WorldWideScience

Sample records for sandy forest soil

  1. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  2. Soil development in OSL dated sandy dune substrates under Quercus robur Forest (Netherlands)

    Science.gov (United States)

    van Mourik, J. M.; Nierop, Ir. K.; Verstraten, J. M.

    2009-04-01

    Coastal dune landscapes are very dynamic. The present distribution of vegetation and soil is the result of over 2000 years of natural processes and human management. The initial soil development was controlled by an increase of the organic matter content, which consisted mainly of decomposed roots of grasses (rhizomull), and a decrease of the soil pH to 3-4 by decalcification. This stage was followed by the development of a deciduous forest, which was dominated by Quercus robur. Since 1600 AD, a large part of the deciduous forest that dominated the east side of the coastal dune landscape transferred in expensive residential areas and urbanizations. Nevertheless some parts of the oak forest belt remained. The present forest soils are acid and the controlling soil processes are leaching of sesquioxides and storage of organic matter in mormoder humus forms. The sustainability of ecosystems is closely related to the quality of the humus form, controlling nutrient cycling and water supply. Therefore, improve of knowledge of humus form development and properties is important. We applied soil micromorphology and pyrolysis-gas chromatography/mass spectrometry (GC/MS) to investigate more details of humus form development at two locations (Duivendrift and Hoek van Klaas) in the coastal dune area of the Amsterdamse Waterleidingduinen (near Haarlem, the Netherlands). However, to understand forest soil development, including the organic matter composition in the humus form, the age of the substrate and the forest is required. Therefore, we used tradition techniques as pollen analysis and radiocarbon dating but also the recently introduced optical stimulated luminescence (OSL) dating technique. OSL dating works excellent for aeolian sandy deposits with a high percentage of quartz grains. The OSL age is defined as the time after the last bleaching by solar radiation of mineral grains. Or in other words, the start of a stable period without sand drifting. In the Ah horizons we

  3. Seasonal fluctuations in water repellency and infiltration in a sandy loam soil after a forest fire in Galicia (NW Spain

    Directory of Open Access Journals (Sweden)

    M. Rodríguez-Alleres

    2013-05-01

    Full Text Available The aim of this work was to analyze, after a wildfire of moderate severity, the temporal fluctuations in water repellency and infiltration in a sandy loam soil under a mixed plantation of pine and eucalyptus and the comparison with an adjacent area not affected by the fire. In the burnt area and in a neighboring area not affected by the fire were collected during one year (1, 4, 6, 8 and 12 months after the fire 10 soil samples along a transect of 18 m at four depths: 0-2, 2-5, 5-10 and 10-20 cm. Soil water repellency was determined using the water drop penetration time test (WDPT test and the infiltration was measured with a mini-disc infiltrometer (pressure head h0 = -2 cm.The results show a temporal pattern of soil water repellency in the burnt and unburnt areas. Significant correlations between water repellency and soil moisture were observed, with higher correlation coefficients in the unburned area and in the surface soil layer.Soil water infiltration was significantly lower than would be expected by the coarse texture of the soil in both burnt and unburnt areas. Temporal fluctuations in unburnt soil infiltration seem to be clearly related to the transient nature of the soil water repellency, with no infiltration in samples extremely repellent. In the burned area, the soil infiltration showed much more variability and temporal fluctuations appear to be less dependent on the persistence of water repellency and more dependent on environmental conditions.The unburnt area show significant and negative correlations of soil water repellency with hydraulic conductivity and sorptivity and positive of these two parameters with soil moisture. These relationships were not observed in the burnt area. The temporal fluctuations of soil water repellency have an evident impact on soil infiltration and seem to be more influent than the effects of fire.

  4. Dynamics of soil organic matter in primary and secondary forest succession on sandy soils in The Netherlands: An application of the ROMUL model

    NARCIS (Netherlands)

    Nadporozhskaya, M.A.; Mohren, G.M.J.; Chertov, O.G.; Komarov, A.S.; Mikhailov, A.V.

    2006-01-01

    We applied the simulation model ROMUL of soil organic matter dynamics in order to analyse and predict forest soil organic matter (SOM) changes following stand growth and also to identify gaps of data and modelling problems. SOM build-up was analysed (a) from bare sand to forest soil during a primary

  5. Dynamics of soil organic matter in primary and secondary forest succession on sandy soils in The Netherlands: An application of the ROMUL model

    NARCIS (Netherlands)

    Nadporozhskaya, M.A.; Mohren, G.M.J.; Chertov, O.G.; Komarov, A.S.; Mikhailov, A.V.

    2006-01-01

    We applied the simulation model ROMUL of soil organic matter dynamics in order to analyse and predict forest soil organic matter (SOM) changes following stand growth and also to identify gaps of data and modelling problems. SOM build-up was analysed (a) from bare sand to forest soil during a primary

  6. The biogenic emission potential of nitric oxide from sandy soils

    Science.gov (United States)

    Yu, J. B.; Meixner, F. X.; Sun, Z. G.; Chen, X. B.; Mamtimin, B.

    2009-04-01

    There are about 160.9 Mha of sandy land in China, about 17.6% of total Chinese area, which mainly distributed in 35°-50° N. The western Songnen Plain, which located in the semi-arid region of Northeastern China, is one of the main sandy soil distribution regions. The changes of land use in sandy soil are accompanied by changes in biogeochemical cycles of nutrients, particularly of the air-surface exchange of trace gases like nitric oxide. Our study, based on results obtained by a laboratory incubation technique, focuses on (a) NO production and consumption in sandy soils from two types of land use as function of soil temperature and soil moisture, and (b) The biogenic emission potential of nitric oxide from sandy soils in semi-arid region. At 25˚C, average NO production (in terms of mass of N) was 0.016,and 0.013 ng kg-1s-1 in sandy soils from soybean land (SL) and man-made forest (MF), re¬spectively. NO consumption rate constant ranged from 0.26×10-6 to 7.28×10-6 m3 kg-1s-1. At 25˚C and under optimum soil moisture conditions for NO production, the NO compensation point mixing ratio was about 266 and 161 ug m-3 (465,and 281 ppb) for soils of SL and MF, respectively. Statistically sound relationships have been observed between NO fluxes and soil moisture (optimum curves). NO fluxes also increased exponentially with soil temperature at any given soil moisture. The optimum soil moisture for which maximum NO flux was observed was independent of soil temperature. The maximum of NO flux potentials for SL and MF soils (at 25°C) were 59.6 and 36.5 ng m-2s-1 at water-filled pore space (%WFPS) of 26 and 24, respectively. The NO flux potential was about 2 times larger for cropland soil than for man-made forest soils, most likely due to fertilizer application to the cropland soils.

  7. Organic matter dynamics in coarse sandy calcareous soils

    NARCIS (Netherlands)

    Pronk, A.A.; Reuler, van H.

    2011-01-01

    The decomposition of organic matter in coarse sandy calcareous soils (beach sand) is thought to be much higher than in acid fine sandy soils but relatively little research is performed on these soils. Laboratory incubation experiments in which the release of soil carbon (C) is determined may overest

  8. 2008 USDA Forest Service Lidar: Sandy River Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data for the Sandy River study area in collaboration with the USDA Forest Service. The areas...

  9. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Science.gov (United States)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  10. Soil-water characteristics of sandy soil and soil cement with and without vegetation

    OpenAIRE

    2014-01-01

    The use of soil cement as a growth medium was examined in this study. During the monitoring, green soil cement revealed diverse ecological values. The survival rates of plants in each soil conditions were higher than 80%,which was very promising. Furthermore, the survival rates dropped when the soil density reached95%, which means soil density might influence the survival rate of plant. Plant growth rates in sandy soil were higher than that in soil cement. In particular, low soil density faci...

  11. Screening of cellulose decomposing fungi in sandy dune soil of Horqin Sandy Land

    Institute of Scientific and Technical Information of China (English)

    ShaoKun Wang; XueYong Zhao; XiaoAn Zuo; XinPing Liu; Hao Qu; Wei Mao; JianYing Yun

    2015-01-01

    Cellulose decomposing fungi play an important role in litter decomposition and are decisive in nutrient cycling in sandy land ecosystems. Thirty-one strains were isolated to select efficient cellulose decomposers, and four efficient cellulose decomposing fungi (NM3-1, NM3-2, NM3-3, and NM3-4) were screened using a CMC (carboxymethyl cellulose) carbon source in dune soil of Horqin Sandy Land. They were identified as Asperigillus calidoustus, Fusarium oxysporum, Fusarium solani, and Hypocrea lixii by rDNA-ITS molecular biological methods. Cloth decomposition rates were 15.71%, 15.89%, 17.29%, and 17.89%by the four efficient decomposers incubated for 30 days, respectively. Screening of efficient cellulose decomposers can not only increase the dune soil functional microbe bank, but can also accelerate litter decom-position and available nutrient input in the Horqin Sandy Land.

  12. Microfungi diversity isolation from sandy soil of Acapulco touristic beaches

    Science.gov (United States)

    Microscopic fungi diversity in marine sandy soil habitats is associated with key functions of beach ecosystems. There are few reports on their presence in Mexican beaches. Although standard methods to obtain the fungi from soil samples are established, the aim of this pilot study was to test the pla...

  13. Fire impacts on water repellency of sandy soils in SW Spanish coast

    Science.gov (United States)

    Jordán, Antonio; Zavala, Lorena M.; Gordillo-Rivero, Ángel J.; Muñoz-Rojas, Miriam; Keesstra, Saskia; Cerdá, Artemi

    2017-04-01

    Although water repellency of sandy soils from dune areas and their consequences (irregular wetting front, preferential flow pathways) are well studied, there is not much information about the effect of fire on hydrophobicity and its consequences in these areas. In this paper we study the in-depth variation of water repellency of burnt sandy soils from south-western Spain. Generally, it was observed that water repellency from unburnt forest soils is relatively higher than in shrublands and grasslands (where the lowest values were observed). However, the impact of fire caused a strong increase of hydrophobicity in the first two cases, with no major differences between them. This study confirms the presence of natural water repellency in sandy soils, as well as some of its consequences (irregular infiltration or increased surface water flow) depending on the type of vegetation, although the differences observed in burnt soils suggest that, although the composition of vegetation is important in the formation of natural water repellency, organic matter content is much more important in the case of burnt soils.

  14. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  15. Measured and Estimated Volatilisation of Naphthalene from a Sandy Soil

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Christensen, Thomas Højlund

    1994-01-01

    The non-steady-state fluxes of naphthalene from an artificially contaminated sandy soil at different water contents were measured in the laboratory, at 10°C. The soil contained 1.1% of organic carbon and the water content varied between 2.8 and 14% w/w. The diffusive flux of naphthalene from the ...... the fluxes by a factor of 1.5 to 6.4. The largest deviation between predicted and observed dynamic fluxes was found at high water contents. For the cover soil, half-life times of 1 to 2 days were estimated by the model for naphthalene degradation....

  16. Morphology of rain water channelization in systematically varied model sandy soils

    OpenAIRE

    Wei, Y.; Cejas, C. M.; Barrois, R.; Dreyfus, R.; Durian, D. J.

    2014-01-01

    We visualize the formation of fingered flow in dry model sandy soils under different raining conditions using a quasi-2d experimental set-up, and systematically determine the impact of soil grain diameter and surface wetting property on water channelization phenomenon. The model sandy soils we use are random closely-packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates into a shallow top layer of soil and...

  17. Deep Compaction Control of Sandy Soils

    Directory of Open Access Journals (Sweden)

    Bałachowski Lech

    2015-02-01

    Full Text Available Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  18. Mitigation of Liquefaction in Sandy Soils Using Stone Columns

    Science.gov (United States)

    Selcuk, Levent; Kayabalı, Kamil

    2010-05-01

    Soil liquefaction is one of the leading causes of earthquake-induced damage to structures. Soil improvement methods provide effective solutions to reduce the risk of soil liquefaction. Thus, soil ground treatments are applied using various techniques. However, except for a few ground treatment methods, they generally require a high cost and a lot of time. Especially in order to prevent the risk of soil liquefaction, stone columns conctructed by vibro-systems (vibro-compaction, vibro-replacement) are one of the traditional geotechnical methods. The construction of stone columns not only enhances the ability of clean sand to drain excess pore water during an earthquake, but also increases the relative density of the soil. Thus, this application prevents the development of the excess pore water pressure in sand during earthquakes and keeps the pore pressure ratio below a certain value. This paper presents the stone column methods used against soil liquefaction in detail. At this stage, (a) the performances of the stone columns were investigated in different spacing and diameters of columns during past earthquakes, (b) recent studies about design and field applications of stone columns were presented, and (c) a new design method considering the relative density of soil and the capacity of drenage of columns were explained in sandy soil. Furthermore, with this new method, earthquake performances of the stone columns constructed at different areas were investigated before the 1989 Loma Prieta and the 1994 Northbridge earthquakes, as case histories of field applications, and design charts were compiled for suitable spacing and diameters of stone columns with consideration to the different sandy soil parameters and earhquake conditions. Key Words: Soil improvement, stone column, excess pore water pressure

  19. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  20. Trends in soil organic matter contents in Dutch grasslands and maize fields on sandy soils

    NARCIS (Netherlands)

    Hanegraaf, M.C.; Hoffland, E.; Kuikman, P.J.; Brussaard, L.

    2009-01-01

    There is considerable concern in Europe that soil organic matter (SOM) contents are declining, which would threaten both agriculture and the environment. We performed a trend analysis of SOM contents in sandy soils, using historic data from routine agricultural soil analyses. Data were selected from

  1. Vegetation landscape structure and dynamics in sandy forest-steppe ecotone

    Institute of Scientific and Technical Information of China (English)

    ZOUChun-jing; HANShi-jie; XUWen-duo; LIDao-tang

    2003-01-01

    Sandy forest-steppe ecotone in Baiyinaobao Natural Reserve of Inner Mongolia Autonomous Region of China is one of the special landscape types in forest-steppe vegetation zone in China. Vegetation landscape types, landscape patches and patch size were measured by the field investigation, forest photograph, and airscape. The structure of landscape patches in sandy forest-steppe ecotone, including composition structure, and size structure, was studied and the dynamics and transformation of landscape patches were analyzed. The data obtained in this study could provide theoretical basis for the research on vegetation landscape in forest-steppe ecotones and other vegetation types.

  2. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M; Ouedraogo, T; Kumar, L; Sanou, S; van Langevelde, F; Kiema, A; van de Koppel, J; van Andel, J; Hearne, J; Skidmore, AK; de Ridder, N; Stroosnijder, L; Prins, HHT

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  3. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  4. Nitrate leaching to groundwater at experimental farm "De Marke" and other Dutch sandy soils

    NARCIS (Netherlands)

    Hack-ten Broeke, M.J.D.

    2001-01-01

    This study focuses on nitrate leaching to the groundwater as a result of the land use system of experimental farm 'De Marke', translated to other sandy soils in the Netherlands. The land use was extrapolated to five major sandy soil map units, selected from the 1: 50 000 Soil Map of the Netherlands,

  5. Release behavior of copper and zinc from sandy soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-kui; XIA Yi-ping

    2005-01-01

    The concentrations and chemical forms of copper(Gu) and zinc(Zn) in surface soils directly influence the movement of Gu and Zn. In this study, thirteen sandy soil samples with a wide range of total Cu and Zn concentrations were collected for evaluating the relationships between Cu and Zn release and extraction time, ratio of soil to water, pH and electrolyte types. The results indicated that Cu released in batch extraction that represents long-term leaching was mainly from exchangeable, and carbonate bound Cu fractions, and Zn released in the batch extraction was mainly from its carbonate bound fraction. However, the Cu and Zn leached from the soils using the column leaching that represents short-term leaching were mainly from their exchangeable fractions. Soil column leaching at different pH values indicated that the amounts of leached Zn and Cu were greatly affected by pH. The Cu and Zn release experiments with varying extraction times and ratio of soil to water suggest that long-term water-logging in the soils after rain may increase contact time of the soils with water and the release of Cu and Zn to water from the soils, and total amounts of Cu or Zn released from the soils increase, but the Cu or Zn concentration in the surface runoff decrease with increasing rainfall intensity. The increased Ca concentration in soil solution increased stability of organic matter-mineral complexes and might decrease the dissolution of organic matter, and thus decreased the release of Cu-binding component of organic matter. However, high concentration of Na in the soil solution increased the dispersion of the organic matter-mineral complexes and increased dissolution of organic matter and the release of Cu from the soils.

  6. Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements

    Science.gov (United States)

    Karis J. McFarlane; Margaret S. Torn; Paul J. Hanson; Rachel C. Porras; Christopher W. Swanston; Mac A. Callaham; Thomas P. Guilderson

    2013-01-01

    Forest soils represent a significant pool for carbon sequestration and storage, but the factors controlling soil carbon cycling are not well constrained.We compared soil carbon dynamics at five broadleaf forests in the Eastern US that vary in climate, soil type, and soil ecology: two sites at the University of Michigan Biological Station (MI-Coarse, sandy;MI-Fine,...

  7. Remediation of sandy soils using surfactant solutions and foams.

    Science.gov (United States)

    Couto, Hudson J B; Massarani, Guilio; Biscaia, Evaristo C; Sant'Anna, Geraldo L

    2009-05-30

    Remediation of sandy soils contaminated with diesel oil was investigated in bench-scale experiments. Surfactant solution, regular foams and colloidal gas aphrons were used as remediation fluids. An experimental design technique was used to investigate the effect of relevant process variables on remediation efficiency. Soils prepared with different average particle sizes (0.04-0.12 cm) and contaminated with different diesel oil contents (40-80 g/kg) were used in experiments conducted with remediation fluids. A mathematical model was proposed allowing for the determination of oil removal rate-constant (k(v)) and oil content remaining in the soil after remediation (C(of)) as well as estimation of the percentage of oil removed. Oil removal efficiencies obtained under the central experimental design conditions were 96%, 88% and 35% for aphrons, regular foams and surfactant solutions, respectively. High removal efficiencies were obtained using regular foams and aphrons, demanding small amounts of surfactant.

  8. Extraction Efficiency of Belonolaimus longicaudatus from Sandy Soil.

    Science.gov (United States)

    McSorley, R; Frederick, J J

    1991-10-01

    Numbers of Belonolaimus longicaudatus extracted from sandy soils (91-92% sand) by sieving and centrifugation were only 40-55% of those extracted by sieving and incubation on a Baermann tray. Residues normally discarded at each step of the sieving plus Baermann tray extraction procedure were examined for nematodes to obtain estimates of extraction efficiencies. For third-stage and fourth-stage juveniles, males, and females, estimates of extraction efficiency ranged from 60 to 65% in one experiment and 73 to 82% in another. Estimated extraction efficiencies for second-stage juveniles were lower (33% in one experiment, 67% in another) due to losses during sieving. When sterilized soil was seeded with known numbers of B. longicaudatus, 60% of second-stage juveniles and 68-76% of other stages were recovered. Most stages of B. longicaudatus could be extracted from these soils by sieving plus Baermann incubation with an efficiency of 60-70%.

  9. Comparison of Spatial and Temporal Variation of Soil Moisture for Three Sand Fixation Forests in the Southeast Edge of Keerqin Sandy Land%科尔沁沙地东南缘3种固沙林土壤水分时空变化的比较1)

    Institute of Scientific and Technical Information of China (English)

    韩辉

    2015-01-01

    以科尔沁沙地东南缘章古台地区的樟子松、油松、赤松等3种主要固沙林为研究对象,连续4a实测了0~300 cm土层在主要生长季的土壤含水率。结果表明:不同类型固沙林土壤含水率的空间异质性明显,30 cm以上表层土壤含水率均比较高,深层土壤含水率均明显降低;赤松林地50~200 cm土层、油松林地150~300 cm土层、樟子松林地30~150 cm土层土壤含水率在生长季下降明显,而无木本植被的沙丘(对照)在0~300 cm土层的土壤含水率基本没有变化。%We measured the soil moisture content in the 0-300 cm soil layer of three types of sand fixing vegetations , Pinus syl-vestiris var.mongoliea, Pinus tablu aeformsi and Pinus densiflora of Zhanggutai region in the southeast edge of Keerqin sandy landwere during the main growing season for four consecutive years .The soil moisture content in the 0-100 cm soil layer in all types of sand-fixation forests were higher than that in bare sand dunes (check), and soil moisture content in 200-300cm layer was significantly lower than that in the bare sand dunes .The spatial heterogeneity of soil moisture con-tent of different types of sand fixation forests was obvious .soil moisture content in 0-30 cm layer was higher, soil moisture content decreased in any other layers significantly , soil moisture content in Pinus densiflora forest land in 50-200 cm soil layer decreased obviously , soil moisture content in 150-300 cm soil layers in Pinus tabulaeformis decreased significantly , and soil moisture content in 30-150 cm soil layer in the Pinus ylvestiris var.mongoliea forests decreased significantly .The soil moisture content of bare sand dunes in the soil layer of 0-300 cm changed little .

  10. Influence of biochar on the physical, chemical and retention properties of an amended sandy soil

    Science.gov (United States)

    Baiamonte, Giorgio; De Pasquale, Claudio; Parrino, Francesco; Crescimanno, Giuseppina

    2017-04-01

    Soil porosity plays an important role in soil-water retention and water availability to crops, potentially affecting both agricultural practices and environmental sustainability. The pore structure controls fluid flow and transport through the soil, as well as the relationship between the properties of individual minerals and plants. Moreover, the anthropogenic pressure on soil properties has produced numerous sites with extensive desertification process close to residential areas. Biochar (biologically derived charcoal) is produced by pyrolysis of biomasses under low oxygen conditions, and it can be applied for recycling organic waste in soils and increase soil fertility, improving soil structure and enhancing soil water storage and soil water movement. Soil application of biochar might have agricultural, environmental and sustainability advantages over the use of organic manures or compost, as it is a porous material with a high inner surface area. The main objectives of the present study were to investigate the possible application of biochar from forest residues, derived from mechanically chipped trunks and large branches of Abies alba M., Larix decidua Mill., Picea excelsa L., Pinus nigra A. and Pinus sylvestris L. pyrolysed at 450 °C for 48h, to improve soil structural and hydraulic properties (achieving a stabilization of soil). Different amount of biochar were added to a desertic sandy soil, and the effect on soil porosity water retention and water available to crops were investigated. The High Energy Moisture Characteristic (HEMC) technique was applied to investigate soil-water retention at high-pressure head levels. The adsorption and desorption isotherms of N2 on external surfaces were also determined in order to investigate micro and macro porosity ratio. Both the described model of studies on adsorption-desorption experiments with the applied isotherms model explain the increasing substrate porosity with a particular attention to the macro and micro

  11. Maize productivity and mineral N dynamics following different soil fertility management practices on a depleted sandy soil in Zimbabwe

    NARCIS (Netherlands)

    Chikowo, R.; Mapfumo, P.; Nyamugafata, P.; Giller, K.E.

    2004-01-01

    There is a need for an improved understanding of nitrogen (N) dynamics in depleted sandy soils in southern Africa. A field experiment was conducted to evaluate the performance of different soil fertility improvement practices on a degraded granitic sandy soil in Zimbabwe. Legumes capable of accumula

  12. Phosphorus fractions in sandy soils of vineyards in southern Brazil

    Directory of Open Access Journals (Sweden)

    Djalma Eugênio Schmitt

    2013-04-01

    Full Text Available Phosphorus (P applications to vineyards can cause P accumulation in the soil and maximize pollution risks. This study was carried out to quantify the accumulation of P fractions in sandy soils of vineyards in southern Brazil. Soil samples (layers 0-5, 6-10 and 11-20 cm were collected from a native grassland area and two vineyards, after 14 years (vineyard 1 and 30 years (vineyard 2 of cultivation, in Santana do Livramento, southern Brazil, and subjected to chemical fractionation of P. Phosphorus application, especially to the 30-year-old vineyard 2, increased the inorganic P content down to a depth of 20 cm, mainly in the labile fractions extracted by anion-exchange resin and NaHCO3, in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH, and in the non-labile fraction extracted by 1 mol L-1 HCl, indicating the possibility of water eutrophication. Phosphorus application and grapevine cultivation time increased the P content in the organic fraction extracted by NaHCO3 from the 0-5 cm layer, and especially in the moderately labile fraction extracted by 0.1 mol L-1 NaOH, down to a depth of 20 cm.

  13. Carbon and nitrogen in Danish forest soils - Contents and distribution determined by soil order

    DEFF Research Database (Denmark)

    Vejre, Henrik; Callesen, Ingeborg; Vesterdal, Lars

    2003-01-01

    Increasing atmospheric CO2 concentrations, and widespread deposition of N to terrestrial ecosystems has increased the focus on soil C and N pools. The aim of this study was to estimate the size and distribution of organic C and N pools in well-drained Danish forest soils. We examined 140 forest...... soil profiles from pedological surveys of Danish forest soils. We calculated total C and N pools in organic layers and mineral soils to a depth of 1 m. The profiles represent variations in texture (sandy to loamy), and soil order (USDA soil taxonomy Spodosols, Alfisols, Entisols,,and Inceptisols......)) and least in Spodosols (0.51 kg m(-2)). The main contributor to the high C content in Spodosols is the spodic horizons containing illuvial humus, and thick organic horizons. Carbon and N concentrations decreased with soil depth. Soil clay content was negatively correlated to C content and positively...

  14. Morphology of Rain Water Channeling in Systematically Varied Model Sandy Soils

    Science.gov (United States)

    Wei, Yuli; Cejas, Cesare M.; Barrois, Rémi; Dreyfus, Rémi; Durian, Douglas J.

    2014-10-01

    We visualize the formation of fingered flow in dry model sandy soils under different rain conditions using a quasi-2D experimental setup and systematically determine the impact of the soil grain diameter and surface wetting properties on the water channeling phenomenon. The model sandy soils we use are random closely packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates a shallow top layer of soil and creates a horizontal water wetting front that grows downward homogeneously until instabilities occur to form fingered flows. For hydrophobic sandy soils, in contrast, we observe that rain water ponds on the top of the soil surface until the hydraulic pressure is strong enough to overcome the capillary repellency of soil and create narrow water channels that penetrate the soil packing. Varying the raindrop impinging speed has little influence on water channel formation. However, varying the rain rate causes significant changes in the water infiltration depth, water channel width, and water channel separation. At a fixed rain condition, we combine the effects of the grain diameter and surface hydrophobicity into a single parameter and determine its influence on the water infiltration depth, water channel width, and water channel separation. We also demonstrate the efficiency of several soil water improvement methods that relate to the rain water channeling phenomenon, including prewetting sandy soils at different levels before rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel particles as soil modifiers.

  15. Effects of Soil properties on phosphorus subsurface migration in sandy soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-Kui

    2008-01-01

    The soil factors influencing the potential migration of dissolved and particulate phosphorus (P) from structurallyweak sandy subsoils were evaluated by means of soil column leaching experiments.Soil colloids were extracted from two types of soils to make the colloid-bound forms of P solution.Eight sandy soils with diverse properties were collected for packing soil columns.The effects of influent solutions varying in concentrations of colloids,P,and electrolyte,on the transport of P and quality of leachates were characterized.P migration in the soils was soil property-dependent.High soil electrical conductivity values retarded the mobility of colloids and transportability of colloid-associated P (particulate P).Soil electrical conductivity was negatively correlated with colloids and reactive particulate P (RPP) concentrations in the leachates,whereas,the total reactive P (TRP) and dissolved reactive P (DRP) concentrations in the leachates were mainly controlled by the P adsorption capacity and the P levels in the subsoil.The reactive particulate P in the leachates was positively correlated with the colloidal concentration.Increased colloidal concentration in the influent could significantly increase the colloidal concentration in the leachates.Elevated P concentration in the influent had little effect on P recovery in the leachates,but it resulted in significant increases in the absolute P concentration in the leachates.

  16. Heterogeneous water flow and pesticide transport in cultivated sandy soils : description of model concepts

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2011-01-01

    There is ample experimental evidence that complications in water flow and pesticide transport can occur in cultivated humic-sandy and loamy-sandy soils. As a result, pesticide leaching to groundwater and water courses can be higher than expected. We made an inventory of mechanistic/deterministic mod

  17. IMPROVEMENT OF SANDY SOIL WITH WATER-CONSERVING MEMBRANE AND ITS EFFECT ON CROP GROWTH

    Institute of Scientific and Technical Information of China (English)

    LI Xiu-jun; CUI Xiang-hao; LI Qu-sheng

    2005-01-01

    Water-conserving membrane is a new material of improving sandy soil. It is based on the rule that a compound with organic and inorganic components can produce colloid after its integrating with Ca2+ in soil. The water-conserving membrane will obstruct capillary and increase viscidity of sandy soil, so as to decrease leakage and evaporation in sandy soil. The water-conserving membrane contains polyacrylic acid (PAA) and bentonite. When PAA concentration and Ph of solution are different, water-conserving membrane can be made in different depth of soil. This experiment shows that the solution with 0.2% PAA does not harm and poison the crops, on the contrary,promotes crop germination. The solution with 0.2% or 0.4% PAA can accelerate corn growth. Accordingly, different crops need the application of the different PAA concentrations in the cultivation. Therefore, on the basis of different vadose coefficient in sandy soil, the solution with different PAA concentration can improve sandy soil and increase its water-conserving competence very well. The solution can be used to improve sandy soil and control desert enlargement in arid, semi-arid and semi-humid areas.

  18. Regional scale assessment of soil predictors of groundwater phosphate (P) levels in acidic sandy agricultural soils

    Science.gov (United States)

    Mabilde, Lisa

    2016-04-01

    Possible factors affecting the leaching of P to the groundwater in the Belgian sandy area are examined via regression analysis. The main objective is to investigate the dependency of phreatic groundwater phosphate concentrations (Flemish VMM monitoring net, monitoring period 2010-2013) on soil phosphate saturation degree (PSD) (1994-1997 mapping for Flemish Land Agency) (n = 1032). Additionally explored parameters include: depth distributions of Fe- and Al-oxides, sorbed P and phosphate sorption capacity (PSC) and soil pH. Interpolated data of these soil parameters in 3 depth layers (0-30, 30-60, 60-90 cm) were generated by ordinary kriging. Secondly, we assessed the significance of other edaphic factors potentially controlling the groundwater P: topsoil organic carbon content (OC %), soil clay content and fluctuation of the groundwater table. Overall, the mean PSD halved with each 30 cm depth layer (56 > 24 > 13 %) and was correlated to groundwater PO43- level. The statistical significance of the correlation with groundwater PO43- concentrations increased with depth layer. The poor correlation (R2 = 0.01) between PSD and groundwater phosphate concentration indicates that many factors, other than soil P status, control the transport of P from soil solution to the groundwater in Belgian sandy soils. A significant (PStructural equation modeling for example could be used to understand the practical importance of individual soil, management and hydrological potential predictors of groundwater PO4.

  19. Inhibiting water evaporation of sandy soil by the soil particles modified with Japanese wax

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zeng-Zhi; WANG Hong-Juan; Li Cui-Lan

    2009-01-01

    This study was conducted to resolve the problems of water conservation of sandy soil in desertification areas. The surface of soil particles was modified by molecules of natural Japanese wax through some specially screened surfactant. The modified particles were then well sprayed onto the sand, which was placed in an artificial climate box with simulating desert environment, to form a soil film with effect of suppressing water and gas-permeability. Structure of soil film was analyzed by means of X-ray diffraction (XRD) and infrared spectrometry (IR). And its mechanism of water inhibition was illustrated with DSC and TG curves. Its influence on grass-planting was tested through the instruments of water detector. The results show that sorbitol anhydride stearate(Span 80)could well disperse the Japanese wax and make it combine with the clay which is also dispersed. The pores among soil particles grew smaller and turned from hydrophilic into hydrophobic, in which way resistance to water penetrating through the film was increased. Experimental grass grows normally on sandy soil with the soil film in the artificial desert climate box, indicating that the soil particles modified with Japanese wax is an effective method to inhibit water evaporation.

  20. Trade-offs between soil hydrology and plant disease effects after biochar amendment in sandy soil

    Science.gov (United States)

    Verheijen, Frank; Silva, Flavio; Amaro, Antonio; Pinto, Gloria; Mesquita, Raquel; Jesus, Claudia; Alves, Artur; Keizer, Jacob

    2015-04-01

    Biochar can affect multiple soil-based ecosystem services to varying extents, leading to trade-offs. Improvements in plant-available water have predominantly been found at high biochar application rates in sandy soils. Reductions in plant diseases after biochar application have been found in various horticultural plants, and trees such as maple and oak, mostly at relatively low biochar application rates. Serious damage to Eucalyptus globulus has been reported since 1999 when frequent and severe defoliation of young trees was observed, and eucalypts are the major tree species in commercial forestry plantations of Portugal, forming an important economic activity. Here we investigated simultaneous effects on plant available water and on disease suppression of eucalypt, in a completely randomised full factorial greenhouse pot experiment, using a range of woody feedstock biochar concentrations in sandy soil. Treatments included plant inoculation with the fungus Neofusicoccum kwambonambiense and cycles of acute drought stress. Preliminary results showed delayed wilting for plants treated with 3-6% biochar, but also increased stem lesion length. These results suggest a trade-off between effects on water availability and disease for Eucalyptus globulus plants in the selected sandy soil amended with this specific biochar, at the selected application rates.

  1. Quantitative Retrieval of Soil Nutrient in Sandy Land Based on BJ-1 Multispectral Image

    Science.gov (United States)

    Wu, Junjun; Li, Zengyuan; Gao, Zhihai; Wang, Bengyu; Bai, Lina; Sun, Bin; Li, Changlong; Ding, Xiangyuan

    2014-11-01

    To research an indicator for sandy information, this paper conducts a study on soil nutrient in sandy land. Firstly, the difference of soil nutrient between sandy land and the other was analyzed. Secondly, the correlation between soil nutrient index and band was studied. Then the best inversion band and model was determined and evaluated. Finally, the distribution of soil nutrient was obtained. As the result indicated that the divergence of total nitrogen in different land was the maximum among the three nutrient indicators. With the development of desertification, total nitrogen declined dramatically. The correlation coefficient between each band and total nitrogen was relatively higher, and it reached 0.6. In addition, taking the reciprocal for the sum of three bands as the independent variable was an excellent choice, it could reflect the sandy information better than the single band. The quantitative retrieval model was checked by independent sample, and RMSE was 0.0407.

  2. Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2009-01-01

    the water retention curve), both exhibiting similar and exponential relationships with D50. Under variably saturated conditions, higher Dp and ka in coarser sand (larger D50) were observed due to rapid gas diffusion and advection through the less tortuous large-pore networks. In addition, soil compaction......The soil gas diffusion coefficient (Dp) and air permeability (ka) and their dependency on soil air content ( ) control gas diffusion and advection in soils. This study investigated the effects of average particle size (D50) and dry bulk density ( b) on Dp and ka for six sandy soils under variably...... saturated conditions. Data showed that particle size markedly affects the effective diameter of the drained pores active in leading gas through the sample at –100 cm H2O of soil water matric potential (calculated from Dp and ka) as well as the average pore diameter at half saturation (calculated from...

  3. Soil strength and forest operations.

    NARCIS (Netherlands)

    Beekman, F.

    1987-01-01

    The use of heavy machinery and transport vehicles is an integral part of modern forest operations. This use often causes damage to the standing trees and to the soil. In this study the effects of vehicle traffic on the soil are analysed and the possible consequences for forest management discussed.

  4. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1996-01-01

    .), or it was applied to ryegrass one month after sowing. In a sandy loam soil, 62% of the incorporated urine N and 78% of the incorporated urea N was recovered in three cuts of herbage after 5 months. In a sandy soil, 51-53% of the labelled N was recovered in the herbage and the distribution of labelled N in plant...... and soil was not significantly different for incorporated urine and urea. Almost all the supplied labelled N was accounted for in soil and herbage in the sandy loam soil, whereas 33-34% of the labelled N was unaccounted for in the sandy soil. When the stored urine was applied to the soil surface, 20...... unaccounted for was probably mainly lost by ammonia volatilization. Significantly more urine- than urea-derived N (36 and 19%, respectively) was immobilized in the sandy loam soil, whereas the immobilization of N from urea and urine was similar in the sandy soil (13-16%). The distribution of urine N, whether...

  5. Solute leaching in a sandy soil with a water-repellent surface layer: a simulation.

    NARCIS (Netherlands)

    Rooij, de G.H.; Vries, de P.

    1996-01-01

    Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field

  6. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    for each rotation: mouldboard ploughing to a depth of 20 cm (MP); harrowing to a depth of 8–10 cm (H); and direct drilling (D) at two experimental sites with a sandy loam soil and different water budgets in Denmark. The Muencheberg soil quality rating (M-SQR) method and simpler soil quality indices (i...

  7. Measurement and Computation of Movement of Bromide Ions and Carbofuran in Ridged HUmic-Sandy Soil

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2010-01-01

    Water flow and pesticide transport in the soil of fields with ridges and furrows may be more complex than in the soil of more level fields. Prior to crop emergence, the tracer bromide ion and the insecticide carbofuran were sprayed on the humic-sandy soil of a potato field with ridges and furrows. R

  8. Recharge in northern clime calcareous sandy soils: soil water chemical and carbon-14 evolution

    Science.gov (United States)

    Reardon, E. J.; Mozeto, A. A.; Fritz, P.

    1980-11-01

    Chemical analyses were performed on soil water extracted from two cores taken from a sandy calcareous soil near Delhi, Ontario. Calcite saturation is attained within the unsaturated zone over short distances and short periods of time, whereas dolomite undersaturation persists to the groundwater table. The progressive dissolution of dolomite by soil water, within the unsaturated zone, after calcite saturation is reached results in calcite supersaturation. Deposition of iron and manganese oxyhydroxide phases occurs at the carbonate leached/unleached zone boundary. This is a result of soil water neutralization due to carbonate dissolution during infiltration but may also reflect the increased rate of oxidation of dissolved ferrous and manganous ions at higher pH's. The role of bacteria in this process has not been investigated. The depth of the carbonate leached/unleached zone boundary in a calcareous soil has important implications for 14C groundwater dating. The depth of this interface at the study site (-2 m) does not appear to limit 14C diffusion from the root zone to the depth at which carbonate dissolution occurs. Thus, soil water achieves open system isotopic equilibrium with the soil CO 2 gas phase. It is calculated that in soils with similar physical properties to the study soil but with depths of leaching of 5 m or more, complete 14C isotopic equilibration of soil water with soil gas would not occur. Soil water, under these conditions would recharge to the groundwater exhibiting some degree of closed system 14C isotopic evolution.

  9. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha-1 yr-1 (7.5 ton ha-1 yr-1). The soils were characterized for chemical and physical properties. Tomato was planted...... in a greenhouse using soil samples from the field and vegetative and yield parameters (plant height, stem diameter, leaf number, and fruit yield), water productivity, and harvest index were evaluated. All compost types significantly increased soil total carbon, total nitrogen, pH, electrical conductivity...

  10. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-04-01

    Soil piping is a complex land degradation process, which involves the hydraulic removal of soil particles by subsurface flow. This process is frequently underestimated and omitted in most soil erosion studies. However, during the last decades several studies reported the importance of soil piping in various climatic zones and for a wide range of soil types. Compared to sheet, rill and gully erosion, very few studies focused on the factors controlling piping and, so far, there is no research study dealing with the effects of plant roots on piping susceptibility of soils having a low cohesion. The objective of this study is therefore to assess the impact of grass root density (RD) on soil piping in sandy soils using the pinhole test. The pinhole test involves a water flow passing through a hole of 1 mm diameter in a soil specimen (sampled using a metal ring with a diameter of 5 cm and a length of 8 cm), under varying hydraulic heads (50 mm, 180 mm, 380 mm and 1020 mm; Nadal-Romero et al., 2011). To provide a quantitative assessment piping susceptibility of the soil sample, the pipeflow discharge (cm3 s-1) and the sediment discharge (g s-1) were measured every minute during a five minute test. Bare and root-permeated samples were tested, using a sandy soil with a sand, silt, clay content of respectively, 94%, 4% and 2%. The root-permeated topsoil samples were taken in field plots sown with a mixture of grasses with fibrous roots. All soil samples were placed on a sandbox with a 100 mm head for 24 hours to ensure a similar water content for all samples. In total, 67 pinhole tests (lasting 5 minutes each) were conducted, i.e. 43 root-permeated soil samples with RD ranging from 0.01 to 0.93 kg m-3 and 24 root-free soil samples as a reference. Clear piping erosion could be observed in 65% of the root-free soil samples, whereas only 17% of rooted soil samples revealed clear piping erosion during the tests. Statistical analyses show that there is a negative correlation (-0

  11. Improvement of Water Movement in an Undulating Sandy Soil Prone to Water Repellency

    NARCIS (Netherlands)

    Oostindie, K.; Dekker, L.W.; Wesseling, J.G.; Ritsema, C.J.

    2011-01-01

    The temporal dynamics of water repellency in soils strongly influence water flow. We investigated the variability of soil water content in a slight slope on a sandy fairway exhibiting water-repellent behavior. A time domain reflectometry (TDR) array of 60 probes measured water contents at 3-h

  12. Rain water transport and storage in a model sandy soil with hydrogel particle additives.

    Science.gov (United States)

    Wei, Y; Durian, D J

    2014-10-01

    We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.

  13. Contribution of individual sorbents to the control of heavy metal activity in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2001-01-01

    A multisurface model is used to evaluate the contribution of various sorption surfaces to the control of heavy metal activity in sandy soil samples at pH 3.7-6.1 with different sorbent contents. This multisurface model considers soil as a set of independent sorption surfaces, i.e. organic matter (NI

  14. Factors affecting N immobilisation/mineralisation kinetics for cellulose-, glucose- and straw-amended sandy soils

    NARCIS (Netherlands)

    Vinten, A.J.A.; Whitmore, A.P.; Bloem, J.; Howard, R.; Wright, F.

    2002-01-01

    The kinetics of nitrogen immobilization/mineralization for cellulose-, glucose- and straw-amended sandy soils were investigated in a series of laboratory incubations. Three Scottish soils expected to exhibit a range of biological activity were used: aloamy sand, intensively cropped horticultural soi

  15. Irrigation and nitrogen use efficiency of Thuja occidentalis grown on sandy soils

    NARCIS (Netherlands)

    Pronk, A.A.

    2004-01-01

    A combined conifer growth - soil water and nitrogen balance model was calibrated to simulate dry mass production and partitioning, water and nitrogen demand and nitrogen losses for Thuja occidentalis grown for two years on a sandy soil. Light interception was successfully described by the row-of-cub

  16. Effect of Coated Urea with Humic-Calcium on Transformation of Nitrogen in Coastal Sandy Soil: A Soil Column Method

    Directory of Open Access Journals (Sweden)

    Sulakhudin

    2010-01-01

    Full Text Available Effect of Coated Urea with Humic-Calcium on Transformation of Nitrogen in Coastal Sandy Soil: A Soil ColumnMethod (Sulakhudin, A Syukur, D Shiddieq and T Yuwono: In coastal sandy soil, mainly nitrogen losses due toleaching resulted to low fertilizer efficiency. Slow-release N fertilizers are proposed to minimize these losses, andhumic-calcium coated urea has been examined. A soil column method was used to compare the effects of coated ureawith humic-calcium on transformation and leaching loss of N in coastal sandy soil. The experiment aid to compare twokinds sources of humic substances (cow manure and peat which mixed with calcium as coated urea on transformation,vertical distribution and leaching N in coastal sandy soil. The concentration of humic-calcium coated urea i.e.1%, 5%and 10% based on their weight. The results showed that urea coated with humic-calcium from cow manure (UCHMand humic-calcium from peat (UCHP increased the N total and available N in the soil and decreased leaching loss ofN from the soil column. Compared to UCHP, UCHM in all concentration showed N-nitrate higher than N-ammonium onincubation length 2, 4 and 6 weeks. The N leached from a costal sandy soil with application coated urea with UCHMranged from 21.18% to 23.72% of the total N added as fertilizer, for coated urea with UCHP they ranged between21.44% and 23.25%, whereas for urea (control reached 29.48%. Leaching losses of mineral N were lower when ureacoated with UCHM compared to urea coated with UCHP or urea fertilizer. The study concluded that the UCHM isbetter than UCHP in decreasing N leached from coastal sandy soil

  17. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... and significantly decreased bulk density, with no effect on plant available water compared to the control. Fresh and dry fruit weights were significantly increased after compost addition. Plant height, leaf number, stem diameter, and total biomass did not significantly improve after compost addition. Spent mushroom...

  18. Effects of Carboxymethylcelluloses (CMC) on Some Hydraulic Properties of Sandy Soil

    Institute of Scientific and Technical Information of China (English)

    ANDRY Henintsoa; INOUE Mitsuhiro; MORITANI Shigeoki; UZOMA Kingsley Chinyere

    2010-01-01

    The property of hydrophilic polymers capable absorbing huge volumes of water led to many practical applications of these new materials in arid regions for improving the water retention in sandy soils. Effects of four carboxymethylcelluloses (CMC), mixed at various rates with the sandy soil, on the water-holding capacity and hydraulic conductivity (Ks) when leached with distilled water (simulating rain), tap water, and saline water were evaluated. The maximum water absorption of CMCs ranged between 80 and 100 kg. kg-1 of polymer; however, the absorbent swelling capacity decreased significantly with increasing the salt concentration in the solution. The water absorption capacity of CMCs decreased significantly when incorporated in the sandy soil compared to that of the absorbent alone. Application of CMC increased significantly the available water content up to 3 ±0.5 times. All soils treated with CMCs showed a significant lower in Ks compared to the control soil. Meanwhile, Ks was found increased with increasing the salt concentration in the leaching solution. This understanding of characteristics of the absorbents and the interactions among absorbents, soil, and irrigation water quality would be of help in water management of sandy soil.

  19. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    Science.gov (United States)

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  20. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  1. Application of Wenner Configuration to Estimate Soil Water Content in Pine Plantations on Sandy Land

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To estimate the mean value of surface soil water content rapidly, accurately, and nonintrusively, field investigations on soil electrical resistivity (SER) with the Yokogawa 324400 earth resistivity meter and the surface (0-150 cm) soil water content (SWC) with time domain reflectometry (TDR), together with the abiotic factors including soil texture, structure,and salinity concentrations were conducted in the Mongolian pine (Pinus sylvestris var. mongolica) plantations on a sandy land. The measurement of SER was based on the 4-probe Wenner configuration method. Relationships between the values of SWC and SER were obtained based on analysis of the abiotic factors of the research site, which play a key role in affecting the soil electrical resistivity. Results indicate that the SER meter could be used to estimate the mean value of SWC in the Mongolian pine plantations on the sandy land during the growing seasons. The bulky nature of the equipment simplified the cumbersome measurements of soil water content with the general methods. It must be noted that the Wenner configuration method could only provide the mean values of the SWC, and the soil texture, structure,temperature, and solute concentrations influenced the SER and further affected the estimation of the SWC by the SER meter. Therefore, the results of this study could be applied on a sandy land during the growing seasons only. However,the SWC of other soil types also may be obtained according to the individual soil types using the procedures of this study.

  2. Experiments on the movement of pesticides in sandy soils to groundwater : prospects of testing preferential transport models

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2012-01-01

    Many agricultural areas with humic-sandy and loamy-sandy soils are used also for the extraction of water for drinking-water supply. Model concepts have been developed for the fast preferential transport of plant protection products (pesticides) in such soils, e.g. by fingered and funneled flow. An i

  3. Effect of Land Cover Change on Soil Phosphorus Fractions in Southeastern Horqin Sandy Land, Northern China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qiong; ZENG De-Hui; FAN Zhi-Ping; D.K.LEE

    2008-01-01

    In the past 50 years, large areas of the Horqin sandy land were afforested to prevent desertification. Although the afforestation policy appears successful, many people now doubt whether it is suitable to plant trees with high density on the poor soils in semiarid regions. Little is known about the impacts of afforestation on the sandy soil properties, although the evaluation of these impacts is fundamental to judge the rationality of afforestation policy. Soil phosphorus (P) fractions, acid phosphomonoesterase activities, and other soil chemical properties were compared among five adjoining typical ecosystems on poor sandy soils in southeastern Horqin sandy land. The ecosystems studied are natural elm savanna, degraded grassland, Mongolian pine (Pinus sylvestris var. Mongolica) plantation, Chinese pine (Pinus tabulaeformis) plantation, and mixed plantation of Mongolian pine and poplar (Populus simonii). The results showed that organic P dominated soil P (47%-65%) was the principal source of available P. The degradation of elm savanna to grassland significantly reduced soil pH and resulted in an overall reduction in soil fertility, although slightly increased labile inorganic P. Grassland afforestation had no significant influence on soil pH, organic carbon, and total N but significantly reduced total P. Impacts of grassland afforestation on soil P fractions depended on tree species. Natural elm savanna had higher soil P conserving ability than artificial plantations. Therefore, with the aim of developing a sustainable ecosystem, we suggested that vegetations with low nutrient demand (particularly P) and efficient nutrient cycling would be more suitable for ecosystem restoration in the semiarid region.

  4. Soil Inorganic Nitrogen and Microbial biomass Carbon and Nitrogen Under Pine Plantations in Zhanggutai Sandy Soil

    Institute of Scientific and Technical Information of China (English)

    YU Zhan-Yuan; CHEN Fu-Sheng; ZENG De-Hui; ZHAO Qiong; CHEN Guang-Sheng

    2008-01-01

    The dynamics of soil inorganic nitrogen (NH+4-N and NO-3N) and microbial biomass carbon (Cmic) and nitrogen (Nmic) under 30-year-old fenced Pinus sylvestris L. var. mongolica Litvin (SF), unfenced P. sylvestris L. var. mongolica Litvin (SUF), and unfenced Pinus densiflora Siebold et Zucc. (DUF) plantations in the Zhanggutai sandy soil of China were studied during Apr. to Oct. 2004 by the in situ closed-top core incubation method. All mentioned C and N indices in each stand type fluctuated over time. The ranges of inorganic N, Cmic, and Nmic contents in the three stand types were 0.7-2.6, 40.0-128.9, and 5.4-15.2 μg g-1, respectively. The average contents of soil NH+4-N and Cmic under the three 30-year-old pine plantations were not different. However, soil NO-3-N and total inorganic N contents decreased in the order of SUF > SF > DUF, the Nmic content was in the order of SF = SUF > DUF, and the Cmic:Nmic ratio was in the order of SUF = DUF > SF. Seasonal variations were observed in soil inorganic N, microbial biomass, and plant growth. These seasonal variations had certain correlations with microbe and plant N use in the soil, and their competition for NH+4-N was mostly regulated by soil N availability. The influence of tree species on inorganic N and Nmic were mainly because of differences in litter quality. Lack of grazing decreased the Cmic:N ratio owing to decreased carbon output and increased the ability of soil to supply N. The soil N supply under the P. sylvestris var. mongolica plantation was lower than under the P. densiflora plantation.

  5. Preliminary assessment of soil erosion impact during forest restoration process

    Science.gov (United States)

    Lai, Yen-Jen; Chang, Cheng-Sheng; Tsao, Tsung-Ming; Wey, Tsong-Huei; Chiang, Po-Neng; Wang, Ya-Nan

    2014-05-01

    Taiwan has a fragile geology and steep terrain. The 921 earthquake, Typhoon Toraji, Typhoon Morakot, and the exploitation and use of the woodland by local residents have severely damaged the landscape and posed more severe challenges to the montane ecosystem. A land conservation project has been implemented by the Experimental Forest of National Taiwan University which reclaimed approximately 1,500 hectares of leased woodland from 2008 to 2010, primarily used to grow bamboo, tea trees, betel nut, fruit, and vegetable and about 1,298 hectares have been reforested. The process of forest restoration involves clear cutting, soil preparation and a six-year weeding and tending period which may affect the amount of soil erosion dramatically. This study tried to assess the impact of forest restoration from the perspective of soil erosion through leased-land recovery periods and would like to benefit the practical implementation of reforestation in the future. A new plantation reforested in the early 2013 and a nearby 29-year-old mature forest were chosen as experimental and comparison sites. A self-designed weir was set up in a small watershed of each site for the runoff and sediment yield observation. According to the observed results from May to August 2013, a raining season in Taiwan, the runoff and erosion would not as high as we expected, because the in-situ soil texture of both sites is sandy loam to sandy with high percentage of coarse fragment which increased the infiltration. There were around 200 kg to 250 kg of wet sand/soil yielded in mature forest during the hit of Typhoon Soulik while the rest of the time only suspended material be yielded at both sites. To further investigate the influence of the six-year weeding and tending period, long term observations are needed for a more completed assessment of soil erosion impact.

  6. Distribution of transformed organic matter in structural units of loamy sandy soddy-podzolic soil

    Science.gov (United States)

    Kogut, B. M.; Yashin, M. A.; Semenov, V. M.; Avdeeva, T. N.; Markina, L. G.; Lukin, S. M.; Tarasov, S. I.

    2016-01-01

    The effect of land use types and fertilizing systems on the structural and aggregate composition of loamy sandy soddy-podzolic soil and the quantitative parameters of soil organic matter has been studied. The contribution of soil aggregates 2-1 mm in size to the total Corg reserve in the humus horizon is higher than the contributions of other aggregates by 1.3-4.2 times. Reliable correlations have been revealed between the contents of total (Corg), labile (Clab), and active (C0) organic matter in the soil. The proportion of C0 is 44-70% of Clab extractable by neutral sodium pyrophosphate solution. The contributions of each of the 2-1, 0.5-0.25, and humus horizon of loamy sandy soddy-podzolic soil, the active, slow, and passive pools contain 6-11, 34-65, and 26-94% of the total Corg, respectively.

  7. Estudos laboratoriais do comportamento de um solo residual arenoso reforçado com fibras de polipropileno, visando à aplicação em estradas florestais Laboratory testing of a polypropylene fiber reinforced residual sandy soil for forest road application

    Directory of Open Access Journals (Sweden)

    Tiago Pinto da Trindade

    2006-04-01

    Full Text Available Este trabalho teve como objetivo analisar o comportamento mecânico da mistura de um solo residual jovem de textura predominantemente arenosa reforçado com fibras de polipropileno, com vistas à aplicação em estradas florestais. Como ponto de partida, determinou-se, mediante os resultados de ensaios de compressão não-confinada, realizados em corpos-de-prova compactados na energia do ensaio Proctor Normal, que o quantitativo de 0,75% de fibras com 20 mm de comprimento foi a combinação responsável pelo maior ganho de resistência. Com a mistura solo-fibra composta por essa combinação, foram realizados ensaios triaxiais do tipo CID/Sat em corpos-de-prova compactados na energia anteriormente referida. Através desta pesquisa, foi possível avaliar: (i a influência da variação da umidade nos parâmetros de resistência mecânica do solo e das misturas solo-fibra e (ii a influência das fibras nos parâmetros de resistência ao cisalhamento do solo em estudo. Analisando os resultados, pôde-se concluir que o uso de fibras de polipropileno promoveu um ganho da ordem de 110% na resistência à compressão não-confinada e de 560% na coesão de intercepto do solo estudado.The purpose of this study was to analyze the mechanical behavior of a polypropylene fiber-reinforced young residual sandy soil for forest road application. The first step was to determine the best combination of fiber content and length that would give the greatest increase in unconfined compressive strength of mixture specimens compacted at the Standard Proctor effort. The best combination resulting from the laboratory test program was 0.75% fiber content and fiber 20-mm length. The next step in the testing program was to run triaxial CID/Sat tests in mixture specimens prepared with the best combination and compacted at the Standard Proctor effort. From the laboratory testing program data it was possible to evaluate the influence of the water content in the mechanical

  8. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland.

    Science.gov (United States)

    Zuo, Xiaoan; Wang, Shaokun; Lv, Peng; Zhou, Xin; Zhao, Xueyong; Zhang, Tonghui; Zhang, Jing

    2016-01-01

    The trait-based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gene sequencing. We also examined associations of soil fungal diversity with plant functional diversity reflected by the dominant species' traits in community (community-weighted mean, CWM) and the dispersion of functional trait values (FD is). We further used the structure equation model (SEM) to evaluate how plant richness, biomass, functional diversity, and soil properties affect soil fungal diversity in sandy grassland restoration. Soil fungal richness in mobile dune and semifixed dune was markedly lower than those of fixed dune and grassland (P functional diversity explained nearly 70% variances of soil fungal richness. Strong association of soil fungal richness with the dominant species in the community supported the mass ratio hypothesis. Our results clearly highlight the role of plant functional diversity in enhancing associations of soil fungal diversity with community structure and soil properties in sandy grassland ecosystems.

  9. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    Science.gov (United States)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    Sandy soils are used in agriculture in many regions of the world. The share of sandy soils in Poland is about 55%. The aim of this study was to assess spatial variability of soil physical and chemical properties affecting soil quality and crop yields in the scale of field (40 x 600 m) during three years of different weather conditions. The experimental field was located on the post glacial and acidified sandy deposits of low productivity (Szaniawy, Podlasie Region, Poland). Physical soil quality indicators included: content of sand, silt, clay and water, bulk density and those chemical: organic carbon, cation exchange capacity, acidity (pH). Measurements of the most soil properties were done at spring and summer each year in topsoil and subsoil layer in 150 points. Crop yields were evaluated in places close to measuring points of the soil properties. Basic statistics including mean, standard deviation, skewness, kurtosis minimal, maximal and correlations between the soil properties and crop yields were calculated. Analysis of spatial dependence and distribution for each property was performed using geostatistical methods. Mathematical functions were fitted to the experimentally derived semivariograms that were used for mapping the soil properties and crop yield by kriging. The results showed that the largest variations had clay content (CV 67%) and the lowest: sand content (5%). The crop yield was most negatively correlated with sand content and most positively with soil water content and cation exchange capacity. In general the exponential semivariogram models fairly good matched to empirical data. The range of semivariogram models of the measured indicators varied from 14 m to 250 m indicate high and moderate spatial variability. The values of the nugget-to-sill+nugget ratios showed that most of the soil properties and crop yields exhibited strong and moderate spatial dependency. The kriging maps allowed identification of low yielding sub-field areas that

  10. Irrigation initiation timing in soybean grown on sandy soils in Northeast Arkansas

    Science.gov (United States)

    Irrigation initiation timing was evaluated in furrow-irrigated soybean field with sandy soils in Mississippi County, AR. A major objective of this 2015 study was to validate and expand irrigation timing recommendations that pair plant growth measures with weather cues including use of local weather ...

  11. Effects of DCD addition to slurry on nitrate leaching in sandy soils

    NARCIS (Netherlands)

    Corré, W.J.; Zwart, K.B.

    1995-01-01

    The effects of the addition of the nitrification inhibitor dicyandiamide (DCD) to cattle slurry, applied in autumn to an arable sandy soil, were investigated in a three-year field experiment in the Netherlands. Treatments included application of slurry with DCD in November and December, application

  12. Transport of water and solutes in wettable and water repellent sandy soils

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.

    1996-01-01

    The research yielded the following conclusions and results: preferential flow can be expected in recently deposited, loosely packed, wettable dune sands; preferential flow is common in most water-repellent sandy soils; distribution flow in topsoils isa process of major importance, resulting in a

  13. Biochar and Mill Ash Use as Soil Amendments to Grow Sugarcane in Sandy Soils of South Florida

    Science.gov (United States)

    Alvarez-Campos, O.; Lang, T. A.; Bhadha, J. H.; McCray, M.; Gao, B.; Glaz, B.; Daroub, S. H.

    2015-12-01

    The use of agricultural and urban organic residues as amendments provides an option to improve sugarcane production in sandy soils located northwest of the Everglades Agricultural Area, while reducing waste. This study was conducted to determine the effect of mill ash and three biochars on sugarcane yield and sandy soil properties. Mill ash and biochars produced from hardwood yard waste (HY), barn shavings with horse manure (HM), and rice hulls (RH) were incorporated at 1% and 2% (by weight) to sandy soils in a lysimeter experiment. A control without amendment and an often-used commercial practice of mill ash applied at 6% (AS6) were also included. Results showed that RH2 and AS6 produced greater biomass and sucrose yield compared with the control. According to critical nutrient level analysis, RH and AS amendments also resulted in the highest silicon content, which had a positive correlation with increasing sugarcane yield. In addition, RH2 and AS6 increased total phosphorus, Mehlich-3 phosphorus, and cation exchange capacity (CEC) compared with the control. While CEC remained constant with AS2 and AS6 applications, CEC significantly increased over time with RH2. Moreover, higher amendment applications increased soil organic matter compared with the control and did not decrease over time, which suggests a positive influence for long term carbon sustainability and nutrient cycling in sandy soils. Overall, RH2 and AS6 have the most potential to be used as amendments in sandy soils of South Florida due to their positive effects on soil properties, which improved sugarcane yield. However, no negative consequences were found with the application of any other amendment in terms of sugarcane growth and soil quality. Future research should focus on the use of RH and AS amendments on long-term field-scale studies, and the economic feasibility of a single year application on plant and ratoon cane yields.

  14. Temporal stability of electrical conductivity in a sandy soil

    Science.gov (United States)

    Pedrera-Parrilla, Aura; Brevik, Eric C.; Giráldez, Juan V.; Vanderlinden, Karl

    2016-07-01

    Understanding of soil spatial variability is needed to delimit areas for precision agriculture. Electromagnetic induction sensors which measure the soil apparent electrical conductivity reflect soil spatial variability. The objectives of this work were to see if a temporally stable component could be found in electrical conductivity, and to see if temporal stability information acquired from several electrical conductivity surveys could be used to better interpret the results of concurrent surveys of electrical conductivity and soil water content. The experimental work was performed in a commercial rainfed olive grove of 6.7 ha in the `La Manga' catchment in SW Spain. Several soil surveys provided gravimetric soil water content and electrical conductivity data. Soil electrical conductivity values were used to spatially delimit three areas in the grove, based on the first principal component, which represented the time-stable dominant spatial electrical conductivity pattern and explained 86% of the total electrical conductivity variance. Significant differences in clay, stone and soil water contents were detected between the three areas. Relationships between electrical conductivity and soil water content were modelled with an exponential model. Parameters from the model showed a strong effect of the first principal component on the relationship between soil water content and electrical conductivity. Overall temporal stability of electrical conductivity reflects soil properties and manifests itself in spatial patterns of soil water content.

  15. Retention of pesticides in sandy soil columns modified with a wood barrier

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Martin, M. J.; Rodriguez-Cruz, M. S.; Ordax, J. M.; Arienzo, M.

    2009-07-01

    Wood residues can be used as low-cost potential sorbents of hydrophobic pesticides in technologies aimed to prevent soil and water contamination and reduce the risk of environmental pollution produced by point pollution sources of these compounds. The objective of this work was to study the effect of a pine or oak sawdust barrier on the retention of Iinuron, alachlor and metalaxyl, with different hydrophobic character, in a sandy soil. (Author)

  16. Parameters of the occurrence of internal erosion processes in salty-sandy soils

    OpenAIRE

    Gajić Grozdana

    2005-01-01

    The study was aimed at defining the conditions of the occurrence of internal erosion in silty-sandy soils. The susceptibility of this soil to internal erosion depends on the porosity, particle-size composition and hydro-geo-mechanical parameters. Internal erosion stability was analyzed by the introduction of the coefficient of particle composition as the critical particle-size condition, which is in fact the coefficient of internal erosion (Kue). Based on the study results, mathematical model...

  17. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field......, it was found that soil pH, rather than biochar rates, was a driving environmental variable. For ASA, the methodological approach was challenged by product sorption, but results did not suggest that biochar significantly stimulated the enzyme activity. Crop yields of maize in field experiments with 10–100 Mg...

  18. Sustainable long-term intensive application of manure to sandy soils without phosphorus leaching

    DEFF Research Database (Denmark)

    Asomaning, Samuel K.; Abekoe, Mark K.; Dowuona, G.N.N.

    2015-01-01

    Long-term application of manure to sandy soils to ensure high crop productivity may lead to phosphorus (P) leaching, which, in turn, may deteriorate the quality of recipient waters because of eutrophication. The risk of P leaching depends on contents of aluminum (Al) and iron (Fe) oxides...... soils, whereas in the deepest soil layers the P contents in the cultivated and uncultivated soils were almost the same indicating very limited downward P transport despite long-term manure application. This was supported by comparable P concentrations in groundwater taken under cultivated...

  19. Impact of biochar addition on thermal properties of a sandy soil: modelling approach

    Science.gov (United States)

    Usowicz, Boguslaw; Lipiec, Jerzy; Lukowski, Mateusz; Bis, Zbigniew; Marczewski, Wojciech; Usowicz, Jerzy

    2017-04-01

    Adding biochar can alter soil thermal properties and increase the water holding capacity and reduce the mineral soil fertilization. Biochar in the soil can determine the heat balance on the soil surface and the temperature distribution in the soil profile through changes in albedo and the thermal properties. Besides, amendment of soil with biochar results in improvement of water retention, fertility and pH that are of importance in sandy and acid soils, widely used in agriculture. In this study we evaluated the effects of wood-derived biochar (0, 10, 20, and 40 Mg ha-1) incorporated to a depth of 0-15 cm on the thermal conductivity, heat capacity, thermal diffusivity and porosity in sandy soil under field conditions. In addition, soil-biochar mixtures of various percentages of biochar were prepared to determine the thermal properties in function of soil water status and density in laboratory. It was shown that a small quantity of biochar added to the soil does not significantly affect all the thermal properties of the soil. Increasing biochar concentration significantly enhanced porosity and decreased thermal conductivity and diffusivity with different rate depending on soil water status. The soil thermal conductivity and diffusivity varied widely and non-linearly with water content for different biochar content and soil bulk density. However, the heat capacity increased with biochar addition and water content linearly and was greater at higher than lower soil water contents. The measured and literature thermal data were compared with those obtained from the analytic model of Zhang et al. (2013) and statistical-physical model (Usowicz et al., 2016) based on soil texture, biochar content, bulk density and water content.

  20. Soil erosion rates by wind-driven rain from a sandy soil in Denmark

    Science.gov (United States)

    Fister, W.; Kuhn, N. J.; Itin, N.; Tesch, S.; Heckrath, G.; Ries, J. B.

    2012-04-01

    Soil erosion by wind and water is able to cause severe soil loss from agricultural fields. Laboratory studies in recent years have shown that wind most probably has an increasing effect on soil erosion rates by water. However, field studies have so far not been able to quantify and proof this assumption explicitly. Especially the differentiation between the influence of windless and wind-driven erosion seems to be the major issue. The objectives of this study were, therefore, to explicitly investigate the importance of wind-driven rain in relation to erosion rates without the effect of wind by applying a newly developed Portable Wind and Rainfall Simulator (PWRS) that is able to simulate the processes both separately and simultaneously. The PWRS was used on bare sandy soil near Viborg, Denmark. Prior to simulation the soil was ploughed and after consolidation harrowed to create surface structures and roughness representing typical conditions after seed bed preparation. To facilitate the separation of specific influences by wind-driven rain and to avoid systematic errors a defined order of four consecutive test runs was established: 0) single wind test run for 10 min, 1) single rainfall test run on dry soil, 2) single rainfall test run on moist soil, 3) simultaneous wind and rainfall test run (wind-driven rainfall). Each rainfall simulation lasted for 30 minutes with a 30 min break in between to allow for initial drainage of the soil and for remounting sediment catchers. By utilizing a gutter in combination with wedge-shaped sediment traps it was possible to separate between splash and runoff erosion from the 2.2 m2 plot. The results show a wide range of soil detachment raging from zero up to more than 500 g m-2 in 30 minutes. Five out of nine test sequences support the theory that wind-driven rain causes more erosion than windless rain. The relation between the two processes is therefore not as clear as expected and seems to be dominated by the natural variability

  1. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils

    Science.gov (United States)

    Alice W. Ratcliff; Matt D. Busse; Carol J. Shestak

    2006-01-01

    Glyphosate applied at the recommended field rate to a clay loam and a sandy loam forest soil resulted in few changes in microbial community structure. Total and culturable bacteria, fungal hyphal length, bacterial:fungal biomass, carbon utilization profiles (BIOLOG), and bacterial and fungal phospholipid fatty acids (PLFA) were unaffected 1, 3, 7, or 30 days...

  2. Vertical distribution of soil moisture and surface sandy soil wind erosion for different types of sand dune on the southeastern margin of the Mu Us Sandy Land, China

    Institute of Scientific and Technical Information of China (English)

    ChaoFeng Fu; JingBo Zhao; FanMin Mei; TianJie Shao; Jun Zuo

    2015-01-01

    Soil moisture is a critical state affecting a variety of land surface and subsurface processes. We report investigation results of the factors controlling vertical variation of soil moisture and sand transport rate of three types of dunes on the south-eastern margin of the Mu Us Sandy Land. Samples were taken from holes drilled to a depth of 4 m at different topographic sites on the dunes, and were analyzed for soil moisture, grain-size distribution and surface sediment discharge. The results show that: (1) The average soil moisture varies in different types of dunes, with the following sequences ordered from highest to lowest: in the shrubs-covered dunes and the trees-covered dunes the sequence is from inter-dunes lowland to windward slope to leeward slope. The average moisture in the bare-migratory sand dunes is sequenced from inter-dunes lowland to leeward slope to windward slope. (2) Vegetation form and surface coverage affect the range of soil moisture of different types of dunes in the same topographic position. The coefficient of variation of soil moisture for shrubs-covered dunes is higher than that of other types of dune. (3) The effect of shrubs on dune soil moisture is explained in terms of the greater ability of shrubs to trap fine-grained atmospheric dust and hold moisture. (4) The estimated sand transport rates over sand dunes with sparse shrubs are less than those over bare-migratory dunes or sand dunes with sparse trees, indi-cating that shrubs are more effective in inhibiting wind erosion in the sandy land area.

  3. Parameters of the occurrence of internal erosion processes in salty-sandy soils

    Directory of Open Access Journals (Sweden)

    Gajić Grozdana

    2005-01-01

    Full Text Available The study was aimed at defining the conditions of the occurrence of internal erosion in silty-sandy soils. The susceptibility of this soil to internal erosion depends on the porosity, particle-size composition and hydro-geo-mechanical parameters. Internal erosion stability was analyzed by the introduction of the coefficient of particle composition as the critical particle-size condition, which is in fact the coefficient of internal erosion (Kue. Based on the study results, mathematical models and the functional correlation between water regime and resistant characteristics of silty-sandy soils, we defined the parameters of the occurrence of initial internal erosion and analyzed the effects of the practical application of the study results.

  4. Competition between n-alkane-assimilating yeasts and bacteria during colonization of sandy soil microcosms.

    Science.gov (United States)

    Schmitz, C; Goebel, I; Wagner, S; Vomberg, A; Klinner, U

    2000-07-01

    An n-alkane-assimilating strain of Candida tropicalis was selected in sandy soil inoculated with microorganisms from contaminated sites. Competition experiments with n-alkane utilizers from different strain collections confirmed that yeasts overgrow bacteria in sandy soil. Acidification of the soil is one of the colonization factors useful for the yeasts. It can be counteracted by addition of bentonite, a clay mineral with high ion exchange capacity, but not, however, by kaolin. Strains of different yeast species showed different levels of competitiveness. Strains of Arxula adeninivorans, Candida maltosa, and Yarrowia lipolytica overgrew strains of C. tropicalis, C. shehatae or Pichia stipitis. Two strains of C. maltosa and Y. lipolytica coexisted during several serial transfers under microcosm conditions.

  5. Volatilisation of o-Xylene from Sandy Soil

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Christensen, Thomas Højlund; Brun, Adam

    1994-01-01

    The diffusive release of o-xylene from two soils with different contents of organic carbon (1.1 % and 0.11 % TOC) and with two different water contents (app. 5 % w/w and 15 % w/w was studied in the laboratory. The soils were spiked with o-xylene in the laboratory. The fluxes were measured over...

  6. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    Science.gov (United States)

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (bank soil (bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport

  7. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil.

    Science.gov (United States)

    Chen, G C; He, Z L; Stoffella, P J; Yang, X E; Yu, S; Calvert, D

    2006-01-01

    There is increasing concern over P leaching from sandy soils applied with water-soluble P fertilizers. Laboratory column leaching experiments were conducted to evaluate P leaching from a typical acidic sandy soil in Florida amended with DPR fertilizers developed from dolomite phosphate rock (DPR) and N-Viro soil. Ten leaching events were carried out at an interval of 7 days, with a total leaching volume of 1,183 mm equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachates were collected and analyzed for total P and inorganic P. Phosphorus in the leachate was dominantly reactive, accounting for 67.7-99.9% of total P leached. Phosphorus leaching loss mainly occurred in the first three leaching events, accounting for 62.0-98.8% of the total P leached over the whole period. The percentage of P leached (in the total P added) from the soil amended with water-soluble P fertilizer was higher than those receiving the DPR fertilizers. The former was up to 96.6%, whereas the latter ranged from 0.3% to 3.8%. These results indicate that the use of N-Viro-based DPR fertilizers can reduce P leaching from sandy soils.

  8. Changes in physical properties of sandy soil after long-term compost treatment

    Science.gov (United States)

    Aranyos, József Tibor; Tomócsik, Attila; Makádi, Marianna; Mészáros, József; Blaskó, Lajos

    2016-07-01

    Studying the long-term effect of composted sewage sludge application on chemical, physical and biological properties of soil, an experiment was established in 2003 at the Research Institute of Nyíregyháza in Hungary. The applied compost was prepared from sewage sludge (40%), straw (25%), bentonite (5%) and rhyolite (30%). The compost was ploughed into the 0-25 cm soil layer every 3rd year in the following amounts: 0, 9, 18 and 27 Mg ha-1 of dry matter. As expected, the compost application improved the structure of sandy soil, which is related with an increase in the organic matter content of soil. The infiltration into soil was improved significantly, reducing the water erosion under simulated high intensity rainfall. The soil compaction level was reduced in the first year after compost re-treatment. In accordance with the decrease in bulk density, the air permeability of soil increased tendentially. However, in the second year the positive effects of compost application were observed only in the plots treated with the highest compost dose because of quick degradation of the organic matter. According to the results, the sewage sludge compost seems to be an effective soil improving material for acidic sandy soils, but the beneficial effect of application lasts only for two years.

  9. Phosphorus leaching from a sandy soil in the presence of modified and un-modified adsorbents.

    Science.gov (United States)

    Moharami, Somayeh; Jalali, Mohsen

    2014-10-01

    Phosphorus (P) leaching from a sandy soil was investigated in the presence of modified and unmodified clay minerals and nanoparticles (NPs). Compared with control soil, amended soil with NPs had the highest percentage of P retention than amended soil with clay minerals. Among the adsorbents used, the highest percentage of P retention was produced by Al₂O₃-chitosan while the lowest percentage of P retention was by zeolite. Data measured for P leaching after using adsorbents were used to predict P leaching using transport model. PHREEQC model was able to model P leaching from control and amended soil. After leaching, P values in control and amended soil were fractionated by a sequential extraction procedure. Concentration of P in Ca-bound fraction (HCl-P) after application of modified and unmodified clay minerals and NPs (except TiO₂ and Al₂O₃) increased and decreased, respectively. Saturation indices (SIs) and P speciation were assessed using the Visual MINTEQ version 2.3 program. According to the SIs, leaching P from control and amended soil with different adsorbent was controlled by dissolution of hydroxyapatite. The results indicated that used adsorbents can reduce P leaching from the sandy soil. Thus, retention of P by amended soil reduced a risk in terms of groundwater contamination with P.

  10. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland

    OpenAIRE

    Zuo, Xiaoan; Wang, Shaokun; Lv, Peng; Zhou, Xin; Zhao, Xueyong; Zhang, Tonghui; Zhang, Jing

    2015-01-01

    Abstract The trait‐based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gen...

  11. Using humic acid for remediation of sandy soils contaminated by heavy metal

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper presents the development of a new remediation technology for contaminated sandy soil using humic acid (HA). Distribution of amount of Cr (VI) in the aqueous or solid system containing humic acid and sandy soil, was studied using batch experiments, es-pecially for effects of reaction time, pH, concentrations, temperature and irradiation on the reduction of Cr (VI), and the optimum reaction conditions. The results indicated a significant increase of the adsorption of Cr (VI) because of the complexion reaction between HA and Cr (VI) that occurred under acidic condition. The reaction mechanisms of HA with chromium on sand surfaces were certified. Thus it came to a conclusion that HA could be used effectively on remediation of Cr (VI)-contaminated soil and groundwater in a wide range of pH, with or without sunlight. These results suggest that the organic-inorganic complex-such as sandy soils coated with humic substances-is important as a metal reservoir in the environment.

  12. Effect of tree species and soil properties on nutrient immobilization in the forest floor

    DEFF Research Database (Denmark)

    Raulund-Rasmussen, Karsten; Vejre, Henrik

    1995-01-01

    To investigate the effect of tree species and soil properties on organic matter accumulation and associated nutrients, an area-based sampling of the forest floor was carried out in a 28 years old species trial including Norway spruce, Douglas fir, beech, and common oak at two sites, a poor...... and sandy soil, and a fertile loamy soil. The accumulation of C, N and P in the forest floor was significantly higher at the sandy site than at the loamy site under all species. At the loamy site, oak was characterized by lesser accumulation of C, N and P than the other species. Remarkably, the C....../N-ratios showed no substantial differences, whereas the C/P-ratios were significantly higher at the sandy site for all species. pH was significantly lower at the sandy site for all species, and among the species, pH was lower in the conifer forest floors than in the broadleave forest floors. The concentration...

  13. Spatial patterns of wetting characteristics in grassland sandy soil

    Directory of Open Access Journals (Sweden)

    Orfánus Tomáš

    2016-06-01

    Full Text Available In grasslands where organic and inorganic resources are alternating at scales of individual plants, the transient character is given to certain wetting properties of soil, which then become highly variable both in space and in time. The objective of presented study was to study wetting pattern within two soil horizons at 5-cm and 10-cm depths respectively and to examine how the wetting patterns relate to hydraulic conductivity determined by Minidisc infiltrometer at suction −2 cm, K(−2 cm. This characteristics is implicitly independent on antecedent soil water content (SWC since it relates to steady infiltration phase but can be influenced by present soil water repellency (SWR. Field measurements were performed on July 27–28, 2010 on the grassland experimental site located near the village Sekule in Southwest Slovakia. The water drop penetration time (WDPT, SWC and tension Minidisc infiltration measurements were carried out on the 0.64 m2 plot in a regular 8 × 8 grid. The results showed that SWR and SWC influence each other and cause correlation between spatial patterns of studied soil wetting characteristics and between characteristics measured at the two soil depths. Further, it was found out, that calculation of K(−2 cm according to Zhang may cause apparent correlation of K(−2 cm with antecedent SWC, which is the artificial effect of sorptivity parameter in the equation on steady stage of infiltration process. This pseudocorrelation has disappeared after adopting of Minasny and McBratney (2000 approaches by calculation of K(−2 cm.

  14. Response of corn silage (Zea mays L.) to zinc fertilization on a sandy soil under field and

    National Research Council Canada - National Science Library

    Saad Drissi; Abdelhadi Aït Houssa; Ahmed Bamouh; Mohamed Benbella

    2017-01-01

    The purpose of the experiments was to evaluate zinc (Zn) fertilization effect on growth, yield and yield components of corn silage grown on a sandy soil under field and outdoor container conditions...

  15. Leaching behaviour of azoxystrobin in sandy loam soil

    African Journals Online (AJOL)

    Mr HMM Mzimela

    2014-08-01

    Aug 1, 2014 ... harmful pesticide residues on the crops and in the soil. Recent studies have ... roots and translocate to stems and leaves via xylem, or through leaf ... Analysis of azoxystrobin was carried out on gas liquid chromatograph (GLC) ...

  16. Mycorrhizal population on various cropping systems on sandy soil in dryland area of North Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    WAHYU ASTIKO

    2016-01-01

    Full Text Available Abstract. Astiko W, Fauzi MT, Sukartono. 2016. Mycorrhizal population on various cropping systems on sandy soil in dryland area of North Lombok, Indonesia. Nusantara Bioscience 8: 66-70. Inoculation of arbuscular mycorrhizal fungi (AMF on maize in sandy soil is expected to have positive implications for the improvement of AMF population and nutrient uptake. However, how many increases in the AMF population and nutrient uptake in the second cycle of a certain cropping system commonly cultivated by the farmers after growing their corn crop have not been examined. Since different cropping systems would indicate different increases in the populations of AMF and nutrient uptake. This study aimed to determine the population AMF and nutrient uptake on the second cropping cycle of corn-based cropping systems which utilized indigenous mycorrhizal fungi on sandy soil in dryland area of North Lombok, West Nusa Tenggara, Indonesia. For that purpose, an experiment was conducted at the Akar-Akar Village in Bayan Sub-district of North Lombok, designed according to the Randomized Complete Block Design, with four replications and six treatments of cropping cycles (P0 = corn-soybean as a control, in which the corn plants were not inoculated with AMF; P1 = corn-soybean, P2 = corn-peanut, P3 = corn-upland rice, P4 = corn-sorghum, and P5 = corn-corn, in which the first cycle corn plants were inoculated with AMF. The results indicated that the mycorrhizal populations (spore number and infection percentage were highest in the second cycle sorghum, achieving 335% and 226% respectively, which were significantly higher than those in the control. Increased uptake of N, P, K and Ca the sorghum plants at 60 DAS of the second cropping cycle reached 200%; 550%; 120% and 490% higher than in the control. The soil used in this experiment is rough-textured (sandy loam, so it is relatively low in water holding capacity and high porosity.

  17. Effect of Corn Residue Biochar on the Hydraulic Properties of Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Avanthi Deshani Igalavithana

    2017-02-01

    Full Text Available Biochar has an ability to alter the biological, chemical, and physical properties of soil due to its physicochemical properties such as surface area, porosity, nutrient retention ability, available nutrient contents, aromaticity, etc. The present study was designed to evaluate the impact of physical properties and application rate of biochar on the hydraulic properties of a sandy loam soil in the short term. Biochar was produced at 500 °C from dried corn residue (BC500. The BC500 was incorporated at the rates of 0, 2.5%, 5.0%, 7.5%, and 10% (w·w−1 into the sandy loam soil and filled up to a height of 4 cm, in cores having 5 cm diameter and height. Each treatment was performed in triplicate and equilibrated for 30 days. Then saturated hydraulic conductivity (Ksat, water holding capacity (WHC, and bulk density were determined in each sample after four days of saturation at room temperature in a water bath. The BC500 particle size distribution, pores, and surface functional groups were assessed. The Ksat exhibited a highly significant exponential reduction from 0% to 7.5% of BC500 application and approached an asymptote at 10% BC500. Bulk density showed a significant negative correlation to biochar application rate. The WHC and BC500 application rate illustrated a strong positive relationship. Biochar surface was free from hydrophobic functional groups. The addition of BC500 has a positive influence on soil hydraulic properties, primarily due to the increased soil porosity. The BC500 is composed of a microporous structure and hydrophilic surface that retain water in sandy textured soils. The application of BC500 would be a wise investment to maximize the water use efficiency in soils for agricultural production.

  18. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    Science.gov (United States)

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content.

  19. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil

    Science.gov (United States)

    2015-04-01

    FOLSOMIA CANDIDA IN A NATURAL SANDY LOAM SOIL ECBC-TR-1272 Carlton T. Phillips Ronald T. Checkai Roman G. Kuperman Michael Simini Jan E...SUBTITLE Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil 5a. CONTRACT NUMBER 5b...2,4-dinitrotoluene (2,4-DNT) Folsomia candida octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) 2,6-dinitrotoluene

  20. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio and the voids inside the pseudo-grains (matrix void ratio. The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling.

  1. Measurement and computation of movement of bromide ions and carbofuran in ridged humic-sandy soil.

    Science.gov (United States)

    Leistra, Minze; Boesten, Jos J T I

    2010-07-01

    Water flow and pesticide transport in the soil of fields with ridges and furrows may be more complex than in the soil of more level fields. Prior to crop emergence, the tracer bromide ion and the insecticide carbofuran were sprayed on the humic-sandy soil of a potato field with ridges and furrows. Rainfall was supplemented by sprinkler irrigation. The distribution of the substances in the soil profile of the ridges and furrows was measured on three dates in the potato growing season. Separate ridge and furrow systems were simulated by using the pesticide emission assessment at regional and local scales (PEARL) model for pesticide behavior in soil-plant systems. The substances travelled deeper in the furrow soil than in the ridge soil, because of runoff from the ridges to the furrows. At 19 days after application, the peak of the bromide distribution was measured to be in the 0.1-0.2 m layer of the ridges, while it was in the 0.3-0.5 m layer of the furrows. After 65 days, the peak of the carbofuran distribution in the ridge soil was still in the 0.1 m top layer, while the pesticide was rather evenly distributed in the top 0.6 m of the furrow soil. The wide ranges in concentration measured with depth showed that preferential water flow and substance transport occurred in the sandy soil. Part of the bromide ion distribution was measured to move faster in soil than the computed wave. The runoff of water and pesticide from the ridges to the furrows, and the thinner root zone in the furrows, are expected to increase the risk of leaching to groundwater in ridged fields, in comparison with more level fields.

  2. [Effects of land use and management on soil quality of Heerqin sandy land].

    Science.gov (United States)

    Su, Yongzhong; Zhao, Halin

    2003-10-01

    The changes of soil physical, chemical and biological properties under different land use and management lasted for 14 years were investigated on the Heerqin sandy land. The results showed that among various land use systems marked differences exhibited in soil quality indicators, including soil particle composition, porosity distribution, bulk density, water-holding capacity, organic matter and nutrient contents, pH, and enzyme activities. Most of these soil quality indicators were the highest in the orchard intercropped with crops and perennial grass (agroforestry systems), intermediate in the well-management irrigated farmland, and the lowest in the less-management dry farmland. Compared to the primary grassland soil, although some soil properties, including porosity distribution, water-holding capacity, phosphorus content, and enzyme activities, were improved in the well-management systems, soil organic matter and nitrogen contents were significantly lower. It suggested that a long-term input of organic matter was needed for the restoration and reestablishment of soil carbon and nitrogen pools in the seriously degraded ecosystem. Inappropriate land use and management could rapidly worsen soil quality, and hence, from a perspective of soil resource conservation, a preferable way for preventing soil degradation and achieving sustainable land use should be to give up the cultivation of degraded dry farmlands, and to adopt more effective and appropriate soil management and cultivation practices.

  3. Enzyme activity in forest peat soils

    OpenAIRE

    Błońska, Ewa

    2010-01-01

    The aim of the study was to determine the activity of dehydrogenases and urease in forest peat soils of different fertility. There were selected 23 experimental plots localised in central and northern Poland. The research was conducted on forest fens, transition bogs and raised bogs. The biggest differences in soil physical and chemical properties were detected between fen and raised bog soils while raised bog soils and transition bog soils differed the least. Statistically significant dif...

  4. Assessment of Fate of Thiodicarb Pesticide in Sandy Clay Loam Soil

    Directory of Open Access Journals (Sweden)

    M. A. Bajeer

    2015-06-01

    Full Text Available In present study the fate of thiodicarb pesticide in sandy clay loam soil was investigated through its adsorption and leaching using HPLC. Experimental results revealed that thiodicarb follows first order kinetic with rate constant value of 0.711 h-1 and equilibrium study showed that Freundlich model was best fitted with multilayer adsorption capacity 3.749 mol/g and adsorption intensity 1.009. Therefore, adsorption of thiodicarb was multilayer, reversible and non-ideal. Leaching study has indicated intermediate mobility of thiodicarb with water due to its solubility, while field study showed the non-leacher nature. However both adsorption and leaching were heavily affected by soil characteristics. As the soil taken was sandy clay loam hence due to clay texture adsorption was higher because of vacant sites existing and greater surface area. For this the pesticide has remained adsorbed in above 20 cm soil layer as clearly seen from field study, minor amount was recorded in third layer of soil having 21-30 cm depth. The leached amount of thiodicarb in first and last part of water was 1.075 and 0.003 ng/µl. The general trend observed for adsorption in column and field soil was decreased downwards from 2.027 to 0.618 and 5.079 to 0.009 ng/µl.

  5. Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils

    DEFF Research Database (Denmark)

    Masis Melendez, Federico; Deepagoda Thuduwe Kankanamge Kelum, Chamindu; de Jonge, Lis Wollesen

    2014-01-01

    Accurate prediction of saturated hydraulic conductivity (Ksat) is essential for the development of better distributed hydrological models and area-differentiated risk assessment of chemical leaching. The saturated hydraulic conductivity is often estimated from basic soil properties such as particle...... size distribution or, more recently, soil-air permeability. However, similar links to soil gas diffusivity (Dp/Do) have not been fully explored even though gas diffusivity is a direct measure of connectivity and tortuosity of the soil pore network. Based on measurements for a coarse sandy soil....../Do model to measured data, and subsequently linked to the cementation exponent of the wellestablished Revil and Cathles predictive model for saturated hydraulic conductivity. Furthermore, a two-parameter model, analogue to the Kozeny-Carman equation, was developed for the Ksat - Dp/Do relationships. All 44...

  6. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per;

    2015-01-01

    properties of soils, especially on water retention at low matric potentials. To overcome this knowledge gap, the effects of combined BC (0 to 100 Mg ha-1) and manure (21 and 42 Mg ha-1) applications on water vapor sorption and specific surface area was investigated for a sandy loam soil. In addition......, potential impacts of BC aging were evaluated. All considered BC-amendment rates led to a distinct increase of water retention, especially for low matric potentials. The observed increases were attributed to a significant increase of soil organic matter contents and specific surface areas in BCamended soils......Over the last few years, the application of biochar (BC) as a soil amendment to sequester carbon and mitigate global climate change has received considerable attention. While positive effects of biochar on plant nutrition are well documented, little is known about potential impacts on the physical...

  7. Effect of pH on bacteriophage transport through sandy soils

    Science.gov (United States)

    Kinoshita, Takashi; Bales, Roger C.; Maguire, Kimberley M.; Gerba, Charles P.

    1993-01-01

    Effects of pH and hydrophobicity on attachment and detachment of PRD-1 and MS-2 in three different sandy soils were investigated in a series of laboratory-column experiments. Concentrations of the lipid-containing phage PRD-1 decreased 3–4 orders of magnitude during passage through the 10–15-cm-long columns. Attachment of the lipid-containing phage PRD-1 was insensitive to pH and was apparently controlled by hydrophobic interactions in soil media. The less-hydrophobic phage MS-2 acted conservatively; it was not removed in the columns at pH's 5.7–8.0. The sticking efficiency (α) in a colloid-filtration model was between 0.1 and 1 for PRD-1, indicating a relatively high removal efficiency. Phage attachment was reversible, but detachment under steady-state conditions was slow. An increase in pH had a moderate effect on enhancing detachment. Still, these soils should continue to release phage to virus-free water for days to weeks following exposure to virus-containing water. In sandy soils with a mass-fraction organic carbon as low as a few hundredths of a percent, pH changes in the range 5.7–8.0 should have little effect on retention of more-hydrophobic virus (e.g., PRD-1), in that retardation will be dominated by hydrophobic effects. Sharp increases in pH should enhance detachment and transport of virus previously deposited on soil grains. A more hydrophilic virus (e.g., MS-2) will transport as a conservative tracer in low-carbon sandy soil.

  8. Initial soil formation and humus accumulation on the spoil heaps of sandy quarry, Russian-North-West

    Science.gov (United States)

    Abakumov, E.

    2009-04-01

    The accumulation and transformation of organic matter were studied in chronoseries of different aged (3-, 10-, 20-, 30-, 43-, and 60-year-old) soils and a reference (mature) plot. The ecogenetic succession of plants on sand quarry dumps was started from grass plant community and finished on the Scotch Pine forest on the 60-years old plot. The pedogenesis rate was closely related to the rate of phytocenosis development, and the thicknesses of organic and mineral horizons increased synchronously. The profile distribution of organic matter in young soils was estimated as an ectomorphic distribution, and the humus stocks in the mineral horizons of the same soils were comparable with the reserves of organic matter in the litters. The illuvial (Bs) horizons of the soils under study played a significant role in the accumulation of organic carbon; the resistance of organic matter to mineralization increased with age. In the soil chronoseries, the caloricity of litter organic matter increased, as well as the content of energy accumulated in the litters. The composition of humus differed strongly between the eluvial and illuvial horizons; in the chronosequence, the relative content of humic acids increased in the E horizon, and that of fulvic acids increased in the B horizon. On the base of C-13 NMR study of humic substances the humic and fulvic acid are different in organic, eluvial and illuvial horizons in terms of different structural components content. The effect of the phytocenosis on the soil was increasingly mediated with time. The accumulation and transformation of organic matter were the leading pedogenic processes at all stages. The main conclusion of investigation is that the 60 years is enough for formation of embrio-profile of podzol soil on the dumps of quaternary sands of former sandy quarry in the south taiga, North-West of Russia.

  9. Mobilization and Mobility of Colloidal Phosphorus in Sandy Soils

    OpenAIRE

    Ilg, Katrin

    2007-01-01

    erschienen in: Journal of Environmental Quality. - 2005(34)3, S. 926-935; Soil Science Society of America Journal. - 2007(71)2, S. 298-305 Die Auswaschung von Phosphor (P) trägt zur Verlagerung von P aus terrestrischen in aquatische Ökosysteme bei. Neben der gelösten Form kann P im Sickerwasser auch an Kolloide gebunden auftreten. Die Sorption von P an potentiell dispergierbare Bestandteile der Bodenmatrix, z.B. Eisen- und Aluminiumoxide und -hydroxide, beeinflusst deren Oberflächenladung ...

  10. Relationships between water infiltration and oil spill migration in sandy soils

    Science.gov (United States)

    Kessler, Avner; Rubin, Hillel

    1987-06-01

    This article summarizes a study directed towards the prediction of oil spill migration in sandy soils. Such a prediction is needed for the design of remedial measures against soil and groundwater contamination. The geneal approach in this study is to convert available data concerning water infiltration into equivalent unknown data concerning oil spillage. This information is then fed into a numerical model by which the oil spill migration is simulated. Laboratory measurements including retention curve, hydraulic conductivity and infiltration rate, were made separately for water and kerosene in order to evaluate and confirm the suggested approach.

  11. Does drought alter hydrological functions in forest soils?

    Science.gov (United States)

    Gimbel, Katharina F.; Puhlmann, Heike; Weiler, Markus

    2016-04-01

    Climate change is expected to impact the water cycle and severely affect precipitation patterns across central Europe and in other parts of the world, leading to more frequent and severe droughts. Usually when projecting drought impacts on hydrological systems, it is assumed that system properties, like soil properties, remain stable and will not be affected by drought events. To study if this assumption is appropriate, we address the effects of drought on the infiltration behavior of forest soils using dye tracer experiments on six sites in three regions across Germany, which were forced into drought conditions. The sites cover clayey-, loamy- and sandy-textured soils. In each region, we compared a deciduous and a coniferous forest stand to address differences between the main tree species. The results of the dye tracer experiments show clear evidence for changes in infiltration behavior at the sites. The infiltration changed at the clayey plots from regular and homogeneous flow to fast preferential flow. Similar behavior was observed at the loamy plots, where large areas in the upper layers remained dry, displaying signs of strong water repellency. This was confirmed by water drop penetration time (WDPT) tests, which revealed, in all except one plot, moderate to severe water repellency. Water repellency was also accountable for the change of regular infiltration to fingered flow in the sandy soils. The results of this study suggest that the drought history or, more generally, the climatic conditions of a soil in the past are more important than the actual antecedent soil moisture status regarding hydrophobicity and infiltration behavior; furthermore, drought effects on infiltration need to be considered in hydrological models to obtain realistic predictions concerning water quality and quantity in runoff and groundwater recharge.

  12. Evaluation of Soil Quality Indicators in Sugarcane Management in Sandy Loam Soil

    Institute of Scientific and Technical Information of China (English)

    S.A.C.SANT'ANNA; M.F.FERNANDES; W.M.P.M.IVO; J.L.S.COSTA

    2009-01-01

    An important factor for the sustainability of soils highly susceptible to degradation is the use of monitoring tools that promptly and realistically reflect changes imposed on soil by different cropping systems.To select soil quality indicator variables in sugarcane (Saccharum offcinarum L.) production areas that fulfill the criteria of sensitivity to management practices and between-season consistency in the management discrimination,ten composite soil samples (0-10 cm) were collected in July 2005 (rainy season) and again in March 2006 (dry season) from areas under cultivation of organic sugarcane (OS),green sugarcane (GS),burned sugarcane (BS) and from an adjacent native forest (NF) area at Usina Triunfo,Boca da Mata,Alagoas,Brazil.Microbial biomass-C (MBC),total organic C (TOC),soil enzyme activity expressed as the rate of fluorescein diacetate (FDA) hydrolysis,mean weight diameter of water-stable soil aggregates (MWD),and percentage of water-stable macroaggregates (PWSA) were analyzed.Although MBC and TOC were higher in NF than in the cultivated areas,no differences were observed in these C pools between the three sugarcane systems.The response of FDA to the site management was dependent on the sampling time.In the rainy period,the activity followed the order:NF > OS > GS > BS,whereas in the dry season,only NF differed from the other treatments.Irrespective of the sampling time,MWD and PWSA decreased in the order NF > OS = GS > BS.The variables MWD and PWSA are quite sensitive for discriminating between site management histories regardless the sampling season.

  13. Grape yield, and must compounds of 'Cabernet Sauvignon' grapevine in sandy soil with potassium contents increasing

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2016-08-01

    Full Text Available ABSTRACT: Content of exchangeable potassium (K in t soil may influence on its content in grapevines leaves, grape yield, as well as, in must composition. The study aimed to assess the interference of exchangeable K content in the soil on its leaf content, production and must composition of 'Cabernet Sauvignon' cultivar. In September 2011, in Santana do Livramento (RS five vineyards with increasing levels of exchangeable K in the soil were selected. In the 2012/13 and 2013/14 harvests, the grape yield, yield components, total K content in the leaves in full bloom and berries veraison were evaluated. Values of total soluble sugar (TSS, pH, total titratable acidity (TTA, total polyphenols and anthocyanins were evaluated in the must. Exchangeable K content increase in soil with sandy surface texture increased its content in leaves collected during full flowering and in berries and must pH; however, it did not affect production of the 'Cabernet Sauvignon'.

  14. RESEARCH PROGRESS OF SOIL FORMING PROCESS OF AEOLIAN SANDY SOIL UNDER THE EFFECT OF ARTIFICIAL SHELTER-BELT%人工防护林作用下风沙土成土过程的研究进展

    Institute of Scientific and Technical Information of China (English)

    李从娟; 雷加强; 高培; 徐新文; 王永东; 范敬龙

    2012-01-01

    人工防护林是防风固沙、有效防治沙漠化的重要措施之一.在沙漠地区建立人工防护林,可以有效防止土壤侵蚀,促进土壤有机质及黏粒积累,促使地表结皮形成,不仅对流沙起到了固定作用,而且促进了风沙土的成土过程.本文结合植物-土壤相互作用理论,分别从植物地上部分对养分的阻滞、聚集和减少土壤表面蒸发,以及地下部分的固沙和物质的分解与营养补给等方面综述了生物防护林在风沙土成土过程中的作用.同时,从以往的研究发现,在风沙土成土过程中,土壤机械组成变细,比重和容重减小;土壤剖面结构分异显著,分层增加;土壤含水量和养分显著聚集;土壤微生物数量和种类增加,活性增强,酶活性也大幅度提高.总之,随着沙漠生物防护林的建造,林下风沙土性质发生了明显的改良作用,逐渐发展成固定风沙土.说明人工防护林和风沙土的成土过程是协同发展的,这不仅有利于沙漠防护林的可持续管护,也有利于沙漠化的防治和退化生态系统的恢复与重建.%Artificial shelterbelt is an important and effective measure for checking winds and fixing drifting sands and hence for controlling desertification. To build up windbreak forest belts in desert areas can effectively control soil erosion and promote accumulation of organic matter and clay in the soil and formation of crust at soil surface, thus fixing drifting sands and accelerating formation of aeolian sandy soil. Based on the theory of plant-soil interaction theory, an overview is presented of the effects of artificial shelterbelt on formation of aeolian sandy soil, from the aspects of the function of the aboveground parts of plants intercepting and accumulating nutrients and reducing surface soil evaporation, and the function of the underground parts of plants fixing drifting sands, decomposing organic matter and supplying nutrients. It was found from the

  15. Transfer of cadmium from a sandy acidic soil to man: A population study

    Energy Technology Data Exchange (ETDEWEB)

    Staessen, J.A.; Celis, H.G.; Fagard, R.H.; Lijnen, P.J.; Thijs, L.B.; Amery, A.K. (Univ. of Leuven (Belgium)); Vyncke, G. (Ministry of the Flemish Community, Hasselt (Belgium)); Lauwerys, R.R.; Roels, H.A. (Univ. of Louvain, Brussels (Belgium)); Claeys, F. (Ministry of Health and Social Affairs, Brussels (Belgium)); Dondeyne, F. (Ministry of the Flemish Community, Brussels (Belgium)); Ide, G. (LISEC Research Centre for Ecology and Forestry, Genk (Belgium)); Rondia, D.; Sartor, F. (Univ. of Liege, (Belgium))

    1992-06-01

    This population study included 230 subjects (age range 20-83 years) who consumed vegetables grown in kitchen gardens on a sandy acidic soil (mean pH {approximately}6.3). The study investigated the association between the Cd (cadmium) levels in blood and urine and the Cd concentration in the soil (range 0.2-44 ppm). Seventy-six subjects were current smokers and 122 participants lived in a district with known Cd pollution. Urinary Cd in the 230 subjects averaged 8.7 nmole/24 hr, (range 1.3 to 47 nmole/24 hr) after age adjustment positively correlated with the Cd level in the soil; a twofold increase of the Cd concentration in the soil was accompanied by a 7% rise in urinary Cd in men and by a 4% rise in women. Blood Cd averaged 11.5 nmole/liter (range 1.8-41 nmole/liter) and was negatively associated with the Cd level in the soil. After adjustment for significant covariates (smoking and serum {gamma}-glutamyl transpeptidase in both sexes, and age and serum ferritin in women), a twofold increase in the Cd concentration in the soil was accompanied by a 6% decrease in blood Cd in men and by a 10% decrease in women. In conclusion, in a rural population, consuming vegetables grown on a sandy acidic soil, 2 to 4% of the variance of urinary Cd was directly related to the Cd level in the soil. The negative correlation with blood Cd, a measure of more recent exposure, was biased by the implementation of preventive measures in the polluted district.

  16. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  17. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  18. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater. PMID:24587723

  19. Zeolite and Hucalcia as Coating Material for Improving Quality of NPK Fertilizer in Costal Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sulakhudin

    2011-05-01

    Full Text Available he growth and yield of plants are mainly a function of the quantity of fertilizer and water. In coastal sandy soil, nutrient losses and dry soils are seriously problems. The objective of the research was to study effect of zeolite and hucalci concentrations as NPK coating materials on NPK qualities i.e. water adsorption and release of N, P and K. The research used a coastal sandy soil as media. It was conducted in a laboratory of Soil Science Department, Gadjah Mada University from July to August 2009. Experimental design used was a factorial in a completely randomized design. The first factor was hucalci concentration, consisted of 10% (H1, 20% (H2, and 30% (H3. The second factor was zeolite concentration, consisted of 25% (Z1, 50% (Z2, 75% (Z3, and 100% (Z4. NPK fertilizer (without coating used as a control. The results showed that hucalci and zeolite had a capability to increase water adsorption and to retard the release of N, P, K. The coated NPK with hucalci 30% and zeolite 100% had the highest quality in water absorption, water retention and release of nutrients.

  20. Response of the microbial community to copper oxychloride in acidic sandy loam soil.

    Science.gov (United States)

    Du Plessis, K R; Botha, A; Joubert, L; Bester, R; Conradie, W J; Wolfaardt, G M

    2005-01-01

    Determining the response of different microbial parameters to copper oxychloride in acidic sandy loam soil samples using cultivation-dependent and direct microscopic techniques. Culturable microbial populations were monitored for 245 days in a series of soil microcosms spiked with different copper oxychloride concentrations. Microbial populations responded differently to additional Cu. Protistan numbers and soil metabolic potential decreased. Experiments with more soil samples revealed that metabolic potential was not significantly affected by protista was noted in soil containing only 15 mg kg(-1) EDTA-extractable Cu. The negative impact on protistan numbers was less severe in soils with a higher phosphorous and zinc content. Bacterial populations responded differently, and protista were most sensitive to elevated Cu levels. Protistan numbers in soil from uncultivated land were higher and seemed to be more sensitive to additional Cu than the numbers of these organisms in soil originating from cultivated land. Protistan sensitivity to small increases in Cu levels demonstrates the vulnerability of the soil ecosystem to Cu perturbations, especially when the importance of protista as link in the flow of energy between trophic levels is considered.

  1. Does thermal carbonization (Biochar of organic material increase more merits for their amendments of sandy soil?

    Directory of Open Access Journals (Sweden)

    Y. Wu

    2014-02-01

    Full Text Available Organic materials (e.g. furfural residue are generally believed to improve the physical and chemical properties of the soils with low fertility. Recently, biochar have been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC content and cation exchange capacity (CEC, and enhanced the available phosphorus (P in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5–0.8 (soil pH: 8.3–8.6, while 5% biochar decreased by 0.25–0.4 due to the loss of acidity in pyrolysis process. With respect to available P, 5% of the furfural addition increased available P content by 4–6 times in comparison to 2–5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP, biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar addition at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar have different amendments depending on soil properties: furfural was more effectively to decrease pH and to increase available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.

  2. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth

    Institute of Scientific and Technical Information of China (English)

    GONG Zongqiang; LI Peijun; B.M.Wilke; Kassem Alef

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soft for a remediation purpose, with some of the oft remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soft was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soft properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soft, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth ofA. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oft addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oft in the soils was proved by the soft organic carbon content.

  3. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Imran, Muhammad; Dhavamani, Jeyakumar; Ismail, Iqbal M. I.; Basahi, Jalal M.; Almeelbi, Talal

    2017-01-01

    We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg−1 soil on Cynodon dactylon litter (3 g kg−1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems. PMID:28155886

  4. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Imran, Muhammad; Dhavamani, Jeyakumar; Ismail, Iqbal M. I.; Basahi, Jalal M.; Almeelbi, Talal

    2017-02-01

    We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg‑1 soil on Cynodon dactylon litter (3 g kg‑1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems.

  5. A Bioassay Technique to Study Clomazone Residues in Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Jelena Gajić Umiljendić

    2013-01-01

    Full Text Available A bioassay test was conducted to evaluate the sensitivity of maize, sunflower and barley toclomazone residues in sandy loam soil. Clomazone was applied at different rates from 0.12 to12 mg a.i./kg of soil. The parameters measured 14 days after treatment were: shoot height, freshand dry weight, and content of pigments (carotenoids, chlorophyll a and chlorophyll b. Theresults showed that the lowest clomazone concentration caused a significant reduction in allmeasured parameters for barley and sunflower shoots. Fresh weight of maize shoots was notsensitive to clomazone residual activity in soil while the other parameters were highly inhibited.Nomenclature: clomazone (2-(2-chlorbenzyl-4,4-dimethyl-1,2-oxazolidin-3-one, maize(Zea mays L., sunflower (Helianthus annuus L., barley (Hordeum vulgare L.

  6. Estimation of nitrogen pools in irrigated potato production on sandy soil using the model SUBSTOR.

    Directory of Open Access Journals (Sweden)

    Rishi Prasad

    Full Text Available Recent increases in nitrate concentrations in the Suwannee River and associated springs in northern Florida have raised concerns over the contributions of non-point sources. The Middle Suwannee River Basin (MSRB is of special concern because of prevalent karst topography, unconfined aquifers and sandy soils which increase vulnerability of the ground water contamination from agricultural operations--a billion dollar industry in this region. Potato (Solanum tuberosum L. production poses a challenge in the area due to the shallow root system of potato plants, and low water and nutrient holding capacity of the sandy soils. A four-year monitoring study for potato production on sandy soil was conducted on a commercial farm located in the MSRB to identify major nitrogen (N loss pathways and determine their contribution to the total environmental N load, using a partial N budget approach and the potato model SUBSTOR. Model simulated environmental N loading rates were found to lie within one standard deviation of the observed values and identified leaching loss of N as the major sink representing 25 to 38% (or 85 to 138 kg ha(-1 N of the total input N (310 to 349 kg ha(-1 N. The crop residues left in the field after tuber harvest represented a significant amount of N (64 to 110 kg ha(-1 N and posed potential for indirect leaching loss of N upon their mineralization and the absence of subsequent cover crops. Typically, two months of fallow period exits between harvest of tubers and planting of the fall row crop (silage corn. The fallow period is characterized by summer rains which pose a threat to N released from rapidly mineralizing potato vines. Strategies to reduce N loading into the groundwater from potato production must focus on development and adoption of best management practices aimed on reducing direct as well as indirect N leaching losses.

  7. Dynamics of forest soil chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Alveteg, M.

    1998-11-01

    Acidification caused by emissions of nitrogen and sulphur and associated adverse effects on forest ecosystems has been an issue on the political agenda for decades. Temporal aspects of soil acidification and/or recovery can be investigated using the soil chemistry model SAFE, a dynamic version of the steady-state model PROFILE used in critical loads assessment on the national level, e.g. for Sweden. In this thesis, possibilities to replace the use of apparent gibbsite solubility coefficients with a more mechanistic Al sub-model are investigated and a reconstruction model, MAKEDEP, is presented which makes hindcasts and forecasts of atmospheric deposition and nutrient uptake and cycling. A regional application of SAFE/MAKEDEP based on 622 sites in Switzerland is also presented. It is concluded that the quantitative information on pools and fluxes of Al in forest ecosystems is very limited and that there currently exists no mechanistic alternative in modelling soil solution Al. MAKEDEP is a valuable and operational tool for deriving input to dynamic soil chemistry models such as SMART, MAGIC and SAFE. For multi-layer models, e.g. the SAFE model, including nutrient cycling in MAKEDEP is shown to be important. The strength of the regional assessment strategy presented in this thesis lies in its transparency and modularity. All sub-modules, including models, transfer functions, assumptions in the data acquisition strategy, etc., can be checked and replaced individually. As the presented assessment strategy is based on knowledge and data from a wide range of scientists and fields it is of vital importance that the research community challenge the assumptions made. The many measurable intermediate results produced by the included models will hopefully encourage scientists to challenge the models through additional measurements at the calculation sites. It is concluded that current reduction plans are not sufficient for all forest ecosystems in Switzerland to recover from

  8. Transport of humic and fulvic acids in relation to metal mobility in a copper-contaminated acid sandy soil

    NARCIS (Netherlands)

    Weng, L.; Fest, E.P.M.J.; Filius, J.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2002-01-01

    The transport of inorganic and organic pollutants in water and soil can be strongly influenced by the mobility of natural dissolved organic matter (DOM). In this paper, the transport of a humic acid (HA) and a fulvic acid (FA) in a copper-contaminated acid sandy soil was studied. The data showed

  9. A Leguminous Shrub (Caragana microphylla) in Semiarid Sandy Soils of North China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong-Hui; SU Yong-Zhong; CUI Jian-Yuan; ZHANG Zhi-Hui; CHANG Xue-Xiang

    2006-01-01

    Caragana microphylla Lam., a pioneer leguminous shrub species for vegetation re-establishment, is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region. Some soil chemical and physical properties were measured under the canopy of C. microphylla and in the adjacent open areas to determine the effects of individual shrubs on soil properties. The influence of isolated C. microphylla on chemical and physical properties of the topsoil was significantly different between plots under the shrub canopy and in the shrub interspaces. Beneath the shrub canopy greater amounts of fine particle fractions, a higher water-holding capacity, and a lower bulk density, as well as higher aboveground and belowground litter biomass were found. Soil organic C and total N concentrations were 23%-31.6% and 14%-27.2% higher under the shrub canopies than in the shrub interspaces, respectively, giving rise to "islands of fertility". In a desertified sandy grassland ecosystem, C. microphylla was believed to play a major role in organic C sequestration, N accumulation, and the hydrologic cycle. Additionally, it has been found to be of ecological importance for vegetative restoration and reversal of desertification.

  10. Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils

    Energy Technology Data Exchange (ETDEWEB)

    Wick, A.F.; Stahl, P.D.; Ingram, L.J. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2009-11-15

    Minimal research has been conducted on aggregate, C, and N in coarse-textured soils used to reclaim surface coal mine lands. Furthermore, little is known about the contribution different plant communities make to the recovery of aggregation in these soils. Two chronosequences of semiarid reclaimed sites with sandy loam soils were sampled under shrub- and grass-dominated communities. Aggregation, aggregate fractions, and associated C and N were measured. No definitive trends of increasing macroaggregates between sites were observed undershrubs; however, macro- and microaggregation was greater in the 16-yr-old (0.20 and 0.23 kg aggregate kg{sup -1} soil, respectively) than in the 5-yr-old soils (0.02 and 0.08 kg aggregate kg{sup -1} soil, respectively) under grasses. Although C and N concentrations were drastically reduced (50-75%) with mining activity between the <1-yr-old and native soils, aggregate C and N concentrations tinder shrubs and grasses were similar to each other and to the native soils in the 5-yr-old site. Sods under grass in the 16-yr-old site had lower available and aggregate-occluded C and N concentrations than the 5-yr-old site, while C and N concentrations did not change between 5- and 16-yr-old soils under shrubs. Conversely, aggregate C and N pool sizes under shrubs and grasses both increased with site age to conditions similar to those observed in the native soil. Reclaimed shrub site soils had consistently higher C concentrations in the older reclaimed sites (10 and 16 yr old) than the soils under grasses, indicating greater accumulation and retention of C and N in organic material under shrub than grass communities in semiarid reclaimed sites.

  11. Contribution of individual sorbents to the control of heavy metal activity in sandy soil.

    Science.gov (United States)

    Weng, L; Temminghoff, E J; Van Riemsdijk, W H

    2001-11-15

    A multisurface model is used to evaluate the contribution of various sorption surfaces to the control of heavy metal activity in sandy soil samples at pH 3.7-6.1 with different sorbent contents. This multisurface model considers soil as a set of independent sorption surfaces, i.e. organic matter (NICA-Donnan), clay silicate (Donnan), and iron hydroxides (DDL, CD-MUSIC). The activities of Cu2+, Cd2+, Zn2+, Ni2+, and Pb2+ in equilibrium with the soil have been measured using a Donnan membrane technique. The metal activities predicted by the model agree with those measured reasonably well over a wide concentration range for all the metals of interest except for Pb. The modeling results suggest that soil organic matter is the most important sorbent that controls the activity of Cu2+, Cd2+, Zn2+, and Ni2+ in these sandy soils. When metal loading is high in comparison with soil organic matter content, the contribution of clay silicates to metal binding becomes more important. Adsorption to iron hydroxides is found not significant in these samples for Cu, Cd, Zn, and Ni. However, for Pb the model estimates strong adsorption on iron hydroxides. The model predicts that acidification will not only lead to increased solution concentrations but also to a shift toward more nonspecific cation-exchange type binding especially for the metals Cd, Zn, and Ni. Lowering the pH has led to a loss of 56% of Cd, 69% of Zn, and 66% of Ni during 16 years due to increased leaching.

  12. Influence of manganese fertilizer on efficiency of grapes on sandy soils of the Chechen Republic

    Directory of Open Access Journals (Sweden)

    Batukaev A.A.

    2014-01-01

    Full Text Available As a result of the studies, there has been obtained new information about the manganese influence on productivity of grape plantations, on sandy soils of the Chechen Republic. Manganese fertilizing of 4 kg active ingredient per 1 ha, against the background of nitrogen 90 kg, phosphorus 90 kg and potassium 90 kg/ha, made it into a phase of grape sap flow, which contributes to higher yields, increase of the sugar content of the berries and a significant decrease in juice acidity, in comparison with other options.

  13. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    OpenAIRE

    Baille Wiebke; Jebeli Alireza; Schanz Tom

    2016-01-01

    In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains) during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand gra...

  14. Phytotoxicity and uptake of nitroglycerin in a natural sandy loam soil.

    Science.gov (United States)

    Rocheleau, Sylvie; Kuperman, Roman G; Dodard, Sabine G; Sarrazin, Manon; Savard, Kathleen; Paquet, Louise; Hawari, Jalal; Checkai, Ronald T; Thiboutot, Sonia; Ampleman, Guy; Sunahara, Geoffrey I

    2011-11-15

    Nitroglycerin (NG) is widely used for the production of explosives and solid propellants, and is a soil contaminant of concern at some military training ranges. NG phytotoxicity data reported in the literature cannot be applied directly to development of ecotoxicological benchmarks for plant exposures in soil because they were determined in studies using hydroponic media, cell cultures, and transgenic plants. Toxicities of NG in the present studies were evaluated for alfalfa (Medicago sativa), barnyard grass (Echinochloa crusgalli), and ryegrass (Lolium perenne) exposed to NG in Sassafras sandy loam soil. Uptake and degradation of NG were also evaluated in ryegrass. The median effective concentration values for shoot growth ranged from 40 to 231 mg kg(-1) in studies with NG freshly amended in soil, and from 23 to 185 mg kg(-1) in studies with NG weathered-and-aged in soil. Weathering-and-aging NG in soil did not significantly affect the toxicity based on 95% confidence intervals for either seedling emergence or plant growth endpoints. Uptake studies revealed that NG was not accumulated in ryegrass but was transformed into dinitroglycerin in the soil and roots, and was subsequently translocated into the ryegrass shoots. The highest bioconcentration factors for dinitroglycerin of 685 and 40 were determined for roots and shoots, respectively. Results of these studies will improve our understanding of toxicity and bioconcentration of NG in terrestrial plants and will contribute to ecological risk assessment of NG-contaminated sites.

  15. Variation in soil water content to rainfall under Caragana microphylla shrub in Horqin Sandy Land

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to investigate the spatio-temporal variability of soil water content to rainfall under Caragana microphylla shrub in Horqin Sandy Land,a plot of 25 m × 25 m,where there were 6 shrub canopies of C. microphylla,was sited for measuring soil water content at two soil layers of 0-20 cm (top layer) and 20-40 cm (lower layer). Soil water content was measured on the 1st,5th,10th and 15th day after a 42 mm rainfall in Naiman of Inner Mongolia. The results showed that soil water contents at both layers under C. microphylla shrub were gradually decreased after the rain. Soil water content at the top layer outside the shrub canopy was higher than that inside the shrub canopy within 5 days,and became similar inside and outside the shrub canopy on the 10th day after the 42 mm rainfall,and it was lower outside than that inside the shrub canopy on the 15th day. The soil water content at lower layer in the area without shrubs was higher than that under shrub canopy all along. All the measured values of soil water content can be fitted to a variogram model. There was significant autocorrelation of the values of soil water content between top layer and lower layer,except for the fourth measured values of soil water content at top layer. The range and spatial dependence of soil water content at top layer were lower than that at lower layer.

  16. Causal effects of shelter forests and water factors on desertification control during 2000-2010 at the Horqin Sandy Land region, China

    Institute of Scientific and Technical Information of China (English)

    Qiaoling Yan; Jiaojun Zhu; Xiao Zheng; Changjie Jin

    2015-01-01

    The Horqin Sandy Land (HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertification, government implemented the Three-North Shelter/Protec-tive Forest Program, world’s largest ecological reforestation/afforestation restoration program. The program began in 1978 and will continue for 75 years until 2050. Under-standing the dynamics of desertification and its driving for-ces is a precondition for controlling desertification. However, there is little evidence to directly link causal effects with desertification process (i.e., on the changing area of sandy land) because desertification is a complex process, that can be affected by vegetation (including vegetation cover and extent of shelter forests) and water factors such as precipitation, surface soil moisture, and evapotranspiration. The objectives of this study were to identify how influencing factors, especially shelter forests, affected desertification in HSL over a recent decade. We used Landsat TM imagery analysis and path analysis to identify the effects of spatio-temporal changes in water and vegetation parameters during 2000–2010. Desertification was controlled during the study period, as indicated by a decrease in desert area at a rate of 163.3 km2 year-1 and an increase in the area with reduced intensity or extent of desertification. Total vegetation cover in HSL increased by 10.6%during the study period and this factor exerted the greatest direct and indirect effects on slowing desertification. The contribution of total vegetation cover to controlling desertification increased with the intensity of desertification. On slightly and extremely severe desertified areas, vegetation cover contributed 5 and 42%of the desertification reduction, respectively. There were sig-nificant correlations between total vegetation cover and water conditions (i.e., evapotranspiration and

  17. Organic matter stocks in temperate forest soil

    OpenAIRE

    Schöning, Ingo

    2006-01-01

    In temperate forests, more than 60% of the total carbon reserves are located in forest floor and mineral soil. The main objectives of this study were (1) to investigate the composition and radiocarbon age of organic matter (OM) pools of different stability in mineral soils, (2) to identify associations between iron oxides and specific carbon species, and (3) to analyse the small scale spatial variability of soil organic carbon (SOC) stocks. Composition, radiocarbon age and associations betwee...

  18. Different Behavior of Enteric Bacteria and Viruses in Clay and Sandy Soils after Biofertilization with Swine Digestate

    Science.gov (United States)

    Fongaro, Gislaine; García-González, María C.; Hernández, Marta; Kunz, Airton; Barardi, Célia R. M.; Rodríguez-Lázaro, David

    2017-01-01

    Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling. PMID:28197137

  19. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    Science.gov (United States)

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required.

  20. Forest cockchafer larvae as methane production hotspots in soils and their importance for net soil methane fluxes

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Murphy, Paul; Müller, Christoph

    2016-04-01

    Certain groups of soil invertebrates, namely scarab beetles and millipedes, are capable of emitting considerable amounts of methane due to methanogens inhabiting their gut system. It was already pointed out in the early 1990's, that these groups of invertebrates may represent a globally important source of methane. However, apart from termites, the importance of invertebrates for the soil methane budget is still unknown. Here, we present preliminary results of a laboratory soil incubation experiment elucidating the influence of forest cockchafer larvae (Melolontha hippocastani FABRICIUS) on soil methane cycling. In January/February 2016, two soils from two different management systems - one from a pine forest (extensive use) and one from a vegetable field (intensive use) - were incubated for 56 days either with or without beetle larvae. Net soil methane fluxes and larvae methane emissions together with their stable carbon isotope signatures were quantified at regular intervals to estimate gross methane production and gross methane oxidation in the soils. The results of this experiment will contribute to testing the hypothesis of whether methane production hotspots can significantly enhance the methane oxidation capacity of soils. Forest cockchafer larvae are only found in well-aerated sandy soils where one would usually not suspect relevant gross methane production. Thus, besides quantifying their contribution to net soil methane fluxes, they are also ideal organisms to study the effect of methane production hotspots on overall soil methane cycling. Funding support: Reintegration grant of the German Academic Exchange Service (DAAD) (#57185798).

  1. Recurring fingered flow pathways in a water repellent sandy field soil

    Directory of Open Access Journals (Sweden)

    C. J. Ritsema

    1997-01-01

    Full Text Available Field evidence of finger formation and reformation during Successive rain events over an eight months' observation period from June 1994 until January 1995 is presented. Fingered flow pathways were monitored in a no-tilled, grass-covered water repellent sandy field soil using an automated, stand-alone TDR device. Within a 2 m long and 0.7 m deep transect, 98 three-wire probes were installed horizontally at depths of 4, 12, 20, 30, 40, 55, and 70 cm. The horizontal distance between two adjacent probes was IS cm. Finger formation occurred during distinct rainy periods and was most pronounced under heavy rainfall with initially wet topsoil conditions. The percentage of water infiltrated and transported preferentially through the fingers to the deep subsoil varied between 0 and 80%, depending on the wetting history of the soil and the rainfall characteristics.

  2. Influence of tebuconazole and copper hydroxide on phosphatase and urease activities in red sandy loam and black clay soils

    OpenAIRE

    B. Anuradha; Rekhapadmini, A.; Rangaswamy, V.

    2016-01-01

    The efficacy of two selected fungicides i.e., tebuconazole and coppoer hydroxide, was conducted experiments in laboratory and copper hydroxide on the two specific enzymes phosphatase and urease were determined in two different soil samples (red sandy loam and black clay soils) of groundnut (Arachis hypogaea L.) from cultivated fields of Anantapuramu District, Andhra Pradesh. The activities of the selected soil enzymes were determined by incubating the selected fungicides-treated (1.0, 2.5, 5....

  3. Temporal stability of the apparent electrical conductivity measured in seasonally dry sandy soil

    Science.gov (United States)

    Pedrera, Aura; Brevik, Eric C.; Giráldez, Juan V.; Vanderlinden, Karl

    2016-04-01

    Soil is spatially heterogeneous due to differences in parent material, climate, topography, time and management practices. The use of non-invasive and non-contact geophysical methods facilitates the exploration of natural landscapes or cropped areas. Electromagnetic induction (EMI) sensors which measure the soil apparent electrical conductivity (ECa) express soil spatial variability in terms of spatial soil ECa variability. In an agricultural context, knowledge and understanding of the soil spatial variability will allow us to delimit areas where precision agriculture techniques could be used to improve management practices. These practices enhance soil and water conservation, especially for sandy soils in Mediterranean climates where soils are dry for substantial periods of time. The first objective of this work was to apply principal component analysis (PCA) to see if a temporally stable component could be found. The second objective was to see if temporal stability information acquired from several ECa surveys could be used to better interpret results of a single survey in terms of relationships between ECa and soil water content (SWC). The experimental catchment, "La Manga", is located in SW Spain and covers 6.7 ha of a rainfed olive orchard. Soil profile samples were collected at 41 locations on a pseudo-regular grid. Samples were analyzed in the laboratory for soil texture, stone content, and bulk density (ρb). The catchment was sampled for gravimetric SWC at the 0-0.1 and 0.1-0.2 m depth intervals at the same 41 locations on 18 occasions. At the same 41 locations ECa was measured during 9 of the 18 SWC surveys using a DUALEM-21S EMI sensor. In addition, 7 field-wide ECa surveys were conducted. Soil ECa values were used to delimit three areas in the orchard, based on the spatial distribution of the first principal component (PC), which represented the spatial ECa pattern. Soil properties were studied within each area, and using analysis of variance

  4. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)

    1996-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  5. Retention and transport of mecoprop on acid sandy-loam soils

    Science.gov (United States)

    Paradelo Núñez, Remigio; Conde Cid, Manuel; Abad, Elodie Martin; Fernández Calviño, David; Nóvoa Muñoz, Juan Carlos; Arias Estévez, Manuel

    2017-04-01

    Interaction with soil components is one of the key processes governing the fate of agrochemicals in the environment. In this work, we have studied the adsorption/desorption and transport of mecoprop in four acid sandy-loam soils with different organic matter contents. Kinetics of adsorption and adsorption/desorption at equilibrium have been studied in batch experiments, whereas transport was studied in laboratory columns. Adsorption and desorption are linear or nearly-linear. The kinetics of mecoprop adsorption are relatively fast in all cases (less than 24 h). Adsorption and desorption were adequately described by the linear and Freundlich models, with KF values that ranged from 0.7 to 8.8 Ln µmol1-n kg-1 and KD values from 0.3 to 3.6 L kg-1. High desorption percentages (>50%) were found, indicative of a high reversibility of the adsorption process. The results of the transport experiments showed that the retention of mecoprop by soil was very low (less than 6.2%). The retention of mecoprop by the soils in all experiments increased with organic matter content. Overall, it was observed that mecoprop was weakly adsorbed by the soils, what would result in a high risk of leaching of this compound.

  6. [Effects of degraded sandy grassland afforestation on soil quality in semi-arid area of northern China].

    Science.gov (United States)

    Hu, Ya-lin; Zeng, De-hui; Fan, Zhi-ping; Ai, Gui-yan

    2007-11-01

    By the methods of field survey and incubation test, this paper studied the effects of degraded sandy grassland afforestation with Mongolian pine on the soil physical, chemical and biological properties in 0-10 cm layer on Keerqin sandy land. The results showed that after 32 years afforestation, soil organic C, total N and total P decreased by 21%, 42% and 45%, respectively. In May and November, soil NH4+ -N content was significantly higher under Mongolian pine plantation than under grassland (P = 0.001; P = 0.019), but in May, August and November, soil NO3- -N content was in adverse (P soil C mineralization rate was higher under Mongolian pine plantation than under grassland, but the difference in N mineralization rate was not significant (P > 0.05). In May and August, soil microbial biomass C under Mongolian pine plantation and grassland had little difference, but in November, it was significantly higher under Mongolian pine plantation than under grassland. Soil nutrients- and moisture contents were the important factors affecting soil microbial biomass C. Soil urease and invertase activities decreased but catalase activity increased under Mongolian pine plantation, compared with those under grassland. It was suggested that 32 years afforestation of degraded sandy grassland with Mongolian pine on Keerqin sandy land led to a definite degradation of soil quality. Owing to the changes of vegetation, the test indicators of soil quality had different seasonal dynamic characteristics under Mongolian pine plantation and grassland. As a means of degraded ecosystem restoration in semi-arid area of Northern China, afforestation had its definite limitations.

  7. Water Repellency, Infiltration and Water Retention Properties of Forest Soils Under Different Management Practices

    Science.gov (United States)

    Wahl, N. A.; Bens, O.; Schäfer, B.; Hüttl, R. F.

    For soils under both agricultural and forest use, management and tillage practice can have significant influence on the hydraulic properties. It is therefore supposed, that management practices are capable of altering surface runoff, water retention and flood- ing risk for river catchments. Soil water repellency (hydrophobicity) can adversely affect soil hydrological properties, e.g. reduce infiltration capacity and induce pref- erential flow, thus enhancing the overall risk of flooding in river catchment areas. Hydrophobic effects are especially pronounced in coniferous forest soils. Investigations were carried out on several study plots in the German Northeastern Lowlands, located app. 50 km NE of Berlin in Brandenburg. Soils found in the area are mainly of glacifluvial origin with a pronounced sandy texture (with medium sized sand dominating). The four stands investigated represent different stages of forest transfor- mation, in a sense of a SfalseT chronosequence and are made up of populations of & cedil;Pinus sylvestris and Fagus sylvatica of different ages. Infiltration was measured with hood infiltrometers, and single infiltration rings at soil surface. Water retention capacity and the influence of soil organic matter on water storage were evaluated with laboratory methods. Water repellency was quantified with the water drop penetration time (WDPT) test, for determining the persistence of water repellency, and the ethanol percentage (EP) test, for measuring the severity/degree of water repellency. Soil samples from the four forest plots and different soil depths (0U160 cm) were used for the measurements. SPotentialT water repellencies were & cedil;determined after 3-day oven-drying at 45 C. The results indicate that for sandy forest soils, the overall infiltration capacity of the plots is low due to the effects of water repellency. The inter-variability of the plots is mainly caused by changes in the textural composition of the soils. For all plots a

  8. Imazaquin degradation and metabolism in a sandy loam soil amended with farm litters

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Imazaquin applied in legume crops has a long residual time in soil,which often impacts safety of the susceptible crops.To increase safety of imazaquin application,two composted litters,bovine manure (BM) and chicken manure (CM),were used to determine their effects on imazaquin environmental behavior by incorporating each kind of manure into the tested sandy loam soil at 10% (w/w).The degradation of imazaquin in BM- and CM-amended soil was about 2.4 and 1.5 times,respectively,faster than that in unamended soil.The half-lives of imazaquin in BM-amended soil varied between 6.7 and 15.4 d over the temperature range of 20 to 40℃,and the degradation rate constant (k) increased by a factor of about 1.5 for every 10℃ change.Higher mix ratio did not significantly increase the degradation,and the optimal active degradation of imazaquin was observed approximately at the mix ratio of 10:1 of soil to BM.The different moisture levels had negligible effect on imazaquin degradation.In both unamended and BM-amended treatments.two metabolites were observed at 5,10 and 30 d after treatment.One metabolite at retention time (RT) of 8.4 min was identified as 2-(4-hydroxyl-5-oxo-2-imidazolin-2-y1) quinoline acid,originating from the loss of isopropyl group and hydroxylation at the 4-position of imidazolinone ring.The other at RT of 12.9 min was identified as quinolinc-2,3-dicarboxylic anhydride,resulting from detachment of imidazolinone ring and the forming of dicarboxylic anhydride.This finding suggested that the addition of farm litters into soil might be a good management option since it can not only increase soil fertility but also contribute to increase safety of imazaquin application to the following susceptible crops.

  9. Considering temperature dependence of thermo-physical properties of sandy soils in two scenarios of oil pollution

    Institute of Scientific and Technical Information of China (English)

    Aleksey V.Malyshev; Anatoly M.Timofeev

    2014-01-01

    We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollu tion, and also determined the temperature dependencies of these changed thermophysical properties. In the first pollution scenario, the oil product was introduced into wet river sand, and in the second case, dry sand was contaminated by the oil product and was then moistened with water. By considering these two scenarios as multicomponent dispersion systems with varying degrees of contamination and humidity, and by using a polystructural granular model with pore spaces and closed inclusions, we calculated that the heat conductivity of the sandy soil increased under the first pollution scenario and decreased under the second, but the change in the volumetric heat capacity of the sandy soil was proportional only to the amount of oil pollution, not the manner in which it was introduced. We also determined the temperature dependencies of these two thermophysical properties of sandy soil when polluted by oil, of which information will be useful for future containment and remediation of oil contaminated soil.

  10. Leaching and ponding of viral contaminants following land application of biosolids on sandy-loam soil.

    Science.gov (United States)

    Wong, Kelvin; Harrigan, Tim; Xagoraraki, Irene

    2012-12-15

    Much of the land available for application of biosolids is cropland near urban areas. Biosolids are often applied on hay or grassland during the growing season or on corn ground before planting or after harvest in the fall. In this study, mesophilic anaerobic digested (MAD) biosolids were applied at 56,000 L/ha on a sandy-loam soil over large containment lysimeters seeded to perennial covers of orchardgrass (Dactylis glomerata L.), switchgrass (Panicum virgatum), or planted annually to maize (Zea mays L.). Portable rainfall simulators were to maintain the lysimeters under a nearly saturated (90%, volumetric basis) conditions. Lysimeter leachate and surface ponded water samples were collected and analyzed for somatic phage, adenoviruses, and anionic (chloride) and microbial (P-22 bacteriophage) tracers. Neither adenovirus nor somatic phage was recovered from the leachate samples. P-22 bacteriophage was found in the leachate of three lysimeters (removal rates ranged from 1.8 to 3.2 log(10)/m). Although the peak of the anionic tracer breakthrough occurred at a similar pore volume in each lysimeter (around 0.3 pore volume) the peak of P-22 breakthrough varied between lysimeters (worm holes or other natural phenomena. The concentration of viral contaminants collected in ponded surface water ranged from 1 to 10% of the initial concentration in the applied biosolids. The die off of somatic phage and P-22 in the surface water was fit to a first order decay model and somatic phage reached background level at about day ten. In conclusion, sandy-loam soils can effectively remove/adsorb the indigenous viruses leached from the land-applied biosolids, but there is a potential of viral pollution from runoff following significant rainfall events when biosolids remain on the soil surface.

  11. Organic carbon stocks and sequestration rates of forest soils in Germany.

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period.

  12. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai;

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... region-water retention curve increased with increasing biochar rates....

  13. Uncertainty of Deardorff’s soil moisture model based on continuous TDR measurements for sandy loam soil

    Directory of Open Access Journals (Sweden)

    Brandyk Andrzej

    2016-03-01

    Full Text Available Knowledge on soil moisture is indispensable for a range of hydrological models, since it exerts a considerable influence on runoff conditions. Proper tools are nowadays applied in order to gain in-sight into soil moisture status, especially of uppermost soil layers, which are prone to weather changes and land use practices. In order to establish relationships between meteorological conditions and topsoil moisture, a simple model would be required, characterized by low computational effort, simple structure and low number of identified and calibrated parameters. We demonstrated, that existing model for shallow soils, considering mass exchange between two layers (the upper and the lower, as well as with the atmosphere and subsoil, worked well for sandy loam with deep ground water table in Warsaw conurbation. GLUE (Generalized Likelihood Uncertainty Estimation linked with GSA (Global Sensitivity Analysis provided for final determination of parameter values and model confidence ranges. Including the uncertainty in a model structure, caused that the median soil moisture solution of the GLUE was shifted from the one optimal in deterministic sense. From the point of view of practical model application, the main shortcoming were the underestimated water exchange rates between the lower soil layer (ranging from the depth of 0.1 to 0.2 m below ground level and subsoil. General model quality was found to be satisfactory and promising for its utilization for establishing measures to regain retention in urbanized conditions.

  14. THE SOIL ALGAE OF CIBODAS FOREST RESERVE

    Directory of Open Access Journals (Sweden)

    Anne Johnson

    2014-01-01

    Full Text Available Three species of green algae and one blue-green alga were recorded from eight samples of soil found associated with bryophytes in the Cibodas Forest Reserve. Chemical analysis of the soil showed severe leaching of soluable mineral substances associated with a low pH. The low light intensity under forest conditions and the low pH may account for the limited algal flora.

  15. Influence of legume crops on content of organic carbon in sandy soil

    Directory of Open Access Journals (Sweden)

    Hajduk Edmund

    2015-06-01

    Full Text Available The paper presents the results of a 3-year field experiment designed to evaluate the content of organic carbon in brown soil (Haplic Cambisol Dystric developed from a light loamy sand under legumes cultivation. Experimental factors were: species of legume crop (colorful-blooming pea (Pisum sativum, chickling vetch (Lathyrus sativus, narrow-leafed lupin (Lupinus angustifolius, methods of legumes tillage (legumes in pure culture and in mixture with naked oats and mineral N fertilization (0, 30, 60, 90 kg N·ha−1. Cultivation of legumes on sandy soil did not result in an increase of organic carbon content in the soil after harvest as compared to the initial situation, i.e. 7.39 vs. 7.76 g·kg−1 dry matter (DM, on average, respectively. However, there was the beneficial effect of this group of plants on soil abundance in organic matter, the manifestation of which was higher content of organic carbon in soils after legume harvest as compared to soils with oats grown (7.21 g·kg−1 DM, on average. Among experimental crops, cultivation of pea exerted the most positive action to organic carbon content (7.58 g·kg−1, after harvest, on average, whereas narrow-leaved lupin had the least effect on organic carbon content (7.23 g·kg−1, on average. Pure culture and greater intensity of legume cultivation associated with the use of higher doses of mineral nitrogen caused less reduction in organic carbon content in soils after harvest.

  16. Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil.

    Science.gov (United States)

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2017-06-01

    The aim of the study was to compare the usefulness of 1 M HCl with aqua regia, EDTA, and CaCl2 for the extraction of phytoavailable forms of Cu, Ni, and Zn on coarse-textured soils contaminated with these metals. Two microplot experiments were used for the studies. Reed canary grass (Phalaris arundinacea), maize (Zea mays), willow (Salix viminalis), spartina (Spartina pectinata), and miscanthus (Miscanthus × giganteus) were used as test plants. They were grown on soil artificially spiked with Cu, Ni, and Zn. The experimental design included a control and three increasing doses of metals. Microplots (1 m(2) × 1 m deep) were filled with sandy soil (clay-6%, pH 5.5, Corg-0.8%). Metals in the form of sulfates were dissolved in water and applied to the plot using a hand liquid sprayer. During the harvest, samples were collected from aboveground parts, roots, and the soil and then tested for their Cu, Zn, and Ni contents. The metal content of the soil was determined using four tested extractants. It was found that Cu and Ni were accumulated in roots in bigger amounts than Zn. The usefulness of the extractants was evaluated based on the correlation between the content of metals in the soil and the plant (n = 32). This study demonstrated that 1 M HCl, aqua regia, and EDTA were more efficient or equally useful for the assessment of the phytoavailability of Cu, Ni, and Zn as CaCl2. Due to the ease of performing determinations and their low cost, 1 M HCl can be recommended to assess the excess of Cu, Ni, and Zn in the coarse-textured soils.

  17. Multiple benefits of manure: the key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms

    NARCIS (Netherlands)

    Zingore, S.; Delve, R.J.; Nyamangara, J.; Giller, K.E.

    2008-01-01

    Manure is a key nutrient resource on smallholder farms in the tropics, especially on poorly buffered sandy soils, due to its multiple benefits for soil fertility. Farmers preferentially apply manure to fields closest to homesteads (homefields), which are more fertile than fields further away (outfie

  18. Chemical contamination of soils in the New York City area following Hurricane Sandy.

    Science.gov (United States)

    Mandigo, Amy C; DiScenza, Dana J; Keimowitz, Alison R; Fitzgerald, Neil

    2016-10-01

    This paper presents a unique data set of lead, arsenic, polychlorinated biphenyl (PCB), and polycyclic aromatic hydrocarbon (PAH) concentrations in soil samples collected from the metropolitan New York City area in the aftermath of Hurricane Sandy. Initial samples were collected by citizen scientists recruited via social media, a relatively unusual approach for a sample collection project. Participants in the affected areas collected 63 usable samples from basements, gardens, roads, and beaches. Results indicate high levels of arsenic, lead, PCBs, and PAHs in an area approximately 800 feet south of the United States Environmental Protection Agency (US EPA) Superfund site at Newtown Creek. A location adjacent to the Gowanus Canal, another Superfund site, was found to have high PCB concentrations. Areas of high PAH contamination tended to be near high traffic areas or next to sites of known contamination. While contamination as a direct result of Hurricane Sandy cannot be demonstrated conclusively, the presence of high levels of contamination close to known contamination sites, evidence for co-contamination, and decrease in number of samples containing measureable amounts of semi-volatile compounds from samples collected at similar locations 9 months after the storm suggest that contaminated particles may have migrated to residential areas as a result of flooding.

  19. Characterisation of phosphate solubilising bacteria in sandy loam soil under chickpea cropping system.

    Science.gov (United States)

    Singh, Machiavelli; Tejo Prakash, N

    2012-06-01

    With the aim to explore the possible role of phosphate-solubilizing bacteria (PSB) in phosphorus (P) cycling in agricultural soils, we isolated PSB inhabiting naturally in the sandy loam soils under chickpea cropping of Patiala (Punjab State). A total of 31 bacterial isolates showing solubilizing activities were isolated on Pikovskaya agar plates. The potent phosphate solubilizers were selected for further characterization. These isolates were shown to belong to the genera Pseudomonas and Serratia by partial sequencing analysis of their respective 16S rDNA genes. ERIC-PCR based fingerprinting was done for tracking the survival of introduced populations of the PSB during mass inoculation of these strains under chickpea plots. The results showed positive correlation (r(2) = 0.853) among soil phosphatase activity and phosphate solubilizers population, which was also positively correlated (r(2) = 0.730) to available phosphorus. Identification and characterization of soil PSB for the effective plant growth-promotion broadens the spectrum of phosphate solubilizers available for field application.

  20. Environmental adaptability of Canavalia virosa and Flemingia congesta to sandy ash soil of Merapi Volcano, Java

    Directory of Open Access Journals (Sweden)

    S. S. Wardoyo

    2016-07-01

    Full Text Available Studies on volcanic ash of Mount Merapi erupted in 2010 are limited to only characterization of mineralogical, physical, chemical, and biological properties of the volcanic ash. In order to speed up rehabilitation of soils affected by the volcanic ash, it is necessary to study the application of suitable plant species, which is called bio-mechanic conservation. The purpose of this study was to test the environmental adaptability of Canavalia virosa and Flemingia congesta in sandy soil covered by volcanic ash of Mount Merapi. This study was carried out using 2x4 Split-plot randomized block design with three replicates. The main plot of the design was plant species (Canavalia virosa and Flemingia congesta, while the sub plot was the dose of organic matter application (0, 20, 40, and 60 t / ha. Soil parameters measured were N-total, P-total, available P, available K, and organic matter contents. Plant parameters measured were plant dry weight and plant height. The results showed no significant differences in soil N, P and K contents of all treatments tested in this study after 9 weeks, except C organic content. Canavalia virosa grew well until 9 weeks, whereas Flemingia congesta started to die a 9 weeks after planting.

  1. Biochar application does not improve the soil hydrological function of a sandy soil

    NARCIS (Netherlands)

    Jeffery, S.; Meinders, M.B.C.; Stoof, C.R.; Bezemer, T.M.; Van de Voorde, T.F.J.; Mommer, L.; Van Groenigen, J.W.

    2015-01-01

    Biochar application to soil is currently being widely posited as a means to improve soil quality and thereby increase crop yield. Next to beneficial effects on soil nutrient availability and retention, biochar is assumed to improve soil water retention. However, evidence for such an effect in the

  2. Effect of Plant-derived Hydrophobic Compounds on Soil Water. Repellency in Dutch Sandy Soils

    NARCIS (Netherlands)

    Mao, J.|info:eu-repo/dai/nl/363508287; Dekker, S.C.|info:eu-repo/dai/nl/203449827; Nierop, K.G.J.|info:eu-repo/dai/nl/182329895

    2013-01-01

    Soil water repellency or hydrophobicity is a common and important soil property, which may diminish plant growth and promotes soil erosion leading to environmentally undesired situations. Hydrophobic organic compounds in the soil are derived from vegetation (leaves, roots, mosses) or microorganisms

  3. Effect of Plant-derived Hydrophobic Compounds on Soil Water. Repellency in Dutch Sandy Soils

    NARCIS (Netherlands)

    Mao, J.; Dekker, S.C.; Nierop, K.G.J.

    2013-01-01

    Soil water repellency or hydrophobicity is a common and important soil property, which may diminish plant growth and promotes soil erosion leading to environmentally undesired situations. Hydrophobic organic compounds in the soil are derived from vegetation (leaves, roots, mosses) or microorganisms

  4. Method to measure soil matrix infiltration in forest soil

    Science.gov (United States)

    Zhang, Jing; Lei, Tingwu; Qu, Liqin; Chen, Ping; Gao, Xiaofeng; Chen, Chao; Yuan, Lili; Zhang, Manliang; Su, Guangxu

    2017-09-01

    Infiltration of water into forest soil commonly involves infiltration through the matrix body and preferential passages. Determining the matrix infiltration process is important in partitioning water infiltrating into the soil through the soil body and macropores to evaluate the effects of soil and water conservation practices on hillslope hydrology and watershed sedimentation. A new method that employs a double-ring infiltrometer was applied in this study to determine the matrix infiltration process in forest soil. Field experiments were conducted in a forest field on the Loess Plateau at Tianshui Soil and Water Conservation Experimental Station. Nylon cloth was placed on the soil surface in the inner ring and between the inner and outer rings of infiltrometers. A thin layer of fine sands were placed onto the nylon cloth to shelter the macropores and ensure that water infiltrates the soil through the matrix only. Brilliant Blue tracers were applied to examine the exclusion of preferential flow occurrences in the measured soil body. The infiltration process was measured, computed, and recorded through procedures similar to those of conventional methods. Horizontal and vertical soil profiles were excavated to check the success of the experiment and ensure that preferential flow did not occur in the measured soil column and that infiltration was only through the soil matrix. The infiltration processes of the replicates of five plots were roughly the same, thereby indicating the feasibility of the methodology to measure soil matrix infiltration. The measured infiltration curves effectively explained the transient process of soil matrix infiltration. Philip and Kostiakov models fitted the measured data well, and all the coefficients of determination were greater than 0.9. The wetted soil bodies through excavations did not present evidence of preferential flow. Therefore, the proposed method can determine the infiltration process through the forest soil matrix. This

  5. Comparison of split nitrogen appliacation strategies in leek (Allium porrum) to reduce N fertilization on sandy soils in the Netherlands

    NARCIS (Netherlands)

    Geel, van W.C.A.; Meurs, E.J.J.; Radersma, S.; Grashoff, C.

    2006-01-01

    High nitrogen (N) fertilization to maximize production of leek (Allium porrum L.) combined with low N recovery can lead to considerable nitrogen pollution of the environment. A field trial was conducted in 2002 and 2003 on a sandy soil in the Netherlands. To synchronize N supply and N demand, two st

  6. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling

    NARCIS (Netherlands)

    Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Munoz-Carpena, R.; Icerman, J.

    2009-01-01

    Tomato production systems in Florida are typically intensively managed with high inputs of fertilizer and irrigation and on sandy soils with low inherent water and nutrient retention capacities; potential nutrient leaching losses undermine the sustainability of such systems. The objectives of this 3

  7. Strategies to optimize allocation of limited nutrients to sandy soils of the Sahel: a case study from Niger, West Africa

    NARCIS (Netherlands)

    Gandah, M.; Brouwer, J.; Hiernaux, P.; Duivenbooden, van N.

    2003-01-01

    Soils used for rainfed cereal production in Niger are sandy, deficient in major nutrients (N and P), and also low in organic matter content. Scarce rainfall with an unpredictable distribution in space and time makes crop and nutrient management difficult. Observations were made in 1996 and 1997 on m

  8. Grass Cover Influences Hydrophysical Parameters and Heterogeneity of Water Flow in a Sandy Soil

    Institute of Scientific and Technical Information of China (English)

    L. LICHNER; D. J. ELDRIDGE; K. SCHACHT; N. ZHUKOVA; L. HOLKO; M. (S)(I)R; J. PECHO

    2011-01-01

    Vegetation cover has a major effect on water flow in soils.Two sites,separated by distance of about 50 m,were selected to quantify the influence of grass cover on hydrophysical parameters and heterogeneity of water flow in a sandy soil emerging during a heavy rain following a long hot,dry period.A control soil (pure sand) with limited impact of vegetation or organic matter was obtained by sampling at 50 cm depth beneath a glade area,and a grassland soil was covered in a 10 cm thick humic layer and colonised by grasses.The persistence of water repellency was measured using the water drop penetration time test,sorptivity and unsaturated hydraulic conductivity using a mini disk infiltrometer,and saturated hydraulic conductivity using a double-ring infiltrometer.Dye tracer experiments were used to assess the heterogeneity of water flow,and both the modified method for estimating effective cross section and an original method for assessing the degree of preferential flow were used to quantify this heterogeneity from the images of dyed soil profiles.Most hydrophysical parameters were substantially different between the two surfaces.The grassland soil had an index of water repellency about 10 times that of pure sand and the persistence of water repellency almost 350 times that of pure sand.Water and ethanol sorptivities in the grassland soil were 7% and 43%,respectively,of those of the pure sand.Hydraulic conductivity and saturated hydraulic conductivities in the grassland soil were 5% and 16% of those of the pure sand,respectively.Dye tracer experiments revealed a stable flow with "air-draining" condition in pure sand and well-developed preferential flow in grassland soil,corresponding to individual grass tussocks and small micro-depressions.The grassland soil was substantially more water repellent and had 3 times the degree of preferential flow compared to pure sand.The results of this study reinforce our view that the consequences of any change in climate

  9. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D

    2017-01-01

    Soil structure is a key soil physical property that affects soil water balance, gas transport, plant growth and development, and ultimately plant yield. Biochar has received global recognition as a soil amendment with the potential to ameliorate the structure of degraded soils. We investigated how...... corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... to significant increase in soil water retention compared to the CT and BC-10 as a result of increased microporosity (pores biochar had minimal impact. No significant influence of biochar was observed for ka and Dp/D0 for the BC treatments compared to the CT despite...

  10. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per;

    2012-01-01

    carbon (CCC resistance and resilience of the three soils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile...... at both soil-water potentials than the MCC and CCC soils possibly due to higher biotic binding of soil particles by the greater organic carbon content. The water dispersible clay was negatively correlated with the level of clay saturation by organic carbon. The resistance of the soils to compaction......, quantified by both the compression index and a proposed functional index, was significantly greater for the MFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles...

  11. Copper Accumulation, Availability and Adsorption Capacity in Sandy Soils of Vineyards with Different Cultivation Duration

    Science.gov (United States)

    Mallmann, F. J. K.; Miotto, A.; Bender, M. A.; Gubiani, E.; Rheinheimer, D. D. S.; Kaminski, J.; Ceretta, C. A.; Šimůnek, J.

    2015-12-01

    Bordeaux mixture is a copper-based (Cu) fungicide and bactericide applied in vineyards to control plant diseases. Since it is applied several times per year, it accumulates in large quantities on plants and in soil. This study evaluates the Cu accumulation in, and desorption kinetics and adsorption capability of a sandy Ultisol in a natural field and in 3 vineyards for 5 (V1), 11 (V2), and 31 (V3) years in South of Brazil. Soil samples were collected in 8 depths (0-60 cm) of all four soil profiles, which all displayed similar soil properties. The following soil properties were measured: pH, organic matter (OM), soil bulk density, Cu total concentration, and Cu desorption and adsorption curves. A two first-order reactions model and the Langmuir isotherm were fitted to the desorption and adsorption curves, respectively. An increase in the total mass of Cu in the vineyards followed a linear regression curve, with an average annual increase of 7.15 kg ha-1. Cu accumulated down to a depth of 5, 20, and 30 cm in V1, V2 and V3, respectively, with the highest Cu content reaching 138.4 mg kg-1 in the 0-5 cm soil layer of V3. Cu desorption parameters showed a high correlation with its total concentration. Approximately 57 and 19% of total Cu were immediately and slowly available, respectively, indicating a high potential for plant absorption and/or downward movement. Cu concentrations extracted by EDTA from soil layers not affected by anthropogenic Cu inputs were very low. The maximum Cu adsorption capacity of the 0-5 and 5-10 cm soil layers increased with the vineyard age, reaching concentrations higher than 900 mg kg-1. This increase was highly related to OM and pH, which both increased with cultivation duration. Despite of low clay content of these soils, there is low risk of groundwater Cu contamination for actual conditions. However, high Cu concentrations in the surface layer of the long-term vineyards could cause toxicity problems for this and for companion crops.

  12. Effect of soil pH on sorption of salinomycin in clay and sandy soils

    African Journals Online (AJOL)

    use

    Full Length Research Paper. Effect of ... In this study, sorption of salinomycin was measured in four agricultural soils, a clay soil with low organic ... Key words: Salinomycin, sorption, pH, desorption, environmental pollution, phosphate buffer.

  13. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil.

    Science.gov (United States)

    Cartmill, Andrew D; Cartmill, Donita L; Alarcón, Alejandro

    2014-01-01

    A greenhouse experiment was conducted to determine the effect of the application of controlled release fertilizer [(CRF) 0, 4,6, or 8 kg m(-3)] on Lolium multiflorum Lam. survival and potential biodegradation of petroleum hydrocarbons (0, 3000, 6000, or 15000 mg kg(-1)) in sandy soil. Plant adaptation, growth, photosynthesis, total chlorophyll, and proline content as well as rhizosphere microbial population (culturable heterotrophic fungal and bacterial populations) and total petroleum hydrocarbon (TPH)-degradation were determined. Petroleum induced-toxicity resulted in reduced plant growth, photosynthesis, and nutrient status. Plant adaptation, growth, photosynthesis, and chlorophyll content were enhanced by the application of CRF in contaminated soil. Proline content showed limited use as a physiological indicator of petroleum induced-stress in plants. Bacterial and filamentous fungi populations were stimulated by the petroleum concentrations. Bacterial populations were stimulated by CRF application. At low petroleum contamination, CRF did not enhance TPH-degradation. However, petroleum degradation in the rhizosphere was enhanced by the application of medium rates of CRF, especially when plants were exposed to intermediate and high petroleum contamination. Application of CRF allowed plants to overcome the growth impairment induced by the presence of petroleum hydrocarbons in soils.

  14. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    Directory of Open Access Journals (Sweden)

    Silva João Eudes da

    2002-01-01

    Full Text Available Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.

  15. Dissolved Organic Carbon Dynamics Along Terrestrial-aquatic Flowpaths in a Catchment Dominated by Sandy Soils

    Science.gov (United States)

    Wickland, K.; Walker, J. F.; Hood, K.; Butler, K. D.

    2015-12-01

    Aquatic systems receive significant amounts of terrestrially-derived dissolved organic carbon (DOC) from their watersheds. The amount and nature received depends on terrestrial carbon source strength, processing and losses of carbon during transport, and hydrologic connectivity between terrestrial and aquatic systems. While much research has been done on terrestrial DOC dynamics along terrestrial-aquatic flowpaths, there is still considerable uncertainty in many areas including the importance of different carbon sources, microbial metabolism and sorption of DOC, and processing of carbon in groundwater. Here we investigate DOC dynamics in soils, groundwater, and stream waters at the USGS Water, Energy, and Biogeochemical (WEBB) Program research site in northern Wisconsin. This site is well-suited for studying DOC dynamics as soils are sandy and homogenous with small DOC sorption potential, and previous work has characterized the hydrology of the region in detail. We collected water samples over two years from soil pit lysimeters along a series of hillslope transects, from shallow and deep groundwater wells, and from a first-order stream receiving these waters. We measured DOC concentration, DOC optical properties, and biodegradability of DOC. Combined with historical DOC and companion water chemistry data we characterize DOC generation and loss along the following flowpaths: 1) infiltration through the unsaturated zone to the groundwater table, 2) shallow groundwater flow, and 3) long groundwater flowpaths of different origin (lake-derived vs. terrestrial-derived water).

  16. Transport and Retention of Toxoplasma gondii Oocysts in Loamy Sand and Sandy Loam Soils

    Science.gov (United States)

    Kinsey, E. N.; Korte, C.; L'Ollivier, C.; Dubey, J. P.; Aurélien, D.; Darnault, C. J. G.

    2016-12-01

    Toxoplasma gondii is one of the most prevalent parasites affecting warm-blooded animals and humans. It has a complex life cycle that involves a wide variety of intermediate hosts with felids as a definitive host. Humans may contract it through consumption of infected, undercooked meat or by water or food sources contaminated with the oocyst form of the parasite. Infection of pregnant women can cause stillbirth, neurological effects or blindness. Because of the prevalence of cats, including on farms where oocyst-contaminated cat feces, animal feed, soil and water have been found, T. gondii is spread almost throughout the entire globe. It has been implicated or suspected in waterborne infections since the 1990s. This study aims to characterize the transport and retention of T. gondii oocysts in field soils. The four soils used were collected from fallow and cultivated fields in Illinois and Utah, USA. They are classified as loamy sands and sandy loams. Soil columns were subjected to continuous artificial rainfall until they reached steady state at which point pulses that included 2.5 million T. gondii oocysts (Me49 strain) and KBr as a tracer were added. After the pulse infiltrated, continuous rainfall was resumed. Rain applied all columns was a 1 mM KCl solution. Leachate samples were collected, analyzed using qPCR for T. gondii and bromide ions and breakthrough curves were produced. Soil was sliced into 1 to 2 cm sections, for which water content and T. gondii concentration were measured to access degree of saturation and oocyst retention.

  17. PCDD/PCDF behavior in low-temperature pyrolysis of PCP-contaminated sandy soil.

    Science.gov (United States)

    Thuan, Ngo Thi; Dien, Nguyen Thanh; Chang, Moo Been

    2013-01-15

    This study investigates the behavior of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) formation, dechlorination and destruction in PCP-contaminated sandy soil by low-temperature thermal treatment. Experimental tests were carried out in a nitrogen atmosphere in the temperature range of 200-400 °C with a treatment time of 30 min. 70% of PCP removal from the soil was achieved, resulting in 1436±230 ng/kg, the highest PCDD/F formation at 250 °C; however, the highest toxic concentration was measured around 4.20±0.62 ng TEQ/kg at 300 °C with 80% PCP removal from the soil. Further analysis has revealed that OCDD is the most dominant congener that is supposed to be formed from the pyrolysis of PCP, while OCDF is the second prevailing congener, possibly due to pyrolysis of 2,3,4,5-TeCP being a main byproduct of PCP pyrolysis. Detection of less chlorinated dioxins and furans over 300 °C indicates the dechlorination of highly chlorinated dioxins and furans, especially octachlorinated dibenzo-p-dioxin (OCDD) at 350 °C and 400 °C. Desorption from soil was supposed as a main mechanism for the distribution of PCDD/Fs in the gaseous phase, and not much difference in dioxins and furan levels was observed at 350 °C and 400 °C in the gaseous phase. Therefore, 350 °C is the most appropriate temperature to remove most PCP and PCDD/Fs from soil, as well as to meet PCDD/F emission standards (0.1 ng I-TEQ/Nm(3)). Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effects of freeze-thaw on soil nitrogen and phosphorus availability at the Keerqin Sandy Lands, China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qiong; ZENG De-hui; FAN Zhi-ping

    2008-01-01

    A laboratory simulated freeze-thaw was conducted to determine the effects of freeze-thaw on soil nutrient availability in temperate semi-arid regions. Soil samples were collected from sandy soils (0-20 cm) of three typical ecosystems (grassland, Mongolian pine plantation and poplar plantation) in southeastern Keerqin Sandy Lands of China and subjected to freeze-thaw treatment (-12℃ for 10 days, then 20℃ for 10 days) or incubated at constant temperature (20℃ for 20 days). Concentrations of the soil NO3--N, NH4+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P (MBP) were determined on three occasions: at the start of the incubation, immediate post-thawing and at the 10th day post-thawing. The results showed that soil net nitrification and N mineralization rates at three sites were negatively affected by freeze-thaw treatment, and decreased by 50%-85% as compared to the control, of which the greatest decline occurred in the soil collected from poplar plantation. In contrast, the concentration of soil NH4+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P were insignificantly influenced by freeze-thaw except that LPi and NH4+-N showed a slight increase immediate post-thawing. The effects of freeze-thaw on soil N transformation were related to soil biological processes and the relatively constant available P was ascribed to severe soil aridity.

  19. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  20. [Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil].

    Science.gov (United States)

    Wang, Ji-Dong; Qi, Bing-Jie; Zhang, Yong-Chun; Zhang, Ai-Jun; Ning, Yun-Wang; Xu, Xian-Ju; Zhang, Hui; Ma, Hong-Bo

    2012-04-01

    Soil samples (0-80 cm) were collected from a 30-year fertilization experimental site in Xuzhou, Jiangsu Province of East China to study the variations of the pH, calcium carbonate and active calcium carbonate contents, and pH buffer capacity of sandy loam calcareous fluvor-aquic soil under different fertilization treatments. Thirty-year continuous application of different fertilizers accelerated the acidification of topsoil (0-20 cm), with the soil pH decreased by 0.41-0.70. Under different fertilization, the soil pH buffer capacity (pHBC) varied from 15.82 to 21.96 cmol x kg(-1). As compared with no fertilization, single N fertilization decreased the pHBC significantly, but N fertilization combined with organic fertilization could significantly increase the pHBC. The soil pHBC had significant positive correlations with soil calcium carbonate and active calcium carbonate contents, but less correlation with soil organic matter content and soil cation exchange capacity, suggesting that after a long-term fertilization, the sandy loam calcareous fluvor-aquic soil was still of an elementary calcium carbonate buffer system, and soil organic matter and cation exchange capacity contributed little to the buffer system. The soil calcium carbonate and active calcium carbonate contents were greater in 0-40 cm than in 40-80 cm soil layer. Comparing with soil calcium carbonate, soil active calcium carbonate was more sensitive to reflect the changes of soil physical and chemical properties, suggesting that the calcium carbonate buffer system could be further classified as soil active calcium carbonate buffer system.

  1. Quasi 3D modelling of water flow in the sandy soil

    Science.gov (United States)

    Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim

    2016-04-01

    Monitoring and modeling tools may improve irrigation strategies in precision agriculture. Spatial interpolation is required for analyzing the effects of soil hydraulic parameters, soil layer thickness and groundwater level on irrigation management using hydrological models at field scale. We used non-invasive soil sensor, a crop growth (LINGRA-N) and a soil hydrological model (Hydrus-1D) to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. In the first step, the sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models at one soil column. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. In the second step, to predict Ks over the whole field, the spatial distributions of Ks and its relationship between co-located soil ECa measured by a DUALEM-21S sensor were investigated. Measured groundwater levels and soil layer thickness were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m in aim of digital elevation maps. In the third step, a quasi 3D modelling approach was conducted using interpolated data as input hydraulic parameter, geometric information and boundary conditions in the integrated model. In addition, three different irrigation scenarios namely current, no irrigation and optimized irrigations were carried out to find out the most efficient irrigation regime. In this approach, detailed field scale maps of soil water stress, water storage and crop yield were produced at each specific time interval to evaluate the best and most efficient distribution of water using standard gun sprinkler irrigation. The results show that the effect of the position of the groundwater level was dominant in soil-water content prediction and associated water stress. A time-dependent sensitivity analysis of the hydraulic

  2. Using a local-interaction model to determine the resistance to penetration of projectiles into sandy soil

    Science.gov (United States)

    Kotov, V. L.; Balandin, V. V.; Bragov, A. M.; Linnik, E. Yu.; Balandin, V. V.

    2013-07-01

    A local-interaction model describing the penetration of axisymmetric projectiles into sandy soil at a constant velocity is studied experimentally and theoretically. Two approaches to the determination of the parameters of the quadratic local-interaction model are considered. The first approach is based on the use of the solution of the problem of spherical-cavity expansion taking into account the dynamic compressibility and shear resistance of soil. In the second approach, model parameters are determined based on the experimental dependence of the resistance to penetration of conical projectiles into a sandy soil on the impact velocity. Good agreement was obtained between the results of experiments, two-dimensional numerical calculations, and calculations for the local interaction model based on the solution of the spherical-cavity expansion problem and used to determine the maximum resistance to penetration of conical and spherical projectiles.

  3. Artificial Management Improves Soil Moisture, C, N and P in an Alpine Sandy Meadow of Western China

    Institute of Scientific and Technical Information of China (English)

    WU Gao-Lin; LI Wei; ZHAO Ling-Ping; SHI Zhi-Hua

    2011-01-01

    Regeneration of degraded grassland ecosystems is a significant issue in restoration ecology globally.To understand the effects of artificial management measures on alpine meadows, we surveyed topsoil properties including moisture, organic carbon (SOC), nitrogen (N), and phosphorus (P) contents five years after fencing and fencing + reseeding management practices in a sandy meadow in the eastern Qinghai-Tibetan Plateau, northwestern China.Both the fencing and fencing + reseeding management practices significantly increased soil moisture storage, SOC, total N, available N, total P, and available P, as compared to the unmanaged control.Fencing plus reseeding was more effective than fencing alone for improving soil C, N, and P contents.These suggested that rehabilitation by reseeding and fencing generally had favorable effects on the soil properties in degraded sandy alpine meadows, and was an effective approach for restoration of degraded meadow ecosystems of the Qinghai-Tibetan Plateau.

  4. The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil

    Directory of Open Access Journals (Sweden)

    M.E El-Hadad

    2011-03-01

    Full Text Available In a greenhouse experiment, the nematicidal effect of some bacterial biofertilizers including the nitrogen fixing bacteria (NFB Paenibacillus polymyxa (four strains, the phosphate solubilizing bacteria (PSB Bacillus megaterium (three strains and the potassium solubilizing bacteria (KSB B. circulans (three strains were evaluated individually on tomato plants infested with the root-knot nematode Meloidogyne incognita in potted sandy soil. Comparing with the uninoculated nematode-infested control, the inoculation with P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2, increased the counts of total bacteria and total bacterial spores in plants potted soil from 1.2 to 2.6 folds estimated 60 days post-inoculation. Consequently, the inoculation with P. polymyxa NFB7 increased significantly the shoot length (cm, number of leaves / plant, shoot dry weight (g / plant and root dry weight (g / plant by 32.6 %, 30.8 %, 70.3 % and 14.2 %, respectively. Generally, the majority treatments significantly reduced the nematode multiplication which was more obvious after 60 days of inoculation. Among the applied strains, P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2 inoculations resulted in the highest reduction in nematode population comparing with the uninoculated nematode-infested control. They recorded the highest reduction in numbers of hatched juveniles/root by 95.8 %, females/root by 63.75 % and juveniles/1kg soil by 57.8 %. These results indicated that these bacterial biofertilizers are promising double purpose microorganisms for mobilizing of soil nutrients (nitrogen, phosphate and potassium and for the biological control of M. incognita.

  5. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Science.gov (United States)

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  6. Enhanced retention of linuron, alachlor and metalaxyl in sandy soil columns intercalated with wood barriers.

    Science.gov (United States)

    Rodríguez-Cruz, M S; Ordax, J M; Arienzo, M; Sánchez-Martín, M J

    2011-03-01

    A study has been made of the effect a reactive barrier made of pine (softwood) or oak (hardwood) wood intercalated in a sandy soil column has on the retention of linuron, alachlor and metalaxyl (pesticides with contrasting physicochemical characteristics). The leaching of pesticides has been carried out under a saturated flow regime and breakthrough curves (BTCs) have been obtained at flow rates of 1 m Lmin(-1) (all pesticides) and 3 m Lmin(-1) (linuron). The cumulative curves in the unmodified soil indicate a leaching of pesticides >80% of the total amount of compound added. After barrier intercalation, linuron leaching decreases significantly and a modification of the leaching kinetics of alachlor and metalaxyl has been observed. The theoretical R factors increased ∼2.6-3.3, 1.2-1.6-fold, and 1.4-1.7-fold and the concentration of the maximum peak decreased ∼6-12-fold, 2-4-fold and 1.2-2-fold for linuron, alachlor and metalaxyl, respectively. When considering the three pesticides, significant correlations have been found between the theoretical retardation factor (R) and the pore volume corresponding to the maximum peaks of the BTCs (r=0.77; pmetalaxyl. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Predicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Tests

    Directory of Open Access Journals (Sweden)

    Mahmoud Hassanlourad

    2014-12-01

    Full Text Available In this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty and three relative densities (%30, %50, and %90 were injected with the sodium silicate grout with three different concentrations (water to sodium silicate ratio of 0.33, 1, and 2. A multi-layer Perceptron type of the artificial neural network was trained and tested using the results of 138 experimental tests. The multi-layer Perceptron included one input layer, two hidden layers and one output layer. The input parameters consisted of initial relative densities of grouted samples, the average size of particles (D50, the ratio of the grout water to sodium silicate and the grout pressure. The output parameter was the grout injection radius. The results of the experimental tests showed that the radius of grout injection is a complicated function of the mentioned parameters. In addition, the results of the trained artificial neural network showed to be reasonably consistent with the experimental results.

  8. Desorption kinetics of benzene in a sandy soil in the presence of powdered activated carbon.

    Science.gov (United States)

    Choi, J-W; Kim, S-B; Kim, D-J

    2007-02-01

    Desorption kinetics of benzene was investigated with a modified biphasic desorption model in a sandy soil with five different powdered activated carbon (PAC) contents (0, 1, 2, 5, 10% w/w) as sorbents. Sorption experiments followed by series dilution desorption were conducted for each sorbent. Desorption of benzene was successively performed at two stages using deionized water and hexane. Modeling was performed on both desorption isotherm and desorption rate for water-induced desorption to elucidate the presence of sorption-desorption hysteresis and biphasic desorption and if present to quantify the desorption-resistant fraction (q (irr)) and labile fraction (F) of desorption site responsible for rapid process. Desorption isotherms revealed that sorption-desorption exhibited a severe hysteresis with a significant fraction of benzene being irreversibly adsorbed onto both pure sand and PAC, and that desorption-resistant fraction (q (irr)) increased with PAC content. Desorption kinetic modeling showed that desorption of benzene was biphasic with much higher (4-40 times) rate constant for rapid process (k (1)) than that for slow process (k (2)), and that the difference in the rate constant increased with PAC content. The labile fraction (F) of desorption site showed a decreasing tendency with PAC. The experimental results would provide valuable information on remediation methods for soils and groundwater contaminated with BTEX.

  9. Exploring the potential of near-surface geophysical methods to delineate a shallow hardpan in a southeastern U.S. sandy coastal plain soil

    Science.gov (United States)

    A hardpan, which is a dense soil layer near the ground surface, is an undesirable feature of many soils in the Southeast U.S., especially sandy Coastal Plain soils. Shallow hardpans restrict root growth and water penetration through the soil profile, in turn reducing the effective crop root zone and...

  10. Effects of Nitramine Explosive CL-20 on the Soil Microinvertebrate Community in a Sandy Loam Soil

    Science.gov (United States)

    2013-09-01

    by individually combining and gently mixing CL-20- amended soil concentrates with clean SSL field soil in a plastic bag . This approach ensured that...Hawari, J.; Spain, J.C. Biodegradation of the Nitramine Explosive CL- 20. Appl. Environ. Microbiol. 2003, 69, 1871–1874. U.S. Department of

  11. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  12. Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var, mongolica on sandy land

    Institute of Scientific and Technical Information of China (English)

    ZHUJiao-jun; FANZhi-ping; ZENGDe-hui; JIANGFeng-qi; MATSUZAKITakeshi

    2003-01-01

    Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in “Three North” regions (North, northwest and northeast of China), but many prob-lems occurred in the earliest Mongolian pine plantations in 7hanggutai, 7hangwu County, Liaoning Province (ZZL). In order to clarify the reason, comprehensive investigations were carried out on differences in structure characteristics, growth processes and ecological factors between artificial stands (the first plantation established in ZZL in 1950s) and natural stands (the origin forests of the tree species in Honghuaerji, Inner Mongolia) on sandy land. The results showed that variation of diameter-class distributions in artificial stands and natural stands could be described by Weibull and Normal distribution models, respectively.Chapman-Richards growth model was employed to reconstruct the growth process of Mongolian pine based on the data from field investigation and stem analysis. The ages of maximum of relative growth rate and average growth rate of DBH, height, and volume of planted trees were 11,22 years, 8, 15 years and 35, 59 years earlier than those of natural stand trees, respectively. In respect of the incremental acceleration of volume, the artificial and natural stands reached their maximum values at 14 years and 33 years respectively. The quantitative maturity ages of artificial stands and natural stands were 43 years and 102 years respectively. It was concluded that the life span of the Mongolian pine trees in natural stands was about 60 years longer than those in artificial stands. The differences mentioned above between artificial and natural Mongolian pine forests on sandy land were partially attributed to the drastic variations of ecological conditions such as latitude, temperature, precipitation, evaporation and height above sea level. Human beings'' disturbances and higher density in plantation forest may

  13. Field performance of nine soil water content sensors on a sandy loam soil in new brunswick, maritime region, Canada.

    Science.gov (United States)

    Chow, Lien; Xing, Zisheng; Rees, Herb W; Meng, Fanrui; Monteith, John; Stevens, Lionel

    2009-01-01

    An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada) using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE) of 15.78, 16.93, and 17.65%, and a r(2) of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917), and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r(2) of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region.

  14. Field Performance of Nine Soil Water Content Sensors on a Sandy Loam Soil in New Brunswick, Maritime Region, Canada

    Directory of Open Access Journals (Sweden)

    Lionel Stevens

    2009-11-01

    Full Text Available An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE of 15.78, 16.93, and 17.65%, and a r2 of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917, and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r2 of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region.

  15. Thallium dynamics in contrasting light sandy soils--soil vulnerability assessment to anthropogenic contamination.

    Science.gov (United States)

    Vanek, Ales; Chrastný, Vladislav; Komárek, Michael; Galusková, Ivana; Drahota, Petr; Grygar, Tomás; Tejnecký, Václav; Drábek, Ondrej

    2010-01-15

    The influence of different soil conditions and the presence of LMWOA (Low Molecular Weight Organic Acids) on anthropogenic Tl dynamics were discussed in this study. A shift from the "labile" to the residual fraction during the ageing was identified, indicating Tl incorporation into stable phases (e.g., illite and/or amorphous silicates). The increased water-soluble Tl concentration (1.8-fold, in maximum) after the split application of LMWOA (simulating root exudation) was observed in all soils; partial dissolution of relatively "insoluble" Tl-bearing phases (silicates and eventually oxides) in the presence of LMWOA is suggested. Thermodynamic modeling showed that Tl mobilization in the presence of citric and oxalic acids was indirect and could be attributed to complexation of major elements (Ca, Mg, Al) originating from the dissolution of various soil phases. On the contrary, H(+)-promoted dissolution by acetic acid was assumed as the predominant mechanism of Tl mobilization. Manganese(III,IV) oxides, illite and probably amorphous silicates were evaluated as the dominant phases responsible for Tl retention in the soils. In carbonate-rich soils, Tl coprecipitation with the newly formed carbonates seems to be an important factor influencing Tl release. Therefore, we suggest data on CEC, pH(ZPC) and soil mineralogy to be critical for assessment of Tl behavior in soil systems.

  16. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, J.; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (?? SD) soil respiration rate in the DNR forests was (9.0 ?? 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ?? 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ?? 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities. ?? 2006 Institute of Botany, Chinese Academy of

  17. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  18. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg(-1) soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg(-1) soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions.

  19. Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil.

    Science.gov (United States)

    Samarajeewa, A D; Velicogna, J R; Princz, J I; Subasinghe, R M; Scroggins, R P; Beaudette, L A

    2017-01-01

    Silver nano-particles (AgNPs) are widely used in a range of consumer products as a result of their antimicrobial properties. Given the broad spectrum of uses, AgNPs have the potential for being released to the environment. As a result, environmental risks associated with AgNPs need to be assessed to aid in the development of regulatory guidelines. Research was performed to assess the effects of AgNPs on soil microbial activity and diversity in a sandy loam soil with an emphasis on using a battery of microbial tests involving multiple endpoints. The test soil was spiked with PVP coated (0.3%) AgNPs at the following concentrations of 49, 124, 287, 723 and 1815 mg Ag kg(-1) dry soil. Test controls included an un-amended soil; soil amended with PVP equivalent to the highest PVP concentration of the coated AgNP; and soil amended with humic acid, as 1.8% humic acid was used as a suspension agent for the AgNPs. The impact on soil microbial community was assessed using an array of tests including heterotrophic plate counting, microbial respiration, organic matter decomposition, soil enzyme activity, biological nitrification, community level physiological profiling (CLPP), Ion Torrent™ DNA sequencing and denaturing gradient gel electrophoresis (DGGE). An impact on microbial growth, activity and community diversity was evident from 49 to 1815 mg kg(-1) with the median inhibitory concentrations (IC50) as low as 20-31 mg kg(-1) depending on the test. AgNP showed a notable impact on microbial functional and genomic diversity. Emergence of a silver tolerant bacterium was observed at AgNP concentrations of 49-287 mg kg(-1) after 14-28 days of incubation, but not detectable at 723 and 1815 mg kg(-1). The bacterium was identified as Rhodanobacter sp. The study highlighted the effectiveness of using multiple microbial endpoints for inclusion to the environmental risk assessment of nanomaterials.

  20. Soil acidification effects on fine root growth of Douglas-fir on sandy soils.

    NARCIS (Netherlands)

    Olsthoorn, A.F.M.

    1998-01-01

    The ammonium sulphate deposited in forest ecosystems in the Netherlands as a result of air pollution currently exceeds 80 kg N ha -1yr -1locally. To study the influence of this air pollution on fine root density and its dynamics, fine root growth was monitored for three years i

  1. Spatial and temporal variation of nitrogen exported by runoff from sandy agricultural soils

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The eutrophication problem has drawn attention to nutrient leaching from agricultural soils.and an understanding of spatial and temporal variability is needed to develop decision-making tools.Thus,eleven sites were selected to monitor,over a two-year period,spatial and temporal variation of runoff discharge and various forms of N in surface runoff in sandy agricultural soils.Factors influencing the variation of runoff discharge and various forms of N in surface runoff were analyzed.Variation of annual rainfall was small among 11 situs.especially between 2001 and 2002.However,variation of annual discharge was significant among the sites.The results suggest that rainfall patterns and land usc had significant effect on discharge.The concentrations of total N,total kjeldahl N (TKN),organic matter-associated N (OM-N),NO3--N,and NH4+-N in the runoff ranged widely from 0.25 to 54.1,0.15 to 20.3,0.00 to 14.6,0.00 to 45.3,and 0.00 to 19.7 mg/L,respectively.Spatial and temporal variations in the N concentration and runoff discharge were noted among the different sites.Annual loads of N in the runoff varied widely among monitoring sites and depend mainly on runoff discharge.High loads of total N,OM-N,NO3--N,and NH4+-N in the runoff either in citrus groves or on vegetable farms occurred from June to October for each year,which coincided with the rainy season in the region.This study found that N in surface runoff was related to rainfall intensity,soil N level,and fertilizer use.

  2. Spatial and temporal variation of nitrogen exported by runoff from sandy agricultural soils.

    Science.gov (United States)

    Zhang, Ming-Kui; Wang, Li-Ping; He, Zhen-Li

    2007-01-01

    The eutrophication problem has drawn attention to nutrient leaching from agricultural soils, and an understanding of spatial and temporal variability is needed to develop decision-making tools. Thus, eleven sites were selected to monitor, over a two-year period, spatial and temporal variation of runoff discharge and various forms of N in surface runoff in sandy agricultural soils. Factors influencing the variation of runoff discharge and various forms of N in surface runoff were analyzed. Variation of annual rainfall was small among 11 sites, especially between 2001 and 2002. However, variation of annual discharge was significant among the sites. The results suggest that rainfall patterns and land use had significant effect on discharge. The concentrations of total N, total kjeldahl N (TKN), organic matter-associated N (OM-N), NO3(-)-N, and NH4(+)-N in the runoff ranged widely from 0.25 to 54.1, 0.15 to 20.3, 0.00 to 14.6, 0.00 to 45.3, and 0.00 to 19.7 mg/L, respectively. Spatial and temporal variations in the N concentration and runoff discharge were noted among the different sites. Annual loads of N in the runoff varied widely among monitoring sites and depend mainly on runoff discharge. High loads of total N, OM-N, NO3(-)-N, and NH4(+)-N in the runoff either in citrus groves or on vegetable farms occurred from June to October for each year, which coincided with the rainy season in the region. This study found that N in surface runoff was related to rainfall intensity, soil N level, and fertilizer use.

  3. Acidification and Nitrogen Eutrophication of Austrian Forest Soils

    OpenAIRE

    Robert Jandl; Stefan Smidt; Franz Mutsch; Alfred Fürst; Harald Zechmeister; Heidi Bauer; Thomas Dirnböck

    2012-01-01

    We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and...

  4. Seedling Growth and Phosphorus Cycling in Northern Forest Soils Amended With Biochar and Wood Ash

    Science.gov (United States)

    Noyce, G. L.; Jones, T.; Fulthorpe, R.; Basiliko, N.

    2015-12-01

    Biochar may be a powerful soil amendment to reduce nutrient depletion in North American forests where long-term nitrogen deposition has led to phosphorus (P) limitation, but many effects of biochar in these ecosystems are still unknown. We performed a 12-week growth chamber experiment in which red pine (Pinus resinosa) and sugar maple (Acer saccharum) seedlings were grown in pots with soil from three Ontario forests and varying amounts of sugar maple biochar. Additionally, biochar effects were compared with the effects of wood ash, a forest biomass bioenergy by-product that may also be a beneficial soil amendment in these ecosystems. We assessed plant biomass, soil microbial biomass and phosphatase activity; additional chemical analyses of plant tissue and soils are ongoing. Biochar effects on seedling growth were not consistent across tree species, soil type, and addition rate. For sugar maple seedlings grown in sand and sandy-loam textured soils, biochar additions of 20 t ha-1 significantly (p = 0.03) decreased root biomass by 25 %, and the root-to-shoot ratio correspondingly declined, but this effect was not observed in a silty soil. For red pine seedlings, the same biochar addition rate slightly increased root biomass. Wood ash effects on biomass were similarly variable. For example, in the sandy soil, sugar maple root biomass was significantly lower after application of 16 t ash ha-1, but unchanged by rates of 4 or 40 t ash ha-1. Microbial biomass and soil phosphatase activity also varied by soil type. Phosphatase activity was significantly lower (p = 0.02) in soils with sugar maple compared to red pine, but there were no consistent biochar or ash effects across all soils and species. However, for red pine seedlings grown in silt, biochar significantly (p = 0.04) reduced the phosphatase activity compared to the control and ash soils. Overall, biochar may lessen P-limitation in forested ecosystems, but the suitability of biochar, and wood ash, for increasing P

  5. Effect of biochar and compost application on quantity, quality and stability of organic carbon in sandy soil

    Science.gov (United States)

    Holes, Annamaria; Szegi, Tamas; Fuchs, Marta; Micheli, Erika; Aleksza, Laszlo

    2014-05-01

    Nowadays the amount of waste is increasing as a consequence of civilization development. Significant proportion of municipal waste is biodegradable. For the treatment of these wastes composting and pyrolysis can be one solution. Many studies were published on the effects of composts in soils, but on combined application of biochars and composts only a limited number of articles are available. Total carbon content, water soluble organic carbon content and organic matter quality have decisive role in the utilization of soils. In our study the effects of combined application of biochars and compost on organic carbon quality, quantity and stability were measured in sandy soil. The sandy soil was mixed with different proportions (1w/w%, 2,5w/w%, 5w/w%, 10w/w%) of biochars. Two types of biochars produced by pyrolization were used: plant origin biochar (POB) and animal origin biochar (AOB). 20w/w% urban green compost was mixed into each sample in addition to biochars. After the 30 days of wet incubation soil organic carbon (SOC) content was determined by Walkley-Black method, while for the SOC quality measurements E4/E6 method was used. The dissolved organic carbon (DOC) was extracted from the soil samples by cold water, and determined by titrimetric method. The future purpose of our study is to find the optimal compost-biochar treatment in order to improve soil fertility and maximize crop yield.

  6. A genetic-algorithm approach for assessing the liquefaction potential of sandy soils

    Directory of Open Access Journals (Sweden)

    G. Sen

    2010-04-01

    Full Text Available The determination of liquefaction potential is required to take into account a large number of parameters, which creates a complex nonlinear structure of the liquefaction phenomenon. The conventional methods rely on simple statistical and empirical relations or charts. However, they cannot characterise these complexities. Genetic algorithms are suited to solve these types of problems. A genetic algorithm-based model has been developed to determine the liquefaction potential by confirming Cone Penetration Test datasets derived from case studies of sandy soils. Software has been developed that uses genetic algorithms for the parameter selection and assessment of liquefaction potential. Then several estimation functions for the assessment of a Liquefaction Index have been generated from the dataset. The generated Liquefaction Index estimation functions were evaluated by assessing the training and test data. The suggested formulation estimates the liquefaction occurrence with significant accuracy. Besides, the parametric study on the liquefaction index curves shows a good relation with the physical behaviour. The total number of misestimated cases was only 7.8% for the proposed method, which is quite low when compared to another commonly used method.

  7. The effect of nitrogen fertilization on morphology traits of sweet sorghum cultivated on sandy soil

    Directory of Open Access Journals (Sweden)

    Ewelina Szydełko-Rabska

    2015-01-01

    Full Text Available The paper presents results of the experiment conducted in 2010-2012 on the influence of nitrogen fertilizer type (ammonium sulfate, calcium nitrate, ammonium nitrate and urea on sweet sorghum cultivated on sandy soil. Selected morphological traits and fresh and dry matter biomass were analyzed. Although fertilization significantly increased fresh and dry aboveground biomass, it did not affect sweet sorghum yield. Fresh aboveground biomass was highest under fertilization with ammonium nitrate (59.3 t ha-1. Fertilization influenced also yield growth rate, which ranged from 23.3 t ha-1 (under fertilization with urea to 26.5 t ha-1 (under fertilization with ammonium nitrate. The highest dry matter content (26.1% and dry matter yield (15.3 t ha-1 were obtained under ammonium sulfate. Nitrogen efficiency was affected by nitrogen fertilization and ranged from 40.4 (under fertilization with urea to 52.4 kg D.M. kg-1 N (under fertilization with ammonium sulfate. On the contrary, nitrogen physiological efficiency was not affected.

  8. Reduction of soil erosion on forest roads

    Science.gov (United States)

    Edward R. Burroughs; John G. King

    1989-01-01

    Presents the expected reduction in surface erosion from selected treatments applied to forest road traveledways, cutslopes, fillslopes, and ditches. Estimated erosion reduction is expressed as functions of ground cover, slope gradient, and soil properties whenever possible. A procedure is provided to select rock riprap size for protection of the road ditch.

  9. Soil production in forested landscapes (Invited)

    Science.gov (United States)

    Roering, J. J.; Booth, A. M.

    2009-12-01

    One of the most fundamental characteristics that defines landscapes is the presence or absence of a soil mantle. In actively eroding terrain, soil (and other natural resources that depend on it) persists only when the rate of soil production is not eclipsed by denudation. Despite successful efforts to empirically estimate long-term rates of soil production, little predictive capability exists as soil formation results from a complex interplay of biological, physical, and chemical processes. Here, we synthesize a suite of observations from the steep, forested Oregon Coast Range (OCR) and anlayze the role of trees in the conversion of bedrock to soil. Pit/mound topography on forest floors attests to the persistent, wholesale overturning of soil by tree root activity. Using airborne LiDAR data for our study site in the western Oregon Coast Range, we calculated how terrain roughness varies with spatial scale. At scales greater than 10m, the well-established ridge/valley structure of the landscape defines the topography; whereas for scales less than 7m, terrain roughness increases rapidly reflecting the stochastic nature of bioturbation associated with large, coniferous trees. Empirical estimates of soil production in the OCR by Heimsath et al (2001, ESPL) reveal that production rates decrease exponentially with depth and the decay constant is 2.68 (1/m). From dozens of soil pits in the OCR, we show that the density of trees roots declines exponentially with depth at a similar rate, 2.57 (1/m). In other words, rates of soil production appear to be well-correlated with root density. Bedrock is often excavated during tree turnover events and we documented that the volume of bedrock incorporated in overturned coniferous rootwads increases rapidly for tree diameters greater than 0.5m (which correponds to a 60-80 yr old Douglas fir tree in Western Oregon). Smaller (and thus younger) trees entrain negligible bedrock when overturned, suggesting that their root systems are

  10. Hurricane impacts on forest resources in the Eastern United States: a post-sandy assessment

    Science.gov (United States)

    Greg C. Liknes; Susan J. Crocker; Randall S. Morin; Brian F. Walters

    2015-01-01

    Extreme weather events play a role in shaping the composition and structure of forests. Responding to and mitigating a storm event in a forested environment requires information about the location and severity of tree damage. However, this information can be difficult to obtain immediately following an event. Post-storm assessments using regularly collected forest...

  11. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total dissolve

  12. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil co

  13. Soil properties discriminating Araucaria forests with different disturbance levels.

    Science.gov (United States)

    Bertini, Simone Cristina Braga; Azevedo, Lucas Carvalho Basilio; Stromberger, Mary E; Cardoso, Elke Jurandy Bran Nogueira

    2015-04-01

    Soil biological, chemical, and physical properties can be important for monitoring soil quality under one of the most spectacular vegetation formation on Atlantic Forest Biome, the Araucaria Forest. Our aim was to identify a set of soil variables capable of discriminating between disturbed, reforested, and native Araucaria forest soils such that these variables could be used to monitor forest recovery and maintenance. Soil samples were collected at dry and rainy season under the three forest types in two state parks at São Paulo State, Brazil. Soil biological, chemical, and physical properties were evaluated to verify their potential to differentiate the forest types, and discriminant analysis was performed to identify the variables that most contribute to the differentiation. Most of physical and chemical variables were sensitive to forest disturbance level, but few biological variables were significantly different when comparing native, reforested, and disturbed forests. Despite more than 20 years following reforestation, the reforested soils were chemically and biologically distinct from native and disturbed forest soils, mainly because of the greater acidity and Al3+ content of reforested soil. Disturbed soils, in contrast, were coarser in texture and contained greater concentrations of extractable P. Although biological properties are generally highly sensitive to disturbance and amelioration efforts, the most important soil variables to discriminate forest types in both seasons included Al3+, Mg2+, P, and sand, and only one microbial attribute: the NO2- oxidizers. Therefore, these five variables were the best candidates, of the variables we employed, for monitoring Araucaria forest disturbance and recovery.

  14. Effects of peat and weathered coal on the growth of Pinus sylvestris var. Mongolica seedlings on aeolian sandy soil

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke'erqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal wereadded to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. Mongolica seedlings and plastic pots wereused in the experiment. The experimental results indicat ed that: 1) the peat and weathered coal could significantly improve the physical and chemical properties of aeolian sandy soil, and thus promoted the growth of seedlings;2) the effect of peat on seedling growth, including height, base diam eter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass;3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. Sylvestris var. Mo ngolica seedlings.

  15. Improvement of Faba Bean Yield Using Rhizobium/Agrobacterium Inoculant in Low-Fertility Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sameh H. Youseif

    2017-01-01

    Full Text Available Soil fertility is one of the major limiting factors for crop’s productivity in Egypt and the world in general. Biological nitrogen fixation (BNF has a great importance as a non-polluting and a cost-effective way to improve soil fertility through supplying N to different agricultural systems. Faba bean (Vicia faba L. is one of the most efficient nitrogen-fixing legumes that can meet all of their N needs through BNF. Therefore, understanding the impact of rhizobial inoculation and contrasting soil rhizobia on nodulation and N2 fixation in faba bean is crucial to optimize the crop yield, particularly under low fertility soil conditions. This study investigated the symbiotic effectiveness of 17 Rhizobium/Agrobacterium strains previously isolated from different Egyptian governorates in improving the nodulation and N2 fixation in faba bean cv. Giza 843 under controlled greenhouse conditions. Five strains that had a high nitrogen-fixing capacity under greenhouse conditions were subsequently tested in field trials as faba bean inoculants at Ismaillia Governorate in northeast Egypt in comparison with the chemical N-fertilization treatment (96 kg N·ha−1. A starter N-dose (48 kg N·ha−1 was applied in combination with different Rhizobium inoculants. The field experiments were established at sites without a background of inoculation under low fertility sandy soil conditions over two successive winter growing seasons, 2012/2013 and 2013/2014. Under greenhouse conditions, inoculated plants produced significantly higher nodules dry weight, plant biomass, and shoot N-uptake than non-inoculated ones. In the first season (2012/2013, inoculation of field-grown faba bean showed significant improvements in seed yield (3.73–4.36 ton·ha−1 and seed N-yield (138–153 Kg N·ha−1, which were higher than the uninoculated control (48 kg N·ha−1 that produced 2.97 Kg·ha−1 and 95 kg N·ha−1, respectively. Similarly, in the second season (2013

  16. VARIABILITY OF ARABLE AND FOREST SOILS PROPERTIES ON ERODED SLOPES

    Directory of Open Access Journals (Sweden)

    Paweł Wiśniewski

    2014-10-01

    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  17. Using Biochar composts for improving sandy vineyard soils while reducing the risk of

    Science.gov (United States)

    Kammann, Claudia; Mengel, Jonathan; Mohr, Julia; Muskat, Stefan; Schmidt, Hans-Peter; Löhnertz, Otmar

    2016-04-01

    In recent years, biochar has increasingly been discussed as an option for sustainable environmentalmanagement, combining C sequestration with the aim of soil fertility improvement. Biochar has shownpositive effects in viticulture before (Genesio et al. 2015) which were largely attributed to improved water supply to the plants. However, in fertile temperate soils, the use of pure, untreated biochar does not guarantee economic benefits on the farm level (Ruysschaert et al., 2016). Hence, recent approaches started introducing biochar in management of nutrient-rich agricultural waste, e.g. in compost production (Kammann et al. 2015). Compost is frequently used in German vineyards for humus buildup and as a slow-release organic fertilizer. This, and increasingly mild, precipitation-rich winters, promoting mineralization, increase the risk of unwanted nitrate leaching losses into surface and ground waters during winter. To investigate if biochar pure, or biochar-compost mixtures and -products may have the potential to reduce nitrate leaching, we set up the following experiment: Either 30 or 60 t ha-1 of the following additives were mixed into the top 30 cm of sandy soil in large (120 L) containers, and planted with oneRiesling grapevine (Clone 198-30 GM) per container: Control (no addition), pure woody biochar, pure compost, biochar-compost (produced from the same organic feedstock than the compost, with 20 vol. - % of a woody biochar added), and pure compost plus pure biochar (same mixing ratio as in the former product). Once monthly, containers were exposed to simulated heavy rainfall that caused drainage. Leachates were collected from an outlet at the bottom of the containers, and analyzed for nutrients. The nutrient-rich additives containing compost all improved grape biomass and yield, most markedly pure compost and biochar-compost; same amendments were not significantly different. However,while the addition of the lower amount (30 t ha-1) of compost reduced nitrate

  18. Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar

    Science.gov (United States)

    Cely, P.; Tarquis, A. M.; Paz-Ferreiro, J.; Méndez, A.; Gascó, G.

    2014-06-01

    The effect of biochar on the soil carbon mineralization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on physicochemical properties and CO2 emissions of a sandy loam soil. For this purpose, soil was amended with three different biochars (BI, BII and BIII) at a rate of 8 wt% and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coefficients (r2) greater than 0.97. Results show a negative priming effect in the soil after addition of BI and a positive priming effect in the case of soil amended with BII and BIII. These results can be related to different biochar properties such as carbon content, carbon aromaticity, volatile matter, fixed carbon, easily oxidized organic carbon or metal and phenolic substance content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.

  19. Soil Moisture Eff ects on Sand Saltation and Dust Emission Observed over the Horqin Sandy Land Area in China

    Institute of Scientific and Technical Information of China (English)

    LI Xiaolan; ZHANG Hongsheng

    2014-01-01

    In this study, the eff ects of soil moisture on sand saltation and dust emission over the Horqin Sandy Land area are investigated, based on observations of three dust events in 2010. The minimum friction velocity initiating the motion of surface particles, namely, the threshold friction velocity, is estimated to be 0.34, 0.40, and 0.50 m s−1 under the very dry, dry, and wet soil conditions, respectively. In comparison with the observations during the dust events under the very dry and dry soil conditions, the dust emission fl ux during the wet event is smaller, but the saltation activities of sand particles (d≧50 µm) are stronger. The size distributions of airborne dust particles (0.1≦d≦20 µm) show that concentrations of the fi ner dust particles (0.1≦d≦0.3 µm) have a secondary peak under dry soil conditions, while they are absent under wet soil conditions. This suggests that the surface soil particle size distribution can be changed by soil moisture. Under wet soil conditions, the particles appear to have a larger size, and hence more potential saltating particles are available. This explains the occurrence of stronger saltation processes observed under wet soil conditions.

  20. Linkages between forest soils and water quality and quantity

    Science.gov (United States)

    Daniel G. Neary; George G. Ice; C. Rhett Jackson

    2009-01-01

    The most sustainable and best quality fresh water sources in the world originate in forest ecosystems. The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, moderating stream hydrology, and providing diverse aquatic habitat. Forest soils feature litter layers and...

  1. Effect of Application of Increasing Concentrations of Contaminated Water on the Different Fractions of Cu and Co in Sandy Loam and Clay Loam Soils

    Directory of Open Access Journals (Sweden)

    John Volk

    2016-12-01

    Full Text Available This study aimed to establish the fate of copper (Cu and cobalt (Co in sandy loam and clay loam soils that had been irrigated with increasing concentrations of contaminated water. A sequential extraction procedure was used to determine the fractions of Cu and Co in these soils. The concentration of bioavailable Cu and Co on clay loam was 1.7 times that of sandy loam soil. Cu on sandy loam soil was largely in the organic > residual > exchangeable > water-soluble > carbonate fractions, whereas on clay loam soil the element was largely in organic > exchangeable > residual > carbonate > water-soluble fractions. Co was largely observed in the exchangeable, water-soluble, and carbonate fractions, but with no particular trend observed in both soil types. When crops are grown on sandy soils that have a low capacity to hold heavy metals, the resulting effect would be high uptake of the heavy metals in crop plants. Because the predominant forms of Cu and Co vary in soils, it is expected that the metals will behave differently in the soils.

  2. Influence of tebuconazole and copper hydroxide on phosphatase and urease activities in red sandy loam and black clay soils.

    Science.gov (United States)

    Anuradha, B; Rekhapadmini, A; Rangaswamy, V

    2016-06-01

    The efficacy of two selected fungicides i.e., tebuconazole and coppoer hydroxide, was conducted experiments in laboratory and copper hydroxide on the two specific enzymes phosphatase and urease were determined in two different soil samples (red sandy loam and black clay soils) of groundnut (Arachis hypogaea L.) from cultivated fields of Anantapuramu District, Andhra Pradesh. The activities of the selected soil enzymes were determined by incubating the selected fungicides-treated (1.0, 2.5, 5.0, 7.5 and 10.0 kg ha(-1)) and -untreated groundnut soil samples at 10 day intervals. By determining the effective concentration, the rate of selected enzyme activity was estimated by adding the suitable substrate at 10, 20, 30 and 40 days of soil incubation. Both the enzyme activities were increased up to 5.0 kg ha(-1) level of fungicide in both soil samples significantly at 10 days of soil incubation and further enhanced up to 20 days of incubation. The activity of the phosphatase and urease decreased progressively at 30 and 40 days of incubation. From overall studies, higher concentrations (7.5 and 10.0 kg ha(-1)) of both tebuconazole and copper hydroxide were toxic to phosphatase and urease activities, respectively, in both soil samples.

  3. Rapid soil development after windthrow disturbance in pristine forests.

    Science.gov (United States)

    B.T. Bormann; H. Spaltenstein; M.H. McClellan; F.C. Ugolini; K. Cromack; S.M. Nay

    1995-01-01

    1. We examined how rapidly soils can change during secondary succession by observing soil development on 350-year chronosequences in three pristine forest ecosystems in south-east Alaska. 2. Soil surfaces, created by different windthrow events of known or estimated age, were examined within each of three forest stands (0.5-2.0 ha plots; i.e. a within-stand...

  4. Carbon and nitrogen dynamics of soil and litter along an altitudinal gradient in Atlantic Forest

    Science.gov (United States)

    Piccolo, M. D.; Martins, S. C.; Camargo, P. B.; Carmo, J. B.; Sousa Neto, E.; Martinelli, L. A.

    2008-12-01

    The Ombrophylus Dense Forest or Atlantic Forest is the second most important Biome in extension of Brazil, and it is considered a hot-spot in terms of biodiversity. It is localized in Brazilian Coast, and it covered originally 1.2 million km2, but currently only 8% of the original forest remains. The study was carried out in Sao Paulo State, Brazil (23° 24' S and 45° 11' W). The studied areas were: Restinga Vegetation (RV), 5 m above sea level; Low Altitude Ombrophylus Dense Forest (LAODF), 100 m asl; Submontane Ombrophylus Dense Forest (SODF), 600m asl and; Montane Ombrophylus Dense Forest (MODF), 1000 m asl. The aim of this study was to evaluate the effect of altitudinal gradient, with specific phytophysiognomies, on C and N dynamics in the soil and litter at Atlantic Forest. A sampling area of 1 ha was subdivided in contiguous sub- parcels (10 x 10 m). The forest floor litter accumulated (0.06 m2) was collected monthly (n=60), during 12 months, in each phytophysiognomies. Soils samples (0-0.05m depth) were collected (n=32) from square regular grids, 30 m away from each other. Changes in litter contents of C and N were not detected along the altitudinal gradient, and the values observed were 400 and 15g kg-1 for C and N, respectively. Litter ä13C values did not change significantly with the altitudinal gradient and were represented by C3 plants values. The C and N stocks were high in the clay soils (LAODF, SODF and MODF) when compared to sandy soil (RV). The soil C stocks (24 to 30 Mg ha-1) were similar among the altitudinal gradients, except RV (16 Mg ha-1). The areas of elevated altitude (MODF and SODF) showed high N stocks (2.3 Mg ha-1), followed by LAODF (1.8Mg ha-1) and RV (0.9Mg ha-1). In all altitudes there was 13C enrichment with soil depth, and it can be explained by the different fractions of the organic matter distributed along the soil profile, and also due the effect of the isotopic dilution between the forest floor litter and the soil.

  5. Effects of grazing strategy on limiting nitrate leaching in grazed grass-clover pastures on coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Eriksen, Jørgen; Søegaard, Karen;

    2012-01-01

    Urinations of ruminants on grazed pastures increase the risk of nitrate leaching. The study investigated the effect of reducing the length of the grazing season on nitrate leaching from a coarse sandy, irrigated soil during 2006–2007 and 2007–2008. In both years, precipitation was above the long-term...... mean. The experiment was initiated in a 4-yr-old grass-clover sward in south Denmark. Three treatments were as follows grazing only (G), spring cut followed by grazing (CG) and both spring and autumn cuts with summer grazing (CGC). Nitrate leaching was calculated by extracting water isolates from 80 cm...

  6. Eleven years' effect of conservation practices for temperate sandy loams: I. Soil physical properties and topsoil carbon content

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl

    2017-01-01

    experiments were conducted in 11- to 12-yr-old experiments on two Danish sandy loams at Foulum and Flakkebjerg. Three crop rotations/residue management treatments were compared and tillage was included as a splitplot factor. The tillage systems were moldboard plowing to a depth of 20 cm (MP), direct drilling...... their important role in soil structure formation and stabilization. Our study showed benefits of combining key CA elements, although longer-term studies are most likely needed to reveal the full potential....

  7. PARTICULAR ASPECTS OF APPLICABILITY OF PROVISIONS OF THE PHYSICAL AND CHEMICAL THEORY OF EFFECTIVE STRESSES TO SANDY SOILS

    Directory of Open Access Journals (Sweden)

    Potapov Aleksandr Dmitrievich

    2012-10-01

    V.I. Osipov. The analysis of several genetic types of quaternary sands, performed by the authors, makes it possible to use the number of contacts to identify the morphology of sand grains within the framework of the analysis of soils. The authors demonstrate that the employment of the formulas developed by academician V.I. Osipov in the calculation of the number of contacts between particles in natural sandy soils is virtually impossible due to the fact that no natural sand particles can boast an ideal spherical shape. The number of contacts between the sand particles may increase due to the defects of their shape and the nature of the particle surface. In this study, the shape and nature of the surface of sand grains represent those of the sands of various origins. The authors have employed a composite index of morphology that takes account of the shape and nature of the surface throughout the amount of sand under research. Similar calculations that take account of the morphology of grains were performed for selected fractions of sands to eliminate the influence of grain size on the packing of sands. The analysis of provisions of the physical and chemical theory of effective stresses of soils and the study of multiple types of natural sands demonstrate that further research of formation and phases of coagulation contacts between particles of soil requires a detailed study of structural features of sands. These structural features include the grain size, homogeneity, the shape and nature of the surface of sand grains. Both individual particles of sand and sandy soil are to be subjected to morphological assessments. The parameters to be assessed will include density and composition of sandy soils, as the soil porosity affects the formation of true contacts between particles of sand and determines their number. Mineral composition is an important factor affecting the shape and nature of the surface of sand grains. The research performed by the authors contemplates

  8. Indications of nitrogen-limited methane uptake in tropical forest soils

    Directory of Open Access Journals (Sweden)

    E. Veldkamp

    2013-08-01

    Full Text Available It is estimated that tropical forest soils contribute 6.2 Tg yr−1 (28% to global methane (CH4 uptake, which is large enough to alter CH4 accumulation in the atmosphere if significant changes would occur to this sink. Elevated deposition of inorganic nitrogen (N to temperate forest ecosystems has been shown to reduce CH4 uptake in forest soils, but almost no information exists from tropical forest soils even though projections show that N deposition will increase substantially in tropical regions. Here we report the results from two long-term, ecosystem-scale experiments in which we assessed the impact of chronic N addition on soil CH4 fluxes from two old-growth forests in Panama: (1 a lowland, moist (2.7 m yr−1 rainfall forest on clayey Cambisol and Nitisol soils with controls and N-addition plots for 9–12 yr, and (2 a montane, wet (5.5 m yr−1 rainfall forest on a sandy loam Andosol soil with controls and N-addition plots for 1–4 yr. We measured soil CH4 fluxes for 4 yr (2006–2009 in four replicate plots (40 m × 40 m each per treatment using vented static chambers (four chambers per plot. CH4 fluxes from the lowland control plots and the montane control plots did not differ from their respective N-addition plots. In the lowland forest, chronic N addition did not lead to inhibition of CH4 uptake; instead, a negative correlation of CH4 fluxes with nitrate (NO3– concentrations in the mineral soil suggests that increased NO3– levels in N-addition plots had stimulated CH4 consumption and/or reduced CH4 production. In the montane forest, chronic N addition also showed negative correlation of CH4 fluxes with ammonium concentrations in the organic layer, which suggests that CH4 consumption was N limited. We propose the following reasons why such N-stimulated CH4 consumption did not lead to statistically significant CH4 uptake: (1 for the lowland forest, this was caused by limitation of CH4 diffusion from the atmosphere into the clayey

  9. Does drought alter hydrological functions in forest soils? An infiltration experiment

    Science.gov (United States)

    Gimbel, K. F.; Puhlmann, H.; Weiler, M.

    2015-08-01

    The water cycle is expected to change in future and severely affect precipitation patterns across central Europe and in other parts of the world, leading to more frequent and severe droughts. Usually, it is assumed that system properties, like soil properties, remain stable and will not be affected by drought events. To study if this assumption is appropriate, we address the effects of drought on the infiltration behavior of forest soils using dye tracer experiments on six sites in three regions across Germany, which were forced into drought conditions. The sites cover clayey, loamy and sandy textured soils. In each region, we compared a deciduous and a coniferous forest stand to address differences between the main tree species. The results of the dye tracer experiments show clear evidence for changes in infiltration behavior at the sites. The infiltration changed at the clayey plots from regular and homogeneous flow to fast preferential flow. Similar behavior was observed at the loamy plots, where large areas in the upper layers remained dry, displaying signs of strong water repellency. This was confirmed by WDPT tests, which revealed, in all except one plot, moderate to severe water repellency. Water repellency was also accountable for the change of regular infiltration to fingered flow in the sandy soils. The results of this study suggest that the "drought-history" or generally the climatic conditions in the past of a soil are more important than the actual antecedent soil moisture status regarding hydrophobicity and infiltration behavior; and also, that drought effects on infiltration need to be considered in hydrological models to obtain realistic predictions concerning water quality and quantity in runoff and groundwater recharge.

  10. Soils characterisation along ecological forest zones in the Eastern Himalayas

    Science.gov (United States)

    Simon, Alois; Dhendup, Kuenzang; Bahadur Rai, Prem; Gratzer, Georg

    2017-04-01

    Elevational gradients are commonly used to characterise vegetation patterns and, to a lesser extent, also to describe soil development. Furthermore, interactions between vegetation cover and soil characteristics are repeatedly observed. Combining information on soil development and easily to distinguish forest zones along elevational gradients, creates an added value for forest management decisions especially in less studied mountain regions. For this purpose, soil profiles along elevational gradients in the temperate conifer forests of Western and Central Bhutan, ranging from 2600-4000m asl were investigated. Thereby, 82 soil profiles were recorded and classified according to the World Reference Base for Soil Resources. Based on 19 representative profiles, genetic horizons were sampled and analysed. We aim to provide fundamental information on forest soil characteristics along these elevational transects. The results are presented with regard to ecological forest zones. The elevational distribution of the reference soil groups showed distinct distribution ranges for most of the soils. Cambisols were the most frequently recorded reference soil group with 58% of the sampled profiles, followed by Podzols in higher elevations, and Stagnosols, at intermediate elevations. Fluvisols occurred only at the lower end of the elevational transects and Phaeozems only at drier site conditions in the cool conifer dry forest zone. The humus layer thickness differs between forest zones and show a shift towards increased organic layer (O-layer) with increasing elevation. The reduced biomass productivity with increasing elevation and subsequently lower litter input compensates for the slow decomposition rates. The increasing O-layer thickness is an indicator of restrained intermixing of organic and mineral components by soil organisms at higher elevation. Overall, the soil types and soil characteristics along the elevational gradient showed a continuous and consistent change, instead

  11. Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach.

    Science.gov (United States)

    Yao, Jun; Tian, Lin; Wang, Yanxin; Djah, Atakora; Wang, Fei; Chen, Huilun; Su, Chunli; Zhuang, Rensheng; Zhou, Yong; Choi, Martin M F; Bramanti, Emilia

    2008-02-01

    A multi-channel thermal activity monitor was applied to study soil microbial activity in Wuhan brown sandy soil in the presence of different concentrations of hexavalent chromium (K(2)Cr(2)O(7)). In order to stimulate the soil microbial activity, 5.0mg of glucose and 5.0mg of ammonium sulfate were added to a 1.20-g soil sample under a controlled humidity of 35%. The results show that the poisonous species of K(2)Cr(2)O(7) at an half inhibitory concentration (IC(50)) value of 4.27 microg mL(-1) against soil microbe, and an increase of the amount of hexavalent chromium is associated to a decrease in the microbial activity of the soil, probably due to an increase in the toxicity of hexavalent chromium, affecting strongly the life in this soil microbial environment. Our work also suggests that microcalorimetry is a fast, simple and more sensitive method that can be easily performed to study the toxicity of different species of heavy metals on microorganism compared to other biological methods.

  12. Hydro-physical characterization of soils under tropical semi-deciduous forest

    Directory of Open Access Journals (Sweden)

    Miguel Cooper

    2012-04-01

    Full Text Available The study of the hydro-physical behavior in soils using toposequences is of great importance for better understanding the soil, water and vegetation relationships. This study aims to assess the hydro-physical and morphological characterization of soil from a toposequence in Galia, state of São Paulo, Brazil. The plot covers an area of 10.24 ha (320 × 320 m, located in a semi-deciduous seasonal forest. Based on ultra-detailed soil and topographic maps of the area, a representative transect from the soil in the plot was chosen. Five profiles were opened for the morphological description of the soil horizons, and hydro-physical and micromorphological analyses were performed to characterize the soil. Arenic Haplustult, Arenic Haplustalf and Aquertic Haplustalf were the soil types observed in the plot. The superficial horizons had lower density and greater hydraulic conductivity, porosity and water retention in lower tensions than the deeper horizons. In the sub-superficial horizons, greater water retention at higher tensions and lower hydraulic conductivity were observed, due to structure type and greater clay content. The differences observed in the water retention curves between the sandy E and the clay B horizons were mainly due to the size distribution, shape and type of soil pores.

  13. Diffusion and emissions of 1,3-dichloro propene in Florida sandy soil in microplots affected by soil moisture, organic matter, and plastic film.

    Science.gov (United States)

    Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse

    2004-04-01

    The main objective of this study was to determine the influence of soil moisture, organic matter amendment and plastic cover (a virtually impermeable film, VIF) on diffusion and emissions of (Z)- and (E)-1,3-dichloropropene (1,3-D) in microplots of Florida sandy soil (Arredondo fine sand). Upward diffusion of the two isomers in the Arredondo soil without a plastic cover was greatly influenced by soil-water content and (Z)-1,3-D diffused faster than (E)-1,3-D. In less than 5 h after 1,3-D injection to 30 cm depth, (Z)- and (E)-1,3-D in air dry soil had diffused to a 10 cm depth, whereas diffusion for the two isomers was negligible in near-water-saturated soil, even 101 h after injection. The diffusion rate of (Z)- and (E)-1,3-D in near-field-capacity soil was between the rates in the two water regimes. Yard waste compost (YWC) amendment greatly reduced diffusion of (Z)- and (E)-1,3-D, even in air-dry soil. Although upward diffusion of (Z)- and (E)-1,3-D in soil with VIF cover was slightly less than in the corresponding bare soil; the cover promoted retention of vapors of the two isomers in soil pore air in the shallow subsurface. More (Z)-1,3-D vapor was found initially in soil pore air than (E)-1,3-D although the difference declined thereafter. As a result of rapid upward movement in air-dry bare soil, (Z)- and (E)-1,3-D were rapidly volatilized into the atmosphere, but emissions from the near-water-saturated soil were minimal. Virtually impermeable film and YWC amendment retarded emissions. This study indicated that adequate soil water in this sandy soil is needed to prevent rapid emissions, but excess soil water slows diffusion of (Z)- and (E)-1,3-D. Thus, management for optimum water in soil is critical for pesticidal efficacy and the environment.

  14. UNDERSTANDING AND APPLICABILITY OF THE FOREST SOIL CONCEPT

    Directory of Open Access Journals (Sweden)

    Ana Paula Moreira Rovedder

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810563The forestry sector plays an important role in the socioeconomic and environmental Brazilian context, therefore the improvement of the knowledge about forest soil becomes essential for its sustainable use as a conservation base of natural heritage as resource for economical development. Forest soil can be characterized by pedogenesis occurred under influence of a forestry typology or under a currently natural or cultivated forest coverage. Differentiating forest soils from those occupied with other uses helps the understanding of possible alterations related to vegetal coverage and the developing of better management strategies to soil and forest use. Nevertheless, there is no consensus about this term because the soils present variations according to the forest characteristics, stimulating the discussion concerning its interpretation and applicability. This review aimed to analyze the utilization of forest soil concept, highlighting the differentiation characteristics and the relation with coverage type, natural or cultivated. Aspects related to deposition, quality and management of residues, nutrients cycling, soil compaction and site productivity are emphasized. The forest soil concept is widely used by specific literature and useful to collect specific information and to plan the sustainable use of soil and forest. The improvement of knowledge about these resources provides the creation of a common identity, supporting comparative studies and consolidating the research regarding to this theme.

  15. Indications of nitrogen-limited methane uptake in tropical forest soils

    Directory of Open Access Journals (Sweden)

    E. Veldkamp

    2013-03-01

    Full Text Available Tropical forest soils contribute 6.2 Tg yr−1 (28% to global methane (CH4 uptake, which is large enough to alter CH4 accumulation in the atmosphere if significant changes would occur to this sink. Elevated deposition of inorganic nitrogen (N to temperate forest ecosystems has been shown to reduce CH4 uptake in forest soils, but almost no information exists from tropical forest soils even though projections show that N deposition will increase substantially in tropical regions. Here we report the results from long-term, ecosystem-scale experiments in which we assessed the impact of chronic N addition on soil CH4 fluxes from two old-growth forests in Panama: (1 a lowland, moist (2.7 m yr−1 rainfall forest on clayey Cambisol and Nitisol soils with controls and N-addition plots for 9–12 yr, and (2 a montane, wet (5.5 m yr−1 rainfall forest on a sandy loam Andosol soil with controls and N-addition plots for 1–4 yr. We measured soil CH4 fluxes for 4 yr (2006–2009 in 4 replicate plots (40 m × 40 m each per treatment using vented static chambers (4 chambers per plot. CH4 fluxes from the lowland control plots and the montane control plots did not differ from their respective N-addition plots. In the lowland forest, chronic N addition did not lead to inhibition of CH4 uptake; instead, a negative correlation of CH4 fluxes with nitrate (NO3− concentrations in the mineral soil suggests that increased NO3− levels in N-addition plots had stimulated CH4 consumption and/or reduced CH4 production. In the montane forest, chronic N addition also showed negative correlation of CH4 fluxes with ammonium concentrations in the organic layer, which suggests that CH4 consumption was N limited. We propose the following reasons why such N-stimulated CH4 consumption did not lead to statistically significant CH4 uptake: (1 for the lowland forest, this was caused by limitation of CH4 diffusion from the atmosphere into the clayey soils, particularly during the

  16. Chemical evaluation of soil-solution in acid forest soils

    Science.gov (United States)

    Lawrence, G.B.; David, M.B.

    1996-01-01

    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled

  17. Vegetation pattern variation, soil degradation and their relationship along a grassland desertification gradient in Horqin Sandy Land, northern China

    Science.gov (United States)

    Zuo, Xiaoan; Zhao, Halin; Zhao, Xueyong; Guo, Yirui; Yun, Jianying; Wang, Shaokun; Miyasaka, Takafumi

    2009-09-01

    The Horqin Sandy Land is one of the most severely desertified regions in northern China. Plant communities and soil conditions at five stages of grassland desertification (potential, light, moderate, severe and very severe) were selected for the study of vegetation pattern variation relating to soil degradation. The results showed that vegetation cover, species richness and diversity, aboveground biomass (AGB), underground biomass, litter, soil organic carbon (C), total nitrogen (N), total phosphorus (P), electrical conductivity, very fine sand (0.1-0.05 mm) content and silt (0.05-0.002 mm) content decreased with the desertification development. Plant community succession presented that the palatable herbaceous plants gave place to the shrub species with asexual reproduction and sand pioneer plants. The decline of vegetation cover and AGB was positively related to the loss of soil organic C and total N with progressive desertification ( P < 0.01). The multivariate statistical analysis showed that plant community distribution, species diversity and ecological dominance had the close relationship with the gradient of soil nutrients in the processes of grassland desertification. These results suggest that grassland desertification results in the variation of vegetation pattern which presents the different composition and structure of plant community highly influenced by the soil properties.

  18. Contrasting Hydraulic Strategies during Dry Soil Conditions in Quercus rubra and Acer rubrum in a Sandy Site in Michigan

    Directory of Open Access Journals (Sweden)

    Julia E. Thomsen

    2013-12-01

    Full Text Available Correlation analyses were carried out for the dynamics of leaf water potential in two broad-leaf deciduous tree species in a sandy site under a range of air vapor pressure deficits and a relatively dry range of soil conditions. During nights when the soil is dry, the diffuse-porous, isohydric and shallow-rooted Acer rubrum does not recharge its xylem and leaf water storage to the same capacity that is observed during nights when the soil is moist. The ring-porous, deep-rooted Quercus rubra displays a more anisohydric behavior and appears to be capable of recharging to capacity at night-time even when soil moisture at the top 1 m is near wilting point, probably by accessing deeper soil layers than A. rubrum. Compared to A. rubrum, Q. rubra displays only a minimal level of down-regulation of stomatal conductance, which leads to a reduction of leaf water potential during times when vapor pressure deficit is high and soil moisture is limiting. We determine that the two species, despite typically being categorized by ecosystem models under the same plant functional type—mid-successional, temperate broadleaf—display different hydraulic strategies. These differences may lead to large differences between the species in water relations, transpiration and productivity under different precipitation and humidity regimes.

  19. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  20. Biological and biochemical properties in evaluation of forest soil quality

    OpenAIRE

    Błońska Ewa; Lasota Jarosław

    2014-01-01

    The aim of this study was to assess the possibility of using biological and biochemical parameters in the evaluation of forest soil quality and changes caused by land use. The study attempted to determine a relationship between the enzymatic activity of soil, the number of earthworms and soil physico-chemical properties. The study was carried out in central Poland in adjoining Forest Districts (Przedbórz and Smardzewice). In soil samples taken from 12 research plots, basic physico-chemical pr...

  1. Biological and biochemical properties in evaluation of forest soil quality

    OpenAIRE

    Błońska, Ewa; Lasota, Jarosław

    2014-01-01

    The aim of this study was to assess the possibility of using biological and biochemical parameters in the evaluation of forest soil quality and changes caused by land use. The study attempted to determine a relationship between the enzymatic activity of soil, the number of earthworms and soil physico-chemical properties. The study was carried out in central Poland in adjoining Forest Districts (Przedbórz and Smardzewice). In soil samples taken from 12 research plots, basic physico-chem...

  2. Sorption of niobium on boreal forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Mervi; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2015-07-01

    The sorption of niobium (Nb) was investigated on humus and mineral soil samples taken from various depths of a four-metre deep forest soil pit on Olkiluoto Island, southwestern Finland. Mass distribution coefficients, K{sub d}, were determined in batch sorption tests. The steady state of Nb sorption was observed in the mineral soil samples already after one week of equilibration, and sorption decreased with depth from a very high value of 185000 mL/g at 0.7 m to 54000 mL/g at 3.4 m. The reason behind this decrease is probably the tenfold reduction in the specific surface area of the soil at the same depth range. Distribution coefficients were clearly lower in the humus layer (1000 mL/g). The K{sub d} values determined in pure water at a pH range of 4.7-6.5 were at a high level (above 55000 mL/g), but decreased dramatically above pH 6.5, corresponding to the change in the major Nb species from the neutral Nb(OH){sub 5} to the low-sorbing anionic Nb(OH){sub 6}{sup -} and Nb(OH){sub 7}{sup 2-}. However, the K{sub d} values in the model soil solution were in the slightly alkaline range an order of magnitude higher than in pure water, which is probably caused by the formation of calcium niobate surface precipitate or electrostatic interaction between surface-sorbed calcium and solute Nb. Among nine soil constituent minerals kaolinite performed best in retaining Nb in both pure water and model soil solution at pH 8, whereas potassium feldspar showed the poorest sorption. The K{sub d} value for kaolinite was above 500000 mL/g in both solutions, while the respective potassium feldspar values were in the range of 120-220 mL/g.

  3. [Effects of Different Residue Part Inputs of Corn Straws on CO2 Efflux and Microbial Biomass in Clay Loam and Sandy Loam Black Soils].

    Science.gov (United States)

    Liu, Si-yi; Liang, Ai-zhen; Yang, Xue-ming; Zhang, Xiao-ping; Jia, Shu-xia; Chen, Xue-wen; Zhang, Shi-xiu; Sun, Bing-jie; Chen, Sheng-long

    2015-07-01

    The decomposed rate of crop residues is a major determinant for carbon balance and nutrient cycling in agroecosystem. In this study, a constant temperature incubation study was conducted to evaluate CO2 emission and microbial biomass based on four different parts of corn straw (roots, lower stem, upper stem and leaves) and two soils with different textures (sandy loam and clay loam) from the black soil region. The relationships between soil CO2 emission, microbial biomass and the ratio of carbon (C) to nitrogen (N) and lignin of corn residues were analyzed by the linear regression. Results showed that the production of CO2 was increased with the addition of different parts of corn straw to soil, with the value of priming effect (PE) ranged from 215. 53 µmol . g-1 to 335. 17 µmol . g -1. Except for corn leaves, the cumulative CO2 production and PE of clay loam soil were significantly higher than those in sandy loam soil. The correlation of PE with lignin/N was obviously more significant than that with lignin concentration, nitrogen concentration and C/N of corn residue. The addition of corn straw to soil increased the contents of MBC and MBN and decreased MBC/MBN, which suggested that more nitrogen rather than carbon was conserved in microbial community. The augmenter of microbial biomass in sandy loam soil was greater than that in clay loam soil, but the total dissolved nitrogen was lower. Our results indicated that the differences in CO2 emission with the addition of residues to soils were primarily ascribe to the different lignin/N ratio in different corn parts; and the corn residues added into the sandy loam soil could enhance carbon sequestration, microbial biomass and nitrogen holding ability relative to clay loam soil.

  4. Forest soil biology-timber harvesting relationships: a perspective

    Science.gov (United States)

    M. F. Jurgensen; M. J. Larsen; A. E. Harvey

    1979-01-01

    Timber harvesting has a pronounced effect on the soil microflora by wood removal and changing properties. This paper gives a perspective on soil biology-harvesting relationships with emphasis on the northern Rocky Mountain region. Of special significance to forest management operations are the effects of soil micro-organisms on: the availability of soil nutrients,...

  5. Nitrate concentrations in soil solutions below Danish forests

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Raulund-Rasmussen, Karsten; Gundersen, Per;

    1999-01-01

    had higher concentrations than forest-type 'other woodland'), (3) soil-type (humus soils showed above average concentrations, and fine textured soils had higher concentrations than coarse textured soils), and (4) sampling time. Unlike other investigations, there was no significant effect of tree...

  6. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil.

    Science.gov (United States)

    Pacchioni, Ralfo G; Carvalho, Fabíola M; Thompson, Claudia E; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T R; Agnez-Lima, Lucymara F

    2014-06-01

    Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related to metabolism of amino acids, nitrogen, and DNA and stress resistance were more frequent in Caatinga soil, while the forest sample showed the highest occurrence of hits annotated in phosphorous metabolism, defense mechanisms, and aromatic compound degradation subsystems. The principal component analysis (PCA) showed that our samples are close to the desert metagenomes in relation to taxonomy, but are more similar to rhizosphere microbiota in relation to the functional profiles. The data indicate that soil characteristics affect the taxonomic and functional distribution; these characteristics include low nutrient content, high drainage (both are sandy soils), vegetation, and exposure to stress. In both samples, a rapid turnover of organic matter with low greenhouse gas emission was suggested by the functional profiles obtained, reinforcing the importance of preserving natural areas. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Aspects of the chemical microcompartimentation in forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, E.E.; Horsch, F.; Filby, G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A. (comps.)

    1986-04-01

    A new arrangement for the percolation of undisturbed soil cores has been developped. Thereby it can be shown, that in forest soils exist chemical desequilibria between the surfaces of aggregates and the bulk soil. The surfaces of aggregates, which are mainly in contact with soil water of low water tension, show more intensive soil acidity parameters. When soil acidity characteristics are derived from bulk soil analysis, the loss of information, caused by the removal of chemical desequilibria, must be taken into consideration. The same is valid, if results from soil analysis are used to predict benefits or risks of forest fertilization practices. Examples of application demonstrate the scale, variation and the ecological importance of chemical desequilibria in forest soils.

  8. Ecological factors governing the distribution of soil microfungi in some forest soils of Pachmarhi Hills, India

    Directory of Open Access Journals (Sweden)

    Shashi Chauhan

    2014-02-01

    Full Text Available An ecological study of the microfungi occurring in the various forest soils of Pachmarhi Hills, India has been carried-out by the soil plate technique. Soil samples from 5 different forest communities viz., moist deciduous forest dominated by tree ferns, Diospyros forest, Terminalia forest, Shorea forest and scrub forest dominated by Acacia and Dalbergia sp. were collected during October, 1983. Some physico-chemical characteristics of the soil were analysed and their role in distribution of fungi in 5 soil types was studied and discussed. 43 fungal species were isolated, of which Asperigillus niger I and Penicillium janthinellum occurred in all the 5 soil types. Statistically, none of the edaphic factors showed positive significant correlation with the number of fungi.

  9. Priming alters soil carbon dynamics during forest succession

    Science.gov (United States)

    Qiao, Na; Xu, Xingliang; Wang, Juan; Kuzyakov, Yakov

    2017-04-01

    The mechanisms underlying soil carbon (C) dynamics during forest succession remain challenged. We examined priming of soil organic matter (SOM) decomposition along a vegetation succession: grassland, young and old-growth forests. Soil C was primed much more strongly in young secondary forest than in grassland or old-growth forest. Priming resulted in large C losses (negative net C balance) in young-forest soil, whereas C stocks increased in grassland and old-growth forest. Microbial composition assessed by phospholipid fatty acids (PLFA) and utilization of easily available organics (13C-PLFA) indicate that fungi were responsible for priming in young-forest soils. Consequently, labile C inputs released by litter decomposition and root exudation determine microbial functional groups that decompose SOM during forest succession. These findings provide novel insights into connections between SOM dynamics and stabilization with microbial functioning during forest succession and show that priming is an important mechanism for contrasting soil C dynamics in young and old-growth forests.

  10. Calculating Organic Carbon Stock from Forest Soils

    Directory of Open Access Journals (Sweden)

    Lucian Constantin DINCĂ

    2015-12-01

    Full Text Available The organic carbon stock (SOC (t/ha was calculated in different approaches in order to enhance the differences among methods and their utility regarding specific studies. Using data obtained in Romania (2000-2012 from 4,500 profiles and 9,523 soil horizons, the organic carbon stock was calculated for the main forest soils (18 types using three different methods: 1 on pedogenetical horizons, by soil bulk density and depth class/horizon thickness; 2 by soil type and standard depths; 3 using regression equations between the quantity of organic C and harvesting depths. Even though the same data were used, the differences between the values of C stock obtained from the three methods were relatively high. The first method led to an overvaluation of the C stock. The differences between methods 1 and 2 were high (and reached 33% for andosol, while the differences between methods 2 and 3 were smaller (a maximum of 23% for rendzic leptosol. The differences between methods 2 and 3 were significantly lower especially for andosol, arenosol and vertisol. A thorough analysis of all three methods concluded that the best method to evaluate the organic C stock was to distribute the obtained values on the following standard depths: 0 - 10 cm; 10 - 20 cm; 20 - 40 cm; > 40 cm. For each soil type, a correlation between the quantity of organic C and the sample harvesting depth was also established. These correlations were significant for all types of soil; however, lower correlation coefficients were registered for rendzic leptosol, haplic podzol and fluvisol.

  11. Acidification and Nitrogen Eutrophication of Austrian Forest Soils

    Directory of Open Access Journals (Sweden)

    Robert Jandl

    2012-01-01

    Full Text Available We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and nitrogen contents of Norway spruce needles and mosses were used to assess the nitrogen supply. The pH values of soils have increased because of decreasing proton depositions caused by reduction of emissions. The C : N ratio of Austrian forest soils is widening. Despite high nitrogen deposition rates the increase in forest stand density and productivity has increased the nitrogen demand. The Austrian Bioindicator Grid shows that forest ecosystems are still deficient in nitrogen. Soils retain nitrogen efficiently, and nitrate leaching into the groundwater is presently not a large-scale problem. The decline of soil acidity and the deposition of nitrogen together with climate change effects will further increase the productivity of the forests until a limiting factor such as water scarcity becomes effective.

  12. Water repellency of two forest soils after biochar addition

    Science.gov (United States)

    D. S. Page-Dumroese; P. R. Robichaud; R. E. Brown; J. M. Tirocke

    2015-01-01

    Practical application of black carbon (biochar) to improve forest soil may be limited because biochar is hydrophobic. In a laboratory, we tested the water repellency of biochar application (mixed or surface applied) to two forest soils of varying texture (a granitic coarse-textured Inceptisol and an ash cap fine-textured Andisol) at four different application rates (0...

  13. Modeling soil erosion and transport on forest landscape

    Science.gov (United States)

    Ge Sun; Steven G McNulty

    1998-01-01

    Century-long studies on the impacts of forest management in North America suggest sediment can cause major reduction on stream water quality. Soil erosion patterns in forest watersheds are patchy and heterogeneous. Therefore, patterns of soil erosion are difficult to model and predict. The objective of this study is to develop a user friendly management tool for land...

  14. Mapping forest soil organic matter on New Jersey's coastal plain

    Science.gov (United States)

    Brian J. Clough; Edwin J. Green; Richard B. Lathrop

    2012-01-01

    Managing forest soil organic matter (SOM) stocks is a vital strategy for reducing the impact of anthropogenic carbon dioxide emissions. However, the SOM pool is highly variable, and developing accurate estimates to guide management decisions has remained a difficult task. We present the results of a spatial model designed to map soil organic matter for all forested...

  15. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...... involved into long-term stability are largely unknown. The aim of this PhD thesis was to explore changes in: (i) SOC stocks; (ii) physical SOC fractions; and (iii) labile soil carbon components following forest expansion on mountain grasslands. A land-use gradient located in the Southern Alps (Italy....... Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...

  16. Experimental studies on the physico-mechanical properties of jet-grout columns in sandy and silty soils

    Science.gov (United States)

    Akin, Muge K.

    2016-04-01

    The term of ground improvement states to the modification of the engineering properties of soils. Jet-grouting is one of the grouting methods among various ground improvement techniques. During jet-grouting, different textures of columns can be obtained depending on the characteristics of surrounding subsoil as well as the adopted jet-grouting system for each site is variable. In addition to textural properties, strength and index parameters of jet-grout columns are highly affected by the adjacent soil. In this study, the physical and mechanical properties of jet-grout columns constructed at two different sites in silty and sandy soil conditions were determined by laboratory tests. A number of statistical relationships between physical and mechanical properties of soilcrete were established in this study in order to investigate the dependency of numerous variables. The relationship between qu and γd is more reliable for sandy soilcrete than that of silty columns considering the determination coefficients. Positive linear relationships between Vp and γd with significantly high determination coefficients were obtained for the jet-grout columns in silt and sand. The regression analyses indicate that the P-wave velocity is a very dominant parameter for the estimation of physical and mechanical properties of jet-grout columns and should be involved during the quality control of soilcrete material despite the intensive use of uniaxial compressive strength test. Besides, it is concluded that the dry unit weight of jet-grout column is a good indicator of the efficiency of employed operational parameters during jet-grouting.

  17. The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management

    DEFF Research Database (Denmark)

    Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl; Schjønning, Per

    2016-01-01

    was sampled at the 0–10, 10–20 and 25–30 cm depths of a sandy loam soil at Flakkebjerg, Denmark in 2013. We used the experimental plots of a long-term field experiment with mouldboard ploughing (MP) and direct drilling (DD) treatments. The residue management included straw removal (−S) and straw retention (+S...... decreased clay dispersibility (p = 0.09) and increased soil friability (p b 0.05) compared with the MP soil. Direct drilling with straw removal (DD − S) resulted in higher workability compared with mouldboard ploughing with straw removal (MP − S) (p b 0.05). We defined non-complexed clay as NCC = clay −10...

  18. Modelling trends in soil solution concentrations under five forest-soil combinations in the Netherlands

    NARCIS (Netherlands)

    Salm, van der C.; Vries, de W.; Kros, J.

    1996-01-01

    The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased filteri

  19. Evaluation of physical quality indices of a soil under a seasonal semideciduous forest

    Directory of Open Access Journals (Sweden)

    Thalita Campos Oliveira

    2014-04-01

    Full Text Available The concept of soil quality is currently the subject of great discussion due to the interaction of soil with the environment (soil-plant-atmosphere and practices of human intervention. However, concepts of soil quality relate quality to agricultural productivity, but assessment of soil quality in an agronomic context may be different from its assessment in natural areas. The aim of this study was to assess physical quality indices, the S index, soil aeration capacity (ACt/Pt, and water storage capacity (FC/Pt of the soil from a permanent plot in the Caetetus Ecological Reserve (Galia, São Paulo, Brazil under a seasonal semideciduous forest and compare them with the reference values for soil physical quality found in the literature. Water retention curves were used for that purpose. The S values found were higher than the proposed limit for soil physical quality (0.035. The A and E horizons showed the highest values because their sandy texture leads to a high slope of the water retention curve. The B horizons showed the lowest S values because their natural density leads to a lower slope of the water retention curve. The values found for ACt/Pt and FC/Pt were higher and lower than the idealized limits. The values obtained from these indices under natural vegetation can provide reference values for soils with similar properties that undergo changes due to anthropic activities. All the indices evaluated were effective in differentiating the effects of soil horizons in the natural hydro-physical functioning of the soils under study.

  20. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  1. Organic carbon stock in some forest soils in Serbia

    OpenAIRE

    Kadovic Ratko; Belanovic Snežana; Kneževic Milan; Danilovic Milorad; Košanin Olivera; Beloica Jelena

    2012-01-01

    The content of organic carbon (C) was researched in topsoil layers (0-20 cm) in the most represented soils of forest ecosystems in central Serbia: eutric ranker, eutric cambisol and dystric cambisol. The soils were sampled during 2003, 2004 and 2010. Laboratory analyses included the soil physical and chemical properties necessary for the quantification of the soil organic carbon in organic and mineral layers. Mean values of the soil organic carbon (SOC) sto...

  2. Impacts of grass removal on wetting and actual water repellency in a sandy soil

    National Research Council Canada - National Science Library

    Klaas Oostindie; Louis W. Dekker; Jan G. Wesseling; Violette Geissen; Coen J. Ritsema

    2017-01-01

    Soil water content and actual water repellency were assessed for soil profiles at two sites in a bare and grasscovered plot of a sand pasture, to investigate the impact of the grass removal on both properties...

  3. Effects of dune stabilization on vegetation characteristics and soil properties at multiple scales in Horqin Sandy Land, Northern China

    Institute of Scientific and Technical Information of China (English)

    XiaoAn Zuo; XueYong Zhao; ShaoKun Wang; Xin Zhou; Peng Lv; Jing Zhang

    2015-01-01

    Ecological patterns and processes in dune ecosystems have been a research focus in recent years, however information on how dune stabilization influences vegetation and soil at different spatial scales is still lacking. In this study, we measured vegetation characteristics and soil properties across three spatial scales (10, 100 and 1,000 m2) along gradient dune stabi-lization stages (mobile dune, semi-fixed dune and fixed dune) in Horqin Sandy Land, Northern China. Vegetation cover over all scales significantly increased with degree of dune stabilization, as well as species richness and C/N ratio at 10 m2 scale. Species richness significantly increased with the increase in measured scales at each stage of dune stabilization and was higher in fixed dune than that in mobile dune and semi-fixed dune at 100 and 1,000 m2 scales. Over all scales, aboveground biomass was lower in mobile dune than that in semi-fixed dune and fixed dune, and soil organic C, total N, EC, very fine sand and silt+clay contents were higher in fixed dune than those in mobile dune and semi-fixed dune. These results suggest that along the gradient dune stabilization, species richness has strong spatial scale-dependence, but vege-tation cover, aboveground biomass and soil properties is generally scale independent (i.e., the pattern of response is con-sistent across all scales). Effect of dune stabilization on vegetation and soil over all spatial scales results in the positive correlation among vegetation cover, species richness, biomass, soil organic C, total N, C/N, EC, very fine sand and silt+clay along the gradient dune stabilization. In addition, species richness at the smallest scale (10 m2) has more sensitive response to dune stabilization. Thus, the monitoring strategies at small scales are essential to detect changes of species diversity in semiarid dune ecosystems.

  4. Reduced nitrogen leaching by intercropping maize with red fescue on sandy soils in North Europe

    DEFF Research Database (Denmark)

    Manevski, Kiril; Børgesen, Christen Duus; Andersen, Mathias Neumann

    2015-01-01

    Aim To study maize (Zea mays L.) growth and soil nitrogen (N) dynamics in monocrop and intercropped systems in a North European climate and soil conditions with the support of a simulation model. Methods Field data for 3 years at two sites/soil types in Denmark and three main factors: (i) cropping...

  5. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...

  6. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid

  7. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility.

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid phase. The

  8. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US

    Science.gov (United States)

    Coeli M. Hoover

    2011-01-01

    The role of forests in the global carbon cycle has been the subject of a great deal of research recently, but the impact of management practices on forest soil dynamics at the stand level has received less attention. This study used six forest management experimental sites in five northern states of the US to investigate the effects of silvicultural treatments (light...

  9. Changes in soil and vegetation on moving sand dunes after exclosure in Horqin Sandy Land, Northern China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the semiarid Horqin Sandy Land of northern China, land desertification is the main causation in vegetation degradation and formation of moving dunes. A study was conducted from 1996 to 2005 to monitor the changes of vegetation characteristics and soil properties after moving dunes were fenced. The changes were compared between moving sand dunes with exclosure and without exclosure to evaluate the effectiveness of vegetation and soil restoration after exclosure establishment. The results show that exlosure establishment facilitated the colonization and development of plant species by ameliorating stressful environmental conditions. Species diversity, average coverage, and plant density significantly increased after exclosure of moving sand dunes along sequence compared with sand dunes without exclosure. Vegetation recovery on moving sand dunes accelerated by exclosure resulted in significant changes in soil properties including increased silt and clay contents, organic C and total N and decreased sand content, especially at the 0-5 cm depth. The results implied that moving sand dunes can be rapidly fixed by construction of exclosure.

  10. Extraction of bitumen, crude oil and its products from tar sand and contaminated sandy soil under effect of ultrasound.

    Science.gov (United States)

    Abramov, O V; Abramov, V O; Myasnikov, S K; Mullakaev, M S

    2009-03-01

    In the present paper, the kinetics of the water extraction of bitumen from tar sand and crude oil or residual fuel oil from model contaminated soils under the effect of ultrasound is studied. The influence of process temperature, ultrasound power, the nature, and properties of the components of heterogeneous mixtures being separated, and the concentration of added alkaline reagents on the rate and degree of oil recovery is investigated. A functional form of the dependencies of separation efficiency on the mean size of solid particles and the temperature of a working medium is found. Optimum concentrations of reagents in the process solution are determined. It is shown that the spent solution of sodium silicate can be multiply used for separation, its reuse even speeding up the yield of oil in the initial period. Taking into account obtained results, a multipurpose pilot plant with a flow-type reactor for ultrasonic extraction of petroleum and its products from contaminated soils was manufactured and tested. During tests, the purification of sandy soil contaminated with residual fuel oil was carried out which verified the results of laboratory studies.

  11. Natural chlorinated compounds in forest soils - spatiotemporal patterns of chloroform and related compounds

    Science.gov (United States)

    Albers, C. N.; Jacobsen, O. S.; Laier, T.

    2011-12-01

    Chloroform is a volatile chlorinated organic compound. It is a widespread pollutant from various anthropogenic sources, but most of the chloroform in the atmosphere originates from natural sources. The terrestrial environment and especially soils seem to be important contributors to the atmospheric chloroform and may also cause apparent pollution of groundwater with this compound. We hereby present the results of a field study concerning chloroform concentrations above and below the soil surface, as well as emissions from the soil to the atmosphere using closed flux chambers. The study was performed in two coniferous forests- a mixed pine/spruce plantation and a sheer spruce plantation located on sandy soils in Denmark. In both forests, great seasonal variations in top soil concentrations and emissions of chloroform were observed, as expected for a volatile compound, formed with the involvement of soil biota. On the other hand, concentrations in the groundwater showed only minor temporal patterns. Surprisingly, horizontal variations as great as two orders of magnitude, in both concentrations in top soil air and emissions, were found - not just between different stands, but also on the scale of a few meters within single stands. This spatial variation was patchy rather than completely random and the forest floor could be divided into chloroform "High Spot" and "Low Spot" areas, which also affected the concentration of chloroform in shallow groundwater. Since previous estimates of global chloroform emissions from soil are all based on very small datasets, the discovery of the chloroform High Spots might influence the interpretation of these estimates. Furthermore, the large spatial variation might explain why it has been extremely difficult to predict and identify locations of chloroform formation resulting in the μg/L concentrations sometimes observed in groundwater. During the study, we discovered the presence of novel natural trichloroacetyl containing compounds

  12. Impacts of grass removal on wetting and actual water repellency in a sandy soil

    Directory of Open Access Journals (Sweden)

    Oostindie Klaas

    2017-03-01

    Full Text Available Soil water content and actual water repellency were assessed for soil profiles at two sites in a bare and grasscovered plot of a sand pasture, to investigate the impact of the grass removal on both properties. The soil of the plots was sampled six times in vertical transects to a depth of 33 cm between 23 May and 7 October 2002. On each sampling date the soil water contents were measured and the persistence of actual water repellency was determined of field-moist samples. Considerably higher soil water contents were found in the bare versus the grass-covered plots. These alterations are caused by differences between evaporation and transpiration rates across the plots. Noteworthy are the often excessive differences in soil water content at depths of 10 to 30 cm between the bare and grass-covered plots. These differences are a consequence of water uptake by the roots in the grass-covered plots. The water storage in the upper 19 cm of the bare soil was at least two times greater than in the grass-covered soil during dry periods. A major part of the soil profile in the grass-covered plots exhibited extreme water repellency to a depth of 19 cm on all sampling dates, while the soil profile of the bare plots was completely wettable on eight of the twelve sampling dates. Significant differences in persistence of actual water repellency were found between the grass-covered and bare plots.

  13. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study.

    Directory of Open Access Journals (Sweden)

    Weiwei Lu

    Full Text Available This study examined the effect of nitrogen (N on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant straw in absence (BC0 and presence (BCN of N and monitored for dynamics of carbon dioxide (CO2 flux, phospholipid fatty acids (PLFAs profile and dissolved organic carbon (DOC content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05, and the proportions of decomposed biochar carbon (C were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05 higher than DOC in biochar (1.75% and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05 increased the proportion of gram-positive (G+ bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G- bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil.

  14. Soil Organic Matter in Forest Ecosystems of the Forest-tundra zone of Central Siberia

    Science.gov (United States)

    Mukhortova, Liudmila

    2010-05-01

    Our study was conducted on 17 forest sample plots in the forest-tundra zone of Central Siberia, Krasnoyarsk region, Russia. They were covered by larch/feather moss/shrub and larch/grass forest types growing on cryozems and podburs (Cryosols). The investigation was aimed at estimating soil organic matter storage and structure in forest ecosystems growing along the northern tree line. Such ecosystems have low rates of exchange processes and biological productivity. Estimating soil carbon in these forest types is important for a deeper understanding of their role in biogeochemical cycles and forecasting consequences of climate changes. Soil organic matter was divided into pools by biodegradation resistance level and, hence, different roles of these pools in biological cycles. The soil organic matter was divided into an easily mineralizable (LMOM) fraction, which includes labile (insoluble) (LOM) and mobile (soluble) (MOM) organic compounds, and a stable organic matter fraction that is humus substances bound with soil matrix. The forest-tundra soil carbon was found to total 30.9 to 125.9 tons/ha. Plant residues were the main part of the soil easily mineralizable organic matter and contained from 13.3 to 62.4% of this carbon. Plant residue carbon was mainly allocated on the soil surface, in the forest litter. Plant residues in the soil (dead roots + other "mortmass") were calculated to contribute 10-30% of the plant residues carbon, or 2.5-15.1% of the total soil carbon. Soil surface and in-soil dead plant material included 60-95% of heavily decomposed residues that made up a forest litter fermentation subhorizon and an "other mortmass" fraction of the root detritus. Mobile organic matter (substances dissolved in water and 0.1N NaOH) of plant residues was found to allocate 15-25% of carbon. In soil humus, MOM contribution ranged 14 to 64%. Easily mineralizable organic matter carbon appeared to generally dominate forest-tundra soil carbon pool. It was measured to

  15. Seed Burial Depth and Soil Water Content Affect Seedling Emergence and Growth of Ulmus pumila var. sabulosa in the Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Jiao Tang

    2016-01-01

    Full Text Available We investigated the effects of seed burial depth and soil water content on seedling emergence and growth of Ulmus pumila var. sabulosa (sandy elm, an important native tree species distributed over the European-Asian steppe. Experimental sand burial depths in the soil were 0.5, 1.0, 1.5, 2.0 and 2.5 cm, and soil water contents were 4%, 8%, 12% and 16% of field capacity. All two-way ANOVA (five sand burial depths and four soil water contents results showed that seed burial depths, soil water content and their interactions significantly affected all the studied plant variables. Most of the times, seedling emergence conditions were greater at the lower sand burial depths (less than 1.0 cm than at the higher (more than 1.0 cm seed burial depths, and at the lower water content (less than 12% than at the higher soil water content. However, high seed burial depths (more than 1.5 cm or low soil water content (less than 12% reduced seedling growth or change in the root/shoot biomass ratios. In conclusion, the most suitable range of sand burial was from 0.5 to 1.0 cm soil depth and soil water content was about 12%, respectively, for the processes of seedling emergence and growth. These findings indicate that seeds of the sandy elm should be kept at rather shallow soil depths, and water should be added up to 12% of soil capacity when conducting elm planting and management. Our findings could help to create a more appropriate sandy elm cultivation and understand sparse elm woodland recruitment failures in arid and semi-arid regions.

  16. Restoring Eroded Lands in Southern Iceland: Efficacy of Domestic, Organic Fertilizers in Sandy Gravel Soils

    OpenAIRE

    Brenner, Julia Miriam, 1989-

    2016-01-01

    Since settlement Iceland has faced severe soil degradation due to a combination of natural stressors – glacial flooding, volcanic eruption, and heavy wind – and anthropogenic stressors – grazing livestock, wood harvesting, and land use change. Declining soil stability under these conditions resulted in extensive soil erosion: 40% of Iceland now has considerable, severe, or extremely severe erosion. Fertilizers have been utilized for land reclamation in Iceland for many years, but they have mo...

  17. Soil and soil cover changes in spruce forests after final logging

    Directory of Open Access Journals (Sweden)

    E. M. Lapteva

    2015-10-01

    Full Text Available Soil cover transformation and changes of morphological and chemical properties of Albeluvisols in clear-cuttings of middle taiga spruce forests were studied. The observed changes in structure and properties of podzolic texturally-differentiated soils at cuttings of spruce forests in the middle taiga subzone do not cause their transition to any other soil type. Soil cover of secondary deciduous-coniferous forests which replace cut forests are characterized with a varied soil contour and a combination of the main type of podzolic soils under undisturbed spruce forests. The increased surface hydromorphism in cut areas causes formation of complicated sub-types of podzolic texturally differentiated soils (podzolic surface-gley soils with microprofile of podzol and enlarges their ratio (up to 35–38 % in soil cover structure. Temporary soil over-wetting at the initial (5–10 years stage of after-cutting self-restoring vegetation succession provides for soil gleyzation, improves yield and segregation of iron compounds, increases the migratory activity of humic substances. Low content and resources of total nitrogen in forest litters mark anthropogenic transformation processes of podzolic soils at this stage. Later (in 30–40 years after logging, soils in cut areas still retain signs of hydromorphism. Forest litters are denser, less acidic and thick with a low weight ratio of organic carbon as compared with Albeluvisols of undisturbed spruce forest. The upper mineral soil horizons under secondary deciduous-coniferous forests contain larger amounts of total iron, its mobile (oxalate-dissolvable components, and Fe-Mn-concretions.

  18. Long-term forest soil warming alters microbial communities in temperate forest soils

    Directory of Open Access Journals (Sweden)

    Kristen M DeAngelis

    2015-02-01

    Full Text Available Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER site (Petersham, MA have warmed soils 5oC above ambient temperatures for 5, 8 and 20 years. We used this chronosequence to examine soil microbial communities in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences. Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 10% to 2% relative abundance with warming. We also observed a significant decrease in mean bacterial ribosomal RNA gene copy number in warming plots compared to controls, a trait linked to maximum growth rate or trophic strategy among bacteria. Increased bacterial alpha diversity, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria suggest that more or alternative niche space is being created over the course of long-term warming.

  19. The evolution of sandy soils under the influence of vegetation succession and anthropogenic activities - case study from Błędów Desert

    Science.gov (United States)

    Gus, Magdalena; Drewnik, Marek

    2016-04-01

    Sandy areas are an important source of research about early stages of the soils formation process and their further development. The rate of succession is reflecting the influence of vegetation on chemical and physical properties of soils which as the time goes undergo the evolution process caused by other environmental factors. The Błędów Desert (Poland, Central Europe) is an example of this kind of area, where sandy soils evolved into Podzols, but as a result of human activities conducted since Middle Ages soil cover has been destroyed to bedrock. Currently progressing vegetation succession occurred in two ways: primary, which took place in areas covered by loose sand and secondary, in the areas with fossil soils. Presently the Błędów Desert is a suitable example to study soil changes in both cases mentioned above. The main aim of the study was to present diversity and characteristics of soils in The Błędów Desert in relation to their development stages and vegetation succession. During field studies soil profiles were described and selected for the detailed studies and soils samples were taken for laboratory analysis, including a determination of basic physical and chemical analysis as well as for micromorphological analysis (selected profiles). Podzols located near the boundary of the study area was selected as a reference soils. The results proved the complexity of the soil process formation, which strongly depends on the vegetation succession and human activities including human-induced aeolian processes. Results confirmed the presence of buried soils, which together with the contemporary soils formed a soil sequence. Moreover, research shows that the dominant soil-forming processes at the Błędów Desert are humus accumulation and podzolization. To summarize, The Błędów Desert is a dynamic environment undergoing rapid changes of soil cover under the influence of the interaction of vegetation, anthropopression and aeolian processes.

  20. Comparison of CO2 fluxes in a larch forest on permafrost and a pine forest on non-permafrost soils in Central Siberia

    Science.gov (United States)

    Zyryanov, V.; Tchebakova, N. M.; Nakai, Y.; Zyryanova, O.; Parfenova, E. I.; Matsuura, Y.; Vygodskaya, N.

    2013-12-01

    Inter-annual and seasonal variations of energy, water and carbon fluxes and associated climate variables in a middle taiga pine (Pinus sylvestris) forest on warm sandy soils and a northern taiga larch (Larix gmelini) forest on permafrost in Central Siberia were studied from eddy covariance measurements obtained during growing seasons of 1998-2000 and 2004-2008 (except 2006) respectively. Both naturally regenerated after fire forests grew in different environments and differed by their tree stand characteristics. The pure Gmelin larch stand was 105 yr old, stem density of living trees was about 5480 trees/ha, LAI was 0.6 m2/m2, biomass (dry weight) was 0.0044 kg/m2, with average diameter of the trees at breast height 7.1 cm and mean tree height 6.8 m. The pure Scots pine stand was 215 yr old, stand structure was relatively homogenous with a stem density of 468 living trees/ha, LAI was 1.5 m2/m2, biomass (dry weight) was 10.7 kg/m2, with average diameter of the trees at breast height 28 cm and mean tree height 23 m. The climatic and soil conditions of these ecosystems were very distinctive. The habitat of the larch forest was much colder and dryer than that of the pine forest: the growing season was 1 month shorter and growing-degree days 200°C less and winters were about one month longer and colder with January temperature -37°C versus -23°C; annual precipitation was 400 mm in the larch versus 650 mm in the pine forest and maximal snow pack was 40 cm vs 70 cm. The soils were Gelisols with permafrost table within the upper 1 m in the larch stand and Pergelic Cryochrept, alluvial sandy soil with no underlying permafrost. Average daily net ecosystem exchange (NEE) was significantly smaller in the larch ecosystem - (-3-6) μmol/m2s compared to that in the pine forest (-7-8) μmol/m2s, however daily maximal NEE was about the same. Seasonal NEE in the larch forest on continuous permafrost varied from -53 to -107 and in the pine forest on non-permafrost from -180 to

  1. Soil Organic Carbon Sources of Respired CO2 in a Mid-successional North Temperate Forest

    Science.gov (United States)

    Medina, N. L.; Hatton, P. J.; Le Moine, J.; Nadelhoffer, K. J.

    2015-12-01

    Given that soil organic matter (SOM) is the largest global terrestrial carbon (C) pool, some fractions of which have turnover times of centuries to millennia, it is critical to understand the mechanisms by which higher net primary productivity (NPP) and higher litter inputs, in the future, as predicted by some models, might alter the potentials of forest soils to serve as long-term C sinks. Here, we use a 10-year-old site in the DIRT (Detritus Input and Removal Treatments) network of litter manipulations to compare plots in a forested, northern-temperate sandy soil that were subjected to double-leaf-litter additions (DL) and both root- and leaf-litter removals (no inputs, NI) to non-manipulated controls. Previous data show that rather than increasing soil organic carbon (SOC) stocks, plots receiving doubled litter inputs lose SOC at rates similar to losses in Control soils. To trace the source of extra mineralized SOC, we analyzed field CO2 effluxes for δ13C and characterized SOC of varying degrees of organo-mineral association with sequential density fractionations. Soils in DL plots respired significantly faster (p=0.095) and proportionally more (p=0.015) than control soils over the course of July, August, and October 2014. This suggests a greater fresh litter contribution to soil efflux in DL than in Control plots after 10 years of treatment. Preliminary data show that intermediate (1.85 - 2.4 g/mL) and dense (>2.4 g/mL) fractions are relatively larger in DL than in Control soils. This suggests that the addition C from doubled litter could be more rapidly transferred into those more dense fractions, or that higher litter inputs prime the decomposition of lighter particulate SOC forms, leading to a relative increase of the dense organo-mineral associations. Using δ13C values to parameterize a multi-source mixing model, we partition the fate of both fresh litter and partially-decomposed SOC and will present on the modeled relative contributions of various

  2. Forest Soil Productivity on the Southern Long-Term Soil Productivity Sites at Age 5

    Science.gov (United States)

    D. Andrew Scott; Allan E. Tiarks; Felipe G. Sanchez; Michael Elliott-Smith; Rick Stagg

    2004-01-01

    Forest management operations have the potential to reduce soil productivity through organic matter and nutrient removal and soil compaction. We measured pine volume, bulk density, and soil and foliar nitrogen and phosphorus at age 5 on the 13 southern Long-Term Soil Productivity study sites. The treatments were organic matter removal [bole only (BO), whole tree (WT),...

  3. Assessing soil water repellency of a sandy field with visible near infrared spectroscopy

    DEFF Research Database (Denmark)

    Knadel, Maria; Masis Melendez, Federico; de Jonge, Lis Wollesen

    2016-01-01

    Soil water repellency (WR) is a widespread phenomenon caused by aggregated organic matter (OM) and layers of hydrophobic organic substances coating the surface of soil particles. These substances have a very low surface free energy, reducing a soil’s water attraction. There is focus on WR due...

  4. Functional Diversity and Microbial Activity of Forest Soils that Are Heavily Contaminated by Lead and Zinc.

    Science.gov (United States)

    Pająk, Marek; Błońska, Ewa; Frąc, Magdalena; Oszust, Karolina

    The objective of this study was to assess the impact of metal contamination on microbial functional diversity and enzyme activity in forest soils. This study involved the evaluation of the influence of the texture, carbon content and distance to the source of contamination on the change in soil microbial activity, which did not investigate in previous studies. The study area is located in southern Poland near the city of Olkusz around the flotation sedimentation pond of lead and zinc at the Mining and Metallurgical Company "ZGH Bolesław, Inc.". The central point of the study area was selected as the middle part of the sedimentation pond. The experiment was conducted over a regular 500 × 500-m grid, where 33 sampling points were established. Contents of organic carbon and trace elements (Zn, Pb and Cd), pH and soil texture were investigated. The study included the determination of dehydrogenase and urease activities and microbial functional diversity evaluation based on the community-level physiological profiling approach by Biolog EcoPlate. The greatest reduction in the dehydrogenase and urease activities was observed in light sandy soils with Zn content >220 mg · kg(-1) and a Pb content > 100 mg · kg(-1). Soils with a higher concentration of fine fraction, despite having the greatest concentrations of metals, were characterized by high rates of Biolog®-derived parameters and a lower reduction of enzyme activity.

  5. Cumulative effects of sewage sludge and effluent mixture application on soil properties of a sandy soil under a mixture of star and kikuyu grasses in Zimbabwe

    Science.gov (United States)

    Madyiwa, S.; Chimbari, M.; Nyamangara, J.; Bangira, C.

    Although sewage effluent and sludge provides nutrients for plant growth, its continual use over extended periods can result in the accumulation of heavy metals in soils and in grass to levels that are detrimental to the food chain. This study was carried in 2001 out at Firle farm, owned by the Municipality of Harare, to assess heavy metal loading on a sandy soil and uptake of the metals by pasture grass consisting of a mixture of Cynodon nlemfuensis (star grass) and Pennisetum clandestinum Chiov (kikuyu grass) following sewage effluent and sludge application for 29 years. Firle Farm receives treated effluent and sludge emanating from domestic and industrial sources. Soil and grass samples were taken from the study area, consisting of 3 ha of non-irrigated area (control) and 1.3 ha of irrigated area. Both the soil and grass samples were tested for Cu, Zn, Ni and Pb using atomic absorption spectrophotometry. Sewage sludge addition resulted in high levels of soil pollution, especially in the 20 cm horizon, in the irrigated area when compared to the control. Grasses took up moderate levels of Cu and Zn, and limited levels of Pb. Nickel was not detectable in grasses despite high levels in the irrigated soil. Copper uptake was several times higher than the suggested potentially toxic level of 12 mg/kg [Soil Science Society of America, Micronutrients in agriculture, second ed., Wisconsin, USA, 1991]. Lead uptake averaged 1.0 mg/kg, which was below 10 mg/kg the suggested limit for agronomic crops [E.M. Seaker, Zinc, copper, cadmium and lead in minespoil, water and plants from reclaimed mine land amended with sewage sludge, 1991]. Cu and Zn showed relatively higher mobility down the soil profile than Ni and Pb. Even then, the concentrations in the lower soil layers were very small, suggesting that the metals were unlikely to contaminate groundwater. There was no direct correlation between metal levels in soils and grasses. It was postulated that it is the bio

  6. C Stocks in Forest Floor and Mineral Soil of Two Mediterranean Beech Forests

    Directory of Open Access Journals (Sweden)

    Anna De Marco

    2016-08-01

    Full Text Available This study focuses on two Mediterranean beech forests located in northern and southern Italy and therefore subjected to different environmental conditions. The research goal was to understand C storage in the forest floor and mineral soil and the major determinants. Relative to the northern forest (NF, the southern forest (SF was found to produce higher amounts of litterfall (4.3 vs. 2.5 Mg·ha−1 and to store less C in the forest floor (~8 vs. ~12 Mg·ha−1 but more C in the mineral soil (~148 vs. ~72 Mg·ha−1. Newly-shed litter of NF had lower P (0.4 vs. 0.6 mg·g−1 but higher N concentration (13 vs. 10 mg·g−1 than SF. Despite its lower Mn concentration (0.06 vs. 0.18 mg·g−1, SF litter produces a Mn-richer humus (0.32 vs. 0.16 mg·g−1 that is less stable. The data suggest that decomposition in the NF forest floor is limited by the shorter growing season (178 days vs. 238 days and the higher N concentrations in newly shed litter and forest floor. Differences in C stock in the mineral soil reflect differences in ecosystem productivity and long-term organic-matter accumulation. The vertical gradient of soluble and microbial fractions in the soil profile of SF was consistent with a faster turnover of organic matter in the forest floor and greater C accumulation in mineral soil relative to NF. With reference to regional-scale estimates from Italian National Forest Inventory data, the C stock in the mineral soil and the basal area of Italian beech forests were found to be significantly related, whereas C stock in the forest floor and C stock in the mineral soil were not.

  7. Three new species of Aspergillus from Amazonian forest soil (Ecuador).

    Science.gov (United States)

    Mares, Donatella; Andreotti, Elisa; Maldonado, Maria Elena; Pedrini, Paola; Colalongo, Chiara; Romagnoli, Carlo

    2008-09-01

    From an undisturbed natural forest soil in Ecuador, three fungal strains of the genus Aspergillus were isolated. Based on molecular and morphological features they are described as three new species, named A. quitensis, A. amazonicus, and A. ecuadorensis.

  8. Role of forest soils in the national greenhouse gas inventory

    Science.gov (United States)

    Jandl, R.

    2012-12-01

    In Austria the forests are a key category of the GHG budget. The role of forest soils as a sink or source of carbon has so far not been fully assessed and as a default position a stable soil carbon pool was reported. A combination from a modeling exercise and a field survey allowed the scrutinization of this assumption. The field data represent a repeated soil inventory after 20 years. Due to the spatial heterogeneity of chemical soil properties no clear conclusion of the temporal change of soil carbon was made. The data set from the field survey was used for the validation of a modeling exercise. We used the model Yasso07 that is well suited for the available site information in Austria. The measured and the simulated soil carbon change had an acceptable fit. The modeling exercise suggested a statistically insignificant loss of soil carbon during a committment period of the Kyoto Protocol. The standing biomass of the forest is still a carbon sink. Owing to the large forest area this insignificant soil carbon loss strongly reduces the carbon sink strength of the entire forest.

  9. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    Directory of Open Access Journals (Sweden)

    R. Schulin

    2012-07-01

    Full Text Available Large areas of land are restored with un-weathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils as they only depend on atmospheric nitrogen (N fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites the experimental Chicken Creek Catchment (CCC in eastern Germany and a nearby experimental site (ES with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5×10 cm with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P

  10. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    Directory of Open Access Journals (Sweden)

    B. Felderer

    2013-03-01

    Full Text Available Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC in eastern Germany and a nearby experimental site (ES with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P

  11. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    Science.gov (United States)

    Felderer, B.; Boldt-Burisch, K. M.; Schneider, B. U.; Hüttl, R. F. J.; Schulin, R.

    2013-03-01

    Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P) is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N) fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC) in eastern Germany and a nearby experimental site (ES) with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm) with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P concentrations. In

  12. Mobility of Arsenic and Heavy Metals in a Sandy-Loam Textured and Carbonated Soil

    Institute of Scientific and Technical Information of China (English)

    GARCIA; M.DIEZ; F.MARTIN; M.SIMóN; C.DORRONSORO

    2009-01-01

    The continued effect of the pyrite-tailing oxidation on the mobility of arsenic,lead,zinc,cadmium,and copper was studied in a carbonated soil under natural conditions,with the experimcntal plot preserved with a layer of tailing covering the soil during three years.The experimental area is located in Southern Spain and was affected by a pyrite-mine spill.The climate in the area is typically Mediterranean,which determines the rate of soil alteration and element mobility.The intense alteration processes that occurred in the soil during three years caused important changes in its morphology and a strong degradation of the main soil properties.In this period,lead concentrated in the first 5 mm of the soil,with concentrations higher than 1500 mg kg-1,mainly associated to the neoformation of plumbojarosite.Arsenic was partially leached from the first 5 mm and mainly concentrated between 5-10 mm in the soil,with maximum values of 1 239 mg kg-1;the retention of arsenates was related to the neoformation of iron hydroxysulfates (jarosite,schwertmannite) and oxyhydroxides (goethite,ferrihydrite),both with a variable degree of crystallinity.The mobility of Zn,Cd,and Cu was highly affected by pH,producing a stronger leaching in depth;their retention was related to the forms of precipitated aluminium and,in the case of Cu,also to the neoformation of hydroxysulfate.

  13. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Aziz, H.M.M.; Hasaneen, M.N.A.; Ome, A.M.

    2016-11-01

    Nanofertilizers have become a pioneer approach in agriculture research nowadays. In this paper we investigate the delivery of chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK) for wheat plants by foliar uptake. Chiotsan-NPK nanoparticles were easily applied to leaf surfaces and entered the stomata via gas uptake, avoiding direct interaction with soil systems. The uptake and translocation of nanoparticles inside wheat plants was investigated by transmission electron microscopy. The results revealed that nano particles were taken up and transported through phloem tissues. Treatment of wheat plants grown on sandy soil with nano chitosan-NPK fertilizer induced significant increases in harvest index, crop index and mobilization index of the determined wheat yield variables, as compared with control yield variables of wheat plants treated with normal non-fertilized and normal fertilized NPK. The life cycle of the nano-fertilized wheat plants was shorter than normal-fertilized wheat plants with the ratio of 23.5% (130 days compared with 170 days for yield production from date of sowing). Thus, accelerating plant growth and productivity by application of nanofertilizers can open new perspectives in agricultural practice. However, the response of plants to nanofertilizers varies with the type of plant species, their growth stages and nature of nanomaterials. (Author)

  14. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil

    Directory of Open Access Journals (Sweden)

    Mohammed N. A. Hasaneen

    2016-03-01

    Full Text Available Nanofertilizers have become a pioneer approach in agriculture research nowadays. In this paper we investigate the delivery of chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK for wheat plants by foliar uptake. Chiotsan-NPK nanoparticles were easily applied to leaf surfaces and entered the stomata via gas uptake, avoiding direct interaction with soil systems. The uptake and translocation of nanoparticles inside wheat plants was investigated by transmission electron microscopy. The results revealed that nano particles were taken up and transported through phloem tissues. Treatment of wheat plants grown on sandy soil with nano chitosan-NPK fertilizer induced significant increases in harvest index, crop index and mobilization index of the determined wheat yield variables, as compared with control yield variables of wheat plants treated with normal non-fertilized and normal fertilized NPK. The life cycle of the nano-fertilized wheat plants was shorter than normal-fertilized wheat plants with the ratio of 23.5% (130 days compared with 170 days for yield production from date of sowing. Thus, accelerating plant growth and productivity by application of nanofertilizers can open new perspectives in agricultural practice. However, the response of plants to nanofertilizers varies with the type of plant species, their growth stages and nature of nanomaterials.

  15. Evaluation Of Onion Production On Sandy Soils By Use Of Reduced Tillage And Controlled Traffic Farming With Wide Span Tractors

    Directory of Open Access Journals (Sweden)

    Pedersen Hans Henrik

    2015-09-01

    Full Text Available Growing of vegetables is often characterised by intensive field traffic and use of heavy machines. By implementing controlled traffic farming (CTF, compaction of the growth zone can be avoided. An experiment was established in an onion field on a coarse sandy loam. Treatments were applied in the field that for five years had been managed by seasonal CTF (SCTF, where harvest is performed by random traffic due to lack of suitable harvest machines. The main treatment was compaction with a fully loaded potato harvester. The split treatment in the crossed split plot design was mechanical loosening. Bulk density, macroporosity, penetration resistance, water retention characteristics and yield were measured. Mechanical loosening caused improvements in the physical soil measurements and more roots were found in the upper soil layers. The highest yield was however found in the CTF simulation plots (19% higher than in the SCTF simulated plots. Using wide span tractors as a harvest platform will enable CTF in vegetable production. Avoidance of compaction will enable reduced tillage intensity and productivity can be improved both through higher yield of the area that is cropped and by a larger percentage of fields can be cropped area as less area will be needed for tracks.

  16. Phosphate reactivity in long-term poultry litter-amended southern Delaware sandy soils

    Science.gov (United States)

    Arai, Y.; Livi, K.J.T.; Sparks, D.L.

    2005-01-01

    Eutrophication caused by dissolved P from poultry litter (PL)-amended agricultural soils has been a serious environmental concern in the Delaware-Maryland-Virginia Peninsula (Delmarva), USA. To evaluate state and federal nutrient management strategies for reducing the environmental impact of soluble P from long-term PL-amended Delaware (DE) soils, we investigated (i) inorganic P speciation; (ii) P adsorption capacity; and (iii) the extent of P desorption. Although the electron microprobe (EMP) analyses showed a strong correlation between P and Al/Fe, crystalline Al/Fe-P precipitates were not detected by x-ray diffraction (XRD). Instead, the inorganic P fractionation analyses showed high levels of oxalate extractable P, Al, and Fe fractions (615-858, 1215-1478, and 337-752 mg kg-1, respectively), which were susceptible to slow release during the long-term (30-d) P desorption experiments at a moderately acidic soil pHwater. The labile P in the short-term (24-h) desorption studies was significantly associated with oxalate and F extractable Fe and Al, respectively. This was evident in an 80% reduction maximum in total desorbable P from NH4 oxalate/F pretreated soils. In the adsorption experiments, P was strongly retained in soils at near targeted pH of lime (???6.0), but P adsorption gradually decreased with decreasing pH near the soil pHwater (???5.0). The overall findings suggest that P losses from the can be suppressed by an increase in the P retention capacity of soils via (i) an increase in the number of lime applications to maintain soil pHwater at near targeted pH values, and/or (ii) alum/iron sulfate amendments to provide additional Al- and Fe-based adsorbents. ?? Soil Science Society of America.

  17. Reduction of forest soil respiration in response to nitrogen deposition

    OpenAIRE

    I. A. Janssens; Dieleman, W.; S. Luyssaert; Subke, J-A.; M. Reichstein; Ceulemans, R; Ciais, P; Dolman, A.J.; J. Grace; Matteucci, G.; Papale, D.; S. L. Piao; Schulze, E-D.; Tang, J.; Law, B.E.

    2010-01-01

    International audience; The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. As a consequence, forests in industrialized regions have experienced greater rates of nitrogen deposition in recent decades. This unintended fertilization has stimulated forest growth, but has also affected soil microbial activity, and thus the recycling of soil carbon and nutrients. A meta-analysis suggests that nitrogen depositio...

  18. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  19. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore......, the volume of pores > 30 μm was more than 0.03 m3 m-3 larger for MP than for D in spring 2014 at the 4- to 8-cm depth. At the 18- to 27-cm depth, direct drilling resulted in a better air permeability and pore continuity index (e.g., air permeability of 18.2 and 11.2 mm2 for D and MP, respectively at −10 k...

  20. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    OpenAIRE

    Silva João Eudes da; Castro Fernando

    2002-01-01

    Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were sub...

  1. Forest productivity decline caused by successional paludification of boreal soils.

    Science.gov (United States)

    Simard, Martin; Lecomte, Nicolas; Bergeron, Yves; Bernier, Pierre Y; Paré, David

    2007-09-01

    Long-term forest productivity decline in boreal forests has been extensively studied in the last decades, yet its causes are still unclear. Soil conditions associated with soil organic matter accumulation are thought to be responsible for site productivity decline. The objectives of this study were to determine if paludification of boreal soils resulted in reduced forest productivity, and to identify changes in the physical and chemical properties of soils associated with reduction in productivity. We used a chronosequence of 23 black spruce stands ranging in postfire age from 50 to 2350 years and calculated three different stand productivity indices, including site index. We assessed changes in forest productivity with time using two complementary approaches: (1) by comparing productivity among the chronosequence stands and (2) by comparing the productivity of successive cohorts of trees within the same stands to determine the influence of time independently of other site factors. Charcoal stratigraphy indicates that the forest stands differ in their fire history and originated either from high- or low-severity soil burns. Both chronosequence and cohort approaches demonstrate declines in black spruce productivity of 50-80% with increased paludification, particularly during the first centuries after fire. Paludification alters bryophyte abundance and succession, increases soil moisture, reduces soil temperature and nutrient availability, and alters the vertical distribution of roots. Low-severity soil burns significantly accelerate rates of paludification and productivity decline compared with high-severity fires and ultimately reduce nutrient content in black spruce needles. The two combined approaches indicate that paludification can be driven by forest succession only, independently of site factors such as position on slope. This successional paludification contrasts with edaphic paludification, where topography and drainage primarily control the extent and rate

  2. Soil Seed Bank and Plant Community Development in Passive Restoration of Degraded Sandy Grasslands

    Directory of Open Access Journals (Sweden)

    Renhui Miao

    2016-06-01

    Full Text Available To evaluate the efficacy of passive restoration on soil seed bank and vegetation recovery, we measured the species composition and density of the soil seed bank, as well as the species composition, density, coverage, and height of the extant vegetation in sites passively restored for 0, 4, 7, and 12 years (S0, S4, S7, and S12 in a degraded grassland in desert land. Compared with S0, three more species in the soil seed bank at depths of 0–30 cm and one more plant species in the community was detected in S12. Seed density within the topsoil (0–5 cm was five times higher in S12 than that in S0. Plant densities in S7 and S12 were triple and quadruple than that in S0. Plant coverage was increased by 1.5 times (S4, double (S7, and triple (S12 compared with S0. Sørensen’s index of similarity in species composition between the soil seed bank and the plant community were high (0.43–0.63, but it was lower in short-term restoration sites (S4 and S7 than that in no and long-term restoration sites (S0 and S12. The soil seed bank recovered more slowly than the plant community under passive restoration. Passive restoration is a useful method to recover the soil seed bank and vegetation in degraded grasslands.

  3. Effects of charcoal-enriched goat manure on soil fertility parameters and growth of pearl millet (Pennisetum glaucum L. in a sandy soil from northern Oman

    Directory of Open Access Journals (Sweden)

    Melanie Willich

    2016-12-01

    Full Text Available The effect of charcoal feeding on manure quality and its subsequent application to enhance soil productivity has received little attention. The objectives of the present study therefore were to investigate the effects of (i charcoal feeding on manure composition, and (ii charcoal-enriched manure application on soil fertility parameters and growth of millet (Pennisetum glaucum L.. To this end, two experiments were conducted: First, a goat feeding trial where goats were fed increasing levels of activated charcoal (AC; 0, 3, 5, 7, and 9% of total ration; second, a greenhouse pot experiment using the manure from the feeding trial as an amendment for a sandy soil from northern Oman. We measured manure C, N, P, and K concentrations, soil fertility parameters and microbial biomass indices, as well as plant yield and nutrient concentrations. Manure C concentration increased significantly (P<0.001 from 45.2% (0% AC to 60.2% (9% AC with increasing dietary AC, whereas manure N, P, and K concentrations decreased (P<0.001 from 0% AC (N: 2.5%, P: 1.5%, K: 0.8% to 9% AC (N: 1.7%, P: 0.8%, K: 0.4%. Soil organic carbon, pH, and microbial biomass N showed a response to AC-enriched manure. Yield of millet decreased slightly with AC enrichment, whereas K uptake was improved with increasing AC. We conclude that AC effects on manure quality and soil productivity depend on dosage of manure and AC, properties of AC, trial duration, and soil type.

  4. Phosphorus Speciation and Sorption Processes in Preferential flow paths and Soil Matrix in Forested Podzolic Till Soil

    Science.gov (United States)

    Saastamoinen, S.; Laine-Kaulio, H.; Klöve, B.

    2009-04-01

    The importance of preferential flow paths in nutrient leaching and subsurface transport has been identified in several studies mainly on agricultural soils. In forest soils research, decayed root channels, stone surfaces and other secondary soil structures have shown to affect unsaturated flow in glacial till soil. Until recently, the focus has been on nitrogen and carbon dynamics in the preferential flow paths. Preferential flow may also have a fundamental role in phosphorus (P) sorption processes and transport from forested till soils to surface waters. The main objectives of this study were to determine how preferential flow paths affect to P speciation, sorption and leaching in forested podzolic till soil. Field experiments were conducted in mixed coniferous forest, with soil type of glacial sandy till classified as Haplic Podzol. The first experiment was conducted in Ranua, Northern Finland. The preferential flow paths were identified by introducing Acid Blue 9 dye tracer to a 1 m2 study plot. The soil profile was vertically sliced and samples were collected from the stained preferential flow paths and unstained soil matrix. Ammonium-oxalate extracted trace elements and P, total and inorganic P, inorganic P fractions and organic P forms (31P-NMR spectroscopy) were analyzed from the samples. In the second experiment in Sotkamo, Eastern Finland, three 1 m2 study plots were selected from a forested hillslope: top, middle and bottom slope. The detection of preferential flow paths and the sampling procedure was identical to the first plot experiment. Samples were analyzed for ammonium-oxalate extracted trace elements and P. Also, the effect of reaction time, P concentration and temperature on the sorption process in preferential flow paths and soil matrix was studied by kinetic batch-type sorption experiments. Stone surfaces were the most dominant preferential flow paths and contained lower oxalate-extracted and total P concentrations than the soil matrix in all

  5. Agronomic assessment of pyrolysed food waste digestate for sandy soil management.

    Science.gov (United States)

    Opatokun, Suraj Adebayo; Yousef, Lina F; Strezov, Vladimir

    2017-02-01

    The digestate (DFW) of an industrial food waste treatment plant was pyrolysed for production of biochar for its direct application as bio-fertilizer or soil enhancer. Nutrient dynamics and agronomic viability of the pyrolysed food waste digestate (PyD) produced at different temperatures were evaluated using germination index (GI), water retention/availability and mineral sorption as indicators when applied on arid soil. The pyrolysis was found to enrich P, K and other micronutrients in the biochar at an average enrichment factor of 0.87. All PyD produced at different temperatures indicated significantly low phytotoxicity with GI range of 106-168% and an average water retention capacity of 40.2%. Differential thermogravimetric (DTG) thermographs delineated the stability of the food waste digestate pyrolysed at 500 °C (PyD500) against the degradation of the digestate food waste despite the latter poor nutrient sorption potential. Plant available water in soil is 40% when treated with 100 g of digestate per kg soil, whereas PyD500 treated soil indicated minimal effect on plant available water, even with high application rates. However, the positive effects of PyD on GI and the observed enrichment in plant macro and micronutrients suggest potential agronomic benefits for PyD use, in addition to the benefits from energy production from DFW during the pyrolysis process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    Science.gov (United States)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas

    2016-04-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  7. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  8. Seasonal differences in tillage draught on a sandy loam soil with long-term additions of animal manure and mineral fertilizers

    DEFF Research Database (Denmark)

    Peltre, Clément; Nyord, T.; Christensen, B.T.;

    2016-01-01

    Energy requirements for soil tillage are closely linked to soil properties, such as clay, water and soil organic carbon (SOC) contents. Long-term application of inorganic fertilizer and organic amendments affects SOC content but little is known about seasonal differences in tillage draught...... requirements of soils subject to contrasting nutrient management regimes. We assessed autumn and spring tillage draught following harvest of early-sown and timely sown winter wheat grown on a sandy loam in the Askov Long-Term Experiment on Animal Manure and Mineral Fertilizers. Draught force was related...... to soil texture, soil water and SOC content, shear strength and bulk density, nutrient management, and yield of the preceding winter wheat. Contents of clay and SOC ranged from 8.9 to 10.6% and from 0.98 to 1.36%, respectively. In the autumn and spring, SOC normalized by clay content explained 38 and 5...

  9. Properties of Forested Loess Soils After Repeated Prescribed Burns

    Science.gov (United States)

    D.M. Moehring; C.X. Grano; J.R. Bassett

    1966-01-01

    Nine annual burns have had little effect on the nutrient content and structure of the surface 4 inches of loess soils on flat terrain.Because prescribed burns must often be repeated to obtain desired results, many foresters are apprehensive about the possible deleterious effects on soils. In 1954 the Timber Management Laboratory at Crossett, Arkansas, in co-...

  10. [Effects of different type urban forest plantations on soil fertility].

    Science.gov (United States)

    Sun, Hui-zhen; Chen, Ming-yue; Cai, Chun-ju; Zhu, Ning

    2009-12-01

    Aimed to study the effects of different urban forest plantations on soil fertility, soil samples were collected from eight mono-cultured plantations (Larix gmelinii, Pinus sylvestris var. mongolica, Pinus tabulaeformis var. mukdensis, Phellodendron amurense, Juglans mandshurica, Fraxinus mandshurica, Betula platyphylla, and Quercus mongolica) and one mixed plantation (P. sylvestris var. mongolica + F. mandshurica + Picea koraiensis + P. amurense + B. platyphylla) established in Northeast Forestry University's Urban Forestry Demonstration Research Base in the 1950s, with two sites of neighboring farmland and abandoned farmland as the control. The soils in broadleaved forest plantations except Q. mongolica were near neutral, those in mixed plantation, L. gmelinii, P. sylvestris var. mongolica, and P. tabulaeformis var. mukdensis were slightly acidic, and that in Q. mongolica was acidic. The contents of soil organic matter, total N and P, available P and K, and hydrolysable N tended to decrease with soil depth. There existed significant differences in the chemical indices of the same soil layers among different plantations. The soil fertility was decreased in the order of F. mandshurica > P. amurense > mixed plantation > J. mandshurica > B. platyphylla > abandoned farmland > farmland > P. sylvestris var. mongolica > L. gmelinii > Q. mongolica > P. tabulaeformis var. mukdensis, suggesting that the soil fertility in broadleaved forest plantations except Q. mongolica and in mixed plantation increased, while that in needle-leaved forest plantations tended to decrease.

  11. Soil enzyme activities and their indication for fertility of urban forest soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To reveal the biological characteristics of urban forest soil and the effects of soil enzyme on soil fertility as well as the correlation between physicochemical properties and enzyme activities,44 urban forest soil profiles in Nanjing were investigated.Basic soil physicochemical properties and enzyme activities were analyzed in the laboratory.Hydrogen peroxidase,dehydrogenase,alkaline phosphatase,and cellulase were determined by potassium permanphosphate dinatrium colorimetry,and anthrone colorimetry,respectively.The result showed that soil pH,organic carbon (C),and total nitrogen (N) had great effects on hydrogen peroxidase,dehydrogenase,and alkaline phosphatase activities in 0-20 cm thick soil.However,pH only had great effect on hydrogen peroxidase,dehydrogenase,and alkaline phosphatase activities in 20-40 cm thick soil.Hydrogen peroxidase,dehydrogenase,and alkaline phosphatase were important biological indicators for the fertility of urban forest soil.Both in 0-20 cm and 20-40 cm soil,soil enzyme system (hydrogen peroxidase,dehydrogenase,alkaline phosphatase,and cellulase) had a close relationship with a combination of physicochemical indicators (pH,organic C,total N,available K,available P,cation exchange capacity (CEC),and microbial biomass carbon(Cmic)).The more soil enzyme activities there were,the higher the fertility of urban forest soil.

  12. The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980

    Science.gov (United States)

    Zhu, Qichao; De Vries, Wim; Liu, Xuejun; Zeng, Mufan; Hao, Tianxiang; Du, Enzai; Zhang, Fusuo; Shen, Jianbo

    2016-12-01

    Soils below croplands and grasslands have acidified significantly in China since the 1980s in terms of pH decline in response to acid inputs caused by intensified fertilizer application and/or acid deposition. However, it is unclear what the rate is of pH decline of forest soils in China in response to enhanced acid deposition and wood production over the same period. We therefore gathered soil pH data from the Second National Soil Inventory of China and publications from the China National Knowledge Infrastructure (CNKI) database in 1981-1985 and 2006-2010, respectively, to evaluate the long-term change of pH values in forest soils. We found that soil pH decreased on average by 0.36 units in the period 1981-1985 to 2006-2010., with most serious pH decline occurring in southwest China (0.63 pH units). The soil type with the strongest pH decline was the semi-Luvisol (0.44 pH units). The decrease in pH was significantly correlated with the acid input induced by atmospheric deposition and forest harvesting. On average, the contribution of atmospheric deposition to the total acid input was estimated at 84% whereas element uptake (due to forest wood growth and harvest) contributed 16% only. Atmospheric deposition is thus the major driver for the significant forest soil acidification across China.

  13. Long-term forest soil warming alters microbial communities in temperate forest soils.

    Science.gov (United States)

    DeAngelis, Kristen M; Pold, Grace; Topçuoğlu, Begüm D; van Diepen, Linda T A; Varney, Rebecca M; Blanchard, Jeffrey L; Melillo, Jerry; Frey, Serita D

    2015-01-01

    Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming.

  14. Growth, Yield and WUE of Drip and Sprinkler Irrigated Okra Grown On Sandy Soil Under Semi-Arid Conditions in Southeast Ghana

    DEFF Research Database (Denmark)

    Plauborg, Finn

    Vegetable production systems at the Keta sand spit, Southeast Ghana, are typically managed with excessive amounts of irrigation water and fertilizers on sandy soils with low inherent water and nutrient retention capacities. The shallow groundwater which is the primary irrigation water resource...... is prone to salinization from the Keta lagoon, the Atlantic Ocean and brackish water underneath (Kortatsi and Agyeku, 1999). To ensure the sustainability of vegetable production at the Keta spit, introduction of water saving irrigation systems and improved irrigation management schemes are important. Thus...... for the drip irrigated okra crop was 269 mm compared to 379 mm for sprinkler. By adopting drip irrigation to okra, the seasonal crop water use could be reduced close to 30 %. From the results it is concluded that on rough textured sandy soil drip irrigation with frequent weekly fertigation resulted...

  15. Organic carbon concentrations and stocks in Romanian mineral forest soils

    Directory of Open Access Journals (Sweden)

    Lucian C. Dincă

    2012-12-01

    Full Text Available Estimating soils organic carbon stock and its change in time is an actual concern for scientists and climate change policy makers. The present article firstly focus on determination of C stocks in Romania on forest soil types, as well as development of the spatial distribution mapping using a Geographic Information System (GIS and also the secondly on the quantification of uncertainty associated with currently available data on C concentration on forest soils geometrical layers. Determination of C stock was done based on forest management plans database created over 2000-2006. Unlike original database, the data for this study was harmonized on following depths: 0-10 cm, 10-20 cm, 20-40 cm, and > 40 cm. Then, the obtained values were grouped by soil types, resulting average values for the main forest soils from Romania. A soil area weighted average value of 137 t/ha is calculated for Romania, in the range of estimations for other European geographic and climatic areas. The soils that have the largest amount of organic carbon are andosols, vertisols, entic and haplic podzols, whereas the ones that have the smallest values of organic carbon are solonetz and solonchaks. Although current assessment relies on very large number of samples from the forest management planning database, the variability of C concentration remains very large, ~40-50% for coefficient the variation and ~100% of the average, when defining the range of 95% of entire soil population, rather showing the variability than uncertainty of the average estimated. Best fit for C concentration on geometric layers in any forest soil is asymmetric, associated with log-normal distributions.

  16. Clinoptilolite zeolite influence on inorganic nitrogen in silt loam and sandy agricultural soils

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral Clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4...

  17. Clinoptilolite zeolite influence on nitrogen in a manure-amended sandy agricultural soil

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4-...

  18. Origin and fate of organic matter in sandy soils along a primary vegetation succession

    NARCIS (Netherlands)

    Nierop, K.

    1999-01-01

    Until now little is known about the role vegetation plays in the organic matter formation, particularly at the molecular level. Most ecosystems have a long history, which is unknown or too complex to find distinct relations between vegetation and the chemical composition of soil organic matter. To g

  19. Water quality and surfactant effects on the water repellency of a sandy soil

    Science.gov (United States)

    Differences in irrigation water quality may affect the water repellency of soils treated or untreated with surfactants. Using simulated irrigations, we evaluated water quality and surfactant application rate effects upon the water repellency of a Quincy sand (Xeric Torripsamment). We used a split ...

  20. Amelioration of sandy soils in drought stricken areas through use of ...

    African Journals Online (AJOL)

    ACSS

    moisture retention, pH, N, P, Ca and Mg content, and subsequently, maize dry matter yield. Averaged over 2 ... increased soil quality persisted for at least. 3 years. ..... improve its ability to support a growing crop. ... A combination of these.

  1. Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar

    DEFF Research Database (Denmark)

    Bruun, Esben W.; Petersen, Carsten; Strobel, Bjarne W.

    2012-01-01

    Biochar amendment to soil may affect N turnover and retention, and may cause translocation of dissolved and particulate C. We investigated effects of three fine particulate biochars made of wheat (Triticum aestivum L.) straw (one by slow pyrolysis and two by fast pyrolysis) on N and C leaching fr...

  2. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The res

  3. Towards improved nitrogen management in silage maize production on sandy soils.

    NARCIS (Netherlands)

    Schroder, J.J.

    1998-01-01

    Maize has become a highly appreciated crop in Dutch dairy farming during the last 25 years. The current cropping technique, however, is associated with a low recovery of soil mineral nitrogen (N) and serious losses of N to the environment. This gave rise to the research described in this thesis whic

  4. Altered humin compositions under organic and inorganic fertilization on an intensively cultivated sandy loam soil

    Science.gov (United States)

    Humin is the largest and also the least understood fraction of soil organic matter. The humin structure and its correlation with microbiological properties are particularly uncertain. We applied advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to investigate the structural chan...

  5. Soil phosphorus and the ecology of lowland tropical forests

    Science.gov (United States)

    Turner, Ben

    2016-04-01

    In this presentation I will explore the extent to which phosphorus influences the productivity, diversity, and distribution of plant species in tropical forests. I will highlight the range of soils that occur in tropical forests and will argue that pedogenesis and associated phosphorus depletion is a primary driver of forest diversity over long timescales. I will draw on data from a regional-scale network of forest dynamics plots in Panama to show that tree species distributions are determined predominantly as a function of dry season intensity and soil phosphorus availability, and will suggest potential mechanistic explanations for this pattern in relation to phosphorus acquisition. Finally, I will present observational and experimental evidence from Panama to show how phosphorus, nitrogen, and potassium, limit plant productivity and microbial communities on strongly-weathered soils in the lowland tropics.

  6. Effect of Soil Surface Evaporation with Fly Ash as Sandy Soil Amendment%施用粉煤灰对沙土土面蒸发的影响

    Institute of Scientific and Technical Information of China (English)

    成钢; 赵亮; 孙鹏程; 唐泽军

    2011-01-01

    Based on evaporation experiment in natural condition, research were carried out to study the effect of water retention capacity of sandy soil under four fly ash application rate (10%, 20%, 30%, 40%). Results showed that, the usage of fly ash reduced evaporation capability and enhance water reten- tion capacity of sandy soil. The evaporation capability always reduced by the effort of fly ash application throughout the experiment, and showed that less evaporation effect with increasing fly ash application rate. As total evaporation, compared with controlled experiment, the total evaporation of three treatments of 20%, 30%, 40% reduced 8.3%, 13.0%, 27.2% except 10% treatment has similar evaporation.%通过自然条件下蒸发试验,研究了4种粉煤灰施用率对沙土土面蒸发的影响。结果表明,粉煤灰的施用减弱了沙土土面蒸发水平,增强了沙土的保水性能。通过对蒸发过程的日观察,粉煤灰的施用始终表现出减弱沙土蒸发的能力,且呈现出随粉煤灰施用率增多而蒸发能力愈弱的特点。施用率10%处理土壤总蒸发量与对照试验大致相同,施用率20%、30%、40%三种处理总蒸发量分别较对照试验减少8.3%、13.0%、27.2%。

  7. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Directory of Open Access Journals (Sweden)

    C. L. Phillips

    2012-02-01

    Full Text Available Distinct aggregations of fungal hyphae and rhizomorphs, or "mats" formed by some genera of ectomycorrhizal (EcM fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in Western Oregon to investigate whether there was an incremental increase in respiration from mat soils, and to estimate mat contributions to total soil respiration. We found that areas where Piloderma mats colonized the organic horizon often had higher soil surface flux than non-mats, with the incremental increase in respiration averaging 16 % across two growing seasons. Both soil physical factors and biochemistry were related to the higher surface flux of mat soils. When air-filled pore space was low (high soil moisture, soil CO2 production was concentrated into near-surface soil horizons where mats tend to colonize, resulting in greater apparent differences in respiration between mat and non-mat soils. Respiration rates were also correlated with the activity of chitin-degrading soil enzymes. This suggests that the elevated activity of fungal mats may be related to consumption or turnover of chitinous fungal cell-wall materials. We found Piloderma mats present across 57 % of the soil surface in the study area, and use this value to estimate a respiratory contribution from mats at the stand-scale of about 9 % of total soil respiration. The activity of EcM mats, which includes both EcM fungi and microbial associates, was estimated to constitute a substantial portion of total soil respiration in this old-growth Douglas-fir forest.

  8. Soil disturbance alters plant community composition and decreases mycorrhizal carbon allocation in a sandy grassland.

    Science.gov (United States)

    Schnoor, Tim Krone; Mårtensson, Linda-Maria; Olsson, Pål Axel

    2011-11-01

    We have studied how disturbance by ploughing and rotavation affects the carbon (C) flow to arbuscular mycorrhizal (AM) fungi in a dry, semi-natural grassland. AM fungal biomass was estimated using the indicator neutral lipid fatty acid (NLFA) 16:1ω5, and saprotrophic fungal biomass using NLFA 18:2ω6,9. We labeled vegetation plots with (13)CO(2) and studied the C flow to the signature fatty acids as well as uptake and allocation in plants. We found that AM fungal biomass in roots and soil decreased with disturbance, while saprotrophic fungal biomass in soil was not influenced by disturbance. Rotavation decreased the (13)C enrichment in NLFA 16:1ω5 in soil, but (13)C enrichment in the AM fungal indicator NLFA 16:1ω5 in roots or soil was not influenced by any other disturbance. In roots, (13)C enrichment was consistently higher in NLFA 16:1ω5 than in crude root material. Grasses (mainly Festuca brevipila) decreased as a result of disturbance, while non-mycorrhizal annual forbs increased. This decreases the potential for mycorrhizal C sequestration and may have been the main reason for the reduced mycorrhizal C allocation found in disturbed plots. Disturbance decreased the soil ammonium content but did not change the pH, nitrate or phosphate availability. The overall effect of disturbance on C allocation was that more of the C in AM fungal mycelium was directed to the external phase. Furthermore, the functional identity of the plants seemed to play a minor role in the C cycle as no differences were seen between different groups, although annuals contained less AM fungi than the other groups.

  9. Pathways of stand development in ageing Pinus sylvestris forests

    NARCIS (Netherlands)

    Kint, Vincent; Mohren, G.M.J.; Geudens, Guy; Wulf, de R.; Lust, Noel

    2004-01-01

    Question: What are the main pathways of long-term stand development in forest ecosystems on oligotrophic and acidic sandy soils? Location: Nine forest reserves at different locations in The Netherlands: all ageing Pinus sylvestris forests that are no longer managed and where massive regeneration of

  10. Effect of Fluctuating Temperatures on Forest Soil Nitrogen Minerealization

    Institute of Scientific and Technical Information of China (English)

    LIAOLIPING; P.INESON

    1997-01-01

    Nitrogen mineralization in forest soil wa studied in laboratory by incubating undisturbed soil cores enclosed within PVC columns at different temperatures to compare the effect of flucttuating temperature with that of constant temperaature,and to find out whether soil nitrification shows linearity over time .The results showed that there was no significant difference between soil nitrification at fluctuating temperature and that at constant temperature,and suggested that it must be careful to make the conclusion that soil nitrification has linearity over time.

  11. Characterization of soil microarthropod communities in Italian beech forest

    Science.gov (United States)

    Conti, F. D.; Menta, C.; Piovesan, G.

    2009-04-01

    The contribution of soil organisms to ecosystem functions such as decomposition, nutrient recycling and the maintenance of physico-chemical properties is well recognised, as is the fact that soil fauna plays an important role in the formation and stabilisation of soil structure. The diversity of soil fauna includes a quarter of described living species, the majority of which are insects and arachnids. Soil fauna plays an essential role in forests and agro-ecosystems by maintaining their functionality and productivity. The aim of this study is to evaluate the biodiversity of soil microarthropods communities in different Italian beech forest. Particular attention is paid to the role of fossorial microarthropods in the maintenance of soil structure and in the organic matter movements. Three beech forests are studied, two located in the North and one in the Centre of Italy. Microarthropods are extracted from litter and soil with a Berlese-Tullgren funnel, identified to order level (class level for myriapods) and counted using a microscope. Relative order abundance and biodiversity are expressed using the Shannon-Weaver diversity index (H) and evenness index (J). Soil biological quality is expressed using the QBS-ar index and Acari/Collembola ratio. The results show a richness of microarthropods: several orders, till 19 different groups, are determined and identified. Acari and collembola are the main represented taxa and, especially in litter samples, pseudoscorpions, different specimens of diplopods (or millipedes) and chilopods (centipedes) are found. Thus the presence in particular of diplopods offers the possibility of studying fossorial microarthropods functions in detail. Furthermore, both in soil and in litter samples, adapted groups are recognized, such as pauropods, symphyla, proturans and diplurans, with specific morphological characteristics that these species suited to soil habitat. Therefore they attest a good level of soil quality and high natural value

  12. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...... edges were used to study the effects of varying N deposition load on SOC stocks and fluxes as well as on the temperature sensitivity of SOM respiration. In a third study, the effects of 20 years of continuous experimental N addition (35 kg N ha-1 year-1) on soil C budget were investigated. Our general...

  13. Benchmark values for forest soil carbon stocks in Europe

    DEFF Research Database (Denmark)

    De Vos, Bruno; Cools, Nathalie; Ilvesniemi, Hannu;

    2015-01-01

    to the UN/ECE ICP Forests 16 × 16 km Level I network. Plots were sampled and analysed according to harmonized methods during the 2nd European Forest Soil Condition Survey. Using continuous carbon density depth functions, we estimated SOC stocks to 30-cm and 1-m depth, and stratified these stocks according...... to 22 WRB Reference Soil Groups (RSGs) and 8 humus forms to provide European scale benchmark values. Average SOC stocks amounted to 22.1 t C ha− 1 in forest floors, 108 t C ha− 1 in mineral soils and 578 t C ha− 1 in peat soils, to 1 m depth. Relative to 1-m stocks, the vertical SOC distribution...

  14. Organic compounds characteristics associated with heat-induced increases of water repellency in Australian eucalypt forest soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan H.

    2010-05-01

    Ground surface heating during wildfires often leads to increased water repellency in soils. The effect of elevated soil temperature on water repellency has been investigated in many laboratory-based studies and temperature thresholds for increases in, and destruction of, water repellency have been established. However, little is known about the changes in organic compounds patterns and their chemical structure that associated with these changes. Here we report on the characterisation of the chemical changes of organic compounds associated with heat-induced increases in water repellency in Eucalypt soils of different repellency levels. Fires are very common in eucalypt forest environments and soils under eucalypt species exhibit one of the most severe repellency levels, providing an ideal study case. Three SE Australian eucalypt forest soils from different locations (two sands and one sandy loam) were heated in the laboratory for 10 min at 300° C. Laboratory heating resulted in extreme repellency in the three soils studied. Heated and unheated control samples were then extracted by accelerated solvent extraction (ASE) with iso-propanol/ammonia mixture (IPA/NH3 95:5). Extraction led to the elimination of any water repellency present both in the original (heated) and the control samples. Organic compounds in the IPA/NH3 solvent were measured in extracts of increasing polarity in order to solubilise the residue. Before heating, the total solvent extracts from the soils with sandy texture were dominated by n-alkanols, terpenoids, C16 acid, C29 alkane, β-sitosterol and polar compounds such as glycerol, monosaccharides and glycosides. Fatty acids with chain length over C20 were detected in the sandy soils, while the soil of heavier texture (sandy loam) lacked longer than C20 fatty acids and had lower concentrations of alkanols (exceeding C26 chain lenght) and alkanes (C29, C31). Alkane patterns were characterized by the predominance of C21 - C31 homologues with a

  15. Fate of carbosulfan and monocrotophos in sandy loam soils of Pakistan under field conditions at different watertable depths.

    Science.gov (United States)

    Tariq, Muhammad Ilyas; Afzal, Shahzad; Shahzad, Farina

    2010-05-01

    Information regarding pesticide mobility is critical for the evaluation of pesticide management practices. For this purpose, lysimetric studies were conducted to develop assessment schemes to protect groundwater from unacceptable effects caused by pesticide use. By using these studies, specific monitoring actions and prevention measures for the protection of waters can be studied, and the results thus obtained can provide the local authorities and the decision makers with an identification tool for demarcating risk areas. Pesticide residues were found at the bottom of lysimeters in the following pattern i.e., 1.52 > 2.1 > 2.74 m which could represent an "index of risk" for groundwater pollution. Regressions built for carbofuran and monocrotophos against watertable depths showed a decreasing trend of pesticide in higher watertable treatments. These findings support the existence of a significant role for chromatographic flow in sandy texture soil. Moreover, the higher values of pesticide residue at the bottom of lysimeters reflect that chromatographic flow as well as preferential flow pattern prevails during higher precipitation events. The precipitation received during the study was higher than the 10 year average and can be considered relatively as a worst case scenario. Finally, the authors have recommended a standardized pesticide monitoring scheme for groundwater in accordance with the already validated generic schemes in developed countries.

  16. Crop residues as driver for N2O emissions from a sandy loam soil

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Petersen, Søren O.; Chirinda, Ngonidzashe

    2017-01-01

    Nitrogen (N) cycling within agriculture constitutes a source of direct and indirect emissions of the potent greenhouse gas nitrous oxide (N2O). We analysed relationships between N2O emissions and C and N balances of four arable cropping systems under conventional or organic management within a long......-term experiment on a loamy sand soil at Foulum in Denmark. All cropping systems included winter wheat, a leguminous crop (faba bean or grass-clover), potato and spring barley grown in different 4-crop rotations varying in strategies for N supply (fertilizer/manure type and rate, use of catch crops and green...... manure). Crops in both organic and conventional systems received N at rates below the optimum for crop production. Soil N2O emissions were monitored in 2008–2009 in six selected crops which could be combined with data from other monitoring programs to calculate N2O emission factors for each of the 16...

  17. Olive Mill Effluent Spreading Effects on Water Retention of Tunisian Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Hamdi SAHRAOUI

    2014-01-01

    Full Text Available Olive mill effluents (OME are characterized by their nutrients content and their adhesive and hydrophobic properties. An experiment was carried out at an olive growing area in Tunisia, “Sidi Bou Ali”, to identify the impact of spreading over OME on physical soil characteristics. Three treatments were in situ monitored, namely T0 (Control, T1 (25 m3/ha and T2 (50 m3/ha, over a period of 4 months. Measurements were conducted monthly corresponding respectively to D1, D2, D3 and D4. Water retention curves were established by a physical capillary model in porous medium. Results showed that the two applied OME doses induced a decrease in water retention, especially for potential matrixes above pF 2 corresponding to the water available range. No significant differences were found between the treated soil plots T1 and T2.doi:10.14456/WJST.2014.27

  18. Method comparison for forest soil carbon and nitrogen estimates in the Delaware River basin

    Science.gov (United States)

    B. Xu; Yude Pan; A.H. Johnson; A.F. Plante

    2016-01-01

    The accuracy of forest soil C and N estimates is hampered by forest soils that are rocky, inaccessible, and spatially heterogeneous. A composite coring technique is the standard method used in Forest Inventory and Analysis, but its accuracy has been questioned. Quantitative soil pits provide direct measurement of rock content and soil mass from a larger, more...

  19. Development of internal forest soil reference samples and testing of digestion methods

    Science.gov (United States)

    J.E. Hislop; J.W. Hornbeck; S.W. Bailey; R.A. Hallett

    1998-01-01

    Our research requires determinations of total elemental concentrations of forest soils. The lack of certified forest soil reference materials led us to develop internal reference samples. Samples were collected from three soil horizons (Oa, B, and C) at three locations having forested, acidic soils similar to those we commonly analyze. A shatterbox was used to...

  20. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  1. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil.

    Science.gov (United States)

    Weng, Liping; Temminghoff, Erwin J M; Lofts, Stephen; Tipping, Edward; Van Riemsdijk, Willem H

    2002-11-15

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The results show that the DOM-complexed species is generally more significant for Cu and Pb than for Cd, Zn, and Ni. The ability of two advanced models for ion binding to humic substances, e.g., model VI and NICA-Donnan, in the simulation of metal binding to natural DOM was assessed by comparing the model predictions with the measurements. Using the default parameters of fulvic and humic acid, the predicted concentrations of free metal ions from the solution speciation calculation using the two models are mostly within 1 order of magnitude difference from the measured concentrations, except for Ni and Pb in a few samples. Furthermore, the solid-solution partitioning of the metals was simulated using a multisurface model, in which metal binding to soil organic matter, dissolved organic matter, clay, and iron hydroxides was accounted for using adsorption and cation exchange models (NICA-Donnan, Donnan, DDL, CD-MUSIC). The model estimation of the dissolved concentration of the metals is mostly within 1 order of magnitude difference from those measured except for Ni in some samples and Pb. The solubility of the metals depends mainly on the metal loading over soil sorbents, pH, and the concentration of inorganic ligands and DOM in the soil solution.

  2. Modeling Tractive Force Requirements of Wheel tractors For Disc Ploughing in Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    S O Nkakini

    2012-10-01

    Full Text Available Tractive force models at different tillage speeds were developed using dimensional analysis, describing the tractor tyre - soil interaction. In this research study, disc ploughing on an experimental plot at twenty different soil moisture levels in loamy sand soil was carried out using trace tractor techniques. The independent variables: drawbar pull force, rolling (motion resistance, wheel slip, moisture content, cone index, wheel numeric, contact pressure, speed, width of plough, depth of plough, and dependent variable (Tractive force were measured and compared to computed values. High coefficients of determination R2 = 0.9492, 0.9555 and 0.9447 for ploughing at tillage speeds of 1.94m/s, 2.22m/s and 2.5m/s were obtained respectively. Standard errors of 0.3672552, 0.8628 and 0.8047 and the percentage (% errors of -2.272608059 and 2.45655144,-2.304946155 and 2.523126085,-1.424947801 and 2.020155232 at minimum and maximum values, were obtained. These results are clear evidence of the test of goodness of fit of the models between predictive and measured parameters for ploughing at different tillage speeds. The models were verified and validated by comparing the predicted with the measured tractive forces, and shown to closely followed the experimental results.

  3. Response of corn silage (Zea mays L. to zinc fertilization on a sandy soil under field and

    Directory of Open Access Journals (Sweden)

    Saad Drissi

    2017-04-01

    Full Text Available The purpose of the experiments was to evaluate zinc (Zn fertilization effect on growth, yield and yield components of corn silage grown on a sandy soil under field and outdoor container conditions. Six rates of Zn supply (0 or control; 1.5; 3; 5; 10 and 50 mg kg−1 were tested. They were split at three different times during the growing season: (i 50% immediately after sowing, (ii 25% at 4–5 leaf stage and (iii 25% at 8–9 leaf stage. These Zn rates were applied to the soil surface as a solution of Zn sulfate (ZnSO4·7H2O. Zn deficiency symptoms appeared at an earlier stage (4–5 leaf stage as white stripes between the midrib and the margin of leaves for a Zn rate below or equal to 5 mg kg−1. Severity of these symptoms manifested more in container than in field. For both experiments, Zn supply induced a significant increase in stem height and leaf area. Furthermore, in both experiments, control plants showed a notable delay in achieving anthesis, silking, pollination and kernels maturity. The maximum shoot dry weight at harvest was recorded with Zn supply of 5 mg kg−1 in field experiment and 10 mg kg−1 in containers experiment. The shoot dry weight was especially linked to kernels dry weight. This latter was mainly enhanced through two compounds: 1000 kernels dry weight and pollination rate. On the other hand, outdoor container results can be used to help predict field plant responses to Zn except for control treatment.

  4. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil

    Science.gov (United States)

    Ndiaye, Babacar; Esteves, Michel; Vandervaere, Jean-Pierre; Lapetite, Jean-Marc; Vauclin, Michel

    2005-06-01

    The study was aimed at evaluating the effect of rainfall and tillage-induced soil surface characteristics on infiltration and runoff on a 2.8 ha catchment located in the central region of Senegal. This was done by simulating 30 min rain storms applied at a constant rate of about 70 mm h -1, on 10 runoff micro-plots of 1 m 2, five being freshly harrowed perpendicularly to the slope and five along the slope (1%) of the catchment. Runoff was automatically recorded at the outlet of each plot. Hydraulic properties such as capillary sorptivity and hydraulic conductivity of the sandy loam soil close to saturation were determined by running 48 infiltration tests with a tension disc infiltrometer. That allowed the calculation of a mean characteristic pore size hydraulically active and a time to ponding. Superficial water storage capacity was estimated using data collected with an electronic relief meter. Because the soil was subject to surface crusting, crust-types as well as their spatial distribution within micro-plots and their evolution with time were identified and monitored by taking photographs at different times after tillage. The results showed that the surface crust-types as well as their tillage dependent dynamics greatly explain the decrease of hydraulic conductivity and sorptivity as the cumulative rainfall since tillage increases. The exponential decaying rates were found to be significantly greater for the soil harrowed along the slope (where the runoff crust-type covers more than 60% of the surface after 140 mm of rain) than across to the slope (where crusts are mainly of structural (60%) and erosion (40%) types). That makes ponding time smaller and runoff more important. Also it was shown that soil hydraulic properties after about 160 mm of rain were close to those of untilled plot not submitted to any rain. That indicates that the effects of tillage are short lived.

  5. POPULATION DYNAMICS OF PICEA MONGOLICA IN SANDY FOREST STEPPE ECOTONE%内蒙古沙地森林草原过渡带中沙地云杉种群动态

    Institute of Scientific and Technical Information of China (English)

    邹春静; 韩士杰; 周玉梅; 徐文铎

    2001-01-01

    沙地云杉是我国内蒙东部沙地森林草原过渡带的特有濒危树种. 沙地云杉林是陆地上非常特殊的森林生态系统类型. 本文研究了沙地云杉的种群动态, 建立了沙地云杉种群生命表、年龄结构、存活曲线和生殖力表, 同时研究了沙地云杉种群分布格局及增长动态, 可为沙地治理和沙地森林生态系统研究提供科学依据. 图2 表6 参16%Picea mongolica is an endemic and endangered tree species in sandy forest steppe ecotone in eastern Inner Mongolia Autonomous Region of China, and P. mongolica forest is a very special sandy forest ecosystem. In this paper, population dynamics of P. mongolica in sandy forest steppe ecotone were studied; the population life table, age structure, survival curve, and fecundity schedule were established; and population distribution pattern and increasing tendency were also studied to provide some scientific bases for sand controlling and researches on sandy forest ecosystems. Fig 2, Tab 6, Ref 16

  6. Nitrogen fertilization in the growth phase of 'Chardonnay' and 'Pinot Noir' vines and nitrogen forms in sandy soil of the Pampa Biome

    Directory of Open Access Journals (Sweden)

    Felipe Lorensini

    Full Text Available ABSTRACT Information on nitrogen fertilization in growing vines is still a very limited subject, especially for crops on sandy soils in the Pampa Biome in Rio Grande do Sul, where viticulture has expanded considerably in the last decade. This study aimed to assess the impact of N doses on growth of young plants of Chardonnay and Pinot Noir vines and N forms present in sandy soil in the Pampa Biome. The experiment was conducted from October 2011 to December 2012 in a vineyard in Santana do Livramento, in Southern Rio Grande do Sul State, in soil with 82 g kg-1 clay in the 0-20 cm layer. Vines of Chardonnay and Pinot Noir varieties were subjected to applications of 0, 10, 20, 40, 60, and 80 kg N ha-1 year-1. Total N in leaves, SPAD readings, stem diameter, plant height, and dry matter of the pruned material were evaluated in two growth cycles and three times. Soil samples were collected at 0-10 and 10-20 cm depths at four crop growth stages, in which N-NH4 +, N-NO3 -, and total N were analyzed and the mineral N was calculated. The N levels applied to young vines, although they did not provide relevant changes in the N-NH4 +, N-NO3 -, and mineral N contents in the soil, were able to increase the N content in the leaves, increasing plant vigor. because the reason is that there was an increase in stem diameter, plant height, and dry matter of pruned material in most evaluation periods. These parameters suggest better growth patterns and uniformity of young grapevines with possible positive effects in anticipation of production, demonstrating the importance of nitrogen fertilization strategies to the growing vines in the sandy soil conditions of the Pampa Biome.

  7. Soil organic matter regulates molybdenum storage and mobility in forests

    Science.gov (United States)

    Marks, Jade A; Perakis, Steven; King, Elizabeth K; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  8. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  9. Determination of Selenium Toxicity for Survival and Reproduction of Enchytraeid Worms in a Sandy Loam Soil

    Science.gov (United States)

    2016-07-01

    active radiation (PAR) light intensity of 12.8  0.7 µM m2/s (985  52 lux ), and mean temperature of 21.6  0.1 C. The soil moisture level was...PAR light intensity of 12.8  0.7 µM m2/s (985  52 lux ), and a mean temperature of 21.6  0.1 °C, for the duration of the 28 d test. The containers

  10. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site.

    Science.gov (United States)

    Lu, Zhe; Zeng, Fangang; Xue, Nandong; Li, Fasheng

    2012-09-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles (200 μm coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0-20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 μg/g in profile 1 and 10.8 to 0.143 μg/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand>coarse sand>silt>clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay>silt>coarse sand>fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites.

  11. The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980

    NARCIS (Netherlands)

    Zhu, Qichao; Vries, De Wim; Liu, Xuejun; Zeng, Mufan; Hao, Tianxiang; Du, Enzai; Zhang, Fusuo; Shen, Jianbo

    2016-01-01

    Soils below croplands and grasslands have acidified significantly in China since the 1980s in terms of pH decline in response to acid inputs caused by intensified fertilizer application and/or acid deposition. However, it is unclear what the rate is of pH decline of forest soils in China in respo

  12. Carbon, Nitrogen and Fungal mycelium in the organic and in the mineral soil layers across a chronosequence of Stone pine Forest on Mount Vesuvius

    Science.gov (United States)

    de Marco, Anna; Giordano, Maria; Esposito, Fabrizio; Virzo de Santo, Amalia

    2010-05-01

    Forest ecosystems act as a substantial carbon sink and store about 20% of all soil C. The amount of organic matter sequestered in the soil is dependent on the quantity of plant litter delivered to the soil as well as to the extent of litter decomposition. Stone pine forests are common in the Mediterranean areas of southern Italy, were this tree has been largely used for afforestation of volcanic substrates on Mount Vesuvius. Nevertheless, very little is known about carbon accumulation in Stone pine soil as well as about soil organic matter turnover in the organic and in the mineral soil layers. The aim of this study was to assess, along the whole soil profile, the concentration of C and N and the amount of fungal mycelium across a chronosequence encompassing a 36y, a 66y and a 96y old Stone pine forest within the National Park of Vesuvius. The chronosequence allows to estimate the changes with forest age in C and N concentration and the allocation of organic matter below-ground. The amount of fungal mycelium, particularly the active mycelium, at different depth along the soil profile is an indicator of the organic matter turn-over. The forest stands had been implanted on the same type of parent material, i.e. on lava. The sandy mineral soil was 15 cm deep in the youngest forest and reached a maximum depth of 37 cm in the two older forests. Litter fall (2006-2009) steadily increased from the youngest to the oldest forest stand (3828, 6144 and 7831 Kg/ha/y, respectively) and was positively related to tree basal area. C and N concentration in the organic soil layers (litter and humus) of the three stands did not change remarkably with forest age. In contrast, in the 0-15 cm mineral layer, C and N concentrations were about threefold higher in the 66y old compared to the 36y old forest stand. A further increase (by 2,4 for C and by 1,5 for N) was observed in the 96y old compared to the 66y old forest stand. In the deeper (15-37 cm) mineral soil of the two older forest

  13. Influence of zeolite and cement additions on mechanical behavior of sandy soil

    Institute of Scientific and Technical Information of China (English)

    Hossein Mola-Abasi; Issa Shooshpasha

    2016-01-01

    It is well known that the cemented sand is one of economic and environmental topics in soil stabili-zation. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS) and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30%after 28 days. The rate of strength improvement is approximately between 20%and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.

  14. Influence of zeolite and cement additions on mechanical behavior of sandy soil

    Directory of Open Access Journals (Sweden)

    Hossein Mola-Abasi

    2016-10-01

    Full Text Available It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30% after 28 days. The rate of strength improvement is approximately between 20% and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.

  15. Soluble organic nitrogen in forest soils of northeast China

    Institute of Scientific and Technical Information of China (English)

    SONG Li-chen; HAO Jing-mei; CUI Xiao-yang

    2008-01-01

    Soluble organic nitrogen (SON) is recognized as a sensitive indicator of soil nitrogen status. The present work was conducted in the temperate forests of northeast China where soils are typically characterized by high organic matter and high organic nitrogen content, and soil sampling was made in early spring just after the freeze-thaw period. The water extracted SON pools in the organic layer of forest soils were measured within the range from 156.0 mg·kg-1 to 292.6 mg·kg-1, a similar magnitude of salt solution extracted SON pools reported in literatures. However, the water soluble SON pools in 0-15 cm mineral soils in present study were much higher (3-10 times) than any other reports, ranging from 58.6 mg·kg-1 to 125.2 mg·kg-1. Water soluble SON varied markedly among the soils under different forests and at different sites. The SON in water extracts were positively and significantly correlated to soil organic matter and total nitrogen contents, but negatively correlated to microbial biomass nitrogen (MBN). The reasons of the abnormally large SON pools and the negative correlations between SON and MBN in the 0-15cm mineral soils in this study were specially discussed.

  16. Ecotoxicology of mercury in tropical forest soils: Impact on earthworms.

    Science.gov (United States)

    Buch, Andressa Cristhy; Brown, George Gardner; Correia, Maria Elizabeth Fernandes; Lourençato, Lúcio Fábio; Silva-Filho, Emmanoel Vieira

    2017-07-01

    Mercury (Hg) is one of the most toxic nonessential trace metals in the environment, with high persistence and bioaccumulation potential, and hence of serious concern to environmental quality and public health. Emitted to the atmosphere, this element can travel long distances, far from emission sources. Hg speciation can lead to Hg contamination of different ecosystem components, as well as biomagnification in trophic food webs. To evaluate the effects of atmospheric Hg deposition in tropical forests, we investigated Hg concentrations in earthworm tissues and soils of two Forest Conservation Units in State of Rio de Janeiro, Brazil. Next, we performed a laboratory study of the biological responses (cast analysis and behavioral, acute, chronic and bioaccumulation ecotoxicological tests) of two earthworms species (Pontoscolex corethrurus and Eisenia andrei) to Hg contamination in tropical artificial soil (TAS) and two natural forest soils (NS) spiked with increasing concentration of HgCl2. Field results showed Hg concentrations up to 13 times higher in earthworm tissues than in forest soils, while in the laboratory Hg accumulation after 91-days of exposure was 25 times greater in spiked-soils with 128mgHgkg(-1) (dry wt) than in control (unspiked) soils. In all the toxicity tests P. corethrurus showed a higher adaptability or resistance to mercury than E. andrei. The role of earthworms as environmental bioremediators was confirmed in this study, showing their ability to greatly bioaccumulate trace metals while reducing Hg availability in feces. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Munkholm, Lars Juhl

    2016-01-01

    treatment (labelled M8-1), the soil was loaded only in the first year. A tricycle-like machine with a single pass of wide tyres each carrying 12 Mg (treatment S12) was included at one site. Traffic treatments were applied in a randomized block design with four replicates and with treatments repeated in four...... strength measure predicting resistance to subsoil compaction. The tyre inflation pressure and/or the mean ground pressure were the main predictors of PR in the upper soil layers. For deeper soil layers, PR correlated better to the wheel load. The number of wheel passes (M-treatments vs the S12 treatment......-pressure tyres by crab steering/dog-walk machinery....

  18. Hydrodispersive characterization of a sandy porous medium by tracer tests carried out in laboratory on undisturbed soil samples

    Science.gov (United States)

    Ferrante, Aldo Pedro; Fallico, Carmine; Rios, Ana C.; Fernanda Rivera, Maria; Santillan, Patricio; Salazar, Mario

    2013-04-01

    The contamination of large areas and correspondent aquifers often imposes to implement some recovery operations which are generally complex and very expensive. Anyway, these interventions necessarily require the preventive characterization of the aquifers to be reclaimed and in particular the knowledge of the relevant hydrodispersive parameters. The determination of these parameters requires the implementation tracer tests for the specific site (Sauty JP, 1978). To reduce cost and time that such test requires tracer tests on undisturbed soil samples, representative of the whole aquifer, can be performed. These laboratory tests are much less expensive and require less time, but the results are certainly less reliable than those obtained by field tests for several reasons, including the particular scale of investigation. In any case the hydrodispersive parameters values, obtained by tests carried out in laboratory, can provide useful information on the considered aquifer, allowing to carry out initial verifications on the transmission and propagation of the pollutants in the aquifer considered. For this purpose, tracer tests with inlet of short time were carried out in the Soil Physics Laboratory of the Department of Soil Protection (University of Calabria), on a series of sandy soil samples with six different lengths, repeating each test with three different water flow velocities (5 m/d; 10 m/s and 15 m/d) (J. Feyen et al., 1998). The lengths of the samples taken into account are respectively 15 cm, 24 cm, 30 cm, 45 cm, 60 cm and 75 cm, while the solution used for each test was made of 100 ml of water and NaCl with a concentration of this substance corresponding to 10 g/L. For the porous medium taken into consideration a particle size analysis was carried out, resulting primarily made of sand, with total porosity equal to 0.33. Each soil sample was placed in a flow cell in which was inlet the tracer from the bottom upwards, measuring by a conductivimeter the

  19. Persistence, distribution, and emission of Telone C35 injected into a Florida sandy soil as affected by moisture, organic matter, and plastic film cover.

    Science.gov (United States)

    Thomas, J E; Ou, L T; Allen, L H; McCormack, L A; Vu, J C; Dickson, D W

    2004-05-01

    With the phase-out of methyl bromide scheduled for 2005, alternative fumigants are being sought. This study of Telone C35, a mixture of (Z)- and (E)-1,3-dichloropropene (1,3-D) with chloropicirin (CP), focuses on its emissions, distribution, and persistence in Florida sandy soil in microplots with different soil-water and organic matter carbon (C) content with and without two different plastic film mulches. The addition of CP did not affect the physical behavior of the isomers of 1,3-D. Slower subsurface dispersion and longer residence time of the mixed fumigant occurred at higher water content. An increase in the percent organic carbon in the soil led to a more rapid decrease for chloropicirin than for 1,3-dichloropene isomers. The use of a virtually impermeable film (VIF) for soil cover provided a more even distribution and longer persistence under all the conditions studied in comparison to polyethylene (PE) film cover or no cover. The conditions of near field capacity water content, low organic matter, and a virtually impermeable film cover yielded optimum conditions for the distribution, emission control, and persistence of Telone C35 in a Florida sandy soil.

  20. Heat-Activated Persulfate Oxidation of Chlorinated Solvents in Sandy Soil

    Directory of Open Access Journals (Sweden)

    Jialu Liu

    2014-01-01

    Full Text Available Heat-activated persulfate oxidative treatment of chlorinated organic solvents containing chlorinated ethenes and ethanes in soil was investigated with different persulfate dosages (20 g/L, 40 g/L, and 60 g/L and different temperatures (30°C, 40°C, and 50°C. Chlorinated organic solvents removal was increased as persulfate concentration increase. The persulfate dosage of 20 g/L with the highest OE (oxidant efficiency value was economically suitable for chlorinated organic solvents removal. The increasing temperature contributed to the increasing depletion of chlorinated organic solvents. Chlorinated ethenes were more easily removed than chlorinated ethanes. Moreover, the persulfate depletion followed the pseudo-first-order reaction kinetics (kps=0.0292 [PS]0+0.0008, R2=0.9771. Heat-activated persulfate appeared to be an effective oxidant for treatment of chlorinated hydrocarbons.

  1. Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario

    Science.gov (United States)

    Bogena, H. R.; Huisman, J. A.; Baatz, R.; Hendricks Franssen, H.-J.; Vereecken, H.

    2013-09-01

    Soil water content is one of the key state variables in the soil-vegetation-atmosphere continuum due to its important role in the exchange of water and energy at the soil surface. A new promising method to measure integral soil water content at the field or small catchment scale is the cosmic-ray probe (CRP). Recent studies of CRP measurements have mainly presented results from test sites located in very dry areas and from agricultural fields with sandy soils. In this study, distributed continuous soil water content measurements from a wireless sensor network (SoilNet) were used to investigate the accuracy of CRP measurements for soil water content determination in a humid forest ecosystem. Such ecosystems are less favorable for CRP applications due to the presence of a litter layer. In addition, lattice water and carbohydrates of soil organic matter and belowground biomass reduce the effective sensor depth and thus were accounted for in the calibration of the CRP. The hydrogen located in the biomass decreased the level of neutron count rates and thus also decreased the sensitivity of the cosmic-ray probe, which in turn resulted in an increase of the measurement uncertainty. This uncertainty was compensated by using longer integration times (e.g., 24 h). For the Wüstebach forest site, the cosmic-ray probe enabled the assessment of integral daily soil water content dynamics with a RMSE of about 0.03 cm3/cm3 without explicitly considering the litter layer. By including simulated water contents of the litter layer in the calibration, a better accuracy could be achieved.

  2. Impact of slurry management strategies on potential leaching of nutrients and pathogens in a sandy soil amended with cattle slurry.

    Science.gov (United States)

    Fangueiro, D; Surgy, S; Napier, V; Menaia, J; Vasconcelos, E; Coutinho, J

    2014-12-15

    For farmers, management of cattle slurry (CS) is now a priority, in order to improve the fertilizer value of the slurry and simultaneously minimize its environmental impact. Several slurry pre-treatments and soil application methods to minimize ammonia emissions are now available to farmers, but the impact of such management strategies on groundwater is still unclear. A laboratory experiment was performed over 24 days in controlled conditions, with undisturbed soil columns (sandy soil) in PVC pipes (30 cm high and 5.7 cm in diameter). The treatments considered (4 replicates) were: a control with no amendment (CTR), injection of whole CS (WSI), and surface application of: whole CS (WSS), acidified (pH 5.5) whole CS (AWSS), the liquid fraction obtained by centrifugation of CS (LFS), and acidified (pH 5.5) liquid fraction (ALFS). An amount of CS equivalent to 240 kg N ha(-1) was applied in all treatments. The first leaching event was performed 72 h after application of the treatments and then leaching events were performed weekly to give a total of four irrigation events (IEs). All the leachates obtained were analyzed for mineral and organic nitrogen, electrical conductivity (EC), pH, total carbon, and phosphorus. Total coliforms and Escherichia coli were also quantified in the leachates obtained in the first IE. The results show that both acidification and separation had significant effects on the composition of the leachates: higher NO3(-) concentrations were observed for the LFS and ALFS relative to all the other treatments, throughout the experiment, and lower NO3(-) concentrations were observed for acidified relative to non-acidified treatments at IE2. Acidification of both the LF and WS led to higher NH4(+) concentrations as well as an increase of EC for treatment ALFS relative to the control, in the first IE, and lower pH values in the AWSS. Furthermore, the E. coli and total coliform concentrations in AWSS, LFS, and ALFS were significantly higher than in

  3. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...... hypotheses were that elevated N deposition will: i) increase SOC stocks owing to positive effect of N on litterfall C inputs combined with negative effect on SOM decomposition regardless of negative effects on belowground C inputs by roots and associated mycorrhiza; ii) reduce the temperature sensitivity......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...

  4. Atmospheric nitrous oxide uptake in boreal spruce forest soil

    Science.gov (United States)

    Siljanen, Henri; Welti, Nina; Heikkinen, Juha; Biasi, Christina; Martikainen, Pertti

    2017-04-01

    Nitrous oxide (N2O) uptake from the atmosphere has been found in forest soils but environmental factors controlling the uptake and its atmospheric impact are poorly known. We measured N2O fluxes over growing season in a boreal spruce forest having control plots and plots with long nitrogen fertilization history. Also methane (CH4) fluxes were measured to compare the atmospheric impact of N2O and CH4fluxes. Soil chemical and physical characteristics and climatic conditions were measured as background data. Nitrous oxide consumption and uptake mechanisms were measured in complementary laboratory incubation experiments using stable isotope approaches. Gene transcript numbers of nitrous oxide reductase (nosZ) I and II genes were quantified along the incubation with elevated N2O atmosphere. The spruce forests without fertilization history showed highest N2O uptake rates whereas pine forest had low emissions. Nitrous oxide uptake correlated positively with soil moisture, high soil silt content, and low temperature. Nitrous oxide uptake varied seasonally, being highest in spring and autumn when temperature was low and water content was high. The spruce forest was sink for CH4.Methane fluxes were decoupled from the N2O fluxes (i.e. when the N2O uptake was high the CH4 uptake was low). By using GWP approach, the cooling effect of N2O uptake was on average 30% of the cooling effect of CH4 uptake in spruce forest without fertilization. Anoxic conditions promoted higher N2O consumption rates in all soils. Gene transcription of nosZ-I genes were activated at beginning of the incubation. However, atypical/clade-II nosZ was not detected. These results suggests, that also N2O uptake rates have to be considered when accounting for the GHG budget of spruce forests.

  5. Impact of Offshore Wind Energy Plants on the Soil Mechanical Behaviour of Sandy Seafloors

    Science.gov (United States)

    Stark, Nina; Lambers-Huesmann, Maria; Zeiler, Manfred; Zoellner, Christian; Kopf, Achim

    2010-05-01

    Over the last decade, wind energy has become an important renewable energy source. Especially, the installation of offshore windfarms offers additional space and higher average wind speeds than the well-established windfarms onshore. Certainly, the construction of offshore wind turbines has an impact on the environment. In the framework of the Research at Alpha VEntus (RAVE) project in the German offshore wind energy farm Alpha Ventus (north of the island Borkum in water depths of about 30 m) a research plan to investigate the environmental impact had been put into place. An ongoing study focuses on the changes in soil mechanics of the seafloor close to the foundations and the development of scour. Here, we present results of the first geotechnical investigations after construction of the plants (ca. 1 - 6 months) compared to geotechnical measurements prior to construction. To study the soil mechanical behaviour of the sand, sediment samples from about thirty different positions were measured in the laboratory to deliver, e.g., grain size (0.063 - 0.3 mm), friction angles (~ 32°), unit weight (~ 19.9 kN/m³) and void ratios (~ 0.81). For acoustic visualisation, side-scan-sonar (towed and stationary) and multibeam-echosounders (hull mounted) were used. Data show a flat, homogenous seafloor prior to windmill erection, and scouring effects at and in the vicinity of the foundations afterwards. Geotechnical in-situ measurements were carried out using a standard dynamic Cone Penetration Testing lance covering the whole windfarm area excluding areas in a radius 50 %) occur above all close to the foundations. Furthermore, patterns of relatively soft zones (qsbc.: 50 - 80 kPa) and hard zones (qsbc. > 100 kPa) were mapped during the high-resolution surveys close to the foundation. Beside that, a very soft sediment layer (0.03 - 0.05 m) drapes most of the soft zones. This may be recently eroded and re-deposited sediment, whereas the hard zones may indicate areas of sediment

  6. Principles and Practice of Forestation in Saline Soil in China

    Institute of Scientific and Technical Information of China (English)

    ZHANGJianfeng; XINGShangjun[; ZHANGXudong; SUNQixiang

    2004-01-01

    With world population growth arable land area is decreasing. Saline soil is an important natural resource. However it has not been well reclaimed owing to adverse conditions. Forestation is one way of salty soil utilization; on the other hand, it can improve soil quality as well. The mechanism of salinity tolerance is the basis for tree species selection when planting in salt affected soil. Different plants have various way of salinity tolerance, some are salt-exclusion, e.g. Elaeagnus angustifolia; some are salt-secretion, e.g. Tamarix spp.; some are salt-dilution, e.g. Hordeum vulgare; some are salt-avoidance, e.g. Rhizophora apiculata. Trees are favorable, which are salt tolerant and drought or waterlogging tolerant, as well as grow fast. After tree species have been decided, site preparation including change or exchange of soil is necessary. Meanwhile suitable density of trees and planting time must be carefully considered in terms of soil conditions and climatic characteristics. Now a large scale of forests has been established in salt-affected soil in China by the means discussed in the paper, and protect forest system along coast plays important roles in socio-economic sustainable development and improvement of eco-environment.

  7. Spatial variability of soils in a seasonally dry tropical forest

    Science.gov (United States)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman

    2016-04-01

    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  8. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties ...... grasslands, which can be explained by lower accumulation of binding agents of microbial origin. This can have implications for the accumulation of atmospheric CO2 in soil and for the susceptibility of SOC to external disturbances such as management and environmental changes.......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...... involved into long-term stability are largely unknown. The aim of this PhD thesis was to explore changes in: (i) SOC stocks; (ii) physical SOC fractions; and (iii) labile soil carbon components following forest expansion on mountain grasslands. A land-use gradient located in the Southern Alps (Italy...

  9. Laboratory testing of the Monotonic behavior of partially saturated sandy soil

    Directory of Open Access Journals (Sweden)

    Della Noureddine

    2010-12-01

    Full Text Available

    This paper presents a laboratory study on the influence of the saturation evaluated in term of Skempton's pore pressur coefficientBon the behavior of Chlef sand. The study is based on drained and unnonno drained compression tests which were carried out for Skempton's pore pressure coefficient varying between 13 and 90%.The tests were conducted on medium dense sand samples having an initial relative density Id = 0.50 at an effective stress of 100 kPa. The paper is composed of two parts. The first one presents the characteristics of the sand used in this study. The second provides an analysis of the experimental results and discusses the influence of Skempton's pore pressure coefficient (B on the mechanical characteristics of the sand. The tests show that the increase in the Skempton' S pore pressure coefficient (B reduces the soil dilatancy and amplifies the phase of contractancy and reduces the frictional and characteristic angle of the sand. The residual strength decreases with the increase ininin the Skempton's pore pressure coefficient B.

  10. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kezia eGoldmann

    2015-11-01

    Full Text Available Fungal communities have been shown to be highly sensitive towards shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L., with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L. or spruce (Picea abies Karst. which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure.We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal OTU richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera.This study extends our knowledge

  11. Local formation mechanisms of Hemiptelea davidii forest in Keerqin Sandy Land of North China%科尔沁沙地刺榆局域成林机制

    Institute of Scientific and Technical Information of China (English)

    杨允菲; 白云鹏; 李建东

    2011-01-01

    刺榆(Hemiptelea davidii)林是科尔沁沙地独特的森林类型,以往尚无文献记载.通过对林缘和林下种子散布及幼苗分布特征的样线断面取样、果实形态及脱落特性的调查,分析了刺榆林地更新与扩展的生物学和生态学机理.结果表明,刺榆林的种子多数沉降在林下和林缘附近,林缘3 m以外显著减少.在郁闭度较大的林分内,刺榆种群主要以根蘖苗补充更新.实生苗不受地形的限制,林地主要是以实生苗扩展空间.提出果实形态及脱落特性是刺榆在科尔沁沙地局域能形成优势种林,而在其他地理分布区仅为伴生种的生物学根源.%Hemiptelea davidii forest is a peculiar forest type in Keerqin Sandy Land not recorded in references so far. Aimed to understand the biological and ecological mechanisms of the regeneration and expansion of H. Davidii, a sampling line transect survey was conducted on the seed dispersal and seedling recruitment of H. Davidii in its forest edges and forest understory, and an observation was made on the fruit shape and fruit-shedding characteristics of the plant. A majority of H. Davidii seeds were found in the understory and around the edges, and the seed rain density decreased significantly beyond 3 m of the edges. Within the stands with high coverage, the regeneration of H. Davidii population was mainly relied on root sucker recruitment. Because the distribution of H. Davidii seedlings was not limited by terrain, the spatial expansion of the forest was mainly relied on the seedlings. Based on the observation on the fruit shape and fruit-shedding characteristics, it was considered that the biological features of H. Davidii fruits could be the foundations of the local formation of H. Davidii in Keerqin Sandy Land, whereas in other geographic distribution regions, H. Davidii could only be a companion species.

  12. Relationships between soil water repellency and microbial community composition under different plant species in a Mediterranean semiarid forest

    Science.gov (United States)

    Lozano, Elena; García-Orenes, Fuensanta; Bárcenas-Moreno, Gema; Jiménez-Pinilla, Patricia; Mataix-Solera, Jorge; Arcenegui, Victoria; Morugán-Coronado, Alicia; Mataix-Beneyto, Jorge

    2014-05-01

    water repellency among plant species in a Mediterranean semiarid forest. Geoderma, 207-208, 212-220. Roper, M.M., 2004. The isolation and characterization of bacteria with the potential to degrade waxes that cause water repellency in sandy soils. Aust. J. Soil Res., 42, 427-433. Savage, S.M., Martin, J. P., Letey, J., 1964. Contribution of Some Soil Fungi to Natural and Heat-Induced Water Repellency in Sand. Soil Sci. Soc. Am. J., 33, 405-409.

  13. DRAINMOD-FOREST: Integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests

    Science.gov (United States)

    Shiying Tian; Mohamed A. Youssef; R. Wayne Skaggs; Devendra M. Amatya; G.M. Chescheir

    2012-01-01

    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model,...

  14. Land use, forest density, soil mapping, erosion, drainage, salinity limitations

    Science.gov (United States)

    Yassoglou, N. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The results of analyses show that it is possible to obtain information of practical significance as follows: (1) A quick and accurate estimate of the proper use of the valuable land can be made on the basis of temporal and spectral characteristics of the land features. (2) A rather accurate delineation of the major forest formations in the test areas was achieved on the basis of spatial and spectral characteristics of the studied areas. The forest stands were separated into two density classes; dense forest, and broken forest. On the basis of ERTS-1 data and the existing ground truth information a rather accurate mapping of the major vegetational forms of the mountain ranges can be made. (3) Major soil formations are mapable from ERTS-1 data: recent alluvial soils; soil on quarternary deposits; severely eroded soil and lithosol; and wet soils. (4) An estimation of cost benefits cannot be made accurately at this stage of the investigation. However, a rough estimate of the ratio of the cost for obtaining the same amount information from ERTS-1 data and from conventional operations would be approximately 1:6 to 1:10, in favor of the ERTS-1.

  15. Shifts in soil testate amoeba communities associated with forest diversification.

    Science.gov (United States)

    Bobrov, Anatoly A; Zaitsev, Andrei S; Wolters, Volkmar

    2015-05-01

    We studied changes of testate amoeba communities associated with the conversion of spruce monocultures into mixed beech-fir-spruce forests in the Southern Black Forest Mountains (Germany). In this region, forest conversion is characterized by a gradual development of beech undergrowth within thinned spruce tree stands leading to multiple age continuous cover forests with a diversified litter layer. Strong shifts in the abundance of testate amoeba observed in intermediate stages levelled off to monoculture conditions again after the final stage of the conversion process had been reached. The average number of species per conversion stage (i.e., local richness) did not respond strongly to forest conversion, but the total number of species (i.e., regional richness) was considerably higher in the initial stage than in the mixed forests, due to the large number of hygrophilous species inhabiting spruce monocultures. Functional diversity of the testate amoeba community, however, significantly increased during the conversion process. This shift was closely associated with improved C and N availability as well as higher niche diversity in the continuous cover stands. Lower soil acidity in these forests coincided with a higher relative abundance of eurytopic species. Our results suggest that testate amoeba communities are much more affected by physicochemical properties of the soil than directly by litter diversity.

  16. Nitrogen release from forest soils containing sulfide-bearing sediments

    Science.gov (United States)

    Maileena Nieminen, Tiina; Merilä, Päivi; Ukonmaanaho, Liisa

    2014-05-01

    Soils containing sediments dominated by metal sulfides cause high acidity and release of heavy metals, when excavated or drained, as the aeration of these sediments causes formation of sulfuric acid. Consequent leaching of acidity and heavy metals can kill tree seedlings and animals such as fish, contaminate water, and corrode concrete and steel. These types of soils are called acid sulfate soils. Their metamorphic equivalents, such as sulfide rich black shales, pose a very similar risk of acidity and metal release to the environment. Until today the main focus in treatment of the acid sulfate soils has been to prevent acidification and metal toxicity to agricultural crop plants, and only limited attention has been paid to the environmental threat caused by the release of acidity and heavy metals to the surrounding water courses. Even less attention is paid on release of major nutrients, such as nitrogen, although these sediments are extremely rich in carbon and nitrogen and present a potentially high microbiological activity. In Europe, the largest cover of acid sulfate soils is found in coastal lowlands of Finland. Estimates of acid sulfate soils in agricultural use range from 1 300 to 3 000 km2, but the area in other land use classes, such as managed peatland forests, is presumably larger. In Finland, 49 500 km2 of peatlands have been drained for forestry, and most of these peatland forests will be at the regeneration stage within 10 to 30 years. As ditch network maintenance is often a prerequisite for a successful establishment of the following tree generation, the effects of maintenance operations on the quality of drainage water should be under special control in peatlands underlain by sulfide-bearing sediments. Therefore, identification of risk areas and effective prevention of acidity and metal release during drain maintenance related soil excavating are great challenges for forestry on coastal lowlands of Finland. The organic and inorganic nitrogen

  17. Assessing bioenergy harvest risks: Geospatially explicit tools for maintaining soil productivity in western US forests

    Science.gov (United States)

    Mark Kimsey; Deborah Page-Dumroese; Mark Coleman

    2011-01-01

    Biomass harvesting for energy production and forest health can impact the soil resource by altering inherent chemical, physical and biological properties. These impacts raise concern about damaging sensitive forest soils, even with the prospect of maintaining vigorous forest growth through biomass harvesting operations. Current forest biomass harvesting research...

  18. Dolomite phosphate rock (DPR) application in acidic sandy soil in reducing leaching of phosphorus and heavy metals-a column leaching study.

    Science.gov (United States)

    Yang, Yuangen; He, Zhenli; Yang, Xiaoe; Stoffella, Peter J

    2013-06-01

    A column leaching study was designed to investigate the leaching potential of phosphorus (P) and heavy metals from acidic sandy soils applied with dolomite phosphate rock (DPR) fertilizers containing varying amounts of DPR material and N-Viro soils. DPR fertilizers were made from DPR materials mixing with N-Viro soils at the ratios of 30, 40, 50, 60, and 70 %, and applied in acidic sandy soils at the level of 100 mg available P per kilogram soil. A control and a soluble P chemical fertilizer were also included. The amended soils were incubated at room temperature with 70 % field water holding capacity for 21 days before packed into a soil column and subjected to leaching. Seven leaching events were conducted at days 1, 3, 7, 14, 28, 56, and 70, respectively, and 258.9 mL of deionized water was applied at each leaching events. The leachate was collected for the analyses of pH, electrical conductivity (EC), dissolved organic carbon (DOC), major elements, and heavy metals. DPR fertilizer application resulted in elevations up to 1 unit in pH, 7-10 times in EC, and 20-40 times in K and Ca concentrations, but 3-10 times reduction in P concentration in the leachate as compared with the chemical fertilizer or the control. After seven leaching events, DPR fertilizers with adequate DPR materials significantly reduced cumulative leaching losses of Fe, P, Mn, Cu, and Zn by 20, 55, 3.7, 2.7, and 2.5 times than chemical fertilizer or control. Even though higher cumulative losses of Pb, Co, and Ni were observed after DPR fertilizer application, the loss of Pb, Co, and Ni in leachate was <0.10 mg (in total 1,812 mL leachate). Significant correlations of pH (negative) and DOC (positive) with Cu, Pb, and Zn (P<0.01) in leachate were observed. The results indicated that DPR fertilizers had a great advantage over the soluble chemical fertilizer in reducing P loss from the acidic sandy soil with minimal likelihood of heavy metal risk to the water environment. pH elevation and high

  19. Mitigation of Water Stress on Apple Trees under Rotational Irrigation Conditions by Increasing the Application Rate of Organic Fertilizers to Sandy Soils

    Science.gov (United States)

    Hamed, Lamy Mamdoh Mohamed; Ramadan Eid, Abdelraouf; Mohsmed Rabie Abdellatif Abdelaziz, Adel; Fathy Abdelsalam Essa, El-Sayed

    2016-04-01

    Egypt, as part of Mediterranean regions, is characterized by irregular and low rainfall amount which varies between (30-150 mm.year-1), and characterized also by high temperature which increase the rate of evapotranspiration from the cultivated soil. On the other hand, New reclaimed soils are mostly occupies around 84 % of total area of Egypt, which is mainly sandy soils. These soils generally characterized by low water capacity holding, soil organic matter, and weak in nutrients retention. Under these conditions which have a great influence on crop production, there is a great needing to increase the crop water use efficiency and increasing of nutrient retention in sandy soils. In this context, two field experiments were carried out on sand soil located in north Cairo-Egypt at the experimental farm of National Research Center, El-NUBARIA, (latitude 30° 30' N, and longitude 30° 19' E). The effect of compost rates on soil hydraulic characteristics, fruit yields, quality traits, and water use efficiency and productivity of apple tree (Apple Anna Cultivar), was studied under deficit irrigation conditions. Four rates of compost [I1: control, I2: 12 ton.ha-1., I3: 24 ton.ha-1., I4: 36 ton.ha-1. and I5:48 ton.ha-1.] were applied under irrigation frequencies of (IF1 :once per week; IF2 :twice per week, IF3 :three times per week). The obtained results indicated that by increasing the application rate of compost, the available water capacity and saturated water content of sandy soil have been enhanced. In the same time, the fruit yield, quality traits and water productivity were increased by increasing the application rate of compost. It is worthy to mention that the I5IF3 treatment gave the highest values of fruit yield, quality traits and water productivity, whereas I1IF1 treatment gave the lowest values of all the above mentioned variables. As result, for apple cultivation in El-NUBARIA region, the recommended rate of compost is 48 ton.ha-1 and irrigation frequency

  20. Mapping organic carbon stocks of Swiss forest soil

    Science.gov (United States)

    Nussbaum, M.; Papritz, A.; Baltensweiler, A.; Walthert, L.

    2012-04-01

    Carbon (C) sequestration into forest sinks offsets greenhouse gas emissions under the Kyoto protocol. Therefore, quantifying C stocks and fluxes in forest ecosystems is of interest for reporting greenhouse gas emissions. In Switzerland, the National Forest Inventory offers comprehensive data to quantify the above ground forest biomass and its change in time. Estimating stocks of soil organic C (SOC) in forests is more difficult because of its high spatial variability. To date the greenhouse gas inventory relies only on sparse data and regionally differentiated predictions of SOC stocks in forest soils are currently not possible. Recently, more soil data and new explanatory variables for statistical modeling like high resolution elevation data and satellite images became available. Based on data from 1'033 sites, we modeled SOC stocks to a depth of 1 m including the organic layer for the Swiss forested area. We used a novel robust restricted maximum likelihood method to fit a linear regression model with spatially correlated errors to the C stock data. For the regression analysis we used a broad range of covariates derived from climate data (precipitation, temperature, radiation), two elevation models (resolutions 25 and 2 m) and spectral variables representing vegetation. Furthermore, the main cartographic categories of an overview soil map were used to broadly represent the parent material. The numerous covariates, that partly correlated strongly, were reduced to a first subset using LASSO (Least Absolute Shrinkage and Selection Operator). This subset of covariates was then further reduced based on cross validation of the robustly fitted spatial model. The levels of categorical covariates were partly aggregated during this process and interactions between covariates were explored to account for nonlinear dependence of C stocks on the covariates. Using the final model, robust kriging prediction and error maps were computed with a resolution of one hectare.

  1. Soil carbon sequestration and changes in fungal and bacterial biomass following incorporation of forest residues

    Science.gov (United States)

    Matt D. Busse; Felipe G. Sanchez; Alice W. Ratcliff; John R. Butnor; Emily A. Carter; Robert F. Powers

    2009-01-01

    Sequestering carbon (C) in forest soils can benefit site fertility and help offset greenhouse gas emissions. However, identifying soil conditions and forest management practices which best promote C accumulation remains a challenging task. We tested whether soil incorporation of masticated woody residues alters short-term C storage at forested sites in western and...

  2. Effects of fire on properties of forest soils: a review.

    Science.gov (United States)

    Certini, Giacomo

    2005-03-01

    Many physical, chemical, mineralogical, and biological soil properties can be affected by forest fires. The effects are chiefly a result of burn severity, which consists of peak temperatures and duration of the fire. Climate, vegetation, and topography of the burnt area control the resilience of the soil system; some fire-induced changes can even be permanent. Low to moderate severity fires, such as most of those prescribed in forest management, promote renovation of the dominant vegetation through elimination of undesired species and transient increase of pH and available nutrients. No irreversible ecosystem change occurs, but the enhancement of hydrophobicity can render the soil less able to soak up water and more prone to erosion. Severe fires, such as wildfires, generally have several negative effects on soil. They cause significant removal of organic matter, deterioration of both structure and porosity, considerable loss of nutrients through volatilisation, ash entrapment in smoke columns, leaching and erosion, and marked alteration of both quantity and specific composition of microbial and soil-dwelling invertebrate communities. However, despite common perceptions, if plants succeed in promptly recolonising the burnt area, the pre-fire level of most properties can be recovered and even enhanced. This work is a review of the up-to-date literature dealing with changes imposed by fires on properties of forest soils. Ecological implications of these changes are described.

  3. Formation, fate and leaching of chloroform in coniferous forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Albers, Christian N., E-mail: calbers@ruc.dk [Dept. Geochemistry, Geological Survey of Denmark and Greenland, O. Voldgade 10, DK-1350, Copenhagen (Denmark); Laier, Troels; Jacobsen, Ole S. [Dept. Geochemistry, Geological Survey of Denmark and Greenland, O. Voldgade 10, DK-1350, Copenhagen (Denmark)

    2010-10-15

    Research highlights: {yields} Chloroform may be formed in coniferous forest soil. {yields} The formed chloroform may enter the groundwater in {mu}g/L concentrations. {yields} Clear seasonal patterns in chloroform formation in soil are observed. {yields} Sorption and degradation affects the fate of chloroform in forest soil. - Abstract: Chloroform is a common groundwater pollutant but also a natural compound in forest ecosystems. Leaching of natural chloroform from forest soil to groundwater was followed by regular analysis of soil air and groundwater from multilevel wells at four different sites in Denmark for a period of up to 4 a. Significant seasonal variation in chloroform was observed in soil air 0.5 m below surface ranging at one site from 120 ppb by volume in summer to 20 ppb during winter. With depth, the seasonal variation diminished gradually, ranging from 30 ppb in summer to 20 ppb during winter, near the groundwater table. Chloroform in the shallowest groundwater ranged from 0.5-1.5 {mu}g L{sup -1} at one site to 2-5 {mu}g L{sup -1} at another site showing no clear correlation with season. Comparing changes in chloroform in soil air versus depth with on-site recorded meteorological data indicated that a clear relationship appears between rain events and leaching of chloroform. Chloroform in top soil air co-varied with CO{sub 2} given a delay of 3-4 weeks providing evidence for its biological origin. This was confirmed during laboratory incubation experiments which further located the fermentation layer as the most chloroform producing soil horizon. Sorption of chloroform to soils, examined using {sup 14}C-CHCl{sub 3}, correlated with organic matter content, being high in the upper organic rich soils and low in the deeper more minerogenic soils. The marked decrease in chloroform in soil with depth may in part be due to microbial degradation which was shown to occur at all depths by laboratory tests using {sup 14}C-CHCl{sub 3}.

  4. The variations of aluminium species in mountainous forest soils and its implications to soil acidification.

    Science.gov (United States)

    Bradová, Monika; Tejnecký, Václav; Borůvka, Luboš; Němeček, Karel; Ash, Christopher; Šebek, Ondřej; Svoboda, Miroslav; Zenáhlíková, Jitka; Drábek, Ondřej

    2015-11-01

    Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008-2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al(3+) compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al(3+) and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al(3+) were determined in the summer, and the lowest in spring.

  5. Composition and ecological distribution of forest soil animal in Confucian graveyard of Qufu

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Soil animal communities of Secondary forest, Platycladus forest and Quercus acutissima forest in Confucian graveyard of Qufu were investigated. 3583 specimens were collected, belonging separately to 5 Phylums, 11 Classes and 23 Orders. Two dominant groups and 9 common groups account for 94.45% of the total numbers. The soil animals in these three forest habitats differ in composition, ecological distribution and important indices. The dominant groups of soil animals in the three forests were the same, but other groups differ more greatly. Diversity index (H') and evenness index (E) of soil animal in Secondary forest are the highest, and yet dominance index (C) in Quercus acutissima foerst is the highest. Most soil animals in each forest habitats congregate to the surface soil layer. Their sorts and individual numbers are all layer Ⅰ>Ⅱ>Ⅲ. It is very similar for composition of soil animals in the three forests.

  6. Quantifying soil and critical zone variability in a forested catchment through digital soil mapping

    Science.gov (United States)

    Quantifying catchment scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high elevation forested catchment in southern AZ, USA using a combined set of di...

  7. Soil carbon and soil physical properties response to incorporating mulched forest slash

    Science.gov (United States)

    Felipe G. Sanchez; Emily A. Carter; John. F. Klepac

    2000-01-01

    A study was installed in the Lower Coastal Plain near Washington, NC, to test the hypothesis that incorporating organic matter in the form of comminuted forest slash would increase soil carbon and nutrient pools, and alter soil physical properties to favor pine growth. Two sites were selected, an organic and a mineral site, to compare the treatment effects on...

  8. Effects of long-term amendment of organic manure and nitrogen fertilizer on nitrous oxide emission in a sandy loam soil

    Institute of Scientific and Technical Information of China (English)

    DING Wei-xin; MENG Lei; CAI Zu-cong; HAN Feng-xiang

    2007-01-01

    To understand the effects of long-term amendment of organic manure and N fertilizer on N2O emission in the North China Plain,a laboratory incubation at different temperatures and soil moistures were carried out using soils treated with organic manure (OM),half organic manure plus half fertilizer N (HOM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (NK) and control (CK) since 1989. Cumulative N2O emission in OM soil during the 17 d incubation period was slightly higher than in NPK soil under optimum nitrification conditions (25C and 60% water-filled pore space, WFPS), but more than twice under the optimum denitrification conditions (35C and 90% WFPS). N2O produced by denitrification was 2.1-2.3 times greater than that by nitrification in OM and HOM soils, but only 1.5 times greater in NPK and NP soils. These results implied that the long-term amendment of organic manure could significantly increase the N2O emission via denitrification in OM soil as compared to NPK soil. This is quite different from field measurement between OM soil and NPK soil. Substantial inhibition of the formation of anaerobic environment for denitrification in field might result in no marked difference in N2O emission between OM and NPK soils. This is due in part to more rapid oxygen diffusion in coarse textured soils than consumption by aerobic microbes until WFPS was 75% and to low easily decomposed organic C of organic manure. This finding suggested that addition of organic manure in the tested sandy loam might be a good management option since it seldom caused a burst of N2O emission but sequestered atmospheric C and maintained efficiently applied N in soil.

  9. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils

    Science.gov (United States)

    Barron, Alexander R.; Wurzburger, Nina; Bellenger, Jean Phillipe; Wright, S. Joseph; Kraepiel, Anne M. L.; Hedin, Lars O.

    2009-01-01

    Nitrogen fixation, the biological conversion of di-nitrogen to plant-available ammonium, is the primary natural input of nitrogen to ecosystems, and influences plant growth and carbon exchange at local to global scales. The role of this process in tropical forests is of particular concern, as these ecosystems harbour abundant nitrogen-fixing organisms and represent one third of terrestrial primary production. Here we show that the micronutrient molybdenum, a cofactor in the nitrogen-fixing enzyme nitrogenase, limits nitrogen fixation by free-living heterotrophic bacteria in soils of lowland Panamanian forests. We measured the fixation response to long-term nutrient manipulations in intact forests, and to short-term manipulations in soil microcosms. Nitrogen fixation increased sharply in treatments of molybdenum alone, in micronutrient treatments that included molybdenum by design and in treatments with commercial phosphorus fertilizer, in which molybdenum was a `hidden' contaminant. Fixation did not respond to additions of phosphorus that were not contaminated by molybdenum. Our findings show that molybdenum alone can limit asymbiotic nitrogen fixation in tropical forests and raise new questions about the role of molybdenum and phosphorus in the tropical nitrogen cycle. We suggest that molybdenum limitation may be common in highly weathered acidic soils, and may constrain the ability of some forests to acquire new nitrogen in response to CO2 fertilization.

  10. Soil moisture dynamics in an eastern Amazonian tropical forest

    Science.gov (United States)

    Bruno, Rogério D.; da Rocha, Humberto R.; de Freitas, Helber C.; Goulden, Michael L.; Miller, Scott D.

    2006-08-01

    We used frequency-domain reflectometry to make continuous, high-resolution measurements for 22 months of the soil moisture to a depth of 10 m in an Amazonian rain forest. We then used these data to determine how soil moisture varies on diel, seasonal and multi-year timescales, and to better understand the quantitative and mechanistic relationships between soil moisture and forest evapotranspiration. The mean annual precipitation at the site was over 1900 mm. The field capacity was approximately 0.53 m3 m-3 and was nearly uniform with soil depth. Soil moisture decreased at all levels during the dry season, with the minimum of 0.38 m3 m-3 at 3 m beneath the surface. The moisture in the upper 1 m showed a strong diel cycle with daytime depletion due to evapotranspiration. The moisture beneath 1 m declined during both day and night due to the combined effects of evapotranspiration, drainage and a nighttime upward movement of water. The depth of active water withdrawal changed markedly over the year. The upper 2 m of soil supplied 56% of the water used for evapotranspiration in the wet season and 28% of the water used in the dry season. The zone of active water withdrawal extended to a depth of at least 10 m. The day-to-day rates of moisture withdrawal from the upper 10 m of soil during rain-free periods agreed well with simultaneous measurements of whole-forest evapotranspiration made by the eddy covariance technique. The forest at the site was well adapted to the normal cycle of wet and dry seasons, and the dry season had only a small effect on the rates of land-atmosphere water vapour exchange.

  11. Forest soils in France are sequestering substantial amounts of carbon.

    Science.gov (United States)

    Jonard, Mathieu; Nicolas, Manuel; Coomes, David A; Caignet, Isabelle; Saenger, Anaïs; Ponette, Quentin

    2017-01-01

    The aim of this study was to assess whether French forest soils are sources or sinks of carbon and to quantify changes in soil organic carbon (SOC) stocks over time by resampling soil in long-term forest monitoring plots. Within each plot, and for each survey, soils were sampled at five points selected in five subplots and divided into layers. Composite samples were produced for each layer and subplot, then analysed for mass, bulk density and SOC. Linear mixed models were used to estimate SOC changes over 15years between two soil surveys carried out in 102 plots in France. A factor analysis and a budget approach were also used to identify which factors and processes were primarily responsible for SOC dynamics. Forest soils throughout France substantially accumulated SOC (+0.35MgCha(-1)yr(-1)) between 1993 and 2012. The SOC sequestration rate declined with stand age and was affected by stand structure. Uneven-aged stands sequestered more SOC than did even-aged stands (paffecting litter decomposition (climate and litter quality). For the mineral soil, the budget approach was unable to replicate the observed SOC sequestration rate, probably because SOC stocks were not yet at equilibrium with litter inputs at the beginning of the monitoring period (contrary to our steady-state assumption). This explanation is also supported by the fact that the SOC sequestration rate decreased with stand age. As the SOC sequestration rate declines with stand age and is higher in uneven-aged stands, forest management has the potential to influence this carbon sink. Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.

  12. Moss-nitrogen input to boreal forest soils

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Jones, Davey; DeLuca, Thomas

    2014-01-01

    Cyanobacteria living epiphytically on mosses in pristine, unpolluted areas fix substantial amounts of atmospheric nitrogen (N) and therefore represent a primary source of N in N-limited boreal forests. However, the fate of this N is unclear, in particular, how the fixed N2 enters the soil...

  13. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    DEFF Research Database (Denmark)

    de Vries, Wim; Reinds, Gert Jan; Gundersen, Per

    2006-01-01

    An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C...... pool changes in trees at the level II plots were based on repeated forest growth surveys At the level I plots, an estimate of the mean annual C pool changes was derived from stand age and available site quality characteristics. C sequestration, being equal to the long-term C pool changes accounting...... for CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils...

  14. STATUS OF SOIL MICROBIAL POPULATION, ENZYMATIC ACTIVITY AND BIOMASS OF SELECTED NATURAL, SECONDARY AND REHABILITATED FORESTS

    Directory of Open Access Journals (Sweden)

    K. S. Daljit Singh

    2013-01-01

    Full Text Available Substantial clearance of forests and conversion of forest into various land use types contribute to deterioration of soil fertility and associated nutrients loss. Soils from natural and rehabilitated forest in Chikus Forest Reserve and also enrichment planting forest and secondary forest of Tapah Hill Forest Reserve, Perak, Malaysia were selected in order to assess the influence of land use change on biological properties. This study was carried out to provide fundamental information on soil biological properties and also to compare the differences between natural forest, mono-rehabilitated forest, mixed planting forest and natural regenerated forest (secondary forest. Six subplots (20×20 m were established at each study plot and soil samples were collected at the depths of 0-15 cm (topsoil and 15-30 cm (subsoil. Soil microbial population was determined using spread-plate technique. Fluorescein Diacetate (FDA hydrolysis was used to assess the amount of microbial enzymatic activity for each forest plot. Soil Microbial Biomass C (MBC and N (MBN were extracted using chloroform fumigation extraction technique and the amount of MBC was determined by dichromate digestion, while MBN via Kjeldahl digestion technique. Soil acidity was determined by pH meter and moisture content was elucidated using gravimetric method. The levels of microbial population of bacterial and fungal at natural significantly exceeded the corresponding values of rehabilitated and secondary forest. However, microbial population is much higher in rehabilitated forest of Tapah Hill compared to that of secondary forest and also Chikus Forest Reserve planted forest which proves that rehabilitation activities do help increase the level of microbial community in the soils. Longer period of time after planting as in enrichment planting compared to mono planting of S. leprosula plantation showed that restoring and recovery of the planted forest needed time. Deforestation activities

  15. Migration and bioavailability of {sup 137}Cs in forest soil of southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Konopleva, I.; Klemt, E. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany); Konoplev, A. [Scientific Production Association ' TYPHOON' , Obninsk (Russian Federation); Zibold, G. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany)], E-mail: zibold@hs-weingarten.de

    2009-04-15

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered.

  16. A soil burn severity index for understanding soil-fire relations in tropical forests

    Science.gov (United States)

    Jain, T.B.; Gould, W.A.; Graham, R.T.; Pilliod, D.S.; Lentile, L.B.; Gonzalez, G.

    2008-01-01

    Methods for evaluating the impact of fires within tropical forests are needed as fires become more frequent and human populations and demands on forests increase. Short- and long-term fire effects on soils are determined by the prefire, fire, and postfire environments. We placed these components within a fire-disturbance continuum to guide our literature synthesis and develop an integrated soil burn severity index. The soil burn severity index provides a set of indicators that reflect the range of conditions present after a fire. The index consists of seven levels, an unburned level and six other levels that describe a range of postfire soil conditions. We view this index as a tool for understanding the effects of fires on the forest floor, with the realization that as new information is gained, the index may be modified as warranted. ?? Royal Swedish Academy of Sciences 2008.

  17. Effects of soil oven-drying on concentrations and speciation of trace metals and dissolved organic matter in soil solution extracts of sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Groenenberg, J.E.

    2011-01-01

    Weak salt extracts can be used to assess the availability of trace metals for leaching and uptake by soil organisms and plants in soil. Before extraction, the International Organization for Standardization recommends to dry soils in an oven at a temperature of 40 °C. Effects of soil oven-drying on

  18. Effects of soil oven-drying on concentrations and speciation of trace metals and dissolved organic matter in soil solution extracts of sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Groenenberg, J.E.

    2011-01-01

    Weak salt extracts can be used to assess the availability of trace metals for leaching and uptake by soil organisms and plants in soil. Before extraction, the International Organization for Standardization recommends to dry soils in an oven at a temperature of 40 °C. Effects of soil oven-drying on d

  19. Movement of bromide-ion and carbofuran in the humic sandy soil of a potato field with ridges and furrows : measurements in the field and computations with the PEARL model

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2008-01-01

    In fields with ridges and furrows (like in potato growing), water flow and pesticide transport in soil may be more complicated than in level fields. In a field experiment, movement of bromide-ion (as a tracer) and of the insecticide carbofuran through a sandy soil with humic top layer to the groundw

  20. Effect of nutrients and plant growth regulators on growth and yield of black gram in sandy loam soils of Cauvery new delta zone, India

    Directory of Open Access Journals (Sweden)

    S. Marimuthu

    2015-12-01

    Full Text Available Pulse productivity is very low in some of the sandy soil areas where, soils are having poor water and nutrient holding capacity. To improve the pulse productivity, field experiments were conducted at Agricultural Research Station, Tamil Nadu for two consecutive years to study the effect of phosphorus sources (mono- and diammonium phosphate with brassinolide and salicylic acid on growth and yield of black gram in sandy loam soils. The experiment was carried out in a randomized block design with three replications during kharif season. The treatments include 100% recommended dose of NPK along with foliar application of monoammonium phosphate (MAP, diammonium phosphate (DAP, brassinolide (0.25 ppm, and salicylic acid (100 ppm along with the combination of these treatments. TNAU pulse wonder at 5.0 kg ha−1 and TNAU micronutrient mixture (MN at 5 kg ha−1 were also tried. The results revealed that application of 100% recommended dose of NPK + DAP 2% + TNAU pulse wonder 5.0 kg ha−1 was statistically significant and recorded higher plant growth (37.62 cm, number of pods / plant (37.15, yield of black gram (1162 kg ha−1, and benefit cost ratio (2.98 over the other treatments. The lowest black gram yield (730 kg ha−1 was recorded for control.

  1. Urbanization in China drives soil acidification of Pinus massoniana forests

    Science.gov (United States)

    Huang, Juan; Zhang, Wei; Mo, Jiangming; Wang, Shizhong; Liu, Juxiu; Chen, Hao

    2015-09-01

    Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit at the 0-10 cm layer in urbanized areas compared to that in non-urbanized areas. Nitrogen deposition, mean annual temperature and mean annual precipitation were key factors influencing soil acidification based on a principal component analysis. Nitrogen deposition showed significant linear relationships with soil pH at the 0-10 cm (for ammonium N (-N), P deposition particularly under the climate of high temperature and rainfall, greatly contributed to a significant soil acidification occurred in the urbanized environment.

  2. The use of volcanic ash from the eruption of Mount Kelud in East Java for improving yield of sweet potato grown on a sandy soil

    Directory of Open Access Journals (Sweden)

    H. Melsandi

    2015-07-01

    Full Text Available The purpose of this study was to explore the effect of volcanic ash from the eruption of Mount Kelud and compost on the soil properties and production of sweet potato on a sandy soil. The treatments of this study were (a a combination of and volcanic ash with the proportion of 100: 0, 90:10, 80:20, and 70:30 (% weight, (b the addition of compost (2.5 and 5 t / ha, and (c two varieties of sweet potato (Manohara and Ayamurazaki. The soil used in this study is the topsoil (0-30 cm Psament or sandy Entisol obtained from sweet potato cultivation location in Sumber Pasir Village of Pakis District, South Malang. Ten kilograms of planting medium (soil + volcanic ash for each treatment was placed in a 15 kg plastic pot. Sixteen treatments arranged in a factorial completely randomized design with three replications. The results showed that application of Mount Kelud volcanic ash and compost was able to improve soil permeability, soil pH, organic C, and K-total, but did not significantly affect total N content, available P and K total land. The highest fresh tuber weights of 373.51 g / plant or 19.92 t / ha and 393.09 g / plant or 20.96 t / ha for Manohara and Ayumurazaki varieties, respectively, were observed in the treatment of 10% volcanic ash + 5 t compost / ha. The carbohydrate content of Manohara variety was higher than that of Ayamurazaki variety at each treatment. The highest carbohydrate content of the Manohara variety (23.52% was obtained through application of 20% volcanic ash + 2.5 t compost/ha, while that of the Ayamurazaki variety (22.42% was obtained through application of 30% volcanic ash + 2.5 t/ha.

  3. Sources of nitrous oxide emitted from European forest soils

    DEFF Research Database (Denmark)

    Ambus, P.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K.

    2006-01-01

    0.67% (deciduous) and 0.44% (coniferous). Our study suggests that changes in forest composition in response to land use activities and global change may have implications for regional budgets of greenhouse gases. From the study it also became clear that N2O emissions were driven by the nitrification......Forest ecosystems may provide strong sources of nitrous oxide (N2O), which is important for atmospheric chemical and radiative properties. Nonetheless, our understanding of controls on forest N2O emissions is insufficient to narrow current flux estimates, which still are associated with great...... uncertainties. In this study, we have investigated the quantitative and qualitative relationships between N-cycling and N2O production in European forests in order to evaluate the importance of nitrification and denitrification for N2O production. Soil samples were collected in 11 different sites characterized...

  4. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests

    Science.gov (United States)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi

    2016-04-01

    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  5. Soil sustainability study in Lithuanian alien forest stands

    Science.gov (United States)

    Čiuldiene, Dovile; Skridlaite, Grazina; Žalūdiene, Gaile; Askelsson, Cecilia; Armolaitis, Kestutis

    2016-04-01

    Tree species are shifting their natural ranges in response to climate changes (Saltré et al., 2013). Northern red oak has originated from North America, but was planted in Europe already in twentieth century. At present, it is considered as invasive species in Poland and at invasive stage in the Lithuanian forests (Riepsas and Straigyte, 2008). European larch naturally grows in Central Europe, but its range has been extended by planting it as far as the Nordic countries. According to a pollen study in peat soils, European larch naturally grew in Lithuania in the sixteenth century and was reintroduced 200 years ago (Jankauskas, 1954). Therefore, the global warming could accelerate the expansion of European larch and Northern red oak into Lithuanian forests. An urgent need appeared to evaluate an impact of those warmth-tolerant species on soil mineral chemistry and quality. New results on the determination of mineral weathering rates in alien forest stands using a PROFILE soil chemistry model were obtained during a doctoral study at the Institute of Forestry. Soil minerals were studied by a Scanning Electron Microscopy at the Institute of Geology and Geography. The results provided a lot of new information on soil weathering rates in Lithuania. The 47 and 157-year-old European larch (Larix decidua Mill.), 45 and 55-year-old Northern red oak (Quercus rubra L.) plantations and adjacent perennial grasslands were chosen for this study. The soils were classified as Luvisols and were developed from glaciofluvial deposits. The PROFILE model requires data of climate conditions (mean annual temperature and precipitation), chemical parameters of atmospheric deposition, forest plantation dendrometric and chemical (wood, foliage litter fall) characteristics, soil physical characteristics and mineral composition. A cation weathering rate (sum of Ca+Mg+ K) is 30% higher in a soil under the Northern red oak than in adjacent perennial grassland. Meanwhile, cation weathering rates

  6. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains].

    Science.gov (United States)

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin

    2014-06-01

    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  7. Soil biochemical responses to nitrogen addition in a bamboo forest.

    Science.gov (United States)

    Tu, Li-hua; Chen, Gang; Peng, Yong; Hu, Hong-ling; Hu, Ting-xing; Zhang, Jian; Li, Xian-wei; Liu, Li; Tang, Yi

    2014-01-01

    Many vital ecosystem processes take place in the soils and are greatly affected by the increasing active nitrogen (N) deposition observed globally. Nitrogen deposition generally affects ecosystem processes through the changes in soil biochemical properties such as soil nutrient availability, microbial properties and enzyme activities. In order to evaluate the soil biochemical responses to elevated atmospheric N deposition in bamboo forest ecosystems, a two-year field N addition experiment in a hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis daii) plantation was conducted. Four levels of N treatment were applied: (1) control (CK, without N added), (2) low-nitrogen (LN, 50 kg N ha(-1) year(-1)), (3) medium-nitrogen (MN, 150 kg N ha(-1) year(-1)), and (4) high-nitrogen (HN, 300 kg N ha(-1) year(-1)). Results indicated that N addition significantly increased the concentrations of NH4(+), NO3(-), microbial biomass carbon, microbial biomass N, the rates of nitrification and denitrification; significantly decreased soil pH and the concentration of available phosphorus, and had no effect on the total organic carbon and total N concentration in the 0-20 cm soil depth. Nitrogen addition significantly stimulated activities of hydrolytic enzyme that acquiring N (urease) and phosphorus (acid phosphatase) and depressed the oxidative enzymes (phenol oxidase, peroxidase and catalase) activities. Results suggest that (1) this bamboo forest ecosystem is moving towards being limited by P or co-limited by P under elevated N deposition, (2) the expected progressive increases in N deposition may have a potential important effect on forest litter decomposition due to the interaction of inorganic N and oxidative enzyme activities, in such bamboo forests under high levels of ambient N deposition.

  8. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar

    2011-06-01

    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  9. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhe [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Zeng, Fangang [School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Xue, Nandong [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Li, Fasheng, E-mail: ligulax@vip.sina.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China)

    2012-09-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles (< 2 {mu}m clay, 2-20 {mu}m silt, 20-200 {mu}m fine sand, and > 200 {mu}m coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0-20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 {mu}g/g in profile 1 and 10.8 to 0.143 {mu}g/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand > coarse sand > silt > clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites. -- Highlights: Black-Right-Pointing-Pointer PAH concentrations varied largely in different sized fractions. Black-Right-Pointing-Pointer The highest PAH concentrations were associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Black-Right-Pointing-Pointer Soil organic

  10. Soil concentrations and soil-atmosphere exchange of alkylamines in a boreal Scots pine forest

    Science.gov (United States)

    Kieloaho, Antti-Jussi; Pihlatie, Mari; Launiainen, Samuli; Kulmala, Markku; Riekkola, Marja-Liisa; Parshintsev, Jevgeni; Mammarella, Ivan; Vesala, Timo; Heinonsalo, Jussi

    2017-03-01

    Alkylamines are important precursors in secondary aerosol formation in the boreal forest atmosphere. To better understand the behavior and sources of two alkylamines, dimethylamine (DMA) and diethylamine (DEA), we estimated the magnitudes of soil-atmosphere fluxes of DMA and DEA using a gradient-diffusion approximation based on measured concentrations in soil solution and in the canopy air space. The ambient air concentration of DMA used in this study was a sum of DMA and ethylamine. To compute the amine fluxes, we first estimated the soil air space concentration from the measured soil solution amine concentration using soil physical (temperature, soil water content) and chemical (pH) state variables. Then, we used the resistance analogy to account for gas transport mechanisms in the soil, soil boundary layer, and canopy air space. The resulting flux estimates revealed that the boreal forest soil with a typical long-term mean pH 5.3 is a possible source of DMA (170 ± 51 nmol m-2 day-1) and a sink of DEA (-1.2 ± 1.2 nmol m-2 day-1). We also investigated the potential role of fungi as a reservoir for alkylamines in boreal forest soil. We found high DMA and DEA concentrations both in fungal hyphae collected from field humus samples and in fungal pure cultures. The highest DMA and DEA concentrations were found in fungal strains belonging to decay and ectomycorrhizal fungal groups, indicating that boreal forest soil and, in particular, fungal biomass may be important reservoirs for these alkylamines.

  11. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany.

    Science.gov (United States)

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.

  12. The vulnerability of organic matter in Swiss forest soils

    Science.gov (United States)

    González Domínguez, Beatriz; Niklaus, Pascal A.; Studer, Mirjam S.; Hagedorn, Frank; Wacker, Lukas; Haghipour, Negar; Zimmermann, Stephan; Walthert, Lorenz; Abiven, Samuel; McIntyre, Cameron

    2017-04-01

    Soils contain more carbon than atmosphere and terrestrial vegetation combined [1], and thus are key players in the carbon cycle. With climate change, the soil organic carbon (SOC) pool is vulnerable to loss through increased CO2 emissions, which in turn can amplify changes with this carbon feedback [2]. The objective of this study is to investigate the variation of indicators of SOC vulnerability (e.g. SOC mineralisation, turnover time, bulk soil and mineralised 14C signatures) and to evaluate climate, soil and terrain variables as primary drivers. To choose the study locations we used a statistics-based approach to select a balanced combination of 54 forest sites with de-correlated drivers of SOC vulnerability (i.e. proxies for soil temperature and moisture, pH, % clay, slope gradient and orientation). Sites were selected from the forest soil database of the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), which in May 2014, contained data from 1,050 soil profiles spread across Switzerland. We re-sampled soils at the 54 locations during summer 2014. With these samples we run a standardized laboratory soil incubation (i.e. 25°C; soils moisture -20kPa; sieved to ≤ 2 mm; 40 g equivalent dry mass; adjusted to 0.8 g cm-3 bulk density) and measured SOC mineralisation on days 4, 13, 30, 63, 121 and 181 by trapping the CO2 evolved from soils in sodium hydroxide traps [3]. Additionally, we measured the 14C signature of the carbon trapped during last stage of the incubation, and compare it to the 14C signature of the bulk soil. Based on the cumulative SOC mineralised, we found that despite the well-studied relationship between climate and SOC dynamics [4], temperature did not emerge as a predictor of SOC vulnerability. In parallel, moisture only had a minor role, with soils from drier sites being the most vulnerable. This indicates a possible limitation of heterotrophic activity due to water shortage. On the other hand, soil pH raised as the driver

  13. Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties.

    Science.gov (United States)

    Xu, Dongyu; Zhao, Ye; Sun, Ke; Gao, Bo; Wang, Ziying; Jin, Jie; Zhang, Zheyun; Wang, Shuifeng; Yan, Yu; Liu, Xitao; Wu, Fengchang

    2014-09-01

    To investigate the role of the bulk and surface composition of both biochar and biochar-amended soils in the adsorption of Cd(2+), as well as the influence of different biochars added to the soils on Cd(2+) adsorption, swine-manure-derived biochars (BSs) and wheat-straw-derived biochars (BWs) were produced at 300, 450, and 600°C. These biochars were added to a sandy soil to investigate the effect of biochars on the adsorption of Cd(2+) by soil. The significantly higher surface C content of the amended soils compared to their bulk C content suggests that the minerals of the biochar-amended soils are most likely covered primarily by biochars. The maximum adsorption capacity (Qmax,total) of the BSs was 10-15 times higher than that of the BWs due to the high polarity and ash content of the BSs. The polarity ((N+O)/C) of the low-temperature biochars greatly affected their Cd(2+) adsorption. The Qmax,total of the BS-amended soils increased with increasing dose, whereas the Qmax,total of the BW-amended soils showed the opposite behavior, which was attributed to the different surface composition characteristics of the two types of soil. The BSs were more effective in immobilizing Cd(2+) upon application to the soil relative to the BWs. This study elucidates the spatial distribution of biochars in biochar-amended soils and highlights the importance of the surface composition of the investigated samples in Cd(2+) adsorption.

  14. Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia

    NARCIS (Netherlands)

    Khasanah, N.; Noordwijk, van M.; Ningsih, H.; Rahayu, S.

    2015-01-01

    Sustainability criteria for palm oil production guide new planting toward non-forest land cover on mineral soil, avoiding carbon debts caused by forest and peat conversion. Effects on soil carbon stock (soil Cstock) of land use change trajectories from forest and non-forest to oil palm on mineral so

  15. Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils

    Science.gov (United States)

    Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue

    2017-04-01

    Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial

  16. [Effects of simulated warming on soil enzyme activities in two subalpine coniferous forests in west Sichuan].

    Science.gov (United States)

    Xu, Zhen-feng; Tang, Zheng; Wan, Chuan; Xiong, Pei; Cao, Gang; Liu, Qing

    2010-11-01

    With open top chamber (OTC), this paper studied the effects of simulated warming on the activities of soil invertase, urease, catalase, polyphenol oxidase in two contrasting subalpine coniferous forests (a dragon spruce plantation and a natural conifer forest) in west Sichuan. The dynamic changes of soil temperature and soil moisture were monitored synchronously. In the whole growth season, simulated warming enhanced the daily mean temperature at soil depth 5 cm by 0.61 degrees C in the plantation, and by 0.55 degrees C in the natural forest. Conversely, the volumetric moisture at soil depth 10 cm was declined by 4.10% and 2.55%, respectively. Simulated warming also increased soil invertase, urease, catalase, and polyphenol oxidase activities. The interactive effect of warming and forest type was significant on soil urease and catalase, but not significant on soil invertase and polyphenol oxidase. The warming effect on soil catalase depended, to some extent, on season change. In all treatments, the soil enzyme activities in the natural forest were significantly higher than those in the plantation. The seasonal changes of test soil enzyme activities were highly correlated with soil temperature, but less correlated with soil moisture. This study indicated that warming could enhance soil enzyme activities, and the effect had definite correlations with forest type, enzyme category, and season change. The soil enzyme activities in the subalpine coniferous forests were mainly controlled by soil temperature rather than soil moisture.

  17. Impact of forest fire on physical, chemical and biological properties of soil: A review

    OpenAIRE

    Satyam Verma; S Jayakumar

    2012-01-01

    Forest fire is very common to all the ecosystems of the world. It affects both vegetation and soil. It is also helpful in maintaining diversity and stability of ecosystems. Effect of forest fire and prescribed fire on forest soil is very complex. It affects soil organic matter, macro and micro-nutrients, physical properties of soil like texture, colour, pH, Bulk Density as well as soil biota. The impact of fire on forest soil depends on various factors such as intensity of fire, fuel load and...

  18. Changes in soil physical properties of forest floor horizons due to long-term deposition of lignite fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Peter; Fleige, Heiner; Horn, Rainer [Inst. for Plant Nutrition and Soil Science, Christian-Albrechts-Univ. zu Kiel (Germany)

    2010-03-15

    Background, aim, and scope: From the beginning of the twentieth century until the 1990s, energy in Upper Lusatia, Saxony in Eastern Germany was produced at power plants that burnt lignite coals. As a result, alkaline fly ash and aerosols from the combustion of brown coal have accumulated in adjacent areas that are partly under forestry. We ask the question, 'how have these atmospheric depositions of fly ash influenced the soil physical properties (bulk density, particle density, saturated hydraulic conductivity, pore size distribution, and water repellency) of forest floor horizons?' Materials and methods: The experimental sites represented typical soil types and stands of the sylviculturally used areas in the region of Upper Lusatia. Three forest sites were located close to the emission sources, where high amounts of fly ashes accumulated, and three control sites were without fly ash enrichment. Pore size distribution, saturated hydraulic conductivity, and bulk density were examined with undisturbed samples (metal cylinder 100 cm{sup 3}). Disturbed samples were used for the characterization of particle density, texture, and water repellency (Wilhelmy plate method). Additionally, the carbon content was determined. Scanning electron microscopy was used to show fly ash enrichment. Results: The enrichment of mineral fly ash particles could be proven for sites close to the emission source. Using scanning electron microscopy, spherical fly ash particles could be identified. Total quantities of persistent fly ash enrichment amounted to approximately 150-280 Mg ha{sup -1}. The enrichment of fly ash affected the soil-physical characteristics. Close to the emission source (sandy fly ashes), particle density, air capacity, and saturated hydraulic conductivity were significantly increased, whereas the plant available water was significantly reduced. With increasing distance from the emission source (silty fly ashes or no ash enrichment), air capacity and saturated

  19. The Experimental Study on Application Effect of BGA Soil Conditioner in Aeolian Sandy Soil%BGA土壤调理剂在风沙土上的施用效果研究

    Institute of Scientific and Technical Information of China (English)

    杨建国; 纪立东; 樊丽琴; 谢华; 孙权; 李明; 尚红莺; 李淑玲

    2012-01-01

    In order to solve the problem of land desertification in Ningxia, improve aeolian sandy soil quality and increase land productivity, the application effect of BGA soil conditioner on aeolian sandy soil and crops was studied and evaluated through field plot experiment. The results showed that, compared with no fertilizer, BGA soil conditioner improved physical and chemical properties of aeolian sandy soil, promoted the growth of wine grape, cherry tomato and liquorice, increased significantly the yield of wine grape and cherry tomato, improved the quality of wine grape and liquorice. Compared with balanced fertilization, BGA soil conditioner improved physical and chemical properties of aeolian sandy soil, promoted the growth of wine grape and cherry tomato, decreased significantly the yield of liquorice, improved the quality of wine grape. The application of BGA soil conditioner greatly increased the investment cost of production. It was proposed to reduce production cost of BGA soil conditioner and combine application of BGA soil conditioner with chemical fertilizers.%为了解决宁夏土地沙化问题,提高风沙土土壤质量和土地生产力,通过田间试验研究了BGA土壤调理剂对风沙土土壤理化性质和作物生长发育的影响,评价了BGA土壤调理剂的施用效果.研究结果表明,与不施肥相比,施用BGA土壤调理剂改善了风沙土土壤理化性质,促进了酿酒葡萄、樱桃番茄和甘草的生长发育,显著提高了酿酒葡萄和樱桃番茄的产量,改善了酿酒葡萄和甘草品质;与配方施肥相比,施用BGA土壤调理剂改善了风沙土土壤理化性质,促进了酿酒葡萄和樱桃番茄的生长发育,显著降低了甘草产量,改善了酿酒葡萄品质.施用BGA土壤调理剂大幅度增加了生产投入成本,建议进一步降低BGA土壤调理剂的生产成本或与化肥配合施用.

  20. Assessing Bioenergy Harvest Risks: Geospatially Explicit Tools for Maintaining Soil Productivity in Western US Forests

    OpenAIRE

    Deborah Page-Dumroese; Mark Coleman; Mark Kimsey

    2011-01-01

    Biomass harvesting for energy production and forest health can impact the soil resource by altering inherent chemical, physical and biological properties. These impacts raise concern about damaging sensitive forest soils, even with the prospect of maintaining vigorous forest growth through biomass harvesting operations. Current forest biomass harvesting research concurs that harvest impacts to the soil resource are region- and site-specific, although generalized knowledge from decades of rese...

  1. Soil microclimate monitoring in forested and meadow sites

    Science.gov (United States)

    Freyerova, Katerina; Safanda, Jan

    2016-04-01

    It is well known fact that forest microclimate differs from open area microclimate (Geiger 1965). Less attention is paid to soil temperatures and their long-term monitoring. To evaluate and compare these two environments from the soil microclimate point of view, Institute of Geophysics in Prague monitors soil and air temperatures in Bedřichov in the Jizerské Hory Mountains (Czech Republic). The soil temperatures are measured in three depths (20, 50 and 100 cm) in forest (700 m a. s. l.) and meadow (750 m a. s. l.). Air temperatures are measured at 2m height both in forest and meadow. Nowadays, we have more than three years long time series. The most of studies and experiments described in literature are short-term ones (in order of days or weeks). However, from short-term experiments the seasonal behaviour and trends can be hardly identified and conclusions on soil temperature reaction to climatic extremes such as heat waves, drought or freeze cannot be done with confidence. These drawbacks of the short-term experiments are discussed in literature (eg. Morecroft et al. 1998; Renaud et al. 2011). At the same, with progression of the global warming, the expected increasing frequency of climatic extremes will affect the future form of forest vegetation (Von Arx et al. 2012). The soil and air temperature series, both from the forest and meadow sites, are evaluated and interpreted with respect to long term temperature characteristics and seasonal trends. The emphasis is given on the soil temperature responses to extreme climatic situations. We examine variability between the localities and depths and spatial and temporal changes in this variability. This long-term monitoring allows us to better understand and examine the behaviour of the soil temperature in extreme weather situations. Therefore, we hope to contribute to better prediction of future reactions of this specific environments to the climate change. Literature Geiger, R., 1965. The climate near the ground

  2. Impact of forest fire on physical, chemical and biological properties of soil: A review

    Directory of Open Access Journals (Sweden)

    Satyam Verma

    2012-09-01

    Full Text Available Forest fire is very common to all the ecosystems of the world. It affects both vegetation and soil. It is also helpful in maintaining diversity and stability of ecosystems. Effect of forest fire and prescribed fire on forest soil is very complex. It affects soil organic matter, macro and micro-nutrients, physical properties of soil like texture, colour, pH, Bulk Density as well as soil biota. The impact of fire on forest soil depends on various factors such as intensity of fire, fuel load and soil moisture. Fire is beneficial as well as harmful for the forest soil depending on its severity and fire return interval. In low intensity fires, combustion of litter and soil organic matter increase plant available nutrients, which results in rapid growth of herbaceous plants and a significant increase in plant storage of nutrients. Whereas high intensity fires can result into complete loss of soil organic matter, volatilization of N, P, S, K, death of microbes, etc. Intense forest fire results into formation of some organic compounds with hydrophobic properties, which results into high water repellent soils. Forest fire also causes long term effect on forest soil. The purpose of this paper is to review the effect of forest fire on various properties of soil, which are important in maintaining healthy ecosystem.

  3. Nitrogen fertilization on soybean under crop-livestock system and sandy soil = Nitrogênio mineral na soja integrada com a pecuária em solo arenoso

    Directory of Open Access Journals (Sweden)

    Alvadi Antonio Balbinot Junior

    2016-07-01

    Full Text Available In Brazil, soybean has been introduced in areas with sandy soil and tropical climate, often under crop-livestock system. The use of nitrogen (N for this crop is supplied by the soil organic matter mineralization and the biological N fixation. However, there are questions about the effect of nitrogen fertilization in soybean crop under sandy soils with a high amount of straw. The aim of this study was to evaluate the agronomic performance of two soybean cultivars in different doses (20 and 45 kg N ha-1 and application times (sowing, at flowering or early grain filling of N in sandy soil with high amount of Urochloa brizantha straw. Two experiments were conducted in Northwest of Paraná state, Brazil, the first experiment with the BMX Potência RR cultivar and the second one with the BRS 360 RR cultivar, in a sandy soil (11% clay. The experiment were composed by seven treatments (interaction between factors and the control, settled in a randomized block design with four replications. In sandy soil, with high amount of U. brizantha straw, the nitrogen fertilizer applied at different doses and at soybean development stages, cultivars BMX Potência RR and BRS 360 RR, does not influence the photoassimilates partition between stem and leaves, foliar N concentration, yield, yield components, and the oil and protein content in the grains. = No Brasil, a soja tem sido introduzida em regiões que apresentam solos arenosos e clima tropical, sendo muitas vezes integrada com a pecuária. A demanda da oleaginosa por nitrogênio(N é suprida pela mineralização da matéria orgânica do solo e pela fixação biológica do N. No entanto, há questionamentos quanto ao efeito da adubação nitrogenada na cultura da soja cultivada em solos arenosos, com alta quantidade de palha de gramíneas. Objetivou-se com este trabalho avaliar o desempenho de duas cultivares de soja, em solo arenoso, após dois anos com pastagem de Urochloa brizantha, submetidas a diferentes

  4. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  5. Assessing Soil Biological Properties of Natural and Planted Forests in the Malaysian Tropical Lowland Dipterocarp Forest

    Directory of Open Access Journals (Sweden)

    Daljit S. Karam

    2011-01-01

    Full Text Available Problem statement: A study was conducted to evaluate and compare the soil biological properties of a natural forest and an 18-year-old stand of Shorea leprosula in Chikus Forest Reserve, Perak, Malaysia. Approach: Soils were sampled at depths of 0-15 cm (topsoil and 15-30 cm (subsoil in six subplots (20×20 m of natural forest (C1 and of a planted S. leprosula (C2 plot. Fresh composite soil samples were kept in UV-sterilized polyethylene bags prior to analysis in the laboratory. The microbial population count was determined using a spread-plate count technique. The microbial enzymatic activity was elucidated using a Fluorescein Diacetate (FDA hydrolysis assay; microbial biomass was extracted using a rapid chloroform fumigation extraction method. The Microbial Biomass C (MBC was determined by wet dichromate oxidation; Kjeldahl digestion and a distillation method were used for evaluation of Microbial Biomass N (MBN. Results: Results indicate that only the microbial biomass N and the population count in the soil at the 0-15 cm depth were found to be higher in C1 compared to C2. The higher microbial population count in the soil at the 0-15 cm depth of C1 compared to C2 was enhanced by the large amount of organic matter that serves as a suitable medium for soil microbial growth. The higher MBN in the C1 soil was also influenced by the high content of organic material available that encourages activities of decomposing bacteria to take place. Similarities in the soil biological properties of the plots with regard to enzymatic activity and microbial biomass Care believed to be influenced by the same topographic gradient. The higher MBC/MBN ratios found in soils of C2 compared to C1 were due to the low availability of N compared to C, might result from N utilization by soil microbes for organic material decomposition. Conclusion: There are similarities in microbial enzymatic activity and biomass C, but not in microbial population counts and biomass N

  6. Comparison of the carbon stock in forest soil of sessile oak and beech forests

    Science.gov (United States)

    Horváth, Adrienn; Bene, Zsolt; Bidló, András

    2016-04-01

    Forest ecosystems are the most important carbon sinks. The forest soils play an important role in the global carbon cycle, because the global climate change or the increase of atmospheric CO2 level. We do not have enough data about the carbon stock of soils and its change due to human activities, which have similar value to carbon content of biomass. In our investigation we measured the carbon stock of soil in 10 stands of Quercus petraea and Fagus sylvatica. We took a 1.1 m soil column with soil borer and divided to 11 samples each column. The course organic and root residues were moved. After evaluation, we compared our results with other studies and the carbon stock of forests to each other. Naturally, the amount of SOC was the highest in the topsoil layers. However, we found significant difference between forest stands which stayed on the same homogenous bedrock, but very close to each other (e.g. distance was 1 or 2 km). We detected that different forest utilizations and tree species have an effect on the forest carbon as the litter as well (amount, composition). In summary, we found larger amount (99.1 C t/ha on average) of SOC in soil of stands, where sessile oak were the main stand-forming tree species. The amount of carbon was the least in turkey oak-sessile oak stands (85.4 C t/ha on average). We found the highest SOC (118.3 C t/ha) in the most mixed stand (silver lime-beech-red oak). In the future, it will be very important: How does climate change affect the spread of tree species or on carbon storage? Beech is more sensitive, but even sessile oak. These species are expected to replace with turkey oak, which is less sensitive to drought. Thus, it is possible in the future that we can expect to decrease of forest soil carbon stock capacity, which was confirmed by our experiment. Keywords: carbon sequestration, mitigation, Fagus sylvatica, Quercus petraea, litter Acknowledgements: Research is supported by the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU

  7. Sorption/desorption of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane(4,4'-DDT) on a sandy loam soil.

    Science.gov (United States)

    Erdem, Ziya; Cutright, Teresa J

    2015-02-01

    1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane(4,4'-DDT) is a pesticide well-known for its negative health and environmental effects. Despite being banned by a majority of world countries more than 30 years ago, its persistence in the environment is a continuing problem even today. The objective of the study was the investigation of sorption/desorption behavior of 4,4'-DDT in sandy loam soil. The impact of contaminant concentration and age was observed with three different experiments. The sorption percentages at the end of the short time step (8 h) were 50 and 92 %, for initial concentrations 2.26 and 5.28 mg/L, respectively. When freshly spiked soil was subjected to a conventional sorption study, 82 to 99.6 % of the initial aqueous DDT concentrations were sorbed within 24 h. When modeled with a Freundlich isotherm, the log K f was found to be 3.62. After six consecutive 24 h desorption steps, 33 to 96.6 % still remained in the soil. This was more pronounced for soils that had been aged for 60 days. After seven consecutive 24 h desorption steps of aged soil, the percent remaining sorbed to the soil were 44, 64, and 77 %, for 25, 250, and 500 mg/kg, respectively. All results show that 4,4-DDT has a tendency of sorbing to the soil rapidly and showing resistance to desorption. When comparing desorption values, aged soils were seen to desorb less than non-aged soils. This result was attributed to stronger binding to soil with increased contact time.

  8. Evaporation Dynamics of Moss and Bare Soil in Boreal Forests

    Science.gov (United States)

    Dempster, S.; Young, J. M.; Barron, C. G.; Bolton, W. R.

    2013-12-01

    Evaporation dynamics of mosses is a critical process in boreal and arctic systems and represents a key uncertainty in hydrology and climate models. At this point, moss evaporation is not well quantified at the plot or landscape scale. Relative to bare soil or litter evaporation, moss evaporation can be challenging to predict because the water flux is not isolated to the moss surface. Evaporation can originate from nearly 10 cm below the surface. Some mosses can wick moisture from even deeper than 10 cm, which subsequently evaporates. The goal of this study was to use field measurements to quantify the moss evaporation dynamics in a coniferous forest relative to bare ground or litter evaporation dynamics in a deciduous forest in Interior Alaska. Measurements were made in two ecosystem types within the boreal forest of Interior Alaska: a deciduous forest devoid of moss and a coniferous forest with a thick moss layer. A small clear chamber was attached to a LiCor 840 infrared gas analyzer in a closed loop system with a low flow rate. Water fluxes were measured for ~ 90 seconds on each plot in dry and wet soil and moss conditions. Additional measurements included: soil temperature, soil moisture, air temperature, barometric pressure, dew point, relative humidity, and wind speed. Thermal infrared images were also captured in congruence with water flux measurements to determine skin temperature. We found that the moss evaporation rate was over 100% greater than the soil evaporation rate (0.057 g/min vs. 0.024 g/min), and evaporation rates in both systems were most strongly driven by relative humidity and surface temperature. Surface temperature was lower at the birch site than the black spruce site because trees shade the surface beneath the birch. High fluxes associated with high water content were sustained for a longer period of time over the mosses compared to the bare soil. The thermal IR data showed that skin temperature lagged the evaporation flux, such that the

  9. Mechanisms for the retention of inorganic N in acidic forest soils of southern China

    Science.gov (United States)

    Zhang, Jin-bo; Cai, Zu-cong; Zhu, Tong-bin; Yang, Wen-yan; Müller, Christoph

    2013-01-01

    The mechanisms underlying the retention of inorganic N in acidic forest soils in southern China are not well understood. Here, we simultaneously quantified the gross N transformation rates of various subtropical acidic forest soils located in southern China (southern soil) and those of temperate forest soils located in northern China (northern soil). We found that acidic southern soils had significantly higher gross rates of N mineralization and significantly higher turnover rates but a much greater capacity for retaining inorganic N than northern soils. The rates of autotrophic nitrification and NH3 volatilization in acidic southern soils were significantly lower due to low soil pH. Meanwhile, the relatively higher rates of NO3− immobilization into organic N in southern soils can counteract the effects of leaching, runoff, and denitrification. Taken together, these processes are responsible for the N enrichment of the humid subtropical forest soils in southern China. PMID:23907561

  10. Modelling impacts of atmospheric deposition, nutrient cycling and soil weathering on the sustainability of nine forest ecosystems

    DEFF Research Database (Denmark)

    Salm, C. van der; Vries, W.de; Olsson, M.

    1999-01-01

    To assess the impact of acid deposition on the long-term sustainability of nine oak, pine and spruce stands on sandy to loamy sandy parent material in Sweden, Denmark and The Netherlands, a dynamic soil acidification model (ReSAM) was applied. Two deposition scenarios For the period 1990-2090 were...

  11. Modelling impacts of atmospheric deposition, nutrient cycling and soil weathering on the sustainability of nine forest ecosystems

    DEFF Research Database (Denmark)

    Salm, C. van der; Vries, W.de; Olsson, M.;

    1999-01-01

    To assess the impact of acid deposition on the long-term sustainability of nine oak, pine and spruce stands on sandy to loamy sandy parent material in Sweden, Denmark and The Netherlands, a dynamic soil acidification model (ReSAM) was applied. Two deposition scenarios For the period 1990-2090 wer...

  12. Organic Matter, Carbon and Humic Acids in Rehabilitated and Secondary Forest Soils

    Directory of Open Access Journals (Sweden)

    Lee Y. Leng

    2009-01-01

    Full Text Available Problem Statement: Tropical rainforests cover about 19.37 million ha (60% of Malaysia’s total area and about 8.71 million ha can be found in Sarawak, Malaysia. Excessive logging, mining and shifting cultivation contribute to deforestation in Sarawak. The objectives of this study were to: (i Quantify soil Organic Matter (SOM, Soil Organic Carbon (SOC and Humic Acids (HA in rehabilitated and secondary forest soils and (ii Compare SOM, SOC and HA sequestrations of both forests. Approach: Soil samples were collected from a 16 year old rehabilitated forest and a secondary forest at Universiti Putra Malaysia, Bintulu Campus. Fifteen samples were taken at random with a soil auger at 0-20 cm and 20-40 cm depths. The bulk densities at these depths were determined by the coring method. The bulk density method was used to quantify the total C (TC, Total Organic Carbon (TOC, Organic Matter (OM, Humic Acids (HA and total N at the stated sampling depths. Results: Regardless of forest soil type and depth, the amount of SOM of the two forests was similar. Except for 20-40 cm of the secondary forest soil whereby the quantity of total C sequestered was significantly lower than that of the rehabilitated forest soil, C sequestration was similar irrespective of forest type and depth. Nevertheless, stable C (organic carbon sequestered in HA was generally higher in the rehabilitated forest soil compared with the secondary forest soil. This was attributed to higher yield of HA in the rehabilitated forest soil partly due to better humification at 20-40 cm in the rehabilitated forest soil. Conclusion: Hence, the findings suggest that organic C in HA realistically reflects C sequestration in the soils of the two forests investigated.

  13. Hypholoma lateritium isolated from coarse woody debris, the forest floor, and mineral soil in a deciduous forest in New Hampshire

    Science.gov (United States)

    Therese A. Thompson; R. Greg Thorn; Kevin T. Smith

    2012-01-01

    Fungi in the Agaricomycetes (Basidiomycota) are the primary decomposers in temperate forests of dead wood on and in the forest soil. Through the use of isolation techniques selective for saprotrophic Agaricomycetes, a variety of wood decay fungi were isolated from a northern hardwood stand in the Bartlett Experimental Forest, New Hampshire, USA. In particular,

  14. A multi-layer, closed-loop system for continuous measurement of soil CO2 concentrations and its isotopic signature applied in a beech and a pine forest

    Science.gov (United States)

    Jochheim, Hubert; Wirth, Stephan

    2016-04-01

    We present a setup of measurement devices that allows the application of the soil CO2 gradient approach for CO2 efflux calculation in combination with the analysis of isotopic signature (δ13C). Vertical profiles of CO2 concentrations in air-filled pores of soil were measured using miniature NDIR sensors within a 16-channel closed-loop system where equilibrium with soil air can be achieved using hydrophobic, gas-permeable porous polypropylene tubes circulating gas using peristaltic pumps. A 16-position multiplexer allows the connection to an isotopic CO2 analyser. This setup was applied at two ICP Forest intensive monitoring sites, a beech and a pine forest on sandy soils located in Brandenburg, Germany. CO2 concentrations in air-filled pores of soils were measured on top of soil surface, below the humus layer, and in 10cm, 20cm, 30cm and 100 cm depths every 30 min. At both sites, soil moisture and temperature were measured continuously in the respective soil depths in identical time intervals. Isotopic signatures of soil CO2 was detected by measurement campaigns. After three years of measurements, our results provided evidence for distinct seasonal dynamics and vertical gradients of soil CO2 concentration and δ13C values. Varying impacts of soil temperature and moisture on CO2 concentration were revealed, highlighting its impact on soil physical and soil biological controls. Higher levels of CO2 concentration and a more distinct seasonal dynamics were detected at the beech site compared to the pine site. The collected data provide a suitable database for calculation of CO2 efflux and modelling of soil respiration.

  15. Quantifying soil erosion with GIS-based RUSLE under different forest management options in Jianchang Forest Farm

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hengming; WANG; Qingli; DAI; Limin; Guofan; Shao; TANG; Lina; WANG; Shunzhong; GU; Huiyan

    2006-01-01

    Quantitatively estimating soil erosion with an integration of geographic information system (GIS) and the revised universal soil loss equation (RUSLE) under four different exposed soil proportion scenarios caused by forest management practices was studied at Jianchang Forest Farm. The GIS provided means of input data generation required by RUSLE model and allowed a spatial assessment of the erosion hazard over the study area. Four exposed soil proportion scenarios of 5%, 10%, 20% and 30% were tested with the GIS-based RUSLE model to evaluate soil erosion hazard. The predicted soil erosion potentials were classified into five categories in order to provide valuable aids for management planning.

  16. Methane consumption and soil respiration by a birch forest soil in West Siberia

    Science.gov (United States)

    Nakano, Tomoko; Inoue, Gen; Fukuda, Masami

    2004-07-01

    Methane and carbon dioxide fluxes were measured in a birch forest soil in West Siberia, in August 1999, June 2000 and September 2000. The study site had a very thick organic horizon that was subject to drought during the observation periods. The soils always took up CH4, while CO2 was released from the surface to the atmosphere. CH4 consumption and CO2 emission rates ranged from 0.092 to 0.28 mg C m2 h1 and from 110 to 400 mg C m2 h1 respectively. The CH4 consumption rate and soil temperatures showed significant relationships for individual measurements. The soil respiration rate was weakly correlated with individual soil temperatures. This study examined the effect of current and lagged soil temperatures at a depth of 5 cm on CH4 consumption and soil respiration. The variation in the correlation coefficient between CH4 consumption and lagged soil temperature was greatest at a 4-h lag, whereas that for soil respiration showed a gentle peak at lags from several hours to half a day. This difference in the temperature-related lag effect between CH4 consumption and soil respiration results from differences in the exchange processes. Neither flux showed any correlation with soil moisture. The limited variation in soil moisture during our observation period may account for the lack of correlation. However, the droughty soil conditions resulted in high gas diffusion and, consequently, high CH4 consumption.

  17. Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China.

    Science.gov (United States)

    Ding, Fan; Huang, Yao; Sun, Wenjuan; Jiang, Guangfu; Chen, Yue

    2014-01-01

    It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2-50 µm), and clay (soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming.

  18. Analysis of soil moisture variation by forest cover structure in lower western Himalayas, India

    Institute of Scientific and Technical Information of China (English)

    J.v.Tyagi; Nuzhat Qazi; S.P.Rai; M.P.Singh

    2013-01-01

    Soil moisture affects various hydrological processes,including evapotranspiration,infiltration,and runoff.Forested areas in the lower western Himalaya in India constitute the headwater catchments for many hill streams and have experienced degradation in forest cover due to grazing,deforestation and other human activities.This change in forest cover is likely to alter the soil moisture regime and,consequently,flow regimes in streams.The effect of change in forest cover on soil moisture regimes of this dry region has not been studied through long term field observations.We monitored soil matric potentials in two small watersheds in the lower western Himalaya of India.The watersheds consisted of homogeneous land covers of moderately dense oak forest and moderately degraded mixed oak forest.Observations were recorded at three sites at three depths in each watershed at fortnightly intervals for a period of three years.The soil moisture contents derived from soil potential measurements were analyzed to understand the spatial,temporal and profile variations under the two structures of forest cover.The analysis revealed large variations in soil moisture storage at different sites and depths and also during different seasons in each watershed.Mean soil moisture storage during monsoon,winter and summer seasons was higher under dense forest than under degraded forest.Highest soil moisture content occurred at shallow soil profiles,decreasing with depth in both watersheds.A high positive correlation was found between tree density and soil moisture content.Mean soil moisture content over the entire study period was higher under dense forest than under degraded forest.This indicated a potential for soil water storage under well managed oak forest.Because soil water storage is vital for sustenance of low flows,attention is needed on the management of oak forests in the Himalayan region.

  19. Effects of organic fertilizers and biochar/organic fertilizer combinations on fertility and organic matter dynamics of a sandy soil in north-west Germany

    Science.gov (United States)

    Greenberg, Isabel; Kaiser, Michael; Polifka, Steven; Wiedner, Katja; Glaser, Bruno; Ludwig, Bernard

    2017-04-01

    Biochar and biochar/organic fertilizer combinations have been recommended as soil amendments to improve plant productivity and soil properties, as well as to increase soil organic C (OC) storage. However, these claims have been largely unverified by field experiments lasting several years. To address these issues, a field experiment was established in 2012 to analyze the effects of organic fertilizers and biochar/organic fertilizer combinations (five field replicates, fully randomized block design) on the fertility and organic matter dynamics of a sandy Cambisol. In 2016, samples were taken from the 0-10 cm and 10-30 cm soil depths of the following treatments: mineral fertilizer and maize digestate that were applied both individually and in combination with 1 t/ha or 40 t/ha biochar. Further treatments were compost and 10 t/ha composted biochar. The treatments were analyzed for the plant yield and the bulk soil samples were analyzed for the pH, cation exchange capacity (CEC), OC content, microbial biomass C and the distribution of aggregate-size fractions (i.e. >2 mm, 2 mm - 250 µm, 250 - 53 µm, lupine (Lupinus angustifolius) (1.84 t/ha) was detected for the 40 t/ha biochar+digestate treatment. The first data for the soil samples indicate that the 10 t/ha composted biochar and the compost treatment are most effective in increasing the CEC, and the microbial biomass C content of the soil, while pH was not significantly affected by any of the treatments. The bulk soil OC content of the treatments receiving 40 t/ha biochar+fertilizer (digestate or mineral), 10 t/ha composted biochar, and compost has been significantly increased by 43 to 88% in the 10-30 cm depth compared to the individual application of mineral fertilizer. The OC content of the water-stable macro- (2 mm - 250 µm) and micro-aggregates (250 - 53 µm) of the treatments receiving 40 t/ha biochar+fertilizer (digestate or mineral), 10 t/ha composted biochar, and compost was increased by 12 to 120

  20. Soil water repellency under stones, forest residue mulch and bare soil following wildfire.

    Science.gov (United States)

    Martins, Martinho A. S.; Prats, Sérgio A.; van Keulen, Daan; Vieira, Diana C. S.; Silva, Flávio C.; Keizer, Jan J.; Verheijen, Frank G. A.

    2017-04-01

    Soil water repellency (SWR) is a physical property that is commonly defined as the aptitude of soil to resist wetting. It has been documented for a wide range of soil and vegetation types, and can vary with soil organic matter (SOM) content and type, soil texture, soil moisture content (SMC) and soil temperature. Fire can induce, enhance or destroy SWR and, therefore, lead to considerable changes in soil water infiltration and storage and increase soil erosion by water, thereby weakening soil quality. In Portugal, wildfires occur frequently and affect large areas, on average some 100000 ha per year, but over 300000 ha in extreme years such as 2003 and 2005. This can have important implications in geomorphological and hydrological processes, as evidenced by the strong and sometimes extreme responses in post-fire runoff and erosion reported from various parts of the world, including Portugal. Thereby, the application of mulches from various materials to cover burned areas has been found to be an efficient stabilization treatment. However, little is known about possible side effects on SWR, especially long term effects. Forest SWR is very heterogeneous, as a result of variation in proximity to trees/shrubs, litter type and thickness, cracks, roots, and stones. This study targeted the spatial heterogeneity of soil water repellency under eucalypt plantation, five years after a wildfire and forest residue mulching application. The main objectives of this work were: 1) to assess the long-term effect of mulching application on the strength and spatial heterogeneity of topsoil SWR, by comparing SWR on bare soil, under stones, and under mulching remains; 2) to assess SWR at 1 cm depth between O and Ah horizons. The soil surface results showed that untreated bare soil areas were slightly more water repellent than mulched areas. However, under stones there were no SWR differences between mulched and control areas. At 1 cm depth, there was a marked mulching effect on SWR, even

  1. Methods of soil resampling to monitor changes in the chemical concentrations of forest soils

    Science.gov (United States)

    Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael; Koppers, Mary Margaret

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  2. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  3. Winter soil CO2 efflux in two contrasting forest ecosystems on the eastern Tibetan Plateau, China

    Institute of Scientific and Technical Information of China (English)

    Zhenfeng Xu; Feifei Zhou; Huajun Yin; Qing Liu

    2015-01-01

    Significant CO2 fluxes from snow-covered soils occur in cold biomes. However, little is known about winter soil respiration on the eastern Tibetan Plateau of China. We therefore measured winter soil CO2 fluxes and estimated annual soil respiration in two contrasting coniferous forest ecosystems (a Picea asperata plantation and a natural forest). Mean winter soil CO2 effluxes were 1.08 lmol m-2 s-1 in the plantation and 1.16 lmol m-2 s-1 in the natural forest. These values are higher than most reported winter soil CO2 efflux values for temperate or boreal forest ecosystems. Winter soil respiration rates were similar for our two forest ecosystems but mean soil CO2 efflux over the growing season was higher in the natural forest than in the plantation. The estimated winter and annual soil effluxes for the natural forest were 176.3 and 1070.3 g m-2, respectively, based on the relationship between soil respiration and soil temperature, which were 17.2 and 9.7 % greater than their counterparts in the plantation. The contributions of winter soil respiration to annual soil efflux were 15.4 % for the plantation and 16.5 % for the natural forest and were statistically similar. Our results indicate that winter soil CO2 efflux from frozen soils in the alpine coniferous forest ecosystems of the eastern Tibetan Plateau was considerable and was an important component of annual soil respiration. Moreover, reforestation (natural coniferous forests were deforested and reforested with P. asperata plantation) may reduce soil respiration by reducing soil carbon substrate availability and input.

  4. Physical-hydraulic properties of a sandy loam typic paleudalf soil under organic cultivation of 'montenegrina' mandarin (Citrus deliciosa Tenore¹

    Directory of Open Access Journals (Sweden)

    Caroline Valverde dos Santos

    2014-12-01

    Full Text Available Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina' under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT, between the wheel tracks (BWT, and in the area under the line projection of the canopy (CLP, with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT, which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

  5. Natural radionuclides in soils from Sao Paulo State cerrado forest

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Marcia V.F.E.S.; Farias, Emerson E.G. de; Cantinha, Rebeca S.; Franca, Elvis J. de, E-mail: mvaleria@cnen.gov.br, E-mail: emersonemiliano@yahoo.com.br, E-mail: rebecanuclear@gmail.com, E-mail: ejfranca@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2015-07-01

    Considering the long life history, forests should be preferentially evaluated for the monitoring of radionuclides, mainly artificial radioisotopes. However, little is known about nuclides from Uranium and Thorium series, as well as, K-40, in soils from the Sao Paulo State forests. Soils are the main reservoir of natural radionuclides for vegetation, thereby deserving attention. Taking into account the advantages of High-Resolution Gamma-ray Spectrometry (HRGS), diverse radionuclides can be quantified simultaneously. In this work natural radionuclides in soils from the Estacao Ecologica de Assis were evaluated by HRGS. Samples of 0-10 cm depth were collected under crown projection of most abundant tree species of long-term plots installed within the Estacao Ecologica de Assis, Sao Paulo State, Brazil. After drying and milling until 0.5 mm particle size, test portions of 30 g were transferred to polypropylene vials, sealed with silicone and kept under controlled conditions until 30 days to achieve secular equilibrium. A group of gamma-ray spectrometers was used to analyze about 27 samples by 80,000 seconds. Activity concentrations of Pb-214, Ac-228 and K-40 and their respective expanded analytical uncertainties at the 95% confidence level were calculated by Genie software from Canberra. Abnormal values were not detected for radionuclides in soils samples, however K-40 activity concentrations changed considerably due to the mineral cycling, in which K and, consequently K-40, is mainly stocked in vegetation in spite of soils. (author)

  6. An alternative modelling approach to predict emissions of N2O and NO from forest soils

    NARCIS (Netherlands)

    Bruijn, de A.M.G.; Grote, R.; Butterbach-Bahl, K.

    2011-01-01

    Emissions of N2O from forest soils in Europe are an important source of global greenhouse gas emissions. However, influencing the emission rates by forest management is difficult because the relations and feedbacks between forest and soils are complex. Process-based models covering both vegetation

  7. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  8. Experimental warming effects on the microbial community of a temperate mountain forest soil

    OpenAIRE

    Schindlbacher, A.; Rodler, A.; Kuffner, M.; Kitzler, B.; Sessitsch, A; Zechmeister-Boltenstern, S.

    2011-01-01

    Soil microbial communities mediate the decomposition of soil organic matter (SOM). The amount of carbon (C) that is respired leaves the soil as CO2 (soil respiration) and causes one of the greatest fluxes in the global carbon cycle. How soil microbial communities will respond to global warming, however, is not well understood. To elucidate the effect of warming on the microbial community we analyzed soil from the soil warming experiment Achenkirch, Austria. Soil of a mature spruce forest was ...

  9. Changes in forest soil properties in different successional stages in lower tropical China.

    Directory of Open Access Journals (Sweden)

    Yuelin Li

    Full Text Available BACKGROUND: Natural forest succession often affects soil physical and chemical properties. Selected physical and chemical soil properties were studied in an old-growth forest across a forest successional series in Dinghushan Nature Reserve, Southern China. METHODOLOGY/PRINCIPAL FINDINGS: The aim was to assess the effects of forest succession change on soil properties. Soil samples (0-20 cm depth were collected from three forest types at different succession stages, namely pine (Pinus massoniana forest (PMF, mixed pine and broadleaf forest (PBMF and monsoon evergreen broadleaf forest (MEBF, representing early, middle and advanced successional stages respectively. The soil samples were analyzed for soil water storage (SWS, soil organic matter (SOM, soil microbial biomass carbon (SMBC, pH, NH4(+-N, available potassium (K, available phosphorus (P and microelements (available copper (Cu, available zinc (Zn, available iron (Fe and available boron (B between 1999 and 2009. The results showed that SWS, SOM, SMBC, Cu, Zn, Fe and B concentrations were higher in the advanced successional stage (MEBF stage. Conversely, P and pH were lower in the MEBF but higher in the PMF (early successional stage. pH, NH4(+-N, P and K declined while SOM, Zn, Cu, Fe and B increased with increasing forest age. Soil pH was lower than 4.5 in the three forest types, indicating that the surface soil was acidic, a stable trend in Dinghushan. CONCLUSION/SIGNIFICANCE: These findings demonstrated significant impacts of natural succession in an old-growth forest on the surface soil nutrient properties and organic matter. Changes in soil properties along the forest succession gradient may be a useful index for evaluating the successional stages of the subtropical forests. We caution that our inferences are drawn from a pseudo-replicated chronosequence, as true replicates were difficult to find. Further studies are needed to draw rigorous conclusions regarding on nutrient dynamics in

  10. Characteristics of soil water consumption of typical shrubs (Caragana microphylla) and trees (Pinus sylvestris) in the Horqin Sandy Land area, China

    Institute of Scientific and Technical Information of China (English)

    Alamusa; Deming JIANG

    2009-01-01

    Reforestation is one of the most effective ways to reduce the impacts of desertification. Caragana microphylla Lam. and Pinus sylvestris var. mongolica Litrin have been widely used to stabilize shifting sands in the Horqin sandy land area since the 1980s. However, soil water depletion has been of major concern in C. microphylla and P. ongolica plantations and in many places current soil moisture cannot meet the demand of growing plants. To determine the water budget of C. microphylla and P. mongolica plantations, we studied the effect of plantations on soil moisture and assessed the evapotranspiration in plantations of both species. Investigations were conducted at a fenced plot at Wulanaodu (42°29′N, 119°30′E, 479 m a. s. 1), located at the western edge of the Horqin Sandy Land area in Inner Mongolia, northern China. Five year old C. microphylla and seven year old P. mongolica plants were selected from the plantations and transplanted to iron boxes (400cm× 200cm×120cm) which can drain extra water. Plant spacing of 1 m×1 m was applied to P. mongolica, and two plant spacings of 1 m×1m and 1 m×2m to C. microphylla. The transplanted plants grew for two years in the boxes. Soil moisture from soil surface to a depth 80 cm were measured at 20 cm intervals in boxes every 10 d (2004) or 3 d (2005) during the growing season with a TDR water meter. The evapotranspiration was estimated from a mathematical formula and the characteristics of soil water consumption and evapotranspiration of these two plantations were analyzed. The soil water of P. mongolica was more than that ofC. microphylla at the same 1 m×1 m spacing. The soil water of C. microphylla with the 1 m× 2 m spacing was more than that of the 1 m ×1 m spacing. The evapotranspiration ranged from high to low as follows: C. microphylla (1 m×1 m), C. microphylla (1 m×2m) and P. mongolica (1 m×1 m) during the growing seasons. The evapotranspiration of individual plants ranging from high to low was C

  11. Monitorization of the unsaturated zone on the sandy soils of Donana National Park; Monitorizacion de la zona no saturada en el entorno del Espacio Natural de Donana

    Energy Technology Data Exchange (ETDEWEB)

    Prados, M. L.; Guardiola-Albert, C.; Vanderlinken, K.; Giraldez, J. V.; Mediavilla, C.

    2010-07-01

    Within the framework of a study into the recharge of the Almonte-Marismas aquifer, we describe the methods used to monitor water flux in the vadose zone at four sites within the Donana National Park and its surroundings. We also provide a description of land use and soil and hydrological conditions at each measurement point. Very frequent observations are required to monitor efficiently the water flux in these well-drained, sandy soils, which undergo considerable oscillations in their usually low water content. To this end we have resorted to inexpensive capacitance probes, installed at different points along the soil profiles in question according mainly to the depth of the water table. We propose a calibration method to increase the accuracy and precision of the probe measurements. Our work has demonstrated that these sensors perform well in monitoring soil water content and also validates both the installation methods used. Data analysis proves that these sensors are very useful for locating the depth of the water table accurately and emphasises the need for specific calibration for each soil in order to obtain the most accurate moisture data. (Author) 10 refs.

  12. Effects of land-use changes on organic carbon in bulk soil and associated physical fractions in China's Horqin Sandy Grassland

    Institute of Scientific and Technical Information of China (English)

    YuQiang Li; YinPing Chen; ShaoKun Wang; WenDa Huang; JianPeng Zhang

    2015-01-01

    The Horqin Sandy Grassland is one of the most seriously desertified areas in China's agro-pastoral ecotone due to its fragile ecology, combined with improper and unsustainable land management. We investigated organic carbon changes in bulk soil (0 to 5 cm), light fraction of soil organic matter, and soil particle-size fractions induced by land-use and cover type changes. The results indicated that total soil organic carbon (SOC) storage decreased by 121 g/m2 with the conversion of grassland into farmland for 30 years, and increased by 261 g/m2 with the conversion of grassland into plantation for 30 years. Total SOC storage decreased by 157 g/m2 as a result of severe grassland desertification due to long-term continuous livestock grazing, whereas total SOC increased by 111 g/m2 following the practice of grazing exclusion (16 years) in desertified areas. Changes in land-use and cover type also show great effects on carbon storage in soil physical fractions.

  13. Increased mercury in forest soils under elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Natali, Susan M. [State University of New York, Stony Brook; Sa_udo-Wilhelmy, Sergio A. [University of Southern California; Norby, Richard J [ORNL; Finzi, Adrien C [Boston University; Lerdau, Manuel T. [University of Virginia

    2008-01-01

    Fossil fuel combustion is the primary anthropogenic source of both CO2 and Hg to the atmosphere. On a global scale, most Hg that enters ecosystems is derived from atmospheric Hg that deposits onto the land surface. Increasing concentrations of atmospheric CO2 may affect Hg deposition to terrestrial systems and storage in soils through CO2-mediated changes in plant and soil properties. We show, using free-air CO2 enrichment (FACE) experiments, that soil Hg concentrations are almost 30% greater under elevated atmospheric CO2 in two temperate forests. There were no direct CO2 effects, however, on litterfall, throughfall or stemflow Hg inputs. Soil Hg was positively correlated with percent soil organic matter (SOM), suggesting that CO2-mediated changes in SOM have influenced soil Hg concentrations. Through its impacts on SOM, elevated atmospheric CO2 may increase the Hg storage capacity of soils and modulate the movement of Hg through the biosphere. Such effects of rising CO2, ones that transcend the typically studied effects on C and nutrient cycling, are an important next phase for research on global environmental change.

  14. Acid soil indicators in forest soils of the Cherry River Watershed, West Virginia.

    Science.gov (United States)

    Farr, C; Skousen, J; Edwards, P; Connolly, S; Sencindiver, J

    2009-11-01

    Declining forest health has been observed during the past several decades in several areas of the eastern USA, and some of this decline is attributed to acid deposition. Decreases in soil pH and increases in soil acidity are indicators of potential impacts on tree growth due to acid inputs and Al toxicity. The Cherry River watershed, which lies within the Monongahela National Forest in West Virginia, has some of the highest rates of acid deposition in Appalachia. East and West areas within the watershed, which showed differences in precipitation, stream chemistry, and vegetation composition, were compared to evaluate soil acidity conditions and to assess their degree of risk on tree growth. Thirty-one soil pits in the West area and 36 pits in the East area were dug and described, and soil samples from each horizon were analyzed for chemical parameters. In A horizons, East area soils averaged 3.7 pH with 9.4 cmol(c) kg(-1) of acidity compared to pH 4.0 and 6.2 cmol(c) kg(-1) of acidity in West area soils. Extractable cations (Ca, Mg, and Al) were significantly higher in the A, transition, and upper B horizons of East versus West soils. However, even with differences in cation concentrations, Ca/Al molar ratios were similar for East and West soils. For both sites using the Ca/Al ratio, a 50% risk of impaired tree growth was found for A horizons, while a 75% risk was found for deeper horizons. Low concentrations of base cations and high extractable Al in these soils translate into a high degree of risk for forest regeneration and tree growth after conventional tree harvesting.

  15. Application of N-modified lignite and activated biochar to increase growth of summer wheat on nutrient-poor sandy soil

    Science.gov (United States)

    Schillem, Steffi; Schneider, Bernd-Uwe; Zeihser, Uwe; Hüttl, Reinhard F.

    2017-04-01

    Land degradation is recognized as the main environmental problem that adversely depletes soil organic carbon (SOC) and nitrogen (SON) stocks, which in turn directly affects the fertility and productivity of soils. Degraded soils and marginal lands are characterized by low fertility, poor physicochemical and biological properties and are almost free of soil organic matter (SOM), limiting their functional properties and, hence, their productivity. To enhance or restore the fertility of these soils, natural soil amendments such as biochar, lignite or humic acids can be added. A greenhouse experiment was carried out to investigate the effect of different application rates (5, 7.5, 11, 15, 28 t ha-1) of N-modified lignite (NL) incorporated in a nutrient-poor sandy soil from a recultivation site on plant growth, water use and nitrogen use efficiency of summer wheat. Additionally activated biochar (BC) was tested to see whether any differences exist between N-modified lignite and activated biochar at the same C-application rates. All variants with soil amendments displayed a much higher grain and straw yield and water use efficiency compared to the control sample. The differences were significant for the 28 t ha-1variant followed by the variant with 5 t ha-1 NL. With the 7.5 t ha-1 NL higher biomasses, water and nitrogen use efficiency could be achieved compared to the variant treated with BC at the same C-content. This study shows that even small amounts of N-modified lignite can increase growth, water and nitrogen use efficiency of summer wheat on marginal lands.

  16. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, M. [University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, ON M1C 1A4 (Canada); Mitchell, C.P.J., E-mail: carl.mitchell@utoronto.ca [University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, ON M1C 1A4 (Canada); Eckley, C.S. [Meteorological Service of Canada, Environment Canada, 4905 Dufferein Street, Toronto, ON M3H 5T4 (Canada); Eggert, S.L.; Kolka, R.K.; Sebestyen, S.D. [Northern Research Station, USDA Forest Service, 1831 Hwy 169 E, Grand Rapids, MN 55744 (United States); Swain, E.B. [Minnesota Pollution Control Agency, St. Paul, MN 55155 (United States)

    2014-10-15

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil–air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown. We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg emissions from the forest floor were monitored after two forest harvesting prescriptions, a traditional clear-cut and a clearcut followed by biomass harvest, and compared to an un-harvested reference plot. Gaseous Hg emissions were measured in quadruplicate at four different times between March and November 2012 using Teflon dynamic flux chambers. We also applied enriched Hg isotope tracers and separately monitored their emission in triplicate at the same times as ambient measurements. Clearcut followed by biomass harvesting increased ambient Hg emissions the most. While significant intra-site spatial variability was observed, Hg emissions from the biomass harvested plot (180 ± 170 ng m{sup −2} d{sup −1}) were significantly greater than both the traditional clearcut plot (− 40 ± 60 ng m{sup −2} d{sup −1}) and the un-harvested reference plot (− 180 ± 115 ng m{sup −2} d{sup −1}) during July. This difference was likely a result of enhanced Hg{sup 2+} photoreduction due to canopy removal and less shading from downed woody debris in the biomass harvested plot. Gaseous Hg emissions from more recently deposited Hg, as presumably representative of isotope tracer measurements, were not significantly influenced by harvesting. Most of the Hg tracer applied to the forest floor became sequestered within the ground vegetation and debris, leaf litter, and soil. We observed a dramatic lessening of tracer Hg emissions to near detection levels within 6 months. As post-clearcutting residues are increasingly used as a fuel or fiber resource, our observations suggest that gaseous Hg emissions from forest

  17. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought resp

  18. Evolution of soil, ecosystem, and critical zone research at the USDA FS Calhoun Experimental Forest

    Science.gov (United States)

    Daniel deB. Richter; Allan R. Bacon; Sharon A. Billings; Dan Binkley; Marilyn Buford; Mac Callaham; Amy E. Curry; Ryan L. Fimmen; A. Stuart Grandy; Paul R. Heine; Michael Hofmockel; Jason A. Jackson; Elisabeth LeMaster; Jianwei Li; Daniel Markewitz; Megan L. Mobley; Mary W. Morrison; Michael S. Strickland; Thomas Waldrop; Carol G. Wells

    2015-01-01

    The US Department of Agriculture (USDA) Forest Service Calhoun Experimental Forest was organized in 1947 on the southern Piedmont to engage in research that today is called restoration ecology, to improve soils, forests, and watersheds in a region that had been severely degraded by nearly 150 years farming. Today, this 2,050-ha research forest is managed by the Sumter...

  19. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  20. CO2 efflux from different forest soils and impact factors in Dinghu Mountain, China

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cunyu; ZHOU Guoyi; ZHANG Deqiang; WANG Yinghong; LIU Shizhong

    2005-01-01

    CO2 fluxes from soils and related environmental factors were measured in three forest ecosystems of Dinghu Mountain using static chamber-gas chromatograph technique for one year. The seasonal pattern of CO2 flux, contribution of litter on total CO2 flux and the correlations of CO2 flux with soil temperature and soil water content were examined for each type of forest. The results were given as followings: (1) The seasonal patterns of CO2 flux from soil of the three types of forest were similar, with a higher CO2 flux in rainy season than in dry season. The comparative relations of mean annual CO2 fluxes between the three sites were expressed as:monsoon forest > mixed forest > pine forest. (2) CO2 fluxes from litter decomposition in monsoon forest, mixed forest and pine forest accounted for 24.43%, 41.75% and 29.23% of the corresponding total CO2 fluxes from forest floor, respectively. (3) Significant relationships were found between CO2 fluxes and soil temperatures at 5 cm depth for the three types of forest, which could be best described by exponential equations. The calculated Q10 values based on soil temperature at 5 cm depth ranged from 1.86 to 3.24. More significant relationships were found between CO2 fluxes and soil water content when the annual variation coefficients of soil moisture were higher.

  1. Soil organic carbon and biological fertility in a Mediterranean forest area (Italy)

    Science.gov (United States)

    Francaviglia, Rosa; Benedetti, Anna

    2015-04-01

    The study was performed at Castelporziano Estate, a natural ecosystem with high environmental value, and not concerned with any direct sources of pollution. However, it is situated near the city of Rome, some industrial plants, the international airport of Fiumicino, and some highways that can represent an external source of pollutants. Castelporziano lies in Central Italy at the western outskirts of Rome, about 20 km from the city centre and in front of the Tyrrhenian Sea. Soil morphology is mainly plain (30 m mean elevation) with sandy materials of alluvial nature, and only the inner part is formed of volcanic and alluvial materials with a slight elevation above the sea level (85 m). The total area is about 6000 ha, the climate is Mediterranean, total rainfall is 700 mm, and mean temperatures range from 4 ° C in winter and 30 ° C in summer. The vegetation is typically Mediterranean, mainly oaks, mixed broadleaf groves, and Mediterranean maquis along the seacoast. Areas with reforestation of pines, as well as corkwoods, pastures, and small agricultural fields are also present. Soils were sampled at five different sites: QI, forest of Quercus ilex L.; MM, Mediterranean maquis; PP, Pinus pinea L. reforestation (60 years old); MF, mixed hygrophilous back-dune forest; AR, arable land. Five soil samples from each site were collected (0-20 cm of depth), about 2 m far from each other. Soil organic carbon (SOC), total N (Ntot), microbial biomass carbon (Cmic), basal and cumulative respiration (Cbas and Ccum), the metabolic quotient (qCO2), and the mineralisation quotient (qM) were determined. The index of biological fertility (IBF), a comprehensive indicator considering SOM, Cbas, Ccum, Cmic, qCO2 and qM was also calculated for the different land uses. Five intervals of values have been set for each parameter, and a score increasing from 1 to 5 has been assigned to each interval; the algebraic sum of the score for each parameter gives the classes of biological fertility.

  2. Pinus sylvestris var. mongolica Litv. Forest and Natural Regeneration in Sandy Land%沙地樟子松林与天然更新问题探讨

    Institute of Scientific and Technical Information of China (English)

    闫德仁; 牟宁; 张健; 张秀华

    2011-01-01

    呼伦贝尔沙地是我国重要的樟子松林种源地。从1955年开始在其他地区进行引种造林并获得成功,但是多数引种地的樟子松人工林天然更新却不能正常进行。本文结合资料论述了沙地樟子松天然林起源与分布和自然更新特点,并分析探讨了引种地沙地樟子松人工林自然更新的障碍、影响因素以及冬季降雪影响更新等可能的关键因子等问题。%Hulunbeier Sandy Land is an important seed source area of Pinus sylvestris var. mongolica Litv. in our country. Since 1955, the introduction and afforestation of Pinus sylvestris var. mongolica Litv. have been begun and succeeded in other districts, but the Pinus sylvestris var. mongolica Litv. plantation couldn' t regenerate naturally in many introduction districts. Combined with the relative materials, the origin, distribution and the characters of nat- ural regeneration of Pinus sylvestris var. mongolica Litv. natural forest have been discussed, and the factors influen- cing the natural regeneration of Pinus sylvestris var. mongolica Litv. plantation have been analyzed.

  3. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany.

    Science.gov (United States)

    Bonten, Luc T C; Groenenberg, Jan E; Meesenburg, Henning; de Vries, Wim

    2011-10-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well.

  4. Assessing relationships between forest structure and soil erosion in mountainous forest using a Cesium-137 tracer technique

    Science.gov (United States)

    Choi, Kwanghun; Reineking, Björn

    2016-04-01

    The fallout radionuclides (FRNs) particularly Cesium-137 are known as a quantitatively reliable means of estimating sediment redistribution rates within agricultural landscapes and forested area. However, fewer studies have done using FRNs in forested areas even though understanding soil redistribution patterns in mountainous forest areas is one of the important issues for forest management. The objective of this study is to figure out key forest structures affecting soil redistribution rate. In this study, we estimated soil loss and gain rate at 50 points with various forest types and topography in steep mountainous forest area in the Experimental Forest of Kangwon National University in Kangwon Province, South Korea by the Cesium-137 tracing technique. The results show the factors related to the topography such as slope and water accumulation have little effect on soil redistribution rate. The shrub and small tree layer affect more on soil redistribution rate. Additionally, the data shows relatively higher erosion rate in Korean Pine tree plantation area (Pinus koraiensis Sieb. et Zucc.) than semi-natural deciduous and Quercus forests where shrubs and small trees are more prevalent.

  5. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine(Pinus nigra Ar. ssp. salzmannii) Forest.

    Science.gov (United States)

    Lucas-Borja, M E; Hedo, J; Cerdá, A; Candel-Pérez, D; Viñegla, B

    2016-08-15

    This study aimed to investigate the effects that stand age and forest structure have on microbiological soil properties, enzymatic activities and nutrient content. Thirty forest compartments were randomly selected at the Palancares y Agregados managed forest area (Spain), supporting forest stands of five ages; from 100 to 80years old to compartments with trees that were 19-1years old. Forest area ranging from 80 to 120years old and without forest intervention was selected as the control. We measured different soil enzymatic activities, soil respiration and nutrient content (P, K, Na, Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb and Ca) in the top cm of 10 mineral soils in each compartment. Results showed that the lowest forest stand age and the forest structure created by management presented lower values of organic matter, soil moisture, water holding capacity and litterfall and higher values of C/N ratio in comparison with the highest forest stand age and the related forest structure, which generated differences in soil respiration and soil enzyme activities. The forest structure created by no forest management (control plot) presented the highest enzymatic activities, soil respiration, NH4(+) and NO3(-). Results did not show a clear trend in nutrient content comparing all the experimental areas. Finally, the multivariate PCA analysis clearly clustered three differentiated groups: Control plot; from 100 to 40years old and from 39 to 1year old. Our results suggest that the control plot has better soil quality and that extreme forest stand ages (100-80 and 19-1years old) and the associated forest structure generates differences in soil parameters but not in soil nutrient content. Copyright © 2016 Elsevier B.V. All rights reserved.