8158 significantly increased both fresh and dry weights as well as SO4=, N, P, K, Fe, Mn, Zn and Cu contents of sorghum plants grown on the used soils as compared with either of them alone.E.S rates (300 & 600 ppm significantly increased the fresh and dry weights as well as all the studied nutrients content (SO4=, N, P, K, Fe, Mn, Zn and Cu of sorghum plants grown on the different soils as compared with S.O.B. ATCC 8158 treatment alone. The highest rate of E.S (600 ppm significantly increased all the previous parameters under study as compared with the lower rate (300 ppm. The highest values of fresh and dry weights as well as nutrients content (SO4=, N, P, K, Fe, Mn, Zn and Cu of sorghum plants grown on the used soils were obtained by 600 ppm E.S + S.O.B. ATCC 8158 treatment followed by 600 ppm E.S; 300 ppm E.S + S.O.B. ATCC 8158; 300 ppm E.S; S.O.B. ATCC 8158 and control treatments in decreasing order.The used soils:E.S rates (300 & 600 ppm and/or S.O.B. ATCC 8158 decreased pH values of the used soils after 3, 6 and 9 weeks from sowing as compared with their corresponding control treatments. The values of pH of sand soil (I and clay loam soil slightly decreased by time i.e they decreased from 3 weeks to 9 weeks from plantation. E.S rates (300 & 600 ppm with or without inoculation the used soils with S.O.B. ATCC 8158 significantly

  5. Effects of leachate on geotechnical characteristics of sandy clay soil

    Science.gov (United States)

    Harun, N. S.; Ali, Z. Rahman; Rahim, A. S.; Lihan, T.; Idris, R. M. W.

    2013-11-01

    Leachate is a hazardous liquid that poses negative impacts if leaks out into environments such as soil and ground water systems. The impact of leachate on the downgraded quality in terms of chemical characteristic is more concern rather than the physical or mechanical aspect. The effect of leachate on mechanical behaviour of contaminated soil is not well established and should be investigated. This paper presents the preliminary results of the effects of leachate on the Atterberg limit, compaction and shear strength of leachate-contaminated soil. The contaminated soil samples were prepared by mixing the leachate at ratiosbetween 0% and 20% leachate contents with soil samples. Base soil used was residual soil originated from granitic rock and classified as sandy clay soil (CS). Its specific gravity ranged between 2.5 and 2.64 with clay minerals of kaolinite, muscovite and quartz. The field strength of the studied soil ranged between 156 and 207 kN/m2. The effects of leachate on the Atterberg limit clearly indicated by the decrease in liquid and plastic limit values with the increase in the leachate content. Compaction tests on leachate-contaminated soil caused the dropped in maximum dry density, ρdry and increased in optimum moisture content, wopt when the amount of leachate was increased between 0% and 20%. The results suggested that leachate contamination capable to modify some geotechnical properties of the studied residual soils.

  6. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main...... plots) included direct drilling (D), harrowing to a depth of 8 to 10 cm (H), and moldboard plowing (MP). The cover crop treatments were subplot with cover crop (+CC) and without cover crop (−CC). Minimally disturbed soil cores were taken from the 4- to 8-, 12- to 16-, and 18- to 27-cm depth intervals...... in the spring of 2012 before cultivation. Soil water retention and air permeability were measured for matric potentials ranging from −1 to −30 kPa. Gas diffusivity was measured at −10 kPa. Computed tomography (CT) scanning was also used to characterize soil pore characteristics. At the 4- to 8- and 18- to 27-cm...

  7. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Over the last few years, the application of biochar (BC) as a soil amendment to sequester carbon and mitigate global climate change has received considerable attention. While positive effects of biochar on plant nutrition are well documented, little is known about potential impacts on the physical....... Hysteresis of the water vapor sorption isotherms increased with increasing BC application rates. Biochar age did not significantly affect vapor sorption and SSA....

  8. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils.

    Science.gov (United States)

    Franz, Eelco; Semenov, Alexander V; Termorshuizen, Aad J; de Vos, O J; Bokhorst, Jan G; van Bruggen, Ariena H C

    2008-02-01

    The recent increase in foodborne disease associated with the consumption of fresh vegetables stresses the importance of the development of intervention strategies that minimize the risk of preharvest contamination. To identify risk factors for Escherichia coli O157:H7 persistence in soil, we studied the survival of a Shiga-toxin-deficient mutant in a set of 36 Dutch arable manure-amended soils (organic/conventional, sand/loam) and measured an array of biotic and abiotic manure-amended soil characteristics. The Weibull model, which is the cumulative form of the underlying distribution of individual inactivation kinetics, proved to be a suitable model for describing the decline of E. coli O157:H7. The survival curves generally showed a concave curvature, indicating changes in biological stress over time. The calculated time to reach the detection limit ttd ranged from 54 to 105 days, and the variability followed a logistic distribution. Due to large variation among soils of each management type, no differences were observed between organic and conventional soils. Although the initial decline was faster in sandy soils, no significant differences were observed in ttd between both sandy and loamy soils. With sandy, loamy and conventional soils, the variation in ttd was best explained by the level of dissolved organic carbon per unit biomass carbon DOC/biomC, with prolonged survival at increasing DOC/biomC. With organic soils, the variation in ttd was best explained by the level of dissolved organic nitrogen (positive relation) and the microbial species diversity as determined by denaturing gradient gel electrophoresis (negative relation). Survival increased with a field history of low-quality manure (artificial fertilizer and slurry) compared with high-quality manure application (farmyard manure and compost). We conclude that E. coli O157:H7 populations decline faster under more oligotrophic soil conditions, which can be achieved by the use of organic fertilizer with a

  9. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil

    Science.gov (United States)

    2015-04-01

    these tests. Acetone (CAS: 67-64-1; high-performance liquid chromatography [HPLC] grade) was used for preparing EM solutions during the soil amendments... chromatography grade, purity: 99.9%) was used in the HPLC determinations. Certified standards of the energetics (AccuStandard, Inc., New Haven, CT) were used...H.; Van Gestel, C.A.M. Handbook of Soil Invertebrate Toxicity Tests; John Wiley & Sons: Hoboken, NJ, 1998. McLellan, W.L.; Hartley, W.R.; Brower

  10. Comparative effects of application of coated and non-coated urea in clayey and sandy paddy soil microcosms examined by the 15N tracer technique. 2. Effects on soil microbial biomass N and microbial 15N immobilization

    International Nuclear Information System (INIS)

    Acquaye, Solomon; Inubushi, Kazuyuki

    2004-01-01

    Nitrogen fertilizer and soil types exert an impact on plant and soil microbial biomass (SMB). A 15 N tracer experiment was conducted to compare the effects of the application of controlled-release coated urea (CRCU) and urea on SMB in gley (clayey) and sandy paddy soils. The fertilizers were applied at the rate of 8 g N m -2 for CRCU as deep-side placement and 10 g N m -2 for urea mixed into soil or applied into floodwater. The soil type and soil layer (surface: few millimeter depth of surface soil to include benthic algae; subsurface: 1 to 20 cm depth), but not the fertilizer type, affected the amount of microbial biomass N (B N ). On an area basis, subsurface soil layers contained about 2-3 times the amount of B N in the surface layers. The seasonal average B N amount i.e. at 1 to 20 cm depth, in the gley soil was 1.67 g N m -2 , compared to 1.20 g N m -2 for the sandy soil. The proportion of B N in total soil N was significantly influenced by the soil type and soil layer, and was higher for the surface layers of both soils and subsurface layer of the sandy soil than for the subsurface layer of gley soil. Soil type, soil layer, and fertilizer type significantly influenced the amount of microbial biomass 15 N (B 15N ). Unlike B N , the amount of B 15N was significantly higher in the surface (11.9-177.3 mg N m -2 ) than in the subsurface soil layers (4.8-83.6 mg N m -2 ), especially with urea application between 60 and 120 DAT (days after transplanting). At 30 DAT, the subsurface layer of the sandy soil showed a higher B 15N (218 mg N m -2 ) amount than the surface layer (133.4 mg N m -2 ). Sandy soil (4.8-218 mg N m -2 ) and urea (6.2-218 mg N m -2 ) induced a larger increase of the amount of B 15 N than the gley soil (6.2-83.6 mg N m -2 ) and CRCU (4.8-40 mg Nm -2 ). Again, the sandy soil, surface soil layers, and urea induced a higher proportion (%) of B 15N in B N than the gley soil, subsurface soil layers, and CRCU, respectively. The soil type affected B N

  11. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods

    DEFF Research Database (Denmark)

    Kandel, Tanka P; Lærke, Poul Erik; Elsgaard, Lars

    2016-01-01

    One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre-deployment flu......One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre...... was placed on fixed collars, and CO2 concentration in the chamber headspace were recorded at 1-s intervals for 45 min. Fluxes were measured in different soil types (sandy, sandy loam and organic soils), and for various manipulations (tillage, rain and drought) and soil conditions (temperature and moisture......) to obtain a range of fluxes with different shapes of flux curves. The linear method provided more stable flux results during short enclosure times (few min) but underestimated initial fluxes by 15–300% after 45 min deployment time. Non-linear models reduced the underestimation as average underestimation...

  12. Irradiated Sewage Sludge for Production of Fennel Plants in Sandy Soil

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo El-Seoud, M. A.

    2004-01-01

    Irradiated sewage sludge (SS) has proved to be a useful organic fertilizer particularly for sandy soil. The objective of this study is to compare the response of fennel (Foeniculum vulgare L.) plants growing in sandy soil to different fertilizer regimes, organic vs. mineral. In a field experiment four levels (20, 40, 60, 80 t/ha) of irradiated and non-irradiated sewage sludge were incorporated into sandy soil, in addition to the control treatment (mineral fertilizer). Samples analysis included the biomass production at the vegetative and flowering stages, chlorophyll content, total and reducing sugars and heavy metals content of the shoots. The data indicate that the biomass production has dramatically increased as the sludge application rate increased in both irradiated and non-irradiated plots. However, the increase was significantly higher under all irradiated treatments than the corresponding rates of non-irradiated treatments at both the vegetative and flowering stages. Also, the biomass production at all levels of application was higher than the control, receiving mineral fertilizer. At the vegetative stage, the biomass values ranged from 3.1 g/plant for the control to 10.2 and 34.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Whereas, at the flowering stage the values ranged from 9.8 g/plant for the control to 23.9 and 65.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Total sugars, reducing sugar, non-reducing sugar, and chlorophyll content has increased as the sludge application rate increased. At 80t/ha application rate of irradiated sludge, the reducing sugars content was 29.39 mg/g DW at the vegetative stage and 37.85 mg/g DW at the flowering stage. Reducing sugars recorded lower values in the control plants, 14.54 mg/g DW at the vegetative stage and 18.78 mg/g DW at the flowering stage. Heavy metals (Zn, Fe, Pb, Cd) of the shoots was also determined. Sewage sludge was a good

  13. Nitrous oxide emissions respond differently to mineral and organic nitrogen sources in contrasting soil types.

    Science.gov (United States)

    Pelster, David E; Chantigny, Martin H; Rochette, Philippe; Angers, Denis A; Rieux, Christine; Vanasse, Anne

    2012-01-01

    The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha−1 in loam and 0.23 kg P ha−1 in sandy loam, but only by 0.03 kg P ha−1 in loamy sand. Lower leaching losses were attributed to physical...

  15. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Hallett, P. D.; Orfánus, T.; Czachor, H.; Rajkai, K.; Šír, Miloslav; Tesař, Miroslav

    2010-01-01

    Roč. 3, č. 4 (2010), s. 413-420 ISSN 1936-0584 R&D Projects: GA MŠk MEB0808114 Institutional research plan: CEZ:AV0Z20600510 Keywords : sandy soil * water repellency * plant cover * sorptivity * hydraulic conductivity Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.835, year: 2010

  16. Polyacrylamide+Al2(SO4)3 and polyacrylamide+CaO remove coliform bacteria and nutrients from swine wastewater

    International Nuclear Information System (INIS)

    Entry, J.A.; Phillips, Ian; Stratton, Helen; Sojka, R.E.

    2003-01-01

    Polyacrylamide mixture may be able to reduce run-off of enteric bacteria from animal wastes. - Animal wastes are a major contributor of nutrients and enteric microorganisms to surface water and ground water. Polyacrylamide (PAM) mixtures are an effective flocculent, and we hypothesized that they would reduce transport of microorganisms in flowing water. After waste water running at 60.0 l min -1 flowed over PAM+Al 2 (SO 4 ) 3 , or PAM+CaO in furrows, total coliform bacteria (TC) and fecal coliform bacteria (FC) were reduced by 30-50% at 1 and 50 m downstream of the treatments compared to the control. In a column study, PAM+Al 2 (SO 4 ) 3 , and PAM+CaO applied to sandy, sandy loam, loam, and clay soils reduced NH 4 + and ortho-P concentrations in leachate compared to the source waste water and the control. PAM+Al 2 (SO 4 ) 3 and PAM+CaO applied to sandy, sandy loam and loam soils reduced both total and ortho-P, concentrations in leachate compared to the source wastewater and control treatment. In a field study, PAM+Al 2 (SO 4 ) 3 , or PAM+CaO treatments did not consistently reduce NH 4 + , NO 3 - , ortho-P, and total P concentrations in wastewater flowing over any soil compared to inflow wastewater or the control treatment. With proper application PAM+ Al 2 (SO 4 ) 3 and PAM+CaO may be able to reduce the numbers of enteric bacteria in slowly flowing wastewater running off animal confinement areas, reducing the amount of pollutants entering surface water and groundwater

  17. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    ploughing to a depth of 20 cm (MP), harrowing to a depth of 8-10 cm (H) and direct drilling (D). Minimally disturbed core samples were taken at 4-8, 12-16 and 18-27 cm depths 11 years after experimental start. Water retention characteristics were measured for a range of matric potential ranging from -10......Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...... of quantitative knowledge to support this statement. This study examines the long-term effects of crop rotations, residue management and tillage on soil pore characteristics of two sandy loam soils in Denmark. Results are reported from a split plot field experiment rotation as main plot factor and tillage...

  18. Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil

    NARCIS (Netherlands)

    Prima, Di Simone; Bagarello, Vincenzo; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Bautista, Inmaculada; Burguet, Maria; Cerda Bolinches, Artemio; Iovino, Massimo; Prosdocimi, Massimo

    2017-01-01

    Saturated soil hydraulic conductivity, Ks, data collected by ponding infiltrometer methods and usual experimental procedures could be unusable for interpreting field hydrological processes and particularly rainfall infiltration. The Ks values determined by an infiltrometer

  19. Characterization of biomass residues and their amendment effects on water sorption and nutrient leaching in sandy soil.

    Science.gov (United States)

    Wang, Letian; Tong, Zhaohui; Liu, Guodong; Li, Yuncong

    2014-07-01

    In this study, we evaluated the efficiency of two types of biomass residues (fermentation residues from a bioethanol process, FB; brown mill residues from a papermaking process, BM) as amendments for a sandy soil. The characteristics of these residues including specific surface areas, morphologies and nutrient sorption capacity were measured. The effects of biorefinery residues on water and nutrient retention were investigated in terms of different particle sizes and loadings. The results indicated that bio-based wastes FB and BM were able to significantly improve water and nutrient retention of sandy soil. The residues with larger surface areas had better water and nutrient retention capability. Specifically, in the addition of 10% loading, FB and BM was able to improve water retention by approximately 150% and 300%, while reduce 99% of ammonium and phosphate concentration in the leachate compare to the soil control, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam.

    Science.gov (United States)

    Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi

    2016-11-05

    Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg -1 . Manganese and iron concentrations averaged 811 µg·g -1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  1. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Thinh Nguyen Van

    2016-11-01

    Full Text Available Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As, chromium (Cr, cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg−1. Manganese and iron concentrations averaged 811 µg·g−1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  2. Assessment of Cu applications in two contrasting soils-effects on soil microbial activity and the fungal community structure.

    Science.gov (United States)

    Keiblinger, Katharina M; Schneider, Martin; Gorfer, Markus; Paumann, Melanie; Deltedesco, Evi; Berger, Harald; Jöchlinger, Lisa; Mentler, Axel; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz

    2018-03-01

    Copper (Cu)-based fungicides have been used in viticulture to prevent downy mildew since the end of the 19th century, and are still used today to reduce fungal diseases. Consequently, Cu has built up in many vineyard soils, and it is still unclear how this affects soil functioning. The present study aimed to assess the short and medium-term effects of Cu contamination on the soil fungal community. Two contrasting agricultural soils, an acidic sandy loam and an alkaline silt loam, were used for an eco-toxicological greenhouse pot experiment. The soils were spiked with a Cu-based fungicide in seven concentrations (0-5000 mg Cu kg -1 soil) and alfalfa was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test Cu toxicity effects on total microbial biomass, basal respiration and enzyme activities. Fungal abundance was analysed by ergosterol at both samplings, and for the second sampling, fungal community structure was evaluated via ITS amplicon sequences. Soil microbial biomass C as well as microbial respiration rate decreased with increasing Cu concentrations, with EC 50 ranging from 76 to 187 mg EDTA-extractable Cu kg -1 soil. Oxidative enzymes showed a trend of increasing activity at the first sampling, but a decline in peroxidase activity was observed for the second sampling. We found remarkable Cu-induced changes in fungal community abundance (EC 50 ranging from 9.2 to 94 mg EDTA-extractable Cu kg -1 soil) and composition, but not in diversity. A large number of diverse fungi were able to thrive under elevated Cu concentrations, though within the order of Hypocreales several species declined. A remarkable Cu-induced change in the community composition was found, which depended on the soil properties and, hence, on Cu availability.

  3. The effect of tillage intensity on soil structure and winter wheat root/shoot growth

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Olesen, Jørgen E

    2008-01-01

    was followed during the growing seasons using spectral reflectance and mini-rhizotron measurements, respectively. A range of soil physical properties were measured. We found decreased early season shoot and root growth with decreasing tillage intensity. Differences diminished later in the growing season...... of this study was to investigate the effect of tillage intensity on crop growth dynamics and soil structure. A tillage experiment was established in autumn 2002 on two Danish sandy loams (Foulum and Flakkebjerg) in a cereal-based crop rotation. The tillage systems included in this study were direct drilling (D...... with decreasing tillage intensity for the first year winter wheat at Foulum. In general ploughing resulted in the highest grain yields. This study highlights the important interaction between soil structure and crop growth dynamics....

  4. Kinetics of diuron under aerobic condition and residue analysis in sugarcane under subtropical field conditions.

    Science.gov (United States)

    Tandon, Shishir; Pant, Ravi

    2017-10-10

    The phenylureas group includes persistent herbicides which are major pollutants to soil and water. Dissipation kinetics of diuron in different soils under sugarcane field conditions was investigated. Diuron was extracted with acetone and florisil solid phase extraction clean-up and characterized by high-performance liquid chromatography-UV. Diuron persisted for more than 100 days and dissipation followed monophasic first-order kinetics. Persistence was more in sandy loam compared to silty clay loam soil. Half-life of diuron in silty clay loam soil was 22.57 and 32.37 days and in sandy loam was 28.35 and 43.93 days at 2 and 4 kg ha-1applications, respectively. Average recovery in soil, bagasse, leaf-straw and juice ranged from 75.95% to 84.20%, 80.15% to 89.35%, 77.46% to 86.19% and 81.88% to 92.68%, respectively. The quantitation limits for soil, bagasse, leaf-straw and juice were 0.01, 0.03, 0.04 μg g -1 and 0.008 μg mL -1 , respectively. Application of diuron inhibited growth of soil microbes initially but they recovered later. At harvest, diuron residues were below maximum residue limits in all samples. The study revealed that under subtropical conditions, diuron is safe for use in weed management and would not pose any residual/environmental problem and that sugarcane crop could be used safe for human/animal consumption.

  5. Water management in sandy soil using neutron scattering method

    International Nuclear Information System (INIS)

    Mohamed, K.M.

    2011-01-01

    This study was carried out during 2008/2009 at the Experimental Field of Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas in a newly reclaimed sandy soil. The aims of this work are,- determine soil moisture tension within the active root zone and - detecting the behavior of soil moisture within the active root zoon by defines the total hydraulic potential within the soil profile to predict both of actual evapotranspiration and rate of moisture depletion This work also is aimed to study soil water distribution under drip irrigation system.- reducing water deep percolation under the active root depth.This study included two factors, the first one is the irrigation intervals, and the second one is the application rate of organic manure. Irrigation intervals were 5, 10 and 15 days, besides three application rates of organic manure (0 m 3 /fed, 20 m 3 /fed. and 30 m 3 /fed.) in -three replicates under drip irrigation system, Onion was used as an indicator plant. Obtained data show, generally, that neutron scattering technique and soil moisture retention curve model helps more to study the water behavior in the soil profile.Application of organic manure and irrigation to field capacity is a good way to minimize evapotranspiration and deep percolation, which was zero mm/day in the treated treatments.The best irrigation interval for onion plant, in the studied soil, was 5 days with 30m 3 /fad. an application rate of organic manure.Parameter α of van Genuchent's 1980 model was affected by the additions of organic manure, which was decreased by addition of organic manure decreased it. Data also showed that n parameter was decreased by addition of organic manure Using surfer program is a good tool to describe the water distribution in two directions (vertical and horizontal) through soil profile.

  6. [Soil moisture dynamics and water balance of Salix psammophila shrubs in south edge of Mu Us Sandy Land].

    Science.gov (United States)

    An, Hui; An, Yu

    2011-09-01

    Taking the artificial sand-fixing Salix psammophila shrubs with different plant density (0.2, 0.6, and 0.8 plants x m(-2)) in Mu Us Sandy Land as test objects, this paper studied the soil moisture dynamics and evapotranspiration during growth season. There existed obvious differences in the soil moisture dynamics and evapotranspiration among the shrubs. The soil moisture content changed in single-hump-shape with the increase of plant density, and in "S" shape during growth season, being closely correlated with precipitation. The evapotranspiration was the highest (114.5 mm) in the shrubs with a density 0.8 plants x m(-1), accounting for 90.8% of the total precipitation during growth season, and the lowest (109.7 mm) in the shrubs with a density 0.6 plants x m(-2) Based on the soil moisture dynamics and water balance characteristics, the appropriate planting density of S. psammophila shrubs in Mu Us Sandy Land could be 0.6 plants x m(-2).

  7. Linear Shrinkage Behaviour of Compacted Loam Masonry Blocks

    Directory of Open Access Journals (Sweden)

    NAWAB ALI LAKHO

    2017-04-01

    Full Text Available Walls of wet loam, used in earthen houses, generally experience more shrinkage which results in cracks and less compressive strength. This paper presents a technique of producing loam masonry blocks that are compacted in drained state during casting process in order to minimize shrinkage. For this purpose, loam masonry blocks were cast and compacted at a pressure of 6 MPa and then dried in shade by covering them in plastic sheet. The results show that linear shrinkage of 2% occurred which is smaller when compared to un-compacted wet loam walls. This implies that the loam masonry blocks compacted in drained state is expected to perform better than un-compacted wet loam walls.

  8. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    Science.gov (United States)

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr(-1) compared to sand at 1739 mm yr(-1) and clay at 1771 mm yr(-1). Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800-3000 mm yr(-1)) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation

  9. Nitrogen balances of innovative cropping systems for feedstock production to future biorefineries

    DEFF Research Database (Denmark)

    Manevski, Kiril; Lærke, Poul Erik; Olesen, Jørgen Eivind

    2018-01-01

    maize monoculture, the optimised rotation supplied 70% more biomass N and 40% less nitrate leaching on coarse sandy soil, whereas on sandy loam soil it yielded about 10% less biomass N with 50% less nitrate leaching. Field surface N balances were overall neutral/positive, except for festulolium...... and continuous maize monoculture that slightly mined the soil for N. When N losses by leaching, denitrification and volatilisation were included, soil total N stocks were estimated to decline for the majority of the systems at both sites....

  10. Response of sesame to population densities and nitrogen fertilization on newly reclaimed sandy soils

    International Nuclear Information System (INIS)

    Noorka, I.R.; Hafiz, S.I.

    2011-01-01

    Two field experiments were conducted at the Experimental Farm of Faculty of Agriculture, Suez Canal University at Ismailia during 2008 and 2009 seasons to study the effect of nitrogen fertilization and planting density on growth , yield, its attributes as well as seed quality of new sesame variety (Taka 2 cv.). On newly reclaimed sandy soils of Ismailia Governorate, Egypt, experimental design in split plots form with four replications was used. Four levels of nitrogen fertilization 55, 105, 155 and 205 Kg/ha were arranged randomly in the main plots and three planting distances between hills (10, 15 and 20 cm, respectively) were distributed at random in the sub plots. Increasing N fertilizer level up to 205 Kg/ha significantly increased plant height, fruiting zone length, height of the first fruiting branch, number of branches and capsules/plant, 1000-seed weight, seed weight/plant, seed oil content (%) and seed and oil yields /ha. Decreasing planting distance from 20 to 15 and 10 cm consistently and significantly increased plant height, height of the first fruiting branch and seed and oil yields /ha. The reverse was true regarding the yield components. These results were expected, since experiment soil was newly reclaimed sandy soil and very poor in the nutrients and organic matter. (author)

  11. Background levels of some trace elements in sandy soil of Abou-Zabal, and its variation with soil depth determines by neutron activation analysis. Vol. 4

    International Nuclear Information System (INIS)

    Abdel-Sabour, M.F.; Sanad, W.; Flex, H.; Abdel-Haleem, A.S.; Zohny, E.

    1996-01-01

    The variation in soil total heavy metal contents (horizontally and vertically) in small land area (about one acre) was investigated using neutron activities analysis technique. The background levels found in the sandy soil of Abou-Zabal are also discussed in relation to the findings of other workers. 5 tabs

  12. Background levels of some trace elements in sandy soil of Abou-Zabal, and its variation with soil depth determines by neutron activation analysis. Vol. 4.

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Sabour, M F [Soil Pollution Unit, Soil and Water Department. Nuclear Research Center, Atomic energy Authority, Cairo, (Egypt); Sanad, W; Flex, H; Abdel-Haleem, A S [Hot Lab. Center, Atomic Energy Authority, Cairo (Egypt); Zohny, E [Physics Department, Faculty of Science, Cairo Univ., Beni-Sweif Branch, Cairo, (Egypt)

    1996-03-01

    The variation in soil total heavy metal contents (horizontally and vertically) in small land area (about one acre) was investigated using neutron activities analysis technique. The background levels found in the sandy soil of Abou-Zabal are also discussed in relation to the findings of other workers. 5 tabs.

  13. Caracterización y modelación del transporte preferencial de plaguicidas organofosforados en suelos productivos bajo riego. Aplicación al Distrito Colonia Centenario, Patagonia Argentina.

    OpenAIRE

    DUFILHO, ANA CECILIA AMALIA

    2016-01-01

    [EN] In this thesis, transport and fate of organophosphate pesticides - azinphos-methyl and chlorpyrifos- in productive soils from the valley of the Neuquén River in the Patagonia Argentina are analysed. Climate of the region is arid, so traditional fruit production is under flood irrigation. The soils in the floodplain are predominant Aridisols with textures from sandy loam to clay loam. Methodologically, the thesis was based on: field experiments and data and information processing condu...

  14. Study and Estimation of the Ratio of 137CS and 40K Specific Activities in Sandy and Loam Soils

    Directory of Open Access Journals (Sweden)

    Renata Mikalauskienė

    2011-12-01

    Full Text Available The present article describes changes in specific activities and fluctuations in the ratio of natural 40K and artificial 137Cs radionuclides in soil samples taken from different places of Lithuanian territory. The samples of soil have been selected from the districts polluted after the accident in Chernobyl nuclear plant performing nuclear testing operations. The study has established the main physical and chemical properties of soil samples and their impact on the concentration of 40K activities. 137Cs/40K specific activities in soil have been observed under the dry weight of the sample that varied from 0.0034 to 0.0240. The results of the study could be used for establishing and estimating 137Cs and 40K transfer in the system “soil-plant”.Article in Lithuanian

  15. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability......Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits......). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline...

  16. Common bean growth, N uptake and seed production in sandy loam soil as affected by application of plant residues, nitrogen and irrigation level

    International Nuclear Information System (INIS)

    Abdallah, A.A.G.

    2002-01-01

    Field experiment was conducted at the experimental farm, Inshas, atomic energy authority, egypt. Common bean seeds e.v. Nebrasks were cultivated in sandy loan soil using drip irrigation system prepared for this purpose. Two water regimes, i.e., 100% (793.0 m 3 /fed.) and 65% (513.0 m 3 /fed.) of maximum available water were used in main plots. Where in sub plots two fertilizers types were applied i.e., soybean plant residues which contains N 15 labelled as an organic matter without any addition of any fertilizer and nitrogen as chemical fertilizer without using organic matter. The obtained results indicated that, application of plant residues was superior for total seed yield comparing to nitrogen fertilization treatments. This N source with irrigation level of 793.33 m 3 /fed. had a slight increase in total seed yield comparing with (513.0 m 3 /fed.). Irrigation level of 513.0 m 3 /fed. (65% MAW) as well as application of soybean plant residues showed the highest value of water use efficiency. The highest value of N seed percentage was obtained irrigation level with (513.0 m 3 /fed.). Soybean plant residues improved and increased seeds N content, and total seeds protein content. Both N chemical and irrigation level (65% Maw) recorded highest values with N 15 % atom excess. This result has been obtained at two growth stages and seed yield. The same trend of N 15 % atom excess reflected N utilized with both growth stages and seed yield

  17. Rapid bioassessment methods for assessing the toxicity of terrestrial waste sites at the Savannah River Site using the earthworm, Eisenia foetida

    International Nuclear Information System (INIS)

    Specht, W.L.

    1995-08-01

    Studies were conducted to assess the feasibility of using the earthworm, Eisenia foetida, to evaluate the toxicity of contaminated soils at the Savannah River Site. Survival was assessed in several uncontaminated soils, including sandy loams and clayey loams, as well as in soils contaminated with coal fines, ash, diesel fuel, and heavy metals. In addition, behavior responses, changes in biomass, and bioaccumulation of heavy metals were assessed as sublethal indicators of toxicity. The results indicate excellent survival of Eisenia foetida in uncontaminated sandy and clayey soils. No amendment of these uncontaminated soils or addition of food was necessary to sustain the worms for the 14-day test period. In contaminated soils, no significant mortality was observed, except in soils which have very low pH (< 3). However, sublethal responses were observed in earthworms exposed to several of the contaminated soils. These responses included worms clumping on the surface of the soil, worms clumping between the sides of the test container and the soil, increased burrowing times, reductions in biomass, and elevated concentrations of heavy metals in worm tissue

  18. Microbial Ecology of Soil Aggregation in Agroecosystems

    Science.gov (United States)

    Hofmockel, K. S.; Bell, S.; Tfailly, M.; Thompson, A.; Callister, S.

    2017-12-01

    in the abundance of chemical classes in clay loams compared to sandy loams. Together our data demonstrate that the potential for aggregation and C storage is strongly influenced by soil mineralogy with important implications for plant-microbe interactions that mediate C biogeochemistry.

  19. Construction of disturbed and intact soil blocks to develop percolating soil based treatment systems for dirty water from dairy farms.

    Science.gov (United States)

    Brookman, S K E; Chadwick, D R; Headon, D M

    2002-03-01

    Intact soil blocks with a surface area of 1.8 x 1.6 m, 1.0 m deep, were excavated in a coarse sandy loam. The sides of the soil blocks were supported with plywood before using hydraulic rams to force a steel cutting plate beneath them. Disturbed soil blocks of the same depth as the intact blocks were also established. Experiments were conducted to determine purification efficiencies for biological oxygen demand (BOD), molybdate reactive phosphorus (MRP), nitrate and ammonium-N after the application of dirty water. A preliminary experiment is described where a low application of dirty water was applied to the soil blocks, 2 mm day(-1). In addition, a chloride tracer was conducted for the duration of the experiment. Disturbed soil had a purification efficiency for BOD of 99% compared to 96% from intact soil (Pammonium-N were 100 and 99%, respectively, for the intact and disturbed soils. Nitrate-N concentration increased in leachate from both treatments reaching maximum concentrations of 15 and 8 mg l(-1) from disturbed and intact soils, respectively. Chloride traces for each soil block followed similar patterns with 47 and 51% loss from disturbed and intact soils, respectively.

  20. The influence of land use and management on nitrogen leaching in two agricultural catchments in China and Denmark

    DEFF Research Database (Denmark)

    Manevski, Kiril

    The agriculture in both China and Denmark needs to reduce nitrogen (N) leaching from the crop root zone in order to maintain high-quality groundwater for drinking purposes and to reduce eutrophication of surface waters. However, N leaching is a process that is concurrent and interacting with many...... others in the agro-ecosystem, such as crop growth and N uptake, mineralization of soil organic N and field management practices. Thus, the aim of the Ph.D. study was to investigate, with the use of the physically-based DAISY agro-ecosystem model, crop growth, soil N and leaching processes from (i) maize......-winter wheat annual systems at different fertilizer N rates in the North China Plain (NCP, silty loam soil), China, and (ii) maize for silage systems differing in past cropping, intercropping and fertilizer N levels in central Jutland (sandy loam soil, JB4) and southern Jutland (coarse sandy soil JB1, Jyndevad...

  1. The soil structure investigation for the interpreting radiocaesium behaviour in upper horizons of Chernobyl contaminated sandy soils

    International Nuclear Information System (INIS)

    Vazhinskij, A.G.

    2002-01-01

    The soil-composing particles in natural environment form aggregates of different stability. For soils (topsoil) of contrasting type from Chernobyl NPP area the particle size and microaggregate analyses have been performed and the distribution of Cs 137 in the obtained fractions has been studied. Results of long-term investigation of Cs 137 vertical migration in sandy soils of 50-km zone around Chernobyl NPP have been compared with data on radiocaesium distribution among water-stable aggregates and particles of various size in studied soils. On the basis of particle size analysis and aggregate soil composition the size of soil components with vertical migration potential, and the amount of Cs 137 potentially tending to migrate with the soil components along soil profile have been assessed. Based on findings showing Cs 137 partitioning among water-stable soil aggregates of diverse size and pattern of the radionuclide vertical distribution in top 0-10 cm soil layer, it was assumed that neither shift of peak radiocaesium level from upper soil layer downwards nor the so-called slow constituent of Cs 137 vertical migration (in terms of quasi diffusion description of Cs 137 profile in soil) could not be explained by self-motion of soil aggregates and particles with associated radiocaesium. Hypothesis of root intermixing as principal mechanism responsible for Cs 137 vertical transport in top 0-10 cm soil layer was postulated

  2. Aggregation of surface mine soil by interaction between VAM fungi and lignin degradation products of lespedeza

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, F.M. (USDA Forest Service, Berea, KY (USA). Northeastern Forest Experiment Station, Forestry Sciences Laboratory)

    1984-01-01

    The external mycelium of a vesicular-arbuscular mycorrhizal (VAM) fungus was effective in aggregating a sandy loam minesoil. The polysaccharide nature of the soil binding agent on hyphal surfaces and on the surfaces of sand particles in contact with the hyphae within the aggregate was demonstrated with the periodic acid-Schiff reagent staining reaction. A possible stabilizing mechanism for macroaggregates was proposed that involves a coupling reaction between glucosamines in the hyphal walls of the fungus with phenolic compounds released during lignin degradation of sericea lespedeza root tissue. 28 refs.

  3. Geotechnical response of pipelines shallowly embedded in clayey and sandy soils

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Renato M.S. [Military Institute of Engineering (IME), Rio de Janeiro, RJ (Brazil); Borges, Ricardo G. [Centro de Pesquisa Leopoldo A. Miguez de Melo (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil); Feitoza, Jaquelline; Almeida, Maria C.F.; Almeida, Marcio S.S. [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2009-07-01

    Offshore and onshore pipelines used for oil and gas transportation are often buried to avoid eventual damages and also to provide movement constraint. The soil cover supply resistance against upward and lateral displacements of the pipe caused by thermally-induced axial loading, which can lead to structural buckling. The clear understanding of this behavior is critical for the development of new analysis tools and new design criteria which could minimize future accidents. In this way, research on pipe-soil interaction behavior has been undertaken using both clayey and sandy soils through physical and numerical simulations. This paper is part of a research effort to provide a pipe-soil interaction guideline suitable for application in pipeline design along the Brazilian coast. This work presents a comprehensive set of lateral buckling simulation tests using the COPPE-UFRJ geotechnical centrifuge. The chosen soils are typical of the Brazilian coast and therefore very representative of tropical regions. Physical and numerical results are compared and other research works are considered in order to assess the overall uplift resistance. In flight T-bar and cone penetration tests were undertaken to provide a soil resistance profile which was used to trace dimensionless curves that could be adopted in similar design situations. (author)

  4. Polyacrylamide+Al{sub 2}(SO{sub 4}){sub 3} and polyacrylamide+CaO remove coliform bacteria and nutrients from swine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Entry, J.A.; Phillips, Ian; Stratton, Helen; Sojka, R.E

    2003-03-01

    Polyacrylamide mixture may be able to reduce run-off of enteric bacteria from animal wastes. - Animal wastes are a major contributor of nutrients and enteric microorganisms to surface water and ground water. Polyacrylamide (PAM) mixtures are an effective flocculent, and we hypothesized that they would reduce transport of microorganisms in flowing water. After waste water running at 60.0 l min{sup -1} flowed over PAM+Al{sub 2}(SO{sub 4}){sub 3}, or PAM+CaO in furrows, total coliform bacteria (TC) and fecal coliform bacteria (FC) were reduced by 30-50% at 1 and 50 m downstream of the treatments compared to the control. In a column study, PAM+Al{sub 2}(SO{sub 4}){sub 3}, and PAM+CaO applied to sandy, sandy loam, loam, and clay soils reduced NH{sub 4}{sup +} and ortho-P concentrations in leachate compared to the source waste water and the control. PAM+Al{sub 2}(SO{sub 4}){sub 3} and PAM+CaO applied to sandy, sandy loam and loam soils reduced both total and ortho-P, concentrations in leachate compared to the source wastewater and control treatment. In a field study, PAM+Al{sub 2}(SO{sub 4}){sub 3}, or PAM+CaO treatments did not consistently reduce NH{sub 4}{sup +}, NO{sub 3}{sup -}, ortho-P, and total P concentrations in wastewater flowing over any soil compared to inflow wastewater or the control treatment. With proper application PAM+ Al{sub 2}(SO{sub 4}){sub 3} and PAM+CaO may be able to reduce the numbers of enteric bacteria in slowly flowing wastewater running off animal confinement areas, reducing the amount of pollutants entering surface water and groundwater.

  5. Optimization of the Use of His₆-OPH-Based Enzymatic Biocatalysts for the Destruction of Chlorpyrifos in Soil.

    Science.gov (United States)

    Senko, Olga; Maslova, Olga; Efremenko, Elena

    2017-11-23

    Applying enzymatic biocatalysts based on hexahistidine-containing organophosphorus hydrolase (His₆-OPH) is suggested for the decomposition of chlorpyrifos, which is actively used in agriculture in many countries. The application conditions were optimized and the following techniques was suggested to ensure the highest efficiency of the enzyme: first, the soil is alkalinized with hydrated calcitic lime Ca(OH)₂, then the enzyme is introduced into the soil at a concentration of 1000 U/kg soil. Non-equilibrium low temperature plasma (NELTP)-modified zeolite is used for immobilization of the relatively inexpensive polyelectrolyte complexes containing the enzyme His₆-OPH and a polyanionic polymer: poly-l-glutamic acid (PLE 50 ) or poly-l-aspartic acid (PLD 50 ). The soil's humidity is then increased up to 60-80%, the top layer (10-30 cm) of soil is thoroughly stirred, and then exposed for 48-72 h. The suggested approach ensures 100% destruction of the pesticide within 72 h in soils containing as much as 100 mg/kg of chlorpyrifos. It was concluded that using this type of His₆-OPH-based enzyme chemical can be the best approach for soils with relatively low humus concentrations, such as sandy and loam-sandy chestnut soils, as well as types of soil with increased alkalinity (pH 8.0-8.4). Such soils are often encountered in desert, desert-steppe, foothills, and subtropical regions where chlorpyrifos is actively used.

  6. Vegetation pattern and soil characteristics of the polluted industrial area of Karachi

    International Nuclear Information System (INIS)

    Kabir, M.; Iqbal, M.Z.; Farooqi, M.Z.; Shafiq, M.

    2010-01-01

    A quantitative phyto sociological survey was conducted around the industrial areas of Sindh Industrial Trading Estate (S.I.T.E.) of Karachi. The herbaceous, shrubs vegetation was predominantly disturbed in nature. Fifteen plant communities based on Importance Value Index (IVI) of species were recognized. Eighty plant species were recorded in industrial areas. Abutilon fruticosum L., attained the highest importance value index (823.25) followed by Prosopis juliflora DC. (662.62), Corchorus trilocularis L. (467.20), Aerva javanica Burm.f. (419.97), Amaranthus viridis L. (397.65) and Senna holosericea L. (387.22), respectively. P. juliflora and A. fruticosum showed leading first dominant in five and four stands, respectively. Whereas, A. javanica, A. viridis, S. holosericea, Launaea nudicaulis L., Crochorus depressus L. and Salvadora L., attained the presence class III. Zygophyllum simplex L., Suaeda fruticosa L., Convolvulus glomeratus Choisky, Cressa cretica L., Cleome viscosa L., Calotropis procera Willd, Blepharis sindica T. Anderson, Rhynchosia pulverulenta L., Abutilon pakistanicum Jafri and Ali, Chenopodium album L., Capparis decidua Forssk and Digera muricata L. Mart showed the presence of class II. Whereas, rest of 58 species showed presence of class I. The soil characteristics of the polluted industrial area were also analyzed and related with the vegetation of the polluted areas. The Industrial area soil was coarse in texture and ranged from sandy clay loam to sandy loam. The soil was acidic to alkaline in nature. Maximum water holding capacity, bulk density, porosity, CaCO/sub 3/, pH, organic matter, total organic carbon, chloride, electrical conductivity, total dissolved salt, available sulphur contents, exchangeable sodium and potassium were recorded in wide range. It was concluded that certain edaphic factors due to industrial activities and induction of pollutants were responsible for variation in vegetation composition of the study area. (author)

  7. Fate of 14C-allylalcohol herbicide in soils and crop residues

    International Nuclear Information System (INIS)

    Scheunert, I.; Vockel, D.; Klein, W.; Korte, F.

    1981-01-01

    Residue disappearance and leaching of 14 C-allylalcohol from different soils were studied in laboratory experiments. Additionally, the uptake of residues by lettuce and carrots was investigated in the greenhouse. In laboratory experiments, residue disappearance and leaching from soils was correlated negatively to the organic matter content. In greenhouse experiments with a sandy loam soil at an application rate normally used in practice, an average of 12.5% of the applied radioactivity was recovered after an eight day interval between application and sowing. Furthermore, an average of 8% (sum in soil and plants) of the applied radioactivity was recovered after lettuce or carrot growing. Uptake of residues was higher by carrots than by lettuce, and higher by lettuce roots than by lettuce tops. No bioaccumulation was observed. The residues in soils and plants were, to a high percent-age, unextractable and, to a smaller extent, fully water-soluble products. Unchanged allylalcohol could not be detected by the analytical methods used

  8. Transfer of 226Ra to plants from two types of soil

    International Nuclear Information System (INIS)

    Rosiak, L.; Pietrzak-Flis, Z.

    1998-01-01

    The transfer of 226 Ra to plants used as food (carrot, parsley, wheat) and as fodder (grass, maize) was studied. The plants were grown on two types of soil: sandy soil (l) and sandy loam soil (II) in an open field (exposure to dry and wet deposition, resuspension and soil adhesion) and in polyethylene tent with an underground irrigation system (isolation from wet deposition and from water splash on soil). The plants were grown simultaneously on the open and sheltered fields. The average concentrations of total 226 Ra and of exchangeable 226 Ra were 8.48 ± 0.50 Bq/kg dw was 0.62 ± 0.07 Bq/kg dw , respectively, in Soil I and 12.2 ± 0.56 Bq/kg dw and 0.66 ± 0.05 Bq/kg dw , respectively, in Soil II. 226 Ra was determined in the above-ground parts of the plants after washing in distilled water, in the rinse obtained from washing, in the insoluble residue separated from the rinse, and in the roots. The data obtained allowed us to determine the incorporated radionuclide in the plants and on their surface. Statistical analysis of the data indicates that there is no difference in the incorporated 226 Ra for plants grown on the open field and in the tent. This indicates that Ra enter the plants mainly through the root system, while the pathway via leaves and stems is negligible

  9. Experimental Investigation of Phenanthrene Pollutant Removal Efficiency for Contaminated Sandy Soil by Enhanced Soil Washing

    Directory of Open Access Journals (Sweden)

    Saif salah Alquzweeni

    2016-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are environmental concerns that must be removed to acceptable level. This research assesses two agents (Na2EDTA and SDS to remediate contaminated sandy soil, spiked with 500mg/kg phenanthrene. Five sets of experiments (batch are applied to investigate the optimal of five influencing factors on soil remediation: Na2EDTA-SDS concentration, liquid/Solid ratio, stirring speed, pH value of flushing solution and mixing time. The results of batch experiments showed that SDS has high phenanthrene removal efficiency (90%, while Na2EDTA shows no phenanthrene removal. pH has no effect on phenanthrene removal. To study the influence of flow rates on the removal efficiency of contaminants, two column tests with hydraulic gradient of 0.2 and 1.2 conducted by SDS solution. The results illustrate that high phenanthrene removal from soil obtained by 1.2 hydraulic gradient condition. The SDS flushing solution removed approximately 69% and 81% of phenanthrene from soil under low and high hydraulic gradients, respectively. It was concluded that phenanthrene removal depend on surfactant micelles formation. Overall, the study showed that soil flushing removal efficiency for contaminants depends on the flushing agents selectivity and affinity to the contaminants and the condition of hydraulic gradient.

  10. Pupal development of Ceratitis capitata (Diptera: Tephritidae) and Diachasmimorpha longicaudata (Hymenoptera: Braconidae) at different moisture values in four soil types.

    Science.gov (United States)

    Bento, F de M M; Marques, R N; Costa, M L Z; Walder, J M M; Silva, A P; Parra, J R P

    2010-08-01

    This study aimed to evaluate adult emergence and duration of the pupal stage of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and emergence of the fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead), under different moisture conditions in four soil types, using soil water matric potential. Pupal stage duration in C. capitata was influenced differently for males and females. In females, only soil type affected pupal stage duration, which was longer in a clay soil. In males, pupal stage duration was individually influenced by moisture and soil type, with a reduction in pupal stage duration in a heavy clay soil and in a sandy clay, with longer duration in the clay soil. As matric potential decreased, duration of the pupal stage of C. capitata males increased, regardless of soil type. C. capitata emergence was affected by moisture, regardless of soil type, and was higher in drier soils. The emergence of D. longicaudata adults was individually influenced by soil type and moisture factors, and the number of emerged D. longicaudata adults was three times higher in sandy loam and lower in a heavy clay soil. Always, the number of emerged adults was higher at higher moisture conditions. C. capitata and D. longicaudata pupal development was affected by moisture and soil type, which may facilitate pest sampling and allow release areas for the parasitoid to be defined under field conditions.

  11. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition.

    Science.gov (United States)

    Kumar, Anjani; Nayak, A K; Shukla, Arvind K; Panda, B B; Raja, R; Shahid, Mohammad; Tripathi, Rahul; Mohanty, Sangita; Rath, P C

    2012-04-01

    A laboratory study was conducted with four pesticides, viz. a fungicide (carbendazim), two insecticides (chlorpyrifos and cartap hydrochloride) and an herbicide (pretilachlor) applied to a sandy clay loam soil at a field rate to determine their effect on microbial biomass carbon (MBC) and carbon mineralization (C(min)). The MBC content of soil increased with time up to 30 days in cartap hydrochloride as well as chlorpyrifos treated soil. Thereafter, it decreased and reached close to the initial level by 90th day. However, in carbendazim treated soil, the MBC showed a decreasing trend up to 45 days and subsequently increased up to 90 days. In pretilachlor treated soil, MBC increased through the first 15 days, and thereafter decreased to the initial level. Application of carbendazim, chlorpyrifos and cartap hydrochloride decreased C(min) for the first 30 days and then increased afterwards, while pretilachlor treated soil showed an increasing trend.

  12. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    Science.gov (United States)

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  13. Overland Transport of Rotavirus and the Effect of Soil Type and Vegetation

    Directory of Open Access Journals (Sweden)

    Paul C. Davidson

    2016-03-01

    Full Text Available Soil and vegetation are two critical factors for controlling the overland transport kinetics of pathogens in a natural environment. With livestock operations moving more towards concentrated animal operations, the need to dispose of a very large amount of manure in a localized area is becoming increasingly important. Animal manure contains a substantial amount of microbial pathogens, including rotavirus, which may pose a threat of contamination of water resources. This study examined the kinetics of rotavirus in overland transport, with an overall objective of optimizing the design of best management practices, especially vegetative filter strips. The overland transport of rotavirus was studied using three soil types (Catlin silt-loam, Darwin silty-clay, Alvin fine sandy-loam, spanning the entire spectrum of typical Illinois soil textures. A 20-min rainfall event was produced using a small-scale (1.07 m × 0.66 m laboratory rainfall simulator over a soil box measuring 0.610 m × 0.305 m. Each soil type was tested for rotavirus transport kinetics with bare surface conditions, as well as with Smooth Brome and Fescue vegetative covers. Surface runoff, near-surface runoff, soil cores, and vegetation were each analyzed for infective rotavirus particles using cell-culture infectivity assays. Results show that vegetation reduces the recovery of infective rotavirus particles in surface runoff by an average of 73%, in addition to delaying the time to peak recovery. The vegetation, in general, appeared to decrease the recovery of infective rotavirus particles in surface runoff by impeding surface flow and increasing the potential for infiltration into the soil profile.

  14. Seed Burial Depth and Soil Water Content Affect Seedling Emergence and Growth of Ulmus pumila var. sabulosa in the Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Jiao Tang

    2016-01-01

    Full Text Available We investigated the effects of seed burial depth and soil water content on seedling emergence and growth of Ulmus pumila var. sabulosa (sandy elm, an important native tree species distributed over the European-Asian steppe. Experimental sand burial depths in the soil were 0.5, 1.0, 1.5, 2.0 and 2.5 cm, and soil water contents were 4%, 8%, 12% and 16% of field capacity. All two-way ANOVA (five sand burial depths and four soil water contents results showed that seed burial depths, soil water content and their interactions significantly affected all the studied plant variables. Most of the times, seedling emergence conditions were greater at the lower sand burial depths (less than 1.0 cm than at the higher (more than 1.0 cm seed burial depths, and at the lower water content (less than 12% than at the higher soil water content. However, high seed burial depths (more than 1.5 cm or low soil water content (less than 12% reduced seedling growth or change in the root/shoot biomass ratios. In conclusion, the most suitable range of sand burial was from 0.5 to 1.0 cm soil depth and soil water content was about 12%, respectively, for the processes of seedling emergence and growth. These findings indicate that seeds of the sandy elm should be kept at rather shallow soil depths, and water should be added up to 12% of soil capacity when conducting elm planting and management. Our findings could help to create a more appropriate sandy elm cultivation and understand sparse elm woodland recruitment failures in arid and semi-arid regions.

  15. Estimation of Nitrogen Pools in Irrigated Potato Production on Sandy Soil Using the Model SUBSTOR

    Science.gov (United States)

    Prasad, Rishi; Hochmuth, George J.; Boote, Kenneth J.

    2015-01-01

    Recent increases in nitrate concentrations in the Suwannee River and associated springs in northern Florida have raised concerns over the contributions of non-point sources. The Middle Suwannee River Basin (MSRB) is of special concern because of prevalent karst topography, unconfined aquifers and sandy soils which increase vulnerability of the ground water contamination from agricultural operations- a billion dollar industry in this region. Potato (Solanum tuberosum L.) production poses a challenge in the area due to the shallow root system of potato plants, and low water and nutrient holding capacity of the sandy soils. A four-year monitoring study for potato production on sandy soil was conducted on a commercial farm located in the MSRB to identify major nitrogen (N) loss pathways and determine their contribution to the total environmental N load, using a partial N budget approach and the potato model SUBSTOR. Model simulated environmental N loading rates were found to lie within one standard deviation of the observed values and identified leaching loss of N as the major sink representing 25 to 38% (or 85 to 138 kg ha-1 N) of the total input N (310 to 349 kg ha-1 N). The crop residues left in the field after tuber harvest represented a significant amount of N (64 to 110 kg ha-1N) and posed potential for indirect leaching loss of N upon their mineralization and the absence of subsequent cover crops. Typically, two months of fallow period exits between harvest of tubers and planting of the fall row crop (silage corn). The fallow period is characterized by summer rains which pose a threat to N released from rapidly mineralizing potato vines. Strategies to reduce N loading into the groundwater from potato production must focus on development and adoption of best management practices aimed on reducing direct as well as indirect N leaching losses. PMID:25635904

  16. The neutronic method for measuring soil moisture

    International Nuclear Information System (INIS)

    Couchat, Ph.

    1967-01-01

    The three group diffusion theory being chosen as the most adequate method for determining the response of the neutron soil moisture probe, a mathematical model is worked out using a numerical calculation programme with Fortran IV coding. This model is fitted to the experimental conditions by determining the effect of different parameters of measuring device: channel, fast neutron source, detector, as also the soil behaviour under neutron irradiation: absorbers, chemical binding of elements. The adequacy of the model is tested by fitting a line through the image points corresponding to the couples of experimental and theoretical values, for seven media having different chemical composition: sand, alumina, line stone, dolomite, kaolin, sandy loam, calcareous clay. The model chosen gives a good expression of the dry density influence and allows α, β, γ and δ constants to be calculated for a definite soil according to the following relation which gives the count rate of the soil moisture probe: N = (α ρ s +β) H v +γ ρ s + δ. (author) [fr

  17. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil.

    Science.gov (United States)

    Cartmill, Andrew D; Cartmill, Donita L; Alarcón, Alejandro

    2014-01-01

    A greenhouse experiment was conducted to determine the effect of the application of controlled release fertilizer [(CRF) 0, 4,6, or 8 kg m(-3)] on Lolium multiflorum Lam. survival and potential biodegradation of petroleum hydrocarbons (0, 3000, 6000, or 15000 mg kg(-1)) in sandy soil. Plant adaptation, growth, photosynthesis, total chlorophyll, and proline content as well as rhizosphere microbial population (culturable heterotrophic fungal and bacterial populations) and total petroleum hydrocarbon (TPH)-degradation were determined. Petroleum induced-toxicity resulted in reduced plant growth, photosynthesis, and nutrient status. Plant adaptation, growth, photosynthesis, and chlorophyll content were enhanced by the application of CRF in contaminated soil. Proline content showed limited use as a physiological indicator of petroleum induced-stress in plants. Bacterial and filamentous fungi populations were stimulated by the petroleum concentrations. Bacterial populations were stimulated by CRF application. At low petroleum contamination, CRF did not enhance TPH-degradation. However, petroleum degradation in the rhizosphere was enhanced by the application of medium rates of CRF, especially when plants were exposed to intermediate and high petroleum contamination. Application of CRF allowed plants to overcome the growth impairment induced by the presence of petroleum hydrocarbons in soils.

  18. Low black carbon concentration in agricultural soils of central and northern Ethiopia.

    Science.gov (United States)

    Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena

    2018-08-01

    Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Vescicular-arbuscular mycorrhiza and Azospirillum brasilense rhizocoenosis in pearlmillet in a semi-arid soil

    International Nuclear Information System (INIS)

    Tilak, K.V.B.R.; Sachdev, M.S.; Sachdev, Pamila

    2007-01-01

    A field experiment was conducted in an alluvial sandy loam soil using Pearlmillet as the test crop to study the effect of Vescicular-Arbuscular Mycorrhiza (VAM) and Azospirillum with phosphorus on yield and other parameters. Dual inoculation gave a significant increase in Azospirillum and VAM infection in root over the control plants, and resulted in significant increase in grain yield. Combined inoculation alongwith N and P application showed maximum P uptake. Nitrogen fixation increased with plant growth with dually inoculated N and P treatment, The effect was more pronounced in the presence of phosphrous indicating that P is required for nitrogen fixation. (author)

  20. The influence of compost addition on the water repellency of brownfield soils

    Science.gov (United States)

    Whelan, Amii; Kechavarzi, Cedric; Sakrabani, Ruben; Coulon, Frederic; Simmons, Robert; Wu, Guozhong

    2010-05-01

    Compost application to brownfield sites, which can facilitate the stabilisation and remediation of contaminants whilst providing adequate conditions for plant growth, is seen as an opportunity to divert biodegradable wastes from landfill and put degraded land back into productive use. However, although compost application is thought to improve soil hydraulic functioning, there is a lack of information on the impact of large amounts of compost on soil water repellency. Water repellency in soils is attributed to the accumulation of hydrophobic organic compounds released as root exudates, fungal and microbial by-products and decomposition of organic matter. It has also been shown that brownfield soils contaminated with petroleum-derived organic contaminants can exhibit strong water repellency, preventing the rapid infiltration of water and leading potentially to surface run off and erosion of contaminated soil. However, hydrophobic organic contaminants are known to become sequestrated by partitioning into organic matter or diffusing into nano- and micropores, making them less available over time (ageing). The effect of large amounts of organic matter addition through compost application on the water repellency of soils contaminated with petroleum-derived organic contaminants requires further investigation. We characterised the influence of compost addition on water repellency in the laboratory by measuring the Water Drop Penetration Time (WDPT), sorptivity and water repellency index through infiltration experiments on soil samples amended with two composts made with contrasting feedstocks (green waste and predominantly meat waste). The treatments consisted of a sandy loam, a clay loam and a sandy loam contaminated with diesel fuel and aged for 3 years, which were amended with the two composts at a rate equivalent to 750t/ha. In addition core samples collected from a brownfield site, amended with compost at three different rates (250, 500 and 750t/ha) in 2007, were

  1. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total

  2. Determination of soil degradation in argentine semi-arid environments from remote sensors: case department of patagones, province of buenos aires

    Science.gov (United States)

    Pezzola, Alejandro; Cacella, Alejandra; Enrique, Mario; Winschel, Cristina

    2017-04-01

    The continental territory of the Argentine Republic owns 75% of its surface under arid and semiarid conditions to the west of the meridian of 64°. Wind erosion is the main physical cause of desertification. In the Pampena area, studies showed that the sandy loam soils were more pronounced than the sandy loam with significant losses of organic matter, decreases in the cation exchange capacity and modification of the mineral composition of the very fine sand fraction (From 73 to 100 μm), with increases in the proportion of heavy minerals (magnetite) relative to light (quartz). In the Patagones department, Buenos Aires province, the soils with a sandy-loamy texture, which are transported by wind and deposited on calcium carbonate (tosca), with little moisture retention and susceptible to wind erosion. In the 1980s and 1990s, increases in rainfall above the historical average led to a shift of the isohytes towards the southwest, leading to agricultural intensification that caused greater pressure on the soil and native vegetation. This advance on the native vegetation within the Patagones produced a reduction between 1975 and 2009 of 432,280 ha, leaving only 31% of the area covered by native forest - shrub xerophyte today. Between 2005-2009, the call "agricultural drought" caused losses in crops, wheat - oats and natural pastures associated with the native forest, causing a significant deterioration of the soil, exposing them to wind erosion. Remote sensors represent a very valuable technology for the mapping and evaluation of soil erosion. The availability of multispectral images allows the mapping and monitoring of changes in the dynamics of the erosion process. The objective of this work was to make an expeditious diagnosis of the surface affected by wind erosion and to evaluate the degree to which the soils destined for agriculture and livestock were affected. For this purpose, Terra's MODIS (Moderate-Resolution Imaging Spectroradiometer) sensor information was

  3. Investigation of biochar effects as a non-structural BMP on soil erosional properties using a rainfall simulator

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Kuhn, Nikolaus J; Hu, Yaxian

    Recent studies have shown the potential of biochar for improving overall soil quality including soil aggregation and structure. Erodibility is an inherent soil property that amongst others is highly dependent on soil organic matter content which affects aggregate stability and crusting during...... runoff events. We hypothesized that erodibility is reduced in biochar-amended soils and tested this in controlled rainfall-runoff simulations. The specific objectives of our study were (1) to compare runoff and sediment generation between a biochar and an unamended control treatment on an arable sandy...... loam soil and (2) to determine the effect of the biochar treatment on SOC erodibility. A field experiment with eight plots was established at Risø, Denmark, in 2011; four biochar-amended and four unamended control plots. Biochar produced from birch wood at 500 ºC was applied at a rate of 2 kg m-2...

  4. Electrokinetic transport of aerobic microorganisms under low-strength electric fields.

    Science.gov (United States)

    Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R

    2011-01-01

    To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.

  5. Effect of sodium adsorption ratio and electric conductivity of the ...

    African Journals Online (AJOL)

    Infiltration measurements using a double-ring infiltrometer were conducted on a sandy-loam soil located in Saudi Arabia. The measurements were performed for an undisturbed soil. The effect of sodium adsorption ratio (SAR) and electric conductivity (EC) of the applied water on infiltration rate was examined. The infiltration ...

  6. Calibration Curve of Neutron Moisture Meter for Sandy Soil under Drip Irrigation System

    International Nuclear Information System (INIS)

    Mohammad, Abd El- Moniem M.; Gendy, R. W.; Bedaiwy, M. N.

    2004-01-01

    The aim of this work is to construct a neutron calibration curve in order to be able to use the neutron probe in sandy soils under drip irrigation systems. The experimental work was conducted at the Soil and Water Department of the Nuclear Research Center, Atomic Energy Authority. Three replicates were used along the lateral lines of the drip irrigation system. For each dripper, ten neutron access tubes were installed to 100-cm depth at distances of 5, 15 and 25 cm from the dripper location around the drippers on the lateral line, as well as between lateral lines. The neutron calibrations were determined at 30, 45, and 60-cm depths. Determining coefficients as well as t-test in pairs were employed to detect the accuracy of the calibrations. Results indicated that in order for the neutron calibration curve to express the whole wet area around the emitter; three-access tubes must be installed at distances of 5, 15, and 25 cm from the emitter. This calibration curve will be correlating the average count ratio (CR) at the studied soil depth of the three locations (5, 15, and 25-cm distances from the emitter) to the average moisture content (θ) for this soil depth of the entire wetted area. This procedure should be repeated at different times in order to obtain different θ and C.R values, so that the regression equation of calibration curve at this soil depth can be obtained. To determine the soil moisture content, the average CR of the three locations must be taken and substituted into the regression equation representing the neutron calibration curve. Results taken from access tubes placed at distances of 15 cm from the emitter, showed good agreement with the average calibration curve both for the 45- and the 60-cm depths, suggesting that the 15-cm distance may provide a suitable substitute for the simultaneous use of the three different distances of 5, 15 and 25 cm. However, the obtained results show also that the neutron calibration curves of the 30-cm depth for

  7. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM.

    Science.gov (United States)

    Balwinder-Singh; Humphreys, E; Gaydon, D S; Eberbach, P L

    2016-10-01

    Machinery for sowing wheat directly into rice residues has become more common in the rice-wheat systems of the north-west Indo-Gangetic Plains of South Asia, with increasing numbers of farmers now potentially able to access the benefits of residue retention. However, surface residue retention affects soil water and temperature dynamics, thus the optimum sowing date and irrigation management for a mulched crop may vary from those of a traditional non-mulched crop. Furthermore, the effects of sowing date and irrigation management are likely to vary with soil type and seasonal conditions. Therefore, a simulation study was conducted using the APSIM model and 40 years of weather data to evaluate the effects of mulch, sowing date and irrigation management and their interactions on wheat grain yield, irrigation requirement (I) and water productivity with respect to irrigation (WP I ) and evapotranspiration (WP ET ). The results suggest that the optimum wheat sowing date in central Punjab depends on both soil type and the presence or absence of mulch. On the sandy loam, with irrigation scheduled at 50% soil water deficit (SWD), the optimum sowing date was late October to early November for maximising yield, WP I and WP ET . On the clay loam, the optimum date was about one week later. The effect of mulch on yield varied with seasonal conditions and sowing date. With irrigation at 50% SWD, mulching of wheat sown at the optimum time increased average yield by up to 0.5 t ha -1 . The beneficial effect of mulch on yield increased to averages of 1.2-1.3 t ha -1 as sowing was advanced to 15 October. With irrigation at 50% SWD and 7 November sowing, mulch reduced the number of irrigations by one in almost 50% of years, a reduction of about 50 mm on the sandy loam and 60 mm on the clay loam. The reduction in irrigation amount was mainly due to reduced soil evaporation. Mulch reduced irrigation requirement by more as sowing was delayed, more so on the sandy loam than the clay

  8. Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input

    DEFF Research Database (Denmark)

    Abdalla, M.; Jones, M.B.; Ambus, Per

    2010-01-01

    and reduced N fertilizer on seasonal fluxes and emission factors of N2O and to study the relationship between crop yield and N-induced fluxes of N2O. The soil is classified as a sandy loam with a pH of 7.4 and a mean organic carbon and nitrogen content at 15 cm of 19 and 1.9 g kg(-1) dry soil, respectively....... Reduced tillage had no significant effect on N2O fluxes from soils or crop grain yield. Multiple regression analysis revealed that soil moisture and an interaction between soil moisture and soil nitrate are the main significant factors affecting N2O flux. The derived emission factor was 0...... nitrogen fertilizer by 50% compared to the normal field rate, N2O emissions could be reduced by 57% with no significant decrease on grain yield or quality. This was consistent over the 2 years of measurements....

  9. The Use of Ionizing Radiation to Prepare Polymeric Agro-waste Composite for Sandy Soil Application

    International Nuclear Information System (INIS)

    Elhady, M.A.; Elnahas, H.H.; Meligi, G.A.; Ammar, A.H.

    2015-01-01

    Super absorbent hydrogel composite (SHC) by radiation induced crosslinking of polyacrylamide (PAAM)/ rice straw (RS) composite and hydrophilic membrane system based on polyvinyl alcohol (PVA) for possible applications in agricultural field of sandy soil was studied. The factors affecting the quick and capacity for retaining irrigated water of swelling behaviour of prepared hydrogel composite through hydrophilic membrane system and increasing foaming/ porosity of the SHC were studied. The mechanism for this is most likely a prevention of irrigated water to pass through sandy particles for a time ranged from 20 to 40 min for the fluid uptake capacity and swelling of the SHC to take and swelling place without almost any loss of irrigated water. Effect of acid/ alkalinity (PH) and salt concentration were investigation.

  10. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.

    Science.gov (United States)

    Mabilde, Lisa; De Neve, Stefaan; Sleutel, Steven

    2017-12-01

    Historic long-term P application to sandy soils in NW-Europe has resulted in abundant sorption, saturation and eventually leaching of P from soil to the groundwater. Although many studies recognize the control of site-specific factors like soil texture and phosphate saturation degree (PSD), the regional-scaled relevance of effects exerted by single factors controlling P leaching is unclear. Very large observational datasets of soil and groundwater P content are furthermore required to reveal indirect controls of soil traits through mediating soil variables. We explored co-variation of phreatic groundwater orthophosphate (o-P) concentration and soil factors in sandy soils in Flanders, Belgium. Correlation analyses were complemented with an exploratory model derived using 'path analysis'. Data of oxalate-extractable Al, Fe, P and pH KCl , phosphate sorption capacity (PSC) and PSD in three depth layers (0-30, 30-60, 60-90 cm), topsoil SOC, % clay and groundwater depth (fluctuation) were interpolated to predict soil properties on exact locations of a very extensive net of groundwater monitoring wells. The mean PSD was only poorly correlated to groundwater o-P concentration, indicating the overriding control of other factors in the transport of P to the groundwater. A significant (P soil pH and groundwater table depth than by PSD indicates the likely oversimplification of the latter index to measure the long-term potential risk of P leaching. Accounting for controls on leaching not included in PSD via an alternative index, however, seems problematic as in Flanders for example groundwater o-P turned out to be higher in finer textured soils or soils with higher pedogenic Fe content, probably because of their lower pedogenic Al content and higher soil pH. Path analysis of extensive soil and groundwater datasets seems a viable way to identify prime local determinants of soil P leaching and could be further on used for 'ground-truthing' more complex P-migration simulation

  11. Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and #Acacia mangium# plantation on a sandy tropical soil

    OpenAIRE

    Tchichelle, Sogni Viviane; Epron, Daniel; Mialoundama, Fidèle; Koutika, Lydie-Stella; Harmand, Jean-Michel; Bouillet, Jean-Pierre; Mareschal, Louis

    2017-01-01

    Sustainable wood production requires appropriate management of commercial forest plantations. Establishment of industrial eucalypt plantations on poor sandy soils leads to a high loss of nutrients including nitrogen (N) after wood harvesting. An ecological intensification of eucalypt plantations was tested with the replacement of half of the Eucalyptus urophylla × E. grandis by Acacia mangium in the eucalypt monoculture to sustain soil fertility through enhancement of the N biological cycle. ...

  12. Hydrological Components of a Young Loblolly Pine Plantation on a Sandy Soil with Estimates of Water Use and Loss

    Science.gov (United States)

    Deborah A. Abrahamson; Phillip M. Dougherty; Stanley J. Zarnoch

    1998-01-01

    Fertilizer and irrigation treatments were applied in a 7- to l0-year-old loblolly pine (Pinus taeda L.) plantation on a sandy soil near Laurinburg, North Carolina. Rainfall, throughfall, stemflow, and soil water content were measured throughout the study period. Monthly interception losses ranged from 4 to 15% of rainfall. Stemflow ranged from 0.2...

  13. Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions.

    Science.gov (United States)

    Kim, Bojeong; McBride, Murray B

    2009-01-01

    A field pot experiment was conducted to investigate the interactive phytotoxicity of soil Cu and Zn on soybean plants [Glycine max (L.) Merr.]. Two soils (Arkport sandy loam [coarse-loamy, mixed, active, mesic Lamellic Hapludalf] and Hudson silty clay loam [fine, illitic, mesic Glossaquic Hapludalf]) spiked with Cu, Zn, and combinations of both to reach the final soil metal range of 0 to 400 mg kg(-1) were tested in a 2-yr bioassay after 1 yr of soil-metal equilibration in the field. The soluble and easily-extractable fraction of soil Zn (or Cu), estimated by dilute CaCl2, increased linearly in response to the total Zn (or Cu) added. This linearity was, however, strongly affected where soils were treated with both metals in combination, most notably for Zn, as approximately 50% more of soil Zn was extracted into solution when the Cu level was high. Consequently, added Zn is less likely to be stabilized by aging than added Cu when both metals are present in field soils. The predictive model relating soil metal extractability to plant Zn concentration also revealed a significant Cu-Zn interaction. By contrast, the interaction between the two metals contributed little to explain plant Cu uptake. The additive action of soil Cu and Zn was of considerable importance in explaining plant biomass reduction. This work clearly demonstrates the critical roles of the properties of the soil, the nature of the metal, and the level of other toxic metals present on the development of differential phytotoxicity due to soil Cu and Zn.

  14. In Vitro antibacterial activity of rumex nervosus, plantago lanceolata ...

    African Journals Online (AJOL)

    determined by agar dilution assay based on the zone of bacterial growth inhibition. ... trees such as eucalyptus and acacia. The soil type is dominantly sandy loam .... However, a range of pharmacological properties has been found in.

  15. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  16. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  17. Volatilization of tri-allate, ethoprophos and parathion measured with four methods after spraying on a sandy soil

    NARCIS (Netherlands)

    Bor, G.; Berg, van den F.; Smelt, J.H.; Smidt, R.A.; Peppel-Groen, van de A.E.; Leistra, M.

    1995-01-01

    At about eleven times after application of tri-allate, ethoprophos and parathion to a sandy soil, their rates of volatilization were determined by the aerodynamic method (AD), the Bowen-ratio method (BR), the theoretical-profile method (TP) and the Box method. The volatilization was highest for

  18. Growth and desiccation of Themeda triandra and Sporobolus ...

    African Journals Online (AJOL)

    Leaf extension growth ceased after about 40% soil water depletion in both species on the sandy clay loam used in the trial. Thereafter, leaves and growing points senesced progressively with increasing evaporative demand, despite a relatively small drop in soil moisture content. The tentative conclusion is that active leaf ...

  19. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Imran, Muhammad; Dhavamani, Jeyakumar; Ismail, Iqbal M. I.; Basahi, Jalal M.; Almeelbi, Talal

    2017-02-01

    We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg-1 soil on Cynodon dactylon litter (3 g kg-1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems.

  20. Phosphorus fractions in sandy soils of vineyards in southern Brazil

    Directory of Open Access Journals (Sweden)

    Djalma Eugênio Schmitt

    2013-04-01

    Full Text Available Phosphorus (P applications to vineyards can cause P accumulation in the soil and maximize pollution risks. This study was carried out to quantify the accumulation of P fractions in sandy soils of vineyards in southern Brazil. Soil samples (layers 0-5, 6-10 and 11-20 cm were collected from a native grassland area and two vineyards, after 14 years (vineyard 1 and 30 years (vineyard 2 of cultivation, in Santana do Livramento, southern Brazil, and subjected to chemical fractionation of P. Phosphorus application, especially to the 30-year-old vineyard 2, increased the inorganic P content down to a depth of 20 cm, mainly in the labile fractions extracted by anion-exchange resin and NaHCO3, in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH, and in the non-labile fraction extracted by 1 mol L-1 HCl, indicating the possibility of water eutrophication. Phosphorus application and grapevine cultivation time increased the P content in the organic fraction extracted by NaHCO3 from the 0-5 cm layer, and especially in the moderately labile fraction extracted by 0.1 mol L-1 NaOH, down to a depth of 20 cm.

  1. Field performance of three real-time moisture sensors in sandy loam and clay loam soils

    Science.gov (United States)

    The study was conducted to evaluate HydraProbe (HyP), Campbell Time Domain Reflectometry (TDR) and Watermarks (WM) moisture sensors for their ability to estimate water content based on calibrated neutron probe measurements. The three sensors were in-situ tested under natural weather conditions over ...

  2. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation.

    Science.gov (United States)

    Zhang, Yuping; Sallach, J Brett; Hodges, Laurie; Snow, Daniel D; Bartelt-Hunt, Shannon L; Eskridge, Kent M; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Root distribution of paddy and wheat grown on differing soil and water conditions

    International Nuclear Information System (INIS)

    Jha, M.N.; Subbiah, B.V.

    1977-01-01

    Two varieties of paddy and one variety of wheat were grown on two soil texture types - paddy on silty clay loam and wheat on sandy loam. Wheat crop was grown on a well drained plot and given normally scheduled irrigation while paddy was given normal and restricted irrigation. The root distribution pattern of these crops was determined. Under normal irrigation, NP 130 showed greater proportion of roots in a soil zone of 16 cm depth and 16.5 cm lateral distance. In case of Padma, the trend was similar to NP 130. More roots were found in a soil zone of 8 cm depth and 22.5 cm lateral distance. Under restricted irrigation, NP 130 showed greater proportion upto 16 cm depth and 22.5 cm lateral distance. In case of Padma, larger proportion of roots was found to be in a soil zone of 8 cm depth and 16.5 cm lateral distance. The root distribution of wheat described almost cylindrical geometry with little overall lateral growth. Regardless of treatments, roots showed a tendency to describe a cylindrical geometry (of about 1.5 cm dia and 32 cm depth). Water stress does effect the root distribution pattern of crops. Other conditions remaining the same, the narrow root cylinder described by the crops of paddy and wheat could possibly be a genetically controlled behaviour. 32 P plant injection technique was used in the study. (author)

  4. A Physically-based Model for Predicting Soil Moisture Dynamics in Wetlands

    Science.gov (United States)

    Kalin, L.; Rezaeianzadeh, M.; Hantush, M. M.

    2017-12-01

    Wetlands are promoted as green infrastructures because of their characteristics in retaining and filtering water. In wetlands going through wetting/drying cycles, simulation of nutrient processes and biogeochemical reactions in both ponded and unsaturated wetland zones are needed for an improved understanding of wetland functioning for water quality improvement. The physically-based WetQual model can simulate the hydrology and nutrient and sediment cycles in natural and constructed wetlands. WetQual can be used in continuously flooded environments or in wetlands going through wetting/drying cycles. Currently, WetQual relies on 1-D Richards' Equation (RE) to simulate soil moisture dynamics in unponded parts of the wetlands. This is unnecessarily complex because as a lumped model, WetQual only requires average moisture contents. In this paper, we present a depth-averaged solution to the 1-D RE, called DARE, to simulate the average moisture content of the root zone and the layer below it in unsaturated parts of wetlands. DARE converts the PDE of the RE into ODEs; thus it is computationally more efficient. This method takes into account the plant uptake and groundwater table fluctuations, which are commonly overlooked in hydrologic models dealing with wetlands undergoing wetting and drying cycles. For verification purposes, DARE solutions were compared to Hydrus-1D model, which uses full RE, under gravity drainage only assumption and full-term equations. Model verifications were carried out under various top boundary conditions: no ponding at all, ponding at some point, and no rain. Through hypothetical scenarios and actual atmospheric data, the utility of DARE was demonstrated. Gravity drainage version of DARE worked well in comparison to Hydrus-1D, under all the assigned atmospheric boundary conditions of varying fluxes for all examined soil types (sandy loam, loam, sandy clay loam, and sand). The full-term version of DARE offers reasonable accuracy compared to the

  5. Assessment of the physicochemical and microbiological status of western Niger Delta soil for crude oil pollution bioremediation potential.

    Science.gov (United States)

    Ejechi, Bernard O; Ozochi, Chizoba A

    2015-06-01

    The physical, chemical and microbiological characteristics of the soil across the western Niger Delta area of Nigeria were determined to assess its potential for natural remediation of crude oil pollution. The pH (oil-producing area, 6.1 ± 1.1; non-oil producing, 5.9 ± 0.9) and temperature (28-35 °C in both areas) were favourable to natural remediation, while the fluctuating moisture (7.7-45.6 %) and the dominant sandy soil textural classes (70 %) were limitations. The carbon nitrogen phosphorus (CNP) ratio markedly exceeded recommended 100:10:1, while the cation exchange capacity was below acceptable range. Counts of heterotrophic bacteria, fungi and hydrocarbon-utilising and nitrogen-fixing bacteria (mean range log10 3.8 ± 1.5-6.52 ± 0.9 cfu/g) were favourable having markedly exceeded the minimum counts required. Crude oil loss was highest in loam soil, but significantly (P = 0.00) increased in all soil textural classes including sandy soils after amendment with cow dung/poultry dropping and manual aeration in laboratory and 8-month field tests as indicated by two-way ANOVA. Thus, the overall assessment is that while CNP can be viewed as the major limiting factor to natural oil pollution remediation in the western Niger Delta soil, its influence can be minimised by the amendment indicated in the study.

  6. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Directory of Open Access Journals (Sweden)

    Leila Esmaeelnejad

    2016-06-01

    Full Text Available In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C from two feedstocks (rice husk and apple wood chips. Produced biochars were prepared at two diameters (1-2 mm and <1 mm and mixed with soil at a rate of 2% (w/w. Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks.

  7. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeelnejad, L.; Shorafa, M.; Gorji, M.; Hosseini, S.M.

    2016-11-01

    In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C) from two feedstocks (rice husk and apple wood chips). Produced biochars were prepared at two diameters (1-2 mm and <1 mm) and mixed with soil at a rate of 2% (w/w). Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks) was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks. (Author)

  8. Improving the Bearing Strength of Sandy Loam Soil Compressed Earth Block Bricks Using Sugercane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Ramadhan W. Salim

    2014-06-01

    Full Text Available The need for affordable and sustainable alternative construction materials to cement in developing countries cannot be underemphasized. Compressed Earth Bricks have gained acceptability as an affordable and sustainable construction material. There is however a need to boost its bearing capacity. Previous research show that Sugarcane Bagasse Ash as a soil stabilizer has yielded positive results. However, there is limited research on its effect on the mechanical property of Compressed Earth Brick. This current research investigated the effect of adding 3%, 5%, 8% and 10% Sugarcane Bagasse Ash on the compressive strength of compressed earth brick. The result showed improvement in its compressive strength by 65% with the addition of 10% Sugarcane Bagasse Ash.

  9. Optimization of the Use of His6-OPH-Based Enzymatic Biocatalysts for the Destruction of Chlorpyrifos in Soil

    Directory of Open Access Journals (Sweden)

    Olga Senko

    2017-11-01

    Full Text Available Applying enzymatic biocatalysts based on hexahistidine-containing organophosphorus hydrolase (His6-OPH is suggested for the decomposition of chlorpyrifos, which is actively used in agriculture in many countries. The application conditions were optimized and the following techniques was suggested to ensure the highest efficiency of the enzyme: first, the soil is alkalinized with hydrated calcitic lime Ca(OH2, then the enzyme is introduced into the soil at a concentration of 1000 U/kg soil. Non-equilibrium low temperature plasma (NELTP-modified zeolite is used for immobilization of the relatively inexpensive polyelectrolyte complexes containing the enzyme His6-OPH and a polyanionic polymer: poly-l-glutamic acid (PLE50 or poly-l-aspartic acid (PLD50. The soil’s humidity is then increased up to 60–80%, the top layer (10–30 cm of soil is thoroughly stirred, and then exposed for 48–72 h. The suggested approach ensures 100% destruction of the pesticide within 72 h in soils containing as much as 100 mg/kg of chlorpyrifos. It was concluded that using this type of His6-OPH-based enzyme chemical can be the best approach for soils with relatively low humus concentrations, such as sandy and loam-sandy chestnut soils, as well as types of soil with increased alkalinity (pH 8.0–8.4. Such soils are often encountered in desert, desert-steppe, foothills, and subtropical regions where chlorpyrifos is actively used.

  10. Archeological Investigations in Cochiti Reservoir, New Mexico. Volume 2. Excavation and Analysis 1975 Season.

    Science.gov (United States)

    1977-01-01

    little soil ). Dumped residue from the floating Flotation Sample process contained flakes, burnt bone, eggshell and other culturally associated materials. A...represent small procurement, soil types, landforms, elevational gradients and china- production or consumption locales. Classes of sites tological...side of the river creates a canyon approximately mortared and randomly chinked with basalt fragments. 300 meters deep. The soil ranges from sandy loam

  11. Field-scale evaluation of water fluxes and manure solution leaching in feedlot pen soils.

    Science.gov (United States)

    García, Ana R; Maisonnave, Roberto; Massobrio, Marcelo J; Fabrizio de Iorio, Alicia R

    2012-01-01

    Accumulation of beef cattle manure on feedlot pen surfaces generates large amounts of dissolved solutes that can be mobilized by water fluxes, affecting surface and groundwater quality. Our objective was to examine the long-term impacts of a beef cattle feeding operation on water fluxes and manure leaching in feedlot pens located on sandy loam soils of the subhumid Sandy Pampa region in Argentina. Bulk density, gravimetric moisture content, and chloride concentration were quantified. Rain simulation trials were performed to estimate infiltration and runoff rates. Using chloride ion as a tracer, profile analysis techniques were applied to estimate the soil moisture flux and manure conservative chemical components leaching rates. An organic stratum was found over the surface of the pen soil, separated from the underlying soil by a highly compacted thin layer (the manure-soil interface). The soil beneath the organic layer showed greater bulk density in the A horizon than in the control soil and had greater moisture content. Greater concentrations of chloride were found as a consequence of the partial sealing of the manure-soil interface. Surface runoff was the dominant process in the feedlot pen soil, whereas infiltration was the main process in control soil. Soil moisture flux beneath pens decreased substantially after 15 yr of activity. The estimated minimum leaching rate of chloride was 13 times faster than the estimated soil moisture flux. This difference suggests that chloride ions are not exclusively transported by advective flow under our conditions but also by solute diffusion and preferential flow. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Energetic contaminants inhibit plant litter decomposition in soil.

    Science.gov (United States)

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Sunahara, Geoffrey I; Hawari, Jalal

    2018-05-30

    Individual effects of nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), nitroglycerin (NG), and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) on litter decomposition, an essential biologically-mediated soil process, were assessed using Orchard grass (Dactylis glomerata) straw in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support "very high" qualitative relative bioavailability for organic chemicals. Batches of SSL soil were separately amended with individual EMs or acetone carrier control. To quantify the decomposition rates, one straw cluster was harvested from a set of randomly selected replicate containers from within each treatment, after 1, 2, 3, 4, 6, and 8 months of exposure. Results showed that soil amended with 2,4-DNT or NG inhibited litter decomposition rates based on the median effective concentration (EC50) values of 1122 mg/kg and 860 mg/kg, respectively. Exposure to 2-ADNT, 4-ADNT or CL-20 amended soil did not significantly affect litter decomposition in SSL soil at ≥ 10,000 mg/kg. These ecotoxicological data will be helpful in identifying concentrations of EMs in soil that present an acceptable ecological risk for biologically-mediated soil processes. Published by Elsevier Inc.

  13. Soil and Waste Matrix Affects Spatial Heterogeneity of Bacteria Filtration during Unsaturated Flow

    Directory of Open Access Journals (Sweden)

    Adrian Unc

    2015-02-01

    Full Text Available Discontinuous flows resulting from discrete natural rain events induce temporal and spatial variability in the transport of bacteria from organic waste through soils in which the degree of saturation varies. Transport and continuity of associated pathways are dependent on structure and stability of the soil under conditions of variable moisture and ionic strength of the soil solution. Lysimeters containing undisturbed monoliths of clay, clay loam or sandy loam soils were used to investigate transport and pathway continuity for bacteria and hydrophobic fluorescent microspheres. Biosolids, to which the microspheres were added, were surface applied and followed by serial irrigation events. Microspheres, Escherichia coli, Enterococcus spp., Salmonella spp. and Clostridium perfringens were enumerated in drainage collected from 64 distinct collection areas through funnels installed in a grid pattern at the lower boundary of the monoliths. Bacteria-dependent filtration coefficients along pathways of increasing water flux were independent of flow volume, suggesting: (1 tracer or colloid dependent retention; and (2 transport depended on the total volume of contiguous pores accessible for bacteria transport. Management decisions, in this case resulting from the form of organic waste, induced changes in tortuosity and continuity of pores and modified the effective capacity of soil to retain bacteria. Surface application of liquid municipal biosolids had a negative impact on transport pathway continuity, relative to the solid municipal biosolids, enhancing retention under less favourable electrostatic conditions consistent with an initial increase in straining within inactive pores and subsequent by limited re-suspension from reactivated pores.

  14. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil

    OpenAIRE

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduc...

  15. Physicochemical properties of soils in the sago palm (Metroxylon spp.) growing area of Surat Thani province Thailand

    Science.gov (United States)

    Ruairuen, W.; Sparrow, E. B.; Fochesatto, G. J.

    2016-12-01

    Sago palm is one of the most important plants for sustainable agriculture and rural development in tropical swampy and peaty soils. Where no major crops can grow without drainage or soil improvement. It stores large quantities of starch which can be further processed into various basic raw materials for food, animal feed, industrial uses and alternative energy. This study aims to investigate the physicochemical properties of soil across the sago palm growing areas at Surat Thani province Thailand, where major of sago palms growth naturally exists. The soil samples from three districts Khiri Rat Nikhom (KR; 9 sampling sites), Kanchanadit (KD; 5 sampling sites), and Khian Sa (KS; 2 sampling sites) were studied and compared at 0-15 cm depth during March to June 2016. Observations indicated that the physicochemical properties of soil varied in each growing area. Soil bulk densities averages were lower in KD (0.52 g cm-3) than those in KR (0.58 g cm-3) and KS (0.57 g cm-3). Soil texture around KD and KS were dominated by silty loam. While in KR soil texture was dominated by sandy loam. The average soil conductivity in KS (5.68 mS m-1) was higher than KR (2.62 mS m-1) and KD (1.65 mS m-1). Furthermore, we found the sago palms grow well in a range of soil pH from 5.52 to 7.15, average soil pH: KS (6.8) and KD (6.96), while acid in KR (5.84). We also discuss the conservation activities to adequately protect sago palm, most of which are significantly threatened by habitat destruction and unsustainable harvesting.

  16. Structural-functional concept of thermophysical condition of the soils of Altai Region

    Directory of Open Access Journals (Sweden)

    Sergey Makarychev

    2016-10-01

    Full Text Available The goal of this study was to reveal the quantitative interrelations between the thermophysical indices (thermal conductivity and thermal diffusivity and physical soil properties such as; moisture content, density and detachability. According to the research targets, the soil samples including different genesis and soil particle size distribution were taken in different soil and climatic zones of the Altai Region. These were the sod-podzolic sandy loam soils of the dry steppes, chernozems and chestnut soils of light and medium loamy particle size distribution of temperately arid zone, and the heavy loamy gray forest soils and clayey chernozems of the Altai foothills and low mountains. The samples of undisturbed structures in different soil horizons were studied. To measure the thermophysical properties in laboratory setting, a pulse method of a two-dimensional heat source was used. The method takes into account the patterns of temperature field equalization in an unbounded medium after the heat source termination. A feature of this process is the occurrence of peak temperature at the investigated point of the medium at a given instant. The knowledge of this temperature and time enables to determine the soil thermal capacity, thermal conductivity and thermal diffusivity.

  17. Influence of humified organic matter on copper behavior in acid polluted soils

    International Nuclear Information System (INIS)

    Fernandez-Calvino, D.; Soler-Rovira, P.; Polo, A.; Arias-Estevez, M.; Plaza, C.

    2010-01-01

    The main purpose of this work was to identify the role of soil humic acids (HAs) in controlling the behavior of Cu(II) in vineyard soils by exploring the relationship between the chemical and binding properties of HA fractions and those of soil as a whole. The study was conducted on soils with a sandy loam texture, pH 4.3-5.0, a carbon content of 12.4-41.0 g kg -1 and Cu concentrations from 11 to 666 mg kg -1 . The metal complexing capacity of HA extracts obtained from the soils ranged from 0.69 to 1.02 mol kg -1 , and the stability constants for the metal ion-HA complexes formed, log K, from 5.07 to 5.36. Organic matter-quality related characteristics had little influence on Cu adsorption in acid soils, especially if compared with pH, the degree of Cu saturation and the amount of soil organic matter. - The effect of organic matter quality on Cu adsorption in acid soils was low compared with other soil characteristics such as pH or degree of Cu saturation.

  18. Management of parthenium weed by extracts and residue of wheat

    African Journals Online (AJOL)

    Ehsan Zaidi

    2011-10-24

    Oct 24, 2011 ... bioassay, dried and chopped wheat straw of the four test wheat varieties was thoroughly mixed in pot ... environment from living plants and the subsequent ... Copped materials were mixed in sandy loam soil in plastic pots of 8.

  19. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2010-01-01

    Organic and conventional farming practices differ in the use of several management strategies, including use of catch crops, green manure, and fertilization, which may influence soil properties, greenhouse gas emissions and productivity of agroecosystems. An 11-yr-old field experiment on a sandy...... loam soil in Denmark was used to compare several crop rotations with respect to a range of physical, chemical and biological characteristics related to carbon (C) and nitrogen (N) flows. Four organic rotations and an inorganic fertilizer-based system were selected to evaluate effects of fertilizer type...... growth was monitored and grain yields measured at harvest maturity. The different management strategies between 1997 and 2007 led to soil carbon inputs that were on average 18–68% and 32–91% higher in the organic than inorganic fertilizer-based rotations for the sampled winter wheat and spring barley...

  20. Influence of the enchytraeid worm Buchholzia appendiculata on aggregate formation and organic matter decomposition.

    NARCIS (Netherlands)

    Marinissen, J.C.Y.; Didden, W.A.M.

    1997-01-01

    Enchytraeid worms were kept in <0.3 mm sieved sandy loam subsoil mixed with ground wheat, for 6 weeks at 16°C. Sieved soil with organic matter but without worms was also incubated. The soil was then allowed to air-dry slowly during 6 weeks. Enchytraeid casts were collected from the surface of the

  1. Stabilization of soil hydraulic properties under a long term no-till system

    Directory of Open Access Journals (Sweden)

    Luis Alberto Lozano

    2014-08-01

    Full Text Available The area under the no-tillage system (NT has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC for these soils, but not the hydraulic conductivity (K vs tension (h curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.

  2. Water flow in soil from organic dairy rotations

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Eriksen, Jørgen; Krogh, Paul Henning

    2017-01-01

    rye. Each plot was irrigated for an hour with 18·5 mm of water containing a conservative tracer, potassium bromide; 24 h after irrigation, macropores >1 mm were recorded visually on a horizontal plan of 0·7 m2 at five depths (10, 30, 40, 70 and 100 cm). The bromide (Br−) concentration in soil was also......Managed grasslands are characterized by rotations of leys and arable crops. The regime of water flow evolves during the leys because of earthworm and root activity, climate and agricultural practices (fertilizer, cutting and cattle trampling). The effects of duration of the leys, cattle trampling...... and fertilizer practice on the movement of water through sandy loam soil profiles were investigated in managed grassland of a dairy operation. Experiments using tracer chemicals were performed, with or without cattle slurry application, with cutting or grazing, in the 1st and the 3rd year of ley, and in winter...

  3. Utilization of Sandy Soil as the Primary Raw Material in Production of Unfired Bricks

    Directory of Open Access Journals (Sweden)

    Guilan Tao

    2018-01-01

    Full Text Available In this study, attempts were made to use sandy soil as the main raw material in making unfired bricks. The sprayed-cured brick specimens were tested for compressive and flexural strength, rate of water absorption, percentage of voids, bulk density, freezing/thawing, and water immersion resistance. In addition, the microstructures of the specimens were also studied using scanning electron microscope (SEM and X-ray diffraction (XRD technique. The test results show that unfired brick specimens with the addition of ground-granulated blast-furnace slag (GGBS tend to achieve better mechanical properties when compared with the specimens that added cement alone, with GGBS correcting particle size distribution and contributing to the pozzolanic reactions and the pore-filling effects. The test specimens with the appropriate addition of cement, GGBS, quicklime, and gypsum are dense and show a low water absorption rate, a low percentage of voids, and an excellent freezing/thawing and water immersion resistance. The SEM observation and XRD analysis verify the formation of hydrate products C–S–H and ettringite, providing a better explanation of the mechanical and physical behavior and durability of the derived unfired bricks. The results obtained suggest that there is a technical approach for the high-efficient comprehensive utilization of sandy soil and provide increased economic and environmental benefits.

  4. Mineralization-immobilization and plant uptake of nitrogen as influenced by the spatial distribution of cattle slurry in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1995-01-01

    The effect of incorporating cattle slurry in soil, either by mixing or by simulated injection into a hollow in soil, on the ryegrass uptake of total N and (NH4+)-N-15-N was determined in three soils of different textrue. The N accumulation in Italian ryegrass (Lolium multiflorum L.) from slurry N...... and from an equivalent amount of NH4+-N in ((NH4)-N-15) SO4 (control) was measured during 6 months of growth in pots. After this period the total recovery of labelled N in the top soil plus herbage was similar in the slurry and the control treatments. This indicated that gaseous losses from slurry NH4+-N...... were insignificant. Consequently, the availability of slurry N to plants was mainly influenced by the mineralization-immobilization processes. The apparent utilization of slurry NH4+-N mixed into soil was 7%, 14% and 24% lower than the utilization of (NH4)(2)SO4-N in a sand soil, a sandy loam soil...

  5. Magnesium nutrition of apple trees. III. Comparison of different methods of magnesium fertilization

    Directory of Open Access Journals (Sweden)

    A. Sadowski

    2015-06-01

    Full Text Available In the period 1969-1973 two experiments were performed in young orchards in Central Poland: a four-year experiment at Julianów, on sandy loamy soil on underlying sand and one-year experiment at Kośmin, on sandy loam soil on clay loam. At Kosmin, in spite of a high Mg content in the subsoil, Mg deficiency symptoms appeared, because of shallow rooting owing to poor aeration. In both experiments, foliar sprays with epsomite were less effective than fertilization to the soil; at Kośmin even eight sprays were less effective than soil dressings. Mg losses from a sandy soil due to leaching were high, particularly where sand was present in the whole profile; under these conditions the least losses of Mg were from split doses of epsomite (Mg3x120. Single doses of epsomite were the most effective in increasing leaf Mg content, reducing Mg deficiency symptoms and promoting growth of trees in the first year after application; in the later years split doses of epsomite and a single initial dose of magnesium lime were more effective. Effects of Mg fertilization on growth and yields of apples were rather slight, when K fertilizer doses were low. No effect of Mg fertilization upon fruit drop and fruit quality was found. Preliminary recommendations for practice are given.

  6. Temperaturas de quema y propiedades físicas y químicas de suelos de la Región Semiárida Pampeana Central Impact of different burning temperatures on the physical and chemical properties of Central Semiarid Pampa soils

    Directory of Open Access Journals (Sweden)

    Estela Hepper

    2008-07-01

    Haplustolls (loam and sandy loam, were heated during 5 minutes at 100 ºC, 200 ºC, 300 ºC, 400 ºC, 500 ºC and 600 ºC. Ph in water, texture, organic carbon, total nitrogen, exchangeable cations and cation exchange capacity were determined on soil samples that received heat and on untreated controls. The 500 and 600 ºC burning temperatures produced more changes, decreasing the organic carbon contents, total nitrogen, the OC/Nt ratio, the cation exchange capacity and causing the transformation of the loam soil into sandy loam and of the sandy loam into loamy sand soil. The exchangeable potassium and sodium contents increased with burning temperatures of 300 ºC and 400 ºC and greater, depending on the soil, but in both of them the magnesium content decreased from 400 ºC and greater, and the calcium content was not affected by high temperatures. At lower temperatures, such as 200 ºC and 300 ºC, only the proportions of sand fractions changed. As a consequence of burning with high temperatures, the water and nutrient retention capacity of the Caldenal area soils will decrease, concomitantly with the fertility.

  7. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling

    NARCIS (Netherlands)

    Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Munoz-Carpena, R.; Icerman, J.

    2009-01-01

    Tomato production systems in Florida are typically intensively managed with high inputs of fertilizer and irrigation and on sandy soils with low inherent water and nutrient retention capacities; potential nutrient leaching losses undermine the sustainability of such systems. The objectives of this

  8. Sorption and leaching of benzalkonium chlorides in agricultural soils.

    Science.gov (United States)

    Khan, Adnan Hossain; Macfie, Sheila M; Ray, Madhumita B

    2017-07-01

    The adsorption and leaching characteristics of two commonly used benzalkonium chlorides (BACs), benzyl dimethyl dodecyl ammonium chloride (BDDA) and benzyl dimethyl tetradecyl ammonium chloride (BDTA) using three agricultural soils with varied proportions of silt, sand, clay, and organic matter were determined. BACs are cationic surfactants used in large quantities for sanitary and personal care products and are abundant in environmental samples. Adsorption isotherm data (aqueous concentration in the range of 25-150 mg L -1 ) fitted the Langmuir model better than the Freundlich model. BDTA with a longer alkyl chain adsorbed more to soil compared to BDDA, and the soil with the highest percentage of clay adsorbed the most. Column tests conducted using soils amended with lime stabilised biosolids and artificial rain water at a flow rate of 0.2 mL min -1 indicate very low leaching of BACs. Less than 1% of the available BDDA leached through sandy loam soil column with a depth of 9 cm. Therefore, the possibility of BACs to become bioavailable through leaching is very low at environmentally relevant concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Vertical transfer of radionuclides in soils of different genesis after Chernobyl NPP accident

    International Nuclear Information System (INIS)

    Bakarykava, Zh.; Shagalova, E.; Zhukova, O.

    2003-01-01

    In this paper a vertical transfer of radionuclides in soils of different genesis after Chernobyl NPP accident was studied. Analysis of obtained data revealed that the main content of cesium-137 is located in 0-5 cm layer of turf-podsolic, sandy-loam and loamy soil provided the lack of their humidification, and of light un-bogged (automorphous) soil as well. Cesium-137 penetration into light un-bogged soils with that sings of surplus humidification is approximately 10 cm deep. Strontium-90 as global birth so Chernobyl origin migrates more rapidly than cesium-137 because of less strong bond with soil absorbing complex. Cesium-137 migration coefficients amounted (0.03-0.46)·10 -7 cm 2 /s for a slow component, and for the fast one (0.39-0.67)·10 -7 cm 2 /s. Strontium-90 migration coefficients in the experimented sites, amounted (0.07-0.58)·10 -7 cm 2 /s for a slow component, and for the fast one (0.64-1.28)·10 -7 cm 2 /s. (authors)

  10. Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils.

    Science.gov (United States)

    Laitinen, Pirkko; Siimes, Katri; Eronen, Liisa; Rämö, Sari; Welling, Leena; Oinonen, Seija; Mattsoff, Leona; Ruohonen-Lehto, Marja

    2006-06-01

    The fate of five herbicides (glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron) was studied in two Finnish sugar beet fields for 26 months. Soil types were sandy loam and clay. Two different herbicide-tolerant sugar beet cultivars and three different herbicide application schedules were used. Meteorological data were collected throughout the study and soil properties were thoroughly analysed. An extensive data set of herbicide residue concentrations in soil was collected. Five different soil depths were sampled. The study was carried out using common Finnish agricultural practices and represents typical sugar beet cultivation conditions in Finland. The overall observed order of persistence was ethofumesate > glyphosate > phenmedipham > metamitron > glufosinate-ammonium. Only ethofumesate and glyphosate persisted until the subsequent spring. Seasonal variation in herbicide dissipation was very high and dissipation ceased almost completely during winter. During the 2 year experiment no indication of potential groundwater pollution risk was obtained, but herbicides may cause surface water pollution. Copyright (c) 2006 Society of Chemical Industry

  11. Pedological ~cterization, Clay Mine:at~ and .~cation of,

    African Journals Online (AJOL)

    namely, very deep, well drained, dark reddish brown to dark brown, sandy clay loams and sandy clays on the steep convex slopes; very deep, well drained, dark brown to dark red, sandy clay loams and; sandy clays on the linear slopes; and very ...

  12. Biochar-Induced Changes in Soil Resilience: Effects of Soil Texture and Biochar Dosage

    Institute of Scientific and Technical Information of China (English)

    Ayodele Ebenezer AJAYI; Rainer HORN

    2017-01-01

    Biochars are,amongst other available amendment materials,considered as an attractive tool in agriculture for carbon sequestration and improvement of soil functions.The latter is widely discussed as a consequence of improved physical quality of the amended soil.However,the mechanisms for this improvement are still poorly understood.This study investigated the effect of woodchip biochar amendment on micro-structural development,micro-and macro-structural stability,and resilience of two differently textured soils,fine sand (FS) and sandy loam (SL).Test substrates were prepared by adding 50 or 100 g kg-1 biochar to FS or SL.Total porosity and plant available water were significantly increased in both soils.Moreover,compressive strength of the aggregates was significantly decreased when biochar amount was doubled.Mechanical resilience of the aggregates at both micro-and macro-scale was improved in the biochar-amended soils,impacting the cohesion and compressive behavior.A combination of these effects will result in an improved pore structure and aeration.Consequently,the physicochemical environment for plants and microbes is improved.Furthermore,the improved stability properties will result in better capacity of the biochar-amended soil to recover from the myriad of mechanical stresses imposed under arable systems,including vehicle traffic,to the weight of overburden soil.However,it was noted that doubling the amendment rate did not in any case offer any remarkable additional improvement in these properties,suggesting a further need to investigate the optimal amendment rate.

  13. Metal concentrations in aquatic macrophytes as influenced by soil and acidification

    Science.gov (United States)

    Sparling, D.W.; Lowe, T.P.

    1998-01-01

    Bioavailability of metals to aquatic plants is dependent on many factors including ambient metal concentration, pH of soil or water, concentration of ligands, competition with other metals for binding sites, and mode of exposure. Plants may be exposed to metals through water, air, or soil, depending on growth form. This paper examines the influence of soil type under two regimens of water acidification on metal uptake by four species of aquatic macrophytes: smartweed (Polygonum sagittatum), burreed (Sparganium americanum), pondweed (Potamogeton diversifolius), and bladderwort (Utricularia vulgaris) in constructed, experimentally acidified wetlands. Soil types consisted of a comparatively high-metal clay or a lower-metal sandy loam. Each pond was either acidified to pH ca. 4.85.3 or allowed to remain circumneutral. Metal concentrations tended to be higher in the submerged bladderwort and pondweed than in the emergent burreed and smartweed. Soils were important to plant metal concentrations in all species, but especially in the emergents. Acidification influenced plant concentrations of some metals and was especially important in the submerged pondweed. Bioaccumulation of metals occurred for Mn, B, Sr, Ba, and Zn, compared to soil concentrations.

  14. Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests

    Directory of Open Access Journals (Sweden)

    Paula Cristina Caruana Martins

    Full Text Available ABSTRACT Traffic of farm machinery during harvest and logging operations has been identified as the main source of soil structure degradation in forestry activity. Soil susceptibility to compaction and the amount of compaction caused by each forest harvest operation differs according to a number of factors (such as soil strength, soil texture, kind of equipment, traffic intensity, among many others, what requires the adequate assessment of soil compaction under different traffic conditions. The objectives of this study were to determine the susceptibility to compaction of five soil classes with different textures under eucalyptus forests based on their load bearing capacity models; and to determine, from these models and the precompression stresses obtained after harvest operations, the effect of traffic intensity with different equipment in the occurrence of soil compaction. Undisturbed soil samples were collected before and after harvest operations, being then subjected to uniaxial compression tests to determine their precompression stress. The coarse-textured soils were less resistant and endured greater soil compaction. In the clayey LVd2, traffic intensity below four Forwarder passes limited compaction to a third of the samples, whereas in the sandy loam PVd all samples from the 0-3 cm layer were compacted regardless of traffic intensity. The Feller Buncher and the Clambunk presented a high potential to cause soil compaction even with only one or two passes. The use of soil load bearing capacity models and precompression stress determined after harvest and logging operations allowed insight into the soil compaction process in forestry soils.

  15. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, M.N.; Lærke, P.E.

    2011-01-01

    received 65% of FI after tuber bulking and lasted for six weeks until final harvest. Results showed that the irrigation treatments were not significantly different in terms of N uptake in the tubers, shoot, and whole crop. However, there was a statistical difference between the soil textures where plants...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  16. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    International Nuclear Information System (INIS)

    Rigby, H.; Smith, S.R.

    2013-01-01

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH 4 Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application

  17. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, H.; Smith, S.R., E-mail: s.r.smith@imperial.ac.uk

    2013-12-15

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application

  18. Variability in uptake of Cs isotopes by fenugreek plant from three soils

    Energy Technology Data Exchange (ETDEWEB)

    Pulhani, V; Dafauti, S; Dahiya, S; Hedge, A G [Environmental Studies Section, Health Physics Div., Bhabha Atomic Research Centre, Mumbai (India)

    2008-07-01

    Soil to plant transfer via root uptake is one of the major compartments in the radionuclide transfer pathways to man and can be used to assess the internal radiation dose via ingestion. The variability in the Transfer Factor (TF) of Cs isotopes was investigated in three different soils from nuclear power plant sites at Rajasthan and Narora with alkaline sandy loam alluvial and Madras with acidic coastal sandy loam alluvial soil. The soils were characterized for soil properties like texture, pH, EC, organic carbon, CaCO{sub 3} (%), CEC, silt, clay sand etc. and spiked with a mixture of 800 Bq {sup 137}Cs, 300 Bq {sup 134}Cs and 10mg of {sup 133}Cs (stable). Fenugreek (Trigonella foenum-graecum L.) from Leguminosae family an annual plant commonly used as a vegetable was grown in these soils to study the uptake of Cs. The uptake of heavy toxic elements like Pb, Cd, Ni, Cr etc. and nutrients Fe, Co, Cu, Zn, Mn, Ca, Mg, Na and K was also studied. The uptake of heavy toxic elements like Pb, Cd, Ni, Cr etc. and nutrients Fe, Co, Cu, Zn, Mn, Ca, Mg, Na and K was also studied. {sup 137}Cs and{sup 134}Cs was estimated using HPGe detector (15% Relative Efficiency, 54cc-coaxial, 2keV resolution at 1332keV of {sup 60}Co). Stable Cs, K and Na were determined by the Atomic Emission Spectrophotometry and Pb, Cd, Cr etc. by Atomic Absorption Spectrophotometry. Among the three soils the transfer factor for all the elements and Cs was highest for MAPS due to higher organic matter content and acidic pH followed by NAPS and RAPS. The {sup 137}Cs and {sup 134}Cs isotopes have been taken up to the same extent from soil and transfer factors are similar to each other. But the stable Cs uptake appears to be slightly high, probably because of excess of {sup 133}Cs (mg level) added as compared to the radioactive isotopes. In spite of this high difference in the soil concentrations of Cs isotopes, uptake of {sup 133}Cs is not very high indicating to a physiological limiting process for uptake

  19. Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils

    International Nuclear Information System (INIS)

    Andrade, M.D.; Prasher, S.O.; Hendershot, W.H.

    2007-01-01

    Three experiments were conducted to optimize the use of ethylenediaminetetraacetic acid (EDTA) for reclaiming urban soils contaminated with trace metals. As compared to Na 2 EDTA (NH 4 ) 2 EDTA extracted 60% more Zn and equivalent amounts of Cd, Cu and Pb from a sandy loam. When successively saturating and draining loamy sand columns during a washing cycle, which submerged it once with a (NH 4 ) 2 EDTA wash and four times with deionised water, the post-wash rinses largely contributed to the total cumulative extraction of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn. Both the washing solution and the deionised water rinses were added in a 2:5 liquid to soil (L:S) weight ratio. For equal amounts of EDTA, concentrating the washing solution and applying it and the ensuing rinses in a smaller 1:5 L:S weight ratio, instead of a 2:5 L:S weight ratio, increased the extraction of targeted Cr, Cu, Ni, Pb and Zn. - A single EDTA addition is best utilised in a highly concentrated washing solution given in a small liquid to soil weight ratio

  20. Lysimeter study to investigate the effect of rainfall patterns on leaching of isoproturon.

    Science.gov (United States)

    Beulke, Sabine; Brown, Colin D; Fryer, Christopher J; Walker, Allan

    2002-01-01

    The influence of five rainfall treatments on water and solute leaching through two contrasting soil types was investigated. Undisturbed lysimeters (diameter 0.25 m, length 0.5 m) from a sandy loam (Wick series) and a moderately structured clay loam (Hodnet series) received autumn applications of the radio-labelled pesticide isoproturon and bromide tracer. Target rainfall plus irrigation from the end of November 1997 to May 1998 ranged from drier to wetter than average (235 to 414 mm); monthly rainfall was varied according to a pre-selected pattern or kept constant (triplicate lysimeters per regime). Leachate was collected at intervals and concentrations of the solutes were determined. Total flow (0.27-0.94 pore volumes) and losses of bromide (3-80% of applied) increased with increasing inputs of water and were larger from the Wick sandy loam than from the Hodnet clay loam soil. Matrix flow appeared to be the main mechanism for transport of isoproturon through the Wick soil whereas there was a greater influence of preferential flow for the Hodnet lysimeters. The total leached load of isoproturon from the Wick lysimeters was 0.02-0.26% of that applied. There was no clear variation in transport processes between the rainfall treatments investigated for this soil and there was an approximately linear relationship (r2 = 0.81) between leached load and total flow. Losses of isoproturon from the Hodnet soil were 0.03-0.39% of applied and there was evidence of enhanced preferential flow in the driest and wettest treatments. Leaching of isoproturon was best described by an exponential relationship between load and total flow (r2 = 0.62). A 45% increase in flow between the two wettest treatments gave a 100% increase in leaching of isoproturon from the Wick soil. For the Hodnet lysimeters, a 35% increase in flow between the same treatments increased herbicide loss by 325%.

  1. Soils of the Eastern mountainsides of the southern Sikhote-Alin (on the example of Lazovsky nature reserve, Russia)

    Science.gov (United States)

    Tregubova, Valentina; Semal, Victoria; Nesterova, Olga; Yaroslavtsev, Alexis

    2017-04-01

    The most common soils of the southern Far East are Brownzems under Russian classification (Cambisols), which are the zonal ones, emerging on the steep slopes and tops of hills, on high river terraces under broad-leaved and cedar-broad-leaved forests. Those soils formed due to two processes: organic matter metamorphism and clayization by siallite, leading to the formation of clay-metamorphic horizon Bw. The main morphological features of Cambisols are not deep soil profile (50 - 70 cm), weak horizons differentiation, with lots of cobble. Chemically those soils are low saturated, even in the humus horizon. Distribution of total absorbed bases is mostly accumulative, which is related to the distribution of humus in these soils, and the predominant type of clay fraction distribution of. The only exception are Humic Cambisols and Humic Cambisols Calcic which were formed on redeposited products of limestone rock weathering. Fine-grained deposits are mainly loams with a low content of silt. Silt distribution has an accumulative character with a gradual decrease in the content of silt down from the top of the profile. Layer of fresh leaf fall is very common for the Humic Cambisols surfaces, and under it there is the litter of plant residues with different degrees of decomposition. Accumulative humus horizon is dark gray with brownish tint, thin, from 10 to 15 cm in depth, loose, crumbly, highly penetrated by roots, with a strong granular structure, with aggregates tightly attached to the root hairs, sandy loam or sandy clay loam. The middle horizon is brown, yellowish-brown, divided into sub-horizons, with different color intensity, density, soil texture and amount of cobble. Dystric Cambisols are acidic or strongly acidic with low saturation of soil absorbing complex. Due to amount and distribution of organic matter these soils can be divided into two groups. The first group is soils with accumulative humus distribution: with a low depth humus-accumulative horizon (11

  2. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  3. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    2013-04-01

    Full Text Available Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06 and 352% ± 139% (p = 0.1 of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site with growth of 142% ± 42% (p > 0.2 and 131% ± 62% (p > 0.2 of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC, no significant effects on maize yields were observed (p > 0.2. In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination

  4. Effects Of Irrigation With Saline Water, And Soil Type On Germination And Seedling Growth Of Sweet Maize (Zea Mays L.)

    International Nuclear Information System (INIS)

    Mostafa, A.Z.; Amato, M.; Hamdi, A.; Mostafa, A.Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    Germination and early growth of maize Sweet Maize (Zea mays L.), var. (SEL. CONETA) under irrigation with saline water were investigated in a pot experiment with different soil types. Seven salinity levels of irrigation water up to 12 dS/m were used on a Clay soil (C) and a Sandy-Loam (SL). Emergence of maize was delayed under irrigation with saline water, and the final percentage of germination was reduced only at 8 dS/m or above. Seedling shoot and root growth were reduced starting at 4 dS/m of irrigation water. Salts accumulated more in the C soil but reductions in final germination rate and seedling growth were larger in the SL soil, although differences were not always significant. Data indicate that germination is rather tolerant to salinity level in var. SEL. CONETA whereas seedling growth is reduced at moderate salinity levels, and that soil type affects plant performance under irrigation with saline water

  5. Water retention and availability in soils of the State of Santa Catarina-Brazil: effect of textural classes, soil classes and lithology

    Directory of Open Access Journals (Sweden)

    André da Costa

    2013-12-01

    Full Text Available The retention and availability of water in the soil vary according to the soil characteristics and determine plant growth. Thus, the aim of this study was to evaluate water retention and availability in the soils of the State of Santa Catarina, Brazil, according to the textural class, soil class and lithology. The surface and subsurface horizons of 44 profiles were sampled in different regions of the State and different cover crops to determine field capacity, permanent wilting point, available water content, particle size, and organic matter content. Water retention and availability between the horizons were compared in a mixed model, considering the textural classes, the soil classes and lithology as fixed factors and profiles as random factors. It may be concluded that water retention is greater in silty or clayey soils and that the organic matter content is higher, especially in Humic Cambisols, Nitisols and Ferralsol developed from igneous or sedimentary rocks. Water availability is greater in loam-textured soils, with high organic matter content, especially in soils of humic character. It is lower in the sandy texture class, especially in Arenosols formed from recent alluvial deposits or in gravelly soils derived from granite. The greater water availability in the surface horizons, with more organic matter than in the subsurface layers, illustrates the importance of organic matter for water retention and availability.

  6. Effects of Tillage Methods on Some Soil Physical Properties, Growth and Yield of Water Melon in a Semi-Arid Region of Nigeria

    Directory of Open Access Journals (Sweden)

    A. Dauda

    2017-02-01

    Full Text Available An appropriate tillage method is necessary to create an optimum seed bed condition for optimum crop growth and yield. Two-year field experiment was conducted in 2013 and 2014 to investigate the effects of different tillage methods on the physical properties of sandy loam soil, growth and yield of water melon (Citrullus vulgaris in a semi-arid environment. The Tillage treatments were disc ploughing plus disc harrowing (DP+DH, double disc ploughing (DDP, double disc harrowing (DDH, disc ploughing (DP and disc harrowing (DH as minimum tillage (MT and zero tillage (ZT and direct drilling method (control. The watermelon seeds were Planted manually placing three (3 seeds per hole at an interval of 1.5m along the rows and 50cm between the rows at an average depth of 5cm. The treatments were laid in a randomized complete block design (RCBD with four replications. Results showed that disc ploughing + disc harrowing (DP+DH was found to be more appropriate and profitable tillage method in improving soil physical properties and growth and yield of water melon in a sandy loam soil. Watermelon yield, fruit weight (FW, fruit length (FL, fruit diameter (FD and leaf area index (LAI were significantly influenced (P=0.05, but influence of tillage treatments were not significant on the number of fruit per plant (NFPP. A numerical value of 31.0t/ha, 26.0, 5.4kg, 29.0cm, and 33.8cm were recorded for maximum crop yield, NFPP, FW, FD and FL respectively in DP+DH-treated plots. For zero tillage (ZT treatment, maximum of crop yield and NFPP were 26.5t/ha and 20.0 respectively. Thus for enhanced growth and yield of watermelon, DP/DH would be more preferable. The orthodox method of zero tillage is out rightly discouraged

  7. [Development of APSIM (agricultural production systems simulator) and its application].

    Science.gov (United States)

    Shen, Yuying; Nan, Zhibiao; Bellotti, Bill; Robertson, Michael; Chen, Wen; Shao, Xinqing

    2002-08-01

    Soil-crop simulator model is an effective tool for providing decision on agricultural management. APSIM (Agricultural Production Systems Simulator) was developed to simulate the biophysical process in farming system, and particularly in the economic and ecological features of the systems under climatic risk. The current literatures revealed that APSIM could be applied in wide zone, including temperate continental, temperate maritime, sub-tropic and arid climate, and Mediterranean climates, with the soil type of clay, duplex soil, vertisol, silt sandy, silt loam and silt clay loam. More than 20 crops have been simulated well. APSIM is powerful on describing crop structure, crop sequence, yield prediction, and quality control as well as erosion estimation under different planting pattern.

  8. THE PROBLEMATIC OF SANDY LANDS IN PARANAVAI MUNICIPALITY –PR

    Directory of Open Access Journals (Sweden)

    Marcelo Eduardo Freres Stipp

    2005-05-01

    Full Text Available The sandy lands are a process of scouring with sand forming a sandy area, which correspondsto a reworking of the sands due its constant mobility, involving the transformation of notsolids deposits is sandy areas. This work tried to establish the characterization of thisphenomenon of scouring with sand in a local level, occurring in arenaceous areas in theNortheast of the state of Paraná, specifically in the urban site of Paranavaí. It was also madean evaluation of the environmental degradation as well as different causes for what provokedthese sandy areas. Being an area with a high level of soil decomposition with the highwaysroutes crossing it, it was necessary, besides bibliographic data that allowed a theoretical basis,a research applied in order to supply subsides for future planning related to the spaceorganization. The evolution of the use and soil occupation in this area has been processedwithin an urban planning which considered by no account neither soil characteristic, thevegetation nor the predominant climate in that region. The mechanisms of region atmospherecirculation were analyzed, the alterations or attributes of the climate as well, aiming toidentify the genesis of the erosion sandy and possible time and space distribution. Initially, themain characteristics of the region were collected, components e processes working on the landmodel. It was observed how it worked and the use and occupation of the soil in past times andcurrently. During 2004, using the Environmental Fragility Letter, the areas of erosion wereidentified, ravines and strong erosion that compounds the first stages of the focused problem.The sandy land is a process that involves erosion, transport, e accumulation, meaning most oftimes the loosing of Biosphere productivity. For monitoring these risk areas some measuringcanes were made to measure the soil loss, which were used in several spots of erosion in theurban area in Paranavaí. The measurement happened in

  9. Adsorption and desorption characteristic of benzimidazole based fungicide carbendazim in pakistani soils

    International Nuclear Information System (INIS)

    Ahmad, K.S.; Rashid, N.; Tazaiyen, S.; Nazar, M.F.

    2013-01-01

    A versatile cost-effective Benzimidazole based fungicide, Carbendazim (methyl 1H-benzimidazole-2 carboxylate ) has been utilized to investigate its sorption-desorption behaviour on physicochemical properties of geographical soils, ranging from hilly to desert areas of Pakistan, via batch equilibrium method. The data obtained in all tests showed that adsorption co-efficient isotherm for Carbendazim in four tested soil were well fitted the freundlich equation. Distribution co-efficient (K d ) parameters are low (3.59 to 11.60 ml micro g/sup -1/) indicating low adsorption. It was observed that Carbendazim showed a relatively greater degree of adsorption on soil samples (Soil 4) that were collected from northern hilly areas Ayubia, Khyber Pakhton khaw (KPK) (Silt loam) i.e.11.60 ml mu g/sup -1/ and least adsorption on sandy Soil of Multan Punjab(Soil 2). While other two soils 1 were collected from Murree region, a boarder of Punjab and KPK mountain area and Soil 3 from Tarnol, Islamabad. Desorption studies reveal that the adsorbed fungicide is firmly retained by soil particles and their adsorption are almost irreversible. The results indicate that soil organic matter (SOM) and appropriate pH also play key role in sorption capacity. (author)

  10. Fate of CL-20 in sandy soils: Degradation products as potential markers of natural attenuation

    International Nuclear Information System (INIS)

    Monteil-Rivera, Fanny; Halasz, Annamaria; Manno, Dominic; Kuperman, Roman G.; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2009-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH 2 =N-C(=N-NO 2 )-CH=N-CHO or its isomer N(NO 2 )=CH-CH=N-CO-CH=NH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil. - Two key intermediates of CL-20 degradation are potential markers of its natural attenuation in soil

  11. Response of corn silage (Zea mays L.) to zinc fertilization on a sandy soil under field and

    OpenAIRE

    Saad Drissi; Abdelhadi Aït Houssa; Ahmed Bamouh; Mohamed Benbella

    2017-01-01

    The purpose of the experiments was to evaluate zinc (Zn) fertilization effect on growth, yield and yield components of corn silage grown on a sandy soil under field and outdoor container conditions. Six rates of Zn supply (0 or control; 1.5; 3; 5; 10 and 50 mg kg−1) were tested. They were split at three different times during the growing season: (i) 50% immediately after sowing, (ii) 25% at 4–5 leaf stage and (iii) 25% at 8–9 leaf stage. These Zn rates were applied to the soil surface as a so...

  12. SUITABLE LOCATION OF SHEET PILE UNDER DAM RESTING ON SANDY SOIL WITH CAVITY

    Directory of Open Access Journals (Sweden)

    Laith J. Aziz

    2018-05-01

    Full Text Available This research describes the seepage characteristics of experimental model test of dam with cutoff located at different region (at dam heel, at mid floor of dam, and at dam toe. It is resting on sandy soil with cavity at different locations in X and Y directions (such as in Al-Najaf soil city. Thirty three model tests are performed in laboratory by using steel box to estimate the quantity of the seepage and flow lines direction. It was concluded that the best location of the cutoff wall is at the dam toe for model test with cavity ( Xc B = 0 and 0.5, but for model test with cavity ( Xc B ≥1, the best location of the sheet pile wall becomes at the dam heel. For negative location of the cavity, the best location of the sheet pile wall is at the middle of the floor dam.

  13. Microbial Response to UV Exposure and Nitrogen Limitation in Desert Soil Crusts

    Science.gov (United States)

    Fulton, J. M.; Van Mooy, B. A.

    2016-12-01

    Microbiotic soil crusts have diverse biomarker distributions and C and N stable isotopic compositions that covary with soil type. Sparse plant cover and the relative lack of soil disturbance in arid/semi-arid landscapes allows populations of soil cyanobacteria to develop along with fungi and heterotrophic bacteria. Microbial communities in this extreme environment depend in part on the production of scytonemin, a UV protective pigment, by cyanobacteria near the top of the crust. N limitation of microbial growth also affects soil crust population dynamics, increasing the requirement of N2fixation by diazotrophic cyanobacteria. We collected 56 soil crust samples from 27 locations throughout the Great Salt Lake Desert, including four transects spanning high-elevation, erosion-dominated soils to lower elevation soils dominated by silt-accumulation. Erosion-dominated soil surfaces included rounded gravel and cobbles; in the interstices there were poorly-developed microbiotic crusts on sandy loam with low δ15N values near 0‰ that point toward microbial growth dependent on cyanobacterial N2 fixation. Nutrients regenerated by heterotrophic bacteria may have been eroded from the system, providing a positive feedback for N2 fixation. High scytonemin:chlorophyll a ratios suggest that cyanobacteria required enhanced protection from UV damage in these crusts. A similar increase in scytonemin:chlorophyll a ratio during soil crust rehydration experiments also points toward the importance of UV protection. Glycolipid:phospholipid ratios were lowest where N2 fixation was favored, however, suggesting that the cyanobacterial population was relatively small, possibly because of the metabolic cost of N2fixation. Microbiotic crusts on silt loam soils, on the other hand, had higher δ15N values between 3.5 and 7.8‰, consistent with heterotrophic growth and nutrient recycling. Lower scytonemin:chlorophyll a ratios suggest that relatively high photosynthetic activity was supported in

  14. Risk assessment of linear alkylbenzene sulphonates, LAS, in agricultural soil revisited: Robust chronic toxicity tests for Folsomia candida (Collembola), Aporrectodea caliginosa (Oligochaeta) and Enchytraeus crypticus (Enchytraeidae)

    DEFF Research Database (Denmark)

    Krogh, P. H.; Lopez, C. V.; Cassani, G.

    2007-01-01

    To obtain robust data on the toxicity of LAS, tests with the collembolan Folsomia candida L., the oligochaetes Aporrectodea caliginosa Savigny (earthworm) and Enchytraeus crypticus Westheide and Graefe (enchytraeid) were performed in a sandy loam soil. Additionally limited tests with LAS spiked...... to sewage sludge, and subsequently mixed into soil, were performed. For the endpoint of interest, reproduction in soil, we found an EC10 of 205 mg LAS kg-1 soil [8.6-401] [95% confidence limits] for F. candida and an EC10 of 46 mg LAS kg-1 soil [13-80] for A. caliginosa after 28 days. E. crypticus...... was not affected by concentrations up to 120 mg LAS kg-1 soil. When adding (low contaminated) non-spiked sludge to soil, high stimulation of reproduction was ob-served for E. crypticus and A. caliginosa but not for F. candida. We argue that this difference in stimulative response between the tested species...

  15. Using 15N in studies on the uptake of mineral and organic nitrogen by plants

    International Nuclear Information System (INIS)

    Mitovska, R.

    1983-01-01

    Modelled microplot field experiments at the Central Experimental Station of the All-Union Institute of Fertilizers and Agrochemistry in Moscow were used to study the uptake of nitrogen ( 15 N) applied together or individually with minerals or with green oats mass or in both ways. The studies were conducted on soddy podzolic, heavy loam, soddy podzolic sandy soil and leached chernozem. It was established that the soddy podzolic heavy loam had the highest natural fertility and showed greatest response to the applied N

  16. Field dissipation of oxyfluorfen in onion and its dynamics in soil under Indian tropical conditions.

    Science.gov (United States)

    Janaki, P; Sathya Priya, R; Chinnusamy, C

    2013-01-01

    Oxyfluorfen, a diphenyl-ether herbicide is being used to control annual and perennial broad-leaved weeds and sedges in a variety of field crops including onion. The present study was aimed to investigate the dynamics and field persistence of oxyfluorfen in onion plant, bulb and soil under Indian tropical conditions. Application of four rates of oxyfluorfen viz., 200, 250, 300 and 400 g AI ha(-1) as pre-emergence gave good weed control in field experiment with onion. The oxyfluorfen residue dissipated faster in plant than in soil respectively, with a mean half-life of 6.1 and 11.2 days. Dissipation followed first-order kinetics. In laboratory column leaching experiments, 17 percent of the applied oxyfluorfen was recovered from the soil and indicates its solubility in water and mobility in sandy clay loam soil was low. A sorption study revealed that the adsorption of oxyfluorfen to the soil was highly influenced by the soil organic carbon with the Koc value of 5450. The study concludes that the dissipation of oxyfluorfen in soil and onion was dependent on the physico-chemical properties of the soil and environmental conditions.

  17. Soil bulk electrical resistivity and forage ground cover: nonlinear models in an alfalfa (Medicago sativa L. case study

    Directory of Open Access Journals (Sweden)

    Roberta Rossi

    2015-12-01

    Full Text Available Alfalfa is a highly productive and fertility-building forage crop; its performance, can be highly variable as influenced by within-field soil spatial variability. Characterising the relations between soil and forage- variation is important for optimal management. The aim of this work was to model the relationship between soil electrical resistivity (ER and plant productivity in an alfalfa (Medicago sativa L. field in Southern Italy. ER mapping was accomplished by a multi-depth automatic resistivity profiler. Plant productivity was assessed through normalised difference vegetation index (NDVI at 2 dates. A non-linear relationship between NDVI and deep soil ER was modelled within the framework of generalised additive models. The best model explained 70% of the total variability. Soil profiles at six locations selected along a gradient of ER showed differences related to texture (ranging from clay to sandy-clay loam, gravel content (0 to 55% and to the presence of a petrocalcic horizon. Our results prove that multi-depth ER can be used to localise permanent soil features that drive plant productivity.

  18. Preliminary assessment of soil erosion impact during forest restoration process

    Science.gov (United States)

    Lai, Yen-Jen; Chang, Cheng-Sheng; Tsao, Tsung-Ming; Wey, Tsong-Huei; Chiang, Po-Neng; Wang, Ya-Nan

    2014-05-01

    Taiwan has a fragile geology and steep terrain. The 921 earthquake, Typhoon Toraji, Typhoon Morakot, and the exploitation and use of the woodland by local residents have severely damaged the landscape and posed more severe challenges to the montane ecosystem. A land conservation project has been implemented by the Experimental Forest of National Taiwan University which reclaimed approximately 1,500 hectares of leased woodland from 2008 to 2010, primarily used to grow bamboo, tea trees, betel nut, fruit, and vegetable and about 1,298 hectares have been reforested. The process of forest restoration involves clear cutting, soil preparation and a six-year weeding and tending period which may affect the amount of soil erosion dramatically. This study tried to assess the impact of forest restoration from the perspective of soil erosion through leased-land recovery periods and would like to benefit the practical implementation of reforestation in the future. A new plantation reforested in the early 2013 and a nearby 29-year-old mature forest were chosen as experimental and comparison sites. A self-designed weir was set up in a small watershed of each site for the runoff and sediment yield observation. According to the observed results from May to August 2013, a raining season in Taiwan, the runoff and erosion would not as high as we expected, because the in-situ soil texture of both sites is sandy loam to sandy with high percentage of coarse fragment which increased the infiltration. There were around 200 kg to 250 kg of wet sand/soil yielded in mature forest during the hit of Typhoon Soulik while the rest of the time only suspended material be yielded at both sites. To further investigate the influence of the six-year weeding and tending period, long term observations are needed for a more completed assessment of soil erosion impact.

  19. Environmental radiation safety: source term modification by soil aerosols. Interim report

    International Nuclear Information System (INIS)

    Moss, O.R.; Allen, M.D.; Rossignol, E.J.; Cannon, W.C.

    1980-08-01

    The goal of this project is to provide information useful in estimating hazards related to the use of a pure refractory oxide of 238 Pu as a power source in some of the space vehicles to be launched during the next few years. Although the sources are designed and built to withstand re-entry into the earth's atmosphere, and to impact with the earth's surface without releasing any plutonium, the possibility that such an event might produce aerosols composed of soil and 238 PuO 2 cannot be absolutely excluded. This report presents the results of our most recent efforts to measure the degree to which the plutonium aerosol source term might be modified in a terrestrial environment. The five experiments described represent our best effort to use the original experimental design to study the change in the size distribution and concentration of a 238 PuO 2 aerosol due to coagulation with an aerosol of clay or sandy loam soil

  20. Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the Loess Plateau.

    Science.gov (United States)

    Zhu, Li-Xia; Xiao, Qian; Shen, Yu-Fang; Li, Shi-Qing

    2017-10-01

    The structure and function of soil microbial communities have been widely used as indicators of soil quality and fertility. The effect of biochar application on carbon sequestration has been studied, but the effect on soil microbial functional diversity has received little attention. We evaluated effects of biochar application on the functional diversities of microbes in a loam soil. The effects of biochar on microbial activities and related processes in the 0-10 and 10-20cm soil layers were determined in a two-year experiment in maize field on the Loess Plateau in China. Low-pyrolysis biochar produced from maize straw was applied into soils at rates of 0 (BC0), 10 (BC10) and 30 (BC30)tha -1 . Chemical analysis indicated that the biochar did not change the pH, significantly increased the amounts of organic carbon and nitrogen, and decreased the amount of mineral nitrogen and the microbial quotient. The biochar significantly decreased average well colour development (AWCD) values in Biolog EcoPlates™ for both layers, particularly for the rate of 10tha -1 . Biochar addition significantly decreased substrate richness (S) except for BC30 in the 0-10cm layer. Effects of biochar on the Shannon-Wiener index (H) and Simpson's dominance (D) were not significant, except for a significant increase in evenness index (E) in BC10 in the 10-20cm layer. A principal component analysis clearly differentiated the treatments, and microbial use of six categories of substrates significantly decreased in both layers after biochar addition, although the use of amines and amides did not differ amongst the three treatments in the deeper layer. Maize above ground dry biomass and height did not differ significantly amongst the treatments, and biochar had no significant effect on nitrogen uptake by maize seedlings. H was positively correlated with AWCD, and negatively with pH. AWCD was positively correlated with mineral N and negatively with pH. Our results indicated that shifts in soil

  1. Toxicity of RDX, HMX, TNB, 2,4-DNT, and 2,6-DNT to the Earthworm, Eisenia Fetida, in a Sandy Loam Soil

    National Research Council Canada - National Science Library

    Simini, Michael; Checkai, Ronald T; Kuperman, Roman G; Phillips, Carlton T; Kolakowski, Jan E; Kurnas, Carl W; Sunahara, Geoffrey I

    2006-01-01

    ...) for ecological risk assessment of soil contaminants at Superfund sites. Insufficient information existed to generate Eco-SSLs for explosives and related materials in soil. The earthworm (Eisenia fetida...

  2. Field sampling of residual aviation gasoline in sandy soil

    International Nuclear Information System (INIS)

    Ostendorf, D.W.; Hinlein, E.S.; Yuefeng, Xie; Leach, L.E.

    1991-01-01

    Two complementary field sampling methods for the determination of residual aviation gasoline content in the contaminated capillary fringe of a fine, uniform, sandy soil were investigated. The first method featured field extrusion of core barrels into pint-size Mason jars, while the second consisted of laboratory partitioning of intact stainless steel core sleeves. Soil samples removed from the Mason jars (in the field) and sleeve segments (in the laboratory) were subjected to methylene chloride extraction and gas chromatographic analysis to compare their aviation gasoline content. The barrel extrusion sampling method yielded a vertical profile with 0.10m resolution over an essentially continuous 5.0m interval from the ground surface to the water table. The sleeve segment alternative yielded a more resolved 0.03m vertical profile over a shorter 0.8m interval through the capillary fringe. The two methods delivered precise estimates of the vertically integrated mass of aviation gasoline at a given horizontal location, and a consistent view of the vertical profile as well. In the latter regard, a 0.2m thick lens of maximum contamination was found in the center of the capillary fringe, where moisture filled all voids smaller than the mean pore size. The maximum peak was resolved by the core sleeve data, but was partially obscured by the barrel extrusion observations, so that replicate barrels or a half-pint Mason jar size should be considered for data supporting vertical transport analyses in the absence of sleeve partitions

  3. Grape yield, and must compounds of 'Cabernet Sauvignon' grapevine in sandy soil with potassium contents increasing

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2016-08-01

    Full Text Available ABSTRACT: Content of exchangeable potassium (K in t soil may influence on its content in grapevines leaves, grape yield, as well as, in must composition. The study aimed to assess the interference of exchangeable K content in the soil on its leaf content, production and must composition of 'Cabernet Sauvignon' cultivar. In September 2011, in Santana do Livramento (RS five vineyards with increasing levels of exchangeable K in the soil were selected. In the 2012/13 and 2013/14 harvests, the grape yield, yield components, total K content in the leaves in full bloom and berries veraison were evaluated. Values of total soluble sugar (TSS, pH, total titratable acidity (TTA, total polyphenols and anthocyanins were evaluated in the must. Exchangeable K content increase in soil with sandy surface texture increased its content in leaves collected during full flowering and in berries and must pH; however, it did not affect production of the 'Cabernet Sauvignon'.

  4. How the type of pyrogenic organic matter determines the SOM quality in amended soils

    Science.gov (United States)

    Merino, Agustin; Gartzia-Bengoetxea, Nahia; Morangues, Lur; Arias-Gonzalez, Ander

    2016-04-01

    Charred biomass can be used as an organic amendment and to enhance the C sink capacity of soils. There are two types of by-products containing pyrogenic OM that could be used to improve in agricultural or forestry, biochar and wood ash. Due to their different heating conditions under which it is produced (pyrolysis, combustion and different temperatures, feedstocks,..), the properties of this pyrogenic OM might be highly variable, which could affect the SOM quality and the C sink capacity of the amended soil. The purpose of this study was to assess how SOM quality is influenced by pyrogenic organic matter with different degree of carbonization. Biochar and bottom wood ash were added to two Atlantic forest soils (Pinus radiata, 12 °C, 1200 mm) with different texture, clayey loam and sandy loam. The experiment consisted in a randomized block trials, in which different doses of biochar (0, 3, 9, 18 Mh ha-1) and wood ash (0, 1.5, 4.5, and 9 Mg ha-1) were added. The Biochar applied (pH: 9.8; C: 87 %) was produced by the pyrolysis of Myscanthus sp. at 450°C in a Pyreg® pyrolysis unit. The bottom wood ash (pH: 10.6; C: 30 %) was produced by combustion in a biomass power plant. The aromatization/carbonization was lightly higher in biochar than in wood ash. This latter by-product, in addition to the black carbon, it also contained mineral ash, as well as unburnt or lightly charred plant biomass. The evolution of soil chemical and SOM properties were monitored over three years by solid state Differential Scanning Calorimetry (DSC) and 13C CPMAS NMR. These techniques were applied in bulk samples and also in fractions of different densityes. The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration and soil microbial community. Three years after applications the SOM content increased lightly in the treatment receiving the highest doses of biochar and wood ash, specially in the clay loam soil. SOM in the treated soils displayed a

  5. Bioaccumulation of polycyclic aromatic hydrocarbons and survival of earthworms (Eisenia andrei) exposed to biochar amended soils.

    Science.gov (United States)

    Malev, O; Contin, M; Licen, S; Barbieri, P; De Nobili, M

    2016-02-01

    Biochar has a charcoal polycyclic aromatic structure which allows its long half-life in soil, making it an ideal tool for C sequestration and for adsorption of organic pollutants, but at the same time raises concerns about possible adverse impacts on soil biota. Two biochars were tested under laboratory-controlled conditions on Eisenia andrei earthworms: a biochar produced at low temperature from wine tree cuttings (WTB) and a commercial low tar hardwood lump charcoal (HLB). The avoidance test (48-h exposure) showed that earthworms avoid biochar-treated soil with rates higher than 16 t ha(-1) for HLB and 64 t ha(-1) for WTB. After 42 days, toxic effects on earthworms were observed even at application rates (100 t ha(-1)) that are generally considered beneficial for most crops. The concentration of HLB and WTB required to kill half of earthworms' population (LC50; 95% confidence limits) in the synthetic OECD soil was 338 and 580 t ha(-1), respectively. Accumulation of polycyclic aromatic hydrocarbons (PAH) in earthworms exposed to the two biochar types at 100 t ha(-1) was tested in two soils of different texture. In biochar-treated soils, the average earthworm survival rates were about 64% in the sandy and 78% clay-loam soils. PAH accumulation was larger in the sandy soil and largest in soils amended with HLB. PAH with less than four rings were preferentially scavenged from the soil by biochars, and this behaviour may mask that of the more dangerous components (i.e. four to five rings), which are preferentially accumulated. Earthworms can accumulate PAH as a consequence of exposure to biochar-treated soils and transfer them along the food chain. Soil type and biochar quality are both relevant in determining PAH transfer.

  6. Sorption and desorption of Sr-90 and Cs-137 by sediments of the Sozh-river valley and border water collections

    International Nuclear Information System (INIS)

    Onoshko, M.P.

    2001-01-01

    collections taking into account landscape conditions and lithologic breed features. The sediments of various genesis and granulometric structure were investigated in the number of complexes: breeds of the water collection (starved clay, loam, humus light loam, sandy loam) and breeds of the valley (meadow marl, peat, humus horizon of buried soil, loam). Characteristics of the sediment structure used in experiment are given in the table. The model samples enriched by Sr-90 and Cs-137 were prepared for experiments. Amounts of the radioisotopes absorbed by sediments of different of structure, practically did not differ and did not depend on capacity of absorption of a sample. It means that cation-exchange abilities of samples are higher, than radioisotope amounts in a solution, therefore their absorption by soils and exchange with the absorbed bases is provided by minimal sorption abilities. In the desorption experiments breed samples after interaction with radioisotopes was filled by leaching-out solution taken in the ratio 1:20. The further processing of samples was carried out according to the method described above at saturation by radioisotopes. For radiocaesium the desorption value, according to the received data, grows from valley sediments to the sediments from water collection. Water collection breeds give back this isotope better, than sediments of the valley. High desorption ability to Cs-137 of sandy and light loamy sediments of the water collection by all reagents (35,4-57,8 %) may promote secondary redistribution of this radioisotope. Its fixation in breeds of the water collections, is especial in starved loam, below, than at valley sediments. One of the possible reasons of the observably order of the increase of durability of connection of the isotope with sorption breeds complexes are distinctions in exchange capacity. The efficiency of all reagents that replace Cs-137 from the water collections sediments are close. Desorption radiostrontium just as for

  7. Finding of No Significant Impact: Expand RV Storage Lot United States Air Force Academy, CO

    Science.gov (United States)

    2006-09-18

    the surface layer is grayish brown gravelly sandy loam about 14 inches thick. The underlying material is light yellowish brown gravelly loamy sand...inhibit the urease activity of soil microbes by up to 47% and 35%, respectively, suggesting that sources of nitrogen other than urea should be used

  8. Reducing the leachability of nitrate, phosphorus and heavy metals from soil using waste material

    Directory of Open Access Journals (Sweden)

    Faridullah

    Full Text Available Abstract Contaminants like nitrate (NO3, phosphorus (P and heavy metals in water are often associated with agricultural activities. Various soil and water remediation techniques have been employed to reduce the risk associated with these contaminants. A study was conducted to examine the extent of leaching of heavy metals (Cd, Ni, Pb and Cr, NO3 and P. For this purpose sandy and silt loam soils were amended with different waste materials, namely wood ash, solid waste ash, vegetable waste, charcoal, and sawdust. The soils were saturated with wastewater. Irrespective of the waste applied, the pH and EC of the amended soils were found to be greater than the control. Charcoal, sawdust and wood ash significantly decreased heavy metals, nitrate and phosphorus concentrations in the leachate. Treatments were more efficient for reducing Ni than other heavy metals concentrations. Waste amendments differed for heavy metals during the process of leaching. Heavy metals in the soil were progressively depleted due to the successive leaching stages. This research suggests that waste material may act as an adsorbent for the above contaminants and can reduce their leachability in soils.

  9. 3,4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions

    DEFF Research Database (Denmark)

    Kong, Xianwang; Duan, Yun-Feng (Kevin); Schramm, Andreas

    2016-01-01

    , dehydrogenase activity, phospholipid fatty acid composition and potential ammonia oxidation. DMPP showed no significant nontarget effects (p > 0.05), but a possible stress response in HD was indicated by a factor analysis of phospholipid fatty acid composition. There was a strong DMPP inhibition on potential...... of ammonia oxidation. We investigated effects of DMPP amendment equivalent to 0 (Control), 1 (regular dose, RD) or 10 (high dose, HD) kg ha1 in a sandy loam grassland soil at 50% water-filled pore space. Following incubation for 1, 7 or 14 d, soil was analyzed for fluorescein diacetate hydrolysis...... ammonia oxidation which was still significant (p HD after 14 d. In separate treatments receiving 50 mg NH4 +-N kg1 dry soil in addition to DMPP, the inhibition of nitrate accumulation was similar in RD and HD at around 75%. Abundances of the gene amoA from ammonia oxidizing bacteria (AOB...

  10. Potassium efficiency of different crops grown on a sandy soil under controlled conditions

    International Nuclear Information System (INIS)

    El Dessougi, H. I.; Claassen, N.; Steingrobe, B.

    2010-01-01

    The objective of this work was to study K efficiency of different crops and determine the plant parameters affecting it. The study was carried out using 14 different crops and cultivars grown on a sandy soil rich in humus, with two potassium fertilisation levels under controlled conditions. The studied crops showed different K efficiency reflected in different dry matter yield production in unfertilised relative to fertilised treatments. All crops had , at low K supply, less than optimum K concentration in dry matter, indicating that the soil K concentration did not meet the K requirement of the plants, Thus, the ability to produce high dry matter yield indicated superior adaptability to K deficiency. The efficiency mechanisms employed by the different crops were low shoot growth rate and/or high root length-shoot weigh ratio and a high uptake rate per unit root, i.e. the influx, or low internal K requirement. Crops with high influx had higher calculated concentration gradients, since they caused further decrease of the concentration at the root surface. As such, they were able to create steeper concentration gradients between bulk soil solution and root surface. This resulted in higher diffusive flux to the roots.(Author)

  11. Effect of vermicompost on soil fertility and crop productivity--beans (Phaseolus vulgaris).

    Science.gov (United States)

    Manivannan, S; Balamurugan, M; Parthasarathi, K; Gunasekaran, G; Ranganathan, L S

    2009-03-01

    Field experiments were conducted at Sivapuri, Chidambaram, Tamil Nadu to evaluate the efficacy of vermicompost, in comparison to inorganic fertilizers-NPK, on the physio-chemical and biological characteristics of the soils--clay loam soil (CLS) and sandy loam soil (SLS) and on the growth, yield and nutrient content of beans--Phaseolus vulgaris. Results showed that the application of vermicompost @ 5 tonnes ha(-1) had enhanced significantly the pore space (1.09 and 1.02 times), water holding capacity (1.1 and 1.3 times), cation exchange capacity (1.2 and 1.2 times). It reduced particles (1.2 and 1.2 times), and bulk density (1.2 and 1.2 times), pH (1 and 1.02 times) and electrical conductivity (1.4 and 1.2 times) and increased organic carbon (37 and 47 times), micro (Ca 3.07 and 1.9 times, Mg 1.6 and 1.6 times, Na 2.4 and 3.8 times, Fe 7 and 7.6 times, Mn 8.2 and 10.6 times, Zn 50 and 52 times and Cu 14 and 22 times) and macro (N 1.6 and 1.7 times, P 1.5 and 1.7 times, K 1.5 and 1.4 times) nutrients and microbial activity (1.4 and 1.5 times) in both soil types, particularly more in CLS. The growth, yield (1.6 times) and quality (protein (1.05 times) and sugar (1.01 times) content in seed) of bean were enhanced in CLS than SLS. On the other hand, the application of inorganic fertilizers @ 20:80:40 kg ha(-1) has resulted in reduced porosity (1.03 and 1.01 times), organic carbon (1.04 and 9.5 times) and microbial activity (1.02 and 1.03 times) in both soil types.

  12. Measurement of earthquake-induced shear strain in sandy gravel

    International Nuclear Information System (INIS)

    Ohkawa, I.; Futaki, M.; Yamanouchi, H.

    1989-01-01

    The nuclear power reactor buildings have been constructed on the hard rock ground formed in or before the Tertiary in Japan. This is mainly because the nuclear reactor building is much heavier than the common buildings and requires a large bearing capacity of the underlying soil deposit, and additionally the excessive deformation in soil deposit might cause damage in reactor building and subsequently cause the malfunction of the internal important facilities. Another reason is that the Quaternary soil deposit is not fully known with respect to its dynamic property. The gravel, and the sandy gravel, the representative soils of the Quaternary, have been believed to be suitable soil deposits to support the foundation of a common building, although the soils have rarely been investigated so closely on their physical properties quantitatively. In this paper, the dynamic deformability, i.e., the shear stress-strain relationship of the Quaternary diluvial soil deposit is examined through the earthquake ground motion measurement using accelerometers, pore-pressure meters, the specific devices developed in this research work. The objective soil deposit in this research is the sandy gravel of the diluvial and the alluvial

  13. Toxicity of RDX, HMX, TNB, 2,4-DNT, and 2,6-DNT to the Earthworm, Eisenia Fetida, in a Sandy Loam Soil

    National Research Council Canada - National Science Library

    Simini, Michael; Checkai, Ronald T; Kuperman, Roman G; Phillips, Carlton T; Kolakowski, Jan E; Kurnas, Carl W; Sunahara, Geoffrey I

    2006-01-01

    ...), and 1,3,5-trinitrobenzene (TNB) to fill the data gaps. Tests were conducted in freshly amended and in amended soils subjected to a weathering/aging process to better reflect exposure conditions in field soils...

  14. Factors Defining Field Germination of Oilseed Radish Seeds

    Directory of Open Access Journals (Sweden)

    N.V. Dorofeev

    2013-08-01

    Full Text Available Influence of temperature, depth of crops and granulometric of soil structure on germination speed, laboratory and field germination of oilseed radish seeds were studied. It was established that the period of seed-germination is defined both by temperature and granulometric structure of soil. The highest field germination was marked on sandy loam at depth of crops' seeds at 3 cm and 20°С.

  15. Using /sup 15/N in studies on the uptake of mineral and organic nitrogen by plants

    Energy Technology Data Exchange (ETDEWEB)

    Mitovska, R. (Akademiya na Selskostopanskite Nauki, Sofia (Bulgaria). Inst. po Pochvoznanie)

    1983-01-01

    Modelled microplot field experiments at the Central Experimental Station of the All-Union Institute of Fertilizers and Agrochemistry in Moscow were used to study the uptake of nitrogen (/sup 15/N) applied together or individually with minerals or with green oats mass or in both ways. The studies were conducted on soddy podzolic, heavy loam, soddy podzolic sandy soil and leached chernozem. It was established that the soddy podzolic heavy loam had the highest natural fertility and showed greatest response to the applied N.

  16. Recycled Urban Wastewater for Irrigation of Jatropha curcas L. in Abandoned Agricultural Arid Land

    Directory of Open Access Journals (Sweden)

    María Dorta-Santos

    2014-10-01

    Full Text Available In a global context in which obtaining new energy sources is of paramount importance, the production of biodiesel from plant crops is a potentially viable alternative to the use of fossil fuels. Among the species used to produce the raw material for biodiesel, Jatropha curcas L. (JCL has enjoyed increased popularity in recent years, due partly to its ability to grow in degraded zones and under arid and semi-arid conditions. The present study evaluates the potential for JCL production under irrigation with non-conventional water resources in abandoned agricultural soils of the island of Fuerteventura (Canary Islands, Spain, which is one of the most arid parts of the European Union. JCL growth and productivity are compared during the first 39 months of cultivation in two soil types (clay-loam and sandy-loam and with two irrigation water qualities: recycled urban wastewater (RWW and desalinated brackish water (DBW. The results indicate that JCL growth (in terms of plant height and stem diameter was significantly influenced both by soil type and water quality, with better development observed in the sandy-loam soil under RWW irrigation. Productivity, measured as cumulative seed production, was not affected by soil type but was affected by water quality. Production under RWW irrigation was approximately seven times greater than with DBW (mean ~2142 vs. 322 kg·ha−1. The higher nutrient content, especially P, K and Mg, and lower B content of the RWW were found to be key factors in the greater productivity observed under irrigation with this type of water.

  17. Reduction of root-knot nematode, Meloidogyne javanica, and ozone mass transfer in soil treated with ozone.

    Science.gov (United States)

    Qiu, Jinya Jack; Westerdahl, Becky B; Pryor, Alan

    2009-09-01

    Ozone gas (O₃) is a reactive oxidizing agent with biocidal properties. Because of the current phasing out of methyl bromide, investigations on the use of ozone gas as a soil-fumigant were conducted. Ozone gas was produced at a concentration of 1% in air by a conventional electrical discharge O₃ generator. Two O₃ dosages and three gas flow rates were tested on a sandy loam soil collected from a tomato field that had a resident population of root knot nematodes, Meloidogyne javanica. At dosages equivalent to 50 and 250 kg of O₃/ha, M. javanica were reduced by 24% and 68%, and free-living nematodes by 19% and 52%, respectively. The reduction for both M. javanica and free-living nematodes was dosage dependent and flow rate independent. The rates of O₃ mass transfer (OMT) through three soils of different texture were greater at low and high moisture levels than at intermediate ones. At any one soil moisture level, the OMT rate varied with soil texture and soil organic matter content. Results suggest that soil texture, moisture, and organic matter content should be considered in determining O₃ dosage needed for effective nematode control.

  18. Influência do período de restrição hídrica na atividade residual de isoxaflutole no solo Influence of drought periods on the residual activity of isoxaflutole in soil

    Directory of Open Access Journals (Sweden)

    R.S. Oliveira Jr.

    2006-12-01

    Full Text Available O objetivo deste trabalho foi estudar a atividade residual do isoxaflutole (IFT no controle de Brachiaria decumbens sob diferentes períodos de seca, após a aplicação do herbicida, em dois solos. Para isso, foram realizados seis ensaios simultâneos, sendo utilizadas doses de 0, 230 e 270 g ha-1 de isoxaflutole em amostras de Latossolo Vermelho Distroférrico nitossólico (textura argilosa e doses de 0, 180 e 200 g ha-1 em amostras de Latossolo Vermelho distrófico (textura franco-argilo-arenosa. Em cada ensaio, foram combinados em esquema fatorial doses e períodos de seca após as aplicações do herbicida, utilizando-se B. decumbens como bioindicador da atividade residual do herbicida no solo. As avaliações de controle foram feitas aos 15, 30, 45 e 60 dias após a semeadura do bioindicador. O IFT apresentou alta estabilidade no solo de textura argilosa mesmo após três chuvas simuladas de 20 mm, espaçadas de 30 dias e seguidas de 120 dias de seca após sua aplicação. No solo de textura franco-arenosa a estabilidade foi menor, e o efeito residual (80% de controle persistiu entre 0 e 110 dias para B. decumbens, conforme dose, períodos de seca e data de avaliação após a semeadura. Esse fato evidenciou que, à medida que aumenta o tempo e o número de irrigações entre a aplicação do herbicida e a semeadura do bioindicador, há redução no potencial efetivo de controle de IFT no Latossolo Vermelho distrófico.This work was carried out to evaluate the residual activity of isoxaflutole (IFT in Brachiaria decumbens control after different simulated drought conditions following herbicide application in two soils. Six simultaneous experiments were performed, using rates of 0, 230 and 270 g ha-1 of IFT in samples of a heavy clay soil and of 0, 180 and 200 g ha-1 in samples of a sandy clay loam soil. In each experiment, rates of IFT were combined in a factorial scheme with drought periods after herbicide application. B. decumbens was

  19. Influence of manganese fertilizer on efficiency of grapes on sandy soils of the Chechen Republic

    Directory of Open Access Journals (Sweden)

    Batukaev A.A.

    2014-01-01

    Full Text Available As a result of the studies, there has been obtained new information about the manganese influence on productivity of grape plantations, on sandy soils of the Chechen Republic. Manganese fertilizing of 4 kg active ingredient per 1 ha, against the background of nitrogen 90 kg, phosphorus 90 kg and potassium 90 kg/ha, made it into a phase of grape sap flow, which contributes to higher yields, increase of the sugar content of the berries and a significant decrease in juice acidity, in comparison with other options.

  20. Soil sampling for environmental contaminants

    International Nuclear Information System (INIS)

    2004-10-01

    The Consultants Meeting on Sampling Strategies, Sampling and Storage of Soil for Environmental Monitoring of Contaminants was organized by the International Atomic Energy Agency to evaluate methods for soil sampling in radionuclide monitoring and heavy metal surveys for identification of punctual contamination (hot particles) in large area surveys and screening experiments. A group of experts was invited by the IAEA to discuss and recommend methods for representative soil sampling for different kinds of environmental issues. The ultimate sinks for all kinds of contaminants dispersed within the natural environment through human activities are sediment and soil. Soil is a particularly difficult matrix for environmental pollution studies as it is generally composed of a multitude of geological and biological materials resulting from weathering and degradation, including particles of different sizes with varying surface and chemical properties. There are so many different soil types categorized according to their content of biological matter, from sandy soils to loam and peat soils, which make analytical characterization even more complicated. Soil sampling for environmental monitoring of pollutants, therefore, is still a matter of debate in the community of soil, environmental and analytical sciences. The scope of the consultants meeting included evaluating existing techniques with regard to their practicability, reliability and applicability to different purposes, developing strategies of representative soil sampling for cases not yet considered by current techniques and recommending validated techniques applicable to laboratories in developing Member States. This TECDOC includes a critical survey of existing approaches and their feasibility to be applied in developing countries. The report is valuable for radioanalytical laboratories in Member States. It would assist them in quality control and accreditation process