WorldWideScience

Sample records for sandwich panels loaded

  1. Precast concrete sandwich panels subjected to impact loading

    Science.gov (United States)

    Runge, Matthew W.

    Precast concrete sandwich panels are a relatively new product in the construction industry. The design of these panels incorporates properties that allow for great resilience against temperature fluctuation as well as the very rapid and precise construction of facilities. The concrete sandwich panels investigated in this study represent the second generation of an ongoing research and development project. This second generation of panels have been engineered to construct midsized commercial buildings up to three stories in height as well as residential dwellings. The panels consist of a double-tee structural wythe, a foam core and a fascia wythe, joined by shear connectors. Structures constructed from these panels may be subjected to extreme loading including the effects of seismic and blast loading in addition to wind. The aim of this work was to investigate the behaviour of this particular sandwich panel when subjected to structural impact events. The experimental program consisted of fourteen concrete sandwich panels, five of which were considered full-sized specimens (2700 mm X 1200mm X 270 mm) and nine half-sized specimens (2700mm X 600mm X 270 mm) The panels were subjected to impact loads from a pendulum impact hammer where the total energy applied to the panels was varied by changing the mass of the hammer. The applied loads, displacements, accelerations, and strains at the mid-span of the panel as well as the reaction point forces were monitored during the impact. The behaviour of the panels was determined primarily from the experimental results. The applied loads at low energy levels that caused little to no residual deflection as well as the applied loads at high energy levels that represent catastrophic events and thus caused immediate failure were determined from an impact on the structural and the fascia wythes. Applied loads at intermediate energy levels representing extreme events were also used to determine whether or not the panels could withstand

  2. Optimization of composite sandwich cover panels subjected to compressive loadings

    Science.gov (United States)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  3. Theoretical prediction on corrugated sandwich panels under bending loads

    Science.gov (United States)

    Shu, Chengfu; Hou, Shujuan

    2018-05-01

    In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.

  4. Fracture Behaviours in Compression-loaded Triangular Corrugated Core Sandwich Panels

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2016-01-01

    Full Text Available The failure modes occurring in sandwich panels based on the corrugations of aluminium alloy, carbon fibre-reinforced plastic (CFRP and glass fibre-reinforced plastic (GFRP are analysed in this work. The fracture behaviour of these sandwich panels under compressive stresses is determined through a series of uniform lateral compression performed on samples with different cell wall thicknesses. Compression test on the corrugated-core sandwich panels were conducted using an Instron series 4505 testing machine. The post-failure examinations of the corrugated-core in different cell wall thickness were conducted using optical microscope. Load-displacement graphs of aluminium alloy, GFRP and CFRP specimens were plotted to show progressive damage development with five unit cells. Four modes of failure were described in the results: buckling, hinges, delamination and debonding. Each of these failure modes may dominate under different cell wall thickness or loading condition, and they may act in combination. The results indicate that thicker composites corrugated-core panels tend can recover more stress and retain more stiffness. This analysis provides a valuable insight into the mechanical behaviour of corrugated-core sandwich panels for use in lightweight engineering applications.

  5. Analysis and Behaviour of Sandwich Panels with Profiled Metal Facings under Transverse Load

    Directory of Open Access Journals (Sweden)

    M. Budescu

    2004-01-01

    Full Text Available Sandwich panels with thin steel facings and polyurethane core combine the load-carrying capacity of metal facings and protection functions with core properties. The core separates the two facings and keeps them in a stable condition, transmits shear between external layers, provides most of the shear rigidity and occasionally makes of useful contribution to the bending stiffness of the sandwich construction as a whole [1]. An experimental program on sandwich panels has been organized to prove that the mechanical properties of core and interface satisfy the load-carrying requirements for structural sandwich panels. The analysis of sandwich panels with deep profiles facings for cladding elements, respectively the roof constructions, has been carried out according to the European design norms [1], [5].

  6. Residual Strength of In-plane Loaded Debonded Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Simonsen, Bo Cerup

    2005-01-01

    This paper presents a FEM based numerical model for prediction of residual strength of damaged sandwich panels. As demonstrated, the model can predict the maximum load carrying capacity of real-life panels with debond damages, where the failure is governed by face-sheet buckling followed by debond...

  7. Interfacial Crack Arrest in Sandwich Panels with Embedded Crack Stoppers Subjected to Fatigue Loading

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J. H.; Berggreen, Christian

    2017-01-01

    A novel crack arresting device has been implemented in sandwich panels and tested using a special rig to apply out-of-plane loading on the sandwich panel face-sheets. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect o...

  8. Experimental and Theoretical Deflections of Hybrid Composite Sandwich Panel under Four-point Bending Load

    Directory of Open Access Journals (Sweden)

    Jauhar Fajrin

    2017-03-01

    Full Text Available This paper presents a comparison of theoretical and experimental deflection of a hybrid sandwich panel under four-point bending load. The paper initially presents few basic equations developed under three-point load, followed by development of model under four-point bending load and a comparative analysis between theoretical and experimental results. It was found that the proposed model for predicting the deflection of hybrid sandwich panels provided fair agreement with the experimental values. Most of the sandwich panels showed theoretical deflection values higher than the experimental values, which is desirable in the design. It was also noticed that the introduction of intermediate layer does not contribute much to reduce the deflection of sandwich panel as the main contributor for the total deflection was the shear deformation of the core that mostly determined by the geometric of the samples and the thickness of the core.

  9. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    Science.gov (United States)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  10. Failure of uniformly compression loaded debond damaged sandwich panels — An experimental and numerical study

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Quispitupa, Amilcar; Berggreen, Christian

    2012-01-01

    This paper deals with the failure of compression-loaded sandwich panels with an implanted circular face/core debond. Uniform compression tests were conducted on intact sandwich panels with three different types of core material (H130, H250 and PMI) and on similar panels with circular face...

  11. Energy absorption capabilities of composite sandwich panels under blast loads

    Science.gov (United States)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  12. Non-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Asghar Vatani Oskouei

    2015-12-01

    Full Text Available In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geometric non-linearities are also considered in the numerical simulation. The results obtained are compared with available experimental data to verify the developed FE model. Modeling techniques are described in detail. According to the results, sandwich panels with hollow I-core allowed more plastic deformation and energy dissipation and less midpoint displacement than conventional I-core sandwich panels and also equivalent solid plate with the same weight and material.

  13. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  14. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    Science.gov (United States)

    Yang, Shu; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606

  15. Dynamic response and optimal design of curved metallic sandwich panels under blast loading.

    Science.gov (United States)

    Qi, Chang; Yang, Shu; Yang, Li-Jun; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a "soft" outer face and a "hard" inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  16. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    Directory of Open Access Journals (Sweden)

    Chang Qi

    2014-01-01

    Full Text Available It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  17. Characterization of sandwich panels for indentation and impact

    International Nuclear Information System (INIS)

    Shazly, M; Salem, S; Bahei-El-Din, Y

    2013-01-01

    The integrity of sandwich structures which are susceptible to impact may deteriorate significantly due to collapse of the core material and delamination of the face sheets. The integration of a thin polyurethane interlayer between the composite face sheet and foam core is known to protect the core material and substantially improve the resistance to impact. The objective of the present work is to characterize the response of sandwich panels, as well as that of the constituents to impact. In particular, the response of polyurethane and foam samples under a range of quasi-static and dynamic loading rates is determined experimentally. Furthermore, the response of sandwich panels to quasi-static indentation and low velocity impact is examined to quantify the extent of damage and how it is affected by the integration of polyurethane interlayers in their construction. This information is useful in the modelling of high velocity impact of sandwich panels; an effort which is currently underway. The results illustrate the benefit of using polyurethane interlayers within the construction of sandwich panels in enhancing their performance under quasi-static indentation and impact loads

  18. Mechanical evaluation with fe analysis of sandwich panels for wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Yasaswi, M.; Naveen, P.N.E.; Prasad, R.V. [GIET. Dept. of Mechanical Engineering, Rajahmundry (India)

    2012-07-01

    Sandwich panels are notable for their structural efficiency and are used as load bearing components in various branches of engineering, especially in aerospace and marine industries. The objective of the present work is to perform computer-aided analysis on sandwich panels. The analysis of sandwich panel with truss core are compared with other four types of sandwich panel with continuous corrugated core, top hat core, zed core and channel core. The basic reason to use sandwich structure is to save weight, however smooth skins and excellent fatigue resistance are also attributes of a sandwich structure. A sandwich is comprised of two layered composite materials formed by bonding two or more thin facings or face sheets to relatively thick core materials. In this type of construction the facings resist nearly all of the in-plane loads and out-of-plane bending moments. The thin facings provide nearly all of the bending stiffness because they are generally of a much higher modulus material is located at a greatest distance from the neutral axis of the component. The basic concept of sandwich panel is that the facings carry the bending loads and the core carries the shear loads. The main function of the core material is to distribute local loads and stresses over large areas. From all this analysis it is concluded that the truss core Sandwich panels can be used in wind turbine blade design. (Author)

  19. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    Science.gov (United States)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  20. Behaviour of partially composite precast concrete sandwich panels under flexural and axial loads

    Science.gov (United States)

    Tomlinson, Douglas George

    Precast concrete sandwich panels are commonly used on building exteriors. They are typically composed of two concrete wythes that surround rigid insulation. They are advantageous as they provide both structural and thermal resistance. The structural response of sandwich panels is heavily influenced by shear connectors that link the wythes together. This thesis presents a study on partially composite non-prestressed precast concrete wall panels. Nine flexure tests were conducted on a wall design incorporating 'floating' concrete studs and Glass Fibre Reinforced Polymer (GFRP) connectors. The studs encapsulate and stiffen the connectors, reducing shear deformations. Ultimate loads increased from 58 to 80% that of a composite section as the connectors' reinforcement ratio increased from 2.6 to 9.8%. This design was optimized by reinforcing the studs and integrating them with the structural wythe; new connectors composed of angled steel or Basalt-FRP (BFRP) were used. The load-slip response of the new connector design was studied through 38 double shear push-through tests using various connector diameters and insertion angles. Larger connectors were stronger but more likely to pull out. Seven flexure tests were conducted on the new wall design reinforced with different combinations of steel and BFRP connectors and reinforcement. Composite action varied from 50 to 90% depending on connector and reinforcement material. Following this study, the axial-bending interaction curves were established for the new wall design using both BFRP and steel connectors and reinforcement. Eight panels were axially loaded to predesignated loads then loaded in flexure to failure. A technique is presented to experimentally determine the effective centroid of partially composite sections. Beyond the tension and compression-controlled failure regions of the interaction curve, a third region was observed in between, governed by connector failure. Theoretical models were developed for the bond

  1. Behavior of sandwich panels in a fire

    Science.gov (United States)

    Chelekova, Eugenia

    2018-03-01

    For the last decades there emerged a vast number of buildings and structures erected with the use of sandwich panels. The field of application for this construction material is manifold, especially in the construction of fire and explosion hazardous buildings. In advanced evacu-ation time calculation methods the coefficient of heat losses is defined with dire regard to fire load features, but without account to thermal and physical characteristics of building envelopes, or, to be exact, it is defined for brick and concrete walls with gross heat capacity. That is why the application of the heat loss coefficient expression obtained for buildings of sandwich panels is impossible because of different heat capacity of these panels from the heat capacities of brick and concrete building envelopes. The article conducts an analysis and calculation of the heal loss coefficient for buildings and structures of three layer sandwich panels as building envelopes.

  2. Design Considerations for Thermally Insulating Structural Sandwich Panels for Hypersonic Vehicles

    Science.gov (United States)

    Blosser, Max L.

    2016-01-01

    Simplified thermal/structural sizing equations were derived for the in-plane loading of a thermally insulating structural sandwich panel. Equations were developed for the strain in the inner and outer face sheets of a sandwich subjected to uniaxial mechanical loads and differences in face sheet temperatures. Simple equations describing situations with no viable solution were developed. Key design parameters, material properties, and design principles are identified. A numerical example illustrates using the equations for a preliminary feasibility assessment of various material combinations and an initial sizing for minimum mass of a sandwich panel.

  3. Damage assessment of compression loaded debond damaged sandwich panels

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian; Quispitupa, Amilcar

    2010-01-01

    with an implanted circular face/core debond. Compression tests were conducted on intact sandwich panels and panels with an implanted circular face/core debond with three different types of foam core materials (PVC H130, PVC H250 and PMI 51-IG). The strains and out-of-plane displacements of the debonded region were...

  4. Harmonic Differential Quadrature Analysis of Soft-Core Sandwich Panels under Locally Distributed Loads

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    2016-11-01

    Full Text Available Sandwich structures are widely used in practice and thus various engineering theories adopting simplifying assumptions are available. However, most engineering theories of beams, plates and shells cannot recover all stresses accurately through their constitutive equations. Therefore, the soft-core is directly modeled by two-dimensional (2D elasticity theory without any pre-assumption on the displacement field. The top and bottom faces act like the elastic supports on the top and bottom edges of the core. The differential equations of the 2D core are then solved by the harmonic differential quadrature method (HDQM. To circumvent the difficulties in dealing with the locally distributed load by point discrete methods such as the HDQM, a general and rigorous way is proposed to treat the locally distributed load. Detailed formulations are provided. The static behavior of sandwich panels under different locally distributed loads is investigated. For verification, results are compared with data obtained by ABAQUS with very fine meshes. A high degree of accuracy on both displacement and stress has been observed.

  5. Evaluation of Thin Kevlar-Epoxy Fabric Panels Subjected to Shear Loading

    Science.gov (United States)

    Baker, Donald J.

    1996-01-01

    The results of an analytical and experimental investigation of 4-ply Kevlar-49-epoxy panels loaded by in-plane shear are presented. Approximately one-half of the panels are thin-core sandwich panels and the other panels are solid-laminate panels. Selected panels were impacted with an aluminum sphere at a velocity of either 150 or 220 ft/sec. The strength of panels impacted at 150 ft/sec was not reduced when compared to the strength of the undamaged panels, but the strength of panels impacted at 220 ft/sec was reduced by 27 to 40 percent. Results are presented for panels that were cyclically loaded from a load less than the buckling load to a load in the postbuckling load range. The thin-core sandwich panels had a lower fatigue life than the solid panels. The residual strength of the solid and sandwich panels cycled more than one million cycles exceeded the baseline undamaged panel strengths. The effect of hysteresis in the response of the sandwich panels is not significant. Results of a nonlinear finite element analysis conducted for each panel design are presented.

  6. Behavior of composite sandwich panels with several core designs at different impact velocities

    Science.gov (United States)

    Jiga, Gabriel; Stamin, Ştefan; Dinu, Gabriela

    2018-02-01

    A sandwich composite represents a special class of composite materials that is manufactured by bonding two thin but stiff faces to a low density and low strength but thick core. The distance between the skins given by the core increases the flexural modulus of the panel with a low mass increase, producing an efficient structure able to resist at flexural and buckling loads. The strength of sandwich panels depends on the size of the panel, skins material and number or density of the cells within it. Sandwich composites are used widely in several industries, such as aerospace, automotive, medical and leisure industries. The behavior of composite sandwich panels with different core designs under different impact velocities are analyzed in this paper by numerical simulations performed on sandwich panels. The modeling was done in ANSYS and the analysis was performed through LS-DYNA.

  7. Sound transmission loss of composite sandwich panels

    Science.gov (United States)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the

  8. Axial Compression Behavior of a New Type of Prefabricated Concrete Sandwich Wall Panel

    Science.gov (United States)

    Qun, Xie; Shuai, Wang; Chun, Liu

    2018-03-01

    A novel type of prefabricated concrete sandwich wall panel which could be used as a load-bearing structural element in buildings has been presented in this paper. Compared with the traditional sandwich panels, there are several typical characteristics for this wall system, including core columns confined by spiral stirrup along the cross-section of panel with 600mm spacing, precast foamed concrete block between two structural layers as internal insulation part, and a three-dimensional (3D) steel wire skeleton in each layer which is composed of two vertical steel wire meshes connected by horizontally short steel bar. All steel segments in the panel are automatically prefabricated in factory and then are assembled to form steel system in site. In order to investigate the structural behavior of this wall panel, two full-scale panels have been experimentally studied under axial compressive load. The test results show that the wall panel presents good load-bearing capacity and integral stiffness without out-of-plane flexural failure. Compared to the panel with planar steel wire mesh in concrete layer, the panel with 3D steel wire skeleton presents higher strength and better rigidity even in the condition of same steel ratio in panels which verifies that the 3D steel skeleton could greatly enhance the structural behavior of sandwich panel.

  9. Sound-proof Sandwich Panel Design via Metamaterial Concept

    Science.gov (United States)

    Sui, Ni

    Sandwich panels consisting of hollow core cells and two face-sheets bonded on both sides have been widely used as lightweight and strong structures in practical engineering applications, but with poor acoustic performance especially at low frequency regime. Basic sound-proof methods for the sandwich panel design are spontaneously categorized as sound insulation and sound absorption. Motivated by metamaterial concept, this dissertation presents two sandwich panel designs without sacrificing weight or size penalty: A lightweight yet sound-proof honeycomb acoustic metamateiral can be used as core material for honeycomb sandwich panels to block sound and break the mass law to realize minimum sound transmission; the other sandwich panel design is based on coupled Helmholtz resonators and can achieve perfect sound absorption without sound reflection. Based on the honeycomb sandwich panel, the mechanical properties of the honeycomb core structure were studied first. By incorporating a thin membrane on top of each honeycomb core, the traditional honeycomb core turns into honeycomb acoustic metamaterial. The basic theory for such kind of membrane-type acoustic metamaterial is demonstrated by a lumped model with infinite periodic oscillator system, and the negative dynamic effective mass density for clamped membrane is analyzed under the membrane resonance condition. Evanescent wave mode caused by negative dynamic effective mass density and impedance methods are utilized to interpret the physical phenomenon of honeycomb acoustic metamaterials at resonance. The honeycomb metamaterials can extraordinarily improve low-frequency sound transmission loss below the first resonant frequency of the membrane. The property of the membrane, the tension of the membrane and the numbers of attached membranes can impact the sound transmission loss, which are observed by numerical simulations and validated by experiments. The sandwich panel which incorporates the honeycomb metamateiral as

  10. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    International Nuclear Information System (INIS)

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors

  11. A new type of sandwich panel with periodic cellular metal cores and its mechanical performances

    International Nuclear Information System (INIS)

    Lim, Chae-Hong; Jeon, Insu; Kang, Ki-Ju

    2009-01-01

    Many studies have been performed on the mechanical properties and optimization of truss PCMs (periodic cellular metals), but those on the fabrication process, which is one of key factors determining the survivability of PCMs in the market, have been relatively limited. This study introduces a new idea on the fabrication of quasi Kagome truss cored sandwich panels, which is based on the expanded-metal process. And the mechanical behavior of the sandwich panels is to be evaluated. The mechanical strengths and failure mechanisms under compression and bending load are estimated based on elementary mechanics of materials, and the optimal design is derived. Its validity is proved by comparison with the results of experiments. The results showed that the new idea is promising with respect to all three requirements, i.e., the morphology, fabrication cost, and raw materials. The simple mechanical analysis was sufficiently effective and accurate for estimating the performance and failure mode of the sandwich panels. In the experiments, sandwich panel specimens of three different designs were compared in their bending behaviors to demonstrate sensitivity of geometric parameters. Namely, although all the designs had little difference in their load capacity-per-weight, the failure mechanisms and the behaviors after a peak load were totally different.

  12. Localized Effects in the Nonlinear Behavior of Sandwich Panels with a Transversely Flexible Core

    DEFF Research Database (Denmark)

    Frostig, Y.; Thomsen, Ole Thybo

    2005-01-01

    This paper presents the results of an investigation of the role of localized effects within the geometrically nonlinear domain on structural sandwich panels with a "compliant" core. Special emphasis is focused on the nonlinear response near concentrated loads and stiffened core regions. The adopted...... nonlinear analysis approach incorporates the effects of the vertical flexibility of the core, and it is based on the approach of the High-order Sandwich Panel Theory (HSAPT). The results demonstrate that the effects of localized loads, when taken into the geometrically nonlinear domain, change the response...... of the panel from a strength problem controlled by stress constraints into a stability problem with unstable limit point behavior when force-controlled loads are applied. The stability problem emerge as the nonlinear response develops with the formation of a small number of buckling waves in the compressed...

  13. Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Soon-Ching; Low, Kaw-Sai [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Wilayah Persekutuan (Malaysia)

    2010-12-15

    Investigation on the thermal conductivity of newspaper sandwiched aerated lightweight concrete (ALC) panels is the main purpose of this study. Various densities of ALC panels ranging from 1700, 1400 and 1100 kg/m{sup 3} with three different aerial intensities of newspaper sandwiched were produced. Investigation was limited to the effect of aerial intensity of newspaper sandwiched and the effect of density of ALC on thermal conductivity. It is found that the thermal conductivity of newspaper sandwiched ALC panels reduced remarkably compared to control ALC panels. The reduction was recorded at 18.0%, 21.8% and 20.7% correspond to densities of 1700, 1400 and 1100 kg/m{sup 3} with just a mere 0.05 g/cm{sup 2} aerial intensity of newspaper sandwiched. Newspaper sandwiched has a significant impact on the performance of thermal conductivity of ALC panels based on regression analysis. (author)

  14. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure loa...

  15. Finite Element Analysis of the SciFi-Nomex-Sandwich Panels

    CERN Document Server

    Schultz von Dratzig, Arndt

    2015-01-01

    A finite element analysis of the SciFi-Nomex-sandwich panels has been carried out in order to investigate their thermo-mechanical properties. This does not include the cooling of the silicon photomultipliers but is restricted to the panels themselves. Two kinds of panels have been considered: panels with 40 mm thickness and panels with 50 mm thickness. Both versions are equipped with mats of six layers of scintillating fibers. The analyses were carried out for a series of mechanical and thermal loads which might occur during the production or installation of the detector. For both versions the stiffnesses prove to be sufficient and no critical stresses or strains are found.

  16. Cost optimization of load carrying thin-walled precast high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hansen, Sanne; Hulin, Thomas

    2015-01-01

    and HPCSP’s geometrical parameters as well as on material cost function in the HPCSP design. Cost functions are presented for High Performance Concrete (HPC), insulation layer, reinforcement and include labour-related costs. The present study reports the economic data corresponding to specific manufacturing......The paper describes a procedure to find the structurally and thermally efficient design of load-carrying thin-walled precast High Performance Concrete Sandwich Panels (HPCSP) with an optimal economical solution. A systematic optimization approach is based on the selection of material’s performances....... The solution of the optimization problem is performed in the computer package software Matlab® with SQPlab package and integrates the processes of HPCSP design, quantity take-off and cost estimation. The proposed optimization process outcomes in complex HPCSP design proposals to achieve minimum cost of HPCSP....

  17. Design and commission of an experimental test rig to apply a full-scale pressure load on composite sandwich panels representative of an aircraft secondary structure

    International Nuclear Information System (INIS)

    Crump, D A; Dulieu-Barton, J M; Savage, J

    2010-01-01

    This paper describes the design of a test rig, which is used to apply a representative pressure load to a full-scale composite sandwich secondary aircraft structure. A generic panel was designed with features to represent those in the composite sandwich secondary aircraft structure. To provide full-field strain data from the panels, the test rig was designed for use with optical measurement techniques such as thermoelastic stress analysis (TSA) and digital image correlation (DIC). TSA requires a cyclic load to be applied to a structure for the measurement of the strain state; therefore, the test rig has been designed to be mounted on a standard servo-hydraulic test machine. As both TSA and DIC require an uninterrupted view of the surface of the test panel, an important consideration in the design is facilitating the optical access for the two techniques. To aid the test rig design a finite element (FE) model was produced. The model provides information on the deflections that must be accommodated by the test rig, and ensures that the stress and strain levels developed in the panel when loaded in the test rig would be sufficient for measurement using TSA and DIC. Finally, initial tests using the test rig have shown it to be capable of achieving the required pressure and maintaining a cyclic load. It was also demonstrated that both TSA and DIC data can be collected from the panels under load, which are used to validate the stress and deflection derived from the FE model

  18. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  19. Experimental investigations of sandwich panels using high performance concrete thin plates exposed to fire

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2015-01-01

    Structural sandwich panels using thin high performance concrete (HPC) plates offer a possibility to address the modern environmental challenges faced by the construction industry. Fire resistance is a major necessity in structures using HPC. This paper presents experimental studies at elevated...... temperatures for panels with 30 mm thick plates stiffened by structural ribs, thick insulation layers, and steel shear connecting systems. Parametric variation assessing the role of each component of the sandwich structure was performed on unloaded specimens of reduced size. Full size walls were tested...... with load. Tests were performed in standard furnaces, following the conditions of REI certification tests. Unloaded specimens successfully passed tests. Loaded specimens met the R and I requirements, failing E due to sustained flaming of the insulation. They exhibited multiple cracking of their exposed...

  20. Adhesion aspects of polyurethane foam sandwich panels.

    OpenAIRE

    Ng, Simon L.

    2016-01-01

    Sandwich panels, polyurethane foam sandwiched between two sheets of steel, form the walls and roofs in the construction of buildings. ArcelorMittal is a manufacturer of the steel as well as these finished panels. For this project they combined with a supplier of the polyurethane foams, Huntsman Polyurethanes, to joint-fund a research project investigating the fundamental mechanisms of adhesion, as well as the causes of failures in the product which manifests primarily in two different ways...

  1. Multi-objective optimal design of sandwich panels using a genetic algorithm

    Science.gov (United States)

    Xu, Xiaomei; Jiang, Yiping; Pueh Lee, Heow

    2017-10-01

    In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.

  2. 3D Energy Absorption Diagram Construction of Paper Honeycomb Sandwich Panel

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    2018-01-01

    Full Text Available Paper honeycomb sandwich panel is an environment-sensitive material. Its cushioning property is closely related to its structural factors, the temperature and humidity, random shocks, and vibration events in the logistics environment. In order to visually characterize the cushioning property of paper honeycomb sandwich panel in different logistics conditions, the energy absorption equation of per unit volume of paper honeycomb sandwich panel was constructed by piecewise function. The three-dimensional (3D energy absorption diagram of paper honeycomb sandwich panel was constructed by connecting the inflexion of energy absorption curve. It takes into account the temperature, humidity, strain rate, and characteristics of the honeycomb structure. On the one hand, this diagram breaks through the limitation of the static compression curve of paper honeycomb sandwich panel, which depends on the test specimen and is applicable only to the standard condition. On the other hand, it breaks through the limitation of the conventional 2D energy absorption diagram which has less information. Elastic modulus was used to normalize the plateau stress and energy absorption per unit volume. This makes the 3D energy absorption diagram universal for different material sandwich panels. It provides a new theoretical basis for packaging optimized design.

  3. A More Sustainable Way for Producing RC Sandwich Panels On-Site and in Developing Countries

    Directory of Open Access Journals (Sweden)

    Lorenzo Graziani

    2017-03-01

    Full Text Available The purpose of this work is to assess if traditionally used welded connectors for joining the two skins of reinforced concrete (RC sandwich panels, used as structural walls and horizontal structural elements, can be substituted with bent ones. In this way, the scope of the effort is to reduce drastically the energy required during manufacturing, thus having a much more sustainable building product. Wire mesh on site production, in fact, requires a large amount of energy for the welding process, as stated by several Environmental Product Declaration (EPD. In addition, the production of sandwich panels with bent connectors requires a low level of automation and no qualified labor allowing the diffusion in developing countries. The procedures used to execute the work were both experimental and numerical. Structural performances were examined by testing full-scale sandwich panels under (axial and eccentric compression and flexural loads. Additionally, a Finite Element (FE study was developed to investigate and to optimize the dimension of welded mesh and the number of connectors. The major findings show that it is possible to substitute welded connectors with bent ones without compromising the structural performance of the tested RC sandwich panels, thus having a more sustainable way for producing these last ones.

  4. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  5. Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels

    Science.gov (United States)

    Mathias, Adam Dustin

    The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.

  6. Numerical modeling of sandwich panel response to ballistic loading - energy balance for varying impactor geometries

    DEFF Research Database (Denmark)

    Kepler, Jørgen Asbøl; Hansen, Michael Rygaard

    2007-01-01

    thickness but significantly smaller than panel length dimensions. Experimental data for the total loss in impactor kinetic energy and momentum and estimated damage energy are described. For a selection of impactor tip shapes, the numerical model is used to evaluate different simplified force histories...... between the impactor and the panel during penetration. The force histories are selected from a primary criterion of conservation of linear momentum in the impactor-panel system, and evaluated according to agreement with the total measured energy balance.......A sandwich panel is described by an axisymmetric lumped mass- spring model. The panel compliance is simplified, considering only core shear deformation uniformly distributed across the core thickness. Transverse penetrating impact is modeled for impactors of diameters comparable to the panel...

  7. Effect of microencapsulated phase change material in sandwich panels

    Energy Technology Data Exchange (ETDEWEB)

    Castellon, Cecilia; Medrano, Marc; Roca, Joan; Cabeza, Luisa F. [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Navarro, Maria E.; Fernandez, Ana I. [Departamento de Ciencias de los Materiales e Ingenieria Metalurgica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Lazaro, Ana; Zalba, Belen [Instituto de Investigacion en Ingenieria de Aragon, I3A, Grupo de Ingenieria Termica y Sistemas Energeticos (GITSE), Dpto. Ingenieria Mecanica, Area de Maquinas y Motores Termicos, Universidad de Zaragoza, Campus Politecnico Rio Ebro, Edificio ' ' Agustin de Betancourt,' ' Maria de Luna s/n, 50018 Zaragoza (Spain)

    2010-10-15

    Sandwich panels are a good option as building materials, as they offer excellent characteristics in a modular system. The goal of this study was to demonstrate the feasibility of using the microencapsulated PCM (Micronal BASF) in sandwich panels to increase their thermal inertia and to reduce the energy demand of the final buildings. In this paper, to manufacture the sandwich panel with microencapsulated PCM three different methods were tested. In case 1, the PCM was added mixing the microencapsulated PCM with one of the components of the polyurethane. In the other two cases, the PCM was added either a step before (case 2) or a step after (case 3) to the addition of the polyurethane to the metal sheets. The results show that in case 1 the effect of PCM was overlapped by a possible increase in thermal conductivity, but an increase of thermal inertia was found in case 3. In case 2, different results were obtained due to the poor distribution of the PCM. Some samples showed the effect of the PCM (higher thermal inertia), and other samples results were similar to the conventional sandwich panel. In both cases (2 and 3), it is required to industrialize the process to improve the results. (author)

  8. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    Science.gov (United States)

    Nordendale, Nikolas A.; Goyal, Vinay K.; Lundgren, Eric C.; Patel, Dhruv N.; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth N.

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  9. Friction stir welding (FSW of aluminium foam sandwich panels

    Directory of Open Access Journals (Sweden)

    M. Bušić

    2016-07-01

    Full Text Available The article focuses on the influence of welding speed and tool tilt angle upon the mechanical properties at the friction stir welding of aluminium foam sandwich panels. Double side welding was used for producing butt welds of aluminium sandwich panels applying insertion of extruded aluminium profile. Such insertion provided lower pressure of the tool upon the aluminium panels, providing also sufficient volume of the material required for the weldment formation. Ultimate tensile strength and flexural strength for three-point bending test have been determined for samples taken from the welded joints. Results have confirmed anticipated effects of independent variables.

  10. An Approximate Solution to the Plastic Indentation of Circular Sandwich Panels

    Science.gov (United States)

    Xie, Z.

    2018-05-01

    The plastic indentation response of circular sandwich panels loaded by the flat end of a cylinder is investigated employing a velocity field model. Using the principles of virtual velocities and minimum work, an expression for the indenter load in relation to the indenter displacement and displacement field of the deformed face sheet is derived. The analytical solutions obtained are in good agreement with those found by simulations using the ABAQUS code. The radial tensile strain of the deformed face sheet and the ratio of energy absorption rate of the core to that of the face sheet are discussed.

  11. Study of the cracking of sandwich panels of plasterboard and rockwool

    Directory of Open Access Journals (Sweden)

    Alonso, J. A.

    2013-09-01

    Full Text Available This paper presents the study of plasterboard and rockwool sandwich panels cracking under flexural loading. These panels are usually used to perform interior partition walls and they frequently show cracking pathology due to excessive deflexion of the slabs. There are currently no reliable simulation models and experimental data for the study of this problem. This paper presents the results of an experimental campaign aimed to characterize the fracture behaviour of sandwich panels and their individual components. In addition, the paper presents a cohesive model with embedded crack to simulate the fracture behaviour of the panel. Finally we present the results of tests for mixed mode fracture (tensile / shear commercial panels and their behaviour is reproduced with the cohesive model proposed, yielding a good fit.Este artículo presenta el estudio de la rotura de paneles sándwich de yeso laminado y lana de roca bajo solicitaciones de flexo-tracción dentro de su plano. Estos paneles se emplean para conformar tabiques interiores de edificación y con frecuencia se fisuran por flechas excesivas en los forjados. Actualmente no hay modelos de cálculo fiables ni datos experimentales que permitan estudiar este problema. Este trabajo presenta los resultados de una campaña experimental encaminada a caracterizar el comportamiento en rotura de los paneles sándwich y de sus componentes individuales. Además, se presenta un modelo cohesivo con fisura embebida que permite simular el comportamiento en rotura del panel sándwich conjunto. Por último se presentan los resultados de los ensayos de fractura en modo mixto (tracción/cortante de paneles comerciales y se reproduce su comportamiento con el modelo cohesivo propuesto, obteniéndose un buen ajuste.

  12. Numerical Study on the Projectile Impact Resistance of Multi-Layer Sandwich Panels with Cellular Cores

    Directory of Open Access Journals (Sweden)

    Liming Chen

    Full Text Available Abstract The projectile impact resistance of sandwich panels with cellular cores with different layer numbers has been numerically investigated by perpendicular impact of rigid blunt projectile in ABAQUS/Explicit. These panels with corrugation, hexagonal honeycomb and pyramidal truss cores are impacted at velocities between 50 m/s and 202 m/s while the relative density ranges from 0.001 to 0.15 The effects of core configuration and layer number on projectile impact resistance of sandwich panels with cellular cores are studied. At low impact velocity, sandwich panels with cellular cores outperform the corresponding solid ones and non-montonicity between relative density and projectile resistance of sandwich panels is found and analyzed. Multiplying layer can reduce the maximum central deflection of back face sheet of the above three sandwich panels except pyramidal truss ones in high relative density. Hexagonal honeycomb sandwich panel is beneficial to increasing layer numbers in lowering the contact force and prolonging the interaction time. At high impact velocity, though corrugation and honeycomb sandwich panels are inferior to the equal-weighted solid panels, pyramidal truss ones with high relative density outperform the corresponding solid panels. Multiplying layer is not the desirable way to improve high-velocity projectile resistance.

  13. Development and evaluation of aerogel-filled BMI sandwich panels for thermal barrier applications

    Directory of Open Access Journals (Sweden)

    A. Dineshkumar

    2016-07-01

    Full Text Available This study details a fabrication methodology envisaged to manufacture Glass/BMI honeycomb core aerogel-filled sandwich panels. Silica aerogel granules are used as core fillers to provide thermal insulation properties with little weight increase. Experimental heat transfer studies are conducted on these panels to study the temperature distribution between their two surfaces. Numerical studies are also carried out to validate the results. Despite exhibiting good thermal shielding capabilities, the Glass/BMI sandwich panels are found to oxidise at 180 ºC if exposed directly to heat. In order to increase the temperature bearing capacity and the operating temperature range for these panels, a way of coating them from outside with high temperature spray paint was tried. With a silicone-based coating, the temperature sustainability of these sandwich panels is found to increase to 350 ºC. This proved the effectiveness of the formed manufacturing process, selected high temperature coating, the coating method as well as the envisaged sandwich panel concept.

  14. X-joints in composite sandwich panels

    NARCIS (Netherlands)

    Vredeveldt, A.W.; Janssen, G.Th.M.

    1998-01-01

    The small structural weight of fast large ships such as fast mono hulls or catamaran type of ships is of extreme importance to their success. One possible light weight structural solution is the sandwich panel with fibre reinforced laminates and a balsa, honeycomb or foam core. A severe obstacle for

  15. Optimal Fuzzy and Dynamics Design of Ecological Sandwich Panel Vessel Roofs

    Directory of Open Access Journals (Sweden)

    Heikki Martikka

    2011-01-01

    Full Text Available In this study the basic engineering principles, goals, and constraints are all combined with fuzzy methodology and applied to optimally design sandwich panel circular plate roofs for large vessels loaded statically and dynamically. These panels are made up of two stiff, strong veneer skins separated by vertical and peripheral stiffener plates. Advantages are high strength, lightweight, and sustainability. In the present approach, first the goals and constraints of the end user are identified and expressed as decision variables which are formulated using the engineering variables for materials, geometry, and function. Then same consistent fuzzy satisfaction functions are formed over the desired ranges to suit the customer's desires. The risk of extreme dynamic loadings exciting resonance is studied by natural frequency and mode analysis by FEM and analytical models. The results show the most critical locations and give guidelines for innovative remedies of the concept before detailed FEM analyses to finalize the design.

  16. A High-Order Theory for the Analysis of Circular Cylindrical Composite Sandwich Shells with Transversely Compliant Core Subjected to External Loads

    DEFF Research Database (Denmark)

    Rahmani, Omid; Khalili, S.M.R.; Thomsen, Ole Thybo

    2012-01-01

    A new model based on the high order sandwich panel theory is proposed to study the effect of external loads on the free vibration of circular cylindrical composite sandwich shells with transversely compliant core, including also the calculation of the buckling loads. In the present model......, which is based on a 3D elasticity solution for the core material, can be used as a benchmark in future studies of the free vibration and buckling of circular cylindrical composite sandwich shells with a transversely compliant core....

  17. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Science.gov (United States)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  18. Study of low-velocity impact response of sandwich panels with shear-thickening gel cores

    Science.gov (United States)

    Wang, Yunpeng; Gong, Xinglong; Xuan, Shouhu

    2018-06-01

    The low-velocity impact response of sandwich panels with shear-thickening gel cores was studied. The impact tests indicated that the sandwich panels with shear-thickening gel cores showed excellent properties of energy dissipation and stress distribution. In comparison to the similar sandwich panels with chloroprene rubber cores and ethylene-propylene-diene monomer cores, the shear-thickening gel cores led to the obviously smaller contact forces and the larger energy absorptions. Numerical modelling with finite element analysis was used to investigate the stress distribution of the sandwich panels with shear-thickening gel cores and the results agreed well with the experimental results. Because of the unique mechanical property of the shear-thickening gel, the concentrated stress on the front facesheets were distributed to larger areas on the back facesheets and the peak stresses were reduced greatly.

  19. Experimental and simulation of split semi-torus key in PVC foam core to improve the debonding resistance of composite sandwich panel

    Science.gov (United States)

    Juliyana, M.; Santhana Krishnan, R.

    2018-02-01

    The sandwich composite panels consisting of facesheet and core material are used as a primary structural member for aerospace, civil and marine areas due to its high stiffness to weight ratio. But the debonding nature of facesheet from the foam core under shear loading conditions leads to failure of the composite structure. To inhibit the debonding, an innovative methodology of introducing semi-torus key is used in the present study. The polyvinyl chloride foam core(PVC) is grooved and filled with semi-torus shaped chopped strand prepregs which are sandwiched between alternate layers of woven roven(WR) and chopped strand mat(CSM) skins by vacuum infusion process. The sandwich panel manufactured with semi-torus keys is evaluated regarding experimental and numerical simulations under shear loading conditions. The present innovative concept delays the debonding between face-sheet and foam core with enhancement the shear load carrying capability as the initial stiffness is higher than the conventional model. Also, the shear behaviour of the proposed concept is in good agreement with experimental results. The split semi-torus keys sustain the shear failure resulting in resistance to debonding capability.

  20. Post-Buckling Analysis of Curved Honeycomb Sandwich Panels Containing Interfacial Disbonds

    Science.gov (United States)

    Pineda, Evan J.; Bednarcyk, Brett A.; Krivanek, Thomas K.

    2016-01-01

    A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance plan for the next-generation Space Launch System heavy lift launch vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method incorporating geometric nonlinearity. In a predetermined circular region, facesheet and core nodes were detached to simulate a disbond, between the outer mold line facesheet and honeycomb core, induced via low-speed impact. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements and obtain realistic stresses in the core. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. Significant changes in the slope of the edge load-deflection response were used to determine the onset of global buckling and corresponding buckling load. Finally, several studies were conducted to determine the sensitivity of the numerical predictions to refinement in the finite element mesh.

  1. Analysis and Tests of Reinforced Carbon-Epoxy/Foam-Core Sandwich Panels with Cutouts

    Science.gov (United States)

    Baker, Donald J.; Rogers, Charles

    1996-01-01

    The results of a study of a low-cost structurally efficient minimum-gage shear-panel design that can be used in light helicopters are presented. The shear-panel design is based on an integrally stiffened syntactic-foam stabilized-skin with an all-bias-ply tape construction for stabilized-skin concept with an all-bias-ply tape construction for the skins. This sandwich concept is an economical way to increase the panel bending stiffness weight penalty. The panels considered in the study were designed to be buckling resistant up to 100 lbs/in. of shear load and to have an ultimate strength of 300 lbs/in. The panel concept uses unidirectional carbon-epoxy tape on a syntactic adhesive as a stiffener that is co-cured with the skin and is an effective concept for improving panel buckling strength. The panel concept also uses pultruded carbon-epoxy rods embedded in a syntactic adhesive and over-wrapped with a bias-ply carbon-epoxy tape to form a reinforcing beam which is an effective method for redistributing load around rectangular cutout. The buckling strength of the reinforced panels is 83 to 90 percent of the predicted buckling strength based on a linear buckling analysis. The maximum experimental deflection exceeds the maximum deflection predicted by a nonlinear analysis by approximately one panel thickness. The failure strength of the reinforced panels was two and a half to seven times of the buckling strength. This efficient shear-panel design concept exceeds the required ultimate strength requirement of 300 lbs/in by more than 100 percent.

  2. Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels

    Science.gov (United States)

    Groen, Joseph M.; Johnson, Aldie E., Jr.

    1959-01-01

    Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.

  3. Sandwich-panels based on penopolisocyanurate and mineral wool

    OpenAIRE

    Burtzeva M.; Mednikova E.

    2017-01-01

    Sandwich panel is a self-supporting structure consisting of two steel zinc-coated profiles with a layer of heat retainer. It is used as roofing and walling material. Widely is used in industrial construction, shopping centres, sports complexes, chilling and freezing chambers, storage buildings and quickly erectable housing. The classical basis of heat-insulating layer (core panel) products is used mineral wool insulation materials. This material is resistant to deformation, non-flammable,...

  4. Gravity sag of sandwich panel assemblies as applied to precision cathode strip chamber structural design

    International Nuclear Information System (INIS)

    Horvath, J.

    1993-01-01

    The relationship between gravity sag of a precision cathode strip chamber and its sandwich panel structural design is explored parametrically. An algorithm for estimating the dominant component of gravity sag is defined. Graphs of normalized gravity sag as a function of gap frame width and material, sandwich core edge filler width and material, panel skin thickness, gap height, and support location are calculated using the gravity sag algorithm. The structural importance of the sandwich-to-sandwich ''gap frame'' connection is explained

  5. Transmission loss optimization in acoustic sandwich panels

    Science.gov (United States)

    Makris, S. E.; Dym, C. L.; MacGregor Smith, J.

    1986-06-01

    Considering the sound transmission loss (TL) of a sandwich panel as the single objective, different optimization techniques are examined and a sophisticated computer program is used to find the optimum TL. Also, for one of the possible case studies such as core optimization, closed-form expressions are given between TL and the core-design variables for different sets of skins. The significance of these functional relationships lies in the fact that the panel designer can bypass the necessity of using a sophisticated software package in order to assess explicitly the dependence of the TL on core thickness and density.

  6. Intermediate-scale Fire Performance of Composite Panels under Varying Loads

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jernigan, Dann A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dodd, Amanda B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-04-01

    New aircraft are being designed with increasing quantities of composite materials used in their construction. Different from the more traditional metals, composites have a higher propensity to burn. This presents a challenge to transportation safety analyses, as the aircraft structure now represents an additional fuel source involved in the fire scenario. Most of the historical fire testing of composite materials is aime d at studying kinetics, flammability or yield strength under fire conditions. Most of this testing is small - scale. Heterogeneous reactions are often length - scale dependent, and this is thought to be particularly true for composites which exhibit signific ant microscopic dynamics that can affect macro - scale behavior. We have designed a series of tests to evaluate composite materials under various structural loading conditions with a consistent thermal condition. We have measured mass - loss , heat flux, and temperature throughout the experiments. Several types of panels have been tested, including simple composite panels, and sandwich panels. The main objective of the testing was to understand the importance of the structural loading on a composite to its b ehavior in response to fire - like conditions. During flaming combustion at early times, there are some features of the panel decomposition that are unique to the type of loading imposed on the panels. At load levels tested, fiber reaction rates at later t imes appear to be independent of the initial structural loading.

  7. Structural performance of new thin-walled concrete sandwich panel system reinforced with bfrp shear connectors

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    This paper presents a new thin-walled concrete sandwich panel system reinforced with basalt fiber-reinforced plastic (BFRP) with optimum structural performances and a high thermal resistance developed by Connovate and Technical University of Denmark. The shear connecting system made of a BFRP grid...... is described and provides information on the structural design with its advantages. Experimental and numerical investigations of the BFRP connecting systems were performed. The experimental program included testing of small scale specimens by applying shear (push-off) loading and semi-full scale specimens...... on finite element modelling showed that the developed panel system meets the objectives of the research and is expected to have promising future....

  8. Impact damage in aircraft composite sandwich panels

    Science.gov (United States)

    Mordasky, Matthew D.

    An experimental study was conducted to develop an improved understanding of the damage caused by runway debris and environmental threats on aircraft structures. The velocities of impacts for stationary aircraft and aircraft under landing and takeoff speeds was investigated. The impact damage by concrete, asphalt, aluminum, hail and rubber sphere projectiles was explored in detail. Additionally, a kinetic energy and momentum experimental study was performed to look at the nature of the impacts in more detail. A method for recording the contact force history of the impact by an instrumented projectile was developed and tested. The sandwich composite investigated was an IM7-8552 unidirectional prepreg adhered to a NOMEXRTM core with an FM300K film adhesive. Impact experiments were conducted with a gas gun built in-house specifically for delivering projectiles to a sandwich composite target in this specic velocity regime (10--140 m/s). The effect on the impact damage by the projectile was investigated by ultrasonic C-scan, high speed camera and scanning electron and optical microscopy. Ultrasonic C-scans revealed the full extent of damage caused by each projectile, while the high speed camera enabled precise projectile velocity measurements that were used for striking velocity, kinetic energy and momentum analyses. Scanning electron and optical images revealed specific features of the panel failure and manufacturing artifacts within the lamina and honeycomb core. The damage of the panels by different projectiles was found to have a similar damage area for equivalent energy levels, except for rubber which had a damage area that increased greatly with striking velocity. Further investigation was taken by kinetic energy and momentum based comparisons of 19 mm diameter stainless steel sphere projectiles in order to examine the dominating damage mechanisms. The sandwich targets were struck by acrylic, aluminum, alumina, stainless steel and tungsten carbide spheres of the

  9. Experimental study of the mechanical behaviour of pin reinforced foam core sandwich materials under shear load

    International Nuclear Information System (INIS)

    Dimassi, M A; Brauner, C; Herrmann, A S

    2016-01-01

    Sandwich structures with a lightweight closed cell hard foam core have the potential to be used in primary structures of commercial aircrafts. Compared to honeycomb core sandwich, the closed cell foam core sandwich overcomes the issue of moisture take up and makes the manufacturing of low priced and highly integrated structures possible. However, lightweight foam core sandwich materials are prone to failure by localised external loads like low velocity impacts. Invisible cracks could grow in the foam core and threaten the integrity of the structure. In order to enhance the out-of-plane properties of foam core sandwich structures and to improve the damage tolerance (DT) dry fibre bundles are inserted in the foam core. The pins are infused with resin and co-cured with the dry fabric face sheets in an out-of-autoclave process. This study presents the results obtained from shear tests following DIN 53294-standard, on flat sandwich panels. All panels were manufactured with pin-reinforcement manufactured with the Tied Foam Core Technology (TFC) developed by Airbus. The effects of pin material (CFRP and GFRP) and pin volume fraction on the shear properties of the sandwich structure and the crack propagation were investigated and compared to a not pinned reference. It has been concluded that the pin volume fraction has a remarkable effect on the shear properties and damage tolerance of the observed structure. Increasing the pin volume fraction makes the effect of crack redirection more obvious and conserves the integrity of the structure after crack occurrence. (paper)

  10. Laser welded steel sandwich panel bridge deck development : finite element analysis and stake weld strength tests.

    Science.gov (United States)

    2009-09-01

    This report summarizes the analysis of laser welded steel sandwich panels for use in bridge structures and : static testing of laser stake welded lap shear coupons. Steel sandwich panels consist of two face sheets : connected by a relatively low-dens...

  11. Technological features of installation of transformable low-rise buildings from sandwich panels

    Directory of Open Access Journals (Sweden)

    Pleshivtsev Aleksandr Aleksandrovich

    2018-04-01

    Full Text Available Subject of research: organizational and technological solutions are considered in the construction of transformable low-rise residential buildings using sandwich panels. Aims: rational choice of organizational and technological solutions for the rhythmic construction of the underground and above-ground part of the transformable low-rise buildings in order to reduce labor costs and construction time. Materials and methods: methods of computer modeling of the technological processes are used to determine the duration of the construction of the low-rise buildings. Results: rational methods for erecting a complex of transformable low-rise buildings are defined, parameters of technological processes are established, an analysis of technological operations is provided for the construction of transformable low-rise residential buildings using sandwich panels. Conclusions: now organizational and technological solutions for the construction of transformable low-rise residential buildings with the use of sandwich panels reduce labour costs, increase the construction pace and as well as the using of improved technological processes in the construction of such buildings leads to a reduction in construction time.

  12. Analytical and Numerical Study of Foam-Filled Corrugated Core Sandwich Panels under Low Velocity Impact

    Directory of Open Access Journals (Sweden)

    Mohammad Nouri Damghani

    2016-05-01

    Full Text Available Analytical and finite element simulations are used to predict the effect of core density on the energy absorption of composite sandwich panels under low-velocity impact. The composite sandwich panel contains two facesheets and a foam-filled corrugated core. Analytical model is defined as a two degree-of-freedom system based on equivalent mass, spring, and dashpot to predict the local and global deformation response of a simply supported panel. The results signify a good agreement between analytical and numerical predictions.

  13. Damage assessment in a sandwich panel based on full-field vibration measurements

    Science.gov (United States)

    Seguel, F.; Meruane, V.

    2018-03-01

    Different studies have demonstrated that vibration characteristics are sensitive to debonding in composite structures. Nevertheless, one of the main restrictions of vibration measurements is the number of degrees of freedom that can be acquired simultaneously, which restricts the size of the damage that can be identified. Recent studies have shown that it is possible to use high-speed three-dimensional (3-D) digital image correlation (DIC) techniques for full-field vibration measurements. With this technique, it is possible to take measurements at thousands of points on the surface of a structure with a single snapshot. The present article investigates the application of full-field vibration measurements in the debonding assessment of an aluminium honeycomb sandwich panel. Experimental data from an aluminium honeycomb panel containing different damage scenarios is acquired by a high-speed 3-D DIC system; four methodologies to compute damage indices are evaluated: mode shape curvatures, uniform load surface, modal strain energy and gapped smoothing.

  14. Sandwich Structured Composites for Aeronautics: Methods of Manufacturing Affecting Some Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aneta Krzyżak

    2016-01-01

    Full Text Available Sandwich panels are composites which consist of two thin laminate outer skins and lightweight (e.g., honeycomb thick core structure. Owing to the core structure, such composites are distinguished by stiffness. Despite the thickness of the core, sandwich composites are light and have a relatively high flexural strength. These composites have a spatial structure, which affects good thermal insulator properties. Sandwich panels are used in aeronautics, road vehicles, ships, and civil engineering. The mechanical properties of these composites are directly dependent on the properties of sandwich components and method of manufacturing. The paper presents some aspects of technology and its influence on mechanical properties of sandwich structure polymer composites. The sandwiches described in the paper were made by three different methods: hand lay-up, press method, and autoclave use. The samples of sandwiches were tested for failure caused by impact load. Sandwiches prepared in the same way were used for structural analysis of adhesive layer between panels and core. The results of research showed that the method of manufacturing, more precisely the pressure while forming sandwich panels, influences some mechanical properties of sandwich structured polymer composites such as flexural strength, impact strength, and compressive strength.

  15. Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP)

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2015-01-01

    The static and fatigue bending behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP) has been investigated by four-point bending tests. Fatigue panels and weakened panels (wESCP) with an initial interface defect were manufactured for the fatigue tests. Stress σ vs. number of cycles curves (S-N) were recorded under the different stress...

  16. Analysis of syntactic foam – GFRP sandwich composites for flexural loads

    Science.gov (United States)

    Paul, Daniel; Velmurugan, R.; Jayaganthan, R.; Gupta, N. K.; Manzhirov, A. V.

    2018-04-01

    The use of glass microballoon (GMB) — epoxy syntactic foams as a sandwich core material is studied. The skins and foam core are fabricated and joined instantaneously unlike the procedures followed in the previous studies. Each successive layer of the sandwich is fabricated when the previous layer is in a semi-gelled state. These sandwich samples are characterized for their properties under flexural loading. The failure modes and mechanical properties are carefully investigated. The change in fabrication technique results in a significant increase in the load bearing pattern of the sandwich. In earlier studies, debonding was found to occur prematurely since the bonding between the skins and core is the weakest plane. Using the current technique, core cracking occurs first, followed by skin fiber breaking and debonding happens at the end. This ensures that the load carrying phase of the structure is extended considerably. The sandwich is also analytically studied using Reddy’s higher order shear deformation theory. A higher order theory is selected as the sandwich can no longer be considered as a thin beam and thus shear effects also need to be considered in addition to bending effects.

  17. Compressive and bending behavior of sandwich panels with Octet truss core fabricated from wires

    International Nuclear Information System (INIS)

    Lim, Ji Hyun; Nah, Seong Jun; Kang, Ki Ju; Koo, Man Hoe

    2005-01-01

    Ultra light metal structures have been studied for several years because of their superior specific stiffness, strength and potential of multi functions. Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels having Octet truss cores. Wires bent in a shape of triangular wave were assembled to construct an Octet truss core and it was bonded with two face sheets to be a sandwich panel. The bending and compressive strength and stiffness were estimated through elementary mechanics for the sandwich specimens with two kinds of face sheets and the results were compared with the ones measured by experiments. Some aspects of assembling and mechanical behavior were discussed compared with Kagome core fabricated from wire, which had been introduced in the authors' previous work

  18. Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction

    Directory of Open Access Journals (Sweden)

    Insub Choi

    2015-03-01

    Full Text Available A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors.

  19. Thermal Performance of Precast Concrete Sandwich Panel (PCSP) Design for Sustainable Built Environment

    Science.gov (United States)

    Ern, Peniel Ang Soon; Ling, Lim Mei; Kasim, Narimah; Hamid, Zuhairi Abd; Masrom, Md Asrul Nasid Bin

    2017-10-01

    Malaysia’s awareness of performance criteria in construction industry towards a sustainable built environment with the use of precast concrete sandwich panel (PCSP) system is applied in the building’s wall to study the structural behaviour. However, very limited studies are conducted on the thermal insulation of exterior and interior panels in PCSP design. In hot countries such as Malaysia, proper designs of panel are important to obtain better thermal insulation for building. This study is based on thermal performance of precast concrete sandwich panel design for sustainable built environment in Malaysia. In this research, three full specimens, which are control specimen (C), foamed concrete (FC) panels and concrete panels with added palm oil fuel ash (FC+ POFA), where FC and FC+POFA sandwiched with gypsum board (G) were produced to investigate their thermal performance. Temperature difference of exterior and interior surface of specimen was used as indicators of thermal-insulating performance of PCSP design. Heat transfer test by halogen lamp was carried out on three specimens where the exterior surface of specimens was exposed to the halogen lamp. The temperature reading of exterior and interior surface for three specimens were recorded with the help of thermocouple. Other factors also studied the workability, compressive strength and axial compressive strength of the specimens. This study has shown that FC + POFA specimen has the strength nearer to normal specimen (C + FC specimen). Meanwhile, the heat transfer results show that the FC+POFA has better thermal insulation performance compared to C and FC specimens with the highest temperature difference, 3.4°C compared to other specimens. The results from this research are useful to be implemented in construction due to its benefits such as reduction of energy consumption in air-conditioning, reduction of construction periods and eco-friendly materials.

  20. The Effect of Face and Adhesive Types on Mechanical Properties of Sandwich Panels Made from Honeycomb Paper

    Directory of Open Access Journals (Sweden)

    Mohsen Saffari

    2013-11-01

    Full Text Available Sandwich panels are new kind of layered composites that usually are composed of three layers and their core layer's thickness is higher and the outer layers are determinative in determination of the products strength and stiffness. The core layer is commonly made of honeycomb paper, corrugated paper and polyurethane etc. In this study, effects of face and adhesive types on mechanical properties of sandwich panels made from honeycomb paper were investigated. The variables included three types; beech face, poplar face and hardboard (S2S face, veneer less and adhesive type (two types; epoxy and PVA. Out of experimental panels specimens were cut and tested according to DIN E 326-1 standard. Mechanical properties of panels, included modulus of elasticity as well as modulus of rupture at the edge and surface (based on DIN EN 310 standard and Impact Bending Strength (IBS of the panels (based on ASTM D 3499 standard were measured. The gathered data were analyzed as completely randomized factorial design. Highest mechanical properties were reported for panels glued with epoxy resin and containing fiberboard at the middle. According to results, optimum condition of producing sandwich panels was observed in uses of epoxy resin and fiberboard S2S face, veneer less at the middle.

  1. The comparison of numerical models of a sandwich panel in the context of the core deformations at the supports

    Science.gov (United States)

    Pozorska, Jolanta; Pozorski, Zbigniew

    2018-01-01

    The paper presents the problem of static structural behavior of sandwich panels at the supports. The panels have a soft core and correspond to typical structures applied in civil engineering. To analyze the problem, five different 3-D numerical models were created. The results were compared in the context of core compression and stress redistribution. The numerical solutions verify methods of evaluating the capacity of the sandwich panel that are known from the literature.

  2. Application of Load Carrying Sandwich Elements in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jensen, Jacob Fisker; Schultz, Jacob Pagh; Berggreen, Carl Christian

    2005-01-01

    The present work investigates the possibilities and drawbacks when applying sandwich as opposed to single skin composites in the flanges of the load carrying spar in a future 180 m wind turbine rotor. FEA is applied to investigate two basic designs with single skin and sandwich flanges respectively...

  3. External mean flow influence on sound transmission through finite clamped double-wall sandwich panels

    Science.gov (United States)

    Liu, Yu; Catalan, Jean-Cédric

    2017-09-01

    This paper studies the influence of an external mean flow on the sound transmission through finite clamped double-wall sandwich panels lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials and various configurations of coupling the poroelastic layer to the facing plates are considered. The clamped boundary of finite panels are dealt with by the modal superposition theory and the weighted residual (Garlekin) method, leading to a matrix equation solution for the sound transmission loss (STL) through the structure. The theoretical model is validated against existing theories of infinite sandwich panels with and without an external flow. The numerical results of a single incident wave show that the external mean flow has significant effects on the STL which are coupled with the clamped boundary effect dominating in the low-frequency range. The external mean flow also influences considerably the limiting incidence angle of the panel system and the effect of the incidence angle on the STL. However, the influences of the azimuthal angle and the external flow orientation are negligible.

  4. Residual Strength Prediction of Debond Damaged Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian

    followed by debond growth. The developed theoretical procedure is an extension of the Crack Surface Displacement method, here denoted the Crack Surface Displacement Extrapolation method. The method is first developed in 2D and then extended to 3D by use of a number of realistic assumptions...... for the considered configurations. Comparison of the theoretical predictions to two series of large-scale experiments with loadings (uniform and non-uniform in-plane compression) comparable with real life loading scenarios for sandwich ships shows that the model is indeed able to predict the failure modes...

  5. Finite element simulation of low velocity impact loading on a sandwich composite

    Directory of Open Access Journals (Sweden)

    Vishwas M.

    2018-01-01

    Full Text Available Sandwich structure offer more advantage in bringing flexural stiffness and energy absorption capabilities in the application of automobile and aerospace components. This paper presents comparison study and analysis of two types of composite sandwich structures, one having Jute Epoxy skins with rubber core and the other having Glass Epoxy skins with rubber core subjected to low velocity normal impact loading. The behaviour of sandwich structure with various parameters such as energy absorption, peak load developed, deformation and von Mises stress and strain, are analyzed using commercially available analysis software. The results confirm that sandwich composite with jute epoxy skin absorbs approximately 20% more energy than glass epoxy skin. The contact force developed in jute epoxy skin is approximately 2.3 times less when compared to glass epoxy skin. von Mises stress developed is less in case of jute epoxy. The sandwich with jute epoxy skin deforms approximately 1.6 times more than that of same geometry of sandwich with glass epoxy skin. Thus exhibiting its elastic nature and making it potential candidate for low velocity impact application.

  6. Investigation of Energy Absorption in Aluminum Foam Sandwich Panels By Drop Hammer Test: Experimental Results

    Directory of Open Access Journals (Sweden)

    Mohammad Nouri Damghani

    2016-05-01

    Full Text Available The sandwich panel structures with aluminum foam core and metal surfaces have light weight with high performance in dispersing energy. This has led to their widespread use in the absorption of energy. The cell structure of foam core is subjected to plastic deformation in the constant tension level that absorbs a lot of kinetic energy before destruction of the structure. In this research, by making samples of aluminum foam core sandwich panels with aluminum surfaces, experimental tests of low velocity impact by a drop machine are performed for different velocities and weights of projectile on samples of sandwich panels with aluminum foam core with relative density of 18%, 23%, and 27%. The output of device is acceleration‐time diagram which is shown by an accelerometer located on the projectile. From the experimental tests, the effect of weight, velocity and energy of the projectile and density of the foam on the global deformation, and energy decrease rate of projectile have been studied. The results of the experimental testes show that by increasing the density of aluminum foam, the overall impression is reduced and the slop of energy loss of projectile increases. Also by increasing the velocity of the projectile, the energy loss increases.

  7. Sandwich panels with high performance concrete thin plates at elevated temperatures

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2015-01-01

    concerned HMT modelling and elastic stress analysis with nonlinear temperature effects of a full size loaded sandwich wall, qualitatively assessing the location of critically stressed zones. Modelling output was compared to published experimental results. The model reproduced experimental temperature...... recordings satisfactorily, except phase changes of water at low heating rates. It was suggested that the function governing moisture evolution with temperature and pressure should be updated for HPC. Pore pressure was found critical for sandwich structures due their higher temperatures. Adding polypropylene...

  8. Thermo-mechanical interaction effects in foam cored sandwich panels-correlation between High-order models and Finite element analysis results

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Santiuste, Carlos; Thomsen, Ole Thybo

    2010-01-01

    Thermo-mechanical interaction effects including thermal material degradation in polymer foam cored sandwich structures is investigated using the commercial Finite Element Analysis (FEA) package ABAQUS/Standard. Sandwich panels with different boundary conditions in the form of simply supported...

  9. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    Science.gov (United States)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-05-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  10. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    Science.gov (United States)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-04-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  11. Blast Load Response of Steel Sandwich Panels with Liquid Encasement

    Energy Technology Data Exchange (ETDEWEB)

    Dale Karr; Marc Perlin; Benjamin Langhorst; Henry Chu

    2009-10-01

    We describe an experimental investigation of the response of hybrid blast panels for protection from explosive and impact forces. The fundamental notion is to dissipate, absorb, and redirect energy through plastic collapse, viscous dissipation, and inter-particle forces of liquid placed in sub-structural compartments. The panels are designed to absorb energy from an impact or air blast by elastic-plastic collapse of the panel substructure that includes fluid-filled cavities. The fluid contributes to blast effects mitigation by providing increased initial mass and resistance, by dissipation of energy through viscosity and fluid flow, and by redirecting the momentum that is imparted to the system from the impact and blast impulse pressures. Failure and deformation mechanisms of the panels are described.

  12. Rational Design of Composite Panels

    DEFF Research Database (Denmark)

    Riber, Hans Jørgen

    1996-01-01

    A non-linear structural model for composite panels is presented. The non-linear terms in the lateral displacements are modelled as an additional set of lateral loads acting on the panel. Hence the solution is reduced to that of an equivalent panel with small displacements In order to treat sandwich...... Norske Veritas', DNV, building rules concerning high-speed light craft, in which the panel scantlings are often restricted by a maximum lateral deflection connected with the panel span....

  13. Cone calorimeter testing of foam core sandwich panels treated with intumescent paper underneath the veneer (FRV)

    Science.gov (United States)

    Mark A. Dietenberger; Ali Shalbafan; Johannes Welling

    2017-01-01

    Surfaces of novel foam core sandwich panels were adhered with intumescent fire‐retardant paper underneath the veneers (FRV) to improve their flammability properties. The panels were evaluated by means of cone calorimeter test (ASTM E 1354). Variables tested were different surface layer treatments, adhesives used for veneering, surface layer thicknesses, and processing...

  14. Fatigue Debond Growth in Sandwich Structures Loaded in Mixed Mode Bending (MMB)

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2008-01-01

    Static and cyclic debond growth in sandwich specimens loaded in mixed mode bending (MMB) is examined. The MMB sandwich specimens were manufactured using H100 PVC foam core and E-glass/polyester non-crimp quadro-axial [0/45/90/-45]s DBLT-850 face sheets. Static test were performed to determine...... the fracture toughness of the debonded sandwich specimens at different mixed mode loadings. The mixed mode ratio (mode I to mode II) was controlled by changing the lever arm distance of the MMB test rig. Compliance technique and visual inspection was employed to measure the crack length during fatigue. Fatigue...... tests were performed at 90% of the static fracture toughness at a loading ratio of R=0.1. Fatigue results revealed higher debond crack growth rates when the lever arm distance was increased. For some specimens, the crack propagated just below the face/core interface in the foam core and for others...

  15. The Response of Clamped Shallow Sandwich Arches with Metallic Foam Cores to Projectile Impact Loading

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    Full Text Available Abstract The dynamic response and energy absorption capabilities of clamped shallow sandwich arches with aluminum foam core were numerically investigated by impacting the arches at mid-span with metallic foam projectiles. The typical deformation modes, deflection response, and core compression of sandwich arches obtained from the tests were used to validate the computation model. The resistance to impact loading was quantified by the permanent transverse deflection at mid-span of the arches as a function of projectile momentum. The sandwich arches have a higher shock resistance than the monolithic arches of equal mass, and shock resistance could be significantly enhanced by optimizing geometrical configurations. Meanwhile, decreasing the face-sheet thickness and curvature radius could enhance the energy absorption capability of the sandwich arches. Finite element calculations indicated that the ratio of loading time to structural response time ranged from 0.1 to 0.4. The projectile momentum, which was solely used to quantify the structural response of sandwich arches, was insufficient. These findings could provide guidance in conducting further theoretical studies and producing the optimal design of metallic sandwich structures subjected to impact loading.

  16. Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel

    OpenAIRE

    Viriyavudh Sim; Jung Kyu Choi; Yong Ju Kwak; Oh Hyeon Jeon; Woo Young Jung

    2017-01-01

    In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In...

  17. Multiobjective optimization for design of multifunctional sandwich panel heat pipes with micro-architected truss cores

    International Nuclear Information System (INIS)

    Roper, Christopher S.

    2011-01-01

    A micro-architected multifunctional structure, a sandwich panel heat pipe with a micro-scale truss core and arterial wick, is modeled and optimized. To characterize multiple functionalities, objective equations are formulated for density, compressive modulus, compressive strength, and maximum heat flux. Multiobjective optimization is used to determine the Pareto-optimal design surfaces, which consist of hundreds of individually optimized designs. The Pareto-optimal surfaces for different working fluids (water, ethanol, and perfluoro(methylcyclohexane)) as well as different micro-scale truss core materials (metal, ceramic, and polymer) are determined and compared. Examination of the Pareto fronts allows comparison of the trade-offs between density, compressive stiffness, compressive strength, and maximum heat flux in the design of multifunctional sandwich panel heat pipes with micro-scale truss cores. Heat fluxes up to 3.0 MW/m 2 are predicted for silicon carbide truss core heat pipes with water as the working fluid.

  18. Experimental and theoretical studies into the stress-strain state of the purlin supported by sandwich panels

    Directory of Open Access Journals (Sweden)

    Danilov Aleksandr Ivanovich

    2014-12-01

    Full Text Available In the article, the co-authors analyze the findings of the experimental and theoretical studies into the real behaviour of a thin-walled cold-formed purlin as part of the roof structure made of sandwich panels. The roof structure fragment was tested; displacements and stresses, that the purlin was exposed to, were identified in respect of each loading increment. NASTRAN software was employed to perform the numerical analysis of the roof structure, pre-exposed to experimental tests, in the geometrically and physically non-linear setting. The finite element model, generated as a result (the numerical analysis pattern, is sufficiently well-set, given the proposed grid of elements, and it ensures reasonably trustworthy results. The diagrams describing the stress/displacement to the load ratio and obtained numerically are consistent with those generated experimentally. The gap between the critical loading values reaches 4%. Analytical and experimental findings demonstrate their close conformity, and this fact may justify the application of the numerical model, generated within the framework of this research project, in the course of any further research actions. The co-authors have identified that the exhaustion of the bearing capacity occurs due to the loss of the buckling resistance as a result of the lateral torsional buckling.

  19. Effect of Rigid Polyurethane Foam Core Density on Flexural and Compressive Properties of Sandwich Panels with Glass/Epoxy Faces

    Directory of Open Access Journals (Sweden)

    saeed Nemati

    2013-01-01

    Full Text Available Sandwich panels as composite materials have two external walls of either metallic or polymer type. The space between these walls is filled by hard foam or other materials and the thickness of different layers is based on the final application of the panel. In the present work, the extent of variation in core density of polyether urethane foam and subsequent flexural and compressive changes in sandwich panels with glass or epoxy face sheets are tested and investigated. A number of hard polyether urethane foams with different middle panel layers density 80-295 kg/m3 are designed to study the effect of foam density on mechanical properties including flexural and compressive properties. Flexural and compressive test resultsshow that increased core density leads to improved mechanical properties. The slope of the curve decreases beyond density of 235 kg/m3. The reason may be explained on the limitation of shear intensity in increasing the mechanical properties. In this respect an optimum density of 235 kg/m3 is obtained for the system under examinations and for reaching higher strength panels, foams of different core materials should be selected.

  20. Effects of face sheet damage on residual strength of GRP sandwich panels in naval ships

    DEFF Research Database (Denmark)

    Hayman, Brian; Echtermeyer, Andreas T.; Berggreen, Christian

    2010-01-01

    is represented by machined cracks and circular holes in the face laminates. Tests have been performed on laminate specimens with and without circular holes under tensile loading and on sandwich face sheets with holes, cracks and real impact damage under compressive loading. The results are compared...

  1. Acoustically Tailored Composite Rotorcraft Fuselage Panels

    Science.gov (United States)

    Hambric, Stephen; Shepherd, Micah; Koudela, Kevin; Wess, Denis; Snider, Royce; May, Carl; Kendrick, Phil; Lee, Edward; Cai, Liang-Wu

    2015-01-01

    A rotorcraft roof sandwich panel has been redesigned to optimize sound power transmission loss (TL) and minimize structure-borne sound for frequencies between 1 and 4 kHz where gear meshing noise from the transmission has the most impact on speech intelligibility. The roof section, framed by a grid of ribs, was originally constructed of a single honeycomb core/composite face sheet panel. The original panel has coincidence frequencies near 700 Hz, leading to poor TL across the frequency range of 1 to 4 kHz. To quiet the panel, the cross section was split into two thinner sandwich subpanels separated by an air gap. The air gap was sized to target the fundamental mass-spring-mass resonance of the double panel system to less than 500 Hz. The panels were designed to withstand structural loading from normal rotorcraft operation, as well as 'man-on-the-roof' static loads experienced during maintenance operations. Thin layers of VHB 9469 viscoelastomer from 3M were also included in the face sheet ply layups, increasing panel damping loss factors from about 0.01 to 0.05. Measurements in the NASA SALT facility show the optimized panel provides 6-11 dB of acoustic transmission loss improvement, and 6-15 dB of structure-borne sound reduction at critical rotorcraft transmission tonal frequencies. Analytic panel TL theory simulates the measured performance quite well. Detailed finite element/boundary element modeling of the baseline panel simulates TL slightly more accurately, and also simulates structure-borne sound well.

  2. Ageing tests study on wood-based sandwich panels

    Directory of Open Access Journals (Sweden)

    Mateo, Raquel

    2011-12-01

    Full Text Available Composite lightweight wood panels are being increasingly used in construction in Spain. Their growing use should be accompanied by necessary guarantees based on studies of their properties. As it is prescriptive and in addition to others tests, in the present work is examinated the durability of these panels when exposed to the climatic conditions, a characteristic of great importance for wood products, according to Guide ETAG 016, the current standard defining the ageing tests to be used. However, due to the use class of this material, there are indications that the testing outlined in this Guide is inappropriate for assessing the ageing of wood-based sandwich panels. Alternative tests are here proposed that recreate rather better the real conditions under which these products are used. Covering the samples in a waterproof sheeting permeable to the outward movement of water vapour, which is in fact used in the installation, provided the best procedure for testing these panels.

    Los paneles sándwich de madera son un producto de creciente aplicación en la edificación de nuestro país. Este ascendente uso del material debe estar acompañado de las garantías necesarias avaladas por un estudio previo de sus prestaciones. Como es preceptivo y entre otros, se evalúa su durabilidad frente a las condiciones climatológicas, clave en los productos derivados de la madera, acorde a la normativa actual definida con tal fin, la Guía ETAG 016. Sin embargo, debido a la clase de uso del material, se ha detectado que dicha normativa tal y como está concebida no es capaz de valorar su envejecimiento adecuadamente. En este trabajo se proponen ensayos alternativos al establecido tras exhaustivos análisis que recrean las condiciones reales de uso y más acordes a los productos de madera. Se concluye que la incorporación de una lámina impermeable pero permeable al vapor de agua hacia el exterior, como las utilizadas en el montaje, aportan el mejor

  3. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel

    Science.gov (United States)

    Liu, Yu; Sebastian, Alexis

    2015-05-01

    This paper studies analytically the effects of an external mean flow and an internal gap mean flow on sound transmission through a double-wall sandwich panel lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials, and the transfer matrix method with three types of boundary conditions is applied to solve the system simultaneously. The random incidence transmission loss in a diffuse field is calculated numerically, and the limiting angle of incidence due to total internal reflection is discussed in detail. The numerical predictions suggest that the sound insulation performance of such a double-wall panel is enhanced considerably by both external and gap mean flows particularly in the high-frequency range. Similar effects on transmission loss are observed for the two mean flows. It is shown that the effect of the gap mean flow depends on flow velocity, flow direction, gap depth and fluid properties and also that the fluid properties within the gap appear to influence the transmission loss more effectively than the gap flow. Despite the implementation difficulty in practice, an internal gap flow provides more design space for tuning the sound insulation performance of a double-wall sandwich panel and has great potential for active/passive noise control.

  4. Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method

    International Nuclear Information System (INIS)

    Nezami, M; Gholami, B

    2016-01-01

    The active flutter control of supersonic sandwich panels with regular honeycomb interlayers under impact load excitation is studied using piezoelectric patches. A non-dominated sorting-based multi-objective evolutionary algorithm, called non-dominated sorting genetic algorithm II (NSGA-II) is suggested to find the optimal locations for different numbers of piezoelectric actuator/sensor pairs. Quasi-steady first order supersonic piston theory is employed to define aerodynamic loading and the p-method is applied to find the flutter bounds. Hamilton’s principle in conjunction with the generalized Fourier expansions and Galerkin method are used to develop the dynamical model of the structural systems in the state-space domain. The classical Runge–Kutta time integration algorithm is then used to calculate the open-loop aeroelastic response of the system. The maximum flutter velocity and minimum voltage applied to actuators are calculated according to the optimal locations of piezoelectric patches obtained using the NSGA-II and then the proportional feedback is used to actively suppress the closed loop system response. Finally the control effects, using the two different controllers, are compared. (paper)

  5. Standard practice for radiologic examination of flat panel composites and sandwich core materials used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice is intended to be used as a supplement to Practices E 1742, E 1255, and E 2033. 1.2 This practice describes procedures for radiologic examination of flat panel composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. Radiologic examination is: a) radiographic (RT) with film, b) Computed Radiography (CR) with Imaging Plate, c) Digital Radiology (DR) with Digital Detector Array’s (DDA), and d) Radioscopic (RTR) Real Time Radiology with a detection system such as an Image Intensifier. The composite materials under consideration typically contain continuous high modulus fibers (> 20 GPa), such as those listed in 1.4. 1.3 This practice describes established radiological examination methods that are currently used by industry that have demonstrated utility in quality assurance of flat panel composites and sandwich core materials during product process design and optimization, process control, after manufacture inspection, in service exami...

  6. Mass loss and flammability of insulation materials used in sandwich panels during the pre-flashover phase of fire

    NARCIS (Netherlands)

    Giunta d'Albani, A.W.; de Kluiver, L.L.; de Korte, A.C.J.; van Herpen, R.; Weewer, R.; Brouwers, H.J.H.

    2017-01-01

    Nowadays, buildings contain more and more synthetic insulation materials in order to meet the increasing energy-performance demands. These synthetic insulation materials have a different response to fire. In this study, the mass loss and flammability limits of different sandwich panels and their

  7. Impact damage detection in light composite sandwich panels using piezo-based nonlinear vibro-acoustic modulations

    International Nuclear Information System (INIS)

    Pieczonka, L; Ukowski, P; Klepka, A; Staszewski, W J; Uhl, T; Aymerich, F

    2014-01-01

    The nonlinear vibro-acoustic modulation technique is used for impact damage detection in light composite sandwich panels. The method utilizes piezo-based low-frequency vibration and high-frequency ultrasonic excitations. The work presented focuses on the analysis of modulation intensity. The results show that the method can be used for impact damage detection reliably separating damage-related from vibro-acoustic modulations from other intrinsic nonlinear modulations. (paper)

  8. New "sandwich" structures conformed from three dimensional

    Directory of Open Access Journals (Sweden)

    Alba, Juan J.

    1996-03-01

    Full Text Available Poor interlaminar properties as well as poor-skin-to-core adhesion properties are very often the common existing problems we find when designing with "sandwich" structures. A new type of 3D-fabric "sandwich" structure is being developed in order to avoid these problems. Although the manufacturing process is very simple, a very complex "sandwich" structure is obtained as a result of the complexity of the 3D-fabric used. This 3D-fabric is a 3D woven glass fabric produced on velvet weaving machines with glass yarns. It is an integrally woven "sandwich" laminate for all kinds of composite products. The strength of the vertical fibers makes, that also after impregnation with a resin matrix, the "sandwich" structure is maintained. The result is a laminate with high strength and stiffness and low weight. On each side of this "sandwich" laminate additional reinforcement materials can be laminated and a synthetic foam can be injected in the hollow structure. This will allow to establish the mechanical properties of a finished product.

    Las pobres propiedades, tanto interlaminares como de adhesión entre piel y núcleo, constituyen uno de los grandes problemas cuando se diseñan estructuras utilizando paneles tipo "sandwich". Un nuevo tipo de panel "sandwich", configurado a partir de tejidos tridimensionales, está siendo desarrollado en la actualidad con el objetivo de eliminar esos problemas. Aunque el proceso de fabricación es muy simple, el panel "sandwich" obtenido es de estructura compleja, como resultado de la complejidad del tejido tridimensional utilizado. Este tejido tridimensional (3D es un tejido de fibra de vidrio producido en máquinas de tejer especializadas. La resistencia de las fibras verticales hace que, después de la impregnación con una resina, se mantenga la configuración tipo "sandwich". El resultado es un laminado de alta resistencia, gran rigidez y bajo peso. Sobre cada uno de los lados del panel "sandwich" se pueden

  9. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading

    Directory of Open Access Journals (Sweden)

    Lin Jing

    Full Text Available The dynamic response of cylindrical sandwich shells with aluminum foam cores subjected to air blast loading was investigated numerically in this paper. According to KNR theory, the nonlinear compressibility of the air and finite shock conditions were taken into account in the finite element model. Numerical simulation results show that the compression strain, which plays a key role on energy absorption, increases approximately linearly with normalized impulse, and reduces with increasing relative density or the ratio of face-sheet thickness and core thickness. An increase of the impulse will delay the equalization of top and bottom face-sheet velocities of sandwich shell, but there is a maximum value in the studied bound. A limited study of weight optimization was carried out for sandwich shells with respect to the respective geometric parameters, including face-sheet thickness, core thickness and core relative density. These numerical results are of worth to theoretical prediction and engineering application of cellular metal sandwich structures.

  10. Design and test of lightweight sandwich T-joint for naval ships

    DEFF Research Database (Denmark)

    Toftegaard, H.; Lystrup, Aa.

    2005-01-01

    Within the EUCLID project, 'Survivability, Durability and Performance of Naval Composite Structures', one task is to develop improved fibre composite joints for naval ship super structures. One type of joint in such a super structure is a T-joint between sandwich panels. An existing design consists...... of panels joined by filler and overlaminates of the same thickness as the skin laminates. Various improved T-joints have been designed and investigated. Some with focus on improved strength (survivability), and others with focus on reduced weight. This paper describes the design and test of a sandwich T...... triangles). A method for a finite element (FE) parameter study is developed and used for selection of a promising (strong) configuration of the T-joint. Tensile (pull-out) tests are performed to load the core triangles and filler in tension and the strength and failure mode are compared both with the FE...

  11. Experimental and Numerical Investigation of the FRP Shear Mechanism for Concrete Sandwich Panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Sopal, G.; Rizkalla, S.

    2015-01-01

    This paper investigates the composite action of 46 segments representing precast concrete sandwich panels (PCSPs) using a fiber-reinforced polymer [FRP; specifically, a carbon fiber-reinforced polymer (CFRP)] grid/rigid foam as a shear mechanism. The experimental aspect of the research reported...... reported in this paper indicated that increasing the spacing between vertical lines of CFRP grid increase the overall shear flow strengths due to the increase of the bonded contact area of the rigid foam to the concrete surface. However, the overall shear stresses were decreased due to the increase...

  12. Numerical simulation of wind loads on solar panels

    Science.gov (United States)

    Su, Kao-Chun; Chung, Kung-Ming; Hsu, Shu-Tsung

    2018-05-01

    Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.

  13. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel. Part 3; 8-ply Out-of-Autoclave Facesheets

    Science.gov (United States)

    Pineda, Evan J.; Myers, David E.; Kosareo, Daniel N.; Kellas, Sotiris

    2014-01-01

    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10 m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800B/5320-1. Smaller 3- by 5-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of the 3- by 5-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, T40-800B/5320-1 facesheets (referred to as Panel C). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear, two-dimensional (2-D) and three-dimensional (3-D), models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength.

  14. Numerical simulation of the hole-flanging process for steel-polymer sandwich sheets

    Science.gov (United States)

    Griesel, Dominic; Keller, Marco C.; Groche, Peter

    2018-05-01

    In light of increasing demand for lightweight structures, hybrid materials are frequently used in load-optimized parts. Sandwich structures like metal-polymer sandwich sheets provide equal bending stiffness as their monolithic counterparts at a drastically reduced weight. In addition, sandwich sheets have noise-damping properties, thus they are well-suited for a large variety of parts, e.g. façade and car body panels, but also load-carrying components. However, due to the creep tendency and low heat resistance of the polymer cores, conventional joining technologies are only applicable to a limited degree. Through hole-flanging it is possible to create branches in sandwich sheets to be used as reinforced joints. While it is state of the art for monolithic materials, hole-flanging of sandwich sheets has not been investigated yet. In order to simulate this process for different material combinations and tool geometries, an axisymmetric model has been developed in the FE software Abaqus/CAE. In the present paper, various modeling strategies for steel-polymer sandwich sheets are examined, including volume elements, shell elements and combinations thereof. Different methods for joining the distinct layers in the FE model are discussed. By comparison with CT scans and optical 3D measurements of experimentally produced hole-flanges, the feasibility of the presented models is evaluated. Although a good agreement of the numerical and experimental results has been achieved, it becomes clear that the classical forming limit diagram (FLD) does not adequately predict failure of the steel skins.

  15. Analytical/Empirical Study on Indentation Behavior of Sandwich Plate with Foam Core and Composite Face Sheets

    Directory of Open Access Journals (Sweden)

    Soheil Dariushi

    2017-07-01

    Full Text Available Sandwich structures are widely used in aerospace, automobile, high speed train and civil applications. Sandwich structures consist of two thin and stiff skins and a thick and light weight core. In this study, the obligatory mandate of a sandwich plate contact constitutes a flexible foam core and composite skins with a hemispherical rigid punch has been studied by an analytical/empirical method. In sandwich structures, calculation of force distribution under the punch nose is complicated, because the core is flexible and the difference between the modulus of elasticity of skin and core is large. In the present study, an exponential correlation between the contact force and indentation is proposed. The coefficient and numerical exponent were calculated using the experimental indentation results. A model based on a high-order sandwich panel theory was used to study the bending behavior of sandwich plate under hemispherical punch load. In the first method, the force distribution under the punch nose was calculated by the proposed method and multiplied to deformation of related point in the loading area to calculate the potential energy of the external loads. In the second method, the punch load was modeled as a point force and multiplied to deformation of maximum indented point. The results obtained from the two methods were compared with the experimental results. Indentation and bending tests were carried out on sandwich plates with glass/epoxy skins and a styrene/acrylonitrile foam core. In the bending test, a simply support condition was set and in the indentation test the sandwich specimens were put on a rigid support. Indeed, in this position the punch movement was equal the indentation. The comparison between the analytical and experimental results showed that the proposed method significantly improved the accuracy of analysis.

  16. Optimization process for thin-walled high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2014-01-01

    with the specifications of the design constrains and variables. The tool integrates the processes of HPCSP design, quantity take-off and cost estimation into a single system that would provide different costs for different HPCSP designs. The proposed multi-objective optimisation scheme results into derivation of basic......A Nearly zero energy buildings are to become a requirement as part of the European energy policy. There are many ways of designing nearly zero energy buildings, but there is a lack of knowledge on optimization processes in the sense of structurally and thermally efficient design with an optimal...... economical solution. The present paper aims to provide multi-objective optimisation procedure addressed to structural precast thin-walled High Performance Concrete Sandwich Panels (HPCSP). The research aim is concerned with developing a tool that considers the cost of HPCSP materials along...

  17. A materials selection procedure for sandwiched beams via parametric optimization with applications in automotive industry

    International Nuclear Information System (INIS)

    Aly, Mohamed F.; Hamza, Karim T.; Farag, Mahmoud M.

    2014-01-01

    Highlights: • Sandwich panels optimization model. • Sandwich panels design procedure. • Study of sandwich panels for automotive vehicle flooring. • Study of sandwich panels for truck cabin exterior. - Abstract: The future of automotive industry faces many challenges in meeting increasingly strict restrictions on emissions, energy usage and recyclability of components alongside the need to maintain cost competiveness. Weight reduction through innovative design of components and proper material selection can have profound impact towards attaining such goals since most of the lifecycle energy usage occurs during the operation phase of a vehicle. In electric and hybrid vehicles, weight reduction has another important effect of extending the electric mode driving range between stops or gasoline mode. This paper adopts parametric models for design optimization and material selection of sandwich panels with the objective of weight and cost minimization subject to structural integrity constraints such as strength, stiffness and buckling resistance. The proposed design procedure employs a pre-compiled library of candidate sandwich panel material combinations, for which optimization of the layered thicknesses is conducted and the best one is reported. Example demonstration studies from the automotive industry are presented for the replacement of Aluminum and Steel panels with polypropylene-filled sandwich panel alternatives

  18. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel: Comparison of In- and Out-of-Autoclave Facesheet Configurations

    Science.gov (United States)

    Pineda, Evan Jorge; Myers, David E.; Kosareo, Daniel N.; Zalewski, Bart F.; Kellas, Sotiris; Dixon, Genevieve D.; Krivanek, Thomas M.; Gyekenyesi, Thomas G.

    2014-01-01

    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle, were manufactured and tested under the NASA Composites for Exploration and the NASA Constellation Ares V programs. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.0 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections and tested under compressive loading. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yielded good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional effects on the compressive response of the panel.

  19. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    Science.gov (United States)

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  20. A Comparative Study of the Analysis, Numerical Modelling and Experimental Test on a Sandwich Panel with Plane and Profiled Facings

    Directory of Open Access Journals (Sweden)

    Raluca Hohan

    2010-01-01

    Full Text Available Sandwich panels are remarkable products because they can be as strong as a solid material but with less weight. The analysis that is required to predict the stresses and deflections in panels with flat or lightly profiled facings is that of conventional beam theory but with the addition of shear deformation. Knowing that the profiled sheets bring an increase of the flexural stiffness, formulas showing the calculus of a panel with flat and profiled facings are established. A comparison between the results of a mathematical calculus, an experimental test and a numerical modelling is provided.

  1. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  2. Experimental investigation of interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J.H.; Berggreen, Christian

    2017-01-01

    A recently proposed face-sheet–core interface crack arresting device is implemented in sandwich beams and tested using the Sandwich Tear Test configuration. Fatigue loading conditions are applied to propagate the crack and determine the effect of the crack stopper on the fatigue growth rate and a...

  3. Geometry effect on the behaviour of single and glue-laminated glass fibre reinforced polymer composite sandwich beams loaded in four-point bending

    International Nuclear Information System (INIS)

    Awad, Ziad K.; Aravinthan, Thiru; Manalo, Allan

    2012-01-01

    Highlights: ► Investigated the behaviour of single and glue-laminated GFRP sandwich beam. ► Effect of shear span to depth was a key factor affecting the overall behaviour. ► Comparison with prediction models gave reasonable results in specific regions. ► A failure map was developed to identify the shear and flexural failures of panels. -- Abstract: The research investigated the behaviour of single and glue laminated glass fibre reinforced polymer (GFRP) composite sandwich beams considering different spans and beam cross sections. The composite sandwich beams with different thicknesses (1, 2, 3, 4, and 5 sandwich layers) have been tested in four-point static flexural test with different shear span to depth ratio (a/d). The a/d ratios showed a direct effect on the flexural and shear behaviour. The capacity of the beam decreased with increasing a/d. Various failure modes were observed including core crushing, core shear, and top skin compression failure. The failure mode map developed based on the experimental finding and analytical prediction indicated that the failure mode is affected by the a/d with the number of glue laminated panels.

  4. Buckling analysis of SMA bonded sandwich structure – using FEM

    Science.gov (United States)

    Katariya, Pankaj V.; Das, Arijit; Panda, Subrata K.

    2018-03-01

    Thermal buckling strength of smart sandwich composite structure (bonded with shape memory alloy; SMA) examined numerically via a higher-order finite element model in association with marching technique. The excess geometrical distortion of the structure under the elevated environment modeled through Green’s strain function whereas the material nonlinearity counted with the help of marching method. The system responses are computed numerically by solving the generalized eigenvalue equations via a customized MATLAB code. The comprehensive behaviour of the current finite element solutions (minimum buckling load parameter) is established by solving the adequate number of numerical examples including the given input parameter. The current numerical model is extended further to check the influence of various structural parameter of the sandwich panel on the buckling temperature including the SMA effect and reported in details.

  5. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    Science.gov (United States)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  6. The effect of transverse shear on the face sheets failure modes of sandwich beams loaded in three points bending

    OpenAIRE

    BOUROUIS FAIROUZ; MILI FAYCAL

    2012-01-01

    Sandwich beams loaded in three points bending may fail in several ways including tension or compression failure of facings. In this paper , The effect of the transverse shear on the face yielding and face wrinkling failure modes of sandwich beams loaded in three points bending have been studied, the beams were made of various composites materials carbon/epoxy, kevlar/epoxy, glass/epoxy at sequence [+θ/-θ]3s, [0°/90°]3s. . The stresses in the face were calculated using maximum stress criterion...

  7. Design and manufacturing of bio-based sandwich structures

    CSIR Research Space (South Africa)

    John, Maya J

    2017-03-01

    Full Text Available The aim of this chapter is to discuss the design and manufacturing of bio-based sandwich structures. As the economic advantages of weight reduction have become mandatory for many advanced industries, bio-based sandwich panels have emerged...

  8. Experimental Validation of the Transverse Shear Behavior of a Nomex Core for Sandwich Panels

    Science.gov (United States)

    Farooqi, M. I.; Nasir, M. A.; Ali, H. M.; Ali, Y.

    2017-05-01

    This work deals with determination of the transverse shear moduli of a Nomex® honeycomb core of sandwich panels. Their out-of-plane shear characteristics depend on the transverse shear moduli of the honeycomb core. These moduli were determined experimentally, numerically, and analytically. Numerical simulations were performed by using a unit cell model and three analytical approaches. Analytical calculations showed that two of the approaches provided reasonable predictions for the transverse shear modulus as compared with experimental results. However, the approach based upon the classical lamination theory showed large deviations from experimental data. Numerical simulations also showed a trend similar to that resulting from the analytical models.

  9. Fire Behavior of Rigid Polyurethane Foam and Metal Faced Polyurethane Sandwich Panels and Its Fire Hazard Assessment

    Directory of Open Access Journals (Sweden)

    S. Bakhtiyari

    2009-12-01

    Full Text Available Reaction to fire of fire-retarded rigid PUR foams and two types of metal faced rigid polyurethane foam core sandwich panel was evaluated by using cone calorimeter test method. The tests were carried out in various radiative heat fluxes from 15 to 75 kW/m2. The radiation rate effect on reaction to fire parameters, including time to ignition (TTI, peak of heat release rate (PRHR, total heat release (THR, average heat release rate (Av.RHR and average heat of combustion (Av.EHC was investigated. The phenomenon of char forming, when the foam is exposed to heat, leads to the formation of a protective layer on the surface of foam and hence no direct relation exists between Av.RHR and average specific mass loss rate (Av.Spec.MLR of foam with increased radiation rate. In addition, the increased PRHR with foam density was also very smooth. The relation between TTI and heat flux was investigated for the foam and its corresponding correlation has been achieved with a specified density. Fire hazard assessment of foams and sandwitch panels was carried out by adopting Petrella and Richardson fire risk classification methods. The assessment results showed that rigid PUR foam and PUR sandwich panels may have a high contribution to bring the room to critical flashover condition, but the risk is intermediate from the viewpoint of fire endurance. The reasons of these risk levels are attributed to a very short TTI, relative high PRHR and an intermediate amount of THR. Decrease in foam density reduces heat release but it shows no significant effect on reducing flashover hazard.

  10. Low Velocity Impact Properties of Aluminum Foam Sandwich Structural Composite

    Directory of Open Access Journals (Sweden)

    ZHAO Jin-hua

    2018-01-01

    Full Text Available Sandwich structural composites were prepared by aluminum foam as core materials with basalt fiber(BF and ultra-high molecular weight polyethylene(UHMWPE fiber composite as faceplate. The effect of factors of different fiber type faceplates, fabric layer design and the thickness of the corematerials on the impact properties and damage mode of aluminum foam sandwich structure was studied. The impact properties were also analyzed to compare with aluminum honeycomb sandwich structure. The results show that BF/aluminum foam sandwich structural composites has bigger impact damage load than UHMWPE/aluminum foam sandwich structure, but less impact displacement and energy absorption. The inter-layer hybrid fabric design of BF and UHMWPE has higher impact load and energy absorption than the overlay hybrid fabric design faceplate sandwich structure. With the increase of the thickness of aluminum foam,the impact load of the sandwich structure decreases, but the energy absorption increases. Aluminum foam sandwich structure has higher impact load than the aluminum honeycomb sandwich structure, but smaller damage energy absorption; the damage mode of aluminum foam core material is mainly the fracture at the impact area, while aluminum honeycomb core has obvious overall compression failure.

  11. Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.

    Science.gov (United States)

    Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun

    2013-01-01

    The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.

  12. Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads

    Science.gov (United States)

    Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik

    2014-02-01

    An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.

  13. Development of Aircraft Sandwich Parts

    Directory of Open Access Journals (Sweden)

    J. Křena

    2000-01-01

    Full Text Available The presented paper shows the design and development process of sandwich parts. A spoiler plate and a main landing gear door are developed. Sandwich parts are made of C/E composite facings and a foam core. FE models have been used for optimization of structures. Emphasis has been placed on deformations of parts under a few load cases. Experimental tests have been used for a verification of structure parts loaded by concentrated forces.

  14. Performance of patch repaired composite panels under fatigue loads

    International Nuclear Information System (INIS)

    Darwish, Feras H.; Hamoush, S.; Shivakumar, K.

    2006-01-01

    This paper evaluates the performance of bonded patch-scarf repairs of full scale laminated composite panels under cyclic load conditions. Nondestructive testing to characterize the quality of repairs and destructive testing to evaluate the performance of repaired panels were used in this study. Carbon/Epoxy prepreg material used was used to lay up six-ply (12 in. x 27 in. /305x686mm) (-60/60/0) s quasi-isotropic laminates. 7-ply scarf repair with a gradient of 0.5 inch (12.7mm) per layer was used to perform the repair of a damaged zone. The patch consisted of 7.5 inches (190mm) diameter adhesive film, 1 inch (25.4mm) diameter filler ply at 90fiber orientation, and six plies (2-7 inches (51-178mm) diameter) to match the lay-up of the parent material. The study was extended to include defective repairs. The defect was engineered by inserting a 1 inch (25.4 mm) circular Teflon flaw between the fifth and sixth layers of the patch. A total of 28 panels were prepared and divided into five categories: (1) three pristine panels (undamaged parental materials); (2) three damaged panels (1-inch-centered-hole); (3) two repaired panels with wrong fiber orientation; (4) nine good repaired panels, and (5) eleven defective repair panels (1 inch flaw). A nondestructive evaluation to check the conditions of the repairs was performed on most of the tested panels that include the pulse-echo C-scan and pseudo through transmission air coupled and water coupled C-scan. Based on the results of the experimental evaluation of this study, good repair restored 95% of the tensile strength while defective repair restored 90% of the tensile strength of the pristine panels. Under fatigue loading, panels repaired with a 1 inch delamination flaw within the patch layers showed a major reduction in fatigue life compared to the good repair panels under similar loading conditions. (author)

  15. Influence of reinforcement type on the mechanical behavior and fire response of hybrid composites and sandwich structures

    Science.gov (United States)

    Giancaspro, James William

    Lightweight composites and structural sandwich panels are commonly used in marine and aerospace applications. Using carbon, glass, and a host of other high strength fiber types, a broad range of laminate composites and sandwich panels can be developed. Hybrid composites can be constructed by laminating multiple layers of varying fiber types while sandwich panels are manufactured by laminating rigid fiber facings onto a lightweight core. However, the lack of fire resistance of the polymers used for the fabrication remains a very important problem. The research presented in this dissertation deals with an inorganic matrix (Geopolymer) that can be used to manufacture laminate composites and sandwich panels that are resistant up to 1000°C. This dissertation deals with the influence of fiber type on the mechanical behavior and the fire response of hybrid composites and sandwich structures manufactured using this resin. The results are categorized into the following distinct studies. (i) High strength carbon fibers were combined with low cost E-glass fibers to obtain hybrid laminate composites that are both economical and strong. The E-glass fabrics were used as a core while the carbon fibers were placed on the tension face and on both tension and compression faces. (ii) Structural sandwich beams were developed by laminating various types of reinforcement onto the tension and compression faces of balsa wood cores. The flexural behavior of the beams was then analyzed and compared to beams reinforced with organic composite. The effect of core density was evaluated using oak beams reinforced with inorganic composite. (iii) To measure the fire response, balsa wood sandwich panels were manufactured using a thin layer of a fire-resistant paste to serve for fire protection. Seventeen sandwich panels were fabricated and tested to measure the heat release rates and smoke-generating characteristics. The results indicate that Geopolymer can be effectively used to fabricate both

  16. Fabrication and Testing of Carbon Fiber, Graphite-Epoxy Panels for Submillimeter Telescope Use

    Science.gov (United States)

    Rieger, H.; Helwig, G.; Parks, R. E.; Ulich, B. L.

    1983-12-01

    An experimental carbon-fiber, graphite-epoxy, aluminum Flexcore sandwich panel roughly 1-m square was made by Dornier System, Friedrichshafen, West Germany. The panel was a pre-prototype of the panels to be used in the dish of the 10-m diameter Sub-Millimeter Telescope, a joint project of the Max-Planck-Institute fur Radioastronomie, Bonn, West Germany, and Steward Observatory, the University of Arizona in Tucson. This paper outlines the fabrication process for the panel and indicates the surface accuracy of the panel replication process. To predict the behavior of the panel under various environmental loads, the panel was modeled structurally using anisotropic elements for the core material. Results of this analysis along with experimental verification of these predictions are also given.

  17. Dispersion of Lamb waves in a honeycomb composite sandwich panel.

    Science.gov (United States)

    Baid, Harsh; Schaal, Christoph; Samajder, Himadri; Mal, Ajit

    2015-02-01

    Composite materials are increasingly being used in advanced aircraft and aerospace structures. Despite their many advantages, composites are often susceptible to hidden damages that may occur during manufacturing and/or service of the structure. Therefore, safe operation of composite structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost effective method for defects monitoring in advanced structures due to their long propagation range and their sensitivity to defects in their propagation path. In this paper, some of the useful properties of guided Lamb type waves are investigated, using analytical, numerical and experimental methods, in an effort to provide the knowledge base required for the development of viable structural health monitoring systems for composite structures. The laboratory experiments involve a pitch-catch method in which a pair of movable transducers is placed on the outside surface of the structure for generating and recording the wave signals. The specific cases considered include an aluminum plate, a woven composite laminate and an aluminum honeycomb sandwich panel. The agreement between experimental, numerical and theoretical results are shown to be excellent in certain frequency ranges, providing a guidance for the design of effective inspection systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Blast-Resistant Improvement of Sandwich Armor Structure with Aluminum Foam Composite

    OpenAIRE

    Yang, Shu; Qi, Chang

    2013-01-01

    Sandwich armor structures with aluminum foam can be utilized to protect a military vehicle from harmful blast load such as a landmine explosion. In this paper, a system-level dynamic finite element model is developed to simulate the blast event and to evaluate the blast-resistant performance of the sandwich armor structure. It is found that a sandwich armor structure with only aluminum foam is capable of mitigating crew injuries under a moderate blast load. However, a severe blast load causes...

  19. Buckling Analysis of Edge Cracked Sandwich Plate

    Directory of Open Access Journals (Sweden)

    Rasha Mohammed Hussein

    2016-07-01

    Full Text Available This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.

  20. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    Science.gov (United States)

    Azmi, M. A.; Abdullah, H. Z.; Idris, M. I.

    2013-12-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction.

  1. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    International Nuclear Information System (INIS)

    Azmi, M A; Abdullah, H Z; Idris, M I

    2013-01-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction

  2. Packaging, deployment, and panel design concepts for a truss-stiffened 7-panel precision deployable reflector with feed boom

    Science.gov (United States)

    Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.

    1993-01-01

    A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.

  3. Robust control investigations for equipment loaded panels

    DEFF Research Database (Denmark)

    Aglietti, G.S.; Langley, R.S.; Rogers, E.

    1998-01-01

    This paper develops a modelling technique for equipment load panels which directly produces (adequate) models of the underlying dynamics on which to base robust controller design/evaluations. This technique is based on the use of the Lagrange's equations of motion and the resulting models...

  4. Experimental study on the seismic performance of new sandwich masonry walls

    Science.gov (United States)

    Xiao, Jianzhuang; Pu, Jie; Hu, Yongzhong

    2013-03-01

    Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer. New types of sandwich walls are continually being introduced in research and applications, and due to their unique bond patterns, experimental studies have been performed to investigate their mechanical properties, especially with regard to their seismic performance. In this study, three new types of sandwich masonry wall have been designed, and cyclic lateral loading tests were carried out on five specimens. The results showed that the specimens failed mainly due to slippage along the bottom cracks or the development of diagonal cracks, and the failure patterns were considerably influenced by the aspect ratio. Analysis was undertaken on the seismic response of the new walls, which included ductility, stiffness degradation and energy dissipation capacity, and no obvious difference was observed between the seismic performance of the new walls and traditional walls. Comparisons were made between the experimental results and the calculated results of the shear capacity. It is concluded that the formulas in the two Chinese codes (GB 50011 and GB 50003) are suitable for the calculation of the shear capacity for the new types of walls, and the formula in GB 50011 tends to be more conservative.

  5. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    Science.gov (United States)

    Lares, Alan

    Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the

  6. The procurement and testing of the stainless steel in-vessel panels of the Wendelstein 7-X Stellarator

    International Nuclear Information System (INIS)

    Peacock, A.; Girlinger, A.; Vorkoeper, A.; Boscary, J.; Greuner, H.; Hurd, F.; Mendelevitch, B.; Pirsch, H.; Stadler, R.; Zangl, G.

    2011-01-01

    320 In-vessel water cooled stainless steel panels, poloidal closure plates and pumping gap panels, covering an area of approximately 100 m 2 , are used in Wendelstein7-X to protect the plasma vessel. The panels are manufactured at Deggendorf, Germany by MAN Diesel and Turbo SE. The panels consist of a laser welded sandwich of stainless steel plates together with a labyrinth of cooling channels and have a complicated geometry to fit the plasma vessel of Wendelstein 7-X. The hydraulic and mechanical stability requirements whilst maintaining the tight tolerances for the shape of the components are very demanding. The panels are designed to operate at up to an average heat load of 100 kW/m 2 and a maximum heat load of 200 kW/m 2 with a water velocity of approximately 2 m s -1 . High heat flux testing of an un-cooled panel at a time averaged load of 200 kW/m 2 for 10 s were successfully performed to support the start up phase of Wendelstein 7-X operation. Extensive testing both during manufacture and after delivery to IPP-Garching demonstrates the suitability of the delivered panels for their purpose.

  7. Creep of sandwich beams with metallic foam cores

    International Nuclear Information System (INIS)

    Kesler, O.; Crews, L.K.; Gibson, L.J.

    2003-01-01

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis

  8. Creep of sandwich beams with metallic foam cores

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Crews, L.K.; Gibson, L.J

    2003-01-20

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis.

  9. Stressed skin panels

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2001-07-01

    Advantages and disadvantages of stressed skin panels, also known as structural insulated panels (SIPs), are discussed as material and labour-saving alternatives to traditional stick framing. Stressed skin panels are manufactured 'sandwich' assemblies with a rigid insulating polystyrene foam core, whose interior and exterior surfaces are bonded into panels. The skins distribute and carry the structural loading while the bonded foam core provides insulation and keeps the two skins aligned. Since there are fewer framing members, there is little thermal bridging and the R-value remains high. SIPs are usually manufactured in four feet by eight feet panels, although some manufacturers can produce panels up to eight feet by forty feet. SIPs are resource efficient as they use less wood than conventional framing (about 25 per cent less); can structurally cover large spans, requiring less supplementary framing. Use of SIPs eliminate the need for headers over small openings; provide the ability to nail anywhere; create less scrap and waste; lessen vulnerability to unfavourable weather and other job-site hazards, can reduce delays, and often can produce significant savings in material and labour costs. Limitations include the more complex approaches to plumbing and electrical systems, although this can be minimized by designers by incorporating much of the plumbing and electrical work on interior (non-panel) walls. Most stressed skin panels require one-half inch interior gypsum drywall. If become wet, stressed skin panels take a long time to dry out and may harbour mold growth. Larger stressed-skin panels used in floors and roofs, may require cranes or other machinery for handling because of their weight. Although not without some environmental impact, overall, stressed skin panels are judged to be a resource-efficient building technology with significant energy-efficiency benefits and distinct advantages over stick framing. 3 photos.

  10. Carbon footprint hotspots of prefabricated sandwich panels for hostel construction in Perlis

    Science.gov (United States)

    Razali, Norashikin; Ayob, Afizah; Chandra, Muhammad Erwan Shah; Zaki, Mohd Faiz Mohammad; Ahmad, Abdul Ghapar

    2017-10-01

    Sustainable design and construction have gained increasing research interest, and reduction of carbon from building construction has become the main focus of environmental strategies in Malaysia. This study uses life cycle assessment and life cycle inventory analysis frameworks to estimate the amount of carbon footprint expressed in carbon dioxide equivalent tons (CO2e) produced by manufacturing prefabricated Industrialized Building System sandwich panels and its installation for a five-story hostel in Perlis, Malaysia. Results show that the carbon footprint hotspots were centered on boiler machine operation and cement with 4.52 and 369.04 tons CO2e, respectively. This finding is due to the extensive energy used for steam heating and high engine rating for the boiler. However, for cement, the carbon footprint hotspots are caused by the large quantity of cement applied in shotcrete mixture and its high extraction and production CO2 emission values. The overall onsite materials generated 96.36% of the total carbon footprint. These carbon footprint hotspot results constitute a necessary base for the Malaysian government in accomplishing an adequate dimensioning of carbon emissions in the building sector.

  11. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II: Proposal of a method to use shell element model

    Directory of Open Access Journals (Sweden)

    Jae Woong Kim

    2014-06-01

    Full Text Available I-core sandwich panel that has been used more widely is assembled using high power CO2 laser welding. Kim et al. (2013 proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

  12. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

    Directory of Open Access Journals (Sweden)

    Kim Jae Woong

    2014-06-01

    Full Text Available I-core sandwich panel that has been used more widely is assembled using high power CO₂laser welding. Kim et al. (2013 proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

  13. The procurement and testing of the stainless steel in-vessel panels of the Wendelstein 7-X Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, A., E-mail: alan.peacock@ipp.mpg.de [European Commission c/o Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Girlinger, A. [MAN Diesel and Turbo SE D-94469 Deggendorf (Germany); Vorkoeper, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 17491 Greifswald (Germany); Boscary, J.; Greuner, H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Hurd, F. [European Commission c/o Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Mendelevitch, B.; Pirsch, H.; Stadler, R.; Zangl, G. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany)

    2011-10-15

    320 In-vessel water cooled stainless steel panels, poloidal closure plates and pumping gap panels, covering an area of approximately 100 m{sup 2}, are used in Wendelstein7-X to protect the plasma vessel. The panels are manufactured at Deggendorf, Germany by MAN Diesel and Turbo SE. The panels consist of a laser welded sandwich of stainless steel plates together with a labyrinth of cooling channels and have a complicated geometry to fit the plasma vessel of Wendelstein 7-X. The hydraulic and mechanical stability requirements whilst maintaining the tight tolerances for the shape of the components are very demanding. The panels are designed to operate at up to an average heat load of 100 kW/m{sup 2} and a maximum heat load of 200 kW/m{sup 2} with a water velocity of approximately 2 m s{sup -1}. High heat flux testing of an un-cooled panel at a time averaged load of 200 kW/m{sup 2} for 10 s were successfully performed to support the start up phase of Wendelstein 7-X operation. Extensive testing both during manufacture and after delivery to IPP-Garching demonstrates the suitability of the delivered panels for their purpose.

  14. Characterisation of fluid-structure interaction for water impact of composite panels

    Directory of Open Access Journals (Sweden)

    M Battley

    2016-09-01

    Full Text Available Hydrodynamic loads can be very significant for high performance marine vessels. Water impact of panels, known as "slamming", typically generates high magnitude short duration pressure pulses that move across the structure. In the case of compliant panels there can be significant coupling between the pressures and the structural responses. While there has been significant development of numerical methods to simulate this type of fluid-structure interaction there is only very limited experimental data available for validation of the simulation approaches. This paper describes an experimental study of sandwich composite panels subjected to water slamming impacts. The results demonstrate that compliant panels subjected to water slamming impacts experience different pressures than rigid panels, and have different structural responses than predicted by traditional uniform pressure based analysis approaches. The study also characterizes the significant effects that the dimensions of pressure transducers and data acquisition sampling rates have on the measured pressures.

  15. Sound transmission through lined, composite panel structures: Transversely isotropic poro-elastic model

    Science.gov (United States)

    Kim, Jeong-Woo

    A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a

  16. The Effect of Face Sheet Wrinkle Defects on the Strength of FRP Sandwich Structures

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Pettersson, Robert

    2007-01-01

    . In the studies reported here, the influence of wrinkle defects on the in-plane compressive strength of quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates used in PVC foam-cored sandwich panels has been investigated by three approaches: testing of sandwich beam specimens in four-point bending...

  17. Blast protection of infrastructure using advanced composites

    Science.gov (United States)

    Brodsky, Evan

    This research was a systematic investigation detailing the energy absorption mechanisms of an E-glass web core composite sandwich panel subjected to an impulse loading applied orthogonal to the facesheet. Key roles of the fiberglass and polyisocyanurate foam material were identified, characterized, and analyzed. A quasi-static test fixture was used to compressively load a unit cell web core specimen machined from the sandwich panel. The web and foam both exhibited non-linear stress-strain responses during axial compressive loading. Through several analyses, the composite web situated in the web core had failed in axial compression. Optimization studies were performed on the sandwich panel unit cell in order to maximize the energy absorption capabilities of the web core. Ultimately, a sandwich panel was designed to optimize the energy dissipation subjected to through-the-thickness compressive loading.

  18. Shear and foundation effects on crack root rotation and mode-mixity in moment- and force-loaded single cantilever beam sandwich specimen

    DEFF Research Database (Denmark)

    Saseendran, Vishnu; Carlsson, Leif A.; Berggreen, Christian

    2017-01-01

    Foundation effects play a crucial role in sandwich fracture specimens with a soft core. Accurate estimation of deformationcharacteristics at the crack front is vital in understanding compliance, energy release rate and mode-mixity infracture test specimens. Beam on elastic foundation analysis...... modulus is proposed that closely agrees with the numerical compliance and energy release rate results forall cases considered. An analytical expression for crack root rotation of the loaded upper face sheet provides consistentresults for both loading configurations. For the force-loaded single cantilever...

  19. Face/core interface fracture characterization of mixed mode bending sandwich specimens

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, L.A.

    2011-01-01

    and PVC H45, H100 and H250 foam core materials were evaluated. A methodology to perform precracking on fracture specimens in order to achieve a sharp and representative crack front is outlined. The mixed mode loading was controlled in the mixed mode bending (MMB) test rig by changing the loading......Debonding of the core from the face sheets is a critical failure mode in sandwich structures. This paper presents an experimental study on face/core debond fracture of foam core sandwich specimens under a wide range of mixed mode loading conditions. Sandwich beams with E‐glass fibre face sheets...... application point (lever arm distance). Finite element analysis was performed to determine the mode‐mixity at the crack tip. The results showed that the face/core interface fracture toughness increased with increased mode II loading. Post failure analysis of the fractured specimens revealed that the crack...

  20. Effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2017-01-01

    Full Text Available Sandwich structure is an attractive alternative that increasingly used in the transportation and aerospace industry. Corrugated-core with trapezoidal shape allows enhancing the damage resistance to the sandwich structure, but on the other hand, it changes the structural response of the sandwich structure. The aim of this paper is to study the effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure under compression loading. The corrugated-core specimen was fabricated using press technique, following the shape of trapezoidal shape. Two different materials were used in the study, glass fibre reinforced plastic (GFRP and carbon fibre reinforced plastic (CFRP. The result shows that the mechanical properties of the core in compression loading are sensitive to the variation of a number of unit cells and the core thickness.

  1. Supersonic Panel Flutter Test Results for Flat Fiber-Glass Sandwich Panels with Foamed Cores

    Science.gov (United States)

    Tuovila, W. J.; Presnell, John G., Jr.

    1961-01-01

    Flutter tests have been made on flat panels having a 1/4 inch-thick plastic-foam core covered with thin fiber-glass laminates. The testing was done in the Langley Unitary Plan wind tunnel at Mach numbers from 1.76 t o 2.87. The flutter boundary for these panels was found to be near the flutter boundary of thin metal panels when compared on the basis of an equivalent panel stiffness. The results also demonstrated that the depth of the cavity behind the panel has a pronounced influence on flutter. Changing the cavity depth from 1 1/2 inches to 1/2 inch reduced the dynamic pressure at start of flutter by 40 percent. No flutter was obtained when the spacers on the back of the panel were against the bottom of the cavity.

  2. Web buckling behavior under in-plane compression and shear loads for web reinforced composite sandwich core

    Science.gov (United States)

    Toubia, Elias Anis

    Sandwich construction is one of the most functional forms of composite structures developed by the composite industry. Due to the increasing demand of web-reinforced core for composite sandwich construction, a research study is needed to investigate the web plate instability under shear, compression, and combined loading. If the web, which is an integral part of the three dimensional web core sandwich structure, happens to be slender with respect to one or two of its spatial dimensions, then buckling phenomena become an issue in that it must be quantified as part of a comprehensive strength model for a fiber reinforced core. In order to understand the thresholds of thickness, web weight, foam type, and whether buckling will occur before material yielding, a thorough investigation needs to be conducted, and buckling design equations need to be developed. Often in conducting a parametric study, a special purpose analysis is preferred over a general purpose analysis code, such as a finite element code, due to the cost and effort usually involved in generating a large number of results. A suitable methodology based on an energy method is presented to solve the stability of symmetrical and specially orthotropic laminated plates on an elastic foundation. Design buckling equations were developed for the web modeled as a laminated plate resting on elastic foundations. The proposed equations allow for parametric studies without limitation regarding foam stiffness, geometric dimensions, or mechanical properties. General behavioral trends of orthotropic and symmetrical anisotropic plates show pronounced contribution of the elastic foundation and fiber orientations on the buckling resistance of the plate. The effects of flexural anisotropy on the buckling behavior of long rectangular plates when subjected to pure shear loading are well represented in the model. The reliability of the buckling equations as a design tool is confirmed by comparison with experimental results

  3. Honeycomb metal panel

    International Nuclear Information System (INIS)

    1979-01-01

    Product constituted by a honeycomb metal panel that can be employed to advantage for manufacturing lagging by sandwiching it between two plane sheets, utilized in particular in the nuclear industry where lagging has to have a very long life strength. The honeycomb metal panel is made of an expanded metal extrusion previously cut so as to form, after additional drawing, a honeycomb structure with square or rectangular cells with a plane surface [fr

  4. The Fluid-Solid Interaction Dynamics between Underwater Explosion Bubble and Corrugated Sandwich Plate

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2016-01-01

    Full Text Available Lightweight sandwich structures with highly porous 2D cores or 3D (three-dimensional periodic cores can effectively withstand underwater explosion load. In most of the previous studies of sandwich structure antiblast dynamics, the underwater explosion (UNDEX bubble phase was neglected. As the UNDEX bubble load is one of the severest damage sources that may lead to structure large plastic deformation and crevasses failure, the failure mechanisms of sandwich structures might not be accurate if only shock wave is considered. In this paper, detailed 3D finite element (FE numerical models of UNDEX bubble-LCSP (lightweight corrugated sandwich plates interaction are developed by using MSC.Dytran. Upon the validated FE model, the bubble shape, impact pressure, and fluid field velocities for different stand-off distances are studied. Based on numerical results, the failure modes of LCSP and the whole damage process are obtained. It is demonstrated that the UNDEX bubble collapse jet local load plays a more significant role than the UNDEX shock wave load especially in near-field underwater explosion.

  5. Design Analysis of the Mixed Mode Bending Sandwich Specimen

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    A design analysis of the mixed mode bending (MMB) sandwich specimen for face–core interface fracture characterization is presented. An analysis of the competing failure modes in the foam cored sandwich specimens is performed in order to achieve face–core debond fracture prior to other failure modes...... for the chosen geometries and mixed mode loading conditions....

  6. Effect of nanomodified polyester resin on hybrid sandwich laminates

    International Nuclear Information System (INIS)

    Anbusagar, NRR.; Giridharan, P.K.; Palanikumar, K.

    2014-01-01

    Highlights: • Effect of nanomodified polyester resin on hybrid sandwich laminates is evaluated. • The hybrid sandwich laminates are fabricated with varying wt% of nanoclay. • Flexural, impact and moisture absorbtion properties are evaluated for hybrid composites. • Scanning electron microscopy is utilized to analyze the dispersion of clay and fractured surfaces of the nanocomposites. - Abstract: Effect of nanoclay modified polyester resin on flexural, impact, hardness and water absorption properties of untreated woven jute and glass fabric hybrid sandwich laminates have been investigated experimentally. The hybrid sandwich laminates are prepared by hand lay-up manufacturing technique (HL) for investigation. All hybrid sandwich laminates are fabricated with a total of 10 layers, by varying the extreme layers and wt% of nanoclay in polyester resin so as to obtain four different combinations of hybrid sandwich laminates. For comparison of the composite with hybrid composite, jute fiber reinforced composite laminate also fabricated. X-ray diffraction (XRD) results obtained from samples with nanoclay indicated that intergallery spacing of the layered clay increases with matrix. Scanning electron microscopy (SEM) gave a morphological picture of the cross-sections and energy dispersive X-ray spectroscopy (EDS) allowed investigating the elemental composition of matrix in composites. The testing results indicated that the flexural properties are greatly increased at 4% of nanoclay loading while impact, hardness and water absorption properties are increased at 6% of nanoclay loading. A plausible explanation for high increase of properties has also been discussed

  7. Fracture Characterization of Sandwich Face/Core Interfaces

    DEFF Research Database (Denmark)

    Manca, Marcello

    of load transfer between the faces and the core layer is lost, the debonds are considered as primary damage initiators. Under fatigue loading the debonds may evolve into cracks that cause a reduction in structural performance and consequent failure. At present most structural design is based on “life-time...... of sandwich structures is defects that are introduced in the manufacturing process. It is inevitable that areas of the face sheets will not fully adhere to the core resulting in defects known as “debonds”. Debonds can also be induced in-service due to e.g. localised impact loading or overloading. As the means...... such result it is important to devise new experimental and analytical techniques to establish the multi-mode fracture characteristics of sandwich plate structures and accordingly develop methods to inhibit defect propagation. This thesis deals with characterization of fracture between face and core...

  8. Buckling driven debonding in sandwich columns

    DEFF Research Database (Denmark)

    Østergaard, Rasmus Christian

    2008-01-01

    results from two mechanisms: (a) interaction of local debond buckling and global buckling and (b) the development of a damaged zone at the debond crack tip. Based on the pronounced imperfection sensitivity, the author predicts that an experimental measurement of the strength of sandwich structures may......A compression loaded sandwich column that contains a debond is analyzed using a geometrically non-linear finite element model. The model includes a cohesive zone along one face sheet/core interface whereby the debond can extend by interface crack growth. Two geometrical imperfections are introduced...

  9. A Debonded Sandwich Specimen Under Mixed Mode Bending (MMB)

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2008-01-01

    Face/core interface crack propagation in sandwich specimens is analyzed. A thorough analysis of the typical failure modes in sandwich composites was performed in order to design the MMB specimen to promote face/core debond fracture. Displacement, compliance and energy release rate expressions...... for the MMB specimen were derived from a superposition analysis. An experimental verification of the methodology proposed was performed using MMB sandwich specimens with H100 PVC foam core and E-glass/polyester non-crimp quadro-axial [0/45/90/-45]s DBLT-850 faces. Different mixed mode loadings were applied...

  10. Failure Investigation of Debonded Sandwich Columns: An Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian; Carlsson, Leif A.

    2009-01-01

    Failure of compression loaded sandwich columns with an implanted through-width face/core debond is examined. Compression tests were conducted on sandwich columns containing implemented face/core debonds. The strains and out-of-plane displacements of the debonded region were monitored using the di...

  11. Compressive Behavior of Frame-Stiffened Composite Panels

    Science.gov (United States)

    Yovanof, Nicolette P.; Jegley, Dawn C.

    2011-01-01

    New technologies are being developed under NASA's Environmentally Responsible Aviation (ERA) Program aimed at reducing fuel burn and emissions in large commercial aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is being developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system is employed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners and producing a more damage tolerant design. In addition, by adding unidirectional carbon rods to the top of stiffeners and minimizing the interference between the sandwich frames and the rod-stiffened stringers, the panel becomes more structurally efficient. This document describes the results of experimentation on a PRSEUS panel in which the frames are loaded in unidirectional compression beyond the local buckling of the skin of a Hybrid Wing Body (HWB) aircraft. A comparison with analytical predictions and the relationship between these test results and the global aircraft design is presented.

  12. Effects of moisture, elevated temperature, and fatigue loading on the behavior of graphite/epoxy buffer strip panels with center cracks

    Science.gov (United States)

    Bigelow, C. A.

    1988-01-01

    The effects of fatigue loading combined with moisture and heat on the behavior of graphite epoxy panels with either Kevlar-49 or S-glass buffer strips were studied. Buffer strip panels, that had a slit in the center to represent damage, were moisture conditioned or heated, fatigue loaded, and then tested in tension to measure their residual strength. The buffer strips were parallel to the loading direction and were made by replacing narrow strips of the 0 deg graphite plies with Kevlar-49 epoxy or S-glass epoxy on a 1-for-1 basis. The panels were subjected to a fatigue loading spectrum. One group of panels was preconditioned by soaking in 60 C water to produce a 1 percent weight gain then tested at room temperature. One group was heated to 82 C during the fatigue loading. Another group was moisture conditioned and then tested at 82 C. The residual strengths of the buffer panels were not highly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panel by 10 to 15 percent below the ambient results. The moisture conditioning did not have a large effect on the Kevlar-49 panels.

  13. Failure analysis of bolted joints in foam-core sandwich composites

    DEFF Research Database (Denmark)

    Zabihpoor, M.; Moslemian, Ramin; Afshin, M.

    2008-01-01

    This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed. These s......This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed...

  14. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

    Directory of Open Access Journals (Sweden)

    Jae Woong Kim

    2013-09-01

    Full Text Available The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power CO2 laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

  15. Effect of Different Concentration of Sodium Hydroxide [NaOH] on Kenaf Sandwich Structures

    Science.gov (United States)

    Aziz, M.; Halim, Z.; Othman, M.

    2018-01-01

    Sandwich panels are structures that made of three layers, low-density core inserted in between thin skin layers. This structures allow the achievement of excellent mechanical performance with low weight, thus this characteristic fulfil requirement to be use in aircraft application. In recent time, sandwich structures have been studied due to it has multifunction properties and lightweight. The aim of this study is to fabricate a composite sandwich structures with biodegradable material for face sheet [skin] where the fibre being treat with different concentration of sodium hydroxide [NaOH] with 10 and 20 hours of soaking time. Kenaf fibre [treated] reinforced epoxy will be used as skins and Nomex honeycomb is chosen to perform as core for this sandwich composite structure. The mechanical properties that are evaluated such as flexural strength and impact energy of kenaf fibre-reinforced epoxy sandwich structures. For flexural test, the optimum flexural strength is 13.4 MPa and impact strength is 18.3 J.

  16. Elevated Temperature, Residual Compressive Strength of Impact-Damaged Sandwich Structure Manufactured Out-of-Autoclave

    Science.gov (United States)

    Grimsley, Brian W.; Sutter, James K.; Burke, Eric R.; Dixon, Genevieve D.; Gyekenyesi, Thomas G.; Smeltzer, Stanley S.

    2012-01-01

    Several 1/16th-scale curved sandwich composite panel sections of a 10 m diameter barrel were fabricated to demonstrate the manufacturability of large-scale curved sections using minimum gauge, [+60/-60/0]s, toughened epoxy composite facesheets co-cured with low density (50 kilograms per cubic meters) aluminum honeycomb core. One of these panels was fabricated out of autoclave (OoA) by the vacuum bag oven (VBO) process using Cycom(Registered Trademark) T40-800b/5320-1 prepreg system while another panel with the same lay-up and dimensions was fabricated using the autoclave-cure, toughened epoxy prepreg system Cycom(Registered Trademark) IM7/977-3. The resulting 2.44 m x 2 m curved panels were investigated by non-destructive evaluation (NDE) at NASA Langley Research Center (NASA LaRC) to determine initial fabrication quality and then cut into smaller coupons for elevated temperature wet (ETW) mechanical property characterization. Mechanical property characterization of the sandwich coupons was conducted including edge-wise compression (EWC), and compression-after-impact (CAI) at conditions ranging from 25 C/dry to 150 C/wet. The details and results of this characterization effort are presented in this paper.

  17. Experimental Study of Stress-Strain Behaviour of Open-Cell Aluminium Foam Sandwich Panel for Automotive Structural Part

    Directory of Open Access Journals (Sweden)

    Nur Asmawiyah Ibrahim

    2017-07-01

    Full Text Available Because of high stiffness and strength to weight ratio, aluminium foam sandwich (AFS has huge advantage in automotive industries in order to reduce the vehicle’s weight which consequently will reduce the fuel consumption. While reducing the weight, AFS must also maintain high strength and durability compared to other competitive materials used which perform same functionalities. AFS had been proved its suitability for industrial application by previous researchers such as in aerospace, automotive and architecture. However, there is still a gap need to be filled in order to expand the use of the AFS in another application. In this paper, the tensile strength of AFS panel made of from aluminium skin sheets and open-cell aluminium foam core with various thickness is investigated. Design of experiment was developed according to JUMP (JMP statistical software and experimental work was done using universal testing machine. The stress-strain behavior was analysed. The result shows that the effect of skin to core ratio is significant on the stress-strain behavior.

  18. Creep of MDF panels under constant load and cyclic environmental conditions. Influence of surface coating

    OpenAIRE

    Fernández-Golfín Seco, J. I.; Díez Barra, M. Rafael

    1997-01-01

    Four different strategies of surface coating (based on 80 g m2 melamin impregnated papers) were used on 19 mm thick commercial MDF panels to assess its reological behaviour under cyclic humidity conditions (20ºC 30 % rh-20ºC 90 % rh). Three different levels of stress (20 %, 30 % and 40 %), based on the ultimate load in bending, were used. Tests were conducted by means of the three points load system. For the same stress level, the relative creep of MDF panels was higher than that in par...

  19. Measurement of shear strength resistance in flexion test on PUR sandwich panels: analysis of difficulties and finite element method simulation

    Directory of Open Access Journals (Sweden)

    J. M. Chillón Moreno

    2017-09-01

    Full Text Available The use of the composite construction elements combining different materials with complementary characteristics, it has spread increasingly. The sandwich panels composed by external metallic sheets that they contributes resistance and core of rigid insulating thermal foam, that provides qualities that improve the thermal comfort inside all kinds of constructions. They are in use in closings and covers that shape the surrounding one of the buildings. Of the different quality controls to which they have to surrender. In this article one proposes an improvement to the indicated one in the procedure for the determination of the resistance to the shear strength, Managing to avoid many anomalous results obtained by the utilization of rigid plates in the supports. Finally, so much the problem observed as the proposed solution, they are modeled and simulate by means of the method of finite elements.

  20. Dynamic instability of imperfect laminated sandwich plates with in-plane partial edge load

    Directory of Open Access Journals (Sweden)

    Anupam Chakrabarti

    Full Text Available Dynamic instability of laminated sandwich plates having inter-laminar imperfections with in-plane partial edge loading is studied for the first time using an efficient finite element plate model. The plate model is based on a refined higher order shear deformation plate theory, where the transverse shear stresses are continuous at the layer interfaces with stress free conditions at plate top and bottom surfaces. A linear spring-layer model is used to model the inter-laminar imperfection by considering in-plane displacement jumps at the interfaces. Interestingly the plate model having all these refined features requires unknowns at the reference plane only. However, this theory requires C1 continuity of transverse displacement (w i.e., w and its derivatives should be continuous at the common edges between two elements, which is difficult to satisfy arbitrarily in any existing finite element. To deal with this, a new triangular element developed by the authors is used in the present paper.

  1. Analyse des structures en sandwich de type panneaux composites renforcés en nanoparticules soumises à un impact mécanique

    OpenAIRE

    RAMAKRISHNAN , Karthik Ram

    2014-01-01

    Sandwich structures are lightweight structures composed of two thin, relatively dense, high strength facesheets that are glued on either side of a thick, low density core, such as foams or honeycombs. Sandwich panels with fibre reinforced plastic skins and core of polymer foam represent an important class of lightweight structural materials in many areas of such as aeronautics and aerospace, automotive and marine structures. However, some of these sandwich structures have very limited energy ...

  2. Measurement of deforming mode of lattice truss structures under impact loading

    Directory of Open Access Journals (Sweden)

    Zhao H.

    2012-08-01

    Full Text Available Lattice truss structures, which are used as a core material in sandwich panels, were widely investigated experimentally and theoretically. However, explanation of the deforming mechanism using reliable experimental results is almost rarely reported, particularly for the dynamic deforming mechanism. The present work aimed at the measurement of the deforming mode of lattice truss structures. Indeed, quasi-static and Split Hopkinson Pressure Bar (SHPB tests have been performed on the tetrahedral truss cores structures made of Aluminum 3003-O. Global values such as crushing forces and displacements between the loading platens are obtained. However, in order to understand the deforming mechanism and to explain the observed impact strength enhancement observed in the experiments, images of the truss core element during the tests are recorded. A method based on the edge detection algorithm is developed and applied to these images. The deforming profiles of one beam are extracted and it allows for calculating the length of beam. It is found that these lengths diminish to a critical value (due to compression and remain constant afterwards (because of significant bending. The comparison between quasi-static and impact tests shows that the beam were much more compressed under impact loading, which could be understood as the lateral inertia effect in dynamic bucking. Therefore, the impact strength enhancement of tetrahedral truss core sandwich panel can be explained by the delayed buckling of beam under impact (more compression reached, together with the strain hardening of base material.

  3. Numerical analysis of sandwich beam with corrugated core under three-point bending

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbeck, Leszek [Poznan University of Technology, Institute of Mathematics Piotrowo Street No. 5, 60-965 Poznan (Poland); Grygorowicz, Magdalena; Paczos, Piotr [Poznan University of Technology, Institute of Applied Mechanics Jana Pawla IIStreet No. 24, 60-965 Poznan (Poland)

    2015-03-10

    The strength problem of sandwich beam with corrugated core under three-point bending is presented.The beam are made of steel and formed by three mutually orthogonal corrugated layers. The finite element analysis (FEA) of the sandwich beam is performed with the use of the FEM system - ABAQUS. The relationship between the applied load and deflection in three-point bending is considered.

  4. Numerical and Experimental Investigation on the Structural Behaviour of a Horizontal Stabilizer under Critical Aerodynamic Loading Conditions

    Directory of Open Access Journals (Sweden)

    R. Sepe

    2017-01-01

    Full Text Available The aim of the proposed research activity is to investigate the mechanical behaviour of a part of aerospace horizontal stabilizer, made of composite materials and undergoing static loads. The prototype design and manufacturing phases have been carried out in the framework of this research activity. The structural components of such stabilizer are made of composite sandwich panels (HTA 5131/RTM 6 with honeycomb core (HRH-10-1/8-4.0; the sandwich skins have been made by means of Resin Transfer Moulding (RTM process. In order to assess the mechanical strength of this stabilizer, experimental tests have been performed. In particular, the most critical inflight recorded aerodynamic load has been experimentally reproduced and applied on the stabilizer. A numerical model, based on the Finite Element Method (FEM and aimed at reducing the experimental effort, has been preliminarily developed to calibrate amplitude, direction, and distribution of an equivalent and simpler load vector to be used in the experimental test. The FEM analysis, performed by using NASTRAN code, has allowed modelling the skins of the composite sandwich plates by definition of material properties and stack orientation of each lamina, while the honeycomb core has been modelled by using an equivalent orthotropic plate. Numerical and experimental results have been compared and a good agreement has been achieved.

  5. Non-Uniform Compressive Strength of Debonded Sandwich Panels

    DEFF Research Database (Denmark)

    Nøkkentved, Alexandros; Lundsgaard-Larsen, Christian; Berggreen, Carl Christian

    2005-01-01

    debonds show a considerable strength reduction with increasing debond diameter, with failure mechanisms varying between fast debond propagation and wrinkling-introduced face compression failure for large and small debonds, respectively. Residual strength predictions are based on intact panel testing...

  6. Integrally rigidized acoustic interior spacecraft panel

    Science.gov (United States)

    1976-01-01

    A sandwich panel concept is described which utilizes a monolithic I-beam design as the core. The core and skins are integrally bonded with thermosetting resin into a homogeneous structure. In addition to possessing a high strength to weight ratio, the panel resists combustion, delamination, aging due to fatigue, localized stresses, and exhibits good acoustic properties. Since the panel concept has definite potential as a high flame retardant and low smoke emission panel with excellent structural integrity, aerospace materials were used to optimize the construction for highly demanding space shuttle applications. The specific materials of construction were chosen for low flammability and off-gassing properties as well as for strength, light weight, and sound dampening.

  7. Non-Uniform Compressive Strength of Debonded Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Simonsen, Bo Cerup

    2005-01-01

    .(2005)., shows that the model is indeed able to predict the failure modes and the residual strength of damaged panels with accuracy sufficient for practical applications. This opens up for a number of important engineering applications, for example risk-based inspection and repair schemes....

  8. Enhanced Performance of Sandwich Structures by Improved Damage Tolerance

    DEFF Research Database (Denmark)

    Martakos, Georgios

    are embedded in both sandwich beam and panel specimens. The experimental observations form the basis for evaluating the efficiency of the proposed crack stopping inserts. For the experiments, Digital Image Correlation (DIC) was used to characterize the measure the local strain fields and overall deformation...... behaviour around the new crack stopper elements. In support for the experimental investigations, a Finite Element (FE) analysis based methodology, including fracture mechanics analysis and the so-called ‘cycle jump’ technique, was developed to predict the progression of damage in sandwich specimens...... concentrations in the foam core material on the back side of the peel stopper. By use of the developed numerical fracture mechanics based modelling tools, both fatigue crack growth and crack arrest in the specimens were simulated. It was shown that the strains responsible for crack re-initiation can...

  9. Sandwich design for ships and railway wagons

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, K.-A. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Aeronautics

    2000-07-01

    In Sweden we have long experience of different types of vehicles and ships in sandwich construction, especially for Navy ships, such as minesweepers, mine-counter-measure-vessels and corvettes. As face materials mostly GRP and FRP have been used, but also metallic materials of Al-alloys, coated carbon steel and stainless steel. Core materials have usually been cellular plastic foams of cross-linked PVC, but also extruded PS, PUR, PEI and PMI. A lot of different continuous and discontinuous manufacturing processes are used. Vacuum assisted infusion is used in the last years, because it is a closed process, gives high fibre content and a good quality of the laminates. Sandwich design has mainly been used in the transportation area, where lightweight design is needed to give higher performance and load bearing capacity. The use of sandwich will give high stiffness- and strength-to weight ratio. These are in most cases not enough from economic point of view, but even other integrated functions must be considered, i.e. insulation, energy consumption, damping, less components, lower manufacturing costs, low maintenance, signature effects (military) etc. (orig.)

  10. Tailoring Sandwich Face/Core Interfaces for Improved Damage Tolerance

    DEFF Research Database (Denmark)

    Lundsgaard-Larsen, Christian; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    Various modifications of the face/core interface in foam core sandwich specimens are examined in a series of two papers. This paper constitutes part I and describes the finite element analysis of a sandwich test specimen, i.e. a DCB specimen loaded by uneven bending moments (DCB-UBM). Using...... this test almost any mode-mixity between pure mode I and mode II can be obtained. A cohesive zone model of the mixed mode fracture process involving large-scale bridging is developed. Results from the analysis are used in Part II, which describes methods and results of a series of experiments....

  11. Face/core debond fatigue crack growth characterization using the sandwich mixed mode bending specimen

    DEFF Research Database (Denmark)

    Manca, Marcello; Quispitupa, Amilcar; Berggreen, Christian

    2012-01-01

    Face/core fatigue crack growth in foam-cored sandwich composites is examined using the mixed mode bending (MMB) test method. The mixed mode loading at the debond crack tip is controlled by changing the load application point in the MMB test fixture. Sandwich specimens were manufactured using H45...... and H100 PVC foam cores and E-glass/polyester face sheets. All specimens were pre-cracked in order to define a sharp crack front. The static debond fracture toughness for each material configuration was measured at different mode-mixity phase angles. Fatigue tests were performed at 80% of the static...

  12. Introduction of a method of constructing heat preventing panels in holds in freezing carrier. Reito unpansen ni okeru sonai bonetsu panel koho no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Kawaki, T; Fujita, H; Yamamoto, K

    1994-06-25

    A freezing carrier is a dedication ship to transport frozen and refrigerated cargoes such as foodstuffs loaded in holds. Ship's heat preventing devices must have the heat insulating structure formed according to complex shapes characteristic to an ocean vessel, and the most part of the work is done by skilled technicians working on the site. Therefore, discussions have been given on a heat preventing structure using a panel construction method aiming at simplifying cross sections to more efficient and uniform shapes, and hold shapes and work in them to more suitable for palletized packaging styles, and improving working environments. The results of the discussions have been applied to two ships for the first time, and the effects have been verified. This paper reports its specifications and construction. The heat preventing panel is a sandwiched composite of a surface material and a polyurethane foam, made to a panel size of about 1 m [times] 2 m. Joints are fixed by fasteners. The present ships have adopted such a form that the side walls are vertical, but the floor area and the clear height are the same as the conventional construction methods. Good heat insulation performance and workability have been verified, and results that are expected of further development have been obtained. 7 figs.

  13. Correlation Results for a Mass Loaded Vehicle Panel Test Article Finite Element Models and Modal Survey Tests

    Science.gov (United States)

    Maasha, Rumaasha; Towner, Robert L.

    2012-01-01

    High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons

  14. Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder

    Science.gov (United States)

    Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.

    2018-01-01

    Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.

  15. Protection of the lung from blast overpressure by stress wave decouplers, buffer plates or sandwich panels.

    Science.gov (United States)

    Sedman, Andrew; Hepper, A

    2018-03-19

    This paper outlines aspects of UK Ministry of Defence's research and development of blast overpressure protection technologies appropriate for use in body armour, with the aim of both propagating new knowledge and updating existing information. Two simple models are introduced not only to focus the description of the mechanism by which the lungs can be protected, but also to provide a bridge between fields of research that may hold the key to further advances in protection technology and related body armour. Protection can be provided to the lungs by decoupling the stress wave transmission into the thorax by managing the blast energy imparted through the protection system. It is proposed that the utility of the existing 'simple decoupler' blast overpressure protection is reviewed in light of recent developments in the treatment of those sustaining both overpressure and fragment injuries. It is anticipated that further advances in protection technology may be generated by those working in other fields on the analogous technologies of 'buffer plates' and 'sandwich panels'. © Crown copyright (2018), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gsi.gov.uk.

  16. Effect of Reinforced Hybrid Palm Shells on Mechanical Properties of Polyurethane-Jute Woven/ Vinyl Ester Sandwich Board

    International Nuclear Information System (INIS)

    Cheng, T.S.; Nurul Ain Nanyan; Lan, D.N.U.; Leng, T.P.

    2014-01-01

    A natural fiber sandwich was constructed from palm shells/polyurethane core and jute woven/vinyl ester face sheets by the in-situ sandwich process (core and panel prepared simultaneously). The polyurethane sandwich core was reinforced by hybrid shell systems of dried palm shell (DPS) and palm kernel shell (PKS) (50P-50D, 25P-75D), and single shell system of PKS (100P) as well as 20 phr empty fruit bunch (EFB) based on hundred part of polyurethane. The sandwich face sheets are prepared by using two jute woven layers and impregnated by vinyl ester. Interlocking between DPS and polyurethane matrix was formed, which hence enhanced the mechanical properties. The interfacial adhesion between DPS, PKS, and EFB with the polyurethane binder played the important role to achieve high mechanical properties. It was found that hybrid shells exhibited high reinforcement for sandwich's performance resulting better compression (50P-50D) and flexural (25P-75D) properties. The single shell 100P showed only improvement on flexural modulus.The fracture surface morphology of sandwich under mechanical test was performed by using optical microscopy. (author)

  17. Fabrication of metallic honeycomb panels for reusable TPS - structures

    International Nuclear Information System (INIS)

    Tabernig, B.; Thierfelder, W.; Alber, H.; Sudmeijer, K.

    2001-01-01

    The manufacturing technology with specific regard to high temperature brazing was developed to fabricate a honeycomb panel consisting of a thin-sectioned PM 2000 core material sandwiched on both sides with PM 1000 face sheets. For brazing the PM 1000 / PM 2000 panel the braze alloy PdNi was selected due to the best oxidation behavior while good mechanical properties and wetting behavior compared with other tested filler alloys. To examine the concept of a hybrid PM 1000/2000 panel as a stiffened skin panel a number of engineering test samples of sub-scale and two full-size panels were fabricated at Plansee AG and supplied to Fokker Space for testing under representative in-service conditions. Engineering tests showed that the test samples were rather insensitive to temperature gradients even at temperature differences between the face sheets of 550 o C. The engineering test samples exhibited no plastic deformation after testing at different heating rates ranging from 5 to 40 o C/s and at temperature profiles representative for two flights. The requirement for the designed application regarding impact properties at low as well as high speed were met. Impact at low speed with an energy of 8 J did not cause any cracks. Hail tests where ice bullets were fired with speeds to 208 m/s at different angles from 25 o to 90 o C against the test piece showed no damage at 25 o and caused slight indentation at 45 o and cracks at 90 o , which demonstrated a good performance for the fly through a hail cloud without any problems. In tests to determine the response of a full-size panel to a number of simulated thermo-mechanical flight load cycles the panel passed 50 cycles successfully without damage. (author)

  18. Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure

    Science.gov (United States)

    Matta, Vidyasagar; Kumar, J. Suresh; Venkataraviteja, Duddu; Reddy, Guggulla Bharath Kumar

    2017-05-01

    This project is concerned with the fabrication and flexural testing of aluminium honey comb sandwich structure which is a special case of composite materials that is fabricated by attaching two thin but stiff skins to a light weight but thick core. The core material is normally low density material but its high thickness provide the sandwich composite with high bonding stiffness. Honeycomb core are classified into two types based on the materials and structures. Hexagonal shape has a unique properties i.e has more bonding strength and less formation time based on the cell size and sheet thickness. Sandwich structure exhibit different properties such as high load bearing capacity at low weight and has excellent thermal insulation. By considering the above properties it has tendency to minimize the structural problem. So honey comb sandwich structure is choosed. The core structure has a different applications such as aircraft, ship interiors, construction industries. As there is no proper research on strength characteristics of sandwich structure. So, we use light weight material to desire the strength. There are different parameters involved in this structure i.e cell size, sheet thickness and core height. In this project we considered 3 level of comparison among the 3 different parameters cell size of 4, 6 and 8 mm, sheet thickness of 0.3, 0.5 and 0.7 mm, and core height of 20,25 and 30 mm. In order to reduce the number of experiment we use taguchi design of experiment, and we select the L8 orthogonal array is the best array for this type of situation, which clearly identifies the parameters by independent of material weight to support this we add the minitab software, to identify the main effective plots and regression equation which involves the individual response and corresponding parameters. Aluminium material is used for the fabrication of Honeycomb sandwich structure among the various grades of aluminium we consider the AL6061 which is light weight material

  19. Effects of debonds and face sheet damage in GRP sandwich panels in naval ships

    DEFF Research Database (Denmark)

    Hayman, B.; Berggreen, Christian; Quispitupa, Amilcar

    2009-01-01

    Sandwich construction with face sheets of fibre-reinforced plastics (FRP) and a core of polymer foam or balsa wood offer a lightweight construction that is well suited to naval and other vessels for high-speed operation or where payload considerations require that the structural weight be minimised...

  20. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    Directory of Open Access Journals (Sweden)

    Liying Jiang

    2011-12-01

    Full Text Available In this work, the problem of a curved functionally graded piezoelectric (FGP actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  1. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure.

    Science.gov (United States)

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-12-12

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g 31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  2. BUCLASP 2: A computer program for instability analysis of biaxially loaded composite stiffened panels and other structures

    Science.gov (United States)

    Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.

    1973-01-01

    The use of the computer program BUCLASP2 is described. The program is intended for linear instability analyses of structures such as unidirectionally stiffened panels. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plant strip elements can be analyzed. The loadings considered are combinations of axial compressive loads and in-plane transverse loads. The two parallel ends of the panel must be simply supported and arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. This manual consists of instructions for use of the program with sample problems, including input and output information. The theoretical basis of BUCLASP2 and correlations of calculated results with known solutions, are presented.

  3. Size-dependent analysis of a sandwich curved nanobeam integrated with piezomagnetic face-sheets

    Directory of Open Access Journals (Sweden)

    Ashraf M. Zenkour

    Full Text Available The aim of this research is to develop nonlocal transient magneto-electro-elastic formulation of a sandwich curved nanobeam including a nano-core and two piezo-magnetic face-sheets subjected to transverse mechanical loads and applied electric and magnetic potentials rest on Pasternak’s foundation. Nonlocal magneto-electro-elastic relations and Hamilton’s principle are used for derivation of the governing equations of motion. The analytical solution based on Fourier solution is presented for a simply-supported sandwich curved nanobeam. The numerical results are presented to investigate influence of significant parameters such as nonlocal parameter, radius of curvature, applied electric and magnetic potentials and two parameters of Pasternak's foundation on the dynamic responses of sandwich curved nanobeam. Keywords: Sandwich curved nanobeam, Dynamic responses, Piezo-magnetic face-sheets, Pasternak’s foundation, Radius of curvature, Nonlocal parameter

  4. System reliability effects in wind turbine blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Friis-Hansen, Peter; Berggreen, Christian

    2012-01-01

    from reliability point of view. The present paper discusses the specifics of system reliability behavior of laminated composite sandwich panels, and solves an example system reliability problem for a glass fiber-reinforced composite sandwich structure subjected to in-plane compression.......Laminated composite sandwich panels have a layered structure, where individual layers have randomly varying stiffness and strength properties. The presence of multiple failure modes and load redistribution following partial failures are the reason for laminated composites to exhibit system behavior...

  5. A Study on Flexural Properties of Sandwich Structures with Fiber/Metal Laminate Face Sheets

    Science.gov (United States)

    Dariushi, S.; Sadighi, M.

    2013-10-01

    In this work, a new family of sandwich structures with fiber metal laminate (FML) faces is investigated. FMLs have benefits over both metal and fiber reinforced composites. To investigate the bending properties of sandwich beams with FML faces and compare with similar sandwich beams with fibrous composite faces, 6 groups of specimen with different layer arrangements were made and tested. Results show that FML faces have good resistance against transverse local loads and minimize stress concentration and local deformations of skin and core under the loading tip. In addition, FML faces have a good integrity even after plateau region of foam cores and prevent from catastrophic failures, which cannot be seen in fibrous composite faces. Also, FML faces are lighter than metal faces and have better connection with foam cores. Sandwich beams with FML faces have a larger elastic region because of simultaneous deformation of top and bottom faces and larger failure strain thanks to good durability of FMLs. A geometrical nonlinear classical theory is used to predict force-deflection behavior. In this model an explicit formula between symmetrical sandwich beams deflections and applied force which can be useful for designers, is derived. Good agreement is obtained between the analytical predictions and experimental results. Also, analytical results are compared with small deformation solution in a parametric study, and the effects of geometric parameters on difference between linear and nonlinear results are discussed.

  6. Performance comparison between silicon solar panel and dye-sensitized solar panel in Malaysia

    Science.gov (United States)

    Hamed, N. K. A.; Ahmad, M. K.; Urus, N. S. T.; Mohamad, F.; Nafarizal, N.; Ahmad, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.

    2017-09-01

    In carrying out experimental research in performance between silicon solar panel and dye-sensitive solar panel, we have been developing a device and a system. This system has been developed consisting of controllers, hardware and software. This system is capable to get most of the input sources. If only need to change the main circuit and coding for a different source input value. This device is able to get the ambient temperature, surface temperature, surrounding humidity, voltage with load, current with load, voltage without load and current without load and save the data into external memory. This device is able to withstand the heat and rain as it was fabricated in a waterproof box. This experiment was conducted to examine the performance of both the solar panels which are capable to maintain their stability and performance. A conclusion based on data populated, the distribution of data for dye-sensitized solar panel is much better than silicon solar panel as dye-sensitized solar panel is very sensitive to heat and not depend only on midday where is that is the maximum ambient temperature for both solar panel as silicon solar panel only can give maximum and high output only when midday.

  7. Fatigue failure of sandwich beams with face sheet wrinkle defects

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Hvejsel, C.F.; Thomsen, Ole Thybo

    2012-01-01

    This paper presents experimental fatigue results for GFRP face sheet/balsa core sandwich beams with face sheet wrinkle defects, subjected to fully reversed in-plane fatigue loading. An estimate of the fatigue design limit is presented, based on static test results, finite element analyses and app...

  8. A Robust Multifunctional Sandwich Panel Design with Trabecular Structures by the Use of Additive Manufacturing Technology for a New De-Icing System

    Directory of Open Access Journals (Sweden)

    Carlo Giovanni Ferro

    2017-06-01

    Full Text Available Anti-ice systems assure a vital on-board function in most aircraft: ice prevention or de-icing is mandatory for all aerodynamic surfaces to preserve their performance, and for all the movable surfaces to allow the proper control of the plane. In this work, a novel multi-functional panel concept which integrates anti-icing directly inside the primary structure is presented. In fact, constructing the core of the sandwich with trabecular non-stochastic cells allows the presence of a heat exchanger directly inside the structure with a savings in weight and an improvement in thermal efficiency. This solution can be realized easily in a single-piece component using Additive Manufacturing (AM technology without the need for joints, gluing, or welding. The objective of this study is to preliminarily investigate the mechanical properties of the core constructed with Selective Laser Melting (SLM; through the Design of Experiment (DOE, different design parameters were varied to understand how they affect the compression behaviour.

  9. Design of X-joints in Sandwich Structures for Naval Vessels

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Lundsgaard-Larsen, Christian

    2007-01-01

    In many naval ships of fibre composite sandwich construction, an X-joint exists where the end bulkhead of the superstructure is attached to the deck, with an internal bulkhead placed in the same vertical plane below the deck. This joint is subjected to alternating tensile and compressive loading...

  10. Interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device – Numerical modelling

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J.H.; Berggreen, Christian

    2017-01-01

    A novel crack arresting device is implemented in foam-cored composite sandwich beams and tested using the Sandwich Tear Test (STT) configuration. A finite element model of the setup is developed, and the predictions are correlated with observations and results from a recently conducted experiment...... concept, as well as a design tool that can be used for the implementation of crack arresting devises in engineering applications of sandwich components and structures....

  11. Tuned Chamber Core Panel Acoustic Test Results

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  12. SIGNS The sandwich sign

    African Journals Online (AJOL)

    The sandwich sign is demonstrated on cross-sectional imaging, commonly on CT or ultrasound. It refers to homogeneous soft- tissue masses representing mesenteric lymphadenopathy as the two halves of a sandwich bun, encasing the mesenteric fat and tubular mesenteric vessels that constitute the 'sandwich filling' (Figs ...

  13. The Effect of Numerical 2D and 3D Fem Element Modelling on Strain and Stress Distributions at Laser Weld Notches in Steel Sandwich Type Panels

    Directory of Open Access Journals (Sweden)

    Niklas Karol

    2018-03-01

    Full Text Available Like other means of transport, merchant ships face the problem of increasing requirements concerning the environment protection, which, among other issues, implies the reduction of fuel consumption by the ship. Here, the conventional approach which consists in making use of higher strength steels to decrease the mass of the ship hull can be complemented by the use of new steel structures of sandwich panel type. However, the lack of knowledge and experience concerning, among other issues, fatigue strength assessment of thin-walled sandwich structures makes their use limited. Untypical welds imply the need for individual approach to the fatigue analysis. The article presents the effect of numerical FEM modelling with the aid of two-dimensional (2D and three-dimensional (3D elements on the results of strain and stress distributions in the areas of toe and root notches of the analysed laser weld. The presented results of computer simulation reveal that modelling of strain and stress states in 2D (instead of full 3D affects only the results in close vicinity of the notch, and the observed differences rapidly disappear at a distance of 0.05 mm from the bottom of the notch. The obtained results confirm the possibility of use of numerically effective 2D strain and stress state models for analysing the fatigue strength of laser weld according to local approach.

  14. Vibration and Acoustic Response of Rectangular Sandwich Plate under Thermal Environment

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2013-01-01

    Full Text Available In this paper, we focus on the vibration and acoustic response of a rectangular sandwich plate which is subjected to a concentrated harmonic force under thermal environment. The critical buckling temperature is obtained to decide the thermal load. The natural frequencies and modes as well as dynamic responses are acquired by using the analytical formulations based on equivalent non-classical theory, in which the effects of shear deformation and rotational inertia are taken into account. The rise of thermal load decreases the natural frequencies and moves response peaks to the low-frequency range. The specific features of sandwich plates with different formations are discussed subsequently. As the thickness ratio of facing to core increases, the natural frequencies are enlarged, and the response peaks float to the high-frequency region. Raising the Young's modulus of the core can cause the similar trends. The accuracy of the theoretical method is verified by comparing its results with those computed by the FEM/BEM.

  15. Flexural fatigue failures and lives of Eco-Core sandwich beams

    International Nuclear Information System (INIS)

    Hossain, Mohammad Mynul; Shivakumar, Kunigal

    2014-01-01

    Highlights: • Eco-Core sandwich beam is flexural fatigue tested to study its fatigue response. • The core showed three failure types: damage onset, progression and final failure. • These failures were found to be represented by 1%, 5% and 7% change in compliance. • The fatigue stress-life (S–N) relationship follows a power low, σ max /σ ct = A o N α . • The fatigue failure was by multiple vertical cracks followed by 45° shear failure. - Abstract: Eco-Core is a class of syntactic foam made from small volume of high char yield binder and large volume of a class of flyash for fire resistance application. Very little or no flexural fatigue data of this class of core material is reported in the open literature. This paper presents a flexural fatigue response of Eco-Core in a glass/vinyl ester composite face sheet sandwich beam. A four-point loaded flexural test specimen was designed and tested in static and fatigue loadings to cause tension failure in the core. The fatigue test was conducted at maximum cyclic stress (σ max ) ranged from 0.7σ ct to 0.9σ ct , where σ ct is the static flexural strength of the core. The sinusoidal loading frequency of 2 Hz with the stress ratio of 0.1 was used. Flexural fatigue failure modes of Eco-Core sandwich beam were classified: damage onset (single tension crack), damage progression (multiple tension cracks) and ultimate failure (a combination of tension and shear). These failures were characterized by 1%, 5% and 7% changes in compliance that corresponds to N 1% , N 5% and N 7% lives. The fatigue stress-life (S–N) relationship was found to follow the well-known power law equation, σ max /σ ct = A o N α . The constants A o and α were established for all three types of failures. The endurance limit was established based on 1 million cycles limit and it was found to be 0.65σ ct , 0.70σ ct and 0.71σ ct , respectively for the three modes of failure. Flexural fatigue and static failure modes of Eco-Core sandwich

  16. Manufacture of Green-Composite Sandwich Structures with Basalt Fiber and Bioepoxy Resin

    Directory of Open Access Journals (Sweden)

    J. P. Torres

    2013-01-01

    Full Text Available Nowadays, there is a growing interest for the use and development of materials synthesized from renewable sources in the polymer composites manufacturing industry; this applies for both matrix and reinforcement components. In the present research, a novel basalt fibre reinforced (BFR bioepoxy green composite is proposed as an environmentally friendly alternative to traditional petroleum-derived composites. In addition, this material system was combined with cork as core material for the fabrication of fibre composite sandwich structures. Mechanical properties of both skin and core materials were assessed through flexural and tensile tests. Finite element (FEM simulations for the mechanical stress analysis of the sandwich material were carried out, and a maximum allowable shear stress for material failure under bending loads was established. Permeability measurements of the basalt fabrics were carried out in order to perform numerical simulations of liquid composite moulding (LCM processes on the PAM-RTM software. The proposed green-composite sandwich material was used for the fabrication of a longboard as a case study for a sports equipment application. Numerical simulations of the mould filling stage allowed the determination of an optimal mould filling strategy. Finally, the load-bearing capacity of the board was studied by means of FEM simulations, and the presented design proved to be acceptable for service.

  17. Sound transmission properties of honeycomb panels and double-walled structures

    OpenAIRE

    Ramanathan, Sathish Kumar

    2012-01-01

    Sandwich panels with aluminium face sheets and honeycomb core material have certain advantages over panels made of wood. Some of the advantages of these constructions are low weight, good moisture properties, fire resistance and high stiffness to-weight ratio etc. As product development is carried out in a fast pace today, there is a strong need for validated prediction tools to assist during early design stages. In this thesis, tools are developed for predicting the sound transmission throug...

  18. Optimal design of sandwich ribbed flat baffle plates of a circular cylindrical tank

    International Nuclear Information System (INIS)

    Malinowski, Marek; Magnucki, Krzysztof

    2005-01-01

    The subject of this paper is a sandwich ribbed flat baffle plate of a circular cylindrical tank. The paper deals with a problem of optimal thickness of this construction with a soft core. The construction is distinguished by a local axisymmetric pre-springing. The mathematical description is based on the theory of shells with analysis of disturbance of the stress membrane state. The sandwich ribbed flat baffle plate divides the tank into two chambers. One of them is loaded by uniform pressure, while the other is empty and unloaded. Dimensions of ribs, faces and the entire baffle plate have been determined with a view to minimize the mass under strength constraints. The effect of optimal thickness of this sandwich plate has been examined by means of the finite element method

  19. Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow

    Science.gov (United States)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2013-08-01

    This paper investigates the sound transmission characteristics through a system of double-panel lined with poroelastic material in the core. The panels are surrounded by external and internal fluid media where a uniform external mean flow exists on one side. Biot's theory is used to model the porous material. Three types of constructions—bonded-bonded, bonded-unbonded and unbonded-unbonded—are considered. The effect of Mach number of the external flow on the sound transmission over a wide frequency range in a diffuse sound field is examined. External mean flow is shown to give a modest increase in transmission loss at low frequency, but a significant increase at high frequency. It is brought out that calculations based on static air on the incidence side provide a conservative estimate of sound transmission through the sandwich structure. The acoustic performance of the sandwich panel for different configurations is presented. The effect of curvature of the panel is also brought out by using shallow shell theory.

  20. Buckling behavior of origami unit cell facets under compressive loads

    Science.gov (United States)

    Kshad, Mohamed Ali Emhmed; Naguib, Hani E.

    2018-03-01

    Origami structures as cores for sandwich structures are designed to withstand the compressive loads and to dissipate compressive energy. The deformation of the origami panels and the unit cell facets are the primary factors behind the compressive energy dissipation in origami structures. During the loading stage, the origami structures deform through the folding and unfolding process of the unit cell facets, and also through the plastic deformation of the facets. This work presents a numerical study of the buckling behavior of different origami unit cell elements under compressive loading. The studied origami configurations were Miura and Ron-Resch-like origami structures. Finite element package was used to model the origami structures. The study investigated the buckling behavior of the unit cell facets of two types of origami structures Miura origami and Ron-Resch-Like origami structures. The simulation was conducted using ANSYS finite element software, in which the model of the unit cell represented by shell elements, and the eigenvalues buckling solver was used to predict the theoretical buckling of the unit cell elements.

  1. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  2. Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method

    Directory of Open Access Journals (Sweden)

    Adnan Kefal

    2017-11-01

    Full Text Available This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM was used together with the Refined Zigzag Theory (RZT, in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements, aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.

  3. PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration.

    Science.gov (United States)

    Wei, Xiaoyuan; Yang, Yuan; Yao, Wenqing; Zhang, Lei

    2017-09-30

    Sandwiched piezoelectric transducers are widely used, especially in high power applications. For more convenient analysis and design, a PSpice lossy model of sandwiched piezoelectric ultrasonic transducers in longitudinal vibration is proposed by means of the one-dimensional wave and transmission line theories. With the proposed model, the resonance and antiresonance frequencies are obtained, and it is shown that the simulations and measurements have good consistency. For the purpose of further verification the accuracy and application of the PSpice model, a pitch-catch setup and an experimental platform are built. They include two sandwiched piezoelectric ultrasonic transducers and two aluminum cylinders whose lengths are 20 mm and 100 mm respectively. Based on this pitch-catch setup, the impedance and transient analysis are performed. Compared with the measured results, it is shown that the simulated results have good consistency. In addition, the conclusion can be drawn that the optimal excitation frequency for the pitch-catch setup is not necessarily the resonance frequency of ultrasonic transducers, because the resonance frequency is obtained under no load. The proposed PSpice model of the sandwiched piezoelectric transducer is more conveniently applied to combine with other circuits such as driving circuits, filters, amplifiers, and so on.

  4. Failure modes of composite sandwich beams

    Directory of Open Access Journals (Sweden)

    Gdoutos E.

    2008-01-01

    Full Text Available A thorough investigation of failure behavior of composite sandwich beams under three-and four-point bending was undertaken. The beams were made of unidirectional carbon/epoxy facings and a PVC closed-cell foam core. The constituent materials were fully characterized and in the case of the foam core, failure envelopes were developed for general two-dimensional states of stress. Various failure modes including facing wrinkling, indentation failure and core failure were observed and compared with analytical predictions. The initiation, propagation and interaction of failure modes depend on the type of loading, constituent material properties and geometrical dimensions.

  5. Buckling Resistance of Basalt Fiber Reinforced Polymer Infill Panel Subjected to Elevated Temperatures

    OpenAIRE

    Viriyavudh Sim; Woo Young Jung

    2017-01-01

    Performance of Basalt Fiber Reinforced Polymer (BFRP) sandwich infill panel system under diagonal compression was studied by means of numerical analysis. Furthermore, the variation of temperature was considered to affect the mechanical properties of BFRP, since their composition was based on polymeric material. Moreover, commercial finite element analysis platform ABAQUS was used to model and analyze this infill panel system. Consequently, results of the analyses show that the overall perform...

  6. Lateral Load-Resisting System Using Mass Timber Panel for High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Zhiyong Chen

    2017-07-01

    Full Text Available As global interest in using engineered wood products in tall buildings intensifies due to the “green” credential of wood, it is expected that more tall wood buildings will be designed and constructed in the coming years. This, however, brings new challenges to the designers. One of the major challenges is how to design lateral load-resisting systems (LLRSs with sufficient stiffness, strength, and ductility to resist strong wind and earthquakes. In this study, an LLRS using mass timber panel on a stiff podium was developed for high-rise buildings in accordance with capacity-based design principle. The LLRS comprises eight shear walls with a core in the center of the building, which was constructed with structural composite lumber and connected with dowel-type connections and wood–steel composite system. The main energy dissipating mechanism of the LLRS was detailed to be located at the panel-to-panel interface. This LLRS was implemented in the design of a hypothetical 20-storey building. A finite element (FE model of the building was developed using general-purpose FE software, ABAQUS. The wind-induced and seismic response of the building model was investigated by performing linear static and non-linear dynamic analyses. The analysis results showed that the proposed LLRS using mass timber was suitable for high-rise buildings. This study provided a valuable insight into the structural performance of LLRS constructed with mass timber panels as a viable option to steel and concrete for high-rise buildings.

  7. Fire Resistance of Large-Scale Cross-Laminated Timber Panels

    Science.gov (United States)

    Henek, Vladan; Venkrbec, Václav; Novotný, Miloslav

    2017-12-01

    Wooden structures are increasingly being used in the construction of residential buildings. A common and often published reason to avoid wooden structures is their insufficient fire resistance, which reduces bearing capacity. For this reason, composite sandwich structures began to be designed to eliminate this drawback, as well as others. Recently, however, the trend is for a return to the original, wood-only variant and a search is underway for new technical means of improving the properties of such structures. Many timber structure technologies are known, but structures made from cross-laminated timber (CLT) panels have been used very often in recent years. CLT panels, also known as X-LAM, are currently gaining popularity in Europe. In the case of CLT panels composed of several layers of boards, they can be said to offer a certain advantage in that after the surface layer of a board has burnt and the subsurface layer has dried, oxygen is not drawn to the unburned wood for further combustion and thus the burning process ceases. CLT panels do not need to be specially modified or coated with fire resistant materials, although they are usually lined with gypsum-fibre fire resistant boards due to guidelines set out in the relevant standards. This paper presents a new method for the assessment of load-bearing perimeter walls fabricated from CLT panels without the use of an inner fire-retardant lining to ensure fire resistance at the level required by European standards (i.e. those harmonized for the Czech construction industry). The calculations were verified through laboratory tests which show that better parameters can be achieved during the classification of structures from the fire resistance point of view. The aim of the article is to utilize the results of assessment and testing by an accredited laboratory in order to demonstrate the possibilities of using CLT panels for the construction of multistorey as well as multi-purpose buildings in the Czech Republic.

  8. Study on the performance of infrared thermal imaging light source for detection of impact defects in CFRP composite sandwich panels

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Sang [R and D, Korea Research Institute of Smart Material and Structures System Association, Daejeon (Korea, Republic of); Choi, Man Yong; Kwon, Koo Ahn; Park, Jeong Hak; Choi, Won Jae [Safety measurement center, Korea research Institute of Standards and Science, Daejeon (Korea, Republic of); Jung, Hyun Chul [Dept. of Mechanical Engineering Chosun University, Gwangju (Korea, Republic of)

    2017-04-15

    Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

  9. Study on the performance of infrared thermal imaging light source for detection of impact defects in CFRP composite sandwich panels

    International Nuclear Information System (INIS)

    Park, Hee Sang; Choi, Man Yong; Kwon, Koo Ahn; Park, Jeong Hak; Choi, Won Jae; Jung, Hyun Chul

    2017-01-01

    Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object

  10. Orthogonal model and experimental data for analyzing wood-fiber-based tri-axial ribbed structural panels in bending

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2017-01-01

    This paper presents an analysis of 3-dimensional engineered structural panels (3DESP) made from wood-fiber-based laminated paper composites. Since the existing models for calculating the mechanical behavior of core configurations within sandwich panels are very complex, a new simplified orthogonal model (SOM) using an equivalent element has been developed. This model...

  11. Fatigue Failure of Sandwich Beams with Wrinkle Defects Used for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Hvejsel, C.F.; Lund, Erik

    2012-01-01

    Glass fiber face sheet/balsa wood core sandwich beams with out-of-plane fiber misalignments/wrinkle defects were subjected to in-plane fully reversed fatigue loading and the failure modes were documented. A fatigue life design limit was estimated using finite element analyses and the Northwestern...

  12. Development of assembly techniques for fire resistant aircraft interior panels

    Science.gov (United States)

    Lee, S. C. S.

    1978-01-01

    Ten NASA Type A fire resistant aircraft interior panels were fabricated and tested to develop assembly techniques. These techiques were used in the construction of a full scale lavatory test structure for flame propagation testing. The Type A panel is of sandwich construction consisting of Nomex honeycomb filled with quinone dioxime foam, and bismaleimide/glass face sheets bonded to the core with polyimide film adhesive. The materials selected and the assembly techniques developed for the lavatory test structure were designed for obtaining maximum fire containment with minimum smoke and toxic emission.

  13. Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads

    DEFF Research Database (Denmark)

    Ergemen, Yunus Emre; Haldrup, Niels; Rodríguez-Caballero, Carlos Vladimir

    to strong seasonal periodicity, and along the cross-sectional dimension, i.e. the hours of the day, there is a strong dependence which necessarily has to be accounted for in order to avoid spurious inference when focusing on the time series dependence alone. The long-range dependence is modelled in terms...... of a fractionally integrated panel data model and it is shown that both prices and loads consist of common factors with long memory and with loadings that vary considerably during the day. Due to the competitiveness of the Nordic power market the aggregate supply curve approximates well the marginal costs...... data approaches to analyse the time series and the cross-sectional dependence of hourly Nord Pool electricity spot prices and loads for the period 2000-2013. Hourly electricity prices and loads data are characterized by strong serial long-range dependence in the time series dimension in addition...

  14. PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wei

    2017-09-01

    Full Text Available Sandwiched piezoelectric transducers are widely used, especially in high power applications. For more convenient analysis and design, a PSpice lossy model of sandwiched piezoelectric ultrasonic transducers in longitudinal vibration is proposed by means of the one-dimensional wave and transmission line theories. With the proposed model, the resonance and antiresonance frequencies are obtained, and it is shown that the simulations and measurements have good consistency. For the purpose of further verification the accuracy and application of the PSpice model, a pitch-catch setup and an experimental platform are built. They include two sandwiched piezoelectric ultrasonic transducers and two aluminum cylinders whose lengths are 20 mm and 100 mm respectively. Based on this pitch-catch setup, the impedance and transient analysis are performed. Compared with the measured results, it is shown that the simulated results have good consistency. In addition, the conclusion can be drawn that the optimal excitation frequency for the pitch-catch setup is not necessarily the resonance frequency of ultrasonic transducers, because the resonance frequency is obtained under no load. The proposed PSpice model of the sandwiched piezoelectric transducer is more conveniently applied to combine with other circuits such as driving circuits, filters, amplifiers, and so on.

  15. Air loads on solar panels during launch

    NARCIS (Netherlands)

    Beltman, W.M.; van der Hoogt, Peter; Spiering, R.M.E.J.; Tijdeman, H.

    1996-01-01

    The dynamical behaviour of solar panels during launch is significantly affected by the thin layers of air trapped between the panels. For narrow gaps the air manifests itself not only as a considerable added mass, but its viscosity can result in a substantial amount of damping. A model has been

  16. Supersonic flutter suppression of electrorheological fluid-based adaptive panels resting on elastic foundations using sliding mode control

    International Nuclear Information System (INIS)

    Hasheminejad, Seyyed M; Nezami, M; Aryaee Panah, M E

    2012-01-01

    Brief reviews on suppressing panel flutter vibrations by various active control strategies as well as utilization tunable electrorheological fluids (ERFs) for vibration control of structural systems are presented. Active suppression of the supersonic flutter motion of a simply supported sandwich panel with a tunable ERF interlayer, and coupled to an elastic foundation, is subsequently investigated. The structural formulation is based on the classical beam theory along with the Winkler–Pasternak foundation model, the ER fluid core is modeled as a first-order Kelvin–Voigt material, and the quasi-steady first-order supersonic piston theory is employed to describe the aerodynamic loading. Hamilton’s principle is used to derive a set of fully coupled dynamic equations of motion. The generalized Fourier expansions in conjunction with the Galerkin method are then employed to formulate the governing equations in the state space domain. The critical dynamic pressures at which unstable panel oscillations (coalescence of eigenvalues) occur are obtained via the p-method for selected applied electric field strengths (E = 0,2,4 kV mm −1 ). The classical Runge–Kutta time integration algorithm is subsequently used to calculate the open-loop aeroelastic response of the system in various basic loading configurations (i.e. uniformly distributed blast, gust, sonic boom, and step loads), with or without an interacting soft/stiff elastic foundation. Finally, a sliding mode control synthesis (SMC) involving the first six natural modes of the structural system is set up to actively suppress the closed-loop system response in supersonic flight conditions and under the imposed excitations. Simulation results demonstrate performance, effectiveness, and insensitivity with respect to the spillover of the proposed SMC-based control system. Limiting cases are considered and good agreements with the data available in the literature as well as with the computations made by using the

  17. ACT Payload Shroud Structural Concept Analysis and Optimization

    Science.gov (United States)

    Zalewski, Bart B.; Bednarcyk, Brett A.

    2010-01-01

    Aerospace structural applications demand a weight efficient design to perform in a cost effective manner. This is particularly true for launch vehicle structures, where weight is the dominant design driver. The design process typically requires many iterations to ensure that a satisfactory minimum weight has been obtained. Although metallic structures can be weight efficient, composite structures can provide additional weight savings due to their lower density and additional design flexibility. This work presents structural analysis and weight optimization of a composite payload shroud for NASA s Ares V heavy lift vehicle. Two concepts, which were previously determined to be efficient for such a structure are evaluated: a hat stiffened/corrugated panel and a fiber reinforced foam sandwich panel. A composite structural optimization code, HyperSizer, is used to optimize the panel geometry, composite material ply orientations, and sandwich core material. HyperSizer enables an efficient evaluation of thousands of potential designs versus multiple strength and stability-based failure criteria across multiple load cases. HyperSizer sizing process uses a global finite element model to obtain element forces, which are statistically processed to arrive at panel-level design-to loads. These loads are then used to analyze each candidate panel design. A near optimum design is selected as the one with the lowest weight that also provides all positive margins of safety. The stiffness of each newly sized panel or beam component is taken into account in the subsequent finite element analysis. Iteration of analysis/optimization is performed to ensure a converged design. Sizing results for the hat stiffened panel concept and the fiber reinforced foam sandwich concept are presented.

  18. Failure mode prediction for composite structural insulated panels with MgO board facings

    Science.gov (United States)

    Smakosz, Łukasz; Kreja, Ireneusz

    2018-01-01

    Sandwich panels are readily used in civil engineering due to their high strength to weight ratio and the ease and speed of assembly. The idea of a sandwich section is to combine thin and durable facings with a light-weight core and the choice of materials used allows obtaining the desired behaviour. Panels in consideration consist of MgO (magnesium oxide) board facings and expanded polystyrene core and are characterized by immunity to biological corrosion, a high thermal insulation and a relatively low impact on environment. Customizing the range of panels to meet market needs requires frequent size changes, leading to different failure modes, which are identified in a series of costly full-scale laboratory tests. A nonlinear numerical model was created with a use of a commercial ABAQUS code and a user-defined procedure, which is able to reproduce observed failure mechanisms; its parameters were established on the basis of small-scale tests and numerical experiments. The model was validated by a comparison with the results of the full-scale bending and compression tests. The results obtained were in satisfactory agreement with the test data.

  19. Experimental studies on the performance of novel layered materials under highly dynamic loads

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, A, E-mail: shuklaa@egr.uri.ed [Dynamic Photomechanics Laboratory Department of Mechanical Engineering and Applied Mechanics University of Rhode Island, Kingston, RI 02881 (United States)

    2009-08-01

    This paper focuses on the experimental observations of the performance of different layered composite material systems subjected to blast loadings. These material systems include layered composites and sandwich composite materials. A controlled blast loading of pre-defined pressure magnitude and rise time were obtained using a shock tube apparatus. Rectangular plate elements of the desired material system were subjected to such a controlled blast loading and the effects of the blast loading on these elements were studied using optical and residual strength measurements. A high speed imaging technique was utilized to study the damage modes and mechanisms in real time. It was observed that layering of a conventional composite material with a soft visco-elastic polymer provided better blast resistance and sandwiching the polymer greatly enhanced its survivability under extreme air blast conditions. Aside from layering the conventional composite material with a soft visco-elastic polymer, it was observed that layering or grading the core can successfully mitigate the impact damage and thus improve the overall blast resistance as well. In addition to these, three dimensional (3D) woven skin and core reinforcements were introduced in the conventional sandwich composites and their effects on the blast resistance were studied experimentally. It was observed that these reinforcements also enhance the blast resistance of conventional sandwich composites by changing the mechanism of failure initiation and propagation in these sandwich structures.

  20. Experimental Study for Structural Behaviour of Precast Lightweight Panel (PLP) Under Flexural Load

    Science.gov (United States)

    Goh, W. I.; Mohamad, N.; Tay, Y. L.; Rahim, N. H. A.; Jhatial, A. A.; Samad, A. A. A.; Abdullah, R.

    2017-06-01

    Precast lightweight concrete slab is first fabricated in workshop or industrial before construction and then transported to site and installed by skilled labour. It can reduce construction time by minimizing user delay and time for cast-in-situ to increase workability and efficiency. is environmental friendly and helps in resource reduction. Although the foamed concrete has low compressive strength compared to normal weight concrete but it has excellent thermal insulation and sound absorption. It is environmental friendly and helps in resource reduction. To determine the material properties of foamed concrete, nine cubes and six cylindrical specimens were fabricated and the results were recorded. In this study, structural behaviour of precast lightweight panel (PLP) with dry density of 1800 kg/m3 was tested under flexural load. The results were recorded and analysed in terms of ultimate load, crack pattern, load-deflection profiles and strain distribution. Linear Voltage Displacement Transducers (LVDT) and strain gauges were used to determine the deflection and strain distribution of PLP. The theoretical and experimental ultimate load of PLP was analysed and recorded to be 70 and 62 kN respectively, having a difference of 12.9%. Based on the results, it can be observed that PLP can resist the adequate loading. Thus, it can be used in precast industry for construction purposes.

  1. Seismic Evaluation of Structural Insulated Panels in Comparison with Wood-Frame Panels

    Directory of Open Access Journals (Sweden)

    Stefanie Terentiuk

    2014-07-01

    Full Text Available Structural Insulated Panel (SIP wall systems have been used in residential and light commercial buildings for the past sixty years. Lack of sufficient published research on racking load performance and limited understanding of the influence of fastener types on seismic response has been a deterrent in widespread use of the wall system in seismically active areas. This paper presents the results of a study involving a total of twenty one 2.4 m × 2.4 m shear walls tested under monotonic and cyclic loading. Four different 114 mm thick SIP panel configurations and one traditional wood frame wall were tested under monotonic loading according to ASTM E 564-06; and thirteen 114 mm thick SIP panels and three wood frame walls were tested under the CUREE loading protocol according to ASTM E 2126-11. Parameters such as fastener type; spline design; hold-down anchor location; and sheathing bearing were adjusted throughout the testing in order to determine their effects on the SIP’s performance. Performance parameters such as peak load and displacement; energy dissipation; allowable drift load capacity and seismic compatibility were determined for all of the specimens. Such parameters were then used to demonstrate the SIP walls’ compatibility with the wood frame walls and to determine the efficiency of the different SIP wall configuration and spline systems employed.

  2. Energy Dissipation in Sandwich Structures During Axial Compression

    DEFF Research Database (Denmark)

    Urban, Jesper

    2002-01-01

    The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full-scale structu......The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full...

  3. Effect of heat loads on the plasma facing components of demo

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yu., E-mail: juri.igitkhanov@partner.kit.edu [ITEP, Karlsruhe Institute of Technology (Germany); Fetzer, R. [IHM, Karlsruhe Institute of Technology (Germany); Bazylev, B. [INR, Karlsruhe Institute of Technology (Germany)

    2016-11-01

    Highlights: • Under the DEMO1 stationary operation the nominal power fluxes along the magnetic field at the FW blanket modules is expected about 50 MW/m{sup 2}. • In the current design and averaged incident angle about 3–4.5° (similar to ITER) the engineering power load to the FW is expected within 2.5÷3.9 MW/m{sup 2}. • In the case of the unmitigated Type I ELMs unavoidable in the higher confinement H-mode of operation energy load per ELM is about 20 MJ/m{sup 2} along the field line, arriving at a frequency of 0.8 Hz with deposition time of 0.6 ms per each ELM. - Abstract: In this paper we analyse a thermo-hydraulic performance of the first wall blanket module during the stationary DEMO operation with the edge localized mode (ELM). Heat loads are estimated based on scaling arguments and predictions from the peeling-ballooning ELM model. Effect of parallel heat fluxes intersecting with the first wall panels and avoidance of overheating by inclination of the panels are considered. The material temperatures of the W/EUROFER sandwich type module with water cooling stainless steel tube and Cu alloy compliance embedded into EUROFER is calculated by using the MEMOS code. The calculations were carried out indicating the required geometric parameters as well as the cooling conditions which allow keeping materials temperatures within allowable engineering limits. Effect of inclination of the first wall plates to avoid the misalignment problems is considered.

  4. Graphite/epoxy orthogrid panel fabrication

    Science.gov (United States)

    Lager, J. R.

    1978-01-01

    The structural concept considered for a spacecraft body structure is a grid stiffened skin with a skin laminate configuration and the stiffener grid geometry selected to best suit the design requirements. The orthogrid panel developed weighs 0.55 lb/sq ft and resisted an ultimate in-plane shear load of 545 lbf/in. The basic concept of a grid stiffener composite panel is that a relatively thin skin is reinforced with a gridwork of stiffeners so that the overall panel can resist design loads without becoming structurally unstable or being overstressed. The main feature of the orthogrid panel design is that it provides the potential for low cost structural panels when advanced to the production phase. The most innovative part of the fabrication method is the foam/fiberglass stiffener web grid billet fabrication and machining to size.

  5. Testing and evaluation of a slot and tab construction technique for light-weight wood-fiber-based structural panels under bending

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2015-01-01

    This paper presented construction and strain distributions for light-weight wood-fiber-based structural panels with tri-grid core made from phenolic impregnated laminated paper composites under bending. A new fastening configuration of slots in the faces and tabs on the core was applied to the face/core interfaces of the sandwich panel in addition to epoxy resin. Both...

  6. Buckling localization in a cylindrical panel under axial compression

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum......, but where subsequently the load starts to increase again, it is found that near the local load minimum, the buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in terms of J(2) corner theory, which avoids the sometimes unrealistically high...

  7. Strength of Ship Stiffened Panels under Combined Loading

    DEFF Research Database (Denmark)

    Weicheng, Cui; Wang, Young-jun; Pedersen, Preben Terndrup

    2000-01-01

    A ship's hull is a box girder structure composed of stiffened panels and therefore, strength of stiffened panels plays a significant role for the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified methods to calculate the ultimate strength of s...

  8. Vibration and bending analyses of magneto-electro-thermo-elastic sandwich microplates resting on viscoelastic foundation

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-08-01

    Magneto-electro-thermo-mechanical bending and free vibration analysis of a sandwich microplate using strain gradient theory is expressed in this paper. The sandwich plate is made of a core and two integrated piezo-magnetic face sheets. The structure is subjected to electric and magnetic potentials, thermal loadings, and resting on Pasternak's foundation. Electro-magnetic equations are developed by considering the variation form of Hamilton's principle. The effects of important parameters of this problem such as applied electric and magnetic potentials, direct and shear parameter of foundation, three microlength-scale parameters, and two parameters of temperature rising are investigated on the vibration and bending results of problem.

  9. Application and Analysis of Sandwich Elements in the Primary Structure of Large Wind Turbine Blades

    DEFF Research Database (Denmark)

    Berggreen, Christian; Branner, Kim; Jensen, Jacob Fisker

    2007-01-01

    The present work studies the advantages of applying a sandwich construction as opposed to traditional single skin composites in the flanges of a load carrying spar in a future 180 m wind turbine rotor. A parametric finite element model is used to analyze two basic designs with single skin...

  10. Planarity certification of ATLAS Micromegas detector panels

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Ralph; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Herrmann, Maximilian [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2016-07-01

    During the second long LHC shutdown, 2019/20, the precision tracking detectors of the ATLAS muon spectrometer in the inner end caps will be replaced using Micromegas, a planar gas-detector technology. Modules of 2 m{sup 2} area are built in quadruplets from five precisely planar sandwich panels that define the anodes and the cathodes of the four active detector planes. A panel is composed of three consecutive layers FR4 - aluminum honeycomb - FR4. Single plane spatial particle resolution below 100 μm is achievable when the deviations from planarity of the strip-anodes do not exceed 80 μm RMS over the whole active area and the parallelism of the readout strips is within 30 μm. In order to measure the dimensional accuracy of each panel, laser distance sensors combined with a coordinate measurement system have been investigated. The sensor requirements to measure the planarity of the panels are a resolution of 0.3 μm and a beam spot diameter of ∼20 μm, well below 100 μ m the size of the smallest structures. We report on achieved planarities of the panels and the performance of the laser sensor system. A panel with an RMS better than 30 μm was build and the evolution of its planarity due to humidity and temperature effects is shown.

  11. Initiation of trailing edge failure in full-scale wind turbine blade test

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Branner, Kim

    2016-01-01

    non-linear buckling effect of the trailing edge under combined loading, and how it affects the ultimate strength of a blade in a trailing-edge failure dominated load direction were investigated. The study details the interaction between trailing edge buckling on damage onset and sandwich panel failure...

  12. Nonlinear Thermo-mechanical Finite Element Analysis of Polymer Foam Cored Sandwich Structures including Geometrical and Material Nonlinearity

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi

    In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations...

  13. A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments

    International Nuclear Information System (INIS)

    Kuang, Yang; Daniels, Alice; Zhu, Meiling

    2017-01-01

    This paper presents a sandwiched piezoelectric transducer (SPT) for energy harvesting in large force environments with increased load capacity and electric power output. The SPT uses (1) flex end-caps to amplify the applied load force so as to increase its power output and (2) a sandwiched piezoelectric-substrate structure to reduce the stress concentration in the piezoelectric material so as to increase the load capacity. A coupled piezoelectric-circuit finite element model (CPC-FEM) was developed, which is able to directly predict the electric power output of the SPT connected to a load resistor. The CPC-FEM was used to study the effects of various parameters of the SPT on the performance to obtain an optimal design. These parameters included the substrate thickness, the end-cap material and thickness, the electrode length, the joint length, the end-cap internal angle and the PZT thickness. A prototype with optimised parameters was tested on a loading machine, and the experimental results were compared with simulation. A good agreement was observed between simulation and experiment. When subjected to a 1 kN 2 Hz sinusoidal force applied by the loading machine, the SPT produced an average power of 4.68 mW. The application of the SPT as a footwear energy harvester was demonstrated by fitting the SPT into a boot and performing the tests on a treadmill, and the SPT generated an average power of 2.5 mW at a walking speed of 4.8 km h −1 . (paper)

  14. Application of sandwich honeycomb carbon/glass fiber-honeycomb composite in the floor component of electric car

    Science.gov (United States)

    Sukmaji, I. C.; Wijang, W. R.; Andri, S.; Bambang, K.; Teguh, T.

    2017-01-01

    Nowadays composite is a superior material used in automotive component due to its outstanding mechanical behavior. The sandwich polypropylene honeycomb core with carbon/glass fiber composite skin (SHCG) as based material in a floor component of electric car application is investigated in the present research. In sandwich structure form, it can absorb noise better compare with the conventional material [1]. Also in present paper, Finite Element Analysis (FEA) of SHCG as based material for floor component of the electric car is analyzed. The composite sandwich is contained with a layer uniform carbon fiber and mixing non-uniform carbon-glass fiber in upper and lower skin. Between skins of SHCG are core polypropylene honeycomb that it have good flexibility to form following dies profile. The variables of volume fraction ratio of carbon/glass fiber in SHCG skin are 20/80%, 30/70%, and 50/50%. The specimen of SHCG is tested using the universal testing machine by three points bending method refers to ASTM C393 and ASTM C365. The cross point between tensile strength to the volume fraction the mixing carbon/glass line and ratio cost line are the searched material with good mechanical performance and reasonable cost. The point is 30/70 volume fraction of carbon/glass fiber. The result of the testing experiment is become input properties of model structure sandwich in FEA simulation. FEA simulation approach is conducted to find critical strength and factor of complex safety geometry against varied distributed passenger loads of a floor component the electric car. The passenger loads variable are 80, 100, 150, 200, 250 and 300 kg.

  15. Fatigue of graphite/epoxy buffer strip panels with center cracks

    Science.gov (United States)

    Bigelow, C. A.

    1985-01-01

    The effects of fatigue loading on the behavior of graphite/epoxy panels with either S-Glass or Kevlar-49 buffer strips is studied. Buffer strip panels are fatigued and tested in tension to measure their residual strength with crack-like damage. Panels are made with 45/0/-45/90 sub 2s layup with either S-Glass or Kevlar-49 buffer strip material. The buffer strips are parallel to the loading direction and made by replacing narrow strips of the 0-degree graphite plies with strips of either 0-degree S-Glass/epoxy or Kevlar-49/epoxy on a one-for-one basis. The panels are subjected to a fatigue loading spectrum MINITWIST, the shortened version of the standardized load program for the wing lower surface of a transport aircraft. Two levels of maximum strain are used in the spectrum with three durations of the fatigue spectrum. One group of panels is preloaded prior to the application of the fatigue cycling. The preload consists of statistically loading the spectrum in tension until the crack-tip damage zone reaches the ajacent buffer strips. After fatigue loading, all specimens are statistically loaded in tension to failure to determine their residual strengths.

  16. Sound transmission through triple-panel structures lined with poroelastic materials

    Science.gov (United States)

    Liu, Yu

    2015-03-01

    In this paper, previous theories on the prediction of sound transmission loss for a double-panel structure lined with poroelastic materials are extended to address the problem of a triple-panel structure. Six typical configurations are considered for a triple-panel structure based on the method of coupling the porous layers to the facing panels which determines critically the sound insulation performance of the system. The transfer matrix method is employed to solve the system by applying appropriate types of boundary conditions for these configurations. The transmission loss of the triple-panel structures in a diffuse sound field is calculated as a function of frequency and compared with that of corresponding double-panel structures. Generally, the triple-panel structure with poroelastic linings has superior acoustic performance to the double-panel counterpart, remarkably in the mid-high frequency range and possibly at low frequencies, by selecting appropriate configurations in which those with two air gaps in the structure exhibit the best overall performance over the entire frequency range. The poroelastic lining significantly lowers the cut-on frequency above which the triple-panel structure exhibits noticeably higher transmission loss. Compared with a double-panel structure, the wider range of system parameters for a triple-panel structure due to the additional partition provides more design space for tuning the sound insulation performance. Despite the increased structural complexity, the triple-panel structure lined with poroelastic materials has the obvious advantages in sound transmission loss while without the penalties in weight and volume, and is hence a promising replacement for the widely used double-panel sandwich structure.

  17. Additive-manufactured sandwich lattice structures: A numerical and experimental investigation

    Science.gov (United States)

    Fergani, Omar; Tronvoll, Sigmund; Brøtan, Vegard; Welo, Torgeir; Sørby, Knut

    2017-10-01

    The utilization of additive-manufactured lattice structures in engineered products is becoming more and more common as the competitiveness of AM as a production technology has increased during the past several years. Lattice structures may enable important weight reductions as well as open opportunities to build products with customized functional properties, thanks to the flexibility of AM for producing complex geometrical configurations. One of the most critical aspects related to taking AM into new application areas—such as safety critical products—is currently the limited understanding of the mechanical behavior of sandwich-based lattice structure mechanical under static and dynamic loading. In this study, we evaluate manufacturability of lattice structures and the impact of AM processing parameters on the structural behavior of this type of sandwich structures. For this purpose, we conducted static compression testing for a variety of geometry and manufacturing parameters. Further, the study discusses a numerical model capable of predicting the behavior of different lattice structure. A reasonably good correlation between the experimental and numerical results was observed.

  18. Sandwich Hologram Interferometry For Determination Of Sacroiliac Joint Movements

    Science.gov (United States)

    Vukicevic, S.; Vinter, I.; Vukicevic, D.

    1983-12-01

    Investigations were carried out on embalmed and fresh specimens of human pelvisis with preserved lumbar spines, hip joints and all the ligaments. Specimens were tested under static vertical loading by pulsed laser interferometry. The deformations and behaviour of particular pelvic parts were interpreted by providing computer interferogram models. Results indicate rotation and tilting of the sacrum in the dorso-ventral direction and small but significant movements in the cranio-caudal direction. Sandwich holography proved to be the only applicable method when there is a combination of translation and tilt in the range of 200 μm to 1.5 mm.

  19. The Bending Strength, Internal Bonding and Thickness Swelling of a Five Layer Sandwiched Bamboo Particleboard

    Science.gov (United States)

    Jamaludin, M. A.; Bahari, S. A.; Nordin, K.; Soh, T. F. T.

    2010-03-01

    The demand for wood based material is increasing but the supply is decreasing. Therefore the price of these raw materials has increased. Bamboo provides an economically feasible alternative raw material for the wood based industry. Its properties are comparable to wood. It is also compatible with the existing processing technology. Bamboo is in abundance, easy to propagate and of short maturation period. Bamboo provides a cheaper alternative resource for the wood based industry. The development of new structural components from bamboo will widen its area of application from handicrafts to furniture and building components. In this study, five layer sandwiched bamboo particleboard were manufactured. The sandwiched Bamboo PB consists of a bamboo PB core, oil palm middle veneers and thin meranti surface veneers. The physical and mechanical properties of the bamboo sandwiched particleboards were tested in accordance to the BS-EN 317:1993 [1] and BS-EN 310:1993 [2], respectively. All the samples passed the standards. The modulus of elasticity was about 352% higher than the value specified in the BS standard, BS-EN 312-4:1996 [3]. The Internal bonding was about 23% higher than the general requirements specified in the standard. On the other hand, the thickness swelling was about 6% lower than the standard. No glue line failure was observed in the strength tests. Critical failures in the IB tests were observed in the particleboards. Tension failures were observed in the surface veneers in the bending tests. The five layer sandwiched bamboo particleboard can be used for light weight construction such as furniture, and wall and door panels in buildings.

  20. Nonlinear Analysis and Post-Test Correlation for a Curved PRSEUS Panel

    Science.gov (United States)

    Gould, Kevin; Lovejoy, Andrew E.; Jegley, Dawn; Neal, Albert L.; Linton, Kim, A.; Bergan, Andrew C.; Bakuckas, John G., Jr.

    2013-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept, developed by The Boeing Company, has been extensively studied as part of the National Aeronautics and Space Administration's (NASA s) Environmentally Responsible Aviation (ERA) Program. The PRSEUS concept provides a light-weight alternative to aluminum or traditional composite design concepts and is applicable to traditional-shaped fuselage barrels and wings, as well as advanced configurations such as a hybrid wing body or truss braced wings. Therefore, NASA, the Federal Aviation Administration (FAA) and The Boeing Company partnered in an effort to assess the performance and damage arrestments capabilities of a PRSEUS concept panel using a full-scale curved panel in the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. Testing was conducted in the FASTER facility by subjecting the panel to axial tension loads applied to the ends of the panel, internal pressure, and combined axial tension and internal pressure loadings. Additionally, reactive hoop loads were applied to the skin and frames of the panel along its edges. The panel successfully supported the required design loads in the pristine condition and with a severed stiffener. The panel also demonstrated that the PRSEUS concept could arrest the progression of damage including crack arrestment and crack turning. This paper presents the nonlinear post-test analysis and correlation with test results for the curved PRSEUS panel. It is shown that nonlinear analysis can accurately calculate the behavior of a PRSEUS panel under tension, pressure and combined loading conditions.

  1. Active structural health monitoring of composite plates and sandwiches

    Directory of Open Access Journals (Sweden)

    Sadílek P.

    2013-12-01

    Full Text Available The aim of presented work is to design, assemble and test a functional system, that is able to reveal damage from impact loading. This is done by monitoring of change of spectral characteristics on a damaged structure that is caused by change of mechanical properties of material or by change of structure’s geometry. Excitation and monitoring of structures was done using piezoelectric patches. Unidirectional composite plate was tested for eigenfrequencies using chirp signal. The eigenfrequencies were compared to results from experiments with an impact hammer and consequently with results from finite element method. Same method of finding eigenfrequencies was used on a different unidirectional composite specimen. Series of impacts were performed. Spectrum of eigenfrequencies was measured on undamaged plate and then after each impact. Measurements of the plate with different level of damage were compared. Following experiments were performed on sandwich materials where more different failures may happen. Set of sandwich beams (cut out from one plate made of two outer composite layers and a foam core was investigated and subjected to several impacts. Several samples were impacted in the same manner to get comparable results. The impacts were performed with growing impact energy.

  2. Lateral resistance of plybamboo wall-panels

    OpenAIRE

    Gonzalez Beltran, G.E.; Herwijnen, van, F.; Janssen, J.J.A.; Moonen, S.P.G.; Gutierrez, J.A.

    2003-01-01

    This paper deals with the experimental and theoretical behavior of plybamboo (kind of plywood made out of bamboo) wall-panels subjected to lateral load. The wall-panels are part of a house design method proposed in the author's PhD thesis for prefabricated social housing in developing countries. Sixteen fullscaled wallpanels with or without window and door openings were tested and their theoretical capacities estimated. Design wind and seismic loads were determined according to the Internatio...

  3. FEATURES OF WELDED TITANIUM STRUCTURE ELEMENT DESTRUCTION (RIBBED PANELS UNDER VIBRATION LOADS

    Directory of Open Access Journals (Sweden)

    Mr. Pavel V. Bakhmatov

    2016-12-01

    Full Text Available The article presents data on the experimental studies results of welded ribbed panel vibration load of the BT-20 titanium alloy. It was established that in the areas of attachment, there is elevated dynamic alternating stress, which in combination with the "hard" of the sample holder creates favorable conditions for the emergence and development of fatigue cracks, and stress concentrators greatly reduce the time before the formation of the hearth destruction. An exception in these zones of superficial defects do not affect the nature and kinetics of destruction. Construction of titanium alloys made in the application of gas-laser cutting blanks for optimal regimes in the technical environment of nitrogen and subsequent heat treatment on vibration reliability is not inferior to design, made by traditional technology.

  4. Concrete elements with better insulation and less thermal bridge effect; Betonelementer med bedre isolering og mindre kuldebroer

    Energy Technology Data Exchange (ETDEWEB)

    Monefeldt Tommerup, H

    2000-09-01

    In this project new concrete sandwich panel solutions with better thermal properties have been developed, usable for highly-insulated buildings, responding to the needs that occur when the demands to the permissible energy consumption for heating is further increased. This is expected to happen in 2005. The improved thermal properties have been obtained without increasing the costs more than of the extra insulation. Removing concrete ribs at window reveals and at horizontal joints enables a thermal improvement as well as reduced costs due to simpler manufacturing of the panel. A natural grouping of concrete sandwich panels into two categories formed the basis of the work. One is panels with covering concrete reveals as typically used in residential housing and office buildings. The other is about panels with load bearing ribs serving as columns, typically used in industrial and commercial building. Of course there are panels that are a combination of the two categories, but this fact has not been crucial for the analyses. (au)

  5. Advanced Mechanical Testing of Sandwich Materials

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Jenstrup, Claus

    2008-01-01

    An advanced digital optical system has been used to measure surface strains on sandwich face and core specimens tested in a project concerned with improved criteria for designing sandwich X-joints. The face sheet specimens were of glass reinforced polyester and were tested in tension. The core sp...

  6. Composite steel panels for tornado missile barrier walls. Topical report

    International Nuclear Information System (INIS)

    1975-10-01

    A composite steel panel wall system is defined as a wall system with concrete fill sandwiched between two steel layers such that no concrete surface is exposed on the interior or the exterior wall surface. Three full scale missile tests were conducted on two specific composite wall systems. The results of the full scale tests were in good agreement with the finalized theory. The theory is presented, and the acceptance of the theory for design calculations is discussed

  7. Introduction to Analysis and Design of Plate Panels

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Lützen, Marie

    , composite materials as glass-fibre-reinforced plates, sandwich plates and reinforced concrete plates are not included as they are topics for other courses. The present notes are mainly based on Pedersen and Jensen (1983), written in Danish. The first version of the notes was prepared by Marie L......The present notes cover plate theory dealing with bending, vibrations, elastic buckling and ultimate strength. The plate structures considered are isotropic, orthotropic and stiffened plates made of metallic materials. The main objective of the notes is to give an introduction to plates and plate...... panels and to present some fairly easy methods and results to be used in the design phase to judge, whether a plate panel can be considered safe from a structural point of view or requires a more detailed numerical analysis, typically using the Finite Element Method. Furthermore, a short introduction...

  8. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses

    Science.gov (United States)

    Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.

  9. Structural and failure mechanics of sandwich composites

    CERN Document Server

    Carlsson, LA; Carlsson, Leif A

    2011-01-01

    Focusing on important deformation and failure modes of sandwich structures, this volume describes the mechanics behind fracture processes. The text also reviews test methods developed for the cr, structural integrity, and failure mechanisms of sandwich structures.

  10. Predicting safe sandwich production

    DEFF Research Database (Denmark)

    Birk, Tina; Duan, Zhi; Møller, Cleide Oliveira de Almeida

    2014-01-01

    Time and temperature control is crucial to avoid growth of pathogens during production and serving of cold ready-to-eat meals. The Danish guidelines state that chilled foods, such as sandwiches, should not be outside the cold chain for more than 3 hours including the time for preparation...... and serving. However, Danish sandwich producing companies find it challenging to comply with this and have expressed a need for more flexibility. The Danish guidelines do allow for a prolongation of the acceptable time outside the cold chain, if the safety of the specific production can be documented...

  11. Facile preparation of ZIF-8@Pd-CSS sandwich-type microspheres via in situ growth of ZIF-8 shells over Pd-loaded colloidal carbon spheres with aggregation-resistant and leach-proof properties for the Pd nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tong; Lin, Lu [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 (China); Zhang, Xiongfu, E-mail: xfzhang@dlut.edu.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 (China); Liu, Haiou; Yan, Xinjuan [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 (China); Liu, Zhang; Yeung, King Lun [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR (China)

    2015-10-01

    Graphical abstract: - Highlights: • Uniform-sized colloidal carbon spheres were synthesized from low-cost glucose. • Pd nanoparticles were loaded onto the carbon spheres via self-reduction method. • A layer of ZIF-8 shell was in situ grown over the Pd-loaded carbon spheres. • The ZIF-8@Pd-CCS showed leach-proof and aggregation-resistant properties of Pd. - Abstract: Aiming to enhance the stability of noble metal nanoparticles that are anchored on the surface of colloidal carbon spheres (CCSs), we designed and prepared a new kind of sandwich-structured ZIF-8@Pd-CCS microsphere. Typically, uniform CCSs were first synthesized by the aromatization and carbonization of glucose under hydrothermal conditions. Subsequently, noble metal nanoparticles, herein Pd nanoparticles, were attached to the surface of CCSs via self-reduction route, followed by in situ assembly of a thin layer of ZIF-8 over the Pd nanoparticles to form the sandwich-type ZIF-8@Pd-CCS microspheres. X-ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy (FTIR) spectra confirmed the presence of crystalline ZIF-8, while TEM analysis revealed that the ZIF-8 shells were closely bound to the Pd-loaded CCSs. The shell thickness could be tuned by varying the ZIF-8 assembly cycles. Further, liquid-phase hydrogenation of 1-hexene as the probe reaction was carried out over the ZIF-8@Pd-CCS microspheres and results showed that the prepared microspheres exhibited excellent agglomeration-resistant and leach-proof properties for the Pd nanoparticles, thus leading to the good reusability of the ZIF-8@Pd-CCS microspheres.

  12. Fracture Characterization of PVC Foam Core Sandwich Specimen Using the DCB-UBM Test Method

    DEFF Research Database (Denmark)

    Saseendran, Vishnu; Berggreen, Christian; Carlsson, Leif A.

    coupled with experimental validation is paramount to determine the fracture resistance of the face/core interface. In this paper, the test-rig exploiting the double cantilever beam with uneven bending moments (DCB-UBM) concept is used to determine the fracture toughness of PVC foam core sandwich......Face/core debond failure in sandwich composites is a critical failure mode. Lack of cohesion between face and core will lead to loss of structural integrity. The estimation of interface fracture toughness especially at the face/core interface is extremely challenging, provided the dissimilarity...... composites. The DCB-UBM test enables fracture testing over a large range of mode-mixities as expressed by a phase angle (ψ) which is a measure of the amount of shear loading at the crack tip. A desired phase angle may be achieved by changing the moment-ratio (MR = Md/Ms)....

  13. FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION

    Directory of Open Access Journals (Sweden)

    K. S. Kurachka

    2014-01-01

    Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.

  14. Three dimensional Free Vibration and Transient Analysis of Two Directional Functionally Graded Thick Cylindrical Panels Under Impact Loading

    Directory of Open Access Journals (Sweden)

    Hassan Zafarmand

    Full Text Available AbstractIn this paper three dimensional free vibration and transient response of a cylindrical panel made of two directional functionally graded materials (2D-FGMs based on three dimensional equations of elasticity and subjected to internal impact loading is considered. Material properties vary through both radial and axial directions continuously. The 3D graded finite element method (GFEM based on Rayleigh-Ritz energy formulation and Newmark direct integration method has been applied to solve the equations in space and time domains. The fundamental normalized natural frequency, time history of displacements and stresses in three directions and velocity of radial stress wave propagation for various values of span angel of cylindrical panel and different power law exponents have been investigated. The present results show that using 2D-FGMs leads to a more flexible design than conventional 1D-FGMs. The GFEM solution have been compared with the results of an FG thick hollow cylinder and an FG curved panel, where a good agreement between them is observed.

  15. ITO-TiN-ITO Sandwiches for Near-Infrared Plasmonic Materials.

    Science.gov (United States)

    Chen, Chaonan; Wang, Zhewei; Wu, Ke; Chong, Haining; Xu, Zemin; Ye, Hui

    2018-05-02

    Indium tin oxide (ITO)-based sandwich structures with the insertion of ultrathin (ITO layers show TiN-thickness-dependent properties, which lead to moderate and tunable effective permittivities for the sandwiches. The surface plasmon polaritons (SPP) of the ITO-TiN-ITO sandwich at the telecommunication window (1480-1570 nm) are activated by prism coupling using Kretschmann configuration. Compared with pure ITO films or sandwiches with metal insertion, the reflectivity dip for sandwiches with TiN is relatively deeper and wider, indicating the enhanced coupling ability in plasmonic materials for telecommunications. The SPP spatial profile, penetration depth, and degree of confinement, as well as the quality factors, demonstrate the applicability of such sandwiches for NIR plasmonic materials in various devices.

  16. Experimental formability analysis of bondal sandwich sheet

    Science.gov (United States)

    Kami, Abdolvahed; Banabic, Dorel

    2018-05-01

    Metal/polymer/metal sandwich sheets have recently attracted the interests of industries like automotive industry. These sandwich sheets have superior properties over single-layer metallic sheets including good sound and vibration damping and light weight. However, the formability of these sandwich sheets should be enhanced which requires more research. In this paper, the formability of Bondal sheet (DC06/viscoelastic polymer/DC06 sandwich sheet) was studied through different types of experiments. The mechanical properties of Bondal were determined by uniaxial tensile tests. Hemispherical punch stretching and hydraulic bulge tests were carried out to determine the forming limit diagram (FLD) of Bondal. Furthermore, cylindrical and square cup drawing tests were performed in dry and oil lubricated conditions. These tests were conducted at different blank holding forces (BHFs). An interesting observation about Bondal sheet deep drawing was obtaining of higher drawing depths at dry condition in comparison with oil-lubricated condition.

  17. A critical pressure based panel method for prediction of unsteady loading of marine propellers under cavitation

    International Nuclear Information System (INIS)

    Liu, P.; Bose, N.; Colbourne, B.

    2002-01-01

    A simple numerical procedure is established and implemented into a time domain panel method to predict hydrodynamic performance of marine propellers with sheet cavitation. This paper describes the numerical formulations and procedures to construct this integration. Predicted hydrodynamic loads were compared with both a previous numerical model and experimental measurements for a propeller in steady flow. The current method gives a substantial improvement in thrust and torque coefficient prediction over a previous numerical method at low cavitation numbers of less than 2.0, where severe cavitation occurs. Predicted pressure coefficient distributions are also presented. (author)

  18. Vibro-acoustics of lightweight sandwich structures

    CERN Document Server

    Lu, Tianjian

    2014-01-01

    Vibro-Acoustics of Lightweight Sandwich Structures introduces the study of the coupled vibration and acoustic behavior of lightweight sandwich structures in response to harmonic force and sound pressure. This book focuses on the theoretical modeling and experimental investigation of lightweight sandwich structures in order to provide a predictive framework for vibro-acoustic characteristics of typical engineering structures. Furthermore, by developing solution tools, it concentrates on the influence of key systematic parameters leading to effective guidance for optimal structure design toward lightweight, high-stiffness and superior sound insulation capability. This book is intended for researchers, scientists, engineers and graduate students in mechanical engineering especially in structural mechanics, mechanics and acoustics. Fengxian Xin and Tianjian Lu both work at the School of Aerospace, Xi’an Jiaotong University.

  19. Switch Panel wear loading - a parametric study regarding governing train operational factors

    Science.gov (United States)

    Hiensch, E. J. M.; Burgelman, N.

    2017-09-01

    The acting forces and resulting material degradation at the running surfaces of wheels and rail are determined by vehicle, track, interface and operational characteristics. To effectively manage the experienced wear, plastic deformation and crack development at wheels and rail, the interaction between vehicle and track demands a system approach both in maintenance and in design. This requires insight into the impact of train operational parameters on rail- and wheel degradation, in particular at switches and crossings due to the complex dynamic behaviour of a railway vehicle at a turnout. A parametric study was carried out by means of vehicle-track simulations within the VAMPIRE® multibody simulation software, performing a sensitivity analysis regarding operational factors and their impact on expected switch panel wear loading. Additionally, theoretical concepts were cross-checked with operational practices by means of a case study in response to a dramatic change in lateral rail wear development at specific switches in Dutch track. Data from train operation, track maintenance and track inspection were analysed, providing further insight into the operational dependencies. From the simulations performed in this study, it was found that switch rail lateral wear loading at the diverging route of a 1:9 type turnout is significantly influenced by the level of wheel-rail friction and to a lesser extent by the direction of travel (facing or trailing). The influence of other investigated parameters, being vehicle speed, traction, gauge widening and track layout is found to be small. Findings from the case study further confirm the simulation outcome. This research clearly demonstrates the contribution flange lubrication can have in preventing abnormal lateral wear at locations where the wheel-rail interface is heavily loaded.

  20. Time domain simulation of the response of geometrically nonlinear panels subjected to random loading

    Science.gov (United States)

    Moyer, E. Thomas, Jr.

    1988-01-01

    The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.

  1. Nonglobal proof of the thin--sandwich conjecture

    International Nuclear Information System (INIS)

    Pereira, C.M.

    1981-01-01

    A gravitational thin--sandwich conjecture was first proposed by Wheeler and coworkers during the period 1962--4. The present paper contains a proof of the nonglobal form of this gravitational thin--sandwich conjecture. The proof (a) applies for arbitrary choices of the spatial metric and its time derivative; and (b) demonstrates the existence on a spacelike three-surface of solutions which satisfy conditions of continuity known to be sufficient to obtain existence and uniqueness of solutions to Einstein's equations off the three-surface and existence and uniqueness of geodesics. Riquier's existence theorem plays an important role in the proof. The relationship of the present results to previous work is discussed. Some global questions associated with the thin--sandwich conjecture are clarified. Some aspects of the relationship of the thin--sandwich conjecture to the problem of the quantization of the gravitational field are noted. Both the vacuum case and the case of a nonviscous fluid are included. The discussion allows for an arbitrary equation of state p = p

  2. Solar Panel Installations on Existing Structures

    OpenAIRE

    Tim D. Sass; Pe; Leed

    2013-01-01

    The rising price of fossil fuels, government incentives and growing public aware-ness for the need to implement sustainable energy supplies has resulted in a large in-crease in solar panel installations across the country. For many sites the most eco-nomical solar panel installation uses existing, southerly facing rooftops. Adding solar panels to an existing roof typically means increased loads that must be borne by the building-s structural elements. The structural desig...

  3. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    Science.gov (United States)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  4. Behavior of Frame-Stiffened Composite Panels with Damage

    Science.gov (United States)

    Jegley, Dawn C.

    2013-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept, a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. Stitching and the use of thin skins with rod-stiffeners to move loading away from the morevulnerable outer surface produces a structurally efficient, damage tolerant design. This study focuses on the behavior of PRSEUS panels loaded in the frame direction and subjected to severe damage in the form of a severed central frame in a three-frame panel. Experimental results for a pristine two-frame panel and analytical predictions for pristine two-frame and three-frame panels as well as damaged three-frame panels are described.

  5. Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts

    Science.gov (United States)

    Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...

  6. The sandwich sign | Mahomed | SA Journal of Radiology

    African Journals Online (AJOL)

    The sandwich sign refers to the sandwiching of mesenteric vessels and fat by enlarged mesenteric nodes on cross-sectional imaging, commonly occurring in lymphoma, but not specific to lymphoma. The sign is radiologically indistinguishable from post-transplant lymphoproliferative disorders. The radiological significance ...

  7. Energy efficient three-layer panels and elastic compliance of their middle layer

    Directory of Open Access Journals (Sweden)

    Petrov Stanislav

    2017-01-01

    Full Text Available Three-layer panels are referred to light weight energy efficient building envelopes. According to current trends, mineral wool from basalt fiber is preferable to be used as panels middle layer. All three-layers of the construction together account for mechanical properties, though these layers taken separately have very different mechanical properties. The work of such a composite design has a number of features that require careful consideration when calculating the panels for strength. Thus, it has not yet been described how squeeze reduction of a relatively soft middle layer affects the load bearing capacity of a panel. When panels are exposed to external loads, their middle layer is squeezed thus changing the characteristics of the panel. This effect is particularly evident in supporting structures. Besides, squeeze reduction of the middle layer changes its elastic-plastic propeties. The purpose of this work is to study the effect of the middle layer of an energy efficient panel squeeze reduction on its load bearing capacity. When solving this task, the authors worked out a methodology which takes into account squeeze reduction of a middle layer and its effect on load bearing capacity of the panel. The researches introduced an algorithm for solving this task and created a tool that allows to easily receive the exact solution. The paper presents this methodology and describes a computer program for calculating three-layer panels with account of changing elastic compliance of a middle layer. The main result of the work is an extended methodology of calculation of the panels and an obtained engineering tool that allows to quickly obtain an extended solution.

  8. Feasibility study of a SiC sandwich neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian, E-mail: caepwujian@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Lei, Jiarong, E-mail: jiarong_lei@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Jiang, Yong; Chen, Yu; Rong, Ru; Zou, Dehui; Fan, Xiaoqiang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Chen, Gang; Li, Li; Bai, Song [Nanjing Electronic Devices Institute, Nanjing 210016 (China)

    2013-04-21

    Semiconductor sandwich neutron spectrometers are suitable for in-pile measurements of fast reactor spectra thanks to their compact and relatively simple design. We have assembled and tested a sandwich neutron spectrometer based on 4H-silicon carbide (4H-SiC) Schottky diodes. The SiC diodes detect neutrons via neutron-induced charged particles (tritons and alpha particles) produced by {sup 6}Li(n,α){sup 3}H reaction. {sup 6}LiF neutron converter layers are deposited on the front surface of Schottky diodes by magnetron sputtering. The responses of SiC diodes to charged particles were investigated with an {sup 241}Am alpha source. A sandwich neutron spectrometer was assembled with two SiC Schottky diodes selected based on the charged-particle-response experimental results. The low-energy neutron response of the sandwich spectrometer was measured in the neutron field of the Chinese Fast Burst Reactor-II (CFBR-II). Spectra of alpha particles and tritons from {sup 6}Li(n,α){sup 3}H reaction were obtained with two well-resolved peaks. The energy resolution of the sum spectrum was 8.8%. The primary experimental results confirmed the 4H-SiC sandwich neutron spectrometer's feasibility. -- Highlights: ► Sandwich neutron spectrometer employing 4H-SiC as a detecting material has been developed for the first time. ► {sup 6}LiF neutron converter has been deposited on the surface of 4H-SiC Schottky diode. ► Preliminary testing results obtained with the 4H-SiC sandwich neutron spectrometer are presented.

  9. Application of a Broadband Active Vibration Control System to a Helicopter Trim Panel

    Science.gov (United States)

    Cabell, Randolph H.; Schiller, Noah H.; Simon, Frank

    2013-01-01

    This paper discusses testing of a broadband active vibration control concept on an interior trim panel in a helicopter cabin mockup located at ONERA's Centre de Toulouse. The control system consisted of twelve diamond-shaped piezoelectric actuators distributed around a 1.2m x 1.2m trim panel. Accelerometers were mounted at the four vertices of each diamond. The aspect ratio of the diamond was based on the dielectric constants of the piezoelectric material in order to create an actuator-sensor pair that was collocated over a broad frequency range. This allowed robust control to be implemented using simple, low power analog electronics. Initial testing on a thick acrylic window demonstrated the capability of the controller, but actuator performance was less satisfactory when mounted on a composite sandwich trim panel. This may have been due to the orthotropic nature of the trim panel, or due to its much higher stiffness relative to the acrylic window. Insights gained from a finite element study of the actuator-sensor-structural system are discussed.

  10. Dental responsibility loadings and the relative value of dental services.

    Science.gov (United States)

    Teusner, D N; Ju, X; Brennan, D S

    2017-09-01

    To estimate responsibility loadings for a comprehensive list of dental services, providing a standardized unit of clinical work effort. Dentists (n = 2500) randomly sampled from the Australian Dental Association membership (2011) were randomly assigned to one of 25 panels. Panels were surveyed by questionnaires eliciting responsibility loadings for eight common dental services (core items) and approximately 12 other items unique to that questionnaire. In total, loadings were elicited for 299 items listed in the Australian Dental Schedule 9th Edition. Data were weighted to reflect the age and sex distribution of the workforce. To assess reliability, regression models assessed differences in core item loadings by panel assignment. Estimated loadings were described by reporting the median and mean. Response rate was 37%. Panel composition did not vary by practitioner characteristics. Core item loadings did not vary by panel assignment. Oral surgery and endodontic service areas had the highest proportion (91%) of services with median loadings ≥1.5, followed by prosthodontics (78%), periodontics (76%), orthodontics (63%), restorative (62%) and diagnostic services (31%). Preventive services had median loadings ≤1.25. Dental responsibility loadings estimated by this study can be applied in the development of relative value scales. © 2017 Australian Dental Association.

  11. Validation and implementation of sandwich structure bottom plate to rib weld joint in the base section of ITER Cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Prajapati, Rajnikant, E-mail: rajnikant@iter-india.org [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Bhardwaj, Anil K.; Gupta, Girish; Joshi, Vaibhav; Patel, Mitul; Bhavsar, Jagrut; More, Vipul; Jindal, Mukesh; Bhattacharya, Avik; Jogi, Gaurav; Palaliya, Amit; Jha, Saroj; Pandey, Manish [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Jadhav, Pandurang; Desai, Hemal [Larsen & Toubro Limited, Heavy Engineering, Hazira Manufacturing Complex, Gujarat (India)

    2016-11-01

    Highlights: • ITER Cryostat base section sandwich structure bottom plate to rib weld joint is qualified through mock-up. • Established welding sequence was successfully implemented on all six sectors of cryostat base section. • Each layer liquid penetrant examination has been carried out for these weld joints and found satisfactory. - Abstract: Cryostat is a large stainless steel vacuum vessel providing vacuum environment to ITER machine components. The cryostat is ∼30 m in diameter and ∼30 m in height having variable thickness from 25 mm to 180 mm. Sandwich structure of cryostat base section withstands vacuum loading and limits the deformation under service conditions. Sandwich structure consists of top and bottom plates internally strengthened with radial and circular ribs. In current work, sandwich structure bottom plate to rib weld joint has been designed with full penetration joint as per ITER Vacuum Handbook requirement considering nondestructive examinations and welding feasibility. Since this joint was outside the scope of ASME Section VIII Div. 2, it was decided to validate through mock-up of bottom plate to rib joint. Welding sequence was established to control the distortion. Tensile test, macro-structural examination and layer by layer LPE were carried out for validation of this weld joint. However possibility of ultrasonic examination method was also investigated. The test results from the welded joint mock-up were found to confirm all code and specification requirements. The same was implemented in first sector (0–60°) of base section sandwich structure.

  12. Physics-Based Simulation and Experiment on Blast Protection of Infill Walls and Sandwich Composites Using New Generation of Nano Particle Reinforced Materials

    Science.gov (United States)

    Irshidat, Mohammad

    A critical issue for the development of nanotechnology is our ability to understand, model, and simulate the behavior of small structures and to make the connection between nano structure properties and their macroscopic functions. Material modeling and simulation helps to understand the process, to set the objectives that could guide laboratory efforts, and to control material structures, properties, and processes at physical implementation. These capabilities are vital to engineering design at the component and systems level. In this research, experimental-computational-analytical program was employed to investigate the performance of the new generation of polymeric nano-composite materials, like nano-particle reinforced elastomeric materials (NPREM), for the protection of masonry structures against blast loads. New design tools for using these kinds of materials to protect Infill Walls (e.g. masonry walls) against blast loading were established. These tools were also extended to cover other type of panels like sandwich composites. This investigation revealed that polymeric nano composite materials are strain rate sensitive and have large amount of voids distributed randomly inside the materials. Results from blast experiments showed increase in ultimate flexural resistance achieved by both unreinforced and nano reinforced polyurea retrofit systems applied to infill masonry walls. It was also observed that a thin elastomeric coating on the interior face of the walls could be effective at minimizing the fragmentation resulting from blast. More conclusions are provided with recommended future research.

  13. Dynamic Response of Functionally Graded Carbon Nanotube Reinforced Sandwich Plate

    Science.gov (United States)

    Mehar, Kulmani; Panda, Subrata Kumar

    2018-03-01

    In this article, the dynamic response of the carbon nanotube-reinforced functionally graded sandwich composite plate has been studied numerically with the help of finite element method. The face sheets of the sandwich composite plate are made of carbon nanotube- reinforced composite for two different grading patterns whereas the core phase is taken as isotropic material. The final properties of the structure are calculated using the rule of mixture. The geometrical model of the sandwich plate is developed and discretized suitably with the help of available shell element in ANSYS library. Subsequently, the corresponding numerical dynamic responses computed via batch input technique (parametric design language code in ANSYS) of ANSYS including Newmark’s integration scheme. The stability of the sandwich structural numerical model is established through the proper convergence study. Further, the reliability of the sandwich model is checked by comparison study between present and available results from references. As a final point, some numerical problems have been solved to examine the effect of different design constraints (carbon nanotube distribution pattern, core to face thickness ratio, volume fractions of the nanotube, length to thickness ratio, aspect ratio and constraints at edges) on the time-responses of sandwich plate.

  14. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: absorption versus transmission.

    Science.gov (United States)

    Doutres, Olivier; Atalla, Noureddine

    2010-08-01

    The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound absorption behavior can affect the performance of the double panel structure.

  15. Fracture Analysis of Debonded Sandwich Columns Under Axial Compression

    DEFF Research Database (Denmark)

    May, A.; Avilés, F.; Berggreen, Christian

    A sandwich structure consists of two strong and stiff face sheets bonded to a weak low density core. The large separation between the face sheets provides increased bending rigidity and strength at low weight cost. Thus, sandwich structures frequently present better mechanical properties than...... monolithic structures of the same weight. The vast range of applications of such materials includes wind turbines, marine, and aerospace industries. In this work, geometrically nonlinear finite element analysis is conducted to investigate the fracture parameters and debond propagation of sandwich columns...

  16. Porous Sandwiched Graphene/Silicon Anodes for Lithium Storage

    International Nuclear Information System (INIS)

    Wei, Liangming; Hou, Zhongyu; Wei, Hao

    2017-01-01

    Highlights: • In situ hydrolysis of tetraethoxysilane within the confined galleries region of graphite oxide. • New porous sandwiched graphene/Si nanocomposites were prepared by magnesium thermal reduction. • The Si nanostructure was compactly sandwiched between two neighboring graphenes. • The Si/graphene anodes deliver large reversible capacity with excellent cycling stability. - Abstract: Porous sandwiched graphene/Si nanocomposites (PG-Si) are prepared by in situ hydrolysis of tetraethoxysilane within the confined gallery region of graphite oxide, and then magnesium thermal reduction of the intra-gallery SiO 2 to Si nanocrystals. The Si nanostructures are in situ formed within the confined gallery region of graphite, and they are compactly sandwiched between two neighboring graphene sheets. This compactly sandwiched structure affords enhanced electron conductivity, and prevents Si nanoparticles from aggregation. Meanwhile, the free voids between neighboring Si nanocrystals alleviate the volume change of Si during cycling. As a consequence, the resulting PG-Si nanocomposites are high-performance anode materials for lithium-ion batteries which show long cycle life (>500 cycles) and high specific charge capacity (1464 mAh g −1 at a current density of 200 mA/g, 920 mAh g −1 at a current density of 1.68A/g after 500 cycles). The Li + diffusion kinetics in PG-Si is also discussed.

  17. Mechanical Characterization of In and Out-of-Autoclave Cured Composite Panels for Large Launch Vehicles

    Science.gov (United States)

    Kellas, Sotiris; Lerch, Bradley A.; Wilmoth, Nathan

    2012-01-01

    Two manufacturing demonstration panels (1/16th-arc-segments of 10 m diameter cylinder) were fabricated under the composites part of the Lightweight Space Structures and Materials program. Both panels were of sandwich construction with aluminum core and 8-ply quasi-isotropic graphite/epoxy facesheets. One of the panels was constructed with in-autoclave curable unidirectional prepreg (IM7/977-3) and the second with out-of-autoclave unidirectional prepreg (T40-800B/5320-1). Following NDE inspection, each panel was divided into a number of small specimens for material property characterization and a large (0.914 m wide by 1.524 m long) panel for a buckling study. Results from the small specimen tests were used to (a) assess the fabrication quality of each 1/16th arc segment panel and (b) to develop and/or verify basic material property inputs to Finite Element analysis models. The mechanical performance of the two material systems is assessed at the coupon level by comparing average measured properties such as flatwise tension, edgewise compression, and facesheet tension. The buckling response of the 0.914 m wide by 1.524 m long panel provided a comparison between the in- and out-of autoclave systems at a larger scale.

  18. AA, sandwich line with magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The magnetic horn, focusing the antiprotons emanating from the target, was affixed to a sandwich line through which the 150 kA pulses were supplied. Expecting to have to change from time to time the fragile horn (inner conductor only 0.7 mm thick), the assembly was designed for quick exchange. At the lower end of the sandwich line we see the connectors for the high-current cables, at the upper end the magnet horn. It has just been lifted from the V-supports which held it aligned downstream of the target. Continue with 8010293.

  19. Measuring Cohesive Laws for Interfaces in Sandwich Structures

    DEFF Research Database (Denmark)

    Lundsgaard-Larsen, Christian; Sørensen, Bent F.; Berggreen, Carl Christian

    2006-01-01

    mixities. The sandwich specimens consists of glass fiber faces and Divinycell H200 foam core with a pre-crack between face and core made with teflon film. Arbitrary stiffening of the sandwich faces with steel bars adhered to the faces reduces rotations and ensures that the method is useable for a wide...

  20. Stress wave propagation in thin long-fiber carbon/epoxy composite panel. Numerical and experimental solutions

    Directory of Open Access Journals (Sweden)

    Kroupa T.

    2007-10-01

    Full Text Available The article deals with experimental and numerical analysis of stress wave propagation in a thin long fiber carbon/epoxy composite material. Experiments were performed on in-plane loaded square composite panels with dimensions 501mm x 501mm x 2:2 mm. The panels have several fiber orientations (0°, 30°, 60° and 90° measured from the loaded edge. They were loaded by in-plane impact of steel sphere. The impact area was on the edge, exactly 150mm from top left corners corner of the panels. The loading force was approximated by atime dependent function. Its shape was obtained from three dimensional contact analysis, which was performed on smaller area of panel. The function was used in further plane stress analysis of the whole panels. The comparison of the numerical and experimental results was executed. An attempt at determination of velocity of propagation of Rayleigh waves on the loaded edge was performed and the results are discussed in the paper. Further directions of the research are proposed.

  1. Structural affection of the integration of the solar panels in existing buildings; Afeccion estructural de la integracion de los paneles solares en edificios existentes

    Energy Technology Data Exchange (ETDEWEB)

    Mencias, D. C.; Arroba, M. F.

    2008-07-01

    For a short time, is obligatory to install solar and/or photovoltaic panels, not only in new buildings, even those who are subjected to a important reform or rehabilitation. The installation of these panels, involves a series of structural impacts on the structure of the buildings where they are installed, which originally had not been planned or considered in loads evaluation. These new actions are originated both in the weight of the solar elements as a resistance that oppose the wind force and the consequent counterweights. This communication proposes the analysis of the reduction that these new loads cause in safety factors considered in the initial calculation. Permanent loads influence direct their own panels and the accumulation of deposits and derivative, such as caused by the counterweights installed for the wind, are analyzed in Ultimated State Limits. (Author)

  2. Static and fatigue experimental tests on a full scale fuselage panel and FEM analyses

    Directory of Open Access Journals (Sweden)

    Raffaele Sepe

    2016-02-01

    Full Text Available A fatigue test on a full scale panel with complex loading condition and geometry configuration has been carried out using a triaxial test machine. The demonstrator is made up of two skins which are linked by a transversal butt-joint, parallel to the stringer direction. A fatigue load was applied in the direction normal to the longitudinal joint, while a constant load was applied in the longitudinal joint direction. The test panel was instrumented with strain gages and previously quasi-static tests were conducted to ensure a proper load transferring to the panel. In order to support the tests, geometric nonlinear shell finite element analyses were conducted to predict strain and stress distributions. The demonstrator broke up after about 177000 cycles. Subsequently, a finite element analysis (FEA was carried out in order to correlate failure events; due to the biaxial nature of the fatigue loads, Sines criterion was used. The analysis was performed taking into account the different materials by which the panel is composed. The numerical results show a good correlation with experimental data, successfully predicting failure locations on the panel.

  3. Preparation of Ultrahigh Molecular Weight Polyethylene/Graphene Nanocomposite In situ Polymerization via Spherical and Sandwich Structure Graphene/Sio2 Support

    Science.gov (United States)

    Su, Enqi; Gao, Wensheng; Hu, Xinjun; Zhang, Caicai; Zhu, Bochao; Jia, Junji; Huang, Anping; Bai, Yongxiao

    2018-04-01

    Reduced graphene oxide/SiO2 (RGO/SiO2) serving as a novel spherical support for Ziegler-Natta (Z-N) catalyst is reported. The surface and interior of the support has a porous architecture formed by RGO/SiO2 sandwich structure. The sandwich structure is like a brick wall coated with a graphene layer of concreted as skeleton which could withstand external pressures and endow the structure with higher support stabilities. After loading the Z-N catalyst, the active components anchor on the surface and internal pores of the supports. When the ethylene molecules meet the active centers, the molecular chains grow from the surface and internal catalytic sites in a regular and well-organized way. And the process of the nascent molecular chains filled in the sandwich structure polymerization could ensure the graphene disperse uniformly in the polymer matrix. Compared with traditional methods, the porous spherical graphene support of this strategy has far more advantages and could maintain an intrinsic graphene performance in the nanocomposites.

  4. Solar maximum mission panel jettison analysis remote manipulator system

    Science.gov (United States)

    Bauer, R. B.

    1980-01-01

    A study is presented of the development of the Remote Manipulator System (RMS) configurations for jettison of the solar panels on the Solar Maximum Mission/Multimission Satellite. A valid RMS maneuver between jettison configurations was developed. Arm and longeron loads and effector excursions due to the solar panel jettison were determined to see if they were within acceptable limits. These loads and end effector excursions were analyzed under two RMS modes, servos active in position hold submode, and in the brakes on mode.

  5. Fracture Analysis of the FAA/NASA Wide Stiffened Panels

    Science.gov (United States)

    Seshadri, B. R.; Newman, J. C., Jr.; Dawicke, D. S.; Young, R. D.

    1999-01-01

    This paper presents the fracture analyses conducted on the FAA/NASA stiffened and unstiffened panels using the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. The STAGS code with the "plane-strain" core option was used in all analyses. Previous analyses of wide, flat panels have shown that the high-constraint conditions around a crack front, like plane strain, has to be modeled in order for the critical CTOA fracture criterion to predict wide panel failures from small laboratory tests. In the present study, the critical CTOA value was determined from a wide (unstiffened) panel with anti-buckling guides. The plane-strain core size was estimated from previous fracture analyses and was equal to about the sheet thickness. Rivet flexibility and stiffener failure was based on methods and criteria, like that currently used in industry. STAGS and the CTOA criterion were used to predict load-against-crack extension for the wide panels with a single crack and multiple-site damage cracking at many adjacent rivet holes. Analyses were able to predict stable crack growth and residual strength within a few percent (5%) of stiffened panel tests results but over predicted the buckling failure load on an unstiffened panel with a single crack by 10%.

  6. Mechanical testing of a FW panel attachment system for ITER

    International Nuclear Information System (INIS)

    Oliva, Vladislav; Vaclavik, Jaroslav; Materna, Ales; Lorenzetto, Patrick; Furmanek, Andreas

    2009-01-01

    An objective of experiments and finite element simulations was to check the stiffness, the strength and the fatigue resistance of the attachment of the First Wall panels onto a shield block of blanket modules according to the ITER 2001 design. The panel has a poloidal key at the rear side (in so-called option A with the rear access bolting) and it is attached by means of special studs located on a key-way in the shield block. Special device for a test of stud tensile pre-load relaxation during a thermal cycling was developed. True-to-scale panels, the shield block mock-up and simplified studs were fabricated and the assembly was loaded alternatively by radial moment, poloidal force or poloidal moment simulating the loading during off-normal plasma operations. Thermal cycling led to an acceptable stud pre-load relaxation. Mechanical cycling caused neither the pre-load relaxation nor the loss of the contact in the key-way nor a damage of the attachment system. The combination of poloidal moment and radial force during vertical displacement events (VDEs) seems to be a most dangerous case because it could lead to the loss of the key-key-way contact.

  7. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi [Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, Mataram, West Nusa Tenggara (Indonesia)

    2016-03-29

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  8. Sandwich mapping of schistosomiasis risk in Anhui Province, China.

    Science.gov (United States)

    Hu, Yi; Bergquist, Robert; Lynn, Henry; Gao, Fenghua; Wang, Qizhi; Zhang, Shiqing; Li, Rui; Sun, Liqian; Xia, Congcong; Xiong, Chenglong; Zhang, Zhijie; Jiang, Qingwu

    2015-06-03

    Schistosomiasis mapping using data obtained from parasitological surveys is frequently used in planning and evaluation of disease control strategies. The available geostatistical approaches are, however, subject to the assumption of stationarity, a stochastic process whose joint probability distribution does not change when shifted in time. As this is impractical for large areas, we introduce here the sandwich method, the basic idea of which is to divide the study area (with its attributes) into homogeneous subareas and estimate the values for the reporting units using spatial stratified sampling. The sandwich method was applied to map the county-level prevalence of schistosomiasis japonica in Anhui Province, China based on parasitological data collected from sample villages and land use data. We first mapped the county-level prevalence using the sandwich method, then compared our findings with block Kriging. The sandwich estimates ranged from 0.17 to 0.21% with a lower level of uncertainty, while the Kriging estimates varied from 0 to 0.97% with a higher level of uncertainty, indicating that the former is more smoothed and stable compared to latter. Aside from various forms of reporting units, the sandwich method has the particular merit of simple model assumption coupled with full utilization of sample data. It performs well when a disease presents stratified heterogeneity over space.

  9. Novel self-assembled sandwich nanomedicine for NIR-responsive release of NO

    Science.gov (United States)

    Fan, Jing; He, Qianjun; Liu, Yi; Ma, Ying; Fu, Xiao; Liu, Yijing; Huang, Peng; He, Nongyue; Chen, Xiaoyuan

    2015-01-01

    A novel sandwich nanomedicine (GO-BNN6) for near-infrared (NIR) light responsive release of nitric oxide (NO) has been constructed by self-assembling of graphene oxide (GO) nanosheets and a NO donor BNN6 through the π-π stacking interaction. GO-BNN6 nanomedicine has an extraordinarily high drug loading capacity (1.2 mg BNN6 per mg GO), good thermal stability, and high NIR responsiveness. The NO release from GO-BNN6 can be easily triggered and effectively controlled by adjusting the switching, irradiation time and power density of NIR laser. The intracellular NIR-responsive release of NO from GO-BNN6 nanomedicine causes a remarkable anti-cancer effect. PMID:26568270

  10. Influence of the inter-layer adhesion on the structural strength of sandwich pipes; Influencia da adesao entre camadas na resistencia estrutural de dutos sanduiche

    Energy Technology Data Exchange (ETDEWEB)

    Castello, Xavier; Estefen, Segen [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Oceanica

    2005-07-01

    Sandwich pipes composed of two steel layers separated by a polypropylene annulus can be used for the transport of oil and gas in deep waters, combining high structural resistance with thermal insulation in order to prevent blockage by paraffin and hydrates. In this work, sandwich pipes with typical inner diameters of those employed in the offshore production are analyzed numerically regarding to the influence of the inter-layer adhesion of steel pipes and polymer on the limit strength under external pressure and longitudinal bending as well as the bending and straightening process representative of the reeling installation method. The numerical model incorporates geometric and material non-linearity, which had been based on previous works of the authors. Tests of specimens under tension and segments of sandwich pipes are carried through to evaluate the maximum shear stresses of the interfaces metal-polymer. The adhesion is modeled by contact adopting a maximum shear stress value to allow the relative displacement between the layers. It was observed that the structural resistance of the sandwich pipe is strongly dependent on the shear stress acting at the interface, occurring the collapse of the pipe when the maximum shear stress is reached. The results obtained are analyzed to determine the minimum shear strength at the union which provides adequate structural resistance for the sandwich pipe under representative conditions of the installation and operation loading phases. (author)

  11. A study of tensile test on open-cell aluminum foam sandwich

    Science.gov (United States)

    Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.

    2018-01-01

    Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.

  12. Sandwich mapping of schistosomiasis risk in Anhui Province, China

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2015-06-01

    Full Text Available Schistosomiasis mapping using data obtained from parasitological surveys is frequently used in planning and evaluation of disease control strategies. The available geostatistical approaches are, however, subject to the assumption of stationarity, a stochastic process whose joint probability distribution does not change when shifted in time. As this is impractical for large areas, we introduce here the sandwich method, the basic idea of which is to divide the study area (with its attributes into homogeneous subareas and estimate the values for the reporting units using spatial stratified sampling. The sandwich method was applied to map the county-level prevalence of schistosomiasis japonica in Anhui Province, China based on parasitological data collected from sample villages and land use data. We first mapped the county-level prevalence using the sandwich method, then compared our findings with block Kriging. The sandwich estimates ranged from 0.17 to 0.21% with a lower level of uncertainty, while the Kriging estimates varied from 0 to 0.97% with a higher level of uncertainty, indicating that the former is more smoothed and stable compared to latter. Aside from various forms of reporting units, the sandwich method has the particular merit of simple model assumption coupled with full utilization of sample data. It performs well when a disease presents stratified heterogeneity over space.

  13. The CRRES high efficiency solar panel

    International Nuclear Information System (INIS)

    Trumble, T.M.

    1991-01-01

    This paper reports on the High Efficiency Solar Panel (HESP) experiments which is to provide both engineering and scientific information concerning the effects of space radiation on advanced gallium arsenide (GaAs) solar cells. The HESP experiment consists of an ambient panel, and annealing panel and a programmable load. This experiment, in conjunction with the radiation measurement experiments abroad the CREES, provides the first opportunity to simultaneously measure the trapped radiation belts and the results of radiation damage to solar cells. The engineering information will result in a design guide for selecting the optimum solar array characteristics for different orbits and different lifetimes. The scientific information will provide both correlation of laboratory damage effects to space damage effects and a better model for predicting effective solar cell panel lifetimes

  14. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1983-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  15. Salads, Sandwiches and Desserts.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on salads, sandwiches, and desserts is designed to provide Marine food service personnel with a general background in the proper techniques for the preparation of these items. Introductory materials include specific information for MCI students and a…

  16. Manufacturing and Structural Feasibility of Natural Fiber Reinforced Polymeric Structural Insulated Panels for Panelized Construction

    Directory of Open Access Journals (Sweden)

    Nasim Uddin

    2011-01-01

    Full Text Available Natural fibers are emerging in the fields of automobile and aerospace industries to replace the parts such as body panels, seats, and other parts subjected to higher bending strength. In the construction industries, they have the potential to replace the wood and oriented strand boards (OSB laminates in the structural insulated panels (SIPs. They possess numerous advantages over traditional OSB SIPs such as being environmental friendly, recyclable, energy efficient, inherently flood resistant, and having higher strength and wind resistance. This paper mainly focuses on the manufacturing feasibility and structural characterization of natural fiber reinforced structural insulated panels (NSIPs using natural fiber reinforced polymeric (NFRP laminates as skin. To account for the use of natural fibers, the pretreatments are required on natural fibers prior to use in NFRP laminates, and, to address this issue properly, the natural fibers were given bleaching pretreatments. To this end, flexure test and low-velocity impact (LVI tests were carried out on NSIPs in order to evaluate the response of NSIPs under sudden impact loading and uniform bending conditions typical of residential construction. The paper also includes a comparison of mechanical properties of NSIPs with OSB SIPs and G/PP SIPs. The results showed significant increase in the mechanical properties of resulting NSIP panels mainly a 53% increase in load-carrying capacity compared to OSB SIPs. The bending modulus of NSIPs is 190% higher than OSB SIPs and 70% weight reduction compared to OSB SIPs.

  17. Acoustic wave spread in superconducting-normal-superconducting sandwich

    International Nuclear Information System (INIS)

    Urushadze, G.I.

    2004-01-01

    The acoustic wave spread, perpendicular to the boundaries between superconducting and normal metals in superconducting-normal-superconducting (SNS) sandwich has been considered. The alternate current flow sound induced by the Green function method has been found and the coefficient of the acoustic wave transmission through the junction γ=(S 1 -S 2 )/S 1 , (where S 1 and S 2 are average energy flows formed on the first and second boundaries) as a function of the phase difference between superconductors has been investigated. It is shown that while the SNS sandwich is almost transparent for acoustic waves (γ 0 /τ), n=0,1,2, ... (where τ 0 /τ is the ratio of the broadening of the quasiparticle energy levels in impurity normal metal as a result of scattering of the carriers by impurities 1/τ to the spacing between energy levels 1/τ 0 ), γ=2, (S 2 =-S 1 ), which corresponds to the full reflection of the acoustic wave from SNS sandwich. This result is valid for the limit of a pure normal metal but in the main impurity case there are two amplification and reflection regions for acoustic waves. The result obtained shows promise for the SNS sandwich as an ideal mirror for acoustic wave reflection

  18. Mitigation of Flanking Noise in Double-Plate Panel Structures by Periodic Stiffening

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Dickow, Kristoffer Ahrens; Andersen, Lars

    2011-01-01

    , the air enclosed in the cavities within the structure is taken into consideration, whereas the external air has been disregarded. A fully coupled analysis is performed in which solid finite elements are adopted for the structure, whereas the acoustic medium within the panel is discretized into fluid...... continuum elements. The computations are carried out in frequency domain in the range below 500 Hz and the load acts as a concentrated force on one side of one of the panels. The responses of the same panel as well as the adjacent wall are studied. The position of the load relative to the stiffeners...

  19. General stability of composite panels reinforced with flexible rods taking account of the side boundary conditions

    Science.gov (United States)

    Dudchenko, A. A.; Elpat'evskii, A. N.

    1995-07-01

    Reinforced panels are the basic load-bearing elements of various structures. Optimization of massive structures requires consideration of deformation of the panel cross-sections. This is particularly important in determining the bearing strength at buckling. The load scheme, conditions for fixation of the panel cross-section, and bend-torsional stiffness taking account of the deformation of the rod cross-section affect the buckling load in real structures. The stress distribution prior to buckling must be known to solve the buckling problem properly. The stress in the panel is proportional to the active load. The stress distribution is assumed to be known according to our previous method [1]. The load scheme and panel dimensions are shown in Fig. 1. The stress distribution in the panel prior to buckling can be found using Eqs. (1)-(3). A view of the cross-section is given in Fig. 1. The displacements in the panel at buckling for the boundary area are found using Eqs. (4)-(6), while the stresses in the skin and stiffness are found using Eq. (7). Roots k1 and k2 are those of the characteristic equation and β is a dimensionless coordinate. The problem was solved using variational theory. The potential energy is given by Eqs. (8) and (9) by orihogonalization of Eqs. (5). The basic equations are converted to Eqs. (10) by evaluation of the components in Eqs. (8) and (9). Its calculation (11) gives the compression load. Optimization of parameter α gives the critical strength P1 = 6.93 kN (without taking account of the boundary area) and P2 = 5.31 kN (taking account of the boundary area).

  20. Application of panel methods in external store load calculations

    CSIR Research Space (South Africa)

    Van Den Broek, GJ

    1984-07-01

    Full Text Available below the wing is first considered; then, the effect of the wing panelling in the leading edge region, where the singularity distributions show large gradients, on the flow field is studied. Both lift and thickness effects are taken into account....

  1. Effects of fatigue and environment on residual strengths of center-cracked graphite/epoxy buffer strip panels

    Science.gov (United States)

    Bigelow, Catherine A.

    1989-01-01

    The effects of fatigue, moisture conditioning, and heating on the residual tension strengths of center-cracked graphite/epoxy buffer strip panels were evaluated using specimens made with T300/5208 graphite epoxy in a 16-ply quasi-isotropic layup, with two different buffer strip materials, Kevlar-49 or S-glass. It was found that, for panels subjected to fatigue loading, the residual strengths were not significantly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panels by 10 to 15 percent below the ambient results, but increased the residual strengths of the Kevlar-49 buffer strip panels slightly. For both buffer strip materials, the heat increased the residual strengths of the buffer strip panels slightly over the ambient results.

  2. Two dimensional dynamic analysis of sandwich plates with gradient foam cores

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Lin; Xiao, Deng Bao; Zhao, Guiping [State Key Laboratory for Mechanical structure Strength and Vibration, School of AerospaceXi' an Jiaotong University, Xi' an (China); Cho, Chong Du [Dept. of Mechanical Engineering, Inha University, Inchon (Korea, Republic of)

    2016-09-15

    Present investigation is concerned about dynamic response of composite sandwich plates with the functionally gradient foam cores under time-dependent impulse. The analysis is based on a model of the gradient sandwich plate, in which the face sheets and the core adopt the Kirchhoff theory and a [2, 1]-order theory, respectively. The material properties of the gradient foam core vary continuously along the thickness direction. The gradient plate model is validated with the finite element code ABAQUS®. And the results show that the proposed model can predict well the free vibration of composite sandwich plates with gradient foam cores. The influences of gradient foam cores on the natural frequency, deflection and energy absorbing of the sandwich plates are also investigated.

  3. Magnetic properties of sandwiches based on Nd-Co and Y-Co amorphous alloys

    International Nuclear Information System (INIS)

    Ndjaka, J.M.B.; Givord, D.

    1996-01-01

    Y-Co/Nd-Co/Y-Co and Nd-Co/Y-Co/Nd-Co amorphous sandwiches have been prepared by d.c. triode sputtering. The chemical composition of the constituent layers is R 0.33 Co 0.67 (R=Y, Nd). In such systems, the Co moments are coupled parallel through the whole sandwich thickness by strong positive 3d-3d exchange interactions. But, the coercive fields of the constituent layers taken separately differ. In the sandwiches as well, the reversal of magnetization in the different layers occurs at different values of the applied magnetic field. This phenomenon has been analysed qualitatively in terms of creation and annihilation of walls at the interfaces between layers for sandwiches where the thicknesses of the constituent layers are about 1000 A. In sandwiches where the thickness of the constituent layers is 100 A, the wall width available is very weak and the value of the applied magnetic field necessary for the creation of such a wall is higher than the coercive field of the entire sandwich system. As a result, the magnetization of the sandwich system reverses as a whole like in homogeneous systems. (orig.)

  4. Study on the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration

    International Nuclear Information System (INIS)

    Lin Shuyu; Tian Hua

    2008-01-01

    A sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is studied. The transducer consists of front and back metal masses, and coaxially segmented, thickness polarized piezoelectric ceramic thin rings. For this kind of sandwich piezoelectric transducers in thickness vibration, it is required that the lateral dimension of the transducer is sufficiently large compared with its longitudinal dimension so that no lateral displacements in the transducer can occur (laterally clamped). In this paper, the thickness vibration of the piezoelectric ceramic stack consisting of a number of identical piezoelectric ceramic thin rings is analysed and its electro-mechanical equivalent circuit is obtained. The resonance frequency equation for the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is derived. Based on the frequency equation, two sandwich piezoelectric ceramic ultrasonic transducers are designed and manufactured, and their resonance frequencies are measured. It is shown that the measured resonance frequencies are in good agreement with the theoretical results. This kind of sandwich piezoelectric ultrasonic transducer is expected to be used in megasonic ultrasonic cleaning and sonochemistry where high power and high frequency ultrasound is needed

  5. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  6. Long sandwich modules for photon veto detectors

    International Nuclear Information System (INIS)

    Yershov, N.; Khabibullin, M.; Kudenko, Yu.; Littenberg, L.; Mayatski, V.; Mineev, O.

    2005-01-01

    Long lead-scintillator sandwich modules developed for the BNL experiment KOPIO are described. The individual 4 m long module consists of 15 layers of 7 mm thick extruded scintillator and 15 layers of 1 mm lead absorber. Readout is implemented via WLS fibers glued into grooves in a scintillator with 7 mm spacing and viewed from both ends by the phototubes. Time resolution of 300 ps for cosmic MIPs was obtained. Light output stability monitored for 2 years shows no degradation beyond the measurement errors. A 4 m long C-bent sandwich module was also manufactured and tested

  7. Application of fibre reinforced plastic sandwich structures for automotive crashworthiness applications

    NARCIS (Netherlands)

    Lukaszewicz, D.; Blok, L.G.; Kratz, J.; Ward, C.; Kassapoglou, C.; Elmarakbi, A.; Araújo, A.L.

    2016-01-01

    In this work the application of fibre reinforced plastic (FRP) sandwich
    structures, with particular focus on aramid fibre tufted sandwiches is being studied for
    automotive crashworthiness applications using impact testing and numerical simulation.

  8. Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich

    Science.gov (United States)

    Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.

    2018-01-01

    Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.

  9. An examination of impact damage in glass-phenolic and aluminum honeycomb core composite panels

    Science.gov (United States)

    Nettles, A. T.; Lance, D. G.; Hodge, A. J.

    1990-01-01

    An examination of low velocity impact damage to glass-phenolic and aluminum core honeycomb sandwich panels with carbon-epoxy facesheets is presented. An instrumented drop weight impact test apparatus was utilized to inflict damage at energy ranges between 0.7 and 4.2 joules. Specimens were checked for extent of damage by cross sectional examination. The effect of core damage was assessed by subjecting impact-damaged beams to four-point bend tests. Skin-only specimens (facings not bonded to honeycomb) were also tested for comparison purposes. Results show that core buckling is the first damage mode, followed by delaminations in the facings, matrix cracking, and finally fiber breakage. The aluminum honeycomb panels exhibited a larger core damage zone and more facing delaminations than the glass-phenolic core, but could withstand more shear stress when damaged than the glass-phenolic core specimens.

  10. Optimization of aluminium stressed skin panels in offshore applications

    NARCIS (Netherlands)

    Hove, van B.W.E.M.; Soetens, F.; Songmene, V.

    2013-01-01

    Since the introduction of Eurocode 9 specific design rules for the calculation of aluminium stressed skin panels are available. These design rules have been used for optimization of two extrusions: one for explosions and wind loading governing and one for explosions and floor loading governing. The

  11. A program for calculating load coefficient matrices utilizing the force summation method, L218 (LOADS). Volume 1: Engineering and usage

    Science.gov (United States)

    Miller, R. D.; Anderson, L. R.

    1979-01-01

    The LOADS program L218, a digital computer program that calculates dynamic load coefficient matrices utilizing the force summation method, is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: translational and rotational accelerations, velocities, and displacements; panel aerodynamic forces; net panel forces; shears and moments. Program usage and a brief description of the analysis used are presented. A description of the design and structure of the program to aid those who will maintain and/or modify the program in the future is included.

  12. Collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Linul, Emanoil, E-mail: emanoil.linul@upt.ro [Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara (Romania); Marsavina, Liviu [Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara (Romania); Kováčik, Jaroslav [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava (Slovakia)

    2017-04-06

    The collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions were experimentally and analytically investigated. Closed-cell aluminium foam AlSi10 with 325±10 kg/m{sup 3} density was used as core material, while stainless-steel-mesh is the faces materials. Prior to characterizing the composite sandwich structure, the stainless steel mesh face material and closed-cell aluminium foam were characterized by tensile testing and compression testing, respectively. Experimental tests were performed on sandwich beams using both High Speed Camera and Digital Image Correlation system for strain distribution. All experimental tests were performed at room temperature with constant crosshead speed of 1.67×10{sup −4} m/s for static tests and 2 m/s impact loading speed for dynamic tests. Two main deformation behaviours of investigated metal foam matrix composites were observed following post-failure collapse: face failure and core shear. It was showed that the initiation, propagation and interaction of failure modes depend on the type of loading, constituent material properties and geometrical parameters.

  13. Sandwiched Rényi divergence satisfies data processing inequality

    International Nuclear Information System (INIS)

    Beigi, Salman

    2013-01-01

    Sandwiched (quantum) α-Rényi divergence has been recently defined in the independent works of Wilde et al. [“Strong converse for the classical capacity of entanglement-breaking channels,” preprint http://arxiv.org/abs/arXiv:1306.1586 (2013)] and Müller-Lennert et al. [“On quantum Rényi entropies: a new definition, some properties and several conjectures,” preprint http://arxiv.org/abs/arXiv:1306.3142v1 (2013)]. This new quantum divergence has already found applications in quantum information theory. Here we further investigate properties of this new quantum divergence. In particular, we show that sandwiched α-Rényi divergence satisfies the data processing inequality for all values of α > 1. Moreover we prove that α-Holevo information, a variant of Holevo information defined in terms of sandwiched α-Rényi divergence, is super-additive. Our results are based on Hölder's inequality, the Riesz-Thorin theorem and ideas from the theory of complex interpolation. We also employ Sion's minimax theorem

  14. Honeycomb technology materials, design, manufacturing, applications and testing

    CERN Document Server

    Bitzer, Tom

    1997-01-01

    Honeycomb Technology is a guide to honeycomb cores and honeycomb sandwich panels, from the manufacturing methods by which they are produced, to the different types of design, applications for usage and methods of testing the materials. It explains the different types of honeycomb cores available and provides tabulated data of their properties. The author has been involved in the testing and design of honeycomb cores and sandwich panels for nearly 30 years. Honeycomb Technology reflects this by emphasizing a `hands-on' approach and discusses procedures for designing sandwich panels, explaining the necessary equations. Also included is a section on how to design honeycomb energy absorbers and one full chapter discussing honeycomb core and sandwich panel testing. Honeycomb Technology will be of interest to engineers in the aircraft, aerospace and building industries. It will also be of great use to engineering students interested in basic sandwich panel design.

  15. The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.

  16. Photocatalytic perfermance of sandwich-like BiVO_4 sheets by microwave assisted synthesis

    International Nuclear Information System (INIS)

    Liu, Suqin; Tang, Huiling; Zhou, Huan; Dai, Gaopeng; Wang, Wanqiang

    2017-01-01

    Graphical abstract: Sandwich-like BiVO_4 sheets were successfully synthesized via a facile microwave-assisted method. The as-prepared samples exhibit a high activity for the degradation of methyl orange under visible light irradiation. - Highlights: • Sandwich-like BiVO_4 sheets were synthesized by a facile microwave-assisted method. • The presence of PEG-10000 plays a critical role in the formation of BiVO_4 sheets. • Ostwald ripening is the primary driving force for the formation of sandwich-like BiVO_4. • The sandwich-like BiVO_4 sheets exhibit a high visible-light photocatalytic activity. - Abstract: Sandwich-like BiVO_4 sheets were successfully synthesized in an aqueous solution containing bismuth nitrate, ammonium metavanadate and polyethylene glycol with a molecular weight of 10,000 (PEG-10000) using a facile microwave-assisted method. The as-prepared samples were characterized by scanning electron microscopy, N_2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. The results show that the presence of PEG-10000 plays a critical role in the formation of BiVO_4 sheets, and Ostwald ripening is the primary driving force for the formation of sandwich-like structures. The sandwich-like BiVO_4 sheets exhibit a high activity for the degradation of methyl orange under visible light irradiation (λ ≥ 420 nm). The enhancement of photocatalytic activity of sandwich-like BiVO_4 sheets can be attributed to its large surface area over the irregular BiVO_4 particles.

  17. Characteristics of sandwich-type structural elements built of advanced composite materials from three dimensional fabrics

    Directory of Open Access Journals (Sweden)

    Castejón, L.

    1997-12-01

    Full Text Available Sandwich-type structures have proved to be alternatives of great success for several fields of application, and specially in the building sector. This is due to their outstanding properties of .specific rigidity and strength against bending loads and other range of advantages like fatigue and impact resistance, attainment of flat and smooth surfaces, high electric and thermal insulation, design versatility and some others. However, traditional sandwich structures present problems like their tendency towards delamination, stress concentrations in bores or screwed Joints, and pre resistance. These problems are alleviated thanks to the use of new sandwich structures built using three dimensional structures of advanced composite materials, maintaining the present advantages for more traditional sandwich structures. At this rate, these new structures can be applied in several areas where conventional sandwich structures used to be like walls, partitions, floor and ceiling structures, domes, vaults and dwellings, but with greater success.

    Las estructuras tipo sándwich han demostrado ser alternativas de gran éxito para diversos campos de aplicación y, en concreto, en el sector de la construcción, listo es gracias a sus excelentes propiedades de rigidez y resistencia específica frente a cargas de flexión y otra larga lista de ventajas, a la que pertenecen, por ejemplo, su buena resistencia a fatiga, resistencia al impacto, obtención de superficies lisas y suaves, elevado aislamiento térmico y eléctrico, versatilidad de diseño y otras. Sin embargo, las estructuras sándwich, tradicionales presentan una problemática consistente en su tendencia a la delaminación, concentraciones de tensiones ¿aparecidas ante la existencia de agujeros o uniones atornilladas y resistencia al fuego. Estos problemas son pifiados gracias a la aplicación de estructuras novedosas tipo sándwich, construidas a partir de tejidos tridimensionales de materiales

  18. Face-Sheet Quality Analysis and Thermo-Physical Property Characterization of OOA and Autoclave Panels

    Science.gov (United States)

    Miller, Sandi G.; Lort, Richard D., III; Zimmerman, Thomas J.; Sutter, James K.; Pelham, Larry I.; McCorkle, Linda S.; Scheiman, Daniel A.

    2012-01-01

    Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kg/sq m (3.1 lb/cu ft (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.

  19. Parametric study on nonlinear vibration of composite truss core sandwich plate with internal resonance

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jia Nen; Liu, Jun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin (China); Zhang, Wei; Yao, Ming Hui [College of Mechanical Engineering, Beijing University of Technology, Beijing (China); Sun, Min [School of Science, Tianjin Chengjian University, Tianjin (China)

    2016-09-15

    Nonlinear vibrations of carbon fiber reinforced composite sandwich plate with pyramidal truss core are investigated. The governing equation of motion for the sandwich plate is derived by using a Zig-Zag theory under consideration of geometrically nonlinear. The natural frequencies of sandwich plates with different dimensions are calculated and compared with those obtained from the classic laminated plate theory and Reddy's third-order shear deformation plate theory. The frequency responses and waveforms of the sandwich plate when 1:3 internal resonance occurs are obtained, and the characteristics of the internal resonance are discussed. The influences of layer number of face sheet, strut radius, core height and inclination angle on the nonlinear responses of the sandwich plate are analyzed. The results demonstrate that the strut radius and inclination angle mainly affect the resonance frequency band of the sandwich plate, and the layer number and core height not only influence the resonance frequency band but also significantly affect the response amplitude.

  20. Experimental and Numerical Investigations on Deformation of Cylindrical Shell Panels to Underwater Explosion

    Directory of Open Access Journals (Sweden)

    K. Ramajeyathilagam

    2001-01-01

    Full Text Available Experimental and numerical investigations on cylindrical shell panels subjected to underwater explosion loading are presented. Experiments were conducted on panels of size 0.8 × 0.6 × 0.00314 m and shell rise-to-span ratios h/l = 0.0, 0.05, 0.1 , using a box model set-up under air backed conditions in a shock tank. Small charges of PEK I explosive were employed. The plastic deformation of the panels was measured for three loading conditions. Finite element analysis was carried out using the CSA/GENSA [DYNA3D] software to predict the plastic deformation for various loading conditions. The analysis included material and geometric non-linearities, with strain rate effects incorporated based on the Cowper-Symonds relation. The numerical results for plastic deformation are compared with those from experiments.

  1. Nonlinear panel flutter in a rarefied atmosphere - Aerodynamic shear stress effects

    Science.gov (United States)

    Resende, Hugo B.

    1991-01-01

    The panel flutter phenomenon is studied assuming free-molecule flow. This kind of analysis is relevant in the case of hypersonic flight vehicles traveling at high altitudes, especially in the leeward portion of the vehicle. In these conditions the aerodynamic shear can be expected to be considerably larger than the pressure at a given point, so that the effects of such a loading are incorporated into the structural model. This is accomplished by introducing distributed longitudinal and bending moment loads. The former can lead to buckling of the panel, with the second mode in the case of a simply-supported panel playing a important role, and becoming the dominant mode in the solution. The presence of equivalent springs in the longitudinal direction at the panel's ends also becomes of relative importance, even for the evaluation of the linear flutter parameter. Finally, the behavior of the system is studied in the presence of applied compressive forces, that is, classical buckling.

  2. Natural cork agglomerate employed as an environmentally friendly solution for quiet sandwich composites.

    Science.gov (United States)

    Sargianis, James; Kim, Hyung-ick; Suhr, Jonghwan

    2012-01-01

    Carbon fiber-synthetic foam core sandwich composites are widely used for many structural applications due to their superior mechanical performance and low weight. Unfortunately these structures typically have very poor acoustic performance. There is increasingly growing demand in mitigating this noise issue in sandwich composite structures. This study shows that marrying carbon fiber composites with natural cork in a sandwich structure provides a synergistic effect yielding a noise-free sandwich composite structure without the sacrifice of mechanical performance or weight. Moreover the cork-core sandwich composites boast a 250% improvement in damping performance, providing increased durability and lifetime operation. Additionally as the world seeks environmentally friendly materials, the harvesting of cork is a natural, renewable process which reduces subsequent carbon footprints. Such a transition from synthetic foam cores to natural cork cores could provide unprecedented improvements in acoustic and vibrational performance in applications such as aircraft cabins or wind turbine blades.

  3. Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores

    Science.gov (United States)

    Guo, Zhiwei; Sheng, Meiping; Pan, Jie

    2017-07-01

    The flexural-wave attenuation performance of traditional constraint-layer damping in a sandwich beam is improved by using periodic constrained-layer damping (PCLD), where the monolithic viscoelastic core is replaced with two periodically alternating viscoelastic cores. Closed-form solutions of the wave propagation constants of the infinite periodic sandwich beam and the forced response of the corresponding finite sandwich structure are theoretically derived, providing computational support on the analysis of attenuation characteristics. In a sandwich beam with PCLD, the flexural waves can be attenuated by both Bragg scattering effect and damping effect, where the attenuation level is mainly dominated by Bragg scattering in the band-gaps and by damping in the pass-bands. Affected by these two effects, when the parameters of periodic cores are properly selected, a sandwich beam with PCLD can effectively reduce vibrations of much lower frequencies than that with traditional constrained-layer damping. The effects of the parameters of viscoelastic periodic cores on band-gap properties are also discussed, showing that the average attenuation in the desired frequency band can be maximized by tuning the length ratio and core thickness to proper values. The research in this paper could possibly provide useful information for the researches and engineers to design damping structures.

  4. Robust and Air-Stable Sandwiched Organo-Lead Halide Perovskites for Photodetector Applications

    KAUST Repository

    Mohammed, Omar F.; Banavoth, Murali; Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Pan, Jun; Liu, Jiakai; Peng, Wei; Bakr, Osman

    2016-01-01

    We report the simplest possible method to date for fabricating robust, air-stable, sandwiched perovskite photodetectors. Our proposed sandwiched structure is devoid of electron or hole transporting layers and also the expensive electrodes

  5. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    Science.gov (United States)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  6. Composite Behaviour of Steel Frames with Precast Concrete Infill Panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.; B. Hoffmeister, xx; O. Hechler, xx

    2005-01-01

    This paper presents preliminary experimental and numerical results of an investigation into the composite behaviour of a steel frame with a precast concrete infill panel (S-PCP) subject to a lateral load. The steel-concrete connections consist of two plates connected with two bolts which are loaded

  7. DELPHI expert panel evaluation of Hanford high level waste tank failure modes and release quantities

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, G.L.; Han, F.C.

    1996-09-30

    The Failure Modes and Release Quantities of the Hanford High Level Waste Tanks due to postulated accident loads were established by a DELPHI Expert Panel consisting of both on-site and off-site experts in the field of Structure and Release. The Report presents the evaluation process, accident loads, tank structural failure conclusion reached by the panel during the two-day meeting.

  8. Tailoring Sandwich Face/Core Interfaces for Improved Damage Tolerance

    DEFF Research Database (Denmark)

    Lundsgaard-Larsen, Christian; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    A face/core debond in a sandwich structure may propagate in the interface or kink into either the face or core. It is found that certain modifications of the face/core interface region influence the kinking behavior, which is studied experimentally in the present paper. A sandwich double cantilever....... The transition points where the crack kinks are identified and the influence of four various interface design modifications on the propagation path and fracture resistance are investigated....

  9. Aluminum ''egg-box'' panel as an energy absorber for pedestrian protection

    Energy Technology Data Exchange (ETDEWEB)

    Nowpada, Sravanthi; Chirwa, Efford C.; Myler, Peter; Matsika, Emmanuel [Bolton Automotive and Aerospace Research Group (BAARG), School of Built Environment and Engineering, University of Bolton (United Kingdom)

    2010-07-15

    This paper evaluates the quasi-static performance of lightweight aluminum ''egg-box'' panels which have an improved architecture specifically designed to increase the energy absorption capability. In its entirety, the egg-box panel structure investigated herein is made up of arrays of positive and negative frusta. To understand the collapse mechanism and the factors influencing the energy absorption thereof, compressive tests were conducted under similar test conditions on two single frusta, one constrained in situ and the other separated from the egg-box panel exposing the free-free edges. Their load-displacement histories show characteristics that are similar, with a rise in load to a point where they plateau at a steady state load for the entire collapse time. But the energy absorbed by the in situ constrained frustum is 80% greater than that separated from the egg-box panel with free-free edges. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Fracture Mechanics Analyses of Reinforced Carbon-Carbon Wing-Leading-Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Phillips, Dawn R.; Knight, Norman F., Jr.; Song, Kyongchan

    2010-01-01

    Fracture mechanics analyses of subsurface defects within the joggle regions of the Space Shuttle wing-leading-edge RCC panels are performed. A 2D plane strain idealized joggle finite element model is developed to study the fracture behavior of the panels for three distinct loading conditions - lift-off and ascent, on-orbit, and entry. For lift-off and ascent, an estimated bounding aerodynamic pressure load is used for the analyses, while for on-orbit and entry, thermo-mechanical analyses are performed using the extreme cold and hot temperatures experienced by the panels. In addition, a best estimate for the material stress-free temperature is used in the thermo-mechanical analyses. In the finite element models, the substrate and coating are modeled separately as two distinct materials. Subsurface defects are introduced at the coating-substrate interface and within the substrate. The objective of the fracture mechanics analyses is to evaluate the defect driving forces, which are characterized by the strain energy release rates, and determine if defects can become unstable for each of the loading conditions.

  11. Laterally loaded masonry

    DEFF Research Database (Denmark)

    Raun Gottfredsen, F.

    In this thesis results from experiments on mortar joints and masonry as well as methods of calculation of strength and deformation of laterally loaded masonry are presented. The strength and deformation capacity of mortar joints have been determined from experiments involving a constant compressive...... stress and increasing shear. The results show a transition to pure friction as the cohesion is gradually destroyed. An interface model of a mortar joint that can take into account this aspect has been developed. Laterally loaded masonry panels have also been tested and it is found to be characteristic...... that laterally loaded masonry exhibits a non-linear load-displacement behaviour with some ductility....

  12. Design and evaluation of a foam-filled hat-stiffened panel concept for aircraft primary structural applications

    Science.gov (United States)

    Ambur, Damodar R.

    1995-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as stiffener core has been designed for aircraft primary structural applications. This stiffener concept utilizes a manufacturing process that can be adapted readily to grid-stiffened structural configurations which possess inherent damage tolerance characteristics due to their multiplicity of load paths. The foam-filled hat-stiffener concept in a prismatically stiffened panel configuration is more efficient than most other stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The prismatically stiffened panel concept investigated here has been designed using AS4/3502 preimpregnated tape and Rohacell foam core and evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimens suggest that this structural concept responds to loading as anticipated and has good damage tolerance characteristics.

  13. Functional grading of metal foam cores for yield-limited lightweight sandwich beams

    International Nuclear Information System (INIS)

    Conde, Yves; Pollien, Arnaud; Mortensen, Andreas

    2006-01-01

    We show that grading the porosity in a bent metal skin/metal foam core sandwich can generate significant weight savings in yield-limited design when, and only when, there is a gradient in the applied moment along the sandwich beam

  14. Behaviour of glued fibre composite sandwich structure in flexure: Experiment and Fibre Model Analysis

    International Nuclear Information System (INIS)

    Manalo, Allan; Aravinthan, Thiru

    2012-01-01

    Highlights: ► Fibre Model Analysis is used to examine the flexural behaviour of sandwich beams. ► Theoretical prediction using FMA is in good agreement with the experiment. ► Using the constituent materials in FMA predicted accurately the beam’s behaviour. ► FMA can be used for analysing sandwich beams with high-strength core in flexure. -- Abstract: The behaviour of glued composite sandwich beams in flexure was investigated with a view of using this material for structural and civil engineering applications. The building block of this glue-laminated beam is a new generation composite sandwich structure made up of glass fibre reinforced polymer skins and a high strength phenolic core material. A simplified Fibre Model Analysis (FMA) usually used to analyse a concrete beam section is adopted to theoretically describe the flexural behaviour of the innovative sandwich beam structure. The analysis included the flexural behaviour of the glued sandwich beams in the flatwise and the edgewise positions. The FMA accounted for the non-linear behaviour of the phenolic core in compression, the cracking of the core in tension and the linear elastic behaviour of the fibre composite skin. The results of the FMA showed a good agreement with the experimental data showing the efficiency and practical applications of the simplified FMA in analysing and designing sandwich structures with high strength core material.

  15. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  16. Localization of Transversal Cracks in Sandwich Beams and Evaluation of Their Severity

    Directory of Open Access Journals (Sweden)

    G. R. Gillich

    2014-01-01

    Full Text Available An algorithm to assess transversal cracks in composite structures based on natural frequency changes due to damage is proposed. The damage assessment is performed in two steps; first the crack location is found, and afterwards an evaluation of its severity is performed. The technique is based on a mathematical relation that provides the exact solution for the frequency changes of bending vibration modes, considering two terms. The first term is related to the strain energy stored in the beam, while the second term considers the increase of flexibility due to damage. Thus, it is possible to separate the problems of localization and severity assessment, which makes the localization process independent of the beams cross-section shape and boundary conditions. In fact, the process consists of comparing vectors representing the measured frequency shifts with patterns constructed using the mode shape curvatures of the undamaged beam. Once the damage is localized, the evaluation of its severity is made taking into account the global rigidity reduction. The damage identification algorithm was validated by experiments performed on numerous sandwich panel specimens.

  17. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    Science.gov (United States)

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  18. Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure

    Directory of Open Access Journals (Sweden)

    Chang-Li Yu

    2015-03-01

    Full Text Available This paper concentrated on the ultimate uniaxial compressive strength of stiffened panel with opening under lateral load and also studied the design-oriented formulae. For this purpose, three series of well executed experiments on longitudinal stiffened panel with rectangular opening subjected to the combined load have been selected as test models. The finite element analysis package, ABAQUS, is used for simulation with considering the large elasticplastic deflection behavior of stiffened panels. The feasibility of the numerical procedure is verified by a good agreement of experimental results and numerical results. More cases studies are executed employing nonlinear finite element method to analyze the influence of design variables on the ultimate strength of stiffened panel with opening under combined pressure. Based on data, two design formulae corresponding to different opening types are fitted, and accuracy of them is illustrated to demonstrate that they could be applied to basic design of practical engineering structure.

  19. Applications of thin-film sandwich crystallization platforms

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny, E-mail: danny.axford@diamond.ac.uk; Aller, Pierre; Sanchez-Weatherby, Juan; Sandy, James [Diamond Light Source, Harwell Oxford, Didcot OX11 0DE (United Kingdom)

    2016-03-24

    Crystallization via sandwiches of thin polymer films is presented and discussed. Examples are shown of protein crystallization in, and data collection from, solutions sandwiched between thin polymer films using vapour-diffusion and batch methods. The crystallization platform is optimal for both visualization and in situ data collection, with the need for traditional harvesting being eliminated. In wells constructed from the thinnest plastic and with a minimum of aqueous liquid, flash-cooling to 100 K is possible without significant ice formation and without any degradation in crystal quality. The approach is simple; it utilizes low-cost consumables but yields high-quality data with minimal sample intervention and, with the very low levels of background X-ray scatter that are observed, is optimal for microcrystals.

  20. Comparative study on diagonal equivalent methods of masonry infill panel

    Science.gov (United States)

    Amalia, Aniendhita Rizki; Iranata, Data

    2017-06-01

    Infrastructure construction in earthquake prone area needs good design process, including modeling a structure in a correct way to reduce damages caused by an earthquake. Earthquakes cause many damages e.g. collapsed buildings that are dangerous. An incorrect modeling in design process certainly affects the structure's ability in responding to load, i.e. an earthquake load, and it needs to be paid attention to in order to reduce damages and fatalities. A correct modeling considers every aspect that affects the strength of a building, including stiffness of resisting lateral loads caused by an earthquake. Most of structural analyses still use open frame method that does not consider the effect of stiffness of masonry panel to the stiffness and strength of the whole structure. Effect of masonry panel is usually not included in design process, but the presence of this panel greatly affects behavior of the building in responding to an earthquake. In worst case scenario, it can even cause the building to collapse as what has been reported after great earthquakes worldwide. Modeling a structure with masonry panel as consideration can be performed by designing the panel as compression brace or shell element. In designing masonry panel as a compression brace, there are fourteen methods popular to be used by structure designers formulated by Saneinejad-Hobbs, Holmes, Stafford-Smith, Mainstones, Mainstones-Weeks, Bazan-Meli, Liauw Kwan, Paulay and Priestley, FEMA 356, Durani Luo, Hendry, Al-Chaar, Papia and Chen-Iranata. Every method has its own equation and parameters to use, therefore the model of every method was compared to results of experimental test to see which one gives closer values. Moreover, those methods also need to be compared to the open frame to see if they can result values within limits. Experimental test that was used in comparing all methods was taken from Mehrabi's research (Fig. 1), which was a prototype of a frame in a structure with 0.5 scale and the

  1. Axial compression behaviour of reinforced wallettes fabricated using wood-wool cement panel

    Science.gov (United States)

    Noh, M. S. Md; Kamarudin, A. F.; Mokhatar, S. N.; Jaudin, A. R.; Ahmad, Z.; Ibrahim, A.; Muhamad, A. A.

    2018-04-01

    Wood-wool cement composite panel (WWCP) is one of wood based composite material that produced in a stable panel form and suitable to be used as building wall system to replace non-ecofriendly material such as brick and other masonry element. Heavy construction material such as brick requires more manpower and consume a lot of time to build the wall panel. WWCP is a lightweight material with a density range from 300 kg/m3 to 500 kg/m3 and also capable to support an imposed load from the building. This study reported on the axial compression behaviour of prefabricated reinforced wallettes constructed with wood-wool cement panel. A total of six specimens were fabricated using two layers of cross laminated WWCP bonded with normal mortar paste (Portland cement) at a mix ratio of 1:3 (cement : sand). As part of lifting mechanism, the wallettes were equipped with three steel reinforcement (T12) that embedded inside the core of wallettes. Three replicates of wallettes specimens with dimension 600 mm width and 600 mm length were fabricated without surface plaster and with 16 mm thickness of surface plaster. The wallettes were tested under axial compression load after 28 days of fabrication until failure. The result indicated that, the application of surface plaster significantly increases the loading capacity about 35 % and different orientation of the panels improve the bonding strength of the wall.

  2. High performance sandwich structured Si thin film anodes with LiPON coating

    Science.gov (United States)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  3. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    Science.gov (United States)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  4. Photocatalytic perfermance of sandwich-like BiVO{sub 4} sheets by microwave assisted synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suqin, E-mail: liusuqin888@126.com [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053 (China); Tang, Huiling; Zhou, Huan [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Dai, Gaopeng, E-mail: dgp2000@126.com [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Wang, Wanqiang [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China)

    2017-01-01

    Graphical abstract: Sandwich-like BiVO{sub 4} sheets were successfully synthesized via a facile microwave-assisted method. The as-prepared samples exhibit a high activity for the degradation of methyl orange under visible light irradiation. - Highlights: • Sandwich-like BiVO{sub 4} sheets were synthesized by a facile microwave-assisted method. • The presence of PEG-10000 plays a critical role in the formation of BiVO{sub 4} sheets. • Ostwald ripening is the primary driving force for the formation of sandwich-like BiVO{sub 4}. • The sandwich-like BiVO{sub 4} sheets exhibit a high visible-light photocatalytic activity. - Abstract: Sandwich-like BiVO{sub 4} sheets were successfully synthesized in an aqueous solution containing bismuth nitrate, ammonium metavanadate and polyethylene glycol with a molecular weight of 10,000 (PEG-10000) using a facile microwave-assisted method. The as-prepared samples were characterized by scanning electron microscopy, N{sub 2} adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. The results show that the presence of PEG-10000 plays a critical role in the formation of BiVO{sub 4} sheets, and Ostwald ripening is the primary driving force for the formation of sandwich-like structures. The sandwich-like BiVO{sub 4} sheets exhibit a high activity for the degradation of methyl orange under visible light irradiation (λ ≥ 420 nm). The enhancement of photocatalytic activity of sandwich-like BiVO{sub 4} sheets can be attributed to its large surface area over the irregular BiVO{sub 4} particles.

  5. Damage identification in composite panels using guided waves

    NARCIS (Netherlands)

    Loendersloot, R.; Moix-Bonet, M.

    2015-01-01

    A methodology for the identification of barely visible impact damage using guided waves on a typical aircraft composite structure is implemented. Delaminations and debondings have been introduced in two stiffened panels by means of impact loads.

  6. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    Science.gov (United States)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  7. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    Science.gov (United States)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  8. Compressive Strength of Longitudinally Stiffened GRP Panels

    DEFF Research Database (Denmark)

    Böhme, J.; Noury, P.; Riber, Hans Jørgen

    1996-01-01

    A structural analysis of a cross stiffened orthotropic GRP panel subjected to uniaxial compressive loads is carried out. Analytical solutions to the buckling of such structures are proposed and validated by a finite element analysis. Both analytical and finite element approaches confirm an identi...

  9. Identification of material properties of sandwich structure with piezoelectric patches

    Directory of Open Access Journals (Sweden)

    Zemčík R.

    2008-11-01

    Full Text Available The work focuses on light-weight sandwich structures made of carbon-epoxy skins and foam core which have unique bending stiffness compared to conventional materials. The skins are manufactured by vacuum autoclave technology from unidirectional prepregs and the sandwich is then glued together. The resulting material properties of the structure usually differ from those provided by manufacturer or even those obtained from experimental tests on separate materials, which makes computational models unreliable. Therefore, the properties are identified using the combination of experimental analysis of the sandwich with attached piezoelectric transducer and corresponding static and modal finite element analyses. Simple mathematical optimization with repetitive finite element solution is used. The model is then verified by transient analysis when the piezoelectric patch is excited by harmonic signals covering the first two eigen-frequencies and the induced oscillations are measured by laser sensor.

  10. Natural fabric sandwich laminate composites: development and ...

    Indian Academy of Sciences (India)

    3Department of Production Technology, MIT Campus, Anna University, Chennai 600044, India. MS received ... In this work, eco-friendly natural fabric sandwich laminate (NFSL) composites are formulated using ... and eco-friendly quality [22].

  11. A quantitative exposure model simulating human norovirus transmission during preparation of deli sandwiches.

    Science.gov (United States)

    Stals, Ambroos; Jacxsens, Liesbeth; Baert, Leen; Van Coillie, Els; Uyttendaele, Mieke

    2015-03-02

    Human noroviruses (HuNoVs) are a major cause of food borne gastroenteritis worldwide. They are often transmitted via infected and shedding food handlers manipulating foods such as deli sandwiches. The presented study aimed to simulate HuNoV transmission during the preparation of deli sandwiches in a sandwich bar. A quantitative exposure model was developed by combining the GoldSim® and @Risk® software packages. Input data were collected from scientific literature and from a two week observational study performed at two sandwich bars. The model included three food handlers working during a three hour shift on a shared working surface where deli sandwiches are prepared. The model consisted of three components. The first component simulated the preparation of the deli sandwiches and contained the HuNoV reservoirs, locations within the model allowing the accumulation of NoV and the working of intervention measures. The second component covered the contamination sources being (1) the initial HuNoV contaminated lettuce used on the sandwiches and (2) HuNoV originating from a shedding food handler. The third component included four possible intervention measures to reduce HuNoV transmission: hand and surface disinfection during preparation of the sandwiches, hand gloving and hand washing after a restroom visit. A single HuNoV shedding food handler could cause mean levels of 43±18, 81±37 and 18±7 HuNoV particles present on the deli sandwiches, hands and working surfaces, respectively. Introduction of contaminated lettuce as the only source of HuNoV resulted in the presence of 6.4±0.8 and 4.3±0.4 HuNoV on the food and hand reservoirs. The inclusion of hand and surface disinfection and hand gloving as a single intervention measure was not effective in the model as only marginal reductions of HuNoV levels were noticeable in the different reservoirs. High compliance of hand washing after a restroom visit did reduce HuNoV presence substantially on all reservoirs. The

  12. Precast self-compacting concrete (PSCC) panel with added coir fiber: An overview

    Science.gov (United States)

    Afif Iman, Muhamad; Mohamad, Noridah; Samad, Abdul Aziz Abdul; Goh, W. I.; Othuman Mydin, M. A.; Afiq Tambichik, Muhamad; Bosro, Mohamad Zulhairi Mohd; Wirdawati, A.; Jamaluddin, N.

    2018-04-01

    Self-compacting concrete (SCC) is the alternative way to reduce construction time and improve the quality and strength of concrete. The panel system fabricated from SCC contribute to the IBS system that is sustainable and environmental friendly. The precast self-compacting concrete (PSCC) panel with added coir fiber will be overview in this paper. The properties of SCC and coir fiber are studied and reviewed from the previous researches. Finite element analysis is used to support the experimental results by conduction parametric simulation study on PSCC under flexure load. In general, it was found that coir fiber has a significant influence on the flexural load and crack propagation. Higher fiber incorporated in SCC resulted with higher ultimate load of PSCC.

  13. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuexin [College of Chemistry, Beijing Normal University, Beijing 100875 (China); School of Pharmacy, North China University of Science and Technology, Tangshan 063000 (China); Jia, Zhiqian, E-mail: zhqjia@bnu.edu.cn [College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2016-11-05

    Highlights: • Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared. • The removal efficiency for 4-nitrotoluene is greater than 95% after five recycles. • The membrane showed higher adsorption capacity than that of mixed matrix membrane. - Abstract: Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared by a filtration/immersion precipitation method and employed for the removal of 4-nitrotoluene from water. The static adsorption thermodynamics, kinetics, dynamic adsorption/desorption and membrane reusability were investigated. The results showed that the Freundlich model describes the adsorption isotherm satisfactorily. With increased PS-PDVB content, the maximum static adsorption capacity, partition coefficient, apparent adsorption rate constant, and dynamic adsorption capacity all significantly increased. The sandwich membranes showed much higher removal efficiency and adsorption capacity than those of mixed matrix membranes. With respect to dynamics adsorption/desorption, the sandwich membranes exhibited excellent reusability, with a removal efficiency greater than 95% even after five recycles.

  14. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1984-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  15. Quantum mechanical design and structures of hexanuclear sandwich complex and its multidecker sandwich clusters (Li6)n([18]annulene)n+1 (n = 1-3).

    Science.gov (United States)

    Wang, Shu-Jian; Li, Ying; Wu, Di; Wang, Yin-Feng; Li, Zhi-Ru

    2012-09-13

    By means of density functional theory, a hexanuclear sandwich complex [18]annulene-Li6-[18]annulene which consists of a central Li6 hexagon ring and large face-capping ligands, [18]annulene, is designed and investigated. The large interaction energy and HOMO-LUMO gap suggest that this novel charge-separated complex is highly stable and may be experimentally synthesized. In addition, the stability found in the [18]annulene-Li6-[18]annulene complex extends to multidecker sandwich clusters (Li6)n([18]annulene)n+1 (n = 2-3). The energy gain upon addition of a [18]annulene-Li6 unit to (Li6)n-1([18]annulene)n is pretty large (96.97-98.22 kcal/mol), indicating that even larger multideckers will also be very stable. Similar to ferrocene, such a hexanuclear sandwich complex could be considered as a versatile building block to find potential applications in different areas of chemistry, such as nanoscience and material science.

  16. BEHAVIOUR OF UNREINFORCED EXPANDED POLYSTYRENE LIGHTWEIGHT CONCRETE (EPS-LWC WALL PANEL ENHANCED WITH STEEL FIBRE

    Directory of Open Access Journals (Sweden)

    ROHANA MAMAT

    2015-12-01

    Full Text Available This study used steel fibre as reinforcement while enhancing the EPS-LWC strength. In line with architectural demand and ventilation requirement, opening within wall panel was also taken into account. Experimental tests were conducted for reinforced and unreinforced EPS-LWC wall panel. Two samples with size of 1500 mm (height x 1000 mm (length x 75 mm (thickness for each group of wall panel were prepared. Samples in each group had opening size of 600 mm (height x 400 mm (length located at 350 mm and 550 mm from upper end respectively. EPS-LWC wall panel had fcu of 20.87 N/mm2 and a density of 1900 kg/m3. The loading capacity, displacement profiles and crack pattern of each sample was analyzed and discussed. Unreinforced EPS-LWC enhanced with steel fibre resist almost similar loading as reinforced EPS-LWC wall panel. The presence of steel fibre as the only reinforcement creates higher lateral displacement. Wall panel experience shear failure at the side of opening. The number of micro cracks reduces significantly due to presence of steel fibre.

  17. Study of behaviour of workings in longwall panel based on field instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    V.R. Sastry; Roshan Nair [National Institute of Technology Karnataka, Mangalore (India). Department of Mining Engineering

    2009-07-01

    The paper presents field monitoring study of two adjacent longwall panels based on stress measurements in longwall block and barrier, load transferred on to the gate roads and convergence measurements in the gate roads during face retreat in the panels. Results indicated that the section of barrier lying in the goaf experienced higher abutment stress when compared with the section lying ahead of face. There was a transfer of load in gate roads ahead of face after the occurrence of roof fall in goaf. Maximum cumulative convergence of more than 8 mm was observed in the gate roads during weightings.

  18. Robust and Air-Stable Sandwiched Organo-Lead Halide Perovskites for Photodetector Applications

    KAUST Repository

    Mohammed, Omar F.

    2016-02-25

    We report the simplest possible method to date for fabricating robust, air-stable, sandwiched perovskite photodetectors. Our proposed sandwiched structure is devoid of electron or hole transporting layers and also the expensive electrodes. These simpler architectures may have application in the perovskite-only class of solar cells scaling up towards commercialization.

  19. Flight service evaluation of kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft: Flight service report

    Science.gov (United States)

    Stone, R. H.

    1981-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  20. Experimental analysis of Kevlar modification for TRUPACT-I puncture panels

    International Nuclear Information System (INIS)

    Longenbaugh, R.S.; Joseph, B.J.

    1987-05-01

    The Kevlar Test Services was initiated to determine the maximum failure force and the energy-absorbing capability of puncture panels consisting of 16, 20, and 24 layers of 3000-denier 4 x 4 basket weave Kevlar-29, bonded to a 3.41 mm 304 annealed stainless steel puncture plate. Results of these tests were compared to the TRUPACT-1 Unit-0 drop test results to determine if the existing puncture panel configuration of TRUPACT-1 could be reduced. The data indicate for 24 layers of Kevlar, the panels failed at loads greater than those recorded in the TRUPACT-1, Unit 0 tests. Energy absorbed by the 24-layer Kevlar panels was 53% greater than that measured in the TRUPACT-1, Unit 0 test. Thermal performance of 20-layer Kevlar panels was measured in a conservative test environment and exceeded the design specifications

  1. Proposed method for determining the thickness of glass in solar collector panels

    Science.gov (United States)

    Moore, D. M.

    1980-01-01

    An analytical method was developed for determining the minimum thickness for simply supported, rectangular glass plates subjected to uniform normal pressure environmental loads such as wind, earthquake, snow, and deadweight. The method consists of comparing an analytical prediction of the stress in the glass panel to a glass breakage stress determined from fracture mechanics considerations. Based on extensive analysis using the nonlinear finite element structural analysis program ARGUS, design curves for the structural analysis of simply supported rectangular plates were developed. These curves yield the center deflection, center stress and corner stress as a function of a dimensionless parameter describing the load intensity. A method of estimating the glass breakage stress as a function of a specified failure rate, degree of glass temper, design life, load duration time, and panel size is also presented.

  2. Generation of Elliptically Polarized Terahertz Waves from Antiferromagnetic Sandwiched Structure.

    Science.gov (United States)

    Zhou, Sheng; Zhang, Qiang; Fu, Shu-Fang; Wang, Xuan-Zhang; Song, Yu-Ling; Wang, Xiang-Guang; Qu, Xiu-Rong

    2018-04-01

    The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.

  3. Creep Behavior of Structural Insulated Panels (SIPS): Results from a Pilot Study

    Science.gov (United States)

    Dwight McDonald; Marshall Begel; C. Adam Senalik; Robert Ross; Thomas D. Skaggs; Borjen Yeh; Thomas Williamson

    2014-01-01

    Structural insulated panels (SIPs) have been recognized as construction materials in the International Residential Code (IRC) since 2009. Although most SIPs are used in wall applications, they can also be used as roof or floor panels that are subjected to long-term transverse loading, for which SIP creep performance may be critical in design. However, limited...

  4. Assessment of foam fracture in sandwich beams using thermoelastic stress analysis

    DEFF Research Database (Denmark)

    Dulieu-Barton, J.M.; Berggreen, Christian; Mettemberg, C.

    2009-01-01

    Thermoelastic Stress Analysis (TSA) has been well established for determining crack-tip parameters in metallic materials. This paper examines its ability to determine accurately the crack-tip parameters for PVC foam used in sandwich structures.......Thermoelastic Stress Analysis (TSA) has been well established for determining crack-tip parameters in metallic materials. This paper examines its ability to determine accurately the crack-tip parameters for PVC foam used in sandwich structures....

  5. Computer program for buckling loads of orthotropic laminated stiffened panels subjected to biaxial in-place loads (BUCLASP 2)

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.

    1974-01-01

    General-purpose program performs exact instability analyses for structures such as unidirectionally-stiffened, rectangular composite panels. Program was written in FORTRAN IV and COMPASS for CDC-series computers.

  6. Fatigue resistance and crack propensity of novel "super-closed" sandwich composite resin restorations in large MOD defects.

    Science.gov (United States)

    Magne, Pascal; Silva, Silvana; Andrada, Mauro de; Maia, Hamilton

    2016-01-01

    To assess the influence of conventional glass ionomer cement (GIC) vs resin-modified GIC (RMGIC) as a base material for novel, super-closed sandwich restorations (SCSR) and its effect on shrinkage-induced crack propensity and in vitro accelerated fatigue resistance. A standardized MOD slottype tooth preparation was applied to 30 extracted maxillary molars (5 mm depth/5 mm buccolingual width). A modified sandwich restoration was used, in which the enamel/dentin bonding agent was applied first (Optibond FL, Kerr), followed by a Ketac Molar (3M ESPE)(group KM, n = 15) or Fuji II LC (GC) (group FJ, n = 15) base, leaving 2 mm for composite resin material (Miris 2, Coltène-Whaledent). Shrinkageinduced enamel cracks were tracked with photography and transillumination. Samples were loaded until fracture or to a maximum of 185,000 cycles under isometric chewing (5 H z), starting with a load of 200 N (5,000 X), followed by stages of 400, 600, 800, 1,000, 1,200, and 1,400 N at a maximum of 30,000 X each. Groups were compared using the life table survival analysis (α = .008, Bonferroni method). Group FJ showed the highest survival rate (40% intact specimens) but did not differ from group KM (20%) or traditional direct restorations (13%, previous data). SCSR generated less shrinkage-induced cracks. Most failures were re-restorable (above the cementoenamel junction [CEJ]). Inclusion of GIC/RMGIC bases under large direct SCSRs does not affect their fatigue strength but tends to decrease the shrinkage-induced crack propensity. The use of GIC/ RMGIC bases and the SCSR is an easy way to minimize polymerization shrinkage stress in large MOD defects without weakening the restoration.

  7. In-plane shear test of fibre reinforced concrete panels

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Stang, Henrik; Goltermann, Per

    2008-01-01

    The present paper concerns the investigation of polymer Fiber Reinforced Concrete (FRC) panels subjected to in-plane shear. The use of fibers as primary reinforcement in panels is a new application of fiber reinforcement, hence test methods, design bases and models are lacking. This paper...... contributes to the investigation of fibers as reinforcement in panels with experimental results and a consistent approach to material characterization and modeling. The proposed model draws on elements from the classical yield line theory of rigid, perfectly plastic materials and the theory of fracture...... mechanics. Model panels have been cast to investigate the correlation between the load bearing capacity and the amount of fibers (vol. %) in the mixture. The type of fibers in the mixture was Poly Vinyl Alcohol (PVA) fibers, length 8 mm, diameter 0.04 mm. The mechanical properties of the FRC have been...

  8. Composite materials research and education program: The NASA-Virginia Tech composites program

    Science.gov (United States)

    Herakovich, C. T.

    1980-01-01

    Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.

  9. AA, sandwich line with magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Continuation from 8010293: Finally, the sandwich line with the horn is placed on the ground, for the horn to be inspected and, if needed, exchanged for a new one. The whole procedure was trained with several members of the AA team, for quick and safe handling, and to share the radiation dose amongst them.

  10. Aerosol Deposition and Solar Panel Performance

    Science.gov (United States)

    Arnott, W. P.; Rollings, A.; Taylor, S. J.; Parks, J.; Barnard, J.; Holmes, H.

    2015-12-01

    Passive and active solar collector farms are often located in relatively dry desert regions where cloudiness impacts are minimized. These farms may be susceptible to reduced performance due to routine or episodic aerosol deposition on collector surfaces. Intense episodes of wind blown dust deposition may negatively impact farm performance, and trigger need to clean collector surfaces. Aerosol deposition rate depends on size, morphology, and local meteorological conditions. We have developed a system for solar panel performance testing under real world conditions. Two identical 0.74 square meter solar panels are deployed, with one kept clean while the other receives various doses of aerosol deposition or other treatments. A variable load is used with automation to record solar panel maximum output power every 10 minutes. A collocated sonic anemometer measures wind at 10 Hz, allowing for both steady and turbulent characterization to establish a link between wind patterns and particle distribution on the cells. Multispectral photoacoustic instruments measure aerosol light scattering and absorption. An MFRSR quantifies incoming solar radiation. Solar panel albedo is measured along with the transmission spectra of particles collected on the panel surface. Key questions are: At what concentration does aerosol deposition become a problem for solar panel performance? What are the meteorological conditions that most strongly favor aerosol deposition, and are these predictable from current models? Is it feasible to use the outflow from an unmanned aerial vehicle hovering over solar panels to adequately clean their surface? Does aerosol deposition from episodes of nearby forest fires impact performance? The outlook of this research is to build a model that describes environmental effects on solar panel performance. Measurements from summer and fall 2015 will be presented along with insights gleaned from them.

  11. Fonksiyonel Değişimli Malzemelerle Kaplı Seramik Silindirik Panelin Titreşim Analizi

    Directory of Open Access Journals (Sweden)

    Abdullah H. SOFİYEV

    2015-01-01

    Full Text Available In this study, the vibration of ceramic cylindrical panel covered by FGM coatings composed of zirconium oxide (ZrO2 and titanium-aloy (Ti6Al4V is investigated. First, a sandwich cylindrical panel covered by FGM coatings is designed. After the derivation of basic equations are found expression for the frequency of ceramic cylindrical panels covered by FGM coatings. Discusses the influence of coatings profiles, sandwich shell characteristics, the radius-tothickness ratio and the core-to-coating thickness ratio on the dimensionless frequencies for FG and homogeneous sandwich cylindrical shells

  12. Self-healing sandwich structures incorporating an interfacial layer with vascular network

    International Nuclear Information System (INIS)

    Chen, Chunlin; Peters, Kara; Li, Yulong

    2013-01-01

    A self-healing capability specifically targeted for sandwich composite laminates based on interfacial layers with built-in vascular networks is presented. The self-healing occurs at the facesheet–core interface through an additional interfacial layer to seal facesheet cracks and rebond facesheet–core regions. The efficacy of introducing the self-healing system at the facesheet–core interface is evaluated through four-point bend and edgewise compression testing of representative foam core sandwich composite specimens with impact induced damage. The self-healing interfacial layer partially restored the specific initial stiffness, doubling the residual initial stiffness as compared to the control specimen after the impact event. The restoration of the ultimate specific skin strength was less successful. The results also highlight the critical challenge in self-healing of sandwich composites, which is to rebond facesheets which have separated from the core material. (paper)

  13. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading: Arcan Test Study and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-01-01

    Full Text Available The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress, and combination of both. To realize these stress states in the adhesively-bonded joint during tests, a specific loading device is developed with the capacity of providing six different loading angles, which are 0°(pure tension, 18°, 36°, 54°, 72° and 90°(pure shear. Failure modes of adhesively-bonded joints are investigated. It indicates that, for the pure shear loading, the failure mode is the cohesive failure (near the interface between the adhesive layer and the steel support in the adhesive layer. For the pure tensile and combined loading conditions, the failure mode is the combination of fiber breaking, FRP delamination and interfacial adhesion failure between the FRP sandwich deck and the adhesive layer. The load-bearing capacities of adhesive joints under combined loading are much lower than those of the pure tensile and pure shear loading conditions. According to the test results of six angle loading conditions, a tensile/shear failure criterion of the adhesively-bonded joint is obtained. By using Finite Element (FE modeling method, linear elastic simulations are performed to characterize the stress distribution throughout the adhesively-bonded joint.

  14. NANO-BATTERY TECHNOLOGY FOR EV-HEV PANEL: A PIONEERING STUDY

    Directory of Open Access Journals (Sweden)

    Ataur Rahman

    2015-11-01

    Full Text Available Global trends toward CO2 reduction and resource efficiency have significantly increased the importance of lightweight materials for automobile original equipment manufacturers (OEM. CO2 reduction is a fundamental driver for a more lightweight automobile. The introduction of Electrical Vehicles (EVs is one initiative towards this end. However EVs are currently facing several weaknesses: limited driving range, battery pack heaviness, lack of safety and thermal control, high cost, and overall limited efficiency. This study presents a panel-style nano-battery technology built into an EV with CuO filler solid polymer electrolyte (SPE sandwiched by carbon fiber (CF and lithium (Li plate. In addition to this, an aluminum laminated polypropylene film is used as the electromagnetic compatibility (EMC shield. The proposed battery body panel of the EV would reduce the car weight by about 20%, with a charge and discharge capacity of 1.5 kWh (10% of car total power requirement, and provide the heat insulation for the car which would save about 10% power consumption of the air conditioning system. Therefore, the EV would be benefited by 30% in terms of energy reduction by using the proposed body. Furthermore, the proposed body is considered environmental-friendly since it is recyclable for use in a new product. However, the main limiting factors of the SPE are its thermal behavior and moderate ionic conductivity at low temperatures. The SPE temperature is maintained by controlling the battery panel charging/discharge rate. It is expected that the proposed panel-style nano-battery use in an EV would save up to 6.00 kWh in battery energy, equivalent to 2.81 liters of petrol and prevent 3.081 kg of CO2 emission for a travel distance of 100 km. KEYWORDS: epoxy resin; carbon fiber; lithium thin plate; energy generation; solid electrolyte battery

  15. Finite element modeling of tornado missile impact on reinforced concrete wall panels

    International Nuclear Information System (INIS)

    Zhang, Y.; Vallabhan, C.V.G.; McDonald, J.R.

    1993-01-01

    This paper describes a finite element model for the impact of large tornado-generated missiles with reinforced concrete wall panels. The analysis predicts the dynamic response of a wall panel when impacted by a missile with a large contact area such as an automobile. Quadratic finite elements are used to discretize the domain of the wall panel. Fundamental assumptions are based on the Mindlin and the related Reinsser plate theories. An 'embedded' model is employed to account for the reinforcing bars. The nonlinear behavior of concrete and steel bars are analyzed by means of time-dependent constitutive relationships. A model is proposed to describe the initial and subsequent yield surfaces of concrete material, which avoids underestimation of the effect of high hydrostatic stresses on the yielding behavior of concrete. Ottosen's four-parameter failure criterion is used to define the failure surface of concrete. A crack monitoring algorithm accounts for post-cracking and post-crushing behavior of concrete. Explicit time step integration of nonlinear dynamic equations are carried out using the finite element discretization of a concrete wall panel. As a practical application of the analysis technique, the contact failure pressure for a particular panel geometry can be calculated. The contact failure pressure and the elapsed time to failure after missile contact define a rectangular or triangular impulse loading to produce failure of the panel. Since automobile crashes are known to produce triangular impulse loads, the two pulses (failure and impact) can be compared to determine if a particular impact will fail the panels. Thus, a particular concrete panel can be analyzed to determine if it will fail under a postulated missile impact

  16. A Power Case Study for Monocrystalline and Polycrystalline Solar Panels in Bursa City, Turkey

    OpenAIRE

    Taşçıoğlu, Ayşegül; Taşkın, Onur; Vardar, Ali

    2016-01-01

    It was intended to reveal the time dependent power generation under different loads for two different solar panels under the conditions of Bursa province in between August 19 and 25, 2014. The testing sets include solar panels, inverter, multimeter, accumulator, regulator, pyranometer, pyrheliometer, temperature sensor, and datalogger. The efficiency of monocrystalline and polycrystalline solar panels was calculated depending on the climatic data’s measurements. As the result of the study, th...

  17. Sensory Evaluation and Feasibility Report of Plantain Sandwich for Nigerian Market

    OpenAIRE

    Olu Malomo; E.O. Uche; E.A. Alamu

    2015-01-01

    Protein-energy malnutrition is a common nutritional disorder in developing countries and constitutes a major public health problem in young children and elderly people. This project is aimed at evaluating the acceptability of plantain-peanut sandwich and roasted at different temperatures. A plantain-peanut sandwich consists of minced protein stuffed into a carbohydrate source made into a roll as a food product. The plantain was roasted at two different temperatures than later enriched with 5%...

  18. Lightweight Space Tug body structure

    International Nuclear Information System (INIS)

    Lager, J.R.

    1976-01-01

    Lightweight honeycomb sandwich construction using a wide variety of metal and fibrous composite faceskins was used in the design of a typical Space Tug skirt structure. Relatively low magnitude combined loading of axial compression and torsion resulted in designs using ultrathin faceskins, light-weight honeycomb cores, and thin faceskin/core adhesive bond layers. Two of the designs with metal faceskins (aluminum and titanium) and four with fibrous composite faceskins (using combinations of fiberglass, boron, and graphite) were evaluated through the fabrication and structural test of a series of small development panels. The two most promising concepts with aluminum and graphite/epoxy faceskins, were further evaluated through the fabrication and structural test of larger compression and shear panels. All panels tested exceeded design ultimate load levels, thereby, verifying the structural integrity of the selected designs. Projected skirt structural weights for the graphite/epoxy and aluminum concepts fall within original weight guidelines established for the Space Tug vehicle

  19. Full scale investigation of the wind loads on a light-weight building-integrated photovoltaic system

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bronkhorst, A.J.; Bentum, C.A. van

    2017-01-01

    The wind loads on solar energy systems are crucial for the engineering of the panels, substructure and fixings. There is a demand for aesthetically more acceptable solutions such as frameless solar systems. For these frameless systems, the wind loads are carried by the panels themselves. Combined

  20. Density functional study of isoguanine tetrad and pentad sandwich complexes with alkali metal ions.

    Science.gov (United States)

    Meyer, Michael; Steinke, Thomas; Sühnel, Jürgen

    2007-02-01

    Isoguanine tetraplexes and pentaplexes contain two or more stacked polyads with intercalating metal ions. We report here the results of a density functional study of sandwiched isoguanine tetrad and pentad complexes consisting of two polyads with Na(+), K(+) and Rb(+) ions at the B3LYP level. In comparison to single polyad metal ion complexes, there is a trend towards increased non-planarity of the polyads in the sandwich complexes. In general, the pentad sandwiches have relatively planar polyad structures, whereas the tetrad complexes contain highly non-planar polyad building blocks. As in other sandwich complexes and in metal ion complexes with single polyads, the metal ion-base interaction energy plays an essential role. In iG sandwich structures, this interaction energy is slightly larger than in the corresponding guanine sandwich complexes. Because the base-base interaction energy is even more increased in passing from guanine to isoguanine, the isoguanine sandwiches are thus far the only examples where the base-base interaction energy is larger than the base-metal ion interaction energy. Stacking interactions have been studied in smaller models consisting of two bases, retaining the geometry from the complete complex structures. From the data obtained at the B3LYP and BH&H levels and with Møller-Plesset perturbation theory, one can conclude that the B3LYP method overestimates the repulsion in stacked base dimers. For the complexes studied in this work, this is only of minor importance because the direct inter-tetrad or inter-pentad interaction is supplemented by a strong metal ion-base interaction. Using a microsolvation model, the metal ion preference K(+) approximately Rb(+) > Na(+) is found for tetrad complexes. On the other hand, for pentads the ordering is Rb(+) > K(+) > Na(+). In the latter case experimental data are available that agree with this prediction.

  1. Calculation of dynamic stresses in viscoelastic sandwich beams using oma

    DEFF Research Database (Denmark)

    Pelayo, F.; Aenlle, M. L.; Ismael, G.

    2017-01-01

    The mechanical response of sandwich elements with viscoelastic core is time and temperature dependent. Laminated glass is a sandwich element where the mechanical behavior of the glass layers is usually considered linear-elastic material whereas the core is made of an amorphous thermoplastic which...... data. In simple structures, analytical mode shapes can be used alternatively to the numerical ones. In this paper, the dynamic stresses on the glass layers of a laminated glass beam have estimated using the experimental acceleration responses measured at 7 points of the beam, and the experimental mode...

  2. Fracture mechanisms and fracture control in composite structures

    Science.gov (United States)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  3. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS. 1. Introduction. Ultra high strength concrete ... Knight (2012) investigated the dynamic behaviour of steel fibre reinforced concrete plates under impact loading with ...

  4. Effect of Discontinuities and Uncertainties on the Response and Failure of Composite Structures

    Science.gov (United States)

    Noor, Ahmed K.; Perry, Ferman W.; Poteat, Marcia M. (Technical Monitor)

    2000-01-01

    The overall goal of this research was to assess the effect of discontinuities and uncertainties on the nonlinear response and failure of composite structures subjected to combined mechanical and thermal loads. The four key elements of the study were: (1) development of simple and efficient procedures for the accurate determination of transverse shear and transverse normal stresses in structural sandwiches as well as in unstiffened and stiffened composite panels and shells; (2) study the effects of transverse stresses on the response, damage initiation and propagation in composite and sandwich structures; (3) use of hierarchical sensitivity coefficients to identify the major parameters that affect the response and damage in each of the different levels in the hierarchy (micro-mechanical, layer, panel, subcomponent and component levels); and (4) application of fuzzy set techniques to identify the range and variation of possible responses. The computational models developed were used in conjunction with experiments, to understand the physical phenomena associated with the nonlinear response and failure of composite and sandwich structures. A toolkit was developed for use in conjunction with deterministic analysis programs to help the designer in assessing the effect of uncertainties in the different computational model parameters on the variability of the response quantities.

  5. Improving Ballistic Performance of Polyurethane Foam by Nanoparticle Reinforcement

    Directory of Open Access Journals (Sweden)

    M. F. Uddin

    2009-01-01

    Full Text Available We report improving ballistic performance of polyurethane foam by reinforcing it with nanoscale TiO2 particles. Particles were dispersed through a sonic cavitation process and the loading of particles was 3 wt% of the total polymer. Once foams were reinforced, sandwich panels were made and impacted with fragment simulating projectiles (FSPs in a 1.5-inch gas gun. Projectile speed was set up to have complete penetration of the target in each experiment. Test results have indicated that sandwich with nanophased cores absorbed about 20% more kinetic energy than their neat counterpart. The corresponding increase in ballistic limit was around 12% over the neat control samples. The penetration phenomenon was also monitored using a high-speed camera. Analyses of digital images showed that FSP remained inside the nanophased sandwich for about 7 microseconds longer than that of a neat sandwich demonstrating improved energy absorption capability of the nanoparticle reinforced core. Failure modes for energy absorption have been investigated through a microscope and high-speed images.

  6. Improving Ballistic Performance of Polyurethane Foam by Nanoparticle Reinforcement

    International Nuclear Information System (INIS)

    Uddin, M.F.; Zainuddin, S.; Mahfuz, H.; Jeelani, S.

    2009-01-01

    We report improving ballistic performance of polyurethane foam by reinforcing it with nano scale TiO 2 particles. Particles were dispersed through a sonic cavitation process and the loading of particles was 3 wt % of the total polymer. Once foams were reinforced, sandwich panels were made and impacted with fragment simulating projectiles (FSPs) in a 1.5-inch gas gun. Projectile speed was set up to have complete penetration of the target in each experiment. Test results have indicated that sandwich with nano phased cores absorbed about 20% more kinetic energy than their neat counterpart. The corresponding increase in ballistic limit was around 12% over the neat control samples. The penetration phenomenon was also monitored using a high-speed camera. Analyses of digital images showed that FSP remained inside the nano phased sandwich for about 7 microseconds longer than that of a neat sandwich demonstrating improved energy absorption capability of the nanoparticle reinforced core. Failure modes for energy absorption have been investigated through a microscope and high-speed images.

  7. Viewpoints of working sandwich generation women and occupational therapists on role balance strategies.

    Science.gov (United States)

    Evans, Kiah L; Girdler, Sonya J; Falkmer, Torbjorn; Richmond, Janet E; Wagman, Petra; Millsteed, Jeannine; Falkmer, Marita

    2017-09-01

    Occupational therapists need to be cognizant of evidence-based role balance advice and strategies that women with multigenerational caring responsibilities can implement independently or with minimal assistance, as role balance may not be the primary goal during many encounters with this population. Hence, this study aimed to identify the viewpoints on the most helpful role balance strategies for working sandwich generation women, both from their own perspectives and from the perspective of occupational therapists. This was achieved through a Q methodology study, where 54 statements were based on findings from interviews, sandwich generation literature and occupational therapy literature. In total, 31 working sandwich generation women and 42 occupational therapists completed the Q sort through either online or paper administration. The data were analysed using factor analysis with varimax rotation and were interpreted through collaboration with experts in the field. The findings revealed similarities between working sandwich generation women and occupational therapists, particularly in terms of advocating strategies related to sleep, rest and seeking practical assistance from support networks. Differences were also present, with working sandwich generation women viewpoints tending to emphasize strategies related to coping with a busy lifestyle attending to multiple responsibilities. In contrast, occupational therapy viewpoints prioritized strategies related to the occupational therapy process, such as goal setting, activity focused interventions, monitoring progress and facilitating sustainable outcomes.

  8. Design and fabrication of composite wing panels containing a production splice

    Science.gov (United States)

    Reed, D. L.

    1975-01-01

    Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.

  9. Sound insulation of composite cylindrical shells: a comparison between a laminated and a sandwich cylinder

    OpenAIRE

    Yuan, Chongxin; Roozen, Bert; Bergsma, Otto; Beukers, Adriaan

    2012-01-01

    The fuselages of aircraft are modeled as a cylinder in this paper, and the sound insulations of a sandwich cylinder and a laminated cylinder are studied both experimentally and numerically. The cylinders are excited by an acoustic pressure and a mechanical force respectively. Results show that under acoustic excitation, the sandwich cylinder and the laminated one have a similar sound insulation below 3000 Hz, but the sandwich cylinder has a much larger sound insulation at higher frequencies. ...

  10. Damage Tolerance of Resin Transfer Molded Composite Sandwich Constructions

    National Research Council Canada - National Science Library

    Vaidya, U

    1999-01-01

    .... The sandwich composite concepts considered in this study possessed the feasibility to improve the transverse stiffness, provide enhanced damage resistance/tolerance to impact and functionality...

  11. Performance evaluation of solar photovoltaic panel driven refrigeration system

    Science.gov (United States)

    Rajoria, C. S.; Singh, Dharmendra; Gupta, Pankaj Kumar

    2018-03-01

    The solar photovoltaic (PV) panel driven refrigeration system employs solar PV panel and play a vital role when combined with storage batteries. The variation in performance of solar PV panel driven refrigeration system has been experimentally investigated in this paper. The change in battery voltage is analyzed with respect to panel size. Different series and parallel combinations have been applied on four solar PV panels of 35W each to get 24V. With the above combination a current in the range of 3-5 ampere has been obtained depending upon the solar intensity. A refrigerator of 110 W and 50 liters is used in the present investigation which requires 0.80 ampere AC at 230 V. The required current and voltage has been obtained from an inverter which draws about 7 ampere DC from the battery bank at 24V. The compressor of the refrigerator consumed 110W which required a PV panel size of 176 W approximately. It is important to note that the compressor consumed about 300W for first 50 milliseconds, 130 W for next five seconds and gradually comes to 110 W in 65 seconds. Thus panel size should be such that it may compensate for the initial load requirement.

  12. Fracture Mechanics Analysis of Reinforced DCB Sandwich Debond Specimen Loaded by Moments

    DEFF Research Database (Denmark)

    Saseendran, Vishnu; Berggreen, Christian; Carlsson, Leif A.

    2018-01-01

    a pure moment loading is considered. The J-integral coupled with laminate beam theory is employed to derive closed-form expression for the energy releaserate in terms of the applied moments, geometry, and material properties .A scalar quantityωis obtained to express the mode-mixity phase angle...

  13. Dynamic relaxation method for nonlinear buckling analysis of moderately thick FG cylindrical panels with various boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Golmakani, M. E.; Far, M. N. Sadraee; Moravej, M. [Dept. of Mechanical Engineering, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of)

    2016-12-15

    Using new approach proposed by Dynamic relaxation (DR) method, buckling analysis of moderately thick Functionally graded (FG) cylindrical panels subjected to axial compression is investigated for various boundary conditions. The mechanical properties of FG panel are assumed to vary continuously along the thickness direction by the simple rule of mixture and Mori-Tanaka model. The incremental form of nonlinear formulations are derived based on First-order shear deformation theory (FSDT) and large deflection von Karman equations. The DR method combined with the finite difference discretization technique is employed to solve the incremental form of equilibrium equations. The critical mechanical buckling load is determined based on compressive load-displacement curve by adding the incremental displacements in each load step to the displacements obtained from the previous ones. A detailed parametric study is carried out to investigate the influences of the boundary conditions, rule of mixture, grading index, radius-to-thickness ratio, length-to-radius ratio and panel angle on the mechanical buckling load. The results reveal that with increase of grading index the effect of radius-to-thickness ratio on the buckling load decreases. It is also observed that effect of distribution rules on the buckling load is dependent to the type of boundary conditions.

  14. Permeability and flammability study of composite sandwich structures for cryogenic applications

    Science.gov (United States)

    Bubacz, Monika

    Fiber reinforced plastics offer advantageous specific strength and stiffness compared to metals and has been identified as candidates for the reusable space transportation systems primary structures including cryogenic tanks. A number of carbon and aramid fiber reinforced plastics have been considered for the liquid hydrogen tanks. Materials selection is based upon mechanical properties and containment performance (long and short term) and upon manufacturing considerations. The liquid hydrogen tank carries shear, torque, end load, and bending moment due to gusts, maneuver, take-off, landing, lift, drag, and fuel sloshing. The tank is pressurized to about 1.5 atmosphere (14.6psi or 0.1 MPa) differential pressure and on ascent maintains the liquid hydrogen at a temperature of 20K. The objective of the research effort into lay the foundation for developing the technology required for reliable prediction of the effects of various design, manufacturing, and service parameters on the susceptibility of composite tanks to develop excessive permeability to cryogenic fuels. Efforts will be expended on developing the materials and structural concepts for the cryogenic tanks that can meet the functional requirements. This will include consideration for double wall composite sandwich structures, with inner wall to meet the cryogenic requirements. The structure will incorporate nanoparticles for properties modifications and developing barriers. The main effort will be extended to tank wall's internal skin design. The main requirements for internal composite stack are: (1) introduction of barrier film (e.g. honeycomb material paper sheet) to reduce the wall permeability to hydrogen, (2) introduction of nanoparticles into laminate resin to prevent micro-cracking or crack propagation. There is a need to characterize and analyze composite sandwich structural damage due to burning and explosion. Better understanding of the flammability and blast resistance of the composite structures

  15. Dynamic Failure of Composite and Sandwich Structures

    CERN Document Server

    Abrate, Serge; Rajapakse, Yapa D S

    2013-01-01

    This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors.  The first section deals with fluid-structure interactions in marine structures.  The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures.  Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature.  Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of...

  16. Crumb Rubber-Concrete Panels Under Blast Loads

    Science.gov (United States)

    2010-05-01

    and the samples were labeled. Samples were picked up with an overhead crane and a form spreader connected to two points on the sample, each outside...uniform loading. Shortly after test started 8 to 9 cracks developed within quarter points and 2 cracks developed through pick points where form spreader ...dynamic behaviour of recycled tyre rubber-filled concrete.” Cem. Concr. Res., 32, 1587–1596. Huang, B., Li, G., Pang, S. S., and Eggers, J. (2004

  17. Barrier pillar between production panels in coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Zingano, Andre Cezar; Koppe, Jair Carlos; Costa, Joao Felipe C.L. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2007-07-01

    The function of the barrier pillar is to protect the mining panel in activity from the abutment load of adjacent mining panels that were mined. In the case of underground mines in Santa Catarina State, the barrier pillar has functioned to protect the main entries of the mine against pillar failure from old mining panels. The objective of this paper is to verify the application of the empirical method to design barrier pillars as proposed by Peng (1986), using numerical simulation following the mining geometry of the coal mines in Santa Catarina State. Two-dimensional numerical models were built taking into account the geometry of the main entries and mining panels for different overburden thickness, and considering the geomechanical properties for the rock mass that forms the roof-pillar-floor system for the Bonito coal vein. The results of the simulations showed that the empirical method to determine the barrier pillar width is valid for the studied coal vein and considered mine geometry. Neither did the pillar at the main entry become overstressed due to adjacent mine panels, nor did the roof present any failure due to stress redistribution. 9 refs., 6 figs., 5 tabs.

  18. Out-of-autoclave manufacturing of a stiffened thermoplastic carbon fibre PEEK panel

    Science.gov (United States)

    Flanagan, M.; Goggins, J.; Doyle, A.; Weafer, B.; Ward, M.; Bizeul, M.; Canavan, R.; O'Bradaigh, C.; Doyle, K.; Harrison, N.

    2017-10-01

    Out-of-Autoclave manufacturing methods, specifically Automated Tape Placement (ATP) and induction welding, used in the fabrication of a stiffened thermoplastic demonstrator panel, are presented in this study. The demonstrator panel consists of two stiffeners induction welded to a flat skin, to form a typical load bearing aerospace sub-component. The skin of the panel is manufactured from uni-directional Carbon Fibre (CF) Polyetheretherkeytone (PEEK) using laser assisted Automated Tape Placement (ATP) and the stiffeners are press formed from woven CF-PEEK. The stiffeners are fusion bonded to the skin using a continuous induction welding process. A susceptor material is used at the interface to ensure the required heating is concentrated at the weldline. Microscopy was used to examine the manufactured coupons for defects. Destructive testing was carried out to evaluate the strength of the overall assembly. The work shows that assemblies manufactured using continuous induction welding and ATP are suitable for load bearing aerospace applications.

  19. Failure of composite plates under static biaxial planar loading

    Science.gov (United States)

    Waas, Anthony M.; Khamseh, Amir R.

    1992-01-01

    The project involved detailed investigations into the failure mechanisms in composite plates as a function of hole size (holes centrally located in the plates) under static loading. There were two phases to the project, the first dealing with uniaxial loads along the fiber direction, and the second dealing with coplanar biaxial loading. Results for the uniaxial tests have been reported and published previously, thus this report will place emphasis on the second phase of the project, namely the biaxial tests. The composite plates used in the biaxial loading experiments, as well as the uniaxial, were composed of a single ply unidirectional graphite/epoxy prepreg sandwiched between two layers of transparent thermoplastic. This setup enabled us to examine the failure initiation and propagation modes nondestructively, during the test. Currently, similar tests and analysis of results are in progress for graphite/epoxy cruciform shaped flat laminates. The results obtained from these tests will be available at a later time.

  20. Analyses results of the EHF FW Panel with welded fingers

    International Nuclear Information System (INIS)

    Sviridenko, M.N.; Leshukov, A.Yu.; Razmerov, A.V.; Tomilov, S.N.; Danilov, I.V.; Strebkov, Yu.S.; Mazul, I.V.; Labusov, A.; Gervash, A.A.; Belov, A.V.; Semichev, D.

    2014-01-01

    Highlights: • The design of FW panel with welded fingers has been developed. • The FW panel with welded fingers has been analyzed. • The pressure drop in FW panel coolant path do not exceed allowable one. • The mass flow rate distribution between finger pairs are on acceptable level. • Temperatures in FW components do not exceed allowable one. - Abstract: According to Procurement Arrangement (PA) Russian Federation will procure 40% of enhanced heat flux first wall (FW) panels. The signing of PA is scheduled on November 2013. In framework of PA preparation the RF specialists perform EHF FW design optimization in order to provide the ability to operation of EHF FW panel under ITER conditions. This article contains the design description of EHF FW 14 developed by RF and following analysis have been performed: • Hydraulic analysis; • Transient thermal analysis; • Structural analysis. Analyses results show that new design of FW panel with two straight welds for finger fixation on FW beam developed by RF specialists can be used as a reference design for ITER blanket EHF FW panel loaded by 5 MW/m 2 peak heat flux

  1. Therapeutic Results of Radiotherapy in Rectal Carcinoma -Comparison of Sandwich Technique Radiotherapy with Postoperative Radiotherapy

    International Nuclear Information System (INIS)

    Huh, Gil Cha; Suh, Hyun Suk; Lee, Hyuk Sang; Kim, Re Hwe; Kim, Chul Soo; Kim, Hong Yong; Kim, Sung Rok

    1996-01-01

    Purpose : To evaluate the potential advantage for 'sandwich' technique radiotherapy compared to postoperative radiotherapy in respectable rectal cancer. Between January 1989 and May 1994, 60 patients with respectable rectal cancer were treated at Inje University Seoul and Sanggye Paik Hospital.Fifty one patients were available for analysis : 20 patients were treated with sandwich technique radiotherapy and 31 patients were treated with postoperative radiotherapy. In sandwich technique radiotherapy(RT), patients were treated with preoperative RT 1500 cGy/5fx followed by immediate curative resection. Patients staged as Astler-Coller B2, C were considered for postoperative RT with 2500-4500 cGy. In postoperative RT, total radiation dose of 4500-6120 cGy, 180 cGy daily at 4-6 weeks was delivered. Patients were followed for median period of 25 months. Results : The overall 5-year survival rates for sandwich technique RT group and postoperative RT group were 60% and 71%, respectively(p>0.05). The 5-year disease free survival rates for each group were 63%. There was no difference in local failure rate between two groups(11% versus 7%). Incidence of distant metastasis was 11%(2/20) in the sandwich technique RT group and 20%(6/31) in the postoperative RT group(p>0.05). The frequencies of acute and chronic complications were comparable in both groups. Conclusion : The sandwich technique radiotherapy group shows local recurrence and survival similar to those of postoperative RT alone group but reduced distant metastasis compared to postoperative RT group. But long term follow-up and large number of patients is needed to make an any firm conclusion regarding the value of this sandwich technique RT

  2. Finite element simulation of a novel composite light-weight microporous cladding panel

    Science.gov (United States)

    Tian, Lida; Wang, Dongyan

    2018-04-01

    A novel composite light-weight microporous cladding panel with matched connection detailing is developed. Numerical simulation on the experiment is conducted by ABAQUS. The accuracy and rationality of the finite element model is verified by comparison between the simulation and the experiment results. It is also indicated that the novel composite cladding panel is of desirable bearing capacity, stiffness and deformability under out-of-plane load.

  3. Comparison of Different Assembling Techniques Regarding Cost, Durability, and Ecology - A Survey of Multi-layer Wooden Panel Assembly Load-Bearing Construction Elements

    Directory of Open Access Journals (Sweden)

    Dietrich Buck

    2015-10-01

    Full Text Available Wood is a pure, sustainable, renewable material. The increasing use of wood for construction can improve its sustainability. There are various techniques to assemble multi-layer wooden panels into prefabricated, load-bearing construction elements. However, comparative market and economy studies are still scarce. In this study, the following assembling techniques were compared: laminating, nailing, stapling, screwing, stress laminating, doweling, dovetailing, and wood welding. The production costs, durability, and ecological considerations were presented. This study was based on reviews of published works and information gathered from 27 leading wood product manufacturing companies in six European countries. The study shows that the various techniques of assembling multi-layer wooden construction panel elements are very different. Cross laminated timber (CLT exhibited the best results in terms of cost and durability. With regard to ecological concerns, dovetailing is the best. Taking into account both durability and ecological considerations, wooden screw-doweling is the best. These alternatives give manufacturers some freedom of choice regarding the visibility of surfaces and the efficient use of lower-quality timber. CLT is the most cost-effective, is not patented, and is a well-established option on the market today.

  4. Veterans' informal caregivers in the "sandwich generation": a systematic review toward a resilience model.

    Science.gov (United States)

    Smith-Osborne, Alexa; Felderhoff, Brandi

    2014-01-01

    Social work theory advanced the formulation of the construct of the sandwich generation to apply to the emerging generational cohort of caregivers, most often middle-aged women, who were caring for maturing children and aging parents simultaneously. This systematic review extends that focus by synthesizing the literature on sandwich generation caregivers for the general aging population with dementia and for veterans with dementia and polytrauma. It develops potential protective mechanisms based on empirical literature to support an intervention resilience model for social work practitioners. This theoretical model addresses adaptive coping of sandwich- generation families facing ongoing challenges related to caregiving demands.

  5. Development of indirect sandwich ELISA for determination of excretory-secretory antigens of Fasciola hepatica

    Directory of Open Access Journals (Sweden)

    Libertad Alzamora-Gonzales

    2016-05-01

    Full Text Available Fasciolosis is a cosmopolitan parasitosis medical-veterinary importance caused by Fasciola hepatica, which affects sheep, goats and cattle; and it affects man accidentally causing an epidemic-endemic infection difficult to diagnose. The aim was to develop an indirect sandwich ELISA with 3 antibodies for detecting excretory-secretory antigens of Fasciola hepatica (ESFh. For the development of indirect sandwich ELISA were used, as capture antibody, mouse polyclonal antibodies anti ESFh and polyclonal antibodies rabbit anti-ESFh as detection antibody, at the concentrations of 10 and 5 µg/mL respectively. The conjugate used was mouse monoclonal anti- total immunoglobulins rabbit linked to peroxidase (1/1000. Were analized 31 sheep fecal samples, and the results were compared with those obtained by direct coproparasitological examination (DC and counterimmunoelectrophoresis (CIEP. The detection limit obtained for indirect sandwich ELISA was 100 ng/mL. The test had a 100% sensitivity, 96.6% specificity, positive and negative predictive values of 50% and 96.6% respectively, in relation to DC test. Comparing with CIEP the specificity obtained for indirect sandwich ELISA was 93.5% and a negative predictive value of 100%. We concluded that indirect sandwich ELISA designed is able to detect metabolic antigens in ovine feces samples and can be used for Fasciola hepatica diagnosis.

  6. Microdroplet sandwich real-time rt-PCR for detection of pandemic and seasonal influenza subtypes.

    Directory of Open Access Journals (Sweden)

    Stephanie L Angione

    Full Text Available As demonstrated by the recent 2012/2013 flu epidemic, the continual emergence of new viral strains highlights the need for accurate medical diagnostics in multiple community settings. If rapid, robust, and sensitive diagnostics for influenza subtyping were available, it would help identify epidemics, facilitate appropriate antiviral usage, decrease inappropriate antibiotic usage, and eliminate the extra cost of unnecessary laboratory testing and treatment. Here, we describe a droplet sandwich platform that can detect influenza subtypes using real-time reverse-transcription polymerase chain reaction (rtRT-PCR. Using clinical samples collected during the 2010/11 season, we effectively differentiate between H1N1p (swine pandemic, H1N1s (seasonal, and H3N2 with an overall assay sensitivity was 96%, with 100% specificity for each subtype. Additionally, we demonstrate the ability to detect viral loads as low as 10(4 copies/mL, which is two orders of magnitude lower than viral loads in typical infected patients. This platform performs diagnostics in a miniaturized format without sacrificing any sensitivity, and can thus be easily developed into devices which are ideal for small clinics and pharmacies.

  7. Electrical switching and memory phenomena observed in redox-gradient dendrimer sandwich devices

    OpenAIRE

    Li, JianChang; Blackstock, Silas C.; Szulczewski, Greg J.

    2005-01-01

    We report on the fabrication of dendrimer sandwich devices with electrical switching and memory properties. The storage media is consisted of a redox-gradient dendrimer layer sandwiched in organic barrier thin films. The dendrimer layer acts as potential well where redox-state changes and consequent electrical transitions of the embedded dendrimer molecules are expected to be effectively triggered and retained, respectively. Experimental results indicated that electrical switching could be re...

  8. Testing of the scintillation sandwich prototype

    International Nuclear Information System (INIS)

    Vashkevich, V.

    1995-06-01

    The 3 m 2 prototype of the surface detector using optical fiber readout was completely prepared for testing measurements in February 1995 at Fermilab. Two 25 mm thick, 3 m 2 acrylic scintillation plates (1.2 x 2.5 m 2 ) are used for light collection in the upper (above the 25 mm steel plate) and lower (below the steel) counters of the sandwich. The light is collected with the help of 1 mm diameter wavelength shifter fiber loops 3 m long inserted in the grooves on the top surface of the scintillator, 3 fibers per groove. We used Kurary Y11, 200 ppm of shifter dye, and double clad fibers. 1.5 m of clear fibers spliced to each end of the shifter fiber transport the light to the phototube. Spacing between the grooves is 5 cm. The counter's edges were painted with BICRON (BC620) white reflective paint. The scintillation plates were wrapped with Dupont Tyvek. The glued bundle of fibers is connected to an EMI-9902KB 38 mm phototube through the simple light mixer bar. Used PM has a ''green extended'' rubidium bialkali photocathode. The report contains information on the testing of the scintillation sandwich

  9. Residual Strength Pressure Tests and Nonlinear Analyses of Stringer- and Frame-Stiffened Aluminum Fuselage Panels with Longitudinal Cracks

    Science.gov (United States)

    Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.

    1999-01-01

    The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.

  10. Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass

    International Nuclear Information System (INIS)

    Ying, Z G; Ni, Y Q

    2009-01-01

    Magnetorheological (MR) elastomers are used to construct a smart sandwich beam for micro-vibration control. The micro-vibration response of a clamped–free sandwich beam with an MR elastomer core and a supplemental mass under stochastic support micro-motion excitation is studied. The dynamic behavior of MR elastomer as a smart viscoelastic material is described by a complex modulus which is controllable by external magnetic field. The sixth-order partial differential equation of motion of the sandwich beam is derived from the dynamic equilibrium, constitutive and geometric relations. A frequency-domain solution method for the stochastic micro-vibration response of the sandwich beam is developed by using the frequency-response function, power spectral density function and spatial eigensolution. The root-mean-square velocity response in terms of the one-third octave frequency band is calculated, and then the response reduction capacity through optimizing the complex modulus of the core is analyzed. Numerical results illustrate the influences of the MR elastomer core parameters on the root-mean-square velocity response and the high response reduction capacity of the sandwich beam. The developed analysis method is applicable to sandwich beams with arbitrary cores described by complex shear moduli under arbitrary stochastic excitations described by power spectral density functions

  11. Measurement of the epithermal neutron flux of the Argonauta reactor by the Sandwich method

    International Nuclear Information System (INIS)

    Nascimento, H.M.

    1973-01-01

    A common method of obtaining information about the neutron spectrum in the energy range of 1 eV to a few keV is by using resonance sandwich detectors. A sandwich detector is usually made up of three foils placed one on top of the other, each having the same thickness and being made of the same material which has a pronounced absorption resonance. To make an adequate evaluation, the sandwich method was compared with one using an isolated detector. The results obtained from approximate theoretical calculations were checked experimentally, using In, Au and Mn foils, in an isotropic 1/E flux in the Argonaut Reactor at I.E.N. As practical application of this method, the deviation from a 1/E spectrum of the epithermal neutron flux in the core and external graphite reflector of the Argonaut Reactor has been measured with the sandwich foils previously calibrated in a 1/E spectrum. (author)

  12. Changing Welfare States and the “Sandwich Generation” : Increasing Burden for the Next Generation?

    Directory of Open Access Journals (Sweden)

    Harald Künemund

    2006-12-01

    Full Text Available The burden placed on individuals aged 40 to 59 – especially on women – by competing demands from work and both older and younger family members is often addressed using the metaphor of the „sandwich gen-eration“. Based on a systematization of the definitions used in the litera-ture, empirical evidence on the frequency of such generational constella-tions and on their impact on the well-being of sandwiched adults will be presented. Analysing the second wave of the German Aging Survey shows that being sandwiched – defined as a generational constellation – is very common, but simultaneous care activities for both older and younger family members are rare, especially in combination with labour force participation, and that life satisfaction is not systematically related to being sandwiched. Implications for further research and future devel-opments will be discussed, especially with respect to changes in family structure (e.g. the beanpole family and changes in the amount of welfare state spending for the aged.

  13. A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing

    Science.gov (United States)

    Qian, Bingnan; Peng, Huabei; Wen, Yuhua

    2018-04-01

    To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.

  14. Compressive properties of sandwiches with functionally graded

    Indian Academy of Sciences (India)

    The compressive behaviour of a new class of sandwich composite made up of jute fiber reinforced epoxy skins and piece-wise linear fly ash reinforced functionally graded (FG) rubber core is investigated in flat-wise mode. FG samples are prepared using conventional casting technique. Presence of gradation is quantified ...

  15. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Hongyun; Xu Weiqing; Xu Shuping; Zhou Ji; Lombardi, John R

    2013-01-01

    The purpose of this study is to solve the problem of low achievement in fabricating sandwich surface-enhanced Raman scattering (SERS) substrates. We demonstrated a highly efficient sandwich structure by the oriented assembly of metal nanoparticles (NPs) on a periodic hexagonal array of metal nanoprisms with 1,4-benzenedithiol (1,4-BDT) as linkers. The metal nanoprism array was prepared by vacuum deposition of metal on a close-packed polystyrene nanosphere pre-patterned substrate. The metal nanoprism array presents different surface properties from the pits left from the removal of polystyrene nanospheres, which causes linkers to selectively adsorb on the metal nanoprism array and sequentially leads to the oriented immobilization of the second-layer metal NPs, avoiding mismatched orientation. These sandwich SERS substrates were characterized by extinction spectroscopy and atomic force microscopy and their enhancement activity was evaluated under different excitation wavelengths. The sandwich structure greatly increases the achievement of ‘hot spots’ to almost 100% of all the metal nanoprisms and enables a large amplification of SERS signals by a factor of ten. This method has the advantages of simplicity, high efficiency, high throughput, controllability and high reproducibility. It has significance in both the study of SERS substrates and the development of plasmonic devices. (paper)

  16. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    Science.gov (United States)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  17. Load Testing of GFRP Composite U-Shape Footbridge

    Science.gov (United States)

    Pyrzowski, Łukasz; Miśkiewicz, Mikołaj; Chróścielewski, Jacek; Wilde, Krzysztof

    2017-10-01

    The paper presents the scope of load tests carried out on an innovative shell composite footbridge. The tested footbridge was manufactured in one production cycle and has no components made from materials other than GFRP laminates and PET foam. The load tests, performed on a 14-m long structure, were the final stage of a research program in the Fobridge project carried out in cooperation with: Gdańsk University of Technology (leader), Military University of Technology in Warsaw, and ROMA Co. Ltd.; and co-financed by NCBR. The aim of the tests was to confirm whether the complex U-shape sandwich structure behaves correctly. The design and technological processes involved in constructing this innovative footbridge required the solving of many problems: absence of standards for design of composite footbridges, lack of standardized material data, lack of guidelines for calculation and evaluation of material strength, and no guidelines for infusion of large, thick sandwich elements. Obtaining answers during the design process demanded extensive experimental tests, development of material models, validation of models, updating parameters and extensive numerical parametric studies. The technological aspects of infusion were tested in numerous trials involving the selection of material parameters and control of the infusion parameters. All scientific validation tests were successfully completed and market assessment showed that the proposed product has potential applications; it can be used for overcoming obstacles in rural areas and cities, as well as in regions affected by natural disasters. Load testing included static and dynamic tests. During the former, the span was examined at 117 independent measurement points. The footbridge was loaded with concrete slabs in different configurations. Their total weight ranged from 140 kN up to 202 kN. The applied load at the most heavily loaded structural points caused an effect from 89% to 120%, compared to the load specified by

  18. Experimental study on the influence of different thermal insulation materials on the fire dynamics in a reduced-scale enclosure

    DEFF Research Database (Denmark)

    Leisted, Rolff Ripke; Sørensen, Martin X.; Jomaas, Grunde

    2017-01-01

    Four scaled (1:5) fire experiments with two identically classified types of commercially available sandwich panels incorporating either stone wool (SW) or poly-isocyanurate (PIR) foam as cores were conducted using a modified version of the ISO 13784-1 (Reaction to fire tests for sandwich panel...

  19. Analysis of copper alloy to stainless steel bonded panels for ITER first wall applications

    International Nuclear Information System (INIS)

    Stubbins, J.F.; Kurath, P.; Drockelman, D.; Li, G.; Thomas, B.G.; Morgan, G.D.; McAfee, J.

    1995-01-01

    The mechanical performance of bi-layer copper alloy (Gildcop CuA115) to 316L stainless steel panels was examined. This work was to analyze potential bonding methodologies for the fabrication of ITER first wall structures, to verify the bond integrity of the fabricated panels, and to establish some mechanical performance parameters for panel structural performance. Two bonding routes were examined: explosively bonding and hot isostatically pressed (HIP) bonding. Following fabrication, the panels were mechanically loaded in tensile and fatigue tests. The mechanical performance test verified that the bond integrity was excellent, and that the primary mode of failure of the bonded panels was related to failure in the base materials rather than lack of adequate bond strength

  20. ELISA with double antigen sandwich for screening specific serum anti-TP antibody in blood donors

    International Nuclear Information System (INIS)

    Wang Yiqing; Shi Zhixu

    2002-01-01

    Objective: To select a sensitive and specific laboratory examination suitable for screening serum anti-TP antibody in blood donors. Methods: The serum anti-TP antibody in 11271 blood donors were detected using ELISA with double antigen sandwich and the outcomes were compared with those using RPR assay. The conflicting specimen were confirmed by repeating the test with TPHA assay. Results: The positive rates of serum anti-TP antibody by ELISA with double antigen sandwich and RPR was 0.36% (41/11271) and 0.26% (29/11271), respectively. The coincidence of the detecting outcomes by ELISA with double antigen sandwich and RPR with TPHA was 97.5% (40/41) and 63.41%(26/41) respectively. Conclusion: Compared with RPR assay, ELISA with double antigen sandwich has higher sensibility and specificity for screening serum anti-TP antibody in blood donors

  1. An efficient iterative model reduction method for aeroviscoelastic panel flutter analysis in the supersonic regime

    Science.gov (United States)

    Cunha-Filho, A. G.; Briend, Y. P. J.; de Lima, A. M. G.; Donadon, M. V.

    2018-05-01

    The flutter boundary prediction of complex aeroelastic systems is not an easy task. In some cases, these analyses may become prohibitive due to the high computational cost and time associated with the large number of degrees of freedom of the aeroelastic models, particularly when the aeroelastic model incorporates a control strategy with the aim of suppressing the flutter phenomenon, such as the use of viscoelastic treatments. In this situation, the use of a model reduction method is essential. However, the construction of a modal reduction basis for aeroviscoelastic systems is still a challenge, owing to the inherent frequency- and temperature-dependent behavior of the viscoelastic materials. Thus, the main contribution intended for the present study is to propose an efficient and accurate iterative enriched Ritz basis to deal with aeroviscoelastic systems. The main features and capabilities of the proposed model reduction method are illustrated in the prediction of flutter boundary for a thin three-layer sandwich flat panel and a typical aeronautical stiffened panel, both under supersonic flow.

  2. Evaluation of the Impact Resistance of Various Composite Sandwich Beams by Vibration Tests

    Directory of Open Access Journals (Sweden)

    Amir Shahdin

    2011-01-01

    Full Text Available Impact resistance of different types of composite sandwich beams is evaluated by studying vibration response changes (natural frequency and damping ratio. This experimental works will help aerospace structural engineer in assess structural integrity using classification of impact resistance of various composite sandwich beams (entangled carbon and glass fibers, honeycomb and foam cores. Low velocity impacts are done below the barely visible impact damage (BVID limit in order to detect damage by vibration testing that is hardly visible on the surface. Experimental tests are done using both burst random and sine dwell testing in order to have a better confidence level on the extracted modal parameters. Results show that the entangled sandwich beams have a better resistance against impact as compared to classical core materials.

  3. Analysis of steel frames with precast concrete infill panels

    NARCIS (Netherlands)

    Teeuwen, P.A; Kleinman, C.S.; Snijder, H.H.; Hofmeyer, H.; IABSE-AIPPC-IVBH, xx

    2008-01-01

    This paper presents experimental and numerical analyses of a new type of hybrid lateral load resisting structure. This structure consists of a steel frame with a discretely connected precast concrete infill panel with a window opening. The discrete connections are formed by structural bolts on the

  4. Analysis of a ceramic filled bio-plastic composite sandwich structure

    International Nuclear Information System (INIS)

    Habib Ullah, M.; Islam, M. T.

    2013-01-01

    Design and analysis of a ceramic-filled bio-plastic composite sandwich structure is presented. This proposed high-dielectric structure is used as a substrate for patch antennas. A meandered-strip line-fed fractal-shape patch antenna is designed and fabricated on a copper-laminated sandwich-structured substrate. Measurement results of this antenna show 44% and 20% of bandwidths with maximum gains of 3.45 dBi and 5.87 dBi for the lower and upper bands, respectively. The half-power beam widths of 104° and 78° have been observed from the measured radiation pattern at the two resonance frequencies 0.9 GHz and 2.5 GHz

  5. Analysis of a ceramic filled bio-plastic composite sandwich structure

    Energy Technology Data Exchange (ETDEWEB)

    Habib Ullah, M. [Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, Bangi Selangor 43600 (Malaysia); Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia, Bangi 43600 (Malaysia); Islam, M. T. [Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, Bangi Selangor 43600 (Malaysia)

    2013-11-25

    Design and analysis of a ceramic-filled bio-plastic composite sandwich structure is presented. This proposed high-dielectric structure is used as a substrate for patch antennas. A meandered-strip line-fed fractal-shape patch antenna is designed and fabricated on a copper-laminated sandwich-structured substrate. Measurement results of this antenna show 44% and 20% of bandwidths with maximum gains of 3.45 dBi and 5.87 dBi for the lower and upper bands, respectively. The half-power beam widths of 104° and 78° have been observed from the measured radiation pattern at the two resonance frequencies 0.9 GHz and 2.5 GHz.

  6. ANALISA TEKNIS DAN EKONOMIS PENGGUNAAN COREMAT UNTUK KONSTRUKSI FRP (FIBERGLASS REINFORCED PLASTIC SANDWICH PADA BADAN KAPAL

    Directory of Open Access Journals (Sweden)

    Parlindungan Manik

    2012-02-01

    Full Text Available Planning of ship construction is make its having good effectivity value and efficiency. Composite as materialalternative to changes of steel feedstock and wood has many applied named FRP (fiberglass reinforcedplastics single skin. The weakness of this FRP was heavy construction and requires many production time.Therefore, will be checked comparison between single skin with sandwich constructions for shell.In this research, the way for making composite is hand lay up method with three various thickness of skinthere are : t, t/2, and t/4. To know strength comparison from the various skin of sandwich with single skin,must be test, consist of tensile test.. The result is analyzed then compared by BKI (Biro Klasifikasi Indonesiarules for the fiberglass ship.Based on the result, indicates that optimization skin thickness of sandwich construction applies Corematwhich tensile strength it is equivalent with Single Skin at 2/3t and usage of Sandwich construction causes23,12 % lighter. In economic analyze, advantage from low weight is compensation of addition 23,12 % DWT.Material cost for Sandwich about 11,35% bigger than Single Skin construction.

  7. WIPP supplementary roof support system, Room 1, Panel 1: Geotechnical field data analysis bi-annual report

    International Nuclear Information System (INIS)

    1992-01-01

    In June 1991, Waste Isolation Division (WID) initiated the design effort to develop a supplementary roof support system to extend the life of Room 1, Panel 1, to allow successful completion of the bin-scale test program. A number of potential options for ground control were considered leading to the finalization of the currently installed roof support system. This highly instrumented system is ''state of the art'' for mine ground control and will provide extensive geotechnical data. The system is an innovative blend of several standard techniques and incorporates five of the suggestions made by the Geotechnical Panel in its report of June 1991, on the effective life of Rooms in Panel 1. The design was subjected to an exhaustive scrutiny by two formal Design Review Panels and was approved based on reviewed design documents, on-site observations at the WIPP underground facility, and detailed discussions with members of the design team. The original requirement was to have only a section of the room completed in October in preparation for first waste receipt. This goal was met and the relatively complex installation in the entire room was completed in December 1991. The Support System, with all its instrumentation, is now fully operational and generating geotechnical data. Examination of extensometer, closure and load cell data indicate that Room support is performing within the design parameters. All the anchors were initially loaded to approximately 445 kN (1000 lbs). The results of load cell monitoring indicates a steady increase of load on the rock bolts. The anchors installed near the room centerline have shown the greatest increase with the outermost anchors showing little or no load

  8. Normal Strength Steel Fiber Reinforced Concrete Subjected to Explosive Loading

    OpenAIRE

    Mohammed Alias Yusof; Norazman Norazman; Ariffin Ariffin; Fauzi Mohd Zain; Risby Risby; CP Ng

    2011-01-01

    This paper presents the results of an experimental investigation on the behavior of plain reinforced concrete and Normal strength steel fiber reinforced concrete panels (SFRC) subjected to explosive loading. The experiment were performed by the Blast Research Unit Faculty of Engineering, University Pertahanan Nasional Malaysia A total of 8 reinforced concrete panels of 600mm x 600mm x 100mm were tested. The steel fiber reinforced concrete panels incorporated three different volume fraction, 0...

  9. Sandwich veto detector at COMPASS experiment

    International Nuclear Information System (INIS)

    Sarkar, S.; Dasgupta, S.S.; Calcutta-COMPASS group

    2010-01-01

    This paper presents the newly build Sandwich Detector for 190 GeV hadron run of COMPASS Experiment at CERN. The technical details and the testing procedures are included to highlight the physics objective of the installation. Single electron detection techniques has been developed and used to scale the performance of the detector. This analysis can predict the number of single electrons per MIP at the scintillation detector. (author)

  10. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang; Zhang, Sui; Chung, Neal Tai-Shung

    2015-01-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  11. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  12. Effects of Core Softness and Bimodularity of Fibreglass Layers on Flexural Stiffness of Polymer Sandwich Structures

    Directory of Open Access Journals (Sweden)

    Šuba Oldřich

    2017-01-01

    Full Text Available This paper deals with the study of the flexural stiffness of the sandwich structures based on fibreglass and polymeric foams. The influence of geometrical and material parameters on the resulting effective flexural stiffness of the sandwich structure is being studied experimentally, analytically and by using FEM models. The effective modulus of elasticity of the sandwich-structured element is being studied and its theoretical and model dependencies on the flexibility of the foam core and bimodularity of the fibreglass layers are being investigated. The achieved results are compared with the experimentally observed values. This study shows that it is necessary to pay special attention to the issue of flexural stiffness of the walls when designing sandwich shell products in order to prevent possible failures in the practical applications of these types of structures.

  13. Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-09-01

    In this paper, size-dependent free vibration analysis of a sandwich nanoplate is presented. The sandwich nanoplate is including an elastic nano core and two piezo-electro-magnetic face-sheets as sensor and actuator actuated by electric and magnetic potentials. The sandwich nanoplate is resting on visco-Pasternak's foundation. Hamilton's principle is employed to derive the governing equations of motion based on Kirchhoff plate and nonlocal elasticity theory. The numerical results are presented to study the influence of important parameters of the problem such as applied electric and magnetic potentials, nonlocal parameter and visco-Pasternak's parameters. Furthermore, the influence of various boundary conditions is discussed on the vibration characteristics of the sandwich nanoplate.

  14. Enhanced detection levels in a semi-automated sandwich ...

    African Journals Online (AJOL)

    A peptide nucleic acid (PNA) signal probe was tested as a replacement for a typical DNA oligonucleotidebased signal probe in a semi-automated sandwich hybridisation assay designed to detect the harmful phytoplankton species Alexandrium tamarense. The PNA probe yielded consistently higher fluorescent signal ...

  15. Homogenized global nonlinear constitutive model for RC panels under cyclic loadings

    International Nuclear Information System (INIS)

    Huguet, Miquel; Voldoire, Francois; Kotronis, Panagiotis; Erlicher, Silvano

    2014-01-01

    A new nonlinear stress resultant global constitutive model for RC panels is presented. Concrete damage, concrete stress transfer at cracks and bond-slip stress are the main nonlinear effects identified at the local scale that constitute the basis for the construction of the stress resultant global model through an analytical homogenization technique. The closed form solution is obtained using general functions for the previous phenomena. (authors)

  16. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    Science.gov (United States)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  17. Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Science.gov (United States)

    2011-07-01

    In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP) : sandwich materials for various transportation construction applications, with particular emphasis : on highway bridge decks in cold regions, were developed and teste...

  18. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2

    KAUST Repository

    Tangi, Malleswararao

    2017-09-22

    We report an unusual thermal quenching of the micro-photoluminescence (µ-PL) intensity for a sandwiched single-layer (SL) MoS2. For this study, MoS2 layers were chemical vapor deposited on molecular beam epitaxial grown In0.15Al0.85N lattice matched templates. Later, to accomplish air-stable sandwiched SL-MoS2, a thin In0.15Al0.85N cap layer was deposited on the MoS2/In0.15Al0.85N heterostructure. We confirm that the sandwiched MoS2 is a single layer from optical and structural analyses using µ-Raman spectroscopy and scanning transmission electron microscopy, respectively. By using high-resolution X-ray photoelectron spectroscopy, no structural phase transition of MoS2 is noticed. The recombination processes of bound and free excitons were analyzed by the power-dependent µ-PL studies at 77 K and room temperature (RT). The temperature-dependent micro photoluminescence (TDPL) measurements were carried out in the temperature range of 77 – 400 K. As temperature increases, a significant red-shift is observed for the free-exciton PL peak, revealing the delocalization of carriers. Further, we observe unconventional negative thermal quenching behavior, the enhancement of the µ-PL intensity with increasing temperatures up to 300K, which is explained by carrier hopping transitions that take place between shallow localized states to the band-edges. Thus, this study renders a fundamental insight into understanding the anomalous thermal quenching of µ-PL intensity of sandwiched SL-MoS2.

  19. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2

    KAUST Repository

    Tangi, Malleswararao; Shakfa, Mohammad Khaled; Mishra, Pawan; Li, Ming-Yang; Chiu, Ming-Hui; Ng, Tien Khee; Li, Lain-Jong; Ooi, Boon S.

    2017-01-01

    We report an unusual thermal quenching of the micro-photoluminescence (µ-PL) intensity for a sandwiched single-layer (SL) MoS2. For this study, MoS2 layers were chemical vapor deposited on molecular beam epitaxial grown In0.15Al0.85N lattice matched templates. Later, to accomplish air-stable sandwiched SL-MoS2, a thin In0.15Al0.85N cap layer was deposited on the MoS2/In0.15Al0.85N heterostructure. We confirm that the sandwiched MoS2 is a single layer from optical and structural analyses using µ-Raman spectroscopy and scanning transmission electron microscopy, respectively. By using high-resolution X-ray photoelectron spectroscopy, no structural phase transition of MoS2 is noticed. The recombination processes of bound and free excitons were analyzed by the power-dependent µ-PL studies at 77 K and room temperature (RT). The temperature-dependent micro photoluminescence (TDPL) measurements were carried out in the temperature range of 77 – 400 K. As temperature increases, a significant red-shift is observed for the free-exciton PL peak, revealing the delocalization of carriers. Further, we observe unconventional negative thermal quenching behavior, the enhancement of the µ-PL intensity with increasing temperatures up to 300K, which is explained by carrier hopping transitions that take place between shallow localized states to the band-edges. Thus, this study renders a fundamental insight into understanding the anomalous thermal quenching of µ-PL intensity of sandwiched SL-MoS2.

  20. Polyisocyanurate systems for insulating and sandwich elements; Polyisocyanurat-Systeme fuer Daemm- und Sandwichelemente

    Energy Technology Data Exchange (ETDEWEB)

    Malotki, P. von [Elastogran GmbH, Lemfoerde (Germany)

    2000-07-01

    PUR rigid foam plates are laminated with flexible Al films, paper or glass non-wovens, or may be processed into sandwich elements with metallic top-layers via coil-coating. Dependence of heat insulation efficiency, dimensional stability and fire behavior of the foam on chemical composition and the blowing agents is considered and compared with polyisocyanurate foams. Recipes for the production of PIR heat insulation elements and sandwich elements are given.

  1. Development of an HIV-1 Subtype Panel in China: Isolation and Characterization of 30 HIV-1 Primary Strains Circulating in China.

    Directory of Open Access Journals (Sweden)

    Jingwan Han

    Full Text Available The complex epidemic and significant diversity of HIV-1 strains in China pose serious challenges for surveillance and diagnostic assays, vaccine development and clinical management. There is a lack of HIV-1 isolates in current canonical HIV-1 subtype panels that can represent HIV-1 diversity in China; an HIV-1 subtype panel for China is urgently needed.Blood samples were collected from HIV-1 infected patients participating in the drug-resistance surveillance program in China. The samples were isolated, cultured and stored as neat culture supernatant. The HIV-1 isolates were fully characterized. The panel was used to compare 2 viral load assays and 2 p24 assays as the examples of how this panel could be used.An HIV-1 subtype panel for China composed of 30 HIV-1 primary strains of four subtypes (B [including Thai-B], CRF01_AE, CRF07_BC and G was established. The samples were isolated and cultured to a high-titer (10(6-10(9 copies/ml/high-volume (40 ml. The HIV-1 isolates were fully characterized by the final viral load, p24 concentration, gag-pol and envC2V3 sequencing, co-receptor prediction, determination of the four amino acids at the tip of the env V3-loop, glycosylation sites in the V3 loop and the drug-resistance mutations. The comparison of two p24 assays and two viral load assays on the isolates illustrated how this panel may be used for the evaluation of diagnostic assay performance. The Pearson value between p24 assays were 0.938. The viral load results showed excellent concordance and agreement for samples of Thai-B, but lower correlations for samples of CRF01_AE.The current panel of 30 HIV-1 isolates served as a basis for the development of a comprehensive panel of fully characterized viral isolates, which could reflect the current dynamic and complex HIV-1 epidemic in China. This panel will be available to support HIV-1 research, assay evaluation, vaccine and drug development.

  2. Failure modes of composite sandwich beams

    OpenAIRE

    Gdoutos E.; Daniel I.M.

    2008-01-01

    A thorough investigation of failure behavior of composite sandwich beams under three-and four-point bending was undertaken. The beams were made of unidirectional carbon/epoxy facings and a PVC closed-cell foam core. The constituent materials were fully characterized and in the case of the foam core, failure envelopes were developed for general two-dimensional states of stress. Various failure modes including facing wrinkling, indentation failure and core failure were observed and compared wit...

  3. Examination of Sandwich Materials Using Air-Coupled Ultrasonics

    DEFF Research Database (Denmark)

    Borum, K.K.; Berggreen, Carl Christian

    2004-01-01

    The air-coupled ultrasonic techniques have been improved drastically in recent years. Better equipment has made this technique much more useful. This paper focuses on the examination of sandwich materials used in naval ships. It is more convenient to be able to make the measurements directly...

  4. Force Curves to Demonstrate Methods to Increase Musculoskeletal Loading with the ARED

    Data.gov (United States)

    National Aeronautics and Space Administration — Current resistance exercises on ISS do not meet the requirements set by expert panels in that the eccentric loads are less than concentric loads, forces are variable...

  5. ANALISA TEKNIS DAN EKONOMIS PENGGUNAAN COREMAT UNTUK KONSTRUKSI FRP (FIBERGLASS REINFORCED PLASTIC SANDWICH PADA BADAN KAPAL

    Directory of Open Access Journals (Sweden)

    Parlindungan Manik

    2012-04-01

    Full Text Available Planning of ship construction is make its having good effectivity value and efficiency. Composite as material alternative to changes of steel feedstock and wood has many applied named FRP (fiberglass reinforced plastics single skin. The weakness of this FRP was heavy construction and requires many production time. Therefore, will be checked comparison between single skin with sandwich constructions for shell. In this research, the way for making composite is hand lay up method with three various thickness of skin there are : t, t/2, and t/4. To know strength comparison from the various skin of sandwich with single skin, must be test, consist of tensile test.. The result is analyzed then compared by BKI (Biro Klasifikasi Indonesia rules for the fiberglass ship. Based on the result, indicates that optimization skin thickness of sandwich construction applies Coremat which tensile strength it is equivalent with Single Skin at 2/3t and usage of Sandwich construction causes 23,12 % lighter. In economic analyze, advantage from low weight is compensation of addition 23,12 % DWT. Material cost for Sandwich about 11,35% bigger than Single Skin construction.

  6. Pengaruh perlakuan serat tapis kelapa terhadap kekuatan lentur skin komposit sandwich

    Directory of Open Access Journals (Sweden)

    I Made Astika

    2018-01-01

    Full Text Available Abstrak Penggunaan serat alam sebagai penguat komposit semakin berkembang. Indonesia sebagai negara beriklim tropis menghasilkan berbagai jenis serat alami seperti rami, abaca, agave, serat sabut kelapa dan serat tapis kelapa. Penelitian ini bertujuan untuk menyelidiki pengaruh perlakuan alkali serat (NaOH 5% terhadap kekuatan lentur komposit sandwich serat tapis kelapa bermatrik polyester dengan core kayu albasia Bahan penelitian adalah serat tapis kelapa dengan panjang 15 mm, resin unsaturated polyester 157 BQTN, kayu albasia dan NaOH. Hardener yang digunakan adalah MEKPO dengan konsentrasi 1%. Serat tapis kelapa yang digunakan terdiri dari serat tanpa perlakuan dan dengan perlakuan alkali 2 jam. Komposit sandwich tersusun atas dua skin dengan core ditengahnya dan dibuat dengan metode cetak tekan hidrolis. Lamina komposit sebagai skin terbuat dari serat tapis kelapa-polyester dengan fraksi volume serat 30%. Spesimen dan prosedur pengujian lentur mengacu pada standar ASTM C 393. Penampang patahan dilakukan foto makro untuk mengidentifikasi pola kegagalannya.Hasil penelitian menunjukkan serat yang mendapatkan perlakuan alkali 2 jam NaOH menghasilkan kekuatan lentur yang lebih tinggi. Hal ini disebabkan karena perlakuan alkali pada serat tapis kelapa dapat membersihkan lapisan lilin (lignin dan kotoran pada permukaan serat sehingga menghasilkan mechanical interlocking yang lebih baik antara serat dengan matrik poliester. Dengan ikatan yang lebih baik maka komposit tersebut akan mampu menahan beban lentur yang lebih tinggi. Kata kunci: komposit sandwich, serat tapis kelapa, perlakuan NaOH, kekuatan lentur Abstract The use of natural fibers as reinforcement composites is growing. Indonesia as a tropical country produces various types of natural fibers like coconut filter fiber. The purpose of this study is to investigate the effect of alkali treatment of the fiber (5% NaOH. The research material is coconut filter fiber, 157 BQTN unsaturated

  7. A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection.

    Science.gov (United States)

    Ocaña, Cristina; Hayat, Akhtar; Mishra, Rupesh; Vasilescu, Alina; del Valle, Manel; Marty, Jean-Louis

    2015-06-21

    In this paper, we have reported a novel electrochemical aptamer-antibody based sandwich biosensor for the detection of lysozyme. In the sensing strategy, an anti-lysozyme aptamer was immobilized onto the carbon electrode surface by covalent binding via diazonium salt chemistry. After incubating with a target protein (lysozyme), a biotinylated antibody was used to complete the sandwich format. The subsequent additions of avidin-alkaline phosphatase as an enzyme label, and a 1-naphthyl phosphate substrate (1-NPP) allowed us to determine the concentration of lysozyme (Lys) via Differential Pulse Voltammetry (DPV) of the generated enzyme reaction product, 1-naphthol. Using this strategy, a wide detection range from 5 fM to 5 nM was obtained for a target lysozyme, with a detection limit of 4.3 fM. The control experiments were carried out by using bovine serum albumin (BSA), cytochrome c and casein. The results showed that the proposed biosensor had good specificity, stability and reproducibility for lysozyme analysis. In addition, the biosensor was applied for detecting lysozyme in spiked wine samples, and very good recovery rates were obtained in the range from 95.2 to 102.0% for lysozyme detection. This implies that the proposed sandwich biosensor is a promising analytical tool for the analysis of lysozyme in real samples.

  8. Simulated hail impact testing of photovoltaic solar panels

    Science.gov (United States)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  9. Effect of a magnetic field on the excess resistance of SNS sandwiches

    International Nuclear Information System (INIS)

    Logvenov, G.Y.; Ryazanov, V.V.

    1983-01-01

    The contribution of superconducting plates to the resistance of Ta--Cu--Ta sandwiches in the presence of a magnetic field of up to 170 Ge is investigated. Near the superconducting transition temperature T/sub c/H, the Ta used was in a mixed (vortical) state. It is shown that the presence of gradients of the order parameter near the Abrikosov vortices appreciably changes the penetration depth of a longitudinal electric field into the superconductor and leads to a corresponding change in the excess resistance of SNS sandwiches

  10. Analysis and Testing of a Tapered End Connection for Laser Welded Steel Sandwich Panels

    Science.gov (United States)

    2009-08-15

    bending moments, Mx, My and Mxy, and applied load, q, as follows: dx dy *x dM „, dM , ex • + • dy -e,-o dQ, , dQ + ^ + q = 0 dx...Q,’D{ Qy dy The governing equations are then solved with respect to the orthotropic flexural and shear stiffness’, DM , Dm Dxy, and DQX, DQy. The...the lens. Each 55 lens has its own advantages such as delivering sharp and crisp results with almost no linear or barrel distortion, which renders

  11. Evaluation of Precast Panels for Airfield Pavement Repair. Phase 1: System Optimization and Test Section Construction

    Science.gov (United States)

    2013-06-01

    provided the most eccentric loading. Configurations with multiple wheel loads on the panel at one time were converted to a composite eccentric load at...Bearing capacity (safety factor), lb/in.2 Type Considered Main gear wheels considered load, kip Eccentricity from center x, in. y, in...dimensions were typically 12 ft x 12 ft x 10 in. with three 1.5-in.-diameter dowel bars cast in the wheel paths to ensure load transfer across the joints

  12. Temperature Dependences on Various Types of Photovoltaic (PV) Panel

    International Nuclear Information System (INIS)

    Audwinto, I A; Leong, C S; Sopian, K; Zaidi, S H

    2015-01-01

    Temperature is one of the key roles in PV technology performance, since with the increases of temperature the open-circuit voltage will drop accordingly so do the electrical efficiency and power output generation. Different types of Photovoltaic (PV) panels- silicon solar panels and thin film solar panels; mono-crystalline, poly-crystalline, CIS, CIGS, CdTe, back-contact, and bi-facial solar panel under 40°C to 70°C approximately with 5°C interval have been comparatively analyzed their actual performances with uniformly distribution of light illumination from tungsten halogen light source, ±500W/m 2 . DC-Electronic Load and Data Logger devices with “Lab View” data program interface were used to collect all the necessary parameters in this study. Time needed to achieve a certain degree of temperature was recorded. Generally, each of the panels needed 15 minutes to 20 minutes to reach 70°C. Halogen based light source is not compatible in short wave-length in response to thin-film solar cell. Within this period of times, all the panels are facing a performance loss up to 15%. Other parameters; P max , V max , I max , V oc , I sc , R serries , R shunt , Fillfactor were collected as study cases. Our study is important in determining Photovoltaic type selection and system design as for study or industrial needed under different temperature condition. (paper)

  13. Assesment risk of fracture in thin-walled fiber reinforced and regular High Performance Concretes sandwich elements

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    load. Due to structural restraints, autogenous shrinkage may lead to high self-induced stresses. Therefore autogenous shrinkage plays important role in design of HPCSE. The present paper assesses risk of fracture due to autogenous shrinkage-induced stresses in three fiber reinforced and regular High....... Finally the paper describes the modeling work with HPCSE predicting structural cracking provoked by autogenous shrinkage. It was observed that risk of cracking due to autogenous shrinkage rapidly rises after 3 days in case of regular HPC and after 7 days in case of fiber reinforced HPC.......High Performance Concrete Sandwich Elements (HPCSE) are an interesting option for future low or plus energy building construction. Recent research and development work, however, indicate that such elements are prone to structural cracking due to the combined effect of shrinkage and high temperature...

  14. Blast response of curved carbon/epoxy composite panels: Experimental study and finite-element analysis

    International Nuclear Information System (INIS)

    Phadnis, V A; Roy, A; Silberschmidt, V V; Kumar, P; Shukla, A

    2013-01-01

    Experimental and numerical studies were conducted to understand the effect of plate curvature on blast response of carbon/epoxy composite panels. A shock-tube system was utilized to impart controlled shock loading to quasi-isotropic composite panels with differing range of radii of curvatures. A 3D Digital Image Correlation (DIC) technique coupled with high-speed photography was used to obtain out-of-plane deflection and velocity, as well as in-plane strain on the back face of the panels. Macroscopic post-mortem analysis was performed to compare yielding and deformation in these panels. A dynamic computational simulation that integrates fluid-structure interaction was conducted to evaluate the panel response in general purpose finite-element software ABAQUS/Explicit. The obtained numerical results were compared to the experimental data and showed a good correlation

  15. Flexural Behaviour of Precast Aerated Concrete Panel (PACP with Added Fibrous Material: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul Rahim Noor Hazlin

    2017-01-01

    Full Text Available The usage of precast aerated concrete panel as an IBS system has become the main alternative to conventional construction system. The usage of this panel system contributes to a sustainable and environmental friendly construction. This paper presents an overview of the precast aerated concrete panel with added fibrous material (PACP. PACP is fabricated from aerated foamed concrete with added Polypropylene fibers (PP. The influence of PP on the mechanical properties of PACP are studied and reviewed from previous research. The structural behaviour of precast concrete panel subjected to flexure load is also reviewed. It is found that PP has significant affects on the concrete mixture’s compressive stregth, tensile strength and flexural strength. It is also found that PP manage to control the crack propagation in the concrete panel.

  16. Post-Buckling and Ultimate Strength Analysis of Stiffened Composite Panel Base on Progressive Damage

    Science.gov (United States)

    Zhang, Guofan; Sun, Xiasheng; Sun, Zhonglei

    Stiffened composite panel is the typical thin wall structure applied in aerospace industry, and its main failure mode is buckling subjected to compressive loading. In this paper, the development of an analysis approach using Finite Element Method on post-buckling behavior of stiffened composite structures under compression was presented. Then, the numerical results of stiffened panel are obtained by FE simulations. A thorough comparison were accomplished by comparing the load carrying capacity and key position strains of the specimen with test. The comparison indicates that the FEM results which adopted developed methodology could meet the demand of engineering application in predicting the post-buckling behavior of intact stiffened structures in aircraft design stage.

  17. Enhanced electrochemical performance from 3DG/LiFePO4/G sandwich cathode material

    Science.gov (United States)

    Du, Yahui; Tang, Yufeng; Chang, Chengkang

    2017-08-01

    In this paper, we have successfully synthesized a three dimensional graphene/LiFePO4/graphene (3DG/LFP/G) sandwich composite by an in-situ hydrothermal method, in which chemical vapor deposited 3D graphene acts as the high conductivity supporting framework, while the LiFePO4 nanoparticles are anchored onto the 3D graphene framework covered by graphene sheets. XRD and SEM results confirmed the formation of the 3DG/LFP/G sandwich composite. Cyclic Voltammetry curve of the sandwich composite shows sharper redox peaks and reduced voltage separation when compared to the reference electrodes, suggesting high specific capacity and good rate performance. Further charge/discharge measurements presented high capacity of 164 mAh g-1 at 0.2 C and 124 mAh g-1 at 10 C (75.7% of its initial capacity) for the sandwich composite, with capacity retention of 95.7% after 100 cycles, implying potential application in lithium ion battery at high rates. The EIS investigation suggests that both the electronic conductivity and the Li ion diffusion are promoted by the underlined 3D graphene framework, which is regarded as the reason for the enhanced electrochemical performance.

  18. Vibration Characteristics of Axially Moving Titanium- Polymer Nanocomposite Faced Sandwich Plate Under Initial Tension

    Directory of Open Access Journals (Sweden)

    Ali Ghorbanpour Arani

    2017-07-01

    Full Text Available In the present research, vibration and instability of axially moving sandwich plate made of soft core and composite face sheets under initial tension is investigated. Single-walled carbon nano-tubes (SWCNTs are selected as a reinforcement of composite face sheets inside Poly methyl methacrylate (PMMA matrix. Higher order shear deformation theory (HSDT is utilized due to its accuracy of polynomial functions than other plate theories. Based on extended rule of mixture, the structural properties of composite face sheets are taken into consideration. Motion equations are obtained by means of Hamilton’s principle and solved analytically. Influences of various parameters such as axially moving speed, volume fraction of CNTs, pre-tension, thickness and aspect ratio of sandwich plate on the vibration characteristics of moving system are discussed in details. The results indicated that the critical speed of moving sandwich plate is strongly dependent on the volume fraction of CNTs. Therefore, the critical speed of moving sandwich plate can be improved by adding appropriate values of CNTs. The results of this investigation can be used in design and manufacturing of marine vessels and aircrafts.

  19. Solarbus Solar Array Innovative Light Weight Mechanical Architecture with Thin Lateral Panels Deployed with Shape Memory Alloy Regulator

    Science.gov (United States)

    D'Abrigeon, Laurent; Carpine, Anne; Laduree, Gregory

    2005-05-01

    The standard ALCATEL SOLAR ARRAY PLANAR CONCEPT on the TELECOM market today on flight is named SOLARBUS.This concept is:• 3 to 10 identical panels covered with Si Hi-η celltechnology.• A central mast constitute by 3 to 4 panels and 1yoke linked together by hinges and synchronizedby cables.• From 2 to 6 lateral panelsThis concept is able to fit with the customer requirements in order to have a competitive "global offer at system level" (mass to power ratio 48-50 W/Kg)But, for the near future, in line with the market trend, and based on the previous experience, an improvement of the SOLARBUS Solar Array concept in term of W/kg/€ is essential in order to maintain the competitiveness of the global ALCATEL offer at system level.In order to increase the W/Kg performance Alcatel has developed a new architecture named Lightweight Panel Structure (LPS). The objectives of this new structure are :• To decrease the kg/m2 ratio • To be compatible of all promising cells technology including Si Hi-n, GaAs, GaAs+ small reflectors. This new architecture is based on the fact that during the 3 major life phases of a Solar Array (Launch/Deployment/Deployed orbital life), the structural needs are more important for the central panels than for the lateral panels.So two different panels have been designed :• Central panels (named LPS1)• Lateral panels (named LPS2)The stowing configuration as been adapted : 2 thin lateral panels LPS2 between 2 structural central panels LPS1, and local bumpers to transfer the loads from LPS2 to LPS1.Also one of the more stringent loads applied to the panels are corresponding to deployment loads. In order to limit the mass of reinforcement of the panels, a deployment speed regulator shall be used. In the frame of the new generation of solar arrays, Alcatel has developed a new actuator based on shape memory alloy torsional rod. This light weight component is directly connected to heaters lines and is able to provide great actuation torque

  20. Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Laith K., E-mail: laithabbass@yahoo.com; Rui, Xiaoting, E-mail: ruixt@163.com [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Marzocca, Piergiovanni, E-mail: pmarzocc@clarkson.edu [Clarkson University, Mechanical and Aeronautical Engineering Department (United States)

    2015-02-15

    Panels of reentry vehicles are subjected to a wide range of flow conditions during ascent and reentry phases. The flow can vary from subsonic continuum flow to hypersonic rarefied flow with wide ranging dynamic pressure and associated aerodynamic heating. One of the main design considerations is the assurance of safety against panel flutter under the flow conditions characterized by sever thermal environment. This paper deals with supersonic/hypersonic flutter analysis of panels exposed to a temperature field. A 3-D rectangular plate element of variable thickness based on absolute nodal coordinate formulation (ANCF) has been developed for the structural model and subjected to an assumed thermal profile that can result from any residual heat seeping into the metallic panels through the thermal protection systems. A continuum mechanics approach for the definition of the elastic forces within the finite element is considered. Both shear strain and transverse normal strain are taken into account. The aerodynamic force is evaluated by considering the first-order piston theory to linearize the potential flow and is coupled with the structural model to account for pressure loading. A provision is made to take into account the effect of arbitrary flow directions with respect to the panel edges. Aerothermoelastic equations using ANCF are derived and solved numerically. Values of critical dynamic pressure are obtained by a modal approach, in which the mode shapes are obtained by ANCF. A detailed parametric study is carried out to observe the effects of different temperature loadings, flow angle directions, and aspect ratios on the flutter boundary.

  1. Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Abbas, Laith K.; Rui, Xiaoting; Marzocca, Piergiovanni

    2015-01-01

    Panels of reentry vehicles are subjected to a wide range of flow conditions during ascent and reentry phases. The flow can vary from subsonic continuum flow to hypersonic rarefied flow with wide ranging dynamic pressure and associated aerodynamic heating. One of the main design considerations is the assurance of safety against panel flutter under the flow conditions characterized by sever thermal environment. This paper deals with supersonic/hypersonic flutter analysis of panels exposed to a temperature field. A 3-D rectangular plate element of variable thickness based on absolute nodal coordinate formulation (ANCF) has been developed for the structural model and subjected to an assumed thermal profile that can result from any residual heat seeping into the metallic panels through the thermal protection systems. A continuum mechanics approach for the definition of the elastic forces within the finite element is considered. Both shear strain and transverse normal strain are taken into account. The aerodynamic force is evaluated by considering the first-order piston theory to linearize the potential flow and is coupled with the structural model to account for pressure loading. A provision is made to take into account the effect of arbitrary flow directions with respect to the panel edges. Aerothermoelastic equations using ANCF are derived and solved numerically. Values of critical dynamic pressure are obtained by a modal approach, in which the mode shapes are obtained by ANCF. A detailed parametric study is carried out to observe the effects of different temperature loadings, flow angle directions, and aspect ratios on the flutter boundary

  2. Mechanical and vibro-acoustic aspects of composite sandwich cylinders

    NARCIS (Netherlands)

    Yuan, C.

    2013-01-01

    Designing a fuselage involves many considerations such as strength and stability, fatigue, damage tolerance, fire and lightning resistance, thermal and acoustic insulation, production, inspection, maintenance and repair. In the background of the application of composite sandwich structures on the

  3. Thermal and Mechanical Buckling and Postbuckling Responses of Selected Curved Composite Panels

    Science.gov (United States)

    Breivik, Nicole L.; Hyer, Michael W.; Starnes, James H., Jr.

    1998-01-01

    The results of an experimental and numerical study of the buckling and postbuckling responses of selected unstiffened curved composite panels subjected to mechanical end shortening and a uniform temperature increase are presented. The uniform temperature increase induces thermal stresses in the panel when the axial displacement is constrained. An apparatus for testing curved panels at elevated temperature is described, numerical results generated by using a geometrically nonlinear finite element analysis code are presented. Several analytical modeling refinements that provide more accurate representation of the actual experimental conditions, and the relative contribution of each refinement, are discussed. Experimental results and numerical predictions are presented and compared for three loading conditions including mechanical end shortening alone, heating the panels to 250 F followed by mechanical end shortening, and heating the panels to 400 F. Changes in the coefficients of thermal expansion were observed as temperature was increased above 330 F. The effects of these changes on the experimental results are discussed for temperatures up to 400 F.

  4. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    Science.gov (United States)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses

  5. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators

    Science.gov (United States)

    Galucio, A. C.; Deü, J.-F.; Ohayon, R.

    This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.

  6. Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders

    Science.gov (United States)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2010-01-01

    Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.

  7. Equivalent parameter model of 1-3 piezocomposite with a sandwich polymer

    Science.gov (United States)

    Zhang, Yanjun; Wang, Likun; Qin, Lei

    2018-06-01

    A theoretical model was developed to investigate the performance of 1-3 piezoelectric composites with a sandwich polymer. Effective parameters, such as the electromechanical coupling factor, longitudinal velocity, and characteristic acoustic impedance of the piezocomposite, were predicted using the developed model. The influences of volume fractions and components of the polymer phase on the effective parameters of the piezoelectric composite were studied. The theoretical model was verified experimentally. The proposed model can reproduce the effective parameters of 1-3 piezoelectric composites with a sandwich polymer in the thickness mode. The measured electromechanical coupling factor was improved by more than 9.8% over the PZT/resin 1-3 piezoelectric composite.

  8. Whole field strain measurement in critical thin adhesive layer of single- and double-sided repaired CFRP panel using DIC

    Science.gov (United States)

    Kashfuddoja, Mohammad; Ramji, M.

    2015-03-01

    In the present work, the behavior of thin adhesively layer in patch repaired carbon fiber reinforced polymer (CFRP) panel under tensile load is investigated experimentally using digital image correlation (DIC) technique. The panel is made of Carbon/epoxy composite laminate and the stacking sequence in the panel is [0º]4. A circular hole of 10 mm diameter (d) is drilled at the center of the panel to mimic the case of low velocity impact damage removal. The panel with open hole is repaired with double sided (symmetrical) and single sided (unsymmetrical) rectangular patch made of same panel material having stacking sequence of [0º]3. Araldite 2011 is used for bonding the patch onto the panel over the damaged area. The global behavior of thin adhesive layer is examined by analyzing whole field strain distribution using DIC. Longitudinal, peel and shear strain field in both double and single sided repair configuration is studied and a compression is made between them. An estimate of shear transfer length which is an essential parameter in arriving at an appropriate overlap length in patch design is proposed from DIC and FEA. Damage development, failure mechanism and load displacement behavior is also investigated. The experimental results are compared with the numerical predictions.

  9. BUCLASP 3: A computer program for stresses and buckling of heated composite stiffened panels and other structures, user's manual

    Science.gov (United States)

    Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.

    1973-01-01

    The use of the computer program BUCLASP3 is described. The code is intended for thermal stress and instability analyses of structures such as unidirectionally stiffened panels. There are two types of instability analyses that can be effected by PAINT; (1) thermal buckling, and (2) buckling due to a specified inplane biaxial loading. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plate strip-elements can be analyzed. The two parallel ends of the panel must be simply supported, whereas arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. Any variation in the temperature rise (from ambient) through the cross section of a panel is considered in the analyses but it must be assumed that in the longitudinal direction the temperature field is constant. Load distributions for the externally applied inplane biaxial loads are similar in nature to the permissible temperature field.

  10. Alternative Shear Panel Configurations for Light Wood Construction. Development, Seismic Performance, and Design Guidance

    Science.gov (United States)

    Wilcoski, James; Fischer, Chad; Allison, Tim; Malach, Kelly Jo

    2002-04-01

    Shear panels are used in light wood construction to resist lateral loads resulting from earthquakes or strong winds. These panels are typically made of wooden sheathing nailed to building frame members, but this standard panel design interferes with the installation of sheet insulation. A non-insulated shear panel conducts heat between the building interior and exterior wasting considerable amounts of energy. Several alternative shear panel designs were developed to avoid this insulation-mounting problem and sample panels were tested according to standard cyclic test protocols. One of the alternative designs consisted of diagonal steel straps nailed directly to the structural framing. Several others consisted of sheathing nailed to 2 x 4 framing then set into a larger 2 x 6 structural frame in such a way that no sheathing protruded beyond the edge of the 2 x 6 members. Also samples of industry-standard shear panels were constructed and tested in order to establish a performance baseline. Analytical models were developed to size test panels and predict panel behavior. A procedure was developed for establishing design capacities based on both test data and established baseline panel design capacity. The behavior of each panel configuration is documented and recommended design capacities are presented.

  11. A Power Case Study for Monocrystalline and Polycrystalline Solar Panels in Bursa City, Turkey

    Directory of Open Access Journals (Sweden)

    Ayşegül Taşçıoğlu

    2016-01-01

    Full Text Available It was intended to reveal the time dependent power generation under different loads for two different solar panels under the conditions of Bursa province in between August 19 and 25, 2014. The testing sets include solar panels, inverter, multimeter, accumulator, regulator, pyranometer, pyrheliometer, temperature sensor, and datalogger. The efficiency of monocrystalline and polycrystalline solar panels was calculated depending on the climatic data’s measurements. As the result of the study, the average performances of monocrystalline and polycrystalline panels are 42.06 and 39.80 Wh, respectively. It was seen that 87.14 W instantaneous power could be obtained from monocrystalline solar panel and that 80.17 W instantaneous power could be obtained from polycrystalline solar panel under maximum total radiation (1001.13 W/m2. Within this frame, it was determined that monocrystalline solar panel is able to operate more efficiently under the conditions of Bursa compared to polycrystalline solar panel. When the multivariate correlations coefficients were examined statistically, a significant relationship in positive direction was detected between total and direct radiation and ambient temperature on energy generation from monocrystalline and polycrystalline panel.

  12. Modal parameter determination of a lightweight aerospace panel using laser Doppler vibrometer measurements

    Science.gov (United States)

    de Sousa, Kleverson C.; Domingues, Allan C.; Pereira, Pedro P. de S.; Carneiro, Sergio H.; de Morais, Marcus V. G.; Fabro, Adriano T.

    2016-06-01

    The experimental determination of modal parameters, i.e. natural frequencies, mode shapes and damping ratio, are key in characterizing the dynamic behaviour of structures. Typically, such parameters are obtained from dynamic measurements using one or a set of accelerometers, for response measurements, along with force transducers from an impact hammer or an electrodynamic actuator, i.e. a shaker. However, lightweight structures, commonly applied in the aerospace industry, can be significantly affected by the added mass from accelerometers. Therefore, non-contact measurement techniques, like Laser Doppler Vibrometer (LDV), are a more suitable approach in determining the dynamic characteristics of such structures. In this article, the procedures and results of a modal test for a honeycomb sandwich panel for aerospace applications are presented and discussed. The main objectives of the test are the identification of natural frequencies and mode shapes in order to validate a numerical model, as well as the identification of the damping characteristics of the panel. A validated numerical model will be necessary for future detailed response analysis of the satellite, including vibroacoustic investigations to account for acoustic excitations encountered during launching. The numerical model using homogenised material properties is updated to fit the experimental results and very good agreement between experimental and numerically obtained natural frequencies and mode shapes.

  13. Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test

    Science.gov (United States)

    Pena, Francisco; Richards, W. Lance; Parker, Allen R.; Piazza, Anthony; Schultz, Marc R.; Rudd, Michelle T.; Gardner, Nathaniel W.; Hilburger, Mark W.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by

  14. 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores

    Science.gov (United States)

    Brischetto, Salvatore; Ferro, Carlo Giovanni; Torre, Roberto; Maggiore, Paolo

    2018-04-01

    Desktop 3D FDM (Fused Deposition Modelling) printers are usually employed for the production of nonstructural objects. In recent years, the present authors tried to use this technology also to produce structural elements employed in the construction of small UAVs (Unmanned Aerial Vehicles). Mechanical stresses are not excessive for small multirotor UAVs. Therefore, the FDM technique combined with polymers, such as the ABS (Acrylonitrile Butadiene Styrene) and the PLA(Poly Lactic Acid), can be successfully employed to produce structural components. The present new work is devoted to the production and preliminary structural analysis of sandwich configurations. These new lamination schemes could lead to an important weight reduction without significant decreases of mechanical properties. Therefore, it could be possible, for the designed application (e.g., a multifunctional small UAV produced via FDM), to have stiffener and lighter structures easy to be manufactured with a low-cost 3D printer. The new sandwich specimens here proposed are PLA sandwich specimens embedding a PLA honeycomb core produced by means of the same extruder, multilayered specimens with ABS external layers and an internal homogeneous PLA core using different extruders for the two materials, sandwich specimens with external ABS skins and an internal PLA honeycomb core using different extruders for the two materials, and sandwich specimens where two different extruders have been employed for PLA material used for skins and for the internal honeycomb core. For all the proposed configurations, a detailed description of the production activity is given.Moreover, several preliminary results about three-point bending tests, different mechanical behaviors and relative delamination problems for each sandwich configuration will be discussed in depth.

  15. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    Science.gov (United States)

    Irtaza, Hassan; Agarwal, Ashish

    2018-02-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  16. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    Science.gov (United States)

    Irtaza, Hassan; Agarwal, Ashish

    2018-06-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  17. Analysis of Grid-Scored Sandwich Structures of Different Curvatures and Grid Sizes For Wind Turbine Blades

    DEFF Research Database (Denmark)

    Laustsen, Steffen; Thomsen, Ole Thybo; Lund, Erik

    2012-01-01

    The stress and strain field developed locally in-situ the core of grid-scored sandwich structures in wind turbine blades is investigated. Due to the many singularities occurring from the “tri-material corners”, a full 3D analysis of the sandwich structure in terms of the Finite Element Method is ...

  18. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2010-01-01

    The Space Shuttle Orbiter wing comprises of 22 leading edge panels on each side of the wing. These panels are part of the thermal protection system that protects the Orbiter wings from extreme heating that take place on the reentry in to the earth atmosphere. On some panels that experience extreme heating, liberation of silicon carbon (SiC) coating was observed on the slip side regions of the panels. Global structural and local fracture mechanics analyses were performed on these panels as a part of the root cause investigation of this coating liberation anomaly. The wing-leading-edge reinforced carbon-carbon (RCC) panels, Panel 9, T-seal 10, and Panel 10, are shown in Figure 1 and the progression of the stress analysis models is presented in Figure 2. The global structural analyses showed minimal interaction between adjacent panels and the T-seal that bridges the gap between the panels. A bounding uniform temperature is applied to a representative panel and the resulting stress distribution is examined. For this loading condition, the interlaminar normal stresses showed negligible variation in the chord direction and increased values in the vicinity of the slip-side joggle shoulder. As such, a representative span wise slice on the panel can be taken and the cross section can be analyzed using plane strain analysis.

  19. 308 Building electrical load list and panel schedules

    International Nuclear Information System (INIS)

    Giamberardini, S.J.

    1994-01-01

    This report contains two lists. The first lists equipment, load location, source of power, and breaker identification. The second compiles the same information but in a different format, namely, for each power source, the breaker, equipment, and location is given. Building 308 is part of the Fuels and Materials Examination Facility which houses the Secure Automated Fabrication process line for fabrication of reactor fuels and the Breeder Processing Engineering Test for processing Fast Flux Test Facility fuel to demonstrate closure of the fuel cycle

  20. Stiff, Strong Splice For A Composite Sandwich Structure

    Science.gov (United States)

    Schmaling, D.

    1991-01-01

    New type of splice for composite sandwich structure reduces peak shear stress in structure. Layers of alternating fiber orientation interposed between thin ears in adhesive joint. Developed for structural joint in spar of helicopter rotor blade, increases precision of control over thickness of adhesive at joint. Joint easy to make, requires no additional pieces, and adds little weight.