WorldWideScience

Sample records for sandstone-type uranium deposits

  1. Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview

    Science.gov (United States)

    Akhtar, Shamim; Yang, Xiaoyong; Pirajno, Franco

    2017-09-01

    This paper provides a comprehensive review on studies of sandstone type uranium deposits in the Ordos Basin, Northwest China. As the second largest sedimentary basin, the Ordos Basin has great potential for targeting sandstone type U mineralization. The newly found and explored Dongsheng and Diantou sandstone type uranium deposits are hosted in the Middle Jurassic Zhilou Formation. A large number of investigations have been conducted to trace the source rock compositions and relationship between lithic subarkose sandstone host rock and uranium mineralization. An optical microscopy study reveals two types of alteration associated with the U mineralization: chloritization and sericitization. Some unusual mineral structures, with compositional similarity to coffinite, have been identified in a secondary pyrite by SEM These mineral phases are proposed to be of bacterial origin, following high resolution mapping of uranium minerals and trace element determinations in situ. Moreover, geochemical studies of REE and trace elements constrained the mechanism of uranium enrichment, displaying LREE enrichment relative to HREE. Trace elements such as Pb, Mo and Ba have a direct relationship with uranium enrichment and can be used as index for mineralization. The source of uranium ore forming fluids and related geological processes have been studied using H, O and C isotope systematics of fluid inclusions in quartz veins and the calcite cement of sandstone rocks hosting U mineralization. Both H and O isotopic compositions of fluid inclusions reveal that ore forming fluids are a mixture of meteoric water and magmatic water. The C and S isotopes of the cementing material of sandstone suggest organic origin and bacterial sulfate reduction (BSR), providing an important clue for U mineralization. Discussion of the ore genesis shows that the greenish gray sandstone plays a crucial role during processes leading to uranium mineralization. Consequently, an oxidation-reduction model for

  2. Sources of the elements in the sandstone-type uranium deposits of the Colorado Plateau

    Science.gov (United States)

    Shoemaker, Eugene M.; Newman, W.L.; Miesch, A.T.

    1956-01-01

    Sandstone-type uranium deposits of the Colorado Plateau are epigenetic. Certain elements have been added locally to the sandstone host to form the deposits; the added fraction of each element in the deposits is call extrinsic to distinguish it from the part present in the original unmineralized host. The principal extrinsic components, in their approximate order of abundance, are vanadium, iron magnesium, uranium, sulfur, arsenic, copper, lead, molbedenum, selenium, cobalt, and nickel. At lest six possible sources of the extrinsic components of the uranium deposits may be considered reasonably likely: 1) the sandstone beds enclosing the uranium deposits, 2) the marine Mancos shales of Cretaceous ages, 3) bentonitic shales of Jurassic and Triassic age, 4) petroliferous rocks of Pennsylvanian age, 5) Precambrian crystalline rocks underlying the Colorado Plateau, and 6) magmatic reservoirs of latest Cretaceous or Tertiary age. If the major source of some of the elements of external to the sandstone beds enclosing the deposits, it is likely that several sources have contributed to some if not most of the extrinsic components and that the importance of the various sources differs from one component to the next. Precambrian crystalline rocks are considered the most likely major source of the extrinsic uranium in the deposits.

  3. Groundwater prospecting for sandstone-type uranium deposits: the merits of mineral-solution equilibria versus single element tracer methods. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Wanty, R.B.; Langmuir, D.; Chatham, J.R.

    1981-08-01

    This report presents the results of further research on the groundwater geochemistry of 96 well waters in two uraniferous aquifers in Texas and Wyoming, and is a continuation of the work presented by Chatham et al. (1981). In this study variations in concentrations of U, As, Mo, Se and V were compared with the saturation state of the groundwater with respect to mineral phases of these elements known or expected to occur in each area. The non-radiogenic trace elements exhibited strong redox dependence consistent with thermodynamic predictions, but their variations did not pinpoint existing uranium ore bodies, because of a shift in groundwater flow patterns since the time of ore emplacement. Saturation levels of trace element minerals such as realgar, native Se, and molybdenite showed broad anomalies around the ore-bearing areas, similar to patterns found for U minerals by Langmuir and Chatham (1980), and Chatham et al. (1981). The radiogenic elements Ra and Rn showed significant anomalies directly within the ore zones. Helium anomalies were displaced in the direction of groundwater flow, but by their magnitude and areal extent provided strong evidence for the existence of nearby uranium accumulations. Uranium isotope ratios showed no systematic variations within the two aquifers studied. Saturation maps for kaolinite, illite, montmorillonite and the zeolites analcime and clinoptilolite provided 1 to 2 km anomalies around the ore at the Texas site. Saturation values for the gangue minerals pyrite and calcite defined the redox interface and often suggested the position of probable uranium mineralization. When properly used, the groundwater geochemical concepts for exploration can accurately pinpoint uranium mineralization at a fraction of the cost of conventional methods that involve test drilling and geophysical and core logging.

  4. Deposit model for volcanogenic uranium deposits

    Science.gov (United States)

    Breit, George N.; Hall, Susan M.

    2011-01-01

    Volcanism is a major contributor to the formation of important uranium deposits both close to centers of eruption and more distal as a result of deposition of ash with leachable uranium. Hydrothermal fluids that are driven by magmatic heat proximal to some volcanic centers directly form some deposits. These fluids leach uranium from U-bearing silicic volcanic rocks and concentrate it at sites of deposition within veins, stockworks, breccias, volcaniclastic rocks, and lacustrine caldera sediments. The volcanogenic uranium deposit model presented here summarizes attributes of those deposits and follows the focus of the International Atomic Energy Agency caldera-hosted uranium deposit model. Although inferred by some to have a volcanic component to their origin, iron oxide-copper-gold deposits with economically recoverable uranium contents are not considered in this model.

  5. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Adler, H.H.

    1981-03-01

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States.

  6. Uranium deposits of the world. Europe

    Energy Technology Data Exchange (ETDEWEB)

    Dahlkamp, Franz J.

    2016-07-01

    Uranium Deposits of the World, in three volumes, comprises an unprecedented compilation of data and descriptions of the uranium regions in Asia, USA, Latin America and Europe structured by countries. With this third, the Europe volume, Uranium Deposits of the World presents the most extensive data collection of the set. It covers about 140 uranium regions in more than 20 European countries with nearly 1000 mentioned uranium deposits. Each country and region receives an analytical overview followed by the geologically- and economically-relevant synopsis of the individual regions and fields. The presentations are structured in three major sections: (a) location and magnitude of uranium regions, districts, and deposits, (b) principal features of regions and districts, and (c) detailed characteristics of selected ore fields and deposits. This includes sections on geology, alteration, mineralization, shape and dimensions of deposits, isotopes data, ore control and recognition criteria, and metallogenesis. Beside the main European uranium regions, for example in the Czech Republic, Eastern Germany, France, the Iberian Peninsula or Ukraine, also small regions an districts to the point of singular occurrences of interest are considered. This by far the most comprehensive presentation of European uranium geology and mining would not be possible without the author's access to extensive information covering the countries of the former Eastern Bloc states, which was partly not previously available. Abundantly illustrated with information-laden maps and charts throughout, this reference work is an indispensable tool for geologists, mining companies, government agencies, and others with an interest in European key natural resources. A great help for the reader's orientation are the substantial bibliography of uranium-related publications and the indices, latter containing about 3900 entries in the geographical part alone. The three volumes of Uranium Deposits of the

  7. The Nopal 1 Uranium Deposit: an Overview

    Science.gov (United States)

    Calas, G.; Allard, T.; Galoisy, L.

    2007-05-01

    The Nopal 1 natural analogue is located in the Pena Blanca uranium district, about 50 kms north of Chihuahua City, Mexico. The deposit is hosted in tertiary ignimbritic ash-flow tuffs, dated at 44 Ma (Nopal and Colorados formations), and overlying the Pozos conglomerate formation and a sequence of Cretaceous carbonate rocks. The deposit is exposed at the ground surface and consists of a near vertical zone extending over about 100 m with a diameter of 40 m. An interesting characteristic is that the primary mineralization has been exposed above the water table, as a result of the uplift of the Sierra Pena Blanca, and subsequently oxidized with a remobilization of hexavalent uranium. The primary mineralization has been explained by various genetic models. It is associated to an extensive hydrothermal alteration of the volcanic tuffs, locally associated to pyrite and preserved by an intense silicification. Several kaolinite parageneses occur in fissure fillings and feldspar pseudomorphs, within the mineralized breccia pipe and the barren surrounding rhyolitic tuffs. Smectites are mainly developed in the underlying weakly welded tuffs. Several radiation-induced defect centers have been found in these kaolinites providing a unique picture of the dynamics of uranium mobilization (see Allard et al., this session). Another evidence of this mobilization is given by the spectroscopy of uranium-bearing opals, which show characteristic fluorescence spectra of uranyl groups sorbed at the surface of silica. By comparison with the other uranium deposits of the Sierra Pena Blanca and the nearby Sierra de Gomez, the Nopal 1 deposit is original, as it is one of the few deposits hving retained a reduced uranium mineralization.

  8. Calcrete-type uranium deposits of Western Australia

    Energy Technology Data Exchange (ETDEWEB)

    Aral, H. [CSIRO Process Science and Engineering, Clayton, Victoria (Australia); CSIRO Minerals Down Under National Research Flagship (Australia); Hackl, R., E-mail: ralph.hackl@csiro.au [CSIRO Process Science and Engineering, Waterford, WA (Australia); CSIRO Minerals Down Under National Research Flagship (Australia); Pownceby, M. [CSIRO Process Science and Engineering, Clayton, Victoria (Australia); CSIRO Minerals Down Under National Research Flagship (Australia)

    2010-07-01

    CSIRO is undertaking advanced mineralogical and elemental characterisation studies of lowgrade and refractory Australian uranium deposits. Of particular interest are the calcrete-type uranium deposits of Western Australia. These deposits are found in playa lake sediments and channels which drain a uranium-rich source. The primary uranium mineral is carnotite. The ore is highly friable and is usually found in association with clayey and calcareous minerals, such as gypsum, dolomite and halite. This paper aims to provide a better understanding of the characteristics and formation of these calcrete-type uranium deposits to assist in the development of new and improved processing routes. (author)

  9. Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits

    Science.gov (United States)

    Uvarova, Yulia A.; Kyser, T. Kurt; Geagea, Majdi Lahd; Chipley, Don

    2014-12-01

    Variations in 238U/235U and 234U/238U ratios were measured in uranium minerals from a spectrum of uranium deposit types, as well as diagenetic phosphates in uranium-rich basins and peraluminous rhyolites and associated autunite mineralisation from Macusani Meseta, Peru. Mean δ238U values of uranium minerals relative to NBL CRM 112-A are 0.02‰ for metasomatic deposits, 0.16‰ for intrusive, 0.18‰ for calcrete, 0.18‰ for volcanic, 0.29‰ for quartz-pebble conglomerate, 0.29‰ for sandstone-hosted, 0.44‰ for unconformity-type, and 0.56‰ for vein, with a total range in δ238U values from -0.30‰ to 1.52‰. Uranium mineralisation associated with igneous systems, including low-temperature calcretes that are sourced from U-rich minerals in igneous systems, have low δ238U values of ca. 0.1‰, near those of their igneous sources, whereas uranium minerals in basin-hosted deposits have higher and more variable values. High-grade unconformity-related deposits have δ238U values around 0.2‰, whereas lower grade unconformity-type deposits in the Athabasca, Kombolgie and Otish basins have higher δ238U values. The δ234U values for most samples are around 0‰, in secular equilibrium, but some samples have δ234U values much lower or higher than 0‰ associated with addition or removal of 234U during the past 2.5 Ma. These δ238U and δ234U values suggest that there are at least two different mechanisms responsible for 238U/235U and 234U/238U variations. The 234U/238U disequilibria ratios indicate recent fluid interaction with the uranium minerals and preferential migration of 234U. Fractionation between 235U and 238U is a result of nuclear-field effects with enrichment of 238U in the reduced insoluble species (mostly UO2) and 235U in oxidised mobile species as uranyl ion, UO22+, and its complexes. Therefore, isotopic fractionation effects should be reflected in 238U/235U ratios in uranium ore minerals formed either by reduction of uranium to UO2 or chemical

  10. Geology of the Cluff Lake uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Harper, C.T.

    1978-12-01

    The uranium deposits discovered by Amok (Canada) Ltd. in the Cluff Lake area of northwestern Saskatchewan occur at or near the southern edge of the uplifted basement core of the Carswell circular structure. Two types of mineralization, distinguishable by their geological and structural setting and mineral paragenesis, have been recognized. The N-Claude type is characterized by a relatively simple mineral assemblage, consisting of uraninite or pitchblende with coffinite, and is accompanied by variable amounts of graphite and organic matter, and Fe, Cu, Pb and Mo sulphides. Both N and Claude orebodies occur within quartzofeldspathic gneisses of the basement core. On the other hand, the D-type ore has a complex mineral assemblage consisting of: uraninite, pitchblende, thucholite and coffinite, along with native gold and selenium; gold tellurides, and selenides of Pb, Bi, Ni and Co; sulphides of Fe, Cu and Pb; and organic matter. The D orebody occurs within carbonaceous shales at the base of the Athabasca Formation as well as in fault zones in regolithic quartzofeldspathic gneisses above the inverted unconformity. An age of 1050 m.y., which is consistent with a period (circa to 1200 to 1000 m.y.) of widespread hydrothermal activity and uranium mineralization or reworking within and adjacent to the Athabasca Basin, has been obtained from uranium mineralization from the D orebody. Later reworking (circa 470 m.y.) of the mineralization occurred at the intersection of older mineralized shear zones with radial faults produced during meteorite impact.

  11. The Permo-Triassic uranium deposits of Gondwanaland

    Science.gov (United States)

    le Roux, J. P.; Toens, P. D.

    The world's uranium provinces are time bound and occur in five distinct periods ranging from the Proterozoic to the Recent. One of these periods embraces the time of Gondwana sedimentation and probably is related to the proliferation of land plants from the Devonian on-ward. Decaying vegetal matter produced reducing conditions that enhanced uranium precipitation. The association of uranium with molassic basins adjacent to uplifted granitic and volcanic arcs suggests that lithospheric plate subduction, leading to anatexis of basement rocks and andesitic volcanism, created favorable conditions for uranium mineralization. Uranium occurrences of Gondwana age are of four main types: sandstone-hosted, coal-hosted, pelite-hosted, and vein-type deposits. Sandstone-hosted deposits commonly occur in fluviodeltaic sediments and are related to the presence of organic matter. These deposits commonly are enriched in molybdenum and other base metal sulfides and have been found in South Africa, Zimbabwe, Zambia, Angola, Niger, Madagascar, India, Australia, Argentina, and Brazil. Coalhosted deposits contain large reserves of uranium but are of low grade. In Africa they are mostly within the Permian Ecca Group and its lateral equivalents, as in the Springbok Flats, Limpopo, Botswana, and Tanzania basins. Uraniferous black shales are present in the Gabon and Amazon basins but grades are low. Vein-type uranium is found in Argentina, where it occurs in clustered veins crosscutting sedimentary rocks and quartz porphyries.

  12. Newly discovered uranium mineralization at 2.0 Ma in the Menggongjie granite-hosted uranium deposit, South China

    Science.gov (United States)

    Luo, Jin-Cheng; Hu, Rui-Zhong; Fayek, Mostafa; Bi, Xian-Wu; Shi, Shao-Hua; Chen, You-Wei

    2017-04-01

    The southeastern part of the Nanling metallogenic province, South China contains numerous economically important granite-hosted, hydrothermal vein-type uranium deposits. The Miao'ershan (MES) uranium ore field is one of the most important uranium sources in China, hosts the largest Chanziping carbonaceous-siliceous-pelitic rock-type uranium deposit and several representative granite-hosted uranium deposits. The geology and geochemistry of these deposits have been extensively studied. However, accurate and precise ages for the uranium mineralization are scarce because uranium minerals in these deposits are usually fine-grained, and may have formed in several stages, thus hindering the understanding of the uranium metallogenesis of this province. The Menggongjie (MGJ) uranium deposit is one of the largest granite-hosted uranium deposits in the MES ore field. Uranium mineralization in this deposit occurs at the central part of the MES granitic complex, accompanied with silicification, fluorination, K-metasomatism and hematitization. The ore minerals are dominated by uraninite, occurring in quartz or fluorite veinlets along fractures in altered granite. In-situ SIMS U-Pb dating on the uraninite yields the U-Pb isotopic age of 1.9 ± 0.7 Ma, which is comparable to the chemical U-Th-Pbtol uraninite age of 2.3 ± 0.1 Ma. Such ages agree well with the eruption ages of the extension-related Quaternary volcanics (2.1-1.2 Ma) in South China, suggesting that the uranium mineralization have formed at an extensional setting, possibly related to the Quaternary volcanic activities. Therefore, our robust, new dating results of the MGJ uranium deposit make it the youngest granite-hosted uranium deposit reported so far in South China and the mineralization event represents a newly identified mineralization epoch.

  13. Classification of uranium deposits associated with volcano-tectonic depressions

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinov, V.M.

    1981-05-01

    Advisability of separating uranium deposits associated with volcano-techtonic depressions as a class is grounded. Three groups of deposits are stated: foundation or low depression zone, medium depression zone, upper depression zone. Deposits are unified in five subgroups: in terrigenic molass, effusion-sedimentary formations, paleovolcanic setups and subvolcanic intrusions, granitoides, sedimentary and metamorphical rocks of geocinclinic complex. 18 structural-morphological types of deposits are determined by accounting of the basic structural-lithologic factors of ore control. An idealized diagram of ore-bearing volcano-tectonic depression and its alternations at different erosion shears are presented. A conclusion is made on practical application of the classification.

  14. Optimization of Uranium Molecular Deposition for Alpha-Counting Sources

    Energy Technology Data Exchange (ETDEWEB)

    Monzo, Ellen [Univ. of Minnesota, Duluth, MN (United States); Parsons-Moss, Tashi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Genetti, Victoria [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, Kimberly [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-12

    Method development for molecular deposition of uranium onto aluminum 1100 plates was conducted with custom plating cells at Lawrence Livermore National Laboratory. The method development focused primarily on variation of electrode type, which was expected to directly influence plated sample homogeneity. Solid disc platinum and mesh platinum anodes were compared and data revealed that solid disc platinum anodes produced more homogenous uranium oxide films. However, the activity distribution also depended on the orientation of the platinum electrode relative to the aluminum cathode, starting current, and material composition of the plating cell. Experiments demonstrated these variables were difficult to control under the conditions available. Variation of plating parameters among a series of ten deposited plates yielded variations up to 30% in deposition efficiency. Teflon particles were observed on samples plated in Teflon cells, which poses a problem for alpha activity measurements of the plates. Preliminary electropolishing and chemical polishing studies were also conducted on the aluminum 1100 cathode plates.

  15. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W. (comps.)

    1980-06-01

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  16. Metallogenic evolution of uranium deposits in the Middle East and North Africa deposits

    Science.gov (United States)

    Howari, Fares; Goodell, Philip; Salman, Abdulaty

    2016-02-01

    This paper is briefly involved in classification and distributions of the Middle East and North Africa (MENA) uranium deposits. The study of these mineral systems can significantly contribute to our further understanding of the metallogeny of known and poorly explored deposits. This provides contribution to, and further enhancement of, current classifications and metallogenic models of uranium systems, allowing researchers to emphasize on unknown or poorly studied mineral systems found in MENA. The present study identified eight metallogenic types of uranium associated with: 1) the Archean rocks and intra-cratonic basins, 2) the Pan-African granites and rhyolites which are characterized by igneous activity, 3) Phanerozoic (Paleozoic) clastics, these deposits are the sedimentological response to Pan African magmatism, 4) Mesozoic (basal) clastics type e.g. Nubia sandstones which are characterized by uranium minerals, 5) regional sedimentary phosphate deposits which are categorized as geosynclinal, or continental margin deposits, on the shelf of the Tethys Ocean, 6) Cenozoic Intracratonic Felsic Magmatism of the Tibesti and Hoggar, and the sandstone U deposits of adjoining Niger. These are similar to the Pan-African magmatism metallogenic, 7) Calcretes, and 8) Resistate minerals which are often enriched in rare earth elements, sometimes including uranium. They are thus sometimes considered as U resources but poorly explored in the MENA region. These metallogenic types are described and discussed in the current paper.

  17. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  18. Uranium favourability study in Nigeria

    Science.gov (United States)

    Oshin, I. O.; Rahaman, M. A.

    Geological considerations indicate that four types of uranium deposits, three from within the crystalline rocks and the fourth from the sedimentary formations, can be explored for in Nigeria. The Precambrian Basement Complex underwent crustal reactivation in Pan-African times (600 ± 150 Ma) during which migmatites and rocks of the Older Granite suite were emplaced. The occurrences of these rocks in northeastern, north-central and central Nigeria are possible hosts for the granitic type of uranium deposit. Vein-type uranium deposits are often localized in areas of the Basement Complex which have undergone intense brittle deformation. The high-level, anorogenic, peralkaline Younger Granites of Nigeria of Carboniferous to Cretaceous age have geochemical characteristics which are similar to those of the host rocks of non-orogenic type uranium deposit in alkali complexes such as the Bokan mountains of Alaska. The sandstone type of uranium deposit may be found in the Cretaceous-Recent continental sandstone formations in the Sokoto, Niger, Chad and Benue Basins of Nigeria and in the sediments overlying the Oban Massif in Cross Rivers State. Geologically similar sandstone occurrences elsewhere in the world (Gabon, Niger and Colorado, U.S.A.) are known to harbour important uranium mineralization.

  19. Paragenesis and Geochronology of the Nopal I Uranium Deposit, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    M. Fayek; M. Ren

    2007-02-14

    Uranium deposits can, by analogy, provide important information on the long-term performance of radioactive waste forms and radioactive waste repositories. Their complex mineralogy and variable elemental and isotopic compositions can provide important information, provided that analyses are obtained on the scale of several micrometers. Here, we present a structural model of the Nopal I deposit as well as petrography at the nanoscale coupled with preliminary U-Th-Pb ages and O isotopic compositions of uranium-rich minerals obtained by Secondary Ion Mass Spectrometry (SIMS). This multi-technique approach promises to provide ''natural system'' data on the corrosion rate of uraninite, the natural analogue of spent nuclear fuel.

  20. Patterns and Features of Global Uranium Resources and Production

    Science.gov (United States)

    Wang, Feifei; Song, Zisheng; Cheng, Xianghu; Huanhuan, MA

    2017-11-01

    With the entry into force of the Paris Agreement, the development of clean and low-carbon energy has become the consensus of the world. Nuclear power is one energy that can be vigorously developed today and in the future. Its sustainable development depends on a sufficient supply of uranium resources. It is of great practical significance to understand the distribution pattern of uranium resources and production. Based on the latest international authoritative reports and data, this paper analysed the distribution of uranium resources, the distribution of resources and production in the world, and the developing tendency in future years. The results show that the distribution of uranium resources is uneven in the world, and the discrepancies between different type deposits is very large. Among them, sandstone-type uranium deposits will become the main type owing to their advantages of wide distribution, minor environmental damage, mature mining technology and high economic benefit.

  1. Transport and deposition of thickened uranium tailings

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, E., E-mail: eric.paulsen@areva.ca [AREVA Resources Canada, Inc., Saskatoon, SK (Canada)

    2010-07-01

    The McClean Lake operation has experienced several problems relating to the thickened tailings disposal system. These include issues relating to segregation, inadequate pumping capacity, and unstable pipeline operation. Segregation in the tailings management facility is of particular importance since it negatively impacts the long-term containment of arsenic and the consolidation of the tails solids. These issues have direct implications on the regulatory requirements of the operation. As a result several initiatives relating to tailings thickening, transport, and deposition were proposed and implemented. This paper presents an audit of the existing tailings transport system based on the rheological requirements of homogeneous tailings as well as the proposed changes and preliminary results of this study. (author)

  2. Towards a genetic classification of uranium deposits; Vers une classification genetique des gisements d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cuney, M. [G2R, Nancy Universite, CNRS, CREGU, 54 - Vandoeuvre les Nancy (France)

    2009-07-01

    As the IAEA's uranium deposit classification is based on the deposit nature and morphology, some deposits which have been formed by very different genetic processes and located in very different geological environments, are grouped according to this classification. In order to build up a reliable genetic classification based on the mechanism at the origin of the formation of the deposit, the author presents the five main categories according to which uranium deposits can be classified: magmatic, hydrothermal, evapotranspiration, syn-sedimentary, and infiltration of meteoric water

  3. The copper and uranium deposits of the Coyote district, Mora County, New Mexico

    Science.gov (United States)

    Tschanz, C.M.; Laub, D.C.; Fuller, G.W.

    1954-01-01

    The copper and uranium-vanadium deposits of the Coyote district, Mora County, N. Mec, are confined to the lower 2,000 feet of the Sangre de Gristo formation of Pennsylvanian and Permian age. A narrow belt of deposits in steeply dipping or overturned rocks extends for 7 miles along Coyote Creek south of Guadalupita. Earlier studies showed that the copper deposits contained uranium, but both the reserves and the uranium content of the copper-bearing

  4. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    Science.gov (United States)

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are 1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  5. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  6. Grade, tonnage, and location data for world calcrete-type surficial uranium deposits

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Grade and tonnage data for calcrete-type surficial uranium deposits found in 11 different countries were compiled. Fifty-eight deposits with reported grade and...

  7. Geochemical characteristics of the Church Rock 1 and 1 East uranium deposits, Grants uranium region, New Mexico

    Science.gov (United States)

    Fishman, Neil S.; Reynolds, Richard L.

    1983-01-01

    In the Church Rock 1 and 1 East mines, Grants uranium region (GUR), New Mexico, uranium orebodies occur within three sandstone units in the upper part of the Westwater Canyon Member of the late Jurassic Morrison Formation. Geochemical analyses reveal that organic carbon contents in ore samples from all three sand units are uniformly low (most are less than 0.01 percent). Vanadium (ranging from 0.0002 to 0.19 percent) and sulfur (ranging from carbon and greater amounts of vanadium and sulfur. These differences and radiometric age determinations strongly suggest that the Church Rock ores formed as a result of the redistribution of uranium from preexisting uranium deposits within the last 1 m.y. However, the Church Rock deposits differ geochemically from redistributed orebodies in the Westwater Canyon Member elsewhere in the GUR. Specifically, redistributed orebodies in the Ambrosia Lake district, which are comparable in contents of uranium and organic carbon with the Church Rock deposits, are characterized by vanadium contents typically higher than those of uranium. Similarly, sulfur contents in the redistributed deposits of the Ambrosia Lake district are greater than those found in the Church Rock ores. In addition, anomalously high concentrations of molybdenum have rarely been found in other redistributed orebodies of the GUR.

  8. Distribution of rare earths in uranium oxides of the main types of uranium deposits: Causes and genetic meaning

    Science.gov (United States)

    Vinokurov, S. F.; Golubev, V. N.; Trunova, A. N.; Yudintsev, S. V.

    2017-03-01

    Three groups of industrial uranium deposits that differ in the distribution of lanthanides in U oxides have been recognized. A dependence of the REE distribution type on the Yttrium content and Yttrium index YI = (La + Ce)/Y that controls the formation of REE phases capable of selective accumulation of lanthanides has been discovered. This indicates the important role of crystal-chemical fractionation in the distribution of lanthanides. Preferable accumulation of Sm-Gd by U oxides has been found to occur at relatively low contents of Y. In Proterozoic uranium deposits, the yttrium specialization of oxides predominates, while in most Phanerozoic deposits the lanthanum-cerium specialization is typical. These results extend the possibilities of using REEs in ores for purposes of study of the genesis of various uranium deposits.

  9. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. [474 references

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Garland, P.A.; White, M.B.; Daniel, E.W.

    1980-09-01

    This bibliography, a compilation of 474 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) geochemistry, (2) exploration, (3) mineralogy, (4) genesis of deposits, (5) geology of deposits, (6) uranium industry, (7) geology of potential uranium-bearing areas, and (8) reserves and resources. The references are indexed by author, geographic location, quadrangle name, geoformational feature, and keyword.

  10. Natural Radioactivity in Soil and Water from Likuyu Village in the Neighborhood of Mkuju Uranium Deposit

    OpenAIRE

    Mohammed, Najat K.; Mazunga, Mohamed S.

    2013-01-01

    The discovery of high concentration uranium deposit at Mkuju, southern part of Tanzania, has brought concern about the levels of natural radioactivity at villages in the neighborhood of the deposit. This study determined the radioactivity levels of 30 soil samples and 20 water samples from Likuyu village which is 54 km east of the uranium deposit. The concentrations of the natural radionuclides 238U, 232Th, and 40K were determined using low level gamma spectrometry of the Tanzania Atomic Ener...

  11. Geology and recognition criteria for uraniferous humate deposits, Grants Uranium Region, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.S.; Saucier, A.E.

    1981-01-01

    The geology of the uraniferous humate uranium deposits of the Grants Uranium Region, northwestern New Mexico, is summarized. The most important conclusions of this study are enumerated. Although the geologic characteristics of the uraniferous humate deposits of the Grants Uranium Region are obviously not common in the world, neither are they bizarre or coincidental. The source of the uranium in the deposits of the Grants Uranium Region is not known with certainty. The depositional environment of the host sediments was apparently the mid and distal portions of a wet alluvial fan system. The influence of structural control on the location and accumulation of the host sediments is now supported by considerable data. The host sediments possess numerous important characteristics which influenced the formation of uraniferous humate deposits. Ilmenite-magnetite distribution within potential host sandstones is believed to be the simplest and most useful regional alteration pattern related to this type of uranium deposit. A method is presented for organizing geologic observations into what is referred to as recognition criteria. The potential of the United States for new districts similar to the Grants Uranium Region is judged to be low based upon presently available geologic information. Continuing studies on uraniferous humate deposits are desirable in three particular areas.

  12. Uranium Elemental and Isotopic Constraints on Groundwater Flow Beneath the Nopal I Uranium Deposit, Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Goldstein; M.T. Murrell; A.M. Simmons

    2005-07-11

    The Nopal I uranium deposit in Chihuahua, Mexico, is an excellent analogue for evaluating the fate of spent fuel, associated actinides, and fission products over long time scales for the proposed Yucca Mountain high-level nuclear waste repository. In 2003, three groundwater wells were drilled directly adjacent to (PB-1) and 50 m on either side of the uranium deposit (PB-2 and PB-3) in order to evaluate uranium-series transport in three dimensions. After drilling, uranium concentrations were elevated in all of the three wells (0.1-18 ppm) due to drilling activities and subsequently decreased to {approx}5-20% of initial values over the next several months. The {sup 234}U/{sup 238}U activity ratios were similar for PB-1 and PB-2 (1.005 to 1.079) but distinct for PB-3 (1.36 to 1.83) over this time period, suggesting limited mixing between groundwater from these wells over these short time and length scales. Regional groundwater wells located up to several km from the deposit also have distinct uranium isotopic characteristics and constrain mixing over larger length and time scales. We model the decreasing uranium concentrations in the newly drilled wells with a simple one-dimensional advection-dispersion model, assuming uranium is introduced as a slug to each of the wells and transported as a conservative tracer. Using this model for our data, the relative uranium concentrations are dependent on both the longitudinal dispersion as well as the mean groundwater flow velocity. These parameters have been found to be correlated in both laboratory and field studies of groundwater velocity and dispersion (Klotz et al., 1980). Using typical relationships between velocity and dispersion for field and laboratory studies along with the relationship observed from our uranium data, both velocity (1-10 n/yr) and dispersion coefficient (1E-5 to 1E-2 cm{sup 2}/s) can be derived from the modeling. As discussed above, these relatively small flow velocities and dispersivities agree with

  13. The discovery and character of Pleistocene calcrete uranium deposits in the Southern High Plains of west Texas, United States

    Science.gov (United States)

    Van Gosen, Bradley S.; Hall, Susan M.

    2017-12-18

    This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.

  14. Inhalation of uranium nanoparticles: respiratory tract deposition and translocation to secondary target organs in rats.

    Science.gov (United States)

    Petitot, Fabrice; Lestaevel, Philippe; Tourlonias, Elie; Mazzucco, Charline; Jacquinot, Sébastien; Dhieux, Bernadette; Delissen, Olivia; Tournier, Benjamin B; Gensdarmes, François; Beaunier, Patricia; Dublineau, Isabelle

    2013-03-13

    Uranium nanoparticles (nuclear fuel cycle and during remediation and decommissioning of nuclear facilities. Explosions and fires in nuclear reactors and the use of ammunition containing depleted uranium can also produce such aerosols. The risk of accidental inhalation of uranium nanoparticles by nuclear workers, military personnel or civilian populations must therefore be taken into account. In order to address this issue, the absorption rate of inhaled uranium nanoparticles needs to be characterised experimentally. For this purpose, rats were exposed to an aerosol containing 10⁷ particles of uranium per cm³ (CMD=38 nm) for 1h in a nose-only inhalation exposure system. Uranium concentrations deposited in the respiratory tract, blood, brain, skeleton and kidneys were determined by ICP-MS. Twenty-seven percent of the inhaled mass of uranium nanoparticles was deposited in the respiratory tract. One-fifth of UO₂ nanoparticles were rapidly cleared from lung (T(½)=2.4 h) and translocated to extrathoracic organs. However, the majority of the particles were cleared slowly (T(½)=141.5 d). Future long-term experimental studies concerning uranium nanoparticles should focus on the potential lung toxicity of the large fraction of particles cleared slowly from the respiratory tract after inhalation exposure. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Epithermal uranium deposits in a volcanogenic context: the example of Nopal 1 deposit, Sierra de Pena Blanca, Mexico

    Science.gov (United States)

    Calas, G.; Angiboust, S.; Fayek, M.; Camacho, A.; Allard, T.; Agrinier, P.

    2009-12-01

    The Peña Blanca molybdenum-uranium field (Chihuahua, Mexico) exhibits over 100 airborne anomalies hosted in tertiary ignimbritic ash-flow tuffs (44 Ma) overlying the Pozos conglomerate and a sequence of Cretaceous carbonate rocks. Uranium occurrences are associated with breccia zones at the intersection of two or more fault systems. Periodic reactivation of these structures associated with Basin and Range and Rio Grande tectonic events resulted in the mobilization of U and other elements by meteoric fluids heated by geothermal activity. Trace element geochemistry (U, Th, REE) provides evidence for local mobilization of uranium under oxidizing conditions. In addition, O- and H-isotope geochemistry of kaolinite, smectite, opal and calcite suggests that argillic alteration proceeded at shallow depth with meteoric water at 25-75 °C. Focussed along breccia zones, fluids precipitated several generations of pyrite and uraninite together with kaolinite, as in the Nopal 1 mine, indicating that mineralization and hydrothermal alteration of volcanic tuffs are contemporaneous. Low δ34S values (~ -24.5 ‰) of pyrites intimately associated with uraninite suggest that the reducing conditions at the origin of the U-mineralization arise from biological activity. Later, the uplift of Sierra Pena Blanca resulted in oxidation and remobilization of uranium, as confirmed by the spatial distribution of radiation-induced defect centers in kaolinites. These data show that tectonism and biogenic reducing conditions can play a major role in the formation and remobilization of uranium in epithermal deposits. By comparison with the other uranium deposits at Sierra Pena Blanca and nearby Sierra de Gomez, Nopal 1 deposit is one of the few deposits having retained a reduced uranium mineralization.

  16. THE EXPLOITATION OF THE TULGHEŞ-GRINŢIEŞ URANIUM DEPOSIT. BETWEEN BENEFITS AND CONTROVERSY

    Directory of Open Access Journals (Sweden)

    G. B. TOFAN

    2016-06-01

    Full Text Available The Exploitation of the Tulgheș-Grințieș Uranium Deposit. Between Benefits and Controversy. Romania is one of the few European states (alongside the Czech Republic, France, Germany, Ukraine and one of the few in the world with uranium deposits (Canada, Australia, Niger, Namibia are others, mainly used in the energy sector. According to recent studies, the only currently exploited deposit (Crucea-Botușana, Suceava County is nearly depleted (by 2019 and will be eventually shut down. For this reason, there are plans to open a new uranium mining facility in the Tulgheș-Grințieș area, where geological surveys have proven that the area holds the largest uranium deposit in the country. It will provide the necessary fuel for Cernavodă Nuclear Power Plant, for the two functional reactors, which have a total capacity of 706 MW each (producing roughly 18% of the country's electricity needs, as well as for units 3 and 4, not operational yet. The study at hand intends to emphasize several aspects regarding the exploitation possibilities for the uranium deposit from the two mineralized structures located in the fracture areas of the central Carpathian line, through which the crystalline overflows the Cretaceous Flysch. Furthermore, the environmental impact analysis as well as the long term safety and security of the population inhabiting the area will be of utmost importance.

  17. Handbook on surficial uranium deposits. Chapter 3. World distribution relative to climate and physical setting

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, D

    1983-01-01

    This chapter discusses regional controls which affect the world distribution of surficial chemogenic uranium deposits. The most important of these are (1) climate, (2) geomorphology, including physiographic and climatic stability, and (3) provenance, i.e., the weathering terrain from which uranium and associated substances are derived. The three economically important environments are the calcrete environment, simple evaporative environments and paludal environments. Of these three categories, the calcrete uranium environment is probably the most uniquely constrained in terms of regional climate, geomorphic setting, provenance (vanadium as well as uranium) and especially the need for long term stability of both climate and physiography. Purely evaporative deposits, though subject to some of the same kinds of constraints, can also reflect local circumstances and a wider range of climates, physiographic settings, and source terrains. The third category encompassing bogs, marshes and organic-rich playas can form under an even wider range of climates and settings provided only that organic materials accumulate in abundance and are contacted by uranium-bearing waters. For all of these reasons and also because of the great economic importance of the calcrete environment as well as its relative novelty and complexity the discussion in this chapter is focused on calcrete, dolocrete and gypcrete uranium deposits. Objective data are reviewed first follwed by inferences and suggestions. 13 figures.

  18. U-Pb dating of uranium deposits in collapse breccia pipes of the Grand Canyon region

    Science.gov (United States)

    Ludwig, K. R.; Simmons, K.R.

    1992-01-01

    Two major periods of uranium mineralization are indicated by U-Pb isotope dating of uranium ores from collapse breccia pipes in the Grand Canyon region, northern Arizona. The Hack 2 and 3, Kanab North, and EZ 1 and 2 orebodies apparently formed in the interval of 200 ?? 20 Ma, similar to ages inferred for strata-bound, Late Triassic-hosted uranium deposits in southern Utah and northern Arizona. Samples from the Grand Canyon and Pine Nut pipes, however, indicate a distinctly older age of about 260 Ma. The clustering in ages for a variety of uranium deposits at about the age of the lower part of the Chinle Formation (Late Triassic) suggests that uranium in these deposits may have been derived by leaching from volcanic ash in the Chinle and mobilized by ground-water movement. Pb isotope ratios of galenas in mineralized pipes are more radiogenic than those of sulfides from either uranium-poor pipes or occurrences away from pipes. Fluids which passed through the pipes had interacted with the Proterozoic basement, possibly through the vertical fractures which influenced the location and evolution of the pipes themselves. -from Authors

  19. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W. (comps.)

    1978-06-01

    A compilation of 490 references is presented which is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangel name, geoformational feature, taxonomic name, and keyword.

  20. Hyperspectral Alteration Information from Drill Cores and Deep Uranium Exploration in the Baiyanghe Uranium Deposit in the Xuemisitan Area, Xinjiang, China

    National Research Council Canada - National Science Library

    Qing-Jun Xu; Fa-Wang Ye; Shao-Feng Liu; Zhi-Xin Zhang; Chuan Zhang

    2017-01-01

    .... In this study, hyperspectral data are collected from drill cores in the Baiyanghe uranium deposit using a FieldSpec4 visible-shortwave infrared spectrometer to study the hydrothermal alteration...

  1. Electrolytic nickel deposits upon uranium; Depot electrolytique de nickel sur l'uraniun

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, G.; Chauvin, G.; Coriou, H.; Hure, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The authors present a new possibility to protect uranium by very adherent nickel deposits got by aqueous medium electrolysis. Surface treatment of uranium is based upon the chemical etching method from Lietazke. After thermal treatments at 600, 700 and 800 deg. C, under vacuum, a good intermetallic U-Ni diffusion is observed for each case. (author) [French] Les auteurs mettent en evidence une possibilite nouvelle de protection de l'uranium par des depots tres adherents de nickel realises par electrolyse en milieu aqueux. La preparation de surface de l'uranium est basee sur la methode du decapage chimique de Lietazke. Apres des traitements thermiques a 600, 700 et 800 deg. C, sous vide, on constate dans tous les cas une bonne diffusion intermetallique U-Ni. (auteur)

  2. Rocks of the Thirtynine Mile volcanic field as possible sources of uranium for epigenetic deposits in central Colorado, USA.

    Science.gov (United States)

    Dickinson, K.A.

    1987-01-01

    The most likely volcanic source rock for uranium in epigenetic deposits of the Tallahassee Creek uranium district and nearby areas is the Wall Mountain Tuff. The widespread occurrence of the Tuff, its high apparent original uranium content, approx 11 ppm, and its apparent loss of uranium from devitrification and other alteration suggest its role in providing that element. An estimate of the original Th/U ratio is based on the present thorium and uranium contents of the basal vitrophyre of the Tuff from Castle Rock Gulch, Hecla Junction and other areas.-from Author

  3. Uranium;L'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Poty, B. [CNRS, 54 - Gondreville (France); Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-03-15

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  4. Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

    Science.gov (United States)

    Nash, J. Thomas

    2010-01-01

    Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures

  5. Hyperspectral Alteration Information from Drill Cores and Deep Uranium Exploration in the Baiyanghe Uranium Deposit in the Xuemisitan Area, Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Qing-Jun Xu

    2017-05-01

    Full Text Available The Baiyanghe uranium deposit is a currently important medium-sized deposit in the Xuemisitan area, Xinjiang. The hydrothermal alteration in this deposit is closely related to the uranium mineralization of the deposit. In this study, hyperspectral data are collected from drill cores in the Baiyanghe uranium deposit using a FieldSpec4 visible-shortwave infrared spectrometer to study the hydrothermal alteration. The results reveal that the altered mineral assemblages have obvious zonation characteristics: (1 the upper section comprises long-wavelength illite and minor hematite and montmorillonite; (2 the middle section contains three types of illite (long-, medium- and short-wavelength illite and hematite; and (3 the lower section includes short-wavelength illite, chlorite and carbonate. Additionally, the variety in the characteristic absorption-peak wavelength of illite at 2200 nm gradually shifts to shorter wavelength and ranges between 2195 nm and 2220 nm with increasing depth, while the SWIR-IC (short-wavelength infrared illite crystallinity, a dimensionless quantity of the drill holes gradually increases from 0.2 to 2.1. These patterns reflect the hydrothermal fluid activity in the deposit, which features relatively high-temperature, high-pressure hydrothermal fluid in the deeper section and low-temperature, low-pressure hydrothermal fluid in the shallower section. Additionally, the uranium mineralization is located near the fracture zone, which represents the center of hydrothermal fluid activity or mineralization. This area has abundant alteration minerals, and the minerals illite (short- and medium-wavelength, hematite and fluorite can be used as uranium-prospecting indicators for uranium exploration in the deeper sections of the Baiyanghe uranium deposit.

  6. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    Science.gov (United States)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  7. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    Science.gov (United States)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-01-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV)to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  8. Exploration for uranium deposits in the Atkinson Mesa area, Montrose County, Colorado

    Science.gov (United States)

    Brew, Daniel Allen

    1954-01-01

    The U.S. Geological Survey explored the Atkinson Mesa area for uranium- and vanadium-bearing deposits from July 2, 1951, to June 18, 1953, with 397 diamond-drill holes that totaled 261,251 feet. Sedimentary rocks of Mesozoic age are exposed in the Atkinson Mesa area. They are: the Brushy Basin member of the Upper Jurassic Morrison formation, the Lower Cretaceous Burro Canyon formation, and the Upper and Lower Cretaceous Dakota sandstone. All of the large uranium-vanadium deposits discovered by Geological Survey drilling are in a series of sandstone lenses in the upper part of the Salt Wash member of the Jurassic Morrison formation. The deposits are mainly tabular and blanket-like, but some elongate pod-shaped masses, locally called "rolls" may be present. The mineralized material consists of sandstone impregnated with a uranium mineral which is probably coffinite, spme carnotite, and vanadium minerals, thought to be mainly corvusite and montroseite. In addition,, some mudstone and carbonaceous material is similarly impregnated. Near masses of mineralized material the sandstone is light gray or light brown, is generally over 40 feet thick, and usually contains some carbonaceous material and abundant disseminated pyrite or limonite stain. Similarly, the mudstone in contact with the ore-bearing sandstone near bodies of mineralized rock is commonly blue gray, as compared to its dominant red color away from ore deposits. Presence and degree of these features are useful guides in exploring for new deposits.

  9. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    Science.gov (United States)

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  10. Assessment of undiscovered resources in calcrete uranium deposits, Southern High Plains region of Texas, New Mexico, and Oklahoma, 2017

    Science.gov (United States)

    Hall, Susan M.; Mihalasky, Mark J.; Van Gosen, Bradley S.

    2017-11-14

    The U.S. Geological Survey estimates a mean of 40 million pounds of in-place uranium oxide (U3O8) remaining as potential undiscovered resources in the Southern High Plains region of Texas, New Mexico, and Oklahoma. This estimate used a geology-based assessment method specific to calcrete uranium deposits.

  11. Uranium-Series Disequilibria in the Groundwater of the Shihongtan Sandstone-Hosted Uranium Deposit, NW China

    Directory of Open Access Journals (Sweden)

    Xinjian Peng

    2015-12-01

    Full Text Available Uranium (U concentration and the activities of 238U, 234U, and 230Th were determined for groundwaters, spring waters, and lake water collected from the Shihongtan sandstone-hosted U ore district and in the surrounding area, NW China. The results show that the groundwaters from the oxidizing aquifer with high dissolved oxygen concentration (O2 and oxidation-reduction potential (Eh are enriched in U. The high U concentration of groundwaters may be due to the interaction between these oxidizing groundwaters and U ore bodies, which would result in U that is not in secular equilibrium. Uranium is re-precipitated as uraninite on weathered surfaces and organic material, forming localized ore bodies in the sandstone-hosted aquifer. The 234U/238U, 230Th/234U, and 230Th/238U activity ratios (ARs for most water samples show obvious deviations from secular equilibrium (0.27–2.86, indicating the presence of water-rock/ore interactions during the last 1.7 Ma and probably longer. The 234U/238U AR generally increases with decreasing U concentrations in the groundwaters, suggesting that mixing of two water sources may occur in the aquifer. This is consistent with the fact that most of the U ore bodies in the deposit have a tabular shape originati from mixing between a relatively saline fluid and a more rapidly flowing U-bearing meteoric water.

  12. Forms of uranium associated to silica in the environment of the Nopal deposit (Mexico)

    Science.gov (United States)

    Allard, T.; Othmane, G.; Menguy, N.; Vercouter, T.; Morin, G.; Calas, G.; Fayek, M.

    2011-12-01

    The understanding of the processes that control the transfers of uranium in the environment is necessary for the safety assessement of nuclear waste repositories. In particular, several poorly ordered phases (e.g. Fe oxihydroxides) are expected to play an important role in trapping uranium from surface waters. Among them, natural systems containing amorphous silica are poorly documented. A former study from the environment of the Peny mine (France) showed the importance of silica in uranium speciation [1]. The Nopal uranium deposit is located in volcanic tuff from tertiary period. It hosted several hydrothermal alteration episodes responsible for clay minerals formation. A primary uranium mineralisation occurred in a breccia pipe, consisting in uraninite, subsequently altered in secondary uranium minerals among which several silicates. Eventually, opal was formed and coated uranyl silicates such as uranophane and weeksite [2], [3]. Opals also contain minor amounts of uranium. The Nopal deposit is still considered as a natural analogue of high level nuclear waste repository located in volcanic tuff. It may be used to reveal the low temperature conditions of trapping of uranium in systems devoid of iron oxides such as silica-containing ones. The aim of this study is then to determine the uranium speciation, and its possible complexity, associated to these opals that represent a late trapping episode. It will provide insights ranging from the micrometer scale of electron microscopies to the molecular scale provided by fluorescence spectroscopy. Three samples of green or yellow opals have been analysed by a combination of complementary tools including scanning electron microscopy (SEM) on cross-sections, transmission electron microscopy (TEM) on focused ion beam (FIB) films, cathodoluminescence and time-resolved laser fluorescence spectroscopy (TRLFS). Uranium speciation was found to be complex. We first evidence U-bearing microparticles of beta-uranophane Ca[(UO2)(Si

  13. Geology and recognition criteria for uranium deposits of the quartz-pebble conglomerate type. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Button, A.; Adams, S.S.

    1981-03-01

    This report is concerned with Precambrian uraniferous conglomerates. This class of deposit has been estimated to contain between approximately 16 and 35 percent of the global uranium reserve in two rather small areas, one in Canada, the other in South Africa. Similar conglomerates, which are often gold-bearing, are, however, rather widespread, being found in parts of most Precambrian shield areas. Data have been synthesized on the geologic habitat and character of this deposit type. The primary objective has been to provide the most relevant geologic observations in a structural fashion to allow resource studies and exploration to focus on the most prospective targets in the shortest possible time.

  14. Geochemical features of the ore-bearing medium in uranium deposits in the Khiagda ore field

    Science.gov (United States)

    Kochkin, B. T.; Solodov, I. N.; Ganina, N. I.; Rekun, M. L.; Tarasov, N. N.; Shugina, G. A.; Shulik, L. S.

    2017-09-01

    The Neogene uranium deposits of the Khiagda ore field (KOF) belong to the paleovalley variety of the hydrogene type and differ from other deposits of this genetic type in the geological and geochemical localization conditions. The contemporary hydrogeochemical setting and microbiological composition of ore-bearing medium are discussed. The redox potential of the medium (Eh is as low as-400 mV) is much lower than those established at other hydrogenic deposits, both ancient Late Mesozoic and young Late Alpine, studied with the same methods in Russia, Uzbekistan, and southern Kazakhstan. The pH of subsurface water (6.86-8.13) differs in significant fluctuations both between neighboring deposits and within individual ore lodes. Hydrogen-forming and denitrifying bacteria are predominant in microbiological populations, whereas sulfate-reducing bacteria are low-active. The consideration of these factors allowed us to describe the mechanism of uranium ore conservation as resulting from the development of the cryolithic zone, which isolates ore lodes from the effect of the external medium. Carbonated water supplied from the basement along fault zones also participates in the formation of the present-day hydrogeochemical setting. Based on the features of the ore-bearing medium, we propose a method of borehole in situ acid leaching to increase the efficiency of mining in the Khiagda ore field.

  15. Questions about uranium deposit distributions from geological GIS; Questionnements sur la distribution des gites d'uranium a partir des SIG geologiques

    Energy Technology Data Exchange (ETDEWEB)

    Milesi, J.P.; Brisset, F.; Lescuyer, J.L.; Stein, G.; Leistel, J.M. [AREVA, BU Mines, Tour Areva, 92 - Paris La Defense (France)

    2009-07-01

    The authors raised some questions about the use of GIS (geographic information system) and databases to compare metalliferous provinces and eras. These questions deal with the possibility of characterisation of a province signature from geological contexts or mineral associations, with the possibility to identify news zones of interest in a not well known area which may contain conventional uranium-bearing deposits, and with the possibility to characterise new types of deposits by a blind, data-driven or algebraic approach

  16. Uranium comminution age tested by the eolian deposits on the Chinese Loess Plateau

    Science.gov (United States)

    Li, Le; Liu, Xiangjun; Li, Tao; Li, Laifeng; Zhao, Liang; Ji, Junfeng; Chen, Jun; Li, Gaojun

    2017-06-01

    The 234U/238U ratio of fine particles can record the time since their separation from bed rock because of the disruption of uranium series equilibrium introduced by the recoil of daughter 234Th nuclei (precursor of 234U) out of particle surfaces during the decay of 238U. Application of the uranium comminution age method, which has great potential in tracing production and transportation of sediments is however complicated by the weathering dissolution of 234U depleted particle surfaces, the difficulty in determining the fraction of recoiled nuclei, and the precipitation of exogenetic 234U. Here we minimize these complications by using a newly developed precise size separation using electroformed sieve, and a chemical protocol that involves reductive and oxidative leaching. Eolian deposits collected from the Chinese Loess Plateau (CLP) were used to test the validity of our method. Possible effects of weathering dissolution were also evaluated by comparing samples with different weathering intensities. The results show decreasing 234U/238U ratios in fine eolian particles with increasing sedimentation age, agreeing well with the theoretical prediction of the comminution age model. This successful application of the uranium comminution age approach to the eolian deposits on the CLP is also aided by a stable dust source, the low weathering intensity, the lack of consolidation, and the well-defined age model of the deposits. A transportation time of 242 ± 18 ka was calculated for the eolian deposits, which indicates a long residence time, and thus extensive mixing, of the dust particles in source regions, partly explaining the stable and homogeneous composition of the eolian dust over glacial-interglacial cycles.

  17. Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada

    Science.gov (United States)

    Chi, Guoxiang; Haid, Taylor; Quirt, David; Fayek, Mostafa; Blamey, Nigel; Chu, Haixia

    2017-02-01

    The End deposit is one of several uranium deposits in the Kiggavik area near the Proterozoic Thelon Basin, which is geologically similar to the Athabasca Basin known for its unconformity-related uranium deposits. The mineralization occurs as uraninite and coffinite in quartz veins and wall rocks (psammopelitic gneisses) in the sub-Thelon basement and is associated with clay- and hematite-altered fault zones. Fluid inclusions were studied in quartz cementing unmineralized breccias formed before mineralization (Q2), quartz veins that were formed before mineralization but spatially associated with uranite (Q4), and calcite veins that were formed after mineralization. Four types of fluid inclusions were recognized, namely liquid-dominated biphase (liquid + vapor), vapor-dominated biphase (vapor + liquid), monophase (vapor-only), and triphase (liquid + vapor + halite) inclusions. The first three types were found in Q2, whereas all four types were found in Q4 and calcite. The coexistence of these different types of inclusions within individual fluid inclusion assemblages is interpreted to indicate fluid immiscibility and heterogeneous trapping. Based on microthermometry, the fluids associated with Q2 are characterized by low salinities (0.4 to 6.6 wt%) and moderate temperatures from 148 to 261 °C, and the fluids associated with calcite show high salinities (26.8 to 29.3 wt%) and relatively low temperatures from 146 to 205 °C, whereas the fluids associated with Q4 have a wide range of salinities from 0.7 to 38.8 wt% and temperatures from 80 to 332 °C. Microthermometric and cryogenic Raman spectroscopic studies indicate that the high-salinity fluids in Q4 and calcite belong to the H2O-NaCl-CaCl2 ± MgCl2 system, with some dominated by NaCl and others by CaCl2. The fluid inclusions in Q2 are interpreted to be unrelated to mineralization, whereas those in Q4 and calcite reflect the mineralizing fluids. The fluid inclusion data are consistent with a genetic link of

  18. Deposition of inhaled uranium in Brazilian reference man; Deposicao interna de uranio inalado, considerando-se um homem referencia brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Joaquim Carlos S.; Moraes, Jose Carlos T.B. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Lab. de Engenharia Biomedica

    1996-12-31

    Brazilian`s morphometric and physiological parameters were selected for use in assessment of deposition of inhaled uranium. The assessment results were compared with estimates of deposition made with parameters recommended in ICRP 66. (author) 6 refs., 2 figs., 3 tabs.

  19. Comparison of potential radiological consequences from a spent-fuel repository and natural uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Wick, O.J.; Cloninger, M.O.

    1980-09-01

    A general criterion has been suggested for deep geological repositories containing spent fuel - the repositories should impose no greater radiological risk than due to naturally occurring uranium deposits. The following analysis investigates the rationale of that suggestion and determines whether current expectations of spent-fuel repository performance are consistent with such a criterion. In this study, reference spent-fuel repositories were compared to natural uranium-ore deposits. Comparisons were based on intrinsic characteristics, such as radionuclide inventory, depth, proximity to aquifers, and regional distribution, and actual and potential radiological consequences that are now occurring from some ore deposits and that may eventually occur from repositories and other ore deposits. The comparison results show that the repositories are quite comparable to the natural ore deposits and, in some cases, present less radiological hazard than their natural counterparts. On the basis of the first comparison, placing spent fuel in a deep geologic repository apparently reduces the hazard from natural radioactive materials occurring in the earth's crust by locating the waste in impermeable strata without access to oxidizing conditions. On the basis of the second comparison, a repository constructed within reasonable constraints presents no greater hazard than a large ore deposit. It is recommended that if the naturally radioactive environment is to be used as a basis for a criterion regarding repositories, then this criterion should be carefully constructed. The criterion should be based on the radiological quality of the waters in the immediate region of a specific repository, and it should be in terms of an acceptable potential increase in the radiological content of those waters due to the existence of the repository.

  20. Natural radioactivity in soil and water from likuyu village in the neighborhood of mkuju uranium deposit.

    Science.gov (United States)

    Mohammed, Najat K; Mazunga, Mohamed S

    2013-01-01

    The discovery of high concentration uranium deposit at Mkuju, southern part of Tanzania, has brought concern about the levels of natural radioactivity at villages in the neighborhood of the deposit. This study determined the radioactivity levels of 30 soil samples and 20 water samples from Likuyu village which is 54 km east of the uranium deposit. The concentrations of the natural radionuclides (238)U, (232)Th, and (40)K were determined using low level gamma spectrometry of the Tanzania Atomic Energy Commission (TAEC) Laboratory in Arusha. The average radioactivity concentrations obtained in soil samples for (238)U (51.7 Bq/kg), (232)Th (36.4 Bq/kg), and (40)K (564.3 Bq/kg) were higher than the worldwide average concentrations value of these radionuclides reported by UNSCEAR, 2000. The average activity concentration value of (238)U (2.35 Bq/L) and (232)Th (1.85 Bq/L) in water samples was similar and comparable to their mean concentrations in the control sample collected from Nduluma River in Arusha.

  1. Migration behavior of naturally occurring radionuclides at the Nopal I uranium deposit, Chihuahua, Mexico

    Science.gov (United States)

    Prikryl, James D.; Pickett, David A.; Murphy, William M.; Pearcy, English C.

    1997-04-01

    Oxidation of pyrite at the Nopal I uranium deposit, Peña Blanca district, Chihuahua, Mexico has resulted in the formation of Fe-oxides/hydroxides. Anomalous U concentrations (i.e. several hundred to several thousand ppm) measured in goethite, hematite, and amorphous Fe-oxyhydroxides in a major fracture that crosscuts the deposit and the absence of U minerals in the fracture suggest that U was retained during secondary mineral growth or sorbed on mineral surfaces. Mobilization and transport of U away from the deposit is suggested by decreasing U concentrations in fracture-infilling materials and in goethite and hematite with distance from the deposit. Greater than unity {234U}/{238U} activity ratios measured in fracture-infilling materials indicate relatively recent ( < 1 Ma) U uptake from fluids that carried excess 234U. Systematic decreases in {234U}/{238U} activity ratios of fracture materials with distance from the deposit suggest a multistage mobilization process, such as remobilization of U from 234U-enriched infill minerals or differential or diminished transport of U-bearing solutions containing excess 234U.

  2. The Itataia phosphate-uranium deposit (Ceará, Brazil) new petrographic, geochemistry and isotope studies

    Science.gov (United States)

    Veríssimo, César Ulisses Vieira; Santos, Roberto Ventura; Parente, Clóvis Vaz; Oliveira, Claudinei Gouveia de; Cavalcanti, José Adilson Dias; Nogueira Neto, José de Araújo

    2016-10-01

    The Itataia phosphate-uranium deposit is located in Santa Quitéria, in central Ceará State, northeastern Brazil. Mineralization has occurred in different stages and involves quartz leaching (episyenitization), brecciation and microcrystalline phase formation of concretionary apatite. The last constitutes the main mineral of Itatiaia uranium ore, namely collophane. Collophanite ore occurs in massive bodies, lenses, breccia zones, veins or episyenite in marble layers, calc-silicate rocks and gneisses of the Itataia Group. There are two accepted theories on the origin of the earliest mineralization phase of Itataia ore: syngenetic (primary) - where the ore is derived from a continental source and then deposited in marine and coastal environments; and epigenetic (secondary) - whereby the fluids are of magmatic, metamorphic and meteoric origin. The characterization of pre- or post-deformational mineralization is controversial, since the features of the ore are interpreted as deformation. This investigation conducted isotopic studies and chemical analyses of minerals in marbles and calc-silicate rocks of the Alcantil and Barrigas Formations (Itataia Group), as well as petrographic and structural studies. Analysis of the thin sections shows at least three phosphate mineral phases associated with uranium mineralizaton: (1) A prismatic fluorapatite phase associated with chess-board albite, arfvedsonite and ferro-eckermannite; (2) a second fluorapatite phase with fibrous radial or colloform habits that replaces calcium carbonate in marble, especially along fractures, with minerals such as quartz, chlorite and zeolite also identified in calc-silicate rocks; and (3) an younger phosphate phase of botryoidal apatite (fluorapatite and hydroxyapatite) related with clay minerals and probably others calcium and aluminum phosphates. Detailed isotopic analysis carried out perpendicularly to the mineralized levels and veins in the marble revealed significant variation in isotopic

  3. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. Vol. 2, Rev. 1. [490 references

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W. (comps.)

    1979-07-01

    This bibliography, a compilation of 490 references, is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six data bases created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  4. Geochronology and Fluid-Rock Interaction Associated with the Nopal I Uranium Deposit, Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    M. Fayek; P. Goodell; M. Ren; A. Simmons

    2005-07-11

    The Nopal I uranium (U) deposit, Pena Blanca District, Mexico, largely consists of secondary U{sup 6+} minerals, which occur within a breccia pipe mainly hosted by the 44 Ma Nopal and Colorados volcanic formations. These two units overly the Pozos conglomerate formation and Cretaceous limestone. Three new vertical diamond drill holes (DDHs) were recently drilled at Nopal I. DDH-PB1 with continuous core was drilled through the Nopal I deposit and two additional DDHs were drilled {approx}50 m on either side of the cored hole. These DDHs terminate 20 m below the current water table, thus allowing the detection of possible gradients in radionuclide contents resulting from transport from the overlying uranium deposit. Primary uraninite within the main ore body is rare and fine-grained ({approx}50 micrometers), thus making geochronology of the Nopal I deposit very difficult. Uranium, lead and oxygen isotopes can be used to study fluid-uraninite interaction, provided that the analyses are obtained on the micro-scale. Secondary ionization mass spectrometry (SIMS) permits in situ measurement of isotopic ratios with a spatial resolution on the scale of a few {micro}m. Preliminary U-Pb results show that uraninite from the main ore body gives an age of 32 {+-} 8 Ma, whereas uraninite from the uraniferous Pozos conglomerate that lies nearly 100 m below the main ore body and 25 meters above the water table, gives a U-Pb age that is <1 Ma. Oxygen isotopic analyses show that uraninite from the ore body has a {delta}{sup 18}O = -10.8{per_thousand}, whereas the uraninite within the Pozos conglomerate has a {delta}{sup 18}O = +1.5{per_thousand}. If it is assumed that both uraninites precipitated from meteoric water ({delta}{sup 18}O = -7{per_thousand}), then calculated precipitation temperatures are 55 C for the uraninite from the ore body and 20 C for uraninite hosted by the Pozos conglomerate. These temperatures are consistent with previous studies that calculated precipitation

  5. Chemical vapor deposition (CVD) of uranium for alpha spectrometry; Deposicion quimica de vapor (CVD) de uranio para espectrometria alfa

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez V, M. L.; Rios M, C.; Ramirez O, J.; Davila R, J. I.; Mireles G, F., E-mail: luisalawliet@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2015-09-15

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  6. Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.S.; Smith, R.B.

    1981-01-01

    Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced, pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H/sub 2/S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H/sub 2/S.

  7. Genetic and grade and tonnage models for sandstone-hosted roll-type uranium deposits, Texas Coastal Plain, USA

    Science.gov (United States)

    Hall, Susan M.; Mihalasky, Mark J.; Tureck, Kathleen; Hammarstrom, Jane M.; Hannon, Mark

    2017-01-01

    The coincidence of a number of geologic and climatic factors combined to create conditions favorable for the development of mineable concentrations of uranium hosted by Eocene through Pliocene sandstones in the Texas Coastal Plain. Here 254 uranium occurrences, including 169 deposits, 73 prospects, 6 showings and 4 anomalies, have been identified. About 80 million pounds of U3O8 have been produced and about 60 million pounds of identified producible U3O8 remain in place. The development of economic roll-type uranium deposits requires a source, large-scale transport of uranium in groundwater, and deposition in reducing zones within a sedimentary sequence. The weight of the evidence supports a source from thick sequences of volcanic ash and volcaniclastic sediment derived mostly from the Trans-Pecos volcanic field and Sierra Madre Occidental that lie west of the region. The thickest accumulations of source material were deposited and preserved south and west of the San Marcos arch in the Catahoula Formation. By the early Oligocene, a formerly uniformly subtropical climate along the Gulf Coast transitioned to a zoned climate in which the southwestern portion of Texas Coastal Plain was dry, and the eastern portion humid. The more arid climate in the southwestern area supported weathering of volcanic ash source rocks during pedogenesis and early diagenesis, concentration of uranium in groundwater and movement through host sediments. During the middle Tertiary Era, abundant clastic sediments were deposited in thick sequences by bed-load dominated fluvial systems in long-lived channel complexes that provided transmissive conduits favoring transport of uranium-rich groundwater. Groundwater transported uranium through permeable sandstones that were hydrologically connected with source rocks, commonly across formation boundaries driven by isostatic loading and eustatic sea level changes. Uranium roll fronts formed as a result of the interaction of uranium-rich groundwater

  8. Geostatistical ore reserve estimation for a roll-front type uranium deposit (practitioner's guide)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.C.; Knudsen, H.P.

    1977-01-01

    This report comprises two parts. Part I contains illustrative examples of each phase of a geostatistical study using a roll-front type uranium deposit. Part II contains five computer programs and comprehensive users' manuals for these programs which are necessary to make a practical geostatistical study. (LK)

  9. The uranium ore deposits in Ciudad Rodrigo Phyllites. about the possibility of new deposits; Los yacimientos uraniferos en las pizarras paleozoicas de Ciudad Rodrigo. sobre la posible existencia de nuevas mineralizaciones

    Energy Technology Data Exchange (ETDEWEB)

    Mingarro Martin, E.; Marin Benavente, C.

    1969-07-01

    The main features of the genesis of uranium deposits of the Fe mine type, are discussed in this paper. Pitchblende ore is related with phyllites bearing organic material and with geomorphological level, fossilized by eocene sediments. As a result, new uranium ore deposits are possible under Ciudad Rodrigo tertiary basin, tertiary cover depth being little more than three hundred feet. (Author)

  10. The Uranium-trend dating method: Principles and application for southern California marine terrace deposits

    Science.gov (United States)

    Muhs, D.R.; Rosholt, J.N.; Bush, C.A.

    1989-01-01

    Uranium-trend dating is an open-system method for age estimation of Quaternary sediments, using disequilibrium in the 238U234U230Th decay series. The technique has been applied to alluvium, colluvium, loess, till, and marine sediments. In this study we tested the U-trend dating method on calcareous marine terrace deposits from the Palos Verdes Hills and San Nicolas Island, California. Independent age estimates indicate that terraces in these areas range from ???80 ka to greater than 1.0 Ma. Two low terraces on San Nicolas Island yielded U-trend plots that have a clustered array of points and the ages of these deposits are indeterminate or highly suspect. Middle Pleistocene terraces and one early Pleistocene terrace on San Nicolas Island and all terraces on the Palos Verdes Hills gave reasonably linear U-trend plots and estimated ages that are stratigraphically consistent and in agreement with independent age estimates. We conclude that many marine terrace deposits are suitable for U-trend dating, but U-trend plots must be carefully evaluated and U-trend ages should be consistent with independent geologic control. ?? 1989.

  11. Genetic-Structural relations in some types of spanish uranium deposits; Relaciones genetico-estructurales de algunos tipos de mienralizaciones uraniferas espanolas

    Energy Technology Data Exchange (ETDEWEB)

    Alia Medina, M.

    1962-07-01

    On the spanish hercynian areas there are different types of uraniferous deposits, which may be classified in the following groups: Group I, high temperature magmatic deposits, Group II, low temperature veins and Group III supergenic deposits, generated by weathering of the former ones or by lixiviation of the intra granitic uranium. The deposits belonging to Group I are founding the hercynian ge anticlinal; those of Groups II and III, chiefly in the eugeosyncline. The explanation suggested for these genetic-structural relationships assumes that, in the ge anticlinal, uranium would migrate from the dioritic magmas to form and high temperature deposits. In the eugeosyncline, a large fraction of the uranium would migrate towards more differentiated granites, in which it might partially remain or from which it might have been finally concentrated in the epithermal veins or by later tectonic actions. The Group III deposits ar more frequent in the eugeosyncline, due to the greater abundance of more differentiated intrusive rocks. (Author) 16 refs.

  12. Impact of uranium mining activity on cave deposit (stalagmite) and pine trees (S-Hungary)

    Science.gov (United States)

    Siklosy, Z.; Kern, Z.; Demeny, A.; Pilet, S.; Leel-Ossy, Sz.; Lin, K.; Shen, C.-C.; Szeles, E.

    2009-04-01

    Speleothems are well known paleoclimate archives but their potential for monitoring environmental pollution has not been fully explored. This study deals with an actively growing stalagmite whose trace-element concentration suggests anthropogenic contamination, rather then natural forcing. Paralell, as a potential independent chemo-enviromental archive, living pine (Pinus sylvestis) trees were also involved into investigation. U production in S-Hungary started in 1957 and was expanded closer to the cave site in 1965, covering a mining plot area of ca. 65 km2. The deep-level ore production ended in 1997 and remediation of the mine site has since been completed. Our objective was to determine the possible effect of the four-decade-long uranium (U) ore mining activity on the environment, as recorded by a cave deposit and the pine trees. The Trio Cave is located in the Mecsek Mts (S-Hungary), ca. 1.5-3 km east from the nearest air-shaft and entrance of the uranium mine. A stalagmite located about 150 m away from the cave entrance was drilled and the core investigated for stable isotope and trace element compositions. Pine trees were sampled by increment borer. Continuous flow mass spectrometry was applied on carbonate samples and laser ablation ICP-MS was applied for trace element analysis of both stalagmite (Siklosy et al., 2009) and pine samples. The youngest 1 cm of the drill core was selected for this study that may represent the last cca. 100 years (based on MC-ICP-MS age dating of older parts of the core) that covers the uranium mining period. The pre-mining period is characterized by systematic co-variations of trace elements (U, P, Si, Al, Ba, Mg, etc.) that can be related to soil activity and precipitation amount. The youngest 1.3 mm, however, records a sudden change in U content uncorrelated with any other variables. Starting from a background value of 0.2-0.3 ppm, the concentration gradually increases to about 2 ppm (within about 1 mm), remains constant for

  13. Preliminary investigation of the elemental variation and diagenesis of a tabular uranium deposit, La Sal Mine, San Juan County, Utah

    Science.gov (United States)

    Brooks, Robert A.; Campbell, John A.

    1976-01-01

    Ore in the La Sal mine, San Juan County, Utah, occurs as a typical tabular-type uranium deposit of the-Colorado Plateau. Uranium-vanadium occurs in the Salt Wash Member of the Jurassic Morrison Formation. Chemical and petrographic analyses were used to determine elemental variation and diagenetic aspects across the orebody. Vanadium is concentrated in the dark clay matrix, which constitutes visible ore. Uranium content is greater above the vanadium zone. Calcium, carbonate carbon, and lead show greater than fifty-fold increase across the ore zone, whereas copper and organic carbon show only a several-fold increase. Large molybdenum concentrations are present in and above the tabular layer, and large selenium concentrations occur below the uranium zone within the richest vanadium zone. Iron is enriched in the vanadium horizon. Chromium is depleted from above the ore and strongly enriched below. Elements that vary directly with the vanadium content include magnesium, iron, selenium, zirconium, strontium, titanium, lead, boron, yttrium, and scandium. The diagenetic sequence is as follows: (1) formation of secondary quartz overgrowths as cement; (2) infilling and lining of remaining pores with amber opaline material; (3) formation of vanadium-rich clay matrix, which has replaced overgrowths as well as quartz grains; (4) replacement of overgrowths and detrital grains by calcite; (5) infilling of pores with barite and the introduction of pyrite and marcasite.

  14. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    White, M.B.; Garland, P.A. (comps.)

    1977-10-01

    This bibliography was compiled by selecting 580 references from the Bibliographic Information Data Base of the Department of Energy's (DOE) National Uranium Resource Evaluation (NURE) Program. This data base and five others have been created by the Ecological Sciences Information Center to provide technical computer-retrievable data on various aspects of the nation's uranium resources. All fields of uranium geology are within the defined scope of the project, as are aerial surveying procedures, uranium reserves and resources, and universally applied uranium research. References used by DOE-NURE contractors in completing their aerial reconnaissance survey reports have been included at the request of the Grand Junction Office, DOE. The following indexes are provided to aid the user in locating reference of interest: author, keyword, geographic location, quadrangle name, geoformational index, and taxonomic name.

  15. Literature review of models for estimating soil erosion and deposition from wind stresses on uranium-mill-tailings covers

    Energy Technology Data Exchange (ETDEWEB)

    Bander, T.J.

    1982-11-01

    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon-suppression cover applied to uranium-mill tailings. The mechanics of wind erosion, as well as of soil deposition, are discussed in this report. Several wind erosion models are reviewed to determine if they can be used to estimate the erosion of soil from a mill-tailings cover. One model, developed by W.S. Chepil, contains the most-important factors that describe variables that influence wind erosion. Particular features of other models are also discussed, as well as the application of Chepil's model to a particular tailings pile. For this particular tailings pile, the estimated erosion was almost one inch per year for an unprotected tailings soil surface. Wide variability in the deposition velocity and lack of adequate deposition models preclude reliable estimates of the rate at which airborne particles are deposited.

  16. Contribution to the geochemical knowledge of the uranium-radium and thorium families in the southern Vosges. Applications of some results in the prospecting of uranium deposits; Contribution a la connaissance geochimique des familles uranium-radium et du thorium dans les Vosges meridionales. Application de certains resultats en prospection des gisements d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Jurain, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    This work's aim is to lead to a more accurate knowledge of the geochemistry of the Uranium-Radium and Thorium families in the Southern Vosges and to apply some of the results to the prospecting of uraniferous deposits: It has been showed: a bond between Calcium-Magnesium and Uranium-Thorium in the calco-alkaline granites. The host minerals of Uranium and Thorium are hornblende, biotite, titanite and epidote. a concentration of Uranium, at present time with secular disequilibrium in a thermal zone where the satellite mineralizations form an epithermal paragenesis. a disequilibrium of the Uranium-Radium family in the supergene minerals of the lead (phosphate and vanadate) showing the present circulations of Uranium. a bond between the radon grade of the spring waters and Uranium-Radium of the rocks. Such a relation allow to realize a prospecting method based on the determination of radioactive gases from the cold spring-waters of a common country. (author) [French] L'etude presentee ici a pour but de conduire a une connaissance plus precise de la geochimie des familles Uranium-Radium et Thorium dans les Vosges meridionales et d'appliquer certains resultats a la prospection des gites uraniferes. Il a ete mis en evidence: une liaison Calcium-Magnesium et Uranium-Thorium dans des granites calco-alcalins. Les mineraux hotes de l'Uranium et du Thorium sont: la hornblende, la biotite, le sphene, l'epidote. une concentration actuelle de l'Uranium en desequilibre seculaire dans une zone thermale ou les mineralisations satellites constituent une paragenese epithermale. un desequilibre de la famille Uranium-Radium dans des mineraux supergenes du plomb (phosphates et vanadates) prouvant les circulations actuelles de l'Uranium. une liaison entre la teneur en Radon des eaux de sources et celle en Uranium-Radium des roches. Une telle liaison permet de realiser une methode de prospection fondee sur le dosage du gaz radioactif des eaux de sources

  17. Influence of terrestrial radionuclides on environmental gamma exposure in a uranium deposit in Paraíba, Brazil.

    Science.gov (United States)

    Araújo Dos Santos Júnior, José; Dos Santos Amaral, Romilton; Simões Cezar Menezes, Rômulo; Reinaldo Estevez Álvarez, Juan; Marques do Nascimento Santos, Josineide; Herrero Fernández, Zahily; Dias Bezerra, Jairo; Antônio da Silva, Alberto; Francys Rodrigues Damascena, Kennedy; de Almeida Maciel Neto, José

    2017-07-01

    One of the main natural uranium deposits in Brazil is located in the municipality of Espinharas, in the State of Paraíba. This area may present high levels of natural radioactivity due to the presence of these radionuclides. Since this is a populated area, there is need for a radioecological dosimetry assessment to investigate the possible risks to the population. Based on this problem, the objective of this study was to estimate the environmental effective dose outdoors in inhabited areas influenced by the uranium deposit, using the specific activities of equivalent uranium, equivalent thorium and 40K and conversion factors. The environmental assessment was carried using gamma spectroscopy in sixty-two points within the municipality, with a high-resolution gamma spectrometer with HPGe semiconductor detector and Be window. The results obtained ranged from 0.01 to 19.11 mSv y-1, with an average of 2.64 mSv y-1. These levels are, on average, 23 times higher than UNSCEAR reference levels and up to 273 times the reference value of the earth's crust for primordial radionuclides. Therefore, given the high radioactivity levels found, we conclude that there is need for further investigation to evaluate the levels of radioactivity in indoor environments, which will reflect more closely the risks of the local population. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Pena Blanca, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, P.; Fayek, M.; Goodell, P.; Ghezzehei, T.; Melchor, F.; Murrell, M.; Oliver, R.; Reyes-Cortes, I.A.; de la Garza, R.; Simmons, A.

    2008-08-01

    The Nopal I site in the Pena Blanca uranium district has a number of geologic and hydrologic similarities to the proposed high-level radioactive waste repository at Yucca Mountain, making it a useful analogue to evaluate process models for radionuclide transport. The PB-1 well was drilled in 2003 at the Nopal I uranium deposit as part of a DOE-sponsored natural analogue study to constrain processes affecting radionuclide transport. The well penetrates through the Tertiary volcanic section down to Cretaceous limestone and intersects the regional aquifer system. The well, drilled along the margin of the Nopal I ore body, was continuously cored to a depth of 250 m, thus providing an opportunity to document the local stratigraphy. Detailed observations of these units were afforded through petrographic description and rock-property measurements of the core, together with geophysical logs of the well. The uppermost unit encountered in the PB-1 well is the Nopal Formation, a densely welded, crystal-rich, rhyolitic ash-flow tuff. This cored section is highly altered and devitrified, with kaolinite, quartz, chlorite, and montmorillonite replacing feldspars and much of the groundmass. Breccia zones within the tuff contain fracture fillings of hematite, limonite, goethite, jarosite, and opal. A zone of intense clay alteration encountered in the depth interval 17.45-22.30 m was interpreted to represent the basal vitrophyre of this unit. Underlying the Nopal Formation is the Coloradas Formation, which consists of a welded lithic-rich rhyolitic ash-flow tuff. The cored section of this unit has undergone devitrification and oxidation, and has a similar alteration mineralogy to that observed in the Nopal tuff. A sharp contact between the Coloradas tuff and the underlying Pozos Formation was observed at a depth of 136.38 m. The Pozos Formation consists of poorly sorted conglomerate containing clasts of subangular to subrounded fragments of volcanic rocks, limestone, and chert

  19. STRATIGRAPHY OF THE PB-1 WELL, NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, CHIHUAHUA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-06-25

    Three wells, PB-1, PB-2, and PB-3, were drilled in 2003 at the Nopal I uranium deposit as part of a natural analogue study to evaluate radionuclide transport processes. The wells penetrate through the Tertiary volcanic section down to the Cretaceous limestone basement, and intersect the top of the regional aquifer system. The PB-1 well, drilled immediately adjacent to the Nopal I ore body, was cored to a depth of 250 m, thus providing an opportunity to document the local stratigraphy. The uppermost unit encountered in the PB-1 well is the Nopal Formation, a densely welded, crystal-rich rhyolitic ash-flow tuff. The cored section is highly altered and devitrified, with kaolinite, quartz, chlorite, and montmorillonite replacing feldspars and much of the groundmass. Breccia zones within the tuff contain fracture fillings of hematite, limonite, and goethite. A zone of intense clay alteration encountered in the depth interval 17.45-22.30 m was interpreted to represent the basal vitrophyre of this unit. Underlying the basal vitrophyre is the Coloradas Formation, which consists of a welded, lithic-rich rhyolitic ash-flow tuff. The cored section of this unit has undergone devitrification and oxidation, and has a similar alteration mineralogy to that observed in the Nopal tuff. The Nopal I ore body is restricted to a brecciated zone that intersects these two volcanic units. A sharp contact between the Coloradas tuff and the underlying Pozos Formation was observed at a depth of 136.38 m. The Pozos Formation in the PB-1 core consists of interbedded, poorly sorted sandstone and conglomerate layers. The conglomeratic clasts consist of subangular to subrounded fragments of volcanic rocks, limestone, and chert. Thin (2-6 m) intervals of intercalated pumiceous tuffs were observed within this unit. The contact between the Pozos Formation and the underlying Cretaceous limestone basement was observed at a depth of 244.4 m.

  20. Uranium occurrences and exploration experience in India

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, A., E-mail: amdhyd@ap.nic.in [Atomic Minerals Directorate for Exploration and Research, Hyderabad (India)

    2010-07-01

    As per the Indian Government laws, minerals containing uranium are classified as strategic and uranium exploration and mining is an exclusive subject of the Central Government. Exploration for atomic minerals began in India in the year 1949 and, over a period of sixty years, India has created a large pool of uranium scientists and, at present, more than 500 scientists are employed by the Government of India for exploration of atomic minerals in India. In line with other countries, India's efforts in the 1960s, 1970s and 1980s were focused in the exploration for vein-type mineralization and succeeded in the discovery in three provinces, viz. Singhbhum Shear Zone (SSZ), Jharkhand; Umra, Rajasthan and Lesser Himalayas of Uttarakhand and Himachal Pradesh. Of these, the SSZ has emerged as a major uranium province with 17 low-grade, low- to medium-tonnage deposits. Presently, the only uranium producing mines are situated in this province. Simultaneously, many uranium occurrences and deposits of QPC, vein and metasomatite types, essentially of low grade, low tonnage, were located all over the country. In the early eighties, the Cretaceous Mahadek basin in the northeastern state of Meghalaya was recognized as a potential province for sandstone-type uranium mineralization and, within a span of fifteen years, five low- to medium-grade, low-tonnage deposits were established. The 180-km long belt of Cretaceous fluviatile felspathic sandstones along the southern fringe of Shillong plateau below a moderate cover of tertiary sediments holds potential for more resources. Ground and airborne geophysical techniques are being looked at to provide vital clues on depositional controls for future sub-surface exploration. In the mean time, a major uranium province in the southern part of Proterozoic Cuddapah basin was discovered, where uranium mineralization is hosted in dolomitic limestone. The mineralization is stratabound and occurs intermittently over a strike length of nearly

  1. Geology and recognition criteria for veinlike uranium deposits of the lower to middle Proterozoic unconformity and strata-related types. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dahlkamp, F.J.; Adams, S.S.

    1981-01-01

    The discovery of the Rabbit Lake deposit, Saskatchewan, in 1968 and the East Alligator Rivers district, Northern Territory, Australia, in 1970 established the Lower-Middle Proterozoic veinlike-type deposits as one of the major types of uranium deposits. The term veinlike is used in order to distinguish it from the classical magmatic-hydrothermal vein or veintype deposits. The veinlike deposits account for between a quarter and a third of the Western World's proven uranium reserves. Lower-Middle Proterozoic veinlike deposits, as discussed in this report include several subtypes of deposits, which have some significantly different geologic characteristics. These various subtypes appear to have formed from various combinations of geologic processes ranging from synsedimentary uranium precipitation through some combination of diagenesis, metamorphism, metasomatism, weathering, and deep burial diagenesis. Some of the deposit subtypes are based on only one or two incompletely described examples; hence, even the classification presented in this report may be expected to change. Geologic characteristics of the deposits differ significantly between most districts and in some cases even between deposits within districts. Emphasis in this report is placed on deposit descriptions and the interpretations of the observers.

  2. Descriptive models of major uranium deposits in China - Some results of the Workshop on Uranium Resource Assessment sponsored by the International Atomic Energy Agency, Vienna, Austria, in cooperation with China National Nuclear Corporation, Beijing, and the U.S. Geological Survey, Denver, Colorado, and Reston, Virginia

    Science.gov (United States)

    Finch, W.I.; Feng, S.; Zuyi, C.; McCammon, R.B.

    1993-01-01

    Four major types of uranium deposits occur in China: granite, volcanic, sandstone, and carbonaceous-siliceous-pelitic rock. These types are major sources of uranium in many parts of the world and account for about 95 percent of Chinese production. Descriptive models for each of these types record the diagnostic regional and local geologic features of the deposits that are important to genetic studies, exploration, and resource assessment. A fifth type of uranium deposit, metasomatite, is also modeled because of its high potential for production. These five types of uranium deposits occur irregularly in five tectonic provinces distributed from the northwest through central to southern China. ?? 1993 Oxford University Press.

  3. INITIAL TEST WELL CONDITIONING AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, CHIHUAHUA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    R.D. Oliver; J.C. Dinsmoor; S.J. Goldstein; I. Reyes; R. De La Garza

    2005-07-11

    Three test wells, PB-1, PB-2, and PB-3, were drilled at the Nopal I uranium deposit as part of a natural analogue study to evaluate radionuclide transport processes during March-April 2003. The initial pumping to condition the wells was completed during December 2003. The PB-1 well, drilled immediately adjacent to the Nopal I ore body, was continuously cored to a depth of 250 m, terminating 20 m below the top of the measured water level. The PB-2 and PB-3 wells, which were drilled on opposite sides of PB-1 at a radial distance of approximately 40 to 50 m outside of the remaining projected ore body, were also drilled to about 20 m below the top of the measured water level. Each test well was completed with 4-inch (10.2-cm) diameter PVC casing with a slotted liner below the water table. Initial conditioning of all three wells using a submersible pump at low pump rates [less than 1 gallon (3.8 1) per minute] resulted in measurable draw down and recoveries. The greatest drawdown ({approx}15 m) was observed in PB-2, whereas only minor (<1 m) drawdown occurred in PB-3. For PB-1 and PB-2, the water turbidity decreased as the wells were pumped and the pH values decreased, indicating that the contamination from the drilling fluid was reduced as the wells were conditioned. Test wells PB-1 and PB-2 showed increased inflow after several borehole volumes of fluid were removed, but their inflow rates remained less that the pumping rate. Test well PB-3 showed the smallest drawdown and least change in pH and conductivity during initial pumping and quickest recovery with a rise in measured water level after conditioning. The 195 gallons (750 l) of water pumped from PB-3 during conditioning was discharged through a household sponge. That sponge showed measurable gamma radiation, which decayed to background values in less than 12 hours. Preliminary interpretations include filtration of a radioisotope source with a short half-life or of a radioisotope that volatized as the sponge

  4. Biological pathways of exposure and ecotoxicity values for uranium and associated radionuclides: Chapter D in Hydrological, geological, and biological site characterization of breccia pipe uranium deposits in Northern Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy

    2010-01-01

    plant’s or an animal’s life history and surrounding environment. Various species of plants, invertebrates, fishes, amphibians, reptiles, birds, and mammals found in the segregation areas that are considered species of concern by State and Federal agencies were included in the development of the site-specific food web. The utilization of subterranean habitats (burrows in uranium-rich areas, burrows in waste rock piles or reclaimed mining areas, mine tunnels) in the seasonally variable but consistently hot, arid environment is of particular concern in the segregation areas. Certain species of reptiles, amphibians, birds, and mammals in the segregation areas spend significant amounts of time in burrows where they can inhale or ingest uranium and other radionuclides through digging, eating, preening, and hibernating. Herbivores may also be exposed though the ingestion of radionuclides that have been aerially deposited on vegetation. Measured tissues concentrations of uranium and other radionuclides are not available for any species of concern in the segregation areas. The sensitivity of these animals to uranium exposure is unknown based on the existing scientific literature, and species-specific uranium presumptive effects levels were only available for two endangered fish species known to inhabit the segregation areas. Overall, the chemical toxicity data available for biological receptors of concern were limited, although chemical and radiation toxicity guidance values are available from several sources. However, caution should be used when directly applying these values to northern Arizona given the unique habitat and life history strategies of biological receptors in the segregation areas and the fact that some guidance values are based on models rather than empirical (laboratory or field) data. No chemical toxicity information based on empirical data is available for reptiles, birds, or wild mammals; therefore, the risks associated with uranium and other

  5. Contribution to the methods for estimating uranium deposits (1963); Contribution aux methodes d'estimation des gisements d'uranium (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-02-15

    Having defined a deposit of economic value according to the marginal theory, the author discriminates several categories of ore reserves according to the degree of knowledge of the deposit and according to the mining stage where the ore is considered. He dismisses the conventional French classification of 'on sight', 'probable' and 'possible' ore categories and suggests more suitable ones. The 'sensu stricto', ore reserves are those for which the random error can be calculated. The notion of the natural contrast of grades in an ore deposit (absolute dispersion coefficient {alpha}) is introduced in relation to this topic. The author considers three types of mining exploration. The first is the random exploration so often met; the second is the logical exploration based on a systematic location of underground works, bore-holes, etc. The third, and hardest to achieve, is the one which minimizes exploration costs for a given level of accuracy. Part of the publication deals with sampling errors such as those resulting from the quartering of a heap of ore (theory of Pierre GY) or those resulting from the use of radiometric measurement of grade. Another part deals with the extension error (entailed by the assimilation of samples to the deposit they are issued from) and gives the essential formulae in order to appraise the random error (Geo-statistics of Matheron). As to the estimator itself the work shows how the disharmony between the ore sample and the associated influence zone can be solved by the way of 'kriging'. The thesis gives numerous examples of the various numerical parameters, characteristics of an uranium deposit (absolute dispersion coefficient) or of an uranium ore (liberation parameter) as well as a few examples of linear correlations between gamma radioactivity and uranium grade. Three complete examples of reserve evaluation are given. The end of the thesis deals with the notion of ruin risk which has to

  6. Uranium deposits in the Nord-Limousin; Les gites d'uranium du Nord-Limousin

    Energy Technology Data Exchange (ETDEWEB)

    Sarcia, J.A.; Sarcia, J.A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The authors briefly consider the region in its geographical and geological setting. They describe the main petrographic, metallogenic and tectonic characteristics of the sector investigated by the Atomic Energy Commission since 1947, stressing the form of uraniferous mineral deposits. This short account is intended as a general presentation of the detailed studies which will follow, of which that dealing with the mine Henriette is the first to be published. (author) [French] Les auteurs replacent rapidement la region dans son cadre geographique et geologique. Ils decrivent les principales caracteristiques petrographiques, metallogeniques et tectoniques du secteur etudie par le Commissariat a I'Energie atomique depuis 1947, en insistant sur le mode de gisement des mineralisations uraniferes. Ces quelques pages sont destinees a la presentation generale des etudes de detail qui suivront, dont celle qui concerne la Mine Henriette est la premiere publiee. (auteur)

  7. Uranium and thorium series disequilibrium in quaternary carbonate deposits from the Serra da Bodoquena and Pantanal do Miranda, Mato Grosso do Sul State, central Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fernando Brenha E-mail: brenha@iag.usp.br; Roque, Arnaldo; Boggiani, Paulo Cesar; Flexor, J.-M

    2001-01-15

    Activities of gamma-ray emitting members of the uranium ({sup 238}U) and thorium ({sup 232}Th) series were measured in a quaternary limestone deposit that outcrops in the southeastern Pantanal Matogrossense Basin and in quaternary tufas deposited at the drainage of the Serra da Bodoquena. It is a first step in a study of the mobilization of uranium and thorium series and its relation to surface hydrology, in a region where carbonate deposits are being continuously dissolved and reprecipitated. The obtained results show that all these deposits are characterized by very low concentrations of uranium and thorium. The {sup 238}U/{sup 226}Ra and {sup 228}Th/{sup 228}Ra activity ratios are significantly different than 1.0, indicating that both series are in radioactive disequilibrium. Although the Serra da Bodoquena deposits seem to be very recent, their very fine granulation and high porosity suggest that they behave as open systems for geochemical exchanges of uranium and thorium series members. The Pantanal do Miranda limestone has a radiocarbon age of 3900 yr BP. Since the thorium series is in disequilibrium it is also concluded that this deposit behaves as an open system for geochemical exchanges.

  8. Evolution of uranium and thorium minerals

    Science.gov (United States)

    Hazen, R. M.; Ewing, R. C.; Sverjensky, D. A.

    2009-12-01

    led to non-marine organic-rich sediments that promoted new sandstone-type ore deposits. The modes of accumulation and even the compositions of uraninite, as well as the multiple oxidation states of U (4+, 5+, and 6+), are a sensitive indicator of global redox conditions. In contrast, the behavior of thorium, which has only a single oxidation state (4+) that has a very low solubility in the absence of aqueous F-complexes, cannot reflect changing redox conditions. Geochemical concentration of Th relative to U at high temperatures is therefore limited to special magmatic-related environments, where U4+ is preferentially removed by chloride or carbonate complexes, and at low temperatures by mineral surface reactions. The near-surface mineralogy of uranium and thorium provide a measure of a planet’s geotectonic and geobiological history. In the absence of extensive magmatic-related fluid reworking of the crust and upper mantle, uranium and thorium will not become sufficiently concentrated to form their own minerals or ore deposits. Furthermore, in the absence of surface oxidation, all but a handful of the known uranium minerals are unlikely to form.

  9. Uranium in soils and water; Uran in Boden und Wasser

    Energy Technology Data Exchange (ETDEWEB)

    Dienemann, Claudia; Utermann, Jens

    2012-07-15

    The report of the Umweltbundesamt (Federal Environmental Agency) on uranium in soils and water covers the following chapters: (1) Introduction. (2) Deposits and properties: Use of uranium; toxic effects on human beings, uranium in ground water and drinking water, uranium in surface waters, uranium in soils, uranium in the air. (3) Legal regulations. (4) Uranium deposits, uranium mining, polluted area recultivation. (5) Diffuse uranium entry in soils and water: uranium insertion due to fertilizers, uranium insertion due to atmospheric precipitation, uranium insertion from the air. (6) Diffuse uranium release from soils and transfer in to the food chain. (7) Conclusions and recommendations.

  10. Role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium deposits: insights from reactive-flow modeling

    Science.gov (United States)

    Aghbelagh, Yousef Beiraghdar; Yang, Jianwen

    2017-03-01

    The role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium (URU) deposits in sedimentary basins during tectonically quiet periods is investigated. A number of reactive-flow modeling experiments at the deposit scale were carried out by assigning different dip angles and directions to a fault and various permeabilities to hydrostratigraphic units). The results show that the fault dip angle and direction, and permeability of the hydrostratigraphic units govern the convection pattern, temperature distribution, and uranium mineralization. A vertical fault results in uranium mineralization at the bottom of the fault within the basement, while a dipping fault leads to precipitation of uraninite below the unconformity either away from or along the plane of the fault, depending on the fault permeability. A more permeable fault causes uraninite precipitates along the fault plane, whereas a less permeable one gives rise to the precipitation of uraninite away from it. No economic ore mineralization can form when either very low or very high permeabilities are assigned to the sandstone or basement suggesting that these units seem to have an optimal window of permeability for the formation of uranium deposits. Physicochemical parameters also exert an additional control in both the location and grade of URU deposits. These results indicate that the difference in size and grade of different URU deposits may result from variation in fluid flow pattern and physicochemical conditions, caused by the change in structural features and hydraulic properties of the stratigraphic units involved.

  11. Synchronous egress and ingress fluid flow related to compressional reactivation of basement faults: the Phoenix and Gryphon uranium deposits, southeastern Athabasca Basin, Saskatchewan, Canada

    Science.gov (United States)

    Li, Zenghua; Chi, Guoxiang; Bethune, Kathryn M.; Eldursi, Khalifa; Thomas, David; Quirt, David; Ledru, Patrick

    2017-05-01

    Previous studies on unconformity-related uranium deposits in the Athabasca Basin (Canada) suggest that egress flow and ingress flow can develop along single fault systems at different stages of compressional deformation. This research aims to examine whether or not both ingress and egress flow can develop at the same time within an area under a common compressional stress field, as suggested by the reverse displacement of the unconformity surface by the basement faults. The study considers the Phoenix and Gryphon uranium deposits in the Wheeler River area in the southeastern part of the Athabasca Basin. Two-dimensional numerical modeling of fluid flow, coupled with compressional deformation and thermal effects, was carried out to examine the fluid flow pattern. The results show that local variations in the basement geology under a common compressional stress field can result in both egress and ingress flow at the same time. The fault zone at Phoenix underwent a relatively low degree of deformation, as reflected by minor reverse displacement of the unconformity, and egress flow developed, whereas the fault zone at Gryphon experienced a relatively high degree of deformation, as demonstrated by significant reverse displacement of the unconformity, and ingress flow was dominant. The correlation between strain development and location of uranium mineralization, as exemplified by Gryphon and Phoenix uranium deposits, suggests that the localization of dilation predicted by numerical modeling may represent favourable sites for uranium mineralization in the Athabasca Basin.

  12. Multielement statistical evidence for uraniferous hydrothermal activity in sandstones overlying the Phoenix uranium deposit, Athabasca Basin, Canada

    Science.gov (United States)

    Chen, Shishi; Hattori, Keiko; Grunsky, Eric C.

    2017-07-01

    The Phoenix U deposit, with indicated resources of 70.2 M lb U3O8, occurs along the unconformity between the Proterozoic Athabasca Group sandstones and the crystalline basement rocks. Principal component analysis (PCA) is applied to the compositions of sandstones overlying the deposit. Among PCs, PC1 accounts for the largest variability of U and shows a positive association of U with rare earth elements (REEs) + Y + Cu + B + Na + Mg + Ni + Be. The evidence suggests that U was dispersed into sandstones together with these elements during the uraniferous hydrothermal activity. Uranium shows an inverse association with Zr, Hf, Th, Fe, and Ti. Since they are common in detrital heavy minerals, such heavy minerals are not the major host of U. The elements positively associated with U are high in concentrations above the deposit, forming a "chimney-like" or "hump-like" distribution in a vertical section. Their enrichment patterns are explained by the ascent of basement fluids through faults to sandstones and the circulation of basinal fluids around the deposit. The Pb isotope compositions of whole rocks are similar to expected values calculated from the concentrations of U, Th, and Pb except for sandstones close to the deposit. The data suggest that in situ decay of U and Th is responsible for the Pb isotope compositions of most sandstones and that highly radiogenic Pb dispersed from the deposit to the proximal sandstones long after the mineralization. This secondary dispersion is captured in PC8, which has low eigenvalue. The data suggests that the secondary dispersion has minor effect on the overall lithogeochemistry of sandstones.

  13. The uranium-bearing nickel-cobalt-native silver deposits in the Black Hawk district, Grant County, New Mexico

    Science.gov (United States)

    Gillerman, Elliot; Whitebread, Donald H.

    1953-01-01

    The Black Hawk (Bullard Peak) district, Grant County, N. Mex., is 21 miles by road west of Silver City. From 1881 to 1893 more than $1,000,000.00 of high-grade silver ore is reported to have been shipped from the district. Since 1893 there has been no mining in the district except during a short period in 1917 when the Black Hawk mine was rehabilitated. Pre-Cambrian quartz diorite gneiss, which contains inclusions of quartzite, schist, monzonite, and quartz monzonite, is the most widespread rock in the district. The quartz diorite gneiss is intruded by many pre-Cambrian and younger rocks, including diorite granite, diabase, monzonite porphyry and andesite and is overlain by the Upper Cretaceous Beartooth quartzite. The monzonite porphyry, probably of late Cretaceous or early Tertiary age, forms a small stock along the northwestern edge of the district and numerous dikes and irregular masses throughout the district. The ore deposits are in fissure veins that contain silver, cobalt, and uranium. The ore minerals, which include native silver, niccolite, millerite, skutterudite, nickel skutterudite, bismuthinite, pitchblende, and sphalerite, are in a carbonate gangue in narrow, persistent veins, most of which trend northeasterly. Pitchblende has been identified in the Black Hawk and the Alhabra deposits and unidentified radioactive minerals were found at five other localities. The deposits that contain the radioactive minerals constitude a belt 600 to 1,500 feet wide that trends about N. 45° E., and is approximately parallel to the southeastern boundary of the monzonite porphyry stock. All the major ore deposits are in the quartz diorite gneiss in close proximity to the monzonite porphyry. The ore deposits are similar to the deposits at Great Bear Lake, Canada, and Joachimstahl, Czechoslovakia.

  14. Mobility of radium and uranium in an uranium mill tailings deposit; Mobilite du radium et de l`uranium dans un site de stockage de residus issus du traitement de minerais d`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Bassot, S. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de l`Environnement et des Installations]|[Besancon Univ., 25 (France)

    1997-03-01

    In France, the extraction of uranium for nuclear power plants has generated more than 60 millions tons of residues. They are disposed at the surface and contain still more than 70 % of the initial activity of the ores due to the presence of uranium 238 daughters like thorium 230, radium 226 and lead 210. When water percolates through the tailings, the radioelements can migrate until they reach the geosphere. The radioelements rate coming from such a disposal depends on the hydrodynamic characteristics of the site and on the physicochemical processes which control the mobility of the radioelements. Therefore, we have studied the geochemical behaviour of radium and uranium at the Lengenfeld site in Germany. Analysis of the residues has allowed us to reconstituted the history of the site. The disposal was probably the result of an alkaline treatment applied to a mixture of granitic and sedimentary ores. Moreover, this analysis has permitted us to determine the nature of the mineral phases which can sorb the radioelements (clays, carbonate phases and iron oxo-hydroxides). For some of them, a mechanism of sorption was proposed and the associated constants were determined. Applying geochemical codes to our results has shown which solids control the solution composition and has also permitted us to estimate the distribution of radium between the solid and solution phases. From these data, the beginning of a prediction of the radium mobility evolution with time, at the Lengenfeld site, has been carried out. (authors) 50 refs.

  15. Numerical study of the target material and geometry influence on the uranium deposition

    Energy Technology Data Exchange (ETDEWEB)

    Moshkunov, K.A., E-mail: moshkunov@gmail.com [Joint Institute for High Temperatures, RAS, Izhorskaya 13, 125412 Moscow (Russian Federation); Smirnov, V.P. [Joint Institute for High Temperatures, RAS, Izhorskaya 13, 125412 Moscow (Russian Federation); Kogut, D.K.; Trifonov, N.N.; Kurnaev, V.A. [National Research Nuclear University MEPhI, Kashirskoe Shosse 31, Moscow (Russian Federation)

    2013-02-15

    The sputtering and reflection of uranium ions from various targets are studied by the Monte-Carlo binary collision model. A 50–1500 eV energy range and a choice of materials are dictated by the task of an efficient material collection in a plasma-based nuclear fuel regeneration machine. On the basis of modeled data analysis of the optimal collector geometry is derived. It is a cavity with a bottom tilted to walls and the aspect ratio of 2:1. Carbon was found to be the best substrate material.

  16. Vein-Type Uranium Deposits in Proterozoic Rocks Les gisements uranifères de type filonien dans les terrains protérozoïques

    Directory of Open Access Journals (Sweden)

    Ferguson J.

    2006-11-01

    Full Text Available Development of quartz-pebble conglomerate uranium deposits was confined to the period 2800-2200 My. The first appearance of these deposits coincides with major igneous, sedimentary, biogenic and tectonic changes, and it is suggested that all of these factors jointly contribute to the uniqueness of quartz-pebble conglomerate uranium deposits. Vein-type uranium deposits made their appearance in the post-2200 My. period. However, over 90% of vein-type uranium deposits are found in rocks dated between 2200 and 1400 My. It is suggested that this skewness is real. As continental crustal development in post-2200 My. times appears mainly to follow uniformitarian lines, the only variable which could explain the concentration of vein-type uranium in the 2200-1700 My. period appears to be a steadily evolving atmosphere. It is suggested that during these times the hydrosphere was sufficiently oxidisinq for uranyl transport, but that rapidly reducing conditions were met short distances into the lithosphere. Reduction resulted in precipitation of uranium as UO2 from meteoric water into suitable structural traps, which ware largely developed during periods of prolonged erosion. The structural traps may also have been active during the early sedimentation of the Middle Proterozoic cover rocks. Rapid development of impermecible cover rocks preserved the uranium deposits. La formation de gisements uranifères dans les conglomérats à galets de quartz s'étend sur la période qui va de 2800 à 2200 millions d'années (MA. La première apparition de ces dépôts coïncide avec d'importantes modifications ignées, sédimentaires, biogénétiques et tectoniques ; les auteurs suggèrent que tous ces facteurs ont contribué ensemble au caractère unique de ces gisements d'uranium. Les gisements d'uranium de type filonien sont apparus il y a plus de 2200 MA. Cependant, plus de 90 % d'entre eux se trouvent dans des terrains datés de 2200 à 1400 MA. On suggère que

  17. Uranium-rich opal from the Nopal I uranium deposit, Peña Blanca, Mexico: Evidence for the uptake and retardation of radionuclides

    Science.gov (United States)

    Schindler, Michael; Fayek, Mostafa; Hawthorne, Frank C.

    2010-01-01

    The Nopal I uranium deposit of the Sierra Peña Blanca, Mexico, has been the focus of numerous studies because of its economic importance and its use as a natural analog for nuclear-waste disposal in volcanic tuff. Secondary uranyl minerals such as uranophane, Ca[(UO 2)(SiO 3OH)] 2(H 2O) 5, and weeksite, (K,Na) 2[(UO 2) 2(Si 5O 13)](H 2O) 3, occur in the vadose zone of the deposit and are overgrown by silica glaze. These glazes consist mainly of opal A, which contains small particles of uraninite, UO 2, and weeksite. Close to a fault between brecciated volcanic rocks and welded tuff, a greenish silica glaze coats the altered breccia. Yellow silica glazes from the center of the breccia pipe and from the high-grade pile coat uranyl-silicates, predominantly uranophane and weeksite. All silica glazes are strongly zoned with respect to U and Ca, and the distribution of these elements indicates curved features and spherical particles inside the coatings. The concentrations of U and Ca correlate in the different zones and both elements inversely correlate with the concentration of Si. Zones within the silica glazes contain U and Ca in a 1:1 ratio with maximum concentrations of 0.08 and 0.15 at.% for the greenish and yellow glazes, respectively, suggesting trapping of either Ca 1U 1-aqueous species or -particles in the colloidal silica. X-ray photoelectron spectroscopy (XPS), Fourier-transform infra-red spectroscopy (FTIR), and oxygen-isotope ratios measured by secondary-ion mass spectrometry (SIMS) indicate higher U 6+/U 4+ ratios, higher proportions of Si-OH groups and lower δ 18O values for the greenish silica glaze than for the yellow silica glaze. These differences in composition reflect increasing brecciation, porosity, and permeability from the center of the breccia pipe (yellow silica glaze) toward the fault (green silica glaze), where the seepage of meteoric water and Eh are higher.

  18. GIS prospectivity mapping and 3D modeling validation for potential uranium deposit targets in Shangnan district, China

    Science.gov (United States)

    Xie, Jiayu; Wang, Gongwen; Sha, Yazhou; Liu, Jiajun; Wen, Botao; Nie, Ming; Zhang, Shuai

    2017-04-01

    Integrating multi-source geoscience information (such as geology, geophysics, geochemistry, and remote sensing) using GIS mapping is one of the key topics and frontiers in quantitative geosciences for mineral exploration. GIS prospective mapping and three-dimensional (3D) modeling can be used not only to extract exploration criteria and delineate metallogenetic targets but also to provide important information for the quantitative assessment of mineral resources. This paper uses the Shangnan district of Shaanxi province (China) as a case study area. GIS mapping and potential granite-hydrothermal uranium targeting were conducted in the study area combining weights of evidence (WofE) and concentration-area (C-A) fractal methods with multi-source geoscience information. 3D deposit-scale modeling using GOCAD software was performed to validate the shapes and features of the potential targets at the subsurface. The research results show that: (1) the known deposits have potential zones at depth, and the 3D geological models can delineate surface or subsurface ore-forming features, which can be used to analyze the uncertainty of the shape and feature of prospectivity mapping at the subsurface; (2) single geochemistry anomalies or remote sensing anomalies at the surface require combining the depth exploration criteria of geophysics to identify potential targets; and (3) the single or sparse exploration criteria zone with few mineralization spots at the surface has high uncertainty in terms of the exploration target.

  19. Rare earth and other rare elements in uranium ores of paleovalley deposits in the Vitim district: Distribution, occurrence, and applied implications

    Science.gov (United States)

    Vinokurov, S. F.; Magazina, L. O.; Strelkova, E. A.

    2017-03-01

    The degree of concentration and REE and Zr distribution and occurrence in uranium ore samples from paleovalley deposits are considered. Various types of REE distribution in ores with variable uranium content has been revealed: the negative type with predominance of LREE in ordinary ore and the V-shaped type with significant growth of Y, MREE, and HREE contents in high-grade ore. In addition, the relationship between U, on the one hand, and MREE, HREE, Y, and Zr, on the other hand, has been established. Predominant isomorphic incorporation of these elements into various uranium constituents is suggested. The conclusion was arrived at about the most probable gain of REE and Zr along with U on various geochemical barriers from postvolcanic thermal carbonated and sulfuric-acid aqueous solutions enriched in these chemical elements. The significant enrichment of uranium ore in REE confirms the real possibility of recovery of them as a by-product from working solutions in the process of in situ uranium leaching.

  20. Characterization of titanite generations from Gameleira-I deposit (U-anomaly 35) Lagoa Real Uranium Province (LRUP), Bahia state, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Camila M. dos; Rios, Francisco Javier; Amorim, Lucas E.D.; Palmieri, Helena E., E-mail: cms@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The Lagoa Real Uranium Province (LRUP) is located in northwest of Bahia state and is the major uranium deposit of Brazil. Titanite is a common accessory mineral in rocks of LRUP and usually is part of uranium ore assemblage. Thirty three polished thin sections of F10 drill-hole located in Gameleira I deposit (anomaly 35) were petrographically studied and used for mineral chemistry study. Petrographically, titanite can be differentiated according to texture between granular and prismatic. Granular titanite is generally associated with magmatic assemblage (alkali feldspar hypersolvus granite) and it is present in some albitites (barren magnetite albitite). Prismatic titanite is restricted to albitite (garnet and mineralized magnetite albitite) and is associated with metamorphic assemblage. Microprobe analyses shows a trend from granites to mineralized albitites and do not cluster titanite by its texture, but by its host rocks. On the other hand, trace elements can distinguish titanite generation according to texture. Granular titanite is characterized by some highest high field strength elements (HFSE) values, like Hf, Pb, Th, U and HREE+Y, and the lowest V content. Vanadium has positive correlation with Zr/Hf ratio and inverse with U. Vanadium versus U relationship is inverse to the previously found by literature in LRUP what indicates that titanite was submitted to complexes processes of uranium loss after its crystallization. In addition, hafnium loss can be related to precipitation of hydrothermal zircon as it is strongly partitioned to this mineral. (author)

  1. Geology and recognition criteria for roll-type uranium deposits in continental sandstones. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harshman, E.N.; Adams, S.S.

    1981-01-01

    The study of roll-type deposits during the past 20 years, since the first description of a deposit in the United States, has developed general concepts of ore formation which are accepted widely and are compatible with available data. If this were not the case the concepts would not have endured and could not have been so successfully applied to exploration using the relations of altered-unaltered sandstone. The comparative simplicity of the model, and the ease with which it has been applied to exploration have, oddly enough, probably inhibited detailed studies of ore districts that would have provided data now needed for refinement of ore controls for exploration and resource assessment programs. The most thorough study of a roll-type district was that of the Shirley Basin which is drawn on heavily in this report. The general concept of roll-type formation provides a strong basis for the development of geological observations and guides, or recognition criteria, for resource studies and exploration. Indeed, industry has been developing and using them for 20 years. As the objective of this study was to identify the most useful recognition criteria and develop a method for their systematic use in resource studies and exploration, the study is best summarized by reference to the important geological observations about roll-type deposits.

  2. Video processing of remote sensor data applied to uranium exploration in Wyoming. [Roll-front U deposits

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, R.A.; Marrs, R.W.; Crockell, F.

    1979-06-30

    LANDSAT satellite imagery and aerial photography can be used to map areas of altered sandstone associated with roll-front uranium deposits. Image data must be enhanced so that alteration spectral contrasts can be seen, and video image processing is a fast, low-cost, and efficient tool. For LANDSAT data, the 7/4 ratio produces the best enhancement of altered sandstone. The 6/4 ratio is most effective for color infrared aerial photography. Geochemical and mineralogical associations occur in unaltered, altered, and ore roll-front zones. Samples from Pumpkin Buttes show that iron is the primary coloring agent which makes alteration visually detectable. Eh and pH changes associated with passage of a roll front cause oxidation of magnetite and pyrite to hematite, goethite, and limonite in the host sandstone, thereby producing the alteration. Statistical analysis show that the detectability of geochemical and color zonation in host sands is weakened by soil-forming processes. Alteration can only be mapped in areas of thin soil cover and moderate to sparse vegetative cover.

  3. Sedimentary uranium deposits in France and French Union; Les gisements uraniferes dans les formations sedimentaires en France et dans l'Union francaise

    Energy Technology Data Exchange (ETDEWEB)

    Kervella, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The author gives the actual state of our knowledge on uranium deposits found in recent years. Till now in precambrian formations only one important deposit has been found, at Mounana (Gabon) in a series of conglomeratic sandstones belonging to the 'Francevillien'. The observed mineralization is of the uranium-vanadium type. To the carboniferous formations corresponds in France a series of deposits, among which the most important ones are located at Saint-Hippolyte. Uranium as carburans, organic-bound complexes, is contained in lacustrine schists of Westphalian or lower Stephanian formations. A number of occurrences are also known in permo-triassic formations, particularly in the Vanoise Alps, in the Maritime Alps and in the Herault, where important occurrences have recently been found not far from Lodeve. The cretaceous and tertiary systems contain uranium deposits in phosphate rocks (Morocco, Senegal, Togo, Middle-Congo). Two sedimentary oligocene deposits are known in France. Lastly, the Vinaninkarena deposit in Madagascar, known for a long time, is the only important one reported in the quaternary series. (author) [French] L'auteur fait le point des connaissances acquises sur les gisements decouverts dans les formations sedimentaires en France et dans l'Union francaise au cours des dernieres annees. Les gisements sont classes selon l'age de la formation dans laquelle on les observe. Les terrains precambriens n'ont pour l'instant fourni qu'un seul gisement notable; situe a Mouana (Gabon). C'est en decembre 1956 que cet important gisement fut decouvert dans une serie de gres conglomeratiques appartenant au Francevillien. La mineralisation observee est du type vanadium-uranium. Au carbonifere correspond en France metropolitaine une serie de gisements d'interet variable. Les plus importants sont ceux de Saint-Hippolyte (Haut-Rhin) ou l'uranium est contenu dans des schistes lacustres du Westphalien ou du

  4. Uranium immobilization and nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  5. Field, model, and computer simulation study of some aspects of the origin and distribution of Colorado Plateau-type uranium deposits

    Science.gov (United States)

    Ethridge, F.G.; Sunada, D.K.; Tyler, Noel; Andrews, Sarah

    1982-01-01

    Numerous hypotheses have been proposed to account for the nature and distribution of tabular uranium and vanadium-uranium deposits of the Colorado Plateau. In one of these hypotheses it is suggested that the deposits resulted from geochemical reactions at the interface between a relatively stagnant groundwater solution and a dynamic, ore-carrying groundwater solution which permeated the host sandstones (Shawe, 1956; Granger, et al., 1961; Granger, 1968, 1976; and Granger and Warren, 1979). The study described here was designed to investigate some aspects of this hypothesis, particularly the nature of fluid flow in sands and sandstones, the nature and distribution of deposits, and the relations between the deposits and the host sandstones. The investigation, which was divided into three phases, involved physical model, field, and computer simulation studies. During the initial phase of the investigation, physical model studies were conducted in porous-media flumes. These studies verified the fact that humic acid precipitates could form at the interface between a humic acid solution and a potassium aluminum sulfate solution and that the nature and distribution of these precipitates were related to flow phenomena and to the nature and distribution of the host porous-media. During the second phase of the investigation field studies of permeability and porosity patterns in Holocene stream deposits were investigated and the data obtained were used to design more realistic porous media models. These model studies, which simulated actual stream deposits, demonstrated that precipitates possess many characteristics, in terms of their nature and relation to host sandstones, that are similar to ore deposits of the Colorado Plateau. The final phase of the investigation involved field studies of actual deposits, additional model studies in a large indoor flume, and computer simulation studies. The field investigations provided an up-to-date interpretation of the depositional

  6. A new genetic interpretation for the Caotaobei uranium deposit associated with the shoshonitic volcanic rocks in the Hecaokeng ore field, southern Jiangxi, China

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Yang

    2017-03-01

    Full Text Available Combined with in-situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS zircon UPb geochronology, published and unpublished literature on the Caotaobei uranium deposit in southern Jiangxi province, China, is re-examined to provide an improved understanding of the origin of the main ore (103 Ma. The Caotaobei deposit lies in the Hecaokeng ore field and is currently one of China's largest, volcanic-related uranium producers. Unlike commonly known volcanogenic uranium deposits throughout the world, it is spatially associated with intermediate lavas with a shoshonitic composition. Uranium mineralization (pitchblende occurs predominantly as veinlets, disseminations, and massive ores, hosted by the cryptoexplosive breccias rimming the Caotaobei crater. Zircons from one latite define four distinct 206Pb/238U age groups at 220–235 Ma (Triassic, 188 Ma (Early Jurassic, 131–137 Ma (Early Cretaceous, and 97–103 Ma (Early-Late Cretaceous transition, hereafter termed mid-Cretaceous. The integrated age (134 ± 2 Ma of Early Cretaceous zircons (group III is interpreted as representing the time of lava emplacement. The age data, together with the re-examination of literature, does not definitively support a volcanogenic origin for the generation of the deposit, which was proposed by the previous workers based mainly on the close spatial relationship and the age similarity between the main ore and volcanic lavas. Drill core and grade-control data reveal that rich concentrations of primary uranium ore are common around the granite porphyry dikes cutting the lavas, and that the cryptoexplosive breccias away from the dikes are barren or unmineralized. These observations indicate that the emplacement of the granite porphyries exerts a fundamental control on ore distribution and thus a genetic link exists between main-stage uranium mineralization and the intrusions of the dikes. Zircon overgrowths of mid-Cretaceous age (99.6

  7. The role of the thermal convection of fluids in the formation of unconformity-type uranium deposits: the Athabasca Basin, Canada

    Science.gov (United States)

    Pek, A. A.; Malkovsky, V. I.

    2017-05-01

    In the global production of uranium, 18% belong to the unconformity-type Canadian deposits localized in the Athabasca Basin. These deposits, which are unique in terms of their ore quality, were primarily studied by Canadian and French scientists. They have elaborated the diagenetic-hydrothermal hypothesis of ore formation, which suggests that (1) the deposits were formed within a sedimentary basin near an unconformity surface dividing the folded Archean-Proterozoic metamorphic basement and a gently dipping sedimentary cover, which is not affected by metamorphism; (2) the spatial accommodation of the deposits is controlled by the rejuvenated faults in the basement at their exit into the overlying sedimentary sequence; the ore bodies are localized above and below the unconformity surface; (3) the occurrence of graphite-bearing rocks is an important factor in controlling the local structural mineralization; (4) the ore bodies are the products of uranium precipitation on a reducing barrier. The mechanism that drives the circulation of ore-forming hydrothermal solutions has remained one of the main unclear questions in the general genetic concept. The ore was deposited above the surface of the unconformity due to the upflow discharge of the solution from the fault zones into the overlying conglomerate and sandstone. The ore formation below this surface is a result of the downflow migration of the solutions along the fault zones from sandstone into the basement rocks. A thermal convective system with the conjugated convection cells in the basement and sedimentary fill of the basin may be a possible explanation of why the hydrotherms circulate in the opposite directions. The results of our computations in the model setting of the free thermal convection of fluids are consistent with the conceptual reasoning about the conditions of the formation of unique uranium deposits in the Athabasca Basin. The calculated rates of the focused solution circulation through the fault

  8. Uranium and Vanadium Deposits

    Data.gov (United States)

    Department of Homeland Security — Mineral resource occurrence data covering the world, most thoroughly within the U.S. This database contains the records previously provided in the Mineral Resource...

  9. Distribution of calcretes and gypcretes in southwestern United States and their uranium favorability, based on a study of deposits in Western Australia and South West Africa (Namibia)

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, D.; Merifield, P.M.; Orme, A.R.; Kohl, M.S.; Kolker, O.; Lunt, O.R.

    1978-01-06

    Calcrete, dolocrete, and gypcrete carnotite are abundant in western Australia and Namib Desert, although only a few are of ore grade. The geology of these deposits are described. A genetic classification of calcretes emphasizing uranium favorability was developed, based on the distinction between pedogenic and nonpedogenic processes. Similarities between western Australia and South West Africa give support for the conclusions that lateral transport of U in groundwater is essential to ore deposition and that bedrock barriers or constrictions which narrow the channel of subsurface flow or force the water close to the land surface, greatly favor the formation of uraniferous calcretes. Criteria for uranium favorability deduced from the Australian and South West African studies were applied in a preliminary way to the southern Basin and Range Province of U.S. The procedure is to search for areas in which nonpedogenic calcrete or gypcrete may have developed. A caliche distribution map was compiled from soil survey and field data. Many areas were visited and some of the more interesting are described briefly, including parts of Clark County, Nevada, with occurrences of carnotite in calcrete. (DLC)

  10. Increased Concentrations of Short-Lived Decay-Series Radionuclides in Groundwaters Underneath the Nopal I Uranium Deposit at Pena Blanca, Mexico

    Science.gov (United States)

    Luo, S.; Ku, T.; Todd, V.; Murrell, M. T.; Dinsmoor, J. C.

    2007-05-01

    The Nopal I uranium ore deposit at Pena Blanca, Mexico, located at > 200 meters above the groundwater table, provides an ideal natural analog for quantifying the effectiveness of geological barrier for isolation of radioactive waste nuclides from reaching the human environments through ground water transport. To fulfill such natural analog studies, three wells (PB1, PB2, and PB3 respectively) were drilled at the site from the land surface down to the saturated groundwater zone and ground waters were collected from each of these wells through large- volume sampling/in-situ Mn-filter filtration for analyses of short-lived uranium/thorium-series radionuclides. Our measurements from PB1 show that the groundwater standing in the hole has much lower 222Rn activity than the freshly pumped groundwater. From this change in 222Rn activity, we estimate the residence time of groundwater in PB1 to be about 20 days. Our measurements also show that the activities of short-lived radioisotopes of Th (234Th), Ra (228Ra, 224Ra, 223Ra), Rn (222Rn), Pb (210Pb), and Po (210Po) in PB1, PB2, and PB3 are all significantly higher than those from the other wells near the Nopal I site. These high activities provide evidence for the enrichment of long-lived U and Ra isotopes in the groundwater as well as in the associated adsorbed phases on the fractured aquifer rocks underneath the ore deposit. Such enrichment suggests a rapid dissolution of U and Ra isotopes from the uranium ore deposit in the vadose zone and the subsequent migration to the groundwater underneath. A reactive transport model can be established to characterize the in-situ transport of radionuclides at the site. The observed change of 222Rn activity at PB1 also suggests that the measured high radioactivityies in ground waters from the site isare not an artifact of drilling operations. However, further studies are needed to assess if or to what extent the radionuclide migration is affected by the previous mining activities at

  11. Uranium: A Dentist's perspective.

    Science.gov (United States)

    Toor, R S S; Brar, G S

    2012-01-01

    Uranium is a naturally occurring radionuclide found in granite and other mineral deposits. In its natural state, it consists of three isotopes (U-234, U-235 and U-238). On an average, 1% - 2% of ingested uranium is absorbed in the gastrointestinal tract in adults. The absorbed uranium rapidly enters the bloodstream and forms a diffusible ionic uranyl hydrogen carbonate complex (UO2HCO3+) which is in equilibrium with a nondiffusible uranyl albumin complex. In the skeleton, the uranyl ion replaces calcium in the hydroxyapatite complex of the bone crystal. Although in North India, there is a risk of radiological toxicity from orally ingested natural uranium, the principal health effects are chemical toxicity. The skeleton and kidney are the primary sites of uranium accumulation. Acute high dose of uranyl nitrate delays tooth eruption, and mandibular growth and development, probably due to its effect on target cells. Based on all previous research and recommendations, the role of a dentist is to educate the masses about the adverse effects of uranium on the overall as well as the dental health. The authors recommended that apart from the discontinuation of the addition of uranium to porcelain, the Public community water supplies must also comply with the Environmental Protection Agency (EPA) standards of uranium levels being not more than 30 ppb (parts per billion).

  12. Distribution of uranium-bearing phases in soils from Fernald

    Energy Technology Data Exchange (ETDEWEB)

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1993-12-31

    Electron beam techniques have been used to characterize uranium-contaminated soils and the Fernald Site, Ohio. Uranium particulates have been deposited on the soil through chemical spills and from the operation of an incinerator plant on the site. The major uranium phases have been identified by electron microscopy as uraninite, autunite, and uranium phosphite [U(PO{sub 3}){sub 4}]. Some of the uranium has undergone weathering resulting in the redistribution of uranium within the soil.

  13. Microbial accumulation of uranium, radium, and cesium

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.; North, S.E.

    1981-05-01

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested.

  14. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  15. ELECTROLYSIS OF THORIUM AND URANIUM

    Science.gov (United States)

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  16. The Palmottu natural analogue project. The behaviour of natural radionuclides in and around uranium deposits. Summary report 1992-1994

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, R.; Ruskeeniemi, T.; Ahonen, L. [Geological Survey of Finland, Espoo (Finland); Suksi, J. [Helsinki Univ. (Finland). Lab. of Radiochemistry; Niini, H. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Engineering Geology and Geophysics; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland); Jakobsson, K. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1995-06-01

    The Palmottu U-Th mineralization at Nummi-Pusula, southwestern Finland, has been studied as a natural analogue to deep disposal of radioactive wastes since 1988. The report gives a summary of the results of investigations carried out during the years 1992-1994. The Palmottu Analogue Project aims at a more profound understanding of radionuclide transport processes in fractured crystalline bedrock. The essential factors controlling transport are groundwater flow and interaction between water and rock. Accordingly, the study includes structural interpretations based in part on geophysical measurements, hydrological studies including hydraulic downhole measurements, flow modelling, hydrogeochemical characterization of groundwater, uranium chemistry and colloid chemistry, mineralogical studies, geochemical interpretation and modelling, including paleohydrogeological aspects, and studies of radionuclide mobilization and migration processes including numerical simulations. The project has produced a large amount of data related to natural analogue aspects. The data obtained have already been utilized in developing logical conceptual ideas of the time frames and processes operating in the bedrock of the site. (61 refs., 24 figs., 8 tabs.).

  17. The solubilities of some major and minor element minerals in ground waters associated with a sandstone-hosted uranium deposit.

    Science.gov (United States)

    Wanty, R.B.; Chatcham, J.R.; Langmuir, D.

    1987-01-01

    Ground-water samples from 41 wells penetrating basal Oakville sandstone (Miocene) in S Texas were chemically analysed to identify chemical changes related to nearby U orebodies. The coverage included a 240 km2 area which contains several fault-related U deposits. Factors affecting the hydrochemistry include: 1) relatively high permeabilities of buried fluvial-channel sediments; 2) upwards leakage of brines along growth faults into the aquifer; 3) development of a redox interface (Eh = 0 volts) within the aquifer; and 4) the semi-arid climate. Variations in the saturation index (SI) for chemically reduced minerals of U, As, Mo, Se and for associated minerals such as pyrite outlined the position of known deposits. The SI increases towards zero as the deposits are approached from updip distances of 3-4.5 km, then decreases again downdip. The radiogenic pathfinders Ra and Rn showed very strong anomalies with ore, but diminished to background levels at short distances from ore. A strong He anomaly is deflected in the direction of ground-water flow away from the ore.-R.A.H.

  18. Geophysical and geochemical characterization of the groundwater system and the role of Chatham Fault in groundwater movement at the Coles Hill uranium deposit, Virginia, USA

    Science.gov (United States)

    Gannon, John P.; Burbey, Thomas J.; Bodnar, Robert J.; Aylor, Joseph

    2012-02-01

    The largest undeveloped uranium deposit in the United States, at Coles Hill, is located in the Piedmont region of Pittsylvania County, south-central Virginia, and is hosted in crystalline rocks that are adjacent to and immediately west of Chatham Fault, which separates these crystalline rocks from the metasedimentary rocks of the Danville Triassic Basin (in the east). Groundwater at the site flows through a complex network of interconnected fractures controlled by the geology and structural setting. The role of Chatham Fault in near-surface (barrier or conduit for groundwater flow. The volumetric flow per unit width flowing eastward across the fault is estimated at 0.069-0.17 m2/day. Geochemical data indicate that groundwater in the granitic crystalline rocks represents a mixture of modern and old water, while the Triassic basin contains a possible deeper and older source of water. In regions with shallow water tables, mine dewatering during operation presents significant mining costs. The study's results yield important information concerning the effect that Chatham Fault would have on groundwater flow during Coles Hill mining operations.

  19. Aluminium phosphate sulphate minerals (APS) associated with proterozoic unconformity-type uranium deposits: crystal-chemical characterisation and petrogenetic significance; Les sulfates phosphates d'aluminium hydrates (APS) dans l'environnement des gisements d'uranium associes a une discordance proterozoique: caracterisation cristallochimique et signification petrogenetique

    Energy Technology Data Exchange (ETDEWEB)

    Gaboreau, St

    2005-07-01

    Aluminium phosphate sulfate minerals (APS) are particularly widespread and spatially associated with hydrothermal clay alteration in both the East Alligator River Uranium Field (Northern Territory, Australia) and the Athabasca basin (Saskatchewan, Canada), in the environment of proterozoic unconformity-related uranium deposits (URUD). The purpose of this study is both: 1) to characterize the nature and the origin of the APS minerals on both sides of the middle proterozoic unconformity between the overlying sandstones and the underlying metamorphic basement rocks that host the uranium ore bodies, 2) to improve our knowledge on the suitability of these minerals to indicate the paleo-conditions (redox, pH) at which the alteration processes relative to the uranium deposition operated. The APS minerals result from the interaction of oxidising and relatively acidic fluids with aluminous host rocks enriched in monazite. Several APS-bearing clay assemblages and APS crystal-chemistry have also been distinguished as a function of the distance from the uranium ore bodies or from the structural discontinuities which drained the hydrothermal solutions during the mineralisation event. One of the main results of this study is that the index mineral assemblages, used in the recent literature to describe the alteration zones around the uranium ore bodies, can be theoretically predicted by a set of thermodynamic calculations which simulate different steps of fluid-rock interaction processes related to a downward penetrating of hyper-saline, oxidizing and acidic diagenetic fluids through the lower sandstone units of the basins and then into the metamorphic basement rocks. The above considerations and the fact that APS with different crystal-chemical compositions crystallized in a range of fO{sub 2} and pH at which uranium can either be transported in solution or precipitated as uraninite in the host-rocks make these minerals not only good markers of the degree of alteration of the

  20. Uranium favorability of tertiary sedimentary rocks of the western Okanogan highlands and of the upper Columbia River valley, Washington. [Measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples; no known uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the northern portions of the western Okanogan highlands and in the upper Columbia River valley were investigated during a regional study to determine the favorability for potential uranium resources of the Tertiary sedimentary rocks of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples. No portion of the project area of this report is rated of high or of medium favorability for potential uranium resources. Low favorability ratings are given to Oroville, Tonasket, and Pine Creek areas of the Okanogan River valley; to the Republic graben; and to the William Lakes, Colville, and Sheep Creek areas of the upper Columbia River valley. All these areas contain some fluvial, poorly sorted feldspathic or arkosic sandstones and conglomerates. These rocks are characterized by very low permeability and a consistently high siliceous matrix suggesting very low initial permeability. There are no known uranium deposits in any of these areas, and low level uranium anomalies are rare.

  1. Uranium prospecting; La prospection de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Roubault, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This report is an instruction book for uranium prospecting. It appeals to private prospecting. As prospecting is now a scientific and technical research, it cannot be done without preliminary studies. First of all, general prospecting methods are given with a recall of fundamental geologic data and some general principles which are common with all type of prospecting. The peculiarities of uranium prospecting are also presented and in particular the radioactivity property of uranium as well as the special aspect of uranium ores and the aspect of neighbouring ores. In a third part, a description of the different uranium ores is given and separated in two different categories: primary and secondary ores, according to the place of transformation, deep or near the crust surface respectively. In the first category, the primary ores include pitchblende, thorianite and rare uranium oxides as euxenite and fergusonite for example. In the second category, the secondary ores contain autunite and chalcolite for example. An exhaustive presentation of the geiger-Mueller counter is given with the presentation of its different components, its functioning and utilization and its maintenance. The radioactivity interpretation method is showed as well as the elaboration of a topographic map of the measured radioactivity. A brief presentation of other detection methods than geiger-Mueller counters is given: the measurement of fluorescence and a chemical test using the fluorescence properties of uranium salts. Finally, the main characteristics of uranium deposits are discussed. (M.P.)

  2. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    Science.gov (United States)

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  3. Uranium, depleted uranium, biological effects; Uranium, uranium appauvri, effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  4. Radioactivity and the French uranium bearing minerals; La radioactivite et les mineraux uraniferes francais

    Energy Technology Data Exchange (ETDEWEB)

    Guiollard, P.Ch.; Boisson, J.M.; Leydet, J.C. [Association Francaise de Micromineralogie, 13 - Carry le Rouet (France); Meisser, N. [Universite BFSH, Musee Geologique, Lausanne (Switzerland)

    1998-07-01

    This special issue of Regne Mineral journal is entirely devoted to the French uranium mining industry. It comprises 4 parts dealing with: the uranium mining industry in France (history, uranium rush, deposits, geologic setting, prosperity and recession, situation in 1998, ore processing); radioactivity and the uranium and its descendants (discovery, first French uranium bearing ores, discovery of radioactivity, radium and other uranium descendants, radium mines, uranium mines, atoms, elements and isotopes, uranium genesis, uranium decay, isotopes in an uranium ore, spontaneous fission, selective migration of radionuclides, radon in mines and houses, radioactivity units, radioprotection standards, new standards and controversies, natural and artificial radioactivity, hazards linked with the handling and collecting of uranium ores, conformability with radioprotection standards, radioactivity of natural uranium minerals); the French uranium bearing minerals (composition, crystal structure, reference, etymology, fluorescence). (J.S.)

  5. Uranium industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  6. Biokinetic of soluble and insoluble uranium compounds in Brazilian reference man; Biocinetica dos compostos soluveis e insoluveis de uranio em um homem referencia brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Joaquim Carlos S.; Moraes, Jose Carlos T.B. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Lab. de Engenharia Biomedica

    1996-12-31

    The deposition of inhaled uranium`s soluble compounds was calculated by the LUDEP program for Brazilian`s morphometric and physiological parameters. The results were compared with estimates of deposition of inhaled uranium`s insoluble compounds. (author) 8 refs., 2 figs., 3 tabs.

  7. Monazite Alteration in H2O ± HCl ± NaCl ± CaCl2 Fluids at 150 ºC and psat: Implications for Uranium Deposits

    Directory of Open Access Journals (Sweden)

    Antonin Richard

    2015-10-01

    Full Text Available Spectacular alteration of monazite by diagenetic/hydrothermal brines is well documented in some Proterozoic sedimentary basins in close relationship with high-grade uranium (U deposits. Hence, monazite has been proposed as a viable source for some U deposits. However, monazite alteration remains enigmatic with regard to its high stability in relatively low temperature hydrothermal conditions. Here, the results of batch experiments in which 10 mg of natural monazite grains were reacted with 15 mL of Na-Ca-Cl (6 molal Cl solutions as well as in pure water at 150 ºC and saturated vapor pressure (psat for one and six months are reported. The influence of pH (pH = 1, 3, 7 and relative molar proportions of Na and Ca (Na/(Na + Ca = 0, 0.5, 1, were tested. Discrete alteration features (etch pits and roughened surfaces appear in a minority of the one month experiments and are more developed in the six months experiments, especially at pH = 1 and 3. Although spectacular alteration of monazite, as seen around U deposits, could not be reproduced here, this study shows that monazite is unstable in the presence of fluids analogous to acidic deep basinal brines.

  8. Evolution and origin of brines in proterozoic basins in the vicinity of the basement / cover unconformity. Application to uranium deposits in the Kombolgie (Australia) and Athabasca (Canada) basins; Evolution et origine des saumures dans les bassins proterozoiques au voisinage de la discordance socle/couverture. L'exemple de l'environnement des gisements d'uranium associes aux bassins Kombolgie (Australie) et Athabasca (Canada)

    Energy Technology Data Exchange (ETDEWEB)

    Derome, D

    2002-11-01

    The nature, evolution and origin of the fluids circulating at the basis of two Proterozoic sandstone basins (Kombolgie, Australia and Athabasca, Canada), associated with unconformity type uranium mineralization have been characterised. The coupling of several techniques (micro-thermometry, Raman, LIBS) for analysing individual fluid inclusions trapped in different quartz generations, sampled in the vicinity of Australian and Canadian uranium deposits, has led to the quantitative determination of the composition of the paleo-fluids which may have had a role in the genesis of these deposits. The P-T,x evolution of these fluids, in the vicinity of the interface between the basement and the sedimentary cover, has been reconstructed. The proposed fluid circulation model for the two basins is the following: - A sodium dominated chloride-rich brine (15-20 wt% NaCl + 4-12 wt% CaCl{sub 2}), highly oxidising (equilibrated with hematite) is responsible for the early diagenetic silicification. - The circulation of a calcium chloride-rich brine (25-30 wt.% CaCl{sub 2}+0-10 wt.% NaCl) was responsible for the deposition of a second quartz generation and dravite (magnesium-rich tourmaline) in the sandstone at the nose of the reverse basement-rooted faults. The highly calcic nature of this brine probably results from the evolution of the sodic brine through Na{r_reversible}Ca exchange in the basement. A low salinity fluid with traces of methane was heated heated in the basement rocks. It was mixed with the brines at the basis of the Kombolgie basin, during tectonic movements and hydraulic brecciation. This fluid has been rarely observed in the Canadian deposits. This study has shown many similarities between the fluid regimes of the Kombolgie and Athabasca basins. In both districts, a mixing between two Na-Ca-(Mg) chloride brines has been evidenced. Estimated temperatures and depths (about 5 km) are similar for both basins. However the brines observed at the basis of the Athabasca

  9. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  10. Uranium provinces of North America; their definition, distribution, and models

    Science.gov (United States)

    Finch, Warren Irvin

    1996-01-01

    Uranium resources in North America are principally in unconformity-related, quartz-pebble conglomerate, sandstone, volcanic, and phosphorite types of uranium deposits. Most are concentrated in separate, well-defined metallogenic provinces. Proterozoic quartz-pebble conglomerate and unconformity-related deposits are, respectively, in the Blind River–Elliot Lake (BRELUP) and the Athabasca Basin (ABUP) Uranium Provinces in Canada. Sandstone uranium deposits are of two principal subtypes, tabular and roll-front. Tabular sandstone uranium deposits are mainly in upper Paleozoic and Mesozoic rocks in the Colorado Plateau Uranium Province (CPUP). Roll-front sandstone uranium deposits are in Tertiary rocks of the Rocky Mountain and Intermontane Basins Uranium Province (RMIBUP), and in a narrow belt of Tertiary rocks that form the Gulf Coastal Uranium Province (GCUP) in south Texas and adjacent Mexico. Volcanic uranium deposits are concentrated in the Basin and Range Uranium Province (BRUP) stretching from the McDermitt caldera at the Oregon-Nevada border through the Marysvale district of Utah and Date Creek Basin in Arizona and south into the Sierra de Peña Blanca District, Chihuahua, Mexico. Uraniferous phosphorite occurs in Tertiary sediments in Florida, Georgia, and North and South Carolina and in the Lower Permian Phosphoria Formation in Idaho and adjacent States, but only in Florida has economic recovery been successful. The Florida Phosphorite Uranium Province (FPUP) has yielded large quantities of uranium as a byproduct of the production of phosphoric acid fertilizer. Economically recoverable quantities of copper, gold, molybdenum, nickel, silver, thorium, and vanadium occur with the uranium deposits in some provinces.Many major epochs of uranium mineralization occurred in North America. In the BRELUP, uranium minerals were concentrated in placers during the Early Proterozoic (2,500–2,250 Ma). In the ABUP, the unconformity-related deposits were most likely

  11. Uranium, mining and hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Broder J. [TU Bergakademie Freiberg (Germany). Inst. fuer Geologie; Hasche-Berger, Andrea (eds.) [TU Bergakademie Freiberg (Germany). Inst. fuer Geophysik

    2008-07-01

    Subject of the book is Uranium and its migration in aquatic environments. The following subjects are emphasised: Uranium mining, Phosphate mining, mine closure and remediation, Uranium in groundwater and in bedrock, biogeochemistry of Uranium, environmental behavior, and modeling. Particular results from the leading edge of international research are presented. (orig.)

  12. Uranium processing and properties

    CERN Document Server

    2013-01-01

    Covers a broad spectrum of topics and applications that deal with uranium processing and the properties of uranium Offers extensive coverage of both new and established practices for dealing with uranium supplies in nuclear engineering Promotes the documentation of the state-of-the-art processing techniques utilized for uranium and other specialty metals

  13. IN-SITU RADIONUCLIDE TRANSPORT NEAR THE NOPAL I URANIUM DEPOSIT AT PENA BLANCA, MEXICO: CONSTRAINTS FROM SHORT-LIVED DECAY-SERIES RADIONUCLIDES

    Energy Technology Data Exchange (ETDEWEB)

    S. Luo; T.L. Ku; V. Todd; M. Murrell; J. Alfredo Rodriguez Pineda; J. Dinsmoor; A. Mitchell

    2005-07-11

    For nuclear waste management, an important mechanism by which radioactive waste components are isolated from returning to the human environment, the biosphere, is by the geological barrier in which the effectiveness of the barrier is characterized by in-situ retardation factor, i.e., the transport rate of a radionuclide relative to that of groundwater. As part of natural analog studies of the Yucca Mountain Project of the U. S. Department of Energy, we propose such characterization by using naturally-occurring decay-series radioisotopes as an analog. We collected large-volume (>1000 liters) groundwater samples from three wells (PB, Pozos, and PB4, respectively) near the Nopal I Uranium Ore site at Pena Blanca, Mexico, by using an in-situ Mn-cartridge filtration technique for analysis of short-lived decay-series radionuclides. Results show that the activities of short-lived radioisotopes ({sup 228}Ra, {sup 224}Ra and {sup 223}Ra) and activity ratios of {sup 224}Ra/{sup 228}Ra and {sup 224}Ra/{sup 223}Ra are higher at PB and Pozos than at PB4. In contrast, the {sup 210}Po activity is much lower at PB and Pozos than at PB4. The high Ra activities and activities ratios at PB and Pozos are attributable to the high alpha-recoil input from the aquifer rocks, while the high {sup 210}Po activity at PB4 is due to the enhanced colloidal transport. Based on a uranium-series transport model, we estimate that the in-situ retardation factor of Ra is (0.43 {+-} 0.02) x 10{sup 3} at PB, (1.68 {+-} 0.08) x 10{sup 3} at Pozos, and (1.19 {+-} 0.08) x 10{sup 3} at PB4 and that the mean fracture width in the aquifer rocks is about 0.23 {micro}m at PB, 0.37 {micro}m at Posos, and 4.0 {micro}m at PB4, respectively. The large fracture width at PB4 as derived from the model provides an additional evidence to the inference from the Po measurements that particle-reactive radionuclides are transported mainly as colloidal forms through the large fractures in rocks. Our model also suggests that

  14. URANIUM DECONTAMINATION

    Science.gov (United States)

    Buckingham, J.S.; Carroll, J.L.

    1959-12-22

    A process is described for reducing the extractability of ruthenium, zirconium, and niobium values into hexone contained in an aqueous nitric acid uranium-containing solution. The solution is made acid-deficient, heated to between 55 and 70 deg C, and at that temperature a water-soluble inorganic thiosulfate is added. By this, a precipitate is formed which carries the bulk of the ruthenium, and the remainder of the ruthenium as well as the zirconium and niobium are converted to a hexone-nonextractable form. The rutheniumcontaining precipitate can either be removed from the solu tion or it can be dissolved as a hexone-non-extractable compound by the addition of sodium dichromate prior to hexone extraction.

  15. Uranium industry annual 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  16. URANIUM RECOVERY PROCESS

    Science.gov (United States)

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  17. Uranium: biokinetics and toxicity; Biocinetique et toxicite de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Menetrier, F.; Renaud-Salis, V.; Flury-Herard, A

    2000-07-01

    This report was achieved as a part of a collaboration with the Fuel Cycle Direction. Its aim was to give the state of the art about: the behaviour of uranium in the human organism (biokinetics) after ingestion, its toxicity (mainly renal) and the current regulation about its incorporation. Both in the upstream and in the downstream of the fuel cycle, uranium remains, quantitatively, the first element in the cycle which is, at the present time, temporarily disposed or recycled. Such a considerable quantity of uranium sets the problem of its risk on the health. In the long term, the biosphere may be affected and consequently the public may ingest water or food contaminated with uranium. In this way, radiological and chemical toxicity risk may be activated. This report emphasizes: the necessity of confirming some experimental and epidemiological biokinetic data used or not in the ICRP models. Unsolved questions remain about the gastrointestinal absorption according to chemical form (valency state, mixtures...), mass and individual variations (age, disease) further a chronic ingestion of uranium. It is well established that uranium is mainly deposited in the skeleton and the kidney. But the skeleton kinetics following a chronic ingestion and especially in some diseases has to be more elucidated; the necessity of taking into account uranium at first as a chemical toxic, essentially in the kidney and determining the threshold of functional lesion. In this way, it is important to look for some specific markers; the problem of not considering chemical toxicity of uranium in the texts regulating its incorporation.

  18. Imouraren - uranium leaching tests and specificities with analcites

    Energy Technology Data Exchange (ETDEWEB)

    Wattinne-Morice, A., E-mail: aurelia.wattinne@areva.com [AREVA - Tour Areva, Paris la Defense (France); Belieres, M. [AREVA - Service d' Etudes de Procede et Analyses (SEPA), Bessines sur Gartempe (France)

    2010-07-01

    Imouraren is a sedimentary uranium deposit (total > 150 000 tU, average U ~ 0.08 %), located in Niger (~ 100 km from Agadez). Uranium mineralization is trapped in sandstones and is widely oxidized (uranotyle, metatuyamunite), but a part remains reduced (pitchblende, uraninite). The sandstones have a peculiar mineralogical assemblage (analcite partly chloritized) which can affect uranium recovery. Several acid heap leaching tests have been completed to determine the most suitable process parameters. Microscopic studies and XRD analysis performed on fresh ore and on leached residue highlight the complex behavior of uranium and the associated mineralogical families during the tests. (author)

  19. Carbon and oxygen isotopes of marbles associated to the phosphorous-uranium deposit of Itataia, Ceara state, Brazil; Isotopos de carbono e oxigenio dos marmores associados com o deposito fosforo uranifero de Itataia, Ceara

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Givaldo Lessa [Universidade Federal do Ceara (UFC), Fortaleza (Brazil). Dept. de Geologia]. E-mail: givaldolessa@rapix.com.br; Parente, Clovis Vaz; Verissimo, Cesar Ulisses Vieira; Garcia, Maria da Gloria Motta; Melo, Rafael Castro de; Santos, Aldiney Almeida [Universidade Federal do Ceara (UFC/INB), Fortaleza, CE (Brazil). Dept. de Geologia]. E-mail : clovis@ufc.br; Sial, Alcides Nobrega [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). NEG-LABISE. Dept. de Geologia]. E-mail: ans@ufpe.br; Santos, Roberto Ventura [Universidade de Brasilia (UNB), DF (Brazil). Instituto de Geociencias]. E-mail: rventura@unb.br

    2005-06-15

    The phosphorous-uranium deposit of Itataia, Ceara State, NE Brazil, is characterized by colophanites that occur as massive and irregular bodies, and as veins, associated to marbles and calc-silicate lenses that are enclosed in Meso to neo proterozoic pelitic and psamitic metasediments rocks metamorphosed under high amphibolite-facies. Centimetric to metric muscovite- and tourmaline-bearing pegmatitic bodies are common and crosscut both the metapelites and their anatetic products. Plagioclase-rich phyllosilicate-poor pegmatites cut different marble levels, some of which are mineralized in colophane. The marble beds, which are the main ore host-rock, show a heterogeneous structural pattern as a result of complex folding and thrusting. C and O isotope analyses in carbonates from one of the sections that crosscut partially mineralized monocarbonate rocks show {delta}13{sub PDB} values ranging from +2,0 to -5,0 per mille and {delta}{sup 18}O{sub SMOW} values from +16,3 to +24,2 per mille. Changes in the original isotopic ratios are mainly related to regional metamorphism, as well as to ductile and ductile-brittle post-depositional events associated with infiltration of hydrothermal and/or supergenic fluids and karstification. The thin, impure dolomitic marble bodies, which show the lowest isotopic ratios, were the most affected by these events. Retromorphic mylonitic levels and especially karstic dissolution breccias found at depths of 144 m and inserted in the carbonate levels are likely to represent fluid percolation channels. The thicker monocarbonate levels, which show the highest delta{sup 13}{sub CPDB} and delta{sup 18}O{sub SMOW} ratios (0{+-} 2 per mille and >20 per mille, respectively), represent isotopically best-preserved beds. The mineral assemblage (deposed, scapolite, phlogopite, clinochlore and tremolite) indicates that devolatilization and/or de carbonation reactions did occur, but this does not preclude the hypothesis of external fluid interaction as

  20. Uranium Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — An integral part of Y‑12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium...

  1. Cathodoluminescence of uranium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Winer, K.; Colmenares, C.; Wooten, F.

    1984-08-09

    The cathodoluminescence of uranium oxide surfaces prepared in-situ from clean uranium exposed to dry oxygen was studied. The broad asymmetric peak observed at 470 nm is attributed to F-center excitation.

  2. Uranium-lead dating of hydrothermal zircon and monazite from the Sin Quyen Fe-Cu-REE-Au-(U) deposit, northwestern Vietnam

    Science.gov (United States)

    Li, Xiao-Chun; Zhou, Mei-Fu; Chen, Wei Terry; Zhao, Xin-Fu; Tran, MyDung

    2017-06-01

    The Sin Quyen deposit in northwestern Vietnam contains economic concentrations of Cu, Au and LREE, and sub-economic concentration of U. In this deposit, massive and banded replacement ores are hosted in Neoproterozoic metapelite. The paragenetic sequence includes sodic alteration (stage I), calcic-potassic alteration and associated Fe-REE-(U) mineralization (stage II), Cu-Au mineralization (stage III), and sulfide-(quartz-carbonate) veins (stage IV). The Sin Quyen deposit experienced an extensive post-ore metamorphic overprint, which makes it difficult to precisely determine the mineralization age. In this study, zircon and monazite U-Pb geochronometers and the Rb-Sr isochron method are used to constrain the timing of mineralization. Zircon grains in the ore are closely intergrown or texturally associated with hydrothermal minerals of stage II (e.g., garnet, allanite, and hedenbergite). They may contain primary fluid inclusions and display irregular zoning in cathodoluminescence (CL) images. Zircon grains are rich in U (688 to 2902 ppm) and poor in Th (0.2 to 2.9 ppm). Their δ18OV-SMOW values range from 11.9 to 14.0‰, higher than those of typical magmatic zircon. These textural and compositional features imply that zircon precipitated from 18O- and U-rich hydrothermal fluids, coeval with the minerals of stage II. Monazite occurs in close association with stage II magnetite and allanite and has low contents of Th (<2700 ppm), indicative of a hydrothermal origin. Hydrothermal zircon and monazite have indistinguishable U-Pb ages of 841 ± 12 and 836 ± 18 Ma, respectively, representing the timing of Fe-REE mineralization. There is no direct isotopic constraint on the timing of the Cu-Au mineralization, but geological observations suggest that the Cu-Au and Fe-REE ores most likely formed within a single evolved hydrothermal process. In the plot of 87Rb/86Sr vs. 87Sr/86Sr, the composition of bulk-ore and biotite separates from ore lie along a reference line for 30 Ma

  3. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Goodknight, C.S.; Burger, J.A. (comps.)

    1982-10-01

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1/sup 0/ x 2/sup 0/ quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed.

  4. Uranium mining: Saskatchewan status

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V. [AREVA Resources Canada Inc., Saskatoon, Saskatchewan, Ontario (Canada)

    2012-07-01

    This paper gives the status of uranium mining by Areva in Saskatchewan. Uranium production now meets 85% of world demand for power generation. 80% of world production of uranium comes from top 5 countries: Kazakhstan, Canada, Australia, Niger and Namibia. Saskatchewan is currently the only Canadian province with active uranium mines and mills and the largest exploration programs. Several mine projects are going through the environmental assessment process. Public opinion is in favour of mining activities in Saskatchewan.

  5. Uranium - raw material reserves for coming generations. [Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Keutner, H.

    1981-06-01

    Large uranium occurences have been discovered in the South of Mexico. The deposits are situated in the Sierra Mixteca. Reserves of 9.400 tons had been at Mexico's disposal even before these new discoveries. The quantitiy discovered recentyl amounts to 20.000 tons. The uranium reserves available apart from those in centrally controlled economic systems are presently estimated at five million tons. Meanwhile American scientists have found out that all the rivers of the world transport about 16.000 tons of uranium from the continents into the oceans per annum. The energy value of this washed out amount of uranium corresponds to the 25-fold world power demand of today. US scientists have discovered that the oceans can provide uranium for about seven million years of the present world energy demand. While the petroleum reserves decrease worldwide it seems that the exploration of uranium has just been started.

  6. Uranium speciation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, A.; Bernhard, G.; Geipel, G.; Reich, T.; Rossberg, A. [Forschungszentrum Rossendorf e.V., Inst. of Radiochemistry, Dresden (Germany); Nitsche, H. [Univ. of California at Berkeley and Lawrence Berkeley National Lab., Nuclear Sciences Div., Berkeley, CA (United States)

    2003-07-01

    Detailed knowledge of the nature of uranium complexes formed after the uptake by plants is an essential prerequisite to describe the migration behavior of uranium in the environment. This study focuses on the determination of uranium speciation after uptake of uranium by lupine plants. For the first time, time-resolved laser-induced fluorescence spectroscopy and X-ray absorption spectroscopy were used to determine the chemical speciation of uranium in plants. Differences were detected between the uranium speciation in the initial solution (hydroponic solution and pore water of soil) and inside the lupine plants. The oxidation state of uranium did not change and remained hexavalent after it was taken up by the lupine plants. The chemical speciation of uranium was identical in the roots, shoot axis, and leaves and was independent of the uranium speciation in the uptake solution. The results indicate that the uranium is predominantly bound as uranyl(VI) phosphate to the phosphoryl groups. Dandelions and lamb's lettuce showed uranium speciation identical to lupine plants. (orig.)

  7. Uranium hexafluoride public risk

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

    1994-08-01

    The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

  8. Preparation of uranium compounds

    Science.gov (United States)

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  9. METHOD OF ROLLING URANIUM

    Science.gov (United States)

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  10. CHEMICAL TOXICITY OF URANIUM

    Directory of Open Access Journals (Sweden)

    Sermin Cam

    2007-06-01

    Full Text Available Uranium, occurs naturally in the earth’s crust, is an alpha emitter radioactive element from the actinide group. For this reason, U-235 and U-238, are uranium isotopes with long half lives, have got radiological toxicity. But, for natural-isotopic-composition uranium (NatU, there is greater risk from chemical toxicity than radiological toxicity. When uranium is get into the body with anyway, also its chemical toxicity must be thought. [TAF Prev Med Bull 2007; 6(3.000: 215-220

  11. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Field, M T; Truesdell, D B

    1982-09-01

    The Albany 1/sup 0/ x 2/sup 0/ Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks.

  12. Gold tailings as a source of waterborne uranium contamination of ...

    African Journals Online (AJOL)

    Tailings deposits from gold and uranium (U) mining in the Witwatersrand basin often contain elevated levels of radioactive and chemo-toxic heavy metals. Through seepage, dissolved U and other metals migrate from tailings deposits via groundwater into adjacent fluvial systems. The subsequent transport through flowing ...

  13. Uranium industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  14. Preliminary study of uranium favorability of the Boulder batholith, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Castor, S.B.; Robins, J.W.

    1978-01-01

    The Boulder batholith of southwestern Montana is a composite Late Cretaceous intrusive mass, mostly composed of quartz monzonite and granodiorite. This study was not restricted to the plutonic rocks; it also includes younger rocks that overlie the batholith, and older rocks that it intrudes. The Boulder batholith area has good overall potential for economic uranium deposits, because its geology is similar to that of areas that contain economic deposits elsewhere in the world, and because at least 35 uranium occurrences of several different types are present. Potential is greatest for the occurrence of small uranium deposits in chalcedony veins and base-metal sulfide veins. Three areas may be favorable for large, low-grade deposits consisting of a number of closely spaced chalcedony veins and enriched wall rock; the Mooney claims, the Boulder area, and the Clancy area. In addition, there is a good possibility of by-product uranium production from phosphatic black shales in the project area. The potential for uranium deposits in breccia masses that cut prebatholith rocks, in manganese-quartz veins near Butte, and in a shear zone that cuts Tertiary rhyolite near Helena cannot be determined on the basis of available information. Low-grade, disseminated, primary uranium concentrations similar to porphyry deposits proposed by Armstrong (1974) may exist in the Boulder batholith, but the primary uranium content of most batholith rocks is low. The geologic environment adjacent to the Boulder batholith is similar in places to that at the Midnite mine in Washington. Some igneous rocks in the project area contain more than 10 ppM U/sub 3/O/sub 8/, and some metasedimentary rocks near the batholith contain reductants such as sulfides and carbonaceous material.

  15. Uranium potential in Precambrian conglomerates of the Central Arizona Arch. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, P.; Wirth, K.R.

    1981-01-01

    The Precambrian quartz-pebble conglomerates in a 9500 km/sup 2/ area of central Arizona between the Mazatzal and Sierra Ancha Mountains were investigated for the presence of significant uranium concentrations or environments favorable for uranium concentration. Abundant conglomerates are found in either the 1740 to 1720 m.y.-old Alder Group, the 1700 m.y.-old Mazatzal Group, or the 1300 to 1250 m.y.-old Apache Group. Supplementing detailed geologic study of the conglomerates is a systematic analysis of major-element, trace-element, and uranium-geochemical data for over 300 rock samples. This analysis provides a relationship between scintillometer data and uranium content for different rock types and gives correlation coefficients between uranium and related metals in the heavy-mineral assemblage. A radiometric variance plot of averages for the various conglomerate types shows that Apache Group conglomerates are Th-rich and too evolved, marine Mazatzal and Alder conglomerates are U-poor, whereas only high-energy fluvial environments in basal Deadman and Mazatzal conglomerates strongly concentrated uranium values. Reevaluation of accepted criteria for uranium concentration in Precambrian quartz-pebble conglomerates in light of new data on uranium-mineral stability under nonreducing conditions and new observations on major world deposits leads to the conclusion that the presence of a U-rich source terrain is singularly the most important factor in finding a conglomeratic uranium deposit. Most Precambrian conglomerates of the world contain depositional environments and heavy mineral concentrates conducive to uranium concentration, but insufficient uranium is present in the source. The reason pyritic, carbonaceous siltstones in the Apache Group of central Arizona contain stratabound uranium deposits is that a nearby U-rich source of high K/sub 2/O rhyolitic volcanism was available during deposition of the siltstones.

  16. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

  17. Uranium isotopes in ground water as a prospecting technique

    Energy Technology Data Exchange (ETDEWEB)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

  18. Uranium dioxide electrolysis

    Science.gov (United States)

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  19. Geology of the Sievi, Kuru and Askola sites. Uranium mineralogy at Askola

    Energy Technology Data Exchange (ETDEWEB)

    Markovaara-Koivisto, M.; Read, D.; Lindberg, A.; Siitari-Kauppi, M.; Togneri, L.

    2009-07-01

    The natural geochemical retardation systems of radioactive elements in the Finnish bedrock are of great relevance to the Finnish nuclear waste disposal programme. It indicates the likely fate of radionuclides released from the deep repository when the chemical environment is oxidizing within its operating stage or in the event of glacial melt water percolates to the repository. In these conditions the uranium occurs in its +6 state, and it is reactive and mobile. Studying uranium migration and retention in oxidizing conditions is thus justified. Uranium migration and retention are studied with samples taken from a natural uranium deposit at Askola. Likewise the uranium migration is studied with laboratory tests. The naturally uranium-rich samples are taken from shallow depths at Askola, and thus the behaviour of uranium can be studied in oxidising conditions. In the laboratory tests uranium is released from a depleted uranium disc and allowed to migrate and retain in Kuru grey granite and Sievi altered tonalite. The uranium is expected to migrate into the rock and to precipitate there as secondary phases. The rate of uranium migration and age of the precipitates in the laboratory experiments are known, but not in the case of the natural analogue studies. The observations from both the natural analogue and the laboratory tests will be used as input data for the coupled geochemical model for uranium migration and retention. (orig.)

  20. Radioactive deposits in California

    Science.gov (United States)

    Walker, George W.; Lovering, Tom G.

    1954-01-01

    Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins

  1. Plans for uranium mining by COGEMA

    Energy Technology Data Exchange (ETDEWEB)

    Bautin, F. [Cogema Australia Pty. Ltd., Sydney, NSW (Australia); Hallenstein, C. [Afmeco Mining and Exploration Pty Ltd, Darwin, NT (Australia)

    1997-12-31

    The COGEMA group is currently evaluating three uranium deposits, Koongarra in the Northern Territory and Manyingee and Oobagooma in WA, with regard to their development potential. The Koongarra deposit, with some 14,000 tonnes of contained U{sub 3}O{sub 8}, is the most advanced, as detailed mining plans and an Environmental Impact Statement (EIS) had been prepared by previous holders of the deposit. An agreement with the Aboriginal Land Owners of the area had also been negotiated with the Northern Land Council, but had not been ratified by the then Commonwealth Government. The sandstone-hosted deposits at Manyingee and Oobagooma contain resources of about 7000 tonne and 10,000 tonne of U{sub 3}O{sub 8} respectively. It is possible that the deposits are amenable to in situ leaching techniques, and this - together with a determination of possible additional field investigations - is being evaluated. COGEMA, through its subsidiary AFmeco Mining and EXploration Pty Ltd, is furthermore embarking upon a sizeable exploration program in West Arnhem Land, Northern Territory. The exploration interests include geological units which are considered to be prospective for world-class uranium deposits. 6 figs.

  2. Meeting of the French geological society - Uranium: geology, geophysics, chemistry. Book of abstracts; Reunion de la Societe Geologique de France - Uranium: geologie, geophysique, chimie. Recueil des resumes

    Energy Technology Data Exchange (ETDEWEB)

    Zakari, A.A.; Mima, S.; Bidaud, A.; Criqui, P.; Menanteau, P.; David, S.; Pagel, M.; Chagnes, A.; Cote, G.; Courtaud, B.; Thiry, J.; Miehe, J.M.; Gilbert, F.; Cuney, M.; Bruneton, P.; Ewington, D.; Vautrin-Ul, C.; Cannizzo, C.; Betelu, S.; Chausse, A.; Ly, J.; Bourgeois, D.; Maynadie, J.; Meyer, D.; Clavier, N.; Costin, D.T.; Cretaz, F.; Szenknect, S.; Ravaux, J.; Poinssot, C.; Dacheux, N.; Durupt, N.; Blanvillain, J.J.; Geffroy, F.; Aparicio, B.; Dubessy, J.; Nguyen-Trung, C.; Robert, P.; Uri, F.; Beaufort, D.; Lescuyer, J.L.; Morichon, E.; Allard, T.; Milesi, J.P.; Richard, A.; Rozsypal, C.; Mercadier, J.; Banks, D.A.; Boiron, M.C.; Cathelineau, M.; Dardel, J.; Billon, S.; Patrier, P.; Wattinne, A.; Vanderhaeghe, O.; Fabre, C.; Castillo, M.; Salvi, S.; Beziat, D.; Williams-Jones, A.E.; Trap, P.; Durand, C.; Goncalves, P.; Marquer, D.; Feybesse, J.L.; Richard, Y.; Orberger, B.; Hofmann, A.; Megneng, M.; Orberger, B.; Bouttemy, M.; Vigneron, J.; Etcheberry, A.; Perdicakis, M.; Prignon, N.; Toe, W.; Andre-Mayer, A.S.; Eglinger, A.; Jordaan, T.; Hocquet, S.; Ledru, P.; Selezneva, V.; Vendryes, G.; Lach, P.; Cuney, M.; Mercadier, J.; Brouand, M.; Duran, C.; Seydoux-Guillaume, A.M.; Bingen, B.; Parseval, P. de; Guillaume, D.; Bosse, V.; Paquette, J.L.; Ingrin, J.; Montel, J.M.; Giot, R.; Maucotel, F.; Hubert, S.; Gautheron, C.; Tassan-Got, L.; Pagel, M.; Barbarand, J.; Cuney, M.; Lach, P.; Bonhoure, J.; Leisen, M.; Kister, P.; Salaun, A.; Villemant, B.; Gerard, M.; Komorowski, J.C.; Michel, A.; Riegler, T.; Tartese, R.; Boulvais, P.; Poujols, M.; Gloaguen, E.; Mazzanti, M.; Mougel, V.; Nocton, G.; Biswas, B.; Pecaut, J.; Othmane, G.; Menguy, N.; Vercouter, T.; Morin, G.; Galoisy, L.; Calas, G.; Fayek, M.

    2010-11-15

    This document brings together the abstracts of the 39 presentations given at this meeting days on uranium, organized by the French geological society, and dealing with: 1 - Prospective study of the electronuclear technological transition; 2 - The front-end of the nuclear cycle: from the molecule to the process; 3 - Geophysics: recent changes; 4 - Use of well logging in uranium exploration; 5 - Genetical classification of thorium deposits; 6 - Genetical nomenclature of uranium sources; 7 - Uranium deposits linked to a Proterozoic discordance - retrospective; 8 - The use of spectral analysis techniques in uranium exploration: real-time mapping of clay alteration features; 9 - Development of functionalized silk-screened carbon electrodes for the analysis of uranium trace amounts; 10 - Study of the actinides solvation sphere in organic environment; 11 - Thermodynamic of uraniferous phases of interest for the nuclear cycle; 12 - Heap leaching of marginal minerals at Somair: from lab studies to the production of 700 t of uranium/year; 13 - Agglomeration phenomenology and role of iron in uranium heap leaching; 14 - Chloride uranyl complexes up to 300 deg. C along the saturation vapour curve: Raman spectroscopy analysis and metallogenic consequences; 15 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): vertical variability of argillaceous weathering; 16 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): contribution of irradiation defects in clays to the tracing of past uranium migrations; 17 - Uranium concentrations in mineralizing fluids of the Athabasca basin: analytical and experimental approach; 18 - Paleo-surfaces and metallic rooting: the autochthonous uranium of pre-Athabasca paleo-alterites, Canada; 19 - Distribution of argillaceous parageneses in the Imouraren deposit - Niger; 20 - Heat flux and radioelements concentration (U, Th, K) of precambrian basements: implications in terms of crust growth mechanisms, paleo

  3. Dynamics of uranium vein mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, R.V. (Ministerstvo Geologii SSR, Moscow)

    1981-01-01

    The formation of uraniun vein deposits and the essence of consanguinity of the mineralization and wall metasomatites are considered. The formation of uranium mineralization is analysed from the positions of Korzhinsky D. S. : the formation of metasomatite aureole and associated vein ores take place as a result of the development of one solution flow while the formation of mineral vein associations occurs on the background of continuous filtration of the solution during metasomato is due to a repeated (pulse) half-opening of fractures and their filling with a part of filtrating solution. The analysis of the available information on the example of two different uranium manifestations permits to reveal certain relations both in the character of wall rock alterations and between the metasomatosis and the formation of ore minerals in veins. The conclusion is made that spatial-time correlations of vein formations with wall metasomatites attest that the pulse formation of ores in veinlets occurs on the background and in interrelation with a consecutive precipitation of components in the aureole volume. The analysis of element migration dynamics in wall aureole carried out from the positions of the Korzhinsky hypothesis of the advance wave of acid components that takes into account the interaction of continuous and pulse mechanisms of solution movement permits to avoid contradictions when interpreting the processes of wall rock alterations and vein ore-forming, and permits to make a common scheme of vein ore-genesis.

  4. Uranium Location Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — A GIS compiled locational database in Microsoft Access of ~15,000 mines with uranium occurrence or production, primarily in the western United States. The metadata...

  5. Potential Aquifer Vulnerability in Regions Down-Gradient from Uranium In Situ Recovery (ISR) Sites

    Science.gov (United States)

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rock...

  6. Uranium hexakisamido complexes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, K.; Mindiola, D.J.; Baker, T.A.; Davis, W.M.; Cummins, C.C. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemistry

    2000-09-01

    Minimal structural changes accompany the oxidation of the paramagnetic uranium(V) anion [U(dbabh){sub 6}]{sup -} to the neutral, diamagnetic counterpart [U(dbabh){sub 6}] (see structure). These two T{sub h}-stmmetric complexes, which were synthetized starting from 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene (Hdbabh), are the first isolable homoleptic hexakisamido complexes of uranium(V) and (VI). (orig.)

  7. Accumulation of uranium by biopigments

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, Takashi; Nakajima, Akira

    1987-01-01

    The uranium adsorbing abilities of various biopigments were investigated. Extremely high adsorption capacities for uranium were found in melanin and bioflavonols (quercetin and morin) having chelating positions with uranium. As a step towards improving the adsorption characteristics of the bioflavonols, quercetin and morin were immobilized on both Bemberg rayon fiber and polyaminostyrene, and the basic features of uranium adsorption by the immobilized bioflavonols were studied. The bioflavonols immobilized on Bemberg rayon fiber have a highly selective capacity to adsorb uranium. Uranium recovery from seawater by the immobilized bioflavonols was markedly affected by the pH value of the seawater, and the uptake at pH 8, which is the pH value of natural seawater, was difficult. However, this adsorbent can accumulate large amounts of uranium from non-saline water. Thus it can be used to remove and recover uranium from uranium refining waste water and other waste sources.

  8. Elkon - development of new world class uranium mining center (v.1)

    Energy Technology Data Exchange (ETDEWEB)

    Boytsov, A., E-mail: boytsov@armz.ru [Atomredmetzoloto (ARMZ), Moscow (Russian Federation)

    2010-07-01

    'Full text:' The uranium deposits of Elkon district are located in the south of Republic of Sakha Yakutia. Deposits contain about 6% of the world known uranium resources: 342 409 tonnes of in situ or 288 768 tonnes of recoverable RAR + Inferred resources. Most significant uranium resources of Elkon district (261 768 tonnes) were identified within five deposits of Yuzhnaya zone. The uranium grade averages 0.15 %. Gold, silver and molybdenum are by-products. Principal resources are proposed to be mined by conventional underground method. Location, shape and dimensions of uranium orebodies are primarily controlled by NW-SE oriented and steeply SW dipping faults of Mesozoic age and surrounding pyrite-carbonate- potassium feldspar alteration zones. Country rocks are Archean gneisses. Deposits are of metasomatic geological type. Principal mineralization is represented by brannerite. The Yuzhnaya zone is about 20 km long. It was explored by underground workings and drill holes. Upper limit of orebodies is at a depth of between 200 m and 500 m. Depth persistence exceeds 2,000 m. Uranium mining enterprise Elkon was established in November 2007. It is a 100% Atomredmetzoloto (ARMZ) subsidiary. The planned producing capacity is up to 5000 Mt U/year. It will perform the entire works related to uranium mining, milling, ore sorting, processing and uranium dioxide production. Technology of ore processing assumes primary radiometric sorting, thickening, sulphide flotation for gold concentrate extraction, subsequent autoclave sulphuric-acid uranium leaching from flotation tails and uranium adsorption onto resin, roasting and heap leaching for uranium from low grade ores, cyanide leaching of gold. Due to a considerable abundance of brannerite, the ore is classified as refractory. Elkon development include 4 main stages: feasibility study and infrastructure development (2009-2011), mine and mill construction (2012- 2015), pilot production (2013-2015), mine development and

  9. Elkon - development of new world class uranium mining center (v.2)

    Energy Technology Data Exchange (ETDEWEB)

    Boytsov, A., E-mail: boytsov@armz.ru [Atomredmetzoloto (ARMZ), Moscow (Russian Federation)

    2010-07-01

    The uranium deposits of Elkon district are located in the south of Republic of Sakha Yakutia. Deposits contain about 6% of the world known uranium resources: 342,409 tonnes of in situ or 288,768 tonnes of recoverable RAR + Inferred resources. Most significant uranium resources of Elkon district (261,768 tonnes) were identified within five deposits of Yuzhnaya zone. The uranium grade averages 0.15 %. Gold, silver and molybdenum are by-products. Principal resources are proposed to be mined by conventional underground method. Location, shape and dimensions of uranium orebodies are primarily controlled by NW-SE oriented and steeply SW dipping faults of Mesozoic age and surrounding pyrite-carbonate- potassium feldspar alteration zones. Country rocks are Archean gneisses. Deposits are of metasomatic geological type. Principal mineralization is represented by brannerite. The Yuzhnaya zone is about 20 km long. It was explored by underground workings and drill holes. Upper limit of orebodies is at a depth of between 200 m and 500 m. Depth persistence exceeds 2,000 m. Uranium mining enterprise Elkon was established in November 2007. It is a 100% Atomredmetzoloto (ARMZ) subsidiary. The planned producing capacity is up to 5,000 Mt U/year. It will perform the entire works related to uranium mining, milling, ore sorting, processing and uranium dioxide production. Technology of ore processing assumes primary radiometric sorting, thickening, sulphide flotation for gold concentrate extraction, subsequent autoclave sulphuric-acid uranium leaching from flotation tails and uranium adsorption onto resin, roasting and heap leaching for uranium from low grade ores, cyanide leaching of gold. Due to a considerable abundance of brannerite, the ore is classified as refractory. Elkon development include 4 main stages: feasibility study and infrastructure development (2009-2011), mine and mill construction (2012- 2015), pilot production (2013-2015), mine development and achieving full capacity

  10. Anticorrosion protection of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, Ivan D.; Kazakovskaya, Tatiana; Tukmakov, Victor; Shapovalov, Vyacheslav [Russian Federal Nuclear Center-VNIIEF, 37, Mira Ave., RU-607190 Sarov (Nizhnii Gorod), 010450 (Russian Federation)

    2004-07-01

    Uranium in atmospheric conditions is non-stable. Sloughing products are being generated on its surface during storage or use. These corrosion products make many difficulties because of necessity to provide personnel safety. Besides, uranium corrosion may cause damage in parts. The first works devoted to uranium corrosion were performed in the framework of the USA Manhattan Project in the early forties of last century. Various methods of uranium protection were investigated, among them the galvanic one was the most studied. Later on the galvanic technology was patented. The works on this problem remains urgent up to the present time. In Russia, many methods of uranium corrosion protection, mainly against atmospheric corrosion, were tried on. In particular, such methods as diffusion zinc and paint coating were investigated. In the first case, a complex intermetallic U-Zn compound was formed but its protection was not reliable enough, this protection system was inconvenient and uncertain and that is why an additional paint coating was necessary. In the case of paint coatings another problem appeared. It was necessary to find such a coating where gas-permeability would prevail over water-permeability. Otherwise significant uranium corrosion occurs. This circumstance together with low mechanical resistance of paint coatings does not allow to use paint coating for long-term protection of uranium. Currently, there are following methods of uranium protection: ion-plasma, galvanic and thermo-vacuum annealing. These are described in this paper. In the end the issue of corrosion protection in reactor core zones is addressed. Here the greatest difficulties are caused when enriched uranium heated up to 500 deg. C needs anticorrosion protection. In this case various metal coatings are not reliable because of brittle inter-metallide formation. The reliable protection may be provided only up to the temperature plus 400 - 500 deg. C with the help of galvanic copper coating since

  11. Mexican mesozoic uranium province: its distribution and metallogeny

    Energy Technology Data Exchange (ETDEWEB)

    Bazan B, S. (Uranio Mexicano, Mexico City)

    1981-01-01

    The distribution of uranium scattered in sedimentary terrains of the continental jurassic such as those found in the Tlaxiaco-Guerrero Basin encourage the outlook for uncovering extensive new deposits of strato-bound uranium belonging to the Mexican mesozoic in other structurally similar intercratonic basins. Stratographic and paleographic structural references define the simultaneous evolution of five sedimentary basins during the Mexican geotechtonic cycle: 1. the Tlaxiaco-Guerrero basin, 2. the Huayacocotla basin, 3. the Gulf of Sabinas basin, 4. the Chihuahua basin and 5. the Sonora basin. From the various lithostratographic formations in them we favourably infer the presence of intermountainous mesozoic concentrations of uranium sediments leached from crystalline precambric packets and from nevadian plutonites and volcanic rocks. During the metallogeny process described under the techtonic evolution of the Mexican structural belt, the presence is established of extensive terciary hydrothermal uranium deposits in the districts of Aldama, Chihuahua; Coneto-El Rodeo, Durango; Vizarron de Montes, Queretaro; Tlaucingo, Puebla; Los Amoles, Sonora; El Picacho, Sonora; Amalia Margarita, Coahuila; etc., scattered in sandstones and sinters of the continental mesozoic and shifted during the postorogenic phase of the Mexican geotectonic cycle. The extensive mesozoic province defined within the Mexican territory favourable to large deposits of uranium, scattered and strato-bound in triassic, jurassic and cretaceous sandstone and sinters, could resolve future demands for energetics within a modified philosophy and resourceful policy of regional mining.

  12. Microbes: uranium miners, money makers, problem solvers

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, A.L., E-mail: awilliamson@mirarco.org [MIRARCO, Sudbury, ON (Canada); Laurentian Univ., Sudbury, ON (Canada); Payne, R.; Kerr, F. [Pele Mountain Resources Inc., Toronto, ON (Canada); Hall, S. [Laurentian Univ., Sudbury, ON (Canada); Spiers, G.A. [MIRARCO, Sudbury, ON (Canada); Laurentian Univ., Sudbury, ON (Canada)

    2010-07-01

    Bioleaching, the microbial dissolution of minerals, is potentially useful in exploiting a variety of ore deposits, including the lower-grade uraniferous quartz-pebble conglomerate beds of the Quirke Syncline, Elliot Lake, Ontario. The metabolism of chemolithotropic bacterium Acidithiobacillus ferrooxidans is dependent on its ability to derive energy and reducing power from the oxidation of ferrous iron. The characteristics of this bacterium, in particular the ability to oxidize both iron and sulphur with an associated high tolerance of low acidity, allow the organism to contribute significantly to bioleaching processes. Under ideal conditions, A. ferrooxidans promotes the oxidation of iron-containing sulphide ore materials, breaking their crystal structure and promoting the dissolution of iron, base metals, as well as uranium, rare earth elements and associated elements of toxicological interest such as arsenic and selenium. The current study documents an overview of the recovery of uranium and rare earth elements to solution, plus investigates the acid generating potential of the solid residues from a series of environmentally controlled, biologically-mediated uranium ore extraction experiments. The findings will be used in the design of larger scale bioleaching experiments to further assess the potential for success of bioleaching as a metallurgical extraction technique potentially leading to minimum maintenance decommissioning strategies for the ore deposits of the Quirke Syncline. (author)

  13. Uranium hexafluoride handling. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  14. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    Science.gov (United States)

    Willit, James L.

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  15. Uranium recovery from waste of the nuclear fuel cycle plants at IPEN-CNEN/SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Antonio A.; Ferreira, Joao C.; Zini, Josiane; Scapin, Marcos A.; Carvalho, Fatima Maria Sequeira de, E-mail: afreitas@ipen.b, E-mail: jcferrei@ipen.b, E-mail: jzini@ipen.b, E-mail: mascapin@ipen.b, E-mail: fatimamc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Sodium diuranate (DUS) is a uranium concentrate produced in monazite industry with 80% typical average grade of U{sup 3}O{sup 8}, containing sodium, silicon, phosphorus, thorium and rare earths as main impurities. Purification of such concentrate was achieved at the nuclear fuel cycle pilot plants of uranium at IPEN by nitric dissolution and uranium extraction into an organic phase using TBP/Varsol, while the aqueous phase retains impurities and a small quantity of non extracted uranium; both can be recovered later by precipitation with sodium hydroxide. Then the residual sodium diuranate goes to a long term storage at a safeguards deposit currently reaching 20 tonnes. This work shows how uranium separation and purification from such bulk waste can be achieved by ion exchange chromatography, aiming at decreased volume and cost of storage, minimization of environmental impacts and reduction of occupational doses. Additionally, the resulting purified uranium can be reused in nuclear fuel cycle.(author)

  16. The Kintyre uranium project

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B. [Canning Resources Pty. Ltd., Perth, WA (Australia)

    1997-12-31

    The Kintyre Uranium Project is being developed by Canning Resources Pty Ltd, a subsidiary of Rio Tinto (formerly CRA). The work on the project includes the planning and management of a number of background environmental studies. The company has also commissioned studies by external consultants into process technologies, mining strategies and techniques for extracting the uranium ore from the waste rock. In addition, Canning Resources has made a detailed assessment of the worldwide market potential for Australian uranium in the late 1990s and into the 21st century. The most significant factor affecting the future of this project is the current product price. This price is insufficient to justify the necessary investment to bring this project into production. 8 figs.

  17. PREPARATION OF URANIUM TRIOXIDE

    Science.gov (United States)

    Buckingham, J.S.

    1959-09-01

    The production of uranium trioxide from aqueous solutions of uranyl nitrate is discussed. The uranium trioxide is produced by adding sulfur or a sulfur-containing compound, such as thiourea, sulfamic acid, sulfuric acid, and ammonium sulfate, to the uranyl solution in an amount of about 0.5% by weight of the uranyl nitrate hexahydrate, evaporating the solution to dryness, and calcining the dry residue. The trioxide obtained by this method furnished a dioxide with a considerably higher reactivity with hydrogen fluoride than a trioxide prepared without the sulfur additive.

  18. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  19. Gold tailings as a source of waterborne uranium contamination of ...

    African Journals Online (AJOL)

    Dissolved uranium (U) from the tailings deposits of various gold mines in South Africa has been found to migrate via seepage and groundwater into adjacent streams. The extent of the associated non-point pollution depends on the concentration of U in the groundwater as well as the volume and rate of groundwater ...

  20. On the genesis of the uraniferous deposits I; Consideraciones sobre la genesis de los yacimientos uraniferos. I.

    Energy Technology Data Exchange (ETDEWEB)

    Mingarro, E.

    1964-07-01

    The main problems of the genesis of uranium deposits as hydro thermals are objectively considered here under three aspects: uranium source transport and deposition. The transport of uranium can be effected under a tetravalent form, or as complex ions of hexavalent uranium: as uranyl ion (UO{sub 2}){sup 2}+ or under complex carbonic or sulfuric forms, such as UO{sub 2}(XO{sub n}){sub 2}{sup 2}- or UO{sub 2}(XO{sub n}){sub 3}{sup 4}-. These three ways of transport correspond to the three basic geochemical para genesis of uranium: uranium-titanium, uranium-cobalt, uranium. Deposition is currently made by reduction and in some way is no dependent of mineralogical association. (Author) 61 refs.

  1. Towards a Model for Albitite-Type Uranium

    Directory of Open Access Journals (Sweden)

    Andy Wilde

    2013-01-01

    Full Text Available Albitite-type uranium deposits are widely distributed, usually of low grade (<1% U3O8, but are often large and collectively contain over 1 million tonnes of U3O8. Uranium is hosted in a wide range of metamorphic lithologies, whose only common characteristic is that they have been extensively mylonitised. Ore minerals are disseminated and rarely in megascopic veins, within and adjacent to albitised mylonites. Grain size is uniformly fine, generally less than 50 microns. Scanning electron microscopy reveals that spatial association between uranium and various Ti-bearing phases is common. Gangue minerals include albite, carbonates (calcite and dolomite, and sodic pyroxene and amphibole. The ore rarely contains economic metals apart from uranium, phosphorous at Itataia being an exception. There is widespread evidence of hydrothermal zirconium mobility and hydrothermal zircon and other Zr phases are frequent and in some cases abundant gangue minerals. Positive correlations are noted between uranium and various high field strength elements. The group remains poorly described and understood, but a link to iron-oxide copper-gold (IOCG deposits and/or carbonatite and/or alkaline magmatism is plausible.

  2. URANIUM RECOVERY PROCESS

    Science.gov (United States)

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  3. URANIUM SOLVENT EXTRACTION PROCESS

    Science.gov (United States)

    Harrington, C.D.

    1959-09-01

    A method is given for extracting uranium values from ores of high phosphate content consisting of dissolving them in aqueous nitric acid, adjusting the concentration of the aqueous solution to about 2 M with respect to nitric acid, and then contacting it with diethyl ether which has previously been made 1 M with respect to nitric acid.

  4. Uranium- and thorium-bearing pegmatites of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.

  5. Uranium from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, D.; Folkendt, M.

    1982-09-21

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  6. Mining practices for the extraction of uranium ore with examples from producing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Janoschka, K. (Rheinische Braunkohlenwerke A.G., Koeln (Germany, F.R.))

    1980-10-01

    In the introduction the author goes briefly into the historical development of the utilization of uranium, the personal strain on miners in the work place and the particulars of safety measures to protect the health of personnel engaged in the recovery of uranium. Several characteristic examples of uranium ore producing facilities are then presented. They were chosen for open pit mine operations as well as for underground mines. The extraction of uranium in the open pit mines of the Cluff Lake deposits of Amok Ltd. in Saskatchewan, the uranium surface mine Roessing in Namibia, recovery in the underground workings of the uranium mine of Dennison Mines Ltd. at Elliot Lake, Ontario, and the uranium ore mine La Fraisse in France are all described. In addition, the unconventional recovery of uranium from phosphates by in-situ leaching and the recovery of uranium as a by-product of the extraction of gold in South Africa are gone into in detail. The ore miner has learned to master all the given conditions of nature. The limits are his ability to make concentrations of mineral ores useful, constrained by the price consumers are ready to pay, which is to say the competitive situation of the world raw material market.

  7. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA.

    Science.gov (United States)

    Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W

    2014-10-01

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.

  8. Uranium uptake history, open-system behaviour and uranium-series ages of fossil Tridacna gigas from Huon Peninsula, Papua New Guinea

    Science.gov (United States)

    Ayling, Bridget F.; Eggins, Stephen; McCulloch, Malcolm T.; Chappell, John; Grün, Rainer; Mortimer, Graham

    2017-09-01

    Molluscs incorporate negligible uranium into their skeleton while they are living, with any uranium uptake occurring post-mortem. As such, closed-system U-series dating of molluscs is unlikely to provide reliable age constraints for marine deposits. Even the application of open-system U-series modelling is challenging, because uranium uptake and loss histories can affect time-integrated uranium distributions and are difficult to constrain. We investigate the chemical and isotopic distribution of uranium in fossil Tridacna gigas (giant clams) from Marine Isotope Stage (MIS) 5e (128-116 ka) and MIS 11 (424-374 ka) reefs at Huon Peninsula in Papua New Guinea. The large size of the clams enables detailed chemical and isotopic mapping of uranium using LA-ICPMS and LA-MC-ICPMS techniques. Within each fossil Tridacna specimen, marked differences in uranium concentrations are observed across the three Tridacna growth zones (outer, inner, hinge), with the outer and hinge zones being relatively enriched. In MIS 5e and MIS 11 Tridacna, the outer and hinge zones contain approximately 1 ppm and 5 ppm uranium respectively. In addition to uptake of uranium, loss of uranium appears prevalent, especially in the MIS 11 specimens. The effect of uranium loss is to elevate measured [230Th/238U] values with little effect on [234U/238U] values. Closed-system age estimates are on average 50% too young for the MIS 5e Tridacna, and 25% too young for the MIS 11 Tridacna. A complex, multi-stage uptake and loss history is interpreted for the fossil Tridacna and we demonstrate that they cannot provide independent, reliable geochronological controls on the timing of past reef growth at Huon Peninsula.

  9. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Crancon, P.; Pili, E. [CEA Bruyeres-le-Chatel, DIF, 91 (France); Charlet, L. [Univ Grenoble 1, Lab Geophys Interne and Tectonophys LGIT OSUG, CNRS, UJF, UMR5559, F-38041 Grenoble 9 (France)

    2010-07-01

    The transport of uranium through a sandy podsolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the {<=} 50 {mu}m mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean pore-water velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both {sup 238}U initially present in the soil column and {sup 233}U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source. (authors)

  10. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Crancon, P., E-mail: pierre.crancon@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Pili, E. [CEA, DAM, DIF, F-91297 Arpajon (France); Charlet, L. [Laboratoire de Geophysique Interne et Tectonophysique (LGIT-OSUG), University of Grenoble-I, UMR5559-CNRS-UJF, BP53, 38041 Grenoble cedex 9 (France)

    2010-04-01

    The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the < 50 {mu}m mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean porewater velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both {sup 238}U initially present in the soil column and {sup 233}U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.

  11. Uranium Mines and Mills Location Database

    Science.gov (United States)

    The Uranium Mines and Mills location database identifies and shows the location of active and inactive uranium mines and mills, as well as mines which principally produced other minerals, but were known to have uranium in the ore.

  12. Radiochemistry of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gindler, J.E.

    1962-03-01

    This volume which deals with the radiochemistry of uranium is one of a series of monographs on radiochemistry of the elements. There is included a review of the nuclear and chemical features of particular interest to the radiochemist, a discussion of problems of dissolution of a sample and counting technique, and finally, a collection of radiochemical procedures for the element as found in the literature.

  13. Raw material uranium; Rohstoff Uran

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-03-15

    Uranium is an important raw material in human life. Mostly using nuclear fission uranium is used in nuclear medicine, industry and research. The most important application is the generation of electricity in nuclear power plants. Due to the global availability the worldwide uranium supply is guaranties for a long time. The contribution covers the issues medicine, neutron research, energy generation, occurrence, mining, processing, recycling and disposal.

  14. Leaching of Uranium and Vanadium from Korean Domestic Ore

    Science.gov (United States)

    Kim, Joon Soo; Chung, Kyeong Woo; Lee, Hoo In; Lee, Jin-Young; Kumar, J. Rajesh

    Countries like Korea having very limited uranium resources and founded deposits having low grade metal values. Uranium is the main source to generate the nuclear power as cheap and more quantity of the electricity will generate. For this reasons the upcoming researchers in developed/developing countries are establishing more research and development on extraction and separation technologies for uranium. The present scientific study focused on leaching process of Korean domestic ore. The following experiments are carryout for optimization of the leaching process. Acid influence on leaching process was tested and noted that 2.0 M sulfuric acid concentration is the optimized conditions for present study. The time influence on leaching process was observed and its optimized 2 h for complete leaching process. The temperature influence tested and optimized the 80°C for complete leaching process and pulp density is 50% (wt %).

  15. Uranium in the Surrounding of San Marcos-Sacramento River Environment (Chihuahua, Mexico

    Directory of Open Access Journals (Sweden)

    Marusia Rentería-Villalobos

    2012-01-01

    Full Text Available The main interest of this study is to assess whether uranium deposits located in the San Marcos outcrops (NW of Chihuahua City, Mexico could be considered as a source of U-isotopes in its surrounding environment. Uranium activity concentrations were determined in biota, ground, and surface water by either alpha or liquid scintillation spectrometries. Major ions were analyzed by ICP-OES in surface water and its suspended matter. For determining uranium activity in biota, samples were divided in parts. The results have shown a possible lixiviation and infiltration of uranium from geological substrate into the ground and surface water, and consequently, a transfer to biota. Calculated annual effective doses by ingestion suggest that U-isotopes in biota could not negligibly contribute to the neighboring population dose. By all these considerations, it is concluded that in this zone there is natural enhancement of uranium in all environmental samples analyzed in the present work.

  16. Uranium in the Surrounding of San Marcos-Sacramento River Environment (Chihuahua, Mexico)

    Science.gov (United States)

    Rentería-Villalobos, Marusia; Cortés, Manuel Reyes; Mantero, Juan; Manjón, Guillermo; García-Tenorio, Rafael; Herrera, Eduardo; Montero-Cabrera, Maria Elena

    2012-01-01

    The main interest of this study is to assess whether uranium deposits located in the San Marcos outcrops (NW of Chihuahua City, Mexico) could be considered as a source of U-isotopes in its surrounding environment. Uranium activity concentrations were determined in biota, ground, and surface water by either alpha or liquid scintillation spectrometries. Major ions were analyzed by ICP-OES in surface water and its suspended matter. For determining uranium activity in biota, samples were divided in parts. The results have shown a possible lixiviation and infiltration of uranium from geological substrate into the ground and surface water, and consequently, a transfer to biota. Calculated annual effective doses by ingestion suggest that U-isotopes in biota could not negligibly contribute to the neighboring population dose. By all these considerations, it is concluded that in this zone there is natural enhancement of uranium in all environmental samples analyzed in the present work. PMID:22536148

  17. FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE

    Science.gov (United States)

    Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

    1962-06-26

    A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

  18. Radionuclides in sheep grazing near old uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando P.; Oliveira, Joao M.; Malta, M. [Instituto Superior Tecnico/Campus Tecnologico e Nuclear/ (IST/CTN), Universidade de Lisboa, Estrada Nacional 10 - ao km 139,7, - 2695-066 Bobadela LRS (Portugal); Lemos, M.E. [Servicos de Alimentacao e Veterinaria da Regiao Centro, Bairro Na Sra dos Remedios, 6300 Guarda (Portugal); Vala, H.; Esteves, F. [Escola Superior Agraria de Viseu, Quinta da Alagoa, Estrada de Nelas, Ranhados,3500-606 Viseu (Portugal)

    2014-07-01

    During the past century extensive uranium mining took place in Portugal for radium and uranium production. Many uranium deposits were mined as open pits and after ore extraction and transportation to milling facilities, mining wastes were left on site. One uranium ore mining site, Boco Mine, was extracted in the 1960's and 70's and mining waste and open pits were left uncovered and non-remediated since closure of uranium mining activities. During the nineties a quarry for sand extraction was operated in the same site and water from a local stream was extensively used in sand sieving. Downstream the mine areas, agriculture soils along the water course are currently used for cattle grazing. Water from this stream, and water wells, soil, pasture and sheep meat were analyzed for radionuclides of the uranium series. The U- series radionuclide {sup 226}Ra was generally the highest in concentrations especially in soil, pasture, and in internal organs of sheep. Ra-226 concentrations averaged 1093±96 Bq/kg (dry weight) in soil, 43±3 Bq/kg (dw) in pasture, and 0.76±0.41 Bq/kg (dw) in muscle tissue of sheep grown there. Other sheep internal organs displayed much higher {sup 226}Ra concentrations, such as the brain and kidneys with 7.7±2.3 Bq/kg (dw) and 28±29 Bq/kg (dw), respectively. Results of tissue sample analysis for sheep grown in a comparison area were 2 to 11 times lower, depending on the tissue. Absorbed radiation doses for internal organs of sheep were computed and may exceed 20 mSv/y in the kidney. Although elevated, this absorbed radiation dose still is below the threshold for biological effects on mammals. Nevertheless, enhanced environmental radioactive contamination mainly due to radium was observed in the area of influence of this legacy uranium mine and there is potential food chain transfer for humans (authors)

  19. Accumulation of uranium on austenitic stainless steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dombovari, Peter [Department of Radiochemistry, Pannon University, H-8201 Veszprem, P.O. Box 158 (Hungary); Kadar, Peter [Department of Radiochemistry, Pannon University, H-8201 Veszprem, P.O. Box 158 (Hungary); Kovacs, Tibor [Department of Radiochemistry, Pannon University, H-8201 Veszprem, P.O. Box 158 (Hungary); Somlai, Janos [Department of Radiochemistry, Pannon University, H-8201 Veszprem, P.O. Box 158 (Hungary); Rado, Krisztian [Department of Radiochemistry, Pannon University, H-8201 Veszprem, P.O. Box 158 (Hungary); Varga, Istvan [Department of Radiochemistry, Pannon University, H-8201 Veszprem, P.O. Box 158 (Hungary); Bujak, Renata [Department of Radiochemistry, Pannon University, H-8201 Veszprem, P.O. Box 158 (Hungary); Varga, Kalman [Department of Radiochemistry, Pannon University, H-8201 Veszprem, P.O. Box 158 (Hungary)]. E-mail: vargakl@almos.vein.hu; Halmos, Pal [Analytical Chemistry Research Group, Hungarian Academy of Sciences, Veszprem (Hungary); Borszeki, Janos [Department of Analytical Chemistry, Pannon University, Veszprem (Hungary); Konya, Jozsef; Nagy, Noemi M. [Department of Colloid- and, Environmental Chemistry, Isotope Laboratory, University of Debrecen, Debrecen (Hungary); Koever, Laszlo; Varga, Dezso; Cserny, Istvan; Toth, Jozsef [Section of Electron Spectroscopy and Materials Science, Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA ATOMKI), P.O. Box 51, H-4001 Debrecen (Hungary); Fodor, Lajos; Horvath, Attila [Department of General and Inorganic Chemistry, Pannon University, Veszprem (Hungary); Pinter, Tamas; Schunk, Janos [Paks NPP Ltd., Paks (Hungary)

    2007-02-01

    The surface contamination by uranium in the primary circuit of PWR type nuclear reactors is a fairly complex problem as (i) different chemical forms (molecular, colloidal and/or disperse) of the uranium atoms can be present in the boric acid coolant, and (ii) only limited pieces of information about the extent, kinetics and mechanism of uranium accumulation on constructional materials are available in the literature. A comprehensive program has been initiated in order to gain fundamental information about the uranium accumulation onto the main constituents of the primary cooling circuit (i.e., onto austenitic stainless steel type 08X18H10T (GOSZT 5632-61) and Zr(1%Nb) alloy). In this paper, some experimental findings on the time and pH dependences of U accumulation obtained in a pilot plant model system are presented and discussed. The surface excess, oxidation state and chemical forms of uranium species sorbed on the inner surfaces of the stainless steel tubes of steam generators have been detected by radiotracer (alpha spectrometric), ICP-OES and XPS methods. In addition, the passivity, morphology and chemical composition of the oxide-layers formed on the studied surfaces of steel specimens have been analyzed by voltammetry and SEM-EDX. The experimental data imply that the uranium sorption is significant in the pH range of 4-8 where the intense hydrolysis of uranyl cations in boric acid solution can be observed. Some specific adsorption and deposition of (mainly colloidal and disperse) uranyl hydroxide to be formed in the solution prevail over the accumulation of other U(VI) hydroxo complexes. The maximum surface excess of uranium species measured at pH 6 ({gamma} {sub sample} = 1.22 {mu}g cm{sup -2} U {approx_equal} 4 x 10{sup -9} mol cm{sup -2} UO{sub 2}(OH){sub 2}) exceeds a monolayer coverage.

  20. Impact of pulling down regulatory state barriers on uranium in Australia: Is there a need in order to maintain and increase Australia’s global market share of uranium?

    Directory of Open Access Journals (Sweden)

    Ikhlaas Gurrib

    2013-10-01

    Full Text Available This paper sets a prospective framework to study the impact of opening more mines to meet future growing demand on Australia’s economy. The structure is aimed at decomposing investments and exports variables into Uranium exports and Uranium Exploration expenditure and analyse their impacts on each State GSP (Goods State Product and for Australia as a nation. The demand and supply factors affecting the uranium market are defragmented before providing the research methodology and data specifics. Later analysis is expected to have policy implications by serving as a guide to pull down State Regulatory barriers like those imposed currently in Queensland, which is rich with uranium deposits and allow only uranium exploration but no uranium mining. Empirical findings would suggest whether exporting the carbon free energy would add value to Australia’s different competing states and as a whole globalized economy.

  1. Critical analysis of world uranium resources

    Science.gov (United States)

    Hall, Susan; Coleman, Margaret

    2013-01-01

    The U.S. Department of Energy, Energy Information Administration (EIA) joined with the U.S. Department of the Interior, U.S. Geological Survey (USGS) to analyze the world uranium supply and demand balance. To evaluate short-term primary supply (0–15 years), the analysis focused on Reasonably Assured Resources (RAR), which are resources projected with a high degree of geologic assurance and considered to be economically feasible to mine. Such resources include uranium resources from mines currently in production as well as resources that are in the stages of feasibility or of being permitted. Sources of secondary supply for uranium, such as stockpiles and reprocessed fuel, were also examined. To evaluate long-term primary supply, estimates of uranium from unconventional and from undiscovered resources were analyzed. At 2010 rates of consumption, uranium resources identified in operating or developing mines would fuel the world nuclear fleet for about 30 years. However, projections currently predict an increase in uranium requirements tied to expansion of nuclear energy worldwide. Under a low-demand scenario, requirements through the period ending in 2035 are about 2.1 million tU. In the low demand case, uranium identified in existing and developing mines is adequate to supply requirements. However, whether or not these identified resources will be developed rapidly enough to provide an uninterrupted fuel supply to expanded nuclear facilities could not be determined. On the basis of a scenario of high demand through 2035, 2.6 million tU is required and identified resources in operating or developing mines is inadequate. Beyond 2035, when requirements could exceed resources in these developing properties, other sources will need to be developed from less well-assured resources, deposits not yet at the prefeasibility stage, resources that are currently subeconomic, secondary sources, undiscovered conventional resources, and unconventional uranium supplies. This

  2. PHASE ANALYSES OF URANIUM-BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    M. Ren; P. Goodell; A. Kelts; E.Y. Anthony; M. Fayek; C. Fan; C. Beshears

    2005-07-11

    The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions.

  3. Aluminosilicate Precipitation Impact on Uranium

    Energy Technology Data Exchange (ETDEWEB)

    WILMARTH, WILLIAM

    2006-03-10

    Experiments have been conducted to examine the fate of uranium during the formation of sodium aluminosilicate (NAS) when wastes containing high aluminate concentrations are mixed with wastes of high silicate concentration. Testing was conducted at varying degrees of uranium saturation. Testing examined typical tank conditions, e.g., stagnant, slightly elevated temperature (50 C). The results showed that under sub-saturated conditions uranium is not removed from solution to any large extent in both simulant testing and actual tank waste testing. This aspect was not thoroughly understood prior to this work and was necessary to avoid criticality issues when actual tank wastes were aggregated. There are data supporting a small removal due to sorption of uranium on sites in the NAS. Above the solubility limit the data are clear that a reduction in uranium concentration occurs concomitant with the formation of aluminosilicate. This uranium precipitation is fairly rapid and ceases when uranium reaches its solubility limit. At the solubility limit, it appears that uranium is not affected, but further testing might be warranted.

  4. SOLVENT EXTRACTION OF URANIUM VALUES

    Science.gov (United States)

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  5. Determination of uranium content in phosphate ores using different measurement techniques

    Directory of Open Access Journals (Sweden)

    Mohammad A. Al-Eshaikh

    2016-01-01

    Full Text Available The most important unconventional source of uranium is found in phosphate deposits; unfortunately, nowadays its exploitation is limited by economic constraints. The uranium concentrations in phosphate ores in the world vary regionally and most countries with large phosphate deposits have either plant in operation to extract uranium or are at the stage of pilot extraction plants. The aim of this investigation is to evaluate uranium content in the Saudi phosphate ores for, at least, two reasons: firstly, upgrading the phosphate quality by removing the uranium content in order to reduce the radioactivity in the fertilizer products. Secondly, getting benefit from the extracted uranium for its domestic use as a fuel in nuclear power and desalination plants. The results of this study show that the uranium concentration in Saudi phosphate rocks is relatively low (less than 100 ppm, which is not economically encouraging for its direct extraction. However, its extraction as a byproduct from the phosphoric acid, which will have higher concentration could be quite promising and worth exploiting.

  6. Determination of laser-evaporated uranium dioxide by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Allred, R.

    1987-05-01

    Safety analyses of nuclear reactors require information about the loss of fuel which may occur at high temperatures. In this study, the surface of a uranium dioxide target was heated rapidly by a laser. The uranium surface was vaporized into a vacuum. The uranium bearing species condensed on a graphite disk placed in the pathway of the expanding uranium vapor. Scanning electron microscopy and X-ray analysis showed very little droplet ejection directly from the laser target surface. Neutron activation analysis was used to measure the amount of uranium deposited. The surface temperature was measured by a fast-response automatic optical pyrometer. The maximum surface temperature ranged from 2400 to 3700/sup 0/K. The Hertz-Langmuir formula, in conjunction with the measured surface temperature transient, was used to calculate the theoretical amount of uranium deposited. There was good agreement between theory and experiment above the melting point of 3120/sup 0/K. Below the melting point much more uranium was collected than was expected theoretically. This was attributed to oxidation of the surface. 29 refs., 16 figs., 7 tabs.

  7. Numerical simulation of migration behavior of uranium ore dust particles in the human respiratory tract

    Science.gov (United States)

    Ye, Yong-jun; Yin, An-song; Li, Zhi; Lei, Bo; Ding, De-xin

    2017-04-01

    There is a certain concentration of radioactive dust particles in the air of workplace of underground uranium mines. Some small diameter particles will pass through the masks and enter the respiratory tract which will cause radiation damage to the human body. In order to study deposition regularity of uranium dust in the human respiratory tract, in this paper, we firstly use the RNG turbulence model to simulate the gas flow field in the human respiratory tract Z0 ∼ Z3 level under different respiratory intensity. Then we use DPM discrete phase model to simulate the concentration, particle size distribution, deposition rate and deposition share of uranium dust particles after being filtered through the masks in the human respiratory tract Z0 to Z3 bronchus. According to the simulation results, we have got the following conclusions: the particles’ number concentration of uranium dust after being filtered through the mask in the human respiratory tract basically decreases with the increasing of particle size under different respiratory intensities on the environment of uranium mine. In addition, the intensity of respiration and the mass concentration of particles have an important influence on the deposition rate and the deposition of particles in the respiratory tract.

  8. Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism.

    Science.gov (United States)

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Lan, Tu; Li, Feize; Zhang, Dong; Yang, Jijun; Yang, Yuanyou; Luo, Shunzhong; Tang, Jun; Liu, Ning

    2014-09-01

    In this paper, the biosorption mechanisms of uranium on an aerobic Bacillus sp. dwc-2, isolated from a potential disposal site for (ultra-) low uraniferous radioactive waste in Southwest China, was explored by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, FT-IR spectroscopy, proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). The biosorption experiments for uranium were carried out at a low pH (pH 3.0), where the uranium solution speciation is dominated by highly mobile uranyl ions. The bioaccumulation was found to be the potential mechanism involved in uranium biosorption by Bacillus sp. dwc-2, and the bioaccumulated uranium was deposited in the cell interior as needle shaped particles at pH 3.0, as revealed by TEM analysis as well as EDX spectra. FTIR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of bacterial cells. Additionally, PIXE and EPBS results confirmed that ion-exchange also contributed to the adsorption process of uranium. All the results implied that the biosorption mechanism of uranium on Bacillus sp. is complicated and at least involves bioaccumulation, ion exchange and complexation process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Manhattan Project Technical Series: The Chemistry of Uranium (I)

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitch, E. I. [Argonne National Lab. (ANL), Argonne, IL (United States); Katz, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    1947-03-10

    This constitutes Chapters 11 through 16, inclusive, of the Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Uranium Oxides, Sulfides, Selenides, and Tellurides; The Non-Volatile Fluorides of Uranium; Uranium Hexafluoride; Uranium-Chlorine Compounds; Bromides, Iodides, and Pseudo-Halides of Uranium; and Oxyhalides of Uranium.

  10. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  11. Borehole Logging for Uranium by Gamma-Ray Spectrometry

    DEFF Research Database (Denmark)

    Løvborg, Leif; Nyegaard, P.; Christiansen, E. M.

    1980-01-01

    The resources in a large syngenetic deposit of low-grade uranium (U) ore with thorium at Kvanefjeld, South Greenland, were evaluated by spectrometric gamma-ray logging of 23 boreholes, 46 mm in diameter and 200 m deep. The borehole probe's detector contained 22 cm3 of sodium-iodide, and the photo......The resources in a large syngenetic deposit of low-grade uranium (U) ore with thorium at Kvanefjeld, South Greenland, were evaluated by spectrometric gamma-ray logging of 23 boreholes, 46 mm in diameter and 200 m deep. The borehole probe's detector contained 22 cm3 of sodium...... to another; this variation is believed to be caused by emanation of radon (Rn) from the borehole walls. Block calculations based on individual calibration constants for the boreholes logged made it possible to obtain a reliable estimate of the tonnage of U. This estimate was only slightly different from...

  12. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Kendall J [Los Alamos National Laboratory; Pena, Maria I [Los Alamos National Laboratory

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  13. National Uranium Resource Evaluation: Torrington Quadrangle, Wyoming and Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Seeland, D

    1982-09-01

    The Torrington 1/sup 0/ x 2/sup 0/ Quadrangle in southeastern Wyoming and western Nebraska was evaluated to identify areas favorable for the occurrence of uranium deposits likely to contain 100 tons of uranium with an average grade of not less than 100 ppM (0.01 percent) U/sub 3/O/sub 8/. Almost all uranium occurrences reported in the literature were visited and sampled. Geochemical analyses of rock samples collected during the study were used in the evaluation. Hydrogeochemical and stream-sediment analyses were not available. Aerial-radiometric, and helium soil-gas surveys were analyzed. Much of the quadrangle is covered by Tertiary rocks. To assess the uranium potential of the Tertiary and pre-Tertiary rocks 270 well logs were studied and both contour and geologic maps made of the pre-Oligocene surface east and north of the Laramie Mountains. Five environments favorable for uranium deposits were outlined. The first is in the coarse-grained arkosic sandstone facies of the Wasatch Formation and the Lebo Member of the Fort Union Formation in the southern Powder River Basin. The second is in the Wind River Formation in the Shirley Basin, a stratigraphic and lithologic equivalent of the Wasatch. The third is the Lower Cretaceous Cloverly Formation in the northeastern part of the quadrangle. The fourth is in the Upper Cretaceous Lance (Laramie) Formation and the Fox Hills Sandstone in the southeastern corner of the quadrangle. The fifth favorable environment is in Precambrian rocks in the Laramie Mountains and Hartville uplift.

  14. Spatial investigation of some uranium minerals using nuclear microprobe

    Science.gov (United States)

    Valter, Anton A.; Knight, Kim B.; Eremenko, Gelij K.; Magilin, Dmitry V.; Ponomarov, Artem A.; Pisansky, Anatoly I.; Romanenko, Alexander V.; Ponomarev, Alexander G.

    2018-01-01

    In this work, several individual grains of uranium minerals—uraninite with high content of Ca, Ca-rich boltwoodite, growths of uranophane with β-uranophane, and weeksite—from different uranium deposits were studied by a scanning nuclear microprobe. Particle-induced X-ray emission technique provided by the microprobe (µ-PIXE) was carried out to obtain a concentration and 2D distribution of elements in these minerals. In addition, energy dispersive X-ray spectrometry (SEM-EDS) provided by a scanning electron microscope was used. The types of minerals were determined by X-ray diffraction methods. Results of this study improved the understanding of trace elemental composition of the uranium minerals depending on their origin. Obtained signatures could be linked then to the sample provenance. Such data are important for nuclear forensics to identify the ore types and even specific ore bodies, when only small samples may be available for analysis. In this study, the µ-PIXE technique was used for obtaining the 2D distribution of trace elements that are not commonly measured by SEM-EDS at the relevant concentrations. The detected levels and precisions of elements determination by µ-PIXE were also defined. Using µ-PIXE, several micro mineral inclusions such as phosphate with high level of V and Si were identified. The age of the uranium minerals was estimated due to a significant content of radiogenic Pb that provides an additional parameter for determination of the main attributive characteristics of the minerals. This work also showed that due to its high elemental sensitivity the nuclear microprobe can be a new analytical tool for creating a nuclear forensic database from the known uranium deposits and a subsequent analysis of the intercepted illicit materials.

  15. Biosorption of uranium by Azolla, SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Ludmila C.; Alves, Eliakim G.; Marumo, Julio T., E-mail: lcvieira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ferreira, Rafael V. de P., E-mail: rafael@itatijuca.com [Itatijuca Biotech, Sao Paulo, SP (Brazil); Canevesi, Rafael L.S.; Silva, Edson A., E-mail: edson.silva2@unioeste.br [Universidade Estadual do Oeste Parana (UNIOESTE), Toledo, PR (Brazil)

    2015-07-01

    Radioactive liquid waste needs special attention and requires suitable treatment before deposition. Among the potential technologies under development for the treatment of liquid radioactive wastes the biosorption has been highlighted by being an efficient and low cost technique. Biosorption process involves the exchange of ions contained in the biomass matrix by others present in solution. There are many biomasses that could be applied in treatment of radioactive wastes, for example, agricultural residues and macrophyte. The aim of this study is evaluate the ability of the Azolla sp., a floating aquatic plant, to absorb uranium in solution. Azolla sp. is a macrophyte that has been used to treat effluents containing heavy metals. The biosorption capacity of uranium by Azolla sp. was experimentally determined and modeled by isotherms. Experiments were performed to determine metal uptake, and then the solutions were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). The isotherms applied to model the data was Langmuir, Freundlich, Sips Toth, Redlich Peternson, Two-Site-Langmuir, Radke Prausnitz to develop a technique for the treatment of radioactive liquid waste generated at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), Brazil. (author)

  16. Design of a Uranium Dioxide Spheroidization System

    Science.gov (United States)

    Cavender, Daniel P.; Mireles, Omar R.; Frendi, Abdelkader

    2013-01-01

    The plasma spheroidization system (PSS) is the first process in the development of tungsten-uranium dioxide (W-UO2) fuel cermets. The PSS process improves particle spherocity and surface morphology for coating by chemical vapor deposition (CVD) process. Angular fully dense particles melt in an argon-hydrogen plasma jet at between 32-36 kW, and become spherical due to surface tension. Surrogate CeO2 powder was used in place of UO2 for system and process parameter development. Particles range in size from 100 - 50 microns in diameter. Student s t-test and hypothesis testing of two proportions statistical methods were applied to characterize and compare the spherocity of pre and post process powders. Particle spherocity was determined by irregularity parameter. Processed powders show great than 800% increase in the number of spherical particles over the stock powder with the mean spherocity only mildly improved. It is recommended that powders be processed two-three times in order to reach the desired spherocity, and that process parameters be optimized for a more narrow particles size range. Keywords: spherocity, spheroidization, plasma, uranium-dioxide, cermet, nuclear, propulsion

  17. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China

    Science.gov (United States)

    Yang, Hua; Zhang, Wenzheng; Wu, Kai; Li, Shanpeng; Peng, Ping'an; Qin, Yan

    2010-09-01

    The oil source rocks of the Chang 7 member of the Yanchang Formation in the Erdos Basin were deposited during maximum lake extension during the Late Triassic and show a remarkable positive uranium anomaly, with an average uranium content as high as 51.1 μg/g. Uranium is enriched together with organic matter and elements such as Fe, S, Cu, V and Mo in the rocks. The detailed biological markers determined in the Chang 7 member indicate that the lake water column was oxidizing during deposition of the Chang 7 member. However, redox indicators for sediments such as S 2- content, V/Sc and V/(V + Ni) ratios demonstrate that it was a typical anoxic diagenetic setting. The contrasted redox conditions between the water column and the sediment with a very high content of organic matter provided favorable physical and chemical conditions for syngenetic uranium enrichment in the oil source rocks of the Chang 7 member. Possible uranium sources may be the extensive U-rich volcanic ash that resulted from contemporaneous volcanic eruption and uranium material transported by hydrothermal conduits into the basin. The uranium from terrestrial clastics was unlike because uranium concentration was not higher in the margin area of basin where the terrestrial material input was high. As indicated by correlative analysis, the oil source rocks of the Chang 7 member show high gamma-ray values for radioactive well log data that reflect a positive uranium anomaly and are characterized by high resistance, low electric potential and low density. As a result, well log data can be used to identify positive uranium anomalies and spatial distribution of the oil source rocks in the Erdos Basin. The estimation of the total uranium reserves in the Chang 7 member attain 0.8 × 10 8 t.

  18. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    Energy Technology Data Exchange (ETDEWEB)

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrian age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology.

  19. Rescuing a Treasure Uranium-233

    Energy Technology Data Exchange (ETDEWEB)

    Krichinsky, Alan M [ORNL; Goldberg, Dr. Steven A. [DOE SC - Chicago Office; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL)

    2011-01-01

    Uranium-233 (233U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium (232Th). At high purities, this synthetic isotope serves as a crucial reference for accurately quantifying and characterizing natural uranium isotopes for domestic and international safeguards. Separated 233U is stored in vaults at Oak Ridge National Laboratory. These materials represent a broad spectrum of 233U from the standpoint isotopic purity the purest being crucial for precise analyses in safeguarding uranium. All 233U at ORNL currently is scheduled to be down blended with depleted uranium beginning in 2015. Such down blending will permanently destroy the potential value of pure 233U samples as certified reference material for use in uranium analyses. Furthermore, no replacement 233U stocks are expected to be produced in the future due to a lack of operating production capability and the high cost of returning to operation this currently shut down capability. This paper will describe the efforts to rescue the purest of the 233U materials arguably national treasures from their destruction by down blending.

  20. Uranium uptake by hydroponically cultivated crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Soudek, Petr; Petrova, Sarka [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Benesova, Dagmar [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Faculty of Environment Technology, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dvorakova, Marcela [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic)

    2011-06-15

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC{sub 50} value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC{sub 50} = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: > The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. > Uranium is mainly localized in the root system. > Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. > The phosphates deficiency increase the uranium uptake.

  1. Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-Crystal formation of chernikovite.

    Science.gov (United States)

    Zheng, Xin-Yan; Wang, Xiao-Yu; Shen, Yang-Hao; Lu, Xia; Wang, Tie-Shan

    2017-05-01

    Biosorption of heavy metal elements including radionuclides by microorganisms is a promising and effective method for the remediation of the contaminated places. The responses of live Saccharomyces cerevisiae in the toxic uranium solutions during the biosorption process and the mechanism of uranium biomineralization by cells were investigated in the present study. A novel experimental phenomenon that uranium concentrations have negative correlation with pH values and positive correlation with phosphate concentrations in the supernatant was observed, indicating that hydrogen ions, phosphate ions and uranyl ions were involved in the chernikovite precipitation actively. During the biosorption process, live cells desorb deposited uranium within the equilibrium state of biosorption system was reached and the phosphorus concentration increased gradually in the supernatant. These metabolic detoxification behaviours could significantly alleviate uranium toxicity and protect the survival of the cells better in the environment. The results of microscopic and spectroscopic analysis demonstrated that the precipitate on the cell surface was a type of uranium-phosphate compound in the form of a scale-like substance, and S. cerevisiae could transform the uranium precipitate into crystalline state-tetragonal chernikovite [H2(UO2)2(PO4)2·8H2O]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.

    Science.gov (United States)

    Mudd, Gavin M; Diesendorf, Mark

    2008-04-01

    The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain.

  3. Uranium series disequilibrium studies in Chenchu colony area, Guntur district, Andhra Pradesh, India.

    Science.gov (United States)

    Shrivastava, H B; Koteswara Rao, V; Singh, R V; Rahman, M; Rout, G B; Banerjee, Rahul; Pandey, B K; Verma, M B

    2015-11-01

    An attempt is made to understand uranium series disequilibrium in unconformity proximal related uranium mineralisation in Chenchu colony area, Guntur district, Andhra Pradesh, India. The uranium mineralization in Chenchu colony is the western continuity of the Koppunuru uranium deposit and predominantly hosted by gritty quartzite/conglomerate, which occasionally transgresses to underlying basement granite/basic rock. Disequilibrium studies are based on borehole core samples (35 boreholes, No. of samples=634) broadly divided in two groups of cover rocks of Banganapalle formation (above unconformity) and basement granites (below unconformity). Linear regression coefficient between uranium and radium is 0.95, which reflects excellent correlation and significant enrichment of parent uranium. Disequilibrium studies have indicated predominant disequilibrium in favour of parent uranium (35%), which is probably due to the weathering process causing migration of some of the radionuclides while dissolution of minerals due to groundwater action might have also played a significant role. Further, escape of radon might have accentuated the disequilibrium factor resulting in an increase in the grade of the mineralization. This is well corroborated by the presence of fractures and faults in the study area providing channels for radon migration/escape. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    Science.gov (United States)

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  5. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-31

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this.

  6. Distribution of uranium, thorium, and isotopic composition of uranium in soil samples of south Serbia: Evidence of depleted uranium

    OpenAIRE

    Sahoo Sarata Kumar; Fujimoto Kenzo; Čeliković Igor; Ujić Predrag; Žunić Zora S.

    2004-01-01

    Inductively coupled plasma mass spectrometry and thermal ionization mass spectrom - etry were used to measure concentration of uranium and thorium as well as isotopic composition of uranium respectively in soil samples collected around south Serbia. An analytical method was established for a routine sample preparation procedure for uranium and thorium. Uranium was chemically separated and purified from soil samples by anion exchange resin and UTEVA extraction chromatography and its isotopic c...

  7. Development of uranium waste management concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Masafumi [Research Division of LLW Disposal System, Radioactive Waste Management Funding and Research Center (RWMC), Tokyo (Japan)

    2001-02-01

    The Japanese long-term program for nuclear energy development and utilization issued in 2000 says that a considerable fraction of uranium wastes can be disposed using shallow underground facilities by controlling uranium concentration in the uranium wastes and by adopting the allowable exposure dose not exceeding 0.1 mSv per year. The present report gives an estimate on the total amount of uranium wastes currently generated in Japan and its future prospect. Uranium wastes whose uranium concentration range from 10{sup 6} Bq/t to 10{sup 10} Bq/t are generated from nuclear facilities, such as fuel cycle (JNC), fuel fabricating, and uranium enrichment facilities. Stress is put on uranium recovery (decontamination) process and various anticipated techniques of waste disposals depending on their generation sources are briefly discussed. (S. Ohno)

  8. Transfer of uranium throughout the entire gastrointestinal tract of the rat: In vivo and in vitro approaches

    Energy Technology Data Exchange (ETDEWEB)

    Dublineau, I.; Grison, S.; Dudoignon, N.; Baudelin, C.; Aigueperse, J.

    2004-07-01

    The presence of uranium in environment either natural or due to civil and military use, may lead to contamination of the public throughout the entire life mainly by chronic ingestion. The mechanisms of uranium transfer from alimentary bolus to blood are still not well known. In particular, few information are available on the different absorption sites along the gastrointestinal tract, the different cellular pathways (para-or trans-cellular), and the transporters implicated in the uranium absorption. In addition, the specific role of Peyer's patches, the aggregated structure of Gut-Associated Lymphoid tissue, in the intestinal transfer of uranium has never been determined. In fact, the transport of uranium through these structures specialized in antigen uptake from intestinal lumen may lead to major dysfunctions in mucosal immunity. Thus, different approaches have to be developed to determine the role of the different gastrointestinal structures and to apprehend the biological consequences of daily passage of uranium through these structures. These experiments include in vivo measurement of uranium in blood after in situ deposit of uranium (233U) in the different segments of the alimentary tract (buccal cavity, stomach, small intestine, colon) and ex vivo experiments in Using chambers to compare uranium passage from luminal to serosal side through intestinal epithelium and Peyer's patches. In vitro studies are also necessary to determine the nature of the cells as well as the transporters implicated in the gastrointestinal passage of uranium. Autoradiography experiments were performed to determine if uranium absorption was only restricted to villi which contained absorptive cells or if uranium absorption was also due to crypt cells. In addition, the transporter implicated in the uranium passage is dependent of the physico-chemical form of uranium present at the different gastrointestinal sites. When complexed to phosphate, uranium is transported by the

  9. General science on Cluff discovery: memory of a uranium-bearing system; Lecon de choses sur la decouverte de Cluff: memoire d'un systeme uranifere

    Energy Technology Data Exchange (ETDEWEB)

    Dardel, J.

    2009-07-01

    The author comments the different observations and interpretations made about the geological history and structure of the Athabasca Basin in Canada, and how the different bore holes gave different results in terms of presence of uranium. Findings illustrate the concept of uranium-bearing system which brings together geological factors which locally control the deposit genesis, and essential elements (source, transport, deposit) and chemical processes

  10. Uranium briquettes for irradiation target

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo, E-mail: saliba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce {sup 99}Mo-{sup 99m}Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl{sub x} dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of {sup 235}U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  11. Geological and geochronological evidence for the effect of Paleogene and Miocene uplift of the Northern Ordos Basin on the formation of the Dongsheng uranium district, China

    Science.gov (United States)

    Zhang, Chuang; Yi, Chao; Dong, Qian; Cai, Yu-Qi; Liu, Hong-Xu

    2018-02-01

    The Dongsheng uranium district, located in the northern part of the Ordos Basin, contains the largest known sandstone-hosted uranium deposit in China. This district contains (from west to east) the Daying, Nalinggou, and Dongsheng uranium deposits that host tens of thousands of metric tonnes of estimated recoverable uranium resources at an average grade of 0.05% U. These uranium orebodies are generally hosted by the lower member of the Zhiluo Formation and are dominantly roll or tabular in shape. The uranium deposits in this district formed during two stages of mineralization (as evidenced by U-Pb dating) that occurred at 65-60 and 25 Ma. Both stages generated coffinite, pitchblende, anatase, pyrite, and quartz, with or without sericite, chlorite, calcite, fluorite, and hematite. The post-Late Cretaceous uplift of the Northern Ordos Basin exposed the northern margins of the Zhiluo Formation within the Hetao depression at 65-60 Ma, introducing groundwater into the formation and generating the first stage of uranium mineralization. The Oligocene (∼25 Ma) uplift of this northern margin exposed either the entirety of the southern flank of the Hetao depression or only the clastic sedimentary part of this region, causing a second gravitational influx of groundwater into the Zhiluo Formation and forming the second stage of uranium mineralization.

  12. RECOVERY OF URANIUM VALUES FROM URANIUM BEARING RAW MATERIALS

    Science.gov (United States)

    Michal, E.J.; Porter, R.R.

    1959-06-16

    Uranium leaching from ground uranium-bearing raw materials using MnO/sub 2/ in H/sub 2/SO/sub 4/ is described. The MnO/sub 2/ oxidizes U to the leachable hexavalent state. The MnO/sub 2/ does not replace Fe normally added, because the Fe complexes P and catalyzes the MnO/sub 2/ reaction. Three examples of continuous processes are given, but batch operation is also possible. The use of MnO/sub 2/ makes possible recovery of very low U values. (T.R.H.)

  13. Manhattan Project Technical Series The Chemistry of Uranium (I) Chapters 1-10

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitch, E. I. [Argonne National Laboratory (ANL), Argonne, IL (United States); Katz, J. J. [Argonne National Laboratory (ANL), Argonne, IL (United States)

    1946-09-30

    This constitutes Chapters 1 through 10. inclusive, of The Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Nuclear Properties of Uranium; Properties of the Uranium Atom; Uranium in Nature; Extraction of Uranium from Ores and Preparation of Uranium Metal; Physical Properties of Uranium Metal; Chemical Properties of Uranium Metal; Intermetallic Compounds and Alloy systems of Uranium; the Uranium-Hydrogen System; Uranium Borides, Carbides, and Silicides; Uranium Nitrides, Phosphides, Arsenides, and Antimonides.

  14. Uranium mining impacts on water resources in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Simoes Filho, Francisco Fernando Lamego; Lauria, Dejanira C.; Vasconcellos, Luisa M.H.; Fernandes, Horst M.; Clain, Almir F., E-mail: flamego@ird.gov.b, E-mail: dejanira@ird.gov.b, E-mail: luisa@ird.gov.b, E-mail: h.monken-fernandes@iaea.or, E-mail: almir@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Silva, Liliane F., E-mail: ferrerl2004@yahoo.com.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias

    2009-07-01

    Uranium mining and milling activities started operations in Brazil during the 80's. The first production Center was deployed in Pocos de Caldas (CIPC) State of Minas Gerais. The mine was exhausted in 1997, after has produced only 1200 t of U{sub 3}O{sub 8}. The second uranium plant began the operations in Caetite (URA), Bahia State, since 1999 and keeps operations until now with an annual U{sub 3}O{sub 8} production of up to 400 t. The company plans to double this mark in Caetite production center with the exploration of another uranium deposits and initiate underground operations of current open-pit mine. Simultaneously, they are seeking a license for a third plant in the State of Ceara that could produce the double of foreseen capacity in URA. This scenery drives to some issues related to the impact of uranium production on water resources of the respective watersheds. The CIPC plant is a closing mine site, which requires permanent treatment of the company due to the fact their sources of pollutants are subject to the occurrence of Acid Mine Drainage. The URA plant is located in a semi-arid region of Brazil. The extraction of uranium from the ore is achieved by means of a Heap-Leach process, which has low water demand supplied by a network of wells and from a dam, but can contribute to change the groundwater quality and in some cases the extinguishing of wells was observed. An overall assessment of these impacts in national level could produce some lessons that we must take advantage for the ongoing project of Santa Quiteria or even in future sites. (author)

  15. Favorability for uranium in tertiary sedimentary rocks, southwestern Montana

    Energy Technology Data Exchange (ETDEWEB)

    Wopat, M A; Curry, W E; Robins, J W; Marjaniemi, D K

    1977-10-01

    Tertiary sedimentary rocks in the basins of southwestern Montana were studied to determine their favorability for potential uranium resources. Uranium in the Tertiary sedimentary rocks was probably derived from the Boulder batholith and from silicic volcanic material. The batholith contains numerous uranium occurrences and is the most favorable plutonic source for uranium in the study area. Subjective favorability categories of good, moderate, and poor, based on the number and type of favorable criteria present, were used to classify the rock sequences studied. Rocks judged to have good favorability for uranium deposits are (1) Eocene and Oligocene strata and undifferentiated Tertiary rocks in the western Three Forks basin and (2) Oligocene rocks in the Helena basin. Rocks having moderate favorability consist of (1) Eocene and Oligocene strata in the Jefferson River, Beaverhead River, and lower Ruby River basins, (2) Oligocene rocks in the Townsend and Clarkston basins, (3) Miocene and Pliocene rocks in the Upper Ruby River basin, and (4) all Tertiary sedimentary formations in the eastern Three Forks basin, and in the Grasshopper Creek, Horse Prairie, Medicine Lodge Creek, Big Sheep Creek, Deer Lodge, Big Hole River, and Bull Creek basins. The following have poor favorability: (1) the Beaverhead Conglomerate in the Red Rock and Centennial basins, (2) Eocene and Oligocene rocks in the Upper Ruby River basin, (3) Miocene and Pliocene rocks in the Townsend, Clarkston, Smith River, and Divide Creek basins, (4) Miocene through Pleistocene rocks in the Jefferson River, Beaverhead River, and Lower Ruby River basins, and (5) all Tertiary sedimentary rocks in the Boulder River, Sage Creek, Muddy Creek, Madison River, Flint Creek, Gold Creek, and Bitterroot basins.

  16. Ecological condition around the uranium tailing pits in Tajikistan

    Energy Technology Data Exchange (ETDEWEB)

    Mirsaidov, I.; Mirsaidov, U.; Khakimov, N.; Nazarov, Kh. [Nuclear and Radiation Safety Agency under the Academy of Sciences of the Republic of Tajikistan, 33 Rudaki avenue, Dushanbe 734025 (Tajikistan)

    2010-07-01

    One of the basic sectors of the economy in Tajikistan is the mining industry. Its development in the past led to an accumulation of large amounts of waste mainly associated with the uranium milling facilities. These wastes contain radionuclides in high concentrations (basically uranium- thorium series) and other hazardous substances. These facilities are often located in residential areas and in the upper side of the main watersheds of the region, such as Amu-Daria and Syr-Daria. Tajikistan has a number of uranium ore deposits and mining and milling facilities, which operated in the past. This country's own ores and imported raw materials were processed mainly at the former Leninabad Geochemical Combine facility (currently State Enterprise (SE) 'Vostokredmet') and also at other hydro-metallurgical plants located in the vicinity of uranium ore extraction sites (Adrasman, Taboshar, Isphara etc.). Presently the only operating enterprise in the Republic of Tajikistan, which still has the potential to process Uranium ores, using an acid leach extraction process, is the SE 'Vostokredmet'. It is interesting is to note that the mine wastes at the Adrasman site were recently successfully reprocessed to produce a lead concentrate. Otherwise, all underground and open pit mines and old radium and uranium facilities have been decommissioned, but most of them are still not remediated. Due to the recent significant increase in the price of uranium, the uranium mining residues have become a focus of interest for various different investors and commercial companies who are considering reprocessing the waste rock piles and mill tailings of Northern Tajikistan. Based on estimates from SE 'Vostokredmet', the total amount of residual uranium in the tailings and waste rock piles in the Republic of Tajikistan is about 55 million tons. The total activity of these wastes is estimated to be approximately 240-285 10{sup 12} Bq. The total volume of waste

  17. The uranium in the environment; L'uranium dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The uranium is a natural element omnipresent in the environment, with a complex chemistry more and more understood. Many studies are always today devoted to this element to better improve the uranium behavior in the environment. To illustrate this knowledge and for the public information the CEA published this paper. It gathers in four chapters: historical aspects and properties of the uranium, the uranium in the environment and the impacts, the metrology of the uranium and its migration. (A.L.B.)

  18. 77 FR 12880 - Uranium From Russia

    Science.gov (United States)

    2012-03-02

    ... COMMISSION Uranium From Russia Determination On the basis of the record \\1\\ developed in the subject five... investigation on uranium from Russia would be likely to lead to continuation or recurrence of material injury to... Publication 4307 (February 2012), entitled Uranium from Russia: Investigation No. 731-TA-539-C (Third Review...

  19. The Chemistry and Toxicology of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Sidney A. Katz

    2014-03-01

    Full Text Available Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U down to reactor grade uranium (~5% 235U, and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles. Such weapons were used by the military in the Persian Gulf, the Balkans and elsewhere. The testing of depleted uranium weapons and their use in combat has resulted in environmental contamination and human exposure. Although the chemical and the toxicological behaviors of depleted uranium are essentially the same as those of natural uranium, the respective chemical forms and isotopic compositions in which they usually occur are different. The chemical and radiological toxicity of depleted uranium can injure biological systems. Normal functioning of the kidney, liver, lung, and heart can be adversely affected by depleted uranium intoxication. The focus of this review is on the chemical and toxicological properties of depleted and natural uranium and some of the possible consequences from long term, low dose exposure to depleted uranium in the environment.

  20. Monte Carlo studies of uranium calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Brau, J.; Hargis, H.J.; Gabriel, T.A.; Bishop, B.L.

    1985-01-01

    Detailed Monte Carlo calculations of uranium calorimetry are presented which reveal a significant difference in the responses of liquid argon and plastic scintillator in uranium calorimeters. Due to saturation effects, neutrons from the uranium are found to contribute only weakly to the liquid argon signal. Electromagnetic sampling inefficiencies are significant and contribute substantially to compensation in both systems. 17 references.

  1. Uranium phosphate biomineralization by fungi.

    Science.gov (United States)

    Liang, Xinjin; Hillier, Stephen; Pendlowski, Helen; Gray, Nia; Ceci, Andrea; Gadd, Geoffrey Michael

    2015-06-01

    Geoactive soil fungi were investigated for phosphatase-mediated uranium precipitation during growth on an organic phosphorus source. Aspergillus niger and Paecilomyces javanicus were grown on modified Czapek-Dox medium amended with glycerol 2-phosphate (G2P) as sole P source and uranium nitrate. Both organisms showed reduced growth on uranium-containing media but were able to extensively precipitate uranium and phosphorus-containing minerals on hyphal surfaces, and these were identified by X-ray powder diffraction as uranyl phosphate species, including potassium uranyl phosphate hydrate (KPUO6 .3H2 O), meta-ankoleite [(K1.7 Ba0.2 )(UO2 )2 (PO4 )2 .6H2 O], uranyl phosphate hydrate [(UO2 )3 (PO4 )2 .4H2 O], meta-ankoleite (K(UO2 )(PO4 ).3H2 O), uramphite (NH4 UO2 PO4 .3H2 O) and chernikovite [(H3 O)2 (UO2 )2 (PO4 )2 .6H2 O]. Some minerals with a morphology similar to bacterial hydrogen uranyl phosphate were detected on A. niger biomass. Geochemical modelling confirmed the complexity of uranium speciation, and the presence of meta-ankoleite, uramphite and uranyl phosphate hydrate between pH 3 and 8 closely matched the experimental data, with potassium as the dominant cation. We have therefore demonstrated that fungi can precipitate U-containing phosphate biominerals when grown with an organic source of P, with the hyphal matrix serving to localize the resultant uranium minerals. The findings throw further light on potential fungal roles in U and P biogeochemistry as well as the application of these mechanisms for element recovery or bioremediation. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Manhattan NTMS Quadrangle, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-13

    Results of a reconnaissance geochemical survey of the Manhattan Quadrangle, Kansas, are reported. Field and laboratory data are presented for 674 groundwater and 718 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the most promising area for potential uranium mineralization occurs in the western-northwestern part of the quadrangle where waters are produced from the Quaternary loess deposits, and the Cretaceous Greenhorn-Graneros and Dakota Formations. Associated elements in the quadrangle include arsenic, potassium, manganese, vanadium, and selenium. The stream sediment data indicate that the highest average uranium concentrations in sediments from the Manhattan Quadrangle are obtained from the Pennsylvanian Wabaunsee Group followed by the Cretaceous Carlile Shale, Greenhorn-Graneros and Dakota Formations. In the northwestern corner of the quadrangle, high concentrations of uranium are associated with high concentrations of barium, niobium, strontium, titanium, vanadium, yttrium, and zirconium. In southeast Cloud County and extending to the northeast, high values of total uranium are associated with high values of titanium, yttrium, zirconium, and low U-FL/U-NT values. These associations indicate that the uranium is probably present in heavy and/or resistate minerals.

  3. Modeling Uranium Transport in Koongarra, Australia: The Effect of a Moving Weathering Zone

    NARCIS (Netherlands)

    Leijnse, A.; Weerd, van de H.; Hassanizadeh, S.M.

    2001-01-01

    Natural analogues are an important source of long-term data and may be viewed as naturally occurring experiments that often include processes, phenomena, and scenarios that are important to nuclear waste disposal safety assessment studies. The Koongarra uranium deposit in the Alligator Rivers region

  4. Preparation of uranium-based oxide catalysts; Preparation de catalyseurs oxydes a base d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Bressat, R. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    We have studied the thermal decomposition of uranyl and uranium IV oxalates as a mean of producing uranium dioxide. We have isolated the main intermediate phases of the decompositions and have indexed the lines of their X-ray diffraction patterns. The oxides produced by the decomposition are ill-defined and unstable: they strongly absorb atmospheric oxygen with modification of the composition and, in certain cases, of the structure (pyrophoric oxide). With a view to obtaining stable oxides, we have prepared mixed uranium-thorium oxalates. In order to prepare an oxalate having a homogeneous composition, it is necessary to adopt a well-defined preparation method: the addition of solutions of thorium and uranium IV nitrates to a continually saturated oxalic acid solution. The mixed oxide obtained from the thermal decomposition of an oxalate U{sub x}Th{sub 1-x}(C{sub 2}O{sub 4}){sub 2}, 2 H{sub 2}O at 500 C for 24 hours in a current of oxygen leads to a cubic structure which is well-defined both in the bulk and superficially when x is less than 0.35. Above this atomic concentration of uranium, some uranium moves out of the lattice in the form of UO{sub 3} or U{sub 3}O{sub 8} according to the temperature. The mixed oxide is not stoichiometric,(U{sub x}Th{sub 1-x}O{sub 2+y}) and the average degree of oxidation of the uranium varies with the temperature and partial oxygen pressure. The oxides thus formed have a high surface area. By dissolving the mixed oxalates in a concentrated solution of ammonium oxalate, it is possible to deposit the catalyst on a support, but the differences in the solubilities of the thorium and uranium IV oxalates in the ammonium oxalate make it impossible to prepare double salts formed either of thorium and uranium and of ammonium. (author) [French] Nous avons etudie la decomposition thermique des oxalates d'uranyle et d'uranium IV en vue d'aboutir au dioxide d'uranium. Nous avons pu isoler les principales phases

  5. Release behavior of uranium in uranium mill tailings under environmental conditions.

    Science.gov (United States)

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan

    2017-05-01

    Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Chemistry and Toxicology of Depleted Uranium

    OpenAIRE

    Sidney A. Katz

    2014-01-01

    Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU) is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U) down to reactor grade uranium (~5% 235U), and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles....

  7. Uranium mill monitoring for natural fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Apt, K.E.

    1977-12-01

    Isotopic monitoring of the product stream from operating uranium mills is proposed for discovering other possible natural fission reactors; aspects of their occurrence and discovery are considered. Uranium mill operating characteristics are formulated in terms of the total uranium capacity, the uranium throughput, and the dilution half-time of the mill. The requirements for detection of milled reactor-zone uranium are expressed in terms of the dilution half-time and the sampling frequency. Detection of different amounts of reactor ore with varying degrees of /sup 235/U depletion is considered.

  8. Preliminary study of favorability for uranium of the Sangre de Cristo Formation in the Las Vegas basin, northeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    May, R.T.; Strand, J.R.; Reid, B.E.; Phillips, W.R.

    1977-12-01

    Uranium favorability of the Sangre de Cristo Formation (Pennsylvanian-Permian) in the Las Vegas basin has been evaluated. The Las Vegas basin project area, located in Colfax, Mora, and San Miguel Counties, New Mexico, comprises about 3,489 sq mi. The formation contains sedimentologic and stratigraphic characteristics that are considered favorable for uranium deposition. Field investigations consisted of section measuring, rock sampling, and ground radiometric reconnaissance. North-south and east-west cross sections of the basin were prepared from well logs and measured sections. Petrographic, chemical, and spectrographic analyses were conducted on selected samples. Stratigraphic and sedimentologic information were used to determine depositional environments. The most favorable potential host rocks include red to pink, coarse-grained, poorly sorted, feldspathic to arkosic lenticular sandstones with stacked sandstone thicknesses of more than 20 ft and sandstone-to-shale ratios between 1:1 and 2:1. The sandstone is interbedded with mudstone and contains carbonaceous debris and anomalous concentrations of uranium locally. Areas of maximum favorability are found in a braided-stream, alluvial-plain depositional environment in the north-central part of the Las Vegas basin. There, carbonaceous material is well preserved, probably due to rapid subsidence and burial. Furthermore, uranium favorability is highest in the lower half of the formation because carbonaceous wood and plant fragments, as well as known uranium deposits, are concentrated in this zone. Piedmont deposits in the north and east, and meander-belt, alluvial-plain deposits in the south, are not considered favorable because of the paucity of uranium deposits and a minimum of carbonaceous material.

  9. Oxidation states of uranium in depleted uranium particles from Kuwait.

    Science.gov (United States)

    Salbu, B; Janssens, K; Lind, O C; Proost, K; Gijsels, L; Danesi, P R

    2005-01-01

    The oxidation states of uranium in depleted uranium (DU) particles were determined by synchrotron radiation based mu-XANES, applied to individual particles isolated from selected samples collected at different sites in Kuwait. Based on scanning electron microscopy with X-ray microanalysis prior to mu-XANES, DU particles ranging from submicrons to several hundred micrometers were observed. The median particle size depended on sources and sampling sites; small-sized particles (median 13 microm) were identified in swipes taken from the inside of DU penetrators holes in tanks and in sandy soil collected below DU penetrators, while larger particles (median 44 microm) were associated with fire in a DU ammunition storage facility. Furthermore, the (236)U/(235)U ratios obtained from accelerator mass spectrometry demonstrated that uranium in the DU particles originated from reprocessed fuel (about 10(-2) in DU from the ammunition facility, about 10(-3) for DU in swipes). Compared to well-defined standards, all investigated DU particles were oxidized. Uranium particles collected from swipes were characterized as UO(2), U(3)O(8) or a mixture of these oxidized forms, similar to that observed in DU affected areas in Kosovo. Uranium particles formed during fire in the DU ammunition facility were, however, present as oxidation state +5 and +6, with XANES spectra similar to solid uranyl standards. Environmental or health impact assessments for areas affected by DU munitions should therefore take into account the presence of respiratory UO(2), U(3)O(8) and even UO(3) particles, their corresponding weathering rates and the subsequent mobilisation of U from oxidized DU particles.

  10. Summary of the mineralogy of the Colorado Plateau uranium ores

    Science.gov (United States)

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little

  11. Origin and geochemical behavior of uranium in marine sediments. Utilization of the {sup 234}U/{sup 238}U ratio in marine geochemistry; Origine et comportement geochimique de l`uranium dans les sediments marins. Utilisation du rapport ({sup 234}U/{sup 238}U) en geochimie marine

    Energy Technology Data Exchange (ETDEWEB)

    Organo, Catherine [Paris-11 Univ., 91 - Orsay (France)

    1997-01-20

    The first part of this thesis presents the current situation of knowledge of uranium in marine environment. The second part describes the methods of analysis as well as the material support of the study, i.e., the sediments and marine deposits investigated. The third part is dedicated to the study of uranium mobility in marine sediments characterized by detrital terrigenous composition (pelagic clays). This approach allowed quantifying the entering and leaving flux of uranium after the sediment settling and, to discuss, on this basis, the consequences on the uranium oceanic balance. In the third part the origin and behavior of uranium in zones of high surface productivity is studied. The uranium enrichments observed in the hemi-pelagic sediments of the EUMELI (J.G.O.F.S.-France) programme will constitute a material of study adequate for measuring the variations in the {sup 234}U/2{sup 38U} ratio in solid phase, in response to the oxido-reducing characteristics of the sediment. Thus establishing the origin of the trapped uranium has been possible. Also, the nature of the sedimentary phases related to uranium in bio-genetic sediments in the Austral Ocean was determined. Thus a relationship between the variations in the {sup 234}U/{sup 238} and the diagenetic transformations was possible to establish. Finally in the fifth part a study of the behavior of uranium in a polymetallic shell characteristic for deposits of hydrogenized origin 146 refs., 57 figs., 23 tabs.

  12. Aquifer restoration at in-situ leach uranium mines: evidence for natural restoration processes

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, W.J.; Serne, R.J.; Bell, N.E.; Martin, W.J.

    1983-04-01

    Pacific Northwest Laboratory conducted experiments with aquifer sediments and leaching solution (lixiviant) from an in-situ leach uranium mine. The data from these laboratory experiments and information on the normal distribution of elements associated with roll-front uranium deposits provide evidence that natural processes can enhance restoration of aquifers affected by leach mining. Our experiments show that the concentration of uranium (U) in solution can decrease at least an order of magnitude (from 50 to less than 5 ppM U) due to reactions between the lixiviant and sediment, and that a uranium solid, possibly amorphous uranium dioxide, (UO/sub 2/), can limit the concentration of uranium in a solution in contact with reduced sediment. The concentrations of As, Se, and Mo in an oxidizing lixiviant should also decrease as a result of redox and precipitation reactions between the solution and sediment. The lixiviant concentrations of major anions (chloride and sulfate) other than carbonate were not affected by short-term (less than one week) contact with the aquifer sediments. This is also true of the total dissolved solids level of the solution. Consequently, we recommend that these solution parameters be used as indicators of an excursion of leaching solution from the leach field. Our experiments have shown that natural aquifer processes can affect the solution concentration of certain constituents. This effect should be considered when guidelines for aquifer restoration are established.

  13. Uranium 2011 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  14. Uranium 2014 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  15. Uranium 2005 Resources, Production and Demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris. Nuclear Energy Agency

    2006-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  16. Study of the uranium availability through the research method Th/U

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Zahily Herrero; Santos Junior, Jose Araujo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Damascena, Kennedy Francys Rodrigues; Medeiros, Nilson Vicente da Silva; Maciel Neto, Jose de Almeida, E-mail: zahily1985@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: neideden@hotmail.com, E-mail: kennedy.eng.ambiental@gmail.com, E-mail: nvsmedeiros@gmail.com, E-mail: profjosemaciel@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Alvarez, Juan Reinaldo Estevez, E-mail: jestevez@ceaden.cu [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Havana (Cuba); Silva, Alberto Antonio da, E-mail: alberto.silva@barreiros.ifpe.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Barreiros, PE (Brazil)

    2015-07-01

    The uranium and thorium, precursors of the main natural radioactive series, have different concentrations in the Earth's crust. The ratio Th/U has been used as an indicator of oxidizing and reducing conditions, whose factors suggest availability of uranium to displacement in the environment and incorporations in different matrices. This parameter become essential to determine possible conditions of availability by the chemical form and incorporation in the food chain. The state of Paraiba, in northeastern Brazil, has a uranium deposits located in Sao Jose de Espinharas, where there are agricultural practices in areas surrounding the deposit of natural uranium. The Environmental Monitoring Program and Radioecological, making it an area that offers all the features for research mobility of uranium, chemical form and availability of incorporation, in addition to understanding the kinetics and transport of this natural radionuclide in the environment. Soil samples were collected from agricultural areas, close to the uraniferous occurrences where the samples were analyzed in the Laboratorio de Radioecologia e Controle Ambiental (LARCA) of the Departamento de Energia Nuclear at the Universidade Federal de Pernambuco (UFPE) by High Resolution Gamma Spectrometry, obtaining the experimental activities of {sup 238}U and {sup 232}Th using indirect gamma measures. The obtained findings show that the ratio Th/U varied from 0.11 to 1.33, with an average of 0.69. (author)

  17. Synthesis of uranium fluorides from uranium dioxide with ammonium bifluoride and ammonolysis of uranium fluorides to uranium nitrides

    Science.gov (United States)

    Yeamans, Charles Burnett

    This work presents the chemical conversion of uranium oxides to uranium fluorides, and their subsequent conversion to uranium nitrides. Uranium dioxide reacts with ammonium bifluoride at 20°C to form compound in the ammonium-uranium fluoride chemical system. This reaction occurs between solid uranium dioxide at the surface of the particles and ammonium fluoride vapor. A shrinking-sphere model demonstrated surface reaction kinetics, not mass transport by diffusion through the product layer, limit the reaction rate when the starting material consists of 100 mum uranium dioxide particles. Powder x-ray diffraction showed the reaction to be complete within 8 hours, with (NH4) 4UF8 the reaction product. High-resolution electron microcopy revealed the product is largely amorphous on a micrometer-scale, but contains well-formed crystal domains on the order of 10x10 nm. X-ray diffraction showed the reaction progresses though beta-NH4UF5, delta-(NH 4)2UF6, and gamma-(NH4)2UF6 intermediate phases before finally forming (NH4)4UF 8. Modeling the system as a series of first-order reaction suggested a fourth intermediate, possibly UF4, is likely to occur. The reaction of (NH4)4UF8 with ammonia gas at 800°C forms alpha-U2N3/UN2 solid solution products with a composition of UN1.83. The x-ray powder diffraction pattern of this product is the fcc pattern commonly referenced as that of UN2 and the lattice parameter was 0.53050 nm. Surface area increased by a factor of ten during ammonolysis, consistent with the action of a hydriding agent. The alpha-U2N 3/UN2 solid solution system formed contained 1 wt% UO 2 as an impurity. Upon subsequent heating to 1150°C for 4.5 hours under argon, the nitride sample formed UN with a UO2 impurity of 9 wt%. Based on the HRTEM images, oxidation in the UN product appears to be limited to within 20 nm of particle surfaces and grain boundaries.

  18. Geochemical behaviour of uranium in the cycle of alteration; Comportement geochimique de l'uranium dans le cycle d'alteration

    Energy Technology Data Exchange (ETDEWEB)

    Chervet, J.; Coulomb, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Soudan, P. [Centre d' Etude de Lalumine, Compagnie Pechiney (France)

    1958-07-01

    The investigation of the genesis of secondary mineralized accumulations, and the prospecting of deposits from microchemical anomalies in the surface material, is requiring a well-developed knowledge of the geochemical properties of the uranium during the alteration phase. In the present work, the authors tried to track the uranium history during a part of his natural creeping. a) They describe some most typical mineralogical observations of alteration phenomena and material migration, picked up in place on the deposits. b) They give experimental results concerning the solubilities of the uranium minerals and the factors affecting this solubility. c) They study the water circulation in granitic batholites, and the influence of the occurrence of the uranium deposits on their composition. d) They observe the amplitude of phenomena restricting the dispersions: fixations, precipitations, etc., and the behaviour of growth in uraniferous areas. e) Finally, the opposition chemical alteration-radioactive equilibrium results in an important imbalance in altered materials. The authors tried to use the measurement of this imbalance to explain geochemical processes. (author) [French] L'etude des conditions de genese des accumulations minerales secondaires, ainsi que la prospection des gisements a partir d'anomalies microchimiques dans les materiaux de surface, necessite une connaissance approfondie des proprietes geochimiques fondamentales de l'uranium dans la phase d'alteration. Nous essayons, dans ce travail, de suivre l'histoire de l'uranium dans une partie de son cheminement naturel. a) Nous decrivons quelques observations mineralogiques particulierement typiques de phenomenes d'alteration et de migration de matiere, prises 'in situ' dans les gisements. b) Nous donnons les resultats d'experiences de laboratoire sur les solubilites de mineraux d'uranium et sur les facteurs influen nt cette solubilite. c) Nous etudions

  19. Uranium resources and uranium supply; Uranvorkommen und Uranversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, F.; Wellmer, F.W. [Bundesanstalt fuer Geowissenschaften und Rohstoffe Hannover, Hannover (Germany)

    2001-10-01

    The availability of natural uranium is currently considered unproblematic. Out of concern about the sufficient availability of uranium, an international working group of OECD-NEA, in which the Federal Office for Geosciences and Resources (BGR) participates as a German partner, has conducted analyses of uranium availability since 1965. Its findings are published biannually in the so-called 'Red Book', 'Uranium, Resources, Production, and Demand'. Changes in the political situation worldwide have profoundly influenced the military importance of uranium and thus also greatly improved its accessibility. As a consequence, there was a decline in production in the nineties from approx. 57,000 t of U in 1989 to, at present (2001), approx. 35,000 t annually. Estimates of the worldwide requirement of natural uranium in 2015 range between approx. 55,000 t and 80,000 t of U, because of the unforeseeable extent of the use of nuclear power, as against approx. 63,000 t of U in 2001. The most recent statistics published in the 1999 Red Bock show low-cost reserves (up to Dollar 40 per kg of U) of 1325 million t, and 2234 t of uranium at extraction costs of up to t Dollar 80 per kg. This indicates a statistical range of reserves of approx. 35 years. It should be noted that these figures are snapshots of a dynamic system. A resumption of extensive exploration and technical developments could greatly influence the resource situation. In the nineties, for instance, there is a net increase in uranium reserves of approx. 700,000 t of U as a consequence of exploration activities. (orig.) [German] Die Verfuegbarkeit von Natururan wird derzeit als unproblematisch angesehen. Aufgrund der Sorge um eine ausreichende Verfuegbarkeit von Uran beschaeftigt sich seit 1965 eine internationale Arbeitsgruppe der OECD-NEA unter deutscher Beteiligung der Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR) mit Analysen zur Verfuegbarkeit von Uran. Die Ergebnisse werden alle zwei

  20. Some physio-graphical keys to interpret reservoirs-traps, hosts of uranium-bearing mineralizations; Quelques clefs physiographiques pour interpreter les reservoirs-pieges, hotes des mineralisations uraniferes

    Energy Technology Data Exchange (ETDEWEB)

    Parize, O.; Feybesse, J.L.; Wattinne-Morice, A.; Benedicto, A.; Richard, Y.; Sol, R.; Milesi, J.P. [AREVA NC - BU Mines - Direction des Geosciences, 92 - Paris - La Defense (France); Duchemin, Ch.; James, O. [AREVA NC Niger, Niamey (Niger); Girard, Ch. [COMINAK, Akokan (Niger)

    2009-07-01

    As an approach in the search for silici-clastic formations which are reservoirs-traps hosting uranium-bearing mineralizations, the authors describe the use of facies sedimentology to describe successive deposits the arrangement of which determines the sequences according to which mineralisation will preferentially concentrate. They describe the use of sequential stratigraphy and how uranium had moved and deposited in successive eras and formations. They illustrate this approach by discussing different uranium-bearing deposits located in Niger and in France. They show how diagenesis, tectonics and sedimentology are combined to analyse these sites, and even to reassess them while exploiting them

  1. Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction

    Science.gov (United States)

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas; Lau, Kimberly V.; Weaver, Karrie L.; Maher, Kate; Payne, Jonathan L.

    2017-08-01

    The end-Triassic extinction coincided with an increase in marine black shale deposition and biomarkers for photic zone euxinia, suggesting that anoxia played a role in suppressing marine biodiversity. However, global changes in ocean anoxia are difficult to quantify using proxies for local anoxia. Uranium isotopes (δ238U) in CaCO3 sediments deposited under locally well-oxygenated bottom waters can passively track seawater δ238U, which is sensitive to the global areal extent of seafloor anoxia due to preferential reduction of 238U(VI) relative to 235U(VI) in anoxic marine sediments. We measured δ238U in shallow-marine limestones from two stratigraphic sections in the Lombardy Basin, northern Italy, spanning over 400 m. We observe a ˜0.7‰ negative excursion in δ238U beginning in the lowermost Jurassic, coeval with the onset of the initial negative δ13C excursion and persisting for the duration of subsequent high δ13C values in the lower-middle Hettangian stage. The δ238U excursion cannot be realistically explained by local mixing of uranium in primary marine carbonate and reduced authigenic uranium. Based on output from a forward model of the uranium cycle, the excursion is consistent with a 40-100-fold increase in the extent of anoxic deposition occurring worldwide. Additionally, relatively constant uranium concentrations point toward increased uranium delivery to the oceans from continental weathering, which is consistent with weathering-induced eutrophication following the rapid increase in pCO2 during emplacement of the Central Atlantic Magmatic Province. The relative timing and duration of the excursion in δ238U implies that anoxia could have delayed biotic recovery well into the Hettangian stage.

  2. Uranium, plutonium and co

    Energy Technology Data Exchange (ETDEWEB)

    Sauerbrey, Roland; Joehnk, Peter (eds.)

    2016-04-15

    To date there is no repository facility for highly radioactive and heat-generating waste in Germany. This politically ''hot'' topic is undeniably a very big, urgent problem in our society. The Helmholtz Association of German Research Centers is dedicated to developing scientific solutions for such issues. It looks back on 20 years of history: In 1995 the loosely organized collective bearing the name ''Working Association of Large-Scale Research Institutes'' (Arbeitsgemeinschaft der Grossforschungseinrichtungen) became an association of now 18 research centers. These centers collectively work in a total of six research areas. While the HZDR has only belonged to the largest research association in Germany since 2011, repository research was already on the agenda way back when the Rossendorf research center established itself in 1992 after the fall of the Berlin Wall. A good enough reason to examine the results from about 20 years of repository research in Dresden in more detail. In this issue of ''discovered'' we will take an inside look at radiochemical, radiogeological, and microbiological labs, look over the shoulders of researchers using the ''Rossendorf Beamline'' at the European Synchrotron Radiation Facility in Grenoble, and descend hundreds of meters into Finnish, Swedish, and Swiss research labs. How do ''uranium, plutonium, and co.'' react with mineral surfaces in environments that are low in oxygen or watery? How do they interact with microorganisms deep underground? And how can host rock or other materials be used as technical barriers to prevent the spread of radioactive substances? In order to answer these and further questions, the researchers of the HZDR use a wide range of spectroscopic methods. They expose test samples to lasers, infrared light, and X-rays or use the fluorescent properties of certain compounds to learn about the behavior of actinides

  3. Inherently safe in situ uranium recovery.

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  4. Depleted uranium: Metabolic disruptor?; Uranium appauvri: perturbateur metabolique?

    Energy Technology Data Exchange (ETDEWEB)

    Souidi, Maamar; Dublineau, Isabelle; Lestaevel, Philippe [Institut de Radioprotection et de Surete Nucleaire - IRSN, Direction de la radioprotection de l' homme, Laboratoire de radiotoxicologie experimentale, Service de radiobiologie et d' epidemiologie, BP 17, 92262 Fontenay-aux-Roses cedex (France)

    2011-11-15

    The presence of uranium in the environment can lead to long-term contamination of the food chain and of water intended for human consumption and thus raises many questions about the scientific and societal consequences of this exposure on population health. Although the biological effects of chronic low-level exposure are poorly understood, results of various recent studies show that contamination by depleted uranium (DU) induces subtle but significant biological effects at the molecular level in organs including the brain, liver, kidneys and testicles. For the first time, it has been demonstrated that DU induces effects on several metabolic pathways, including those metabolizing vitamin D, cholesterol, steroid hormones, acetylcholine and xenobiotics. This evidence strongly suggests that DU might well interfere with many metabolic pathways. It might thus contribute, together with other man-made substances in the environment, to increased health risks in some regions. (authors)

  5. Geology of uranium in the Chadron area, Nebraska and South Dakota

    Science.gov (United States)

    Dunham, Robert Jacob

    1961-01-01

    range up to 0.43 percent. Elsewhere uranium in dolomite and limestone in the basal 25 feet of the gypsum facies in 10 samples averages 0.007 percent, ranging up to 0.12 percent. Localization of the uranium at the base of the gypsum facies suggests downward moving waters; indirect evidence that the water from which the gypsum was deposited was highly alkaline suggests that the uranium was leached from volcanic ash in Oligocene time.

  6. The Schwartzwalder uranium deposit, II: Age of uranium mineralization and lead isotope constraints on genesis.

    Science.gov (United States)

    Ludwig, K. R.; Wallace, A.R.; Simmons, K.R.

    1985-01-01

    Schwartzwalder ores have high amounts of initial (common) Pb that was both variable and relatively radiogenic in its isotope ratios. Assuming the common Pb in these ores to have sources of similar age and similar Th/U, samples with initial Pb isotope ratios are identified - and others with variable initial ratios are normalized - to obtain U-Pb isochrons yielding an early Laramide age of 69.3 + or - 1.1 m.y. for the ores. The initial Pb-isotope systematics indicate local sources of U, dispersed in concentrations <100 ppm, in rocks of 1730 + or - 130 m.y. age. -G.J.N.

  7. Protection of uranium by electrodeposition of nickel and diffusion; Protection de l'uranium par nickelage electrolytique et diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, G.; Coriou, H.; Hure, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    This work forms part of the overall scheme for investigating uranium canning for nuclear reactors. It is necessary to: - Protect the fuel (uranium) against corrosion by the cooling medium (heavy water, CO{sub 2}, etc.), in the case of a rupture of the can; - Avoid dangerous U-Al diffusion (when it is question of an aluminium can) by using an intermediate layer of a metal whose rate of diffusion in uranium is very much less than that of aluminium under the same conditions. In the present work based on the use of an intermediate layer of nickel the following points are apparent: 1) After having treated the uranium surface it is possible to electroplate nickel on it in such a way that after annealing without the application of any pressure these deposits give a very good intermetallic U-Ni diffusion. Though this diffusion is inferior to that of the UAl system, it enables the protection to be reinforced and thus the corrosion resistance to be increased. 2) When no other factor varies, the experiments show that the quality of the diffusion zones obtained depends on the nature of the electrolytic nickel bath. 3) The classical nickel baths used previously for this type of work contain 20 to 40 g/l of boric acid acting as an electrolytic buffer. As a result of this, the deposits are highly contaminated by boron (400 to 500 ppm of boron). We shall show that with a bath which does not contain nuclear poisons, a very clean U-Ni diffusion zone can be obtained. 4) After annealing for 100 hours at 700 deg. C, microscopic examination of the diffusion front reveals the existence of five layers under bright field illumination and six Layers in polarised light: at least four of these layers are well crystallised. 5) Important irregularities in the interface between uranium and the first intermetallic compound U{sub 6}Ni seem to be result of barriers to the diffusion caused by certain impurities in the uranium. 6) Of the seven definite compounds which can be formed during the

  8. [Depleted uranium: radiation and ecological safety aspects].

    Science.gov (United States)

    Ushakov, I B; Afanas'ev, R V; Berezin, G I; Zuev, V G

    2003-01-01

    The authors have analyzed the ecological, sanitary-and-hygienic and medicobiologic aspects of using the impoverished uranium in armaments and military equipment. The influence of impoverished uranium on human body (600 cases) was studied using medicobiologic investigation. It was shown that the particles of aerosol of mixed uranium oxide cause the radiation and chemical damage of kidneys, lungs and other internals. Uranium's alpha-radiation is very effective in induction of biologic effects during internal irradiation. Taking into account that bone tissue is the critical organ for uranium isotopes the medullar tissue is exposed to alpha-radiation. In the armed conflicts of the last decade wide use of armour-piercing means with elements consisted of impoverished uranium has led to the appearance of new technogenic risk factor for the environment and the man.

  9. Uranium 2009 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  10. Maximum permissible concentrations of uranium in air

    CERN Document Server

    Adams, N

    1973-01-01

    The retention of uranium by bone and kidney has been re-evaluated taking account of recently published data for a man who had been occupationally exposed to natural uranium aerosols and for adults who had ingested uranium at the normal dietary levels. For life-time occupational exposure to uranium aerosols the new retention functions yield a greater retention in bone and a smaller retention in kidney than the earlier ones, which were based on acute intakes of uranium by terminal patients. Hence bone replaces kidney as the critical organ. The (MPC) sub a for uranium 238 on radiological considerations using the current (1959) ICRP lung model for the new retention functions is slightly smaller than for earlier functions but the (MPC) sub a determined by chemical toxicity remains the most restrictive.

  11. Oxidation and crystal field effects in uranium

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); van der Laan, G. [Diamond Light Source, Didcot (United Kingdom); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Weng, T. -C. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Yu, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bagus, P. S. [Univ. of North Texas, Denton, TX (United States); Tyliszczak, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordlund, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States)

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  12. Uranium isotopes determination in urine samples using alpha spectrometry and ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Mychelle M.L.; Maihara, Vera A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Tine, Fernanda D.; Santos, Sandra M.C.; Bonifacio, Rodrigo L.; Taddei, Maria HelenaT. [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2015-07-01

    The action of determining the concentration of uranium isotopes in biological samples, 'in vitro' bioassay, is an indirect method for evaluating the incorporation and quantification of these radionuclides internally deposited. When incorporated, these radionuclides tend to be disposed through excretion, with urine being the main source of data because it can be easily collected and analyzed. The most widely used methods for determination of uranium isotopes ({sup 234}U, {sup 235}U and {sup 238}U) are Alpha Spectrometry and ICP-MS. This work presents a comparative study for the determination of uranium isotopes using these two methodologies in real samples from occupationally exposed workers. In order to validate the methodology, a sample of the intercomparison exercise organized by PROCORAD (Association pour la Promotion du Controle de Qualite des Analyses de Biologie Medicale em Radiotoxicologie) was used, and the results were statistically compared applying the Student's t-test. (author)

  13. The Future Contribution of Unconventional Sources of Natural Uranium to Nuclear Fuel Supply. Contribution future des sources conventionnelles d'uranium naturel à l'approvisionnement en combustible nucléaire

    Directory of Open Access Journals (Sweden)

    Boyd B. W.

    2006-11-01

    Full Text Available From what we know about the distribution of uranium in the earth's crust, we can get an indication of how much uranium is likely to occur at concentrations higher than 300 ppm. Although only part of this material is likely to be discovered and brought to production, the amounts are great enough to make it unlikely that much uranium from lower grade deposits will be mined in the next 40 or so years except in special cases. In some circumstances, low grade uranium can be recovered as a by-product or as a product of reworked tailings. Significant amounts are forecast to be recovered from tailings, phosphoric acid and copper leach liquors. It can also be speculated that some uranium may be recovered from coals, shales, granites or carbonatites grading less than 300 ppm. Production from sources in this latter group or from seawater, where uranium would be the prime product, appears unlikely considering the amount of uranium thought to occur in higher concentrotions. De nos connaissances sur la distribution de l'uranium dans la croûte terrestre nous pouvons tirer des indications sur la quantité d'uranium qu'on peut trouver à des concentrations supérieures à 300 ppm. Quoiqu'une partie seulement de celles-ci soit à même d'être découverte et mise en exploitation, les quantités en sont suffisamment grandes pour rendre peu probable l'exploitation des gisements à une teneur plus faible, dans les quarante années à venir ou presque, sauf dans des cas spéciaux. Sous certaines conditions l'uranium à basse teneur peut être récupéré comme sous-produit ou comme produit du retraitement des résidus (tailings et du traitement de l'acide phosphorique et des solutions de lixiviation des minerais de cuivre. On peut aussi prévoir qu'il sera possible d'extraire de l'uranium des charbons, schistes, granites ou carbonatites à une teneur inférieure à 300 ppm. La production à partir des sources de ce dernier groupe ou de l'eau de mer, où l'uranium

  14. Evaluation of Reagent Emplacement Techniques for Phosphate-based Treatment of the Uranium Contamination Source in the 300 Area White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Nimmons, Michael J.

    2010-06-04

    Persistent uranium contamination of groundwater under the 300 Area of the Hanford Site has been observed. The source of the uranium contamination resides in uranium deposits on sediments at the groundwater interface, and the contamination is mobilized when periodically wetted by fluctuations of Columbia River levels. Treatability work is ongoing to develop and apply phosphate-containing reagents to promote the formation of stable and insoluble uranium phosphate minerals (i.e., autunite) and other phosphate precipitates (di-calcium phosphate, apatite) to stabilize the uranium source. Technologies for applying phosphate-containing reagents by vertical percolation and lateral injection into sediments of the periodically wetted groundwater interface are being investigated. This report is a preliminary evaluation of technologies for lateral injection.

  15. Evaluation of three electrodeposition procedures for uranium, plutonium and americium.

    Science.gov (United States)

    Oh, Jung-Suk; Warwick, Phillip E; Croudace, Ian W; Lee, Sang-Han

    2014-05-01

    While both mass spectrometry and alpha-particle spectrometry have been widely used for measuring alpha activities, the former is preferred since many laboratories are not equipped with ICP-MS and MC-ICP-MS systems. In this study, three electrodeposition techniques using ammonium chloride, ammonium oxalate and ammonium sulphate as electrolyte solutions were applied and evaluated for the preparation of uranium, plutonium and americium sources for alpha-particle spectrometry. Changes in pH and temperature throughout the electrodeposition process were measured every 15 min, together with percentage deposition every 30 min. The percentage deposition in each method was checked at 300, 400 and 500 mA, and the optimised time and current were determined. © 2013 Published by Elsevier Ltd.

  16. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated

  17. Biological processes for concentrating trace elements from uranium mine waters. Technical completion report

    Energy Technology Data Exchange (ETDEWEB)

    Brierley, C.L.; Brierley, J.A.

    1981-12-01

    Waste water from uranium mines in the Ambrosia Lake district near Grants, New Mexico, USA, contains uranium, selenium, radium and molybdenum. The Kerr-McGee Corporation has a novel treatment process for waters from two mines to reduce the concentrations of the trace contaminants. Particulates are settled by ponding, and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters. Some of the conclusions derived from this study are: (1) The concentrations of soluble uranium, selenium and molybdenum were not diminished in the mine waters by passage through the series of impoundments which constituted the mine water treatment facility. Uranium concentrations were reduced but this was due to passage of the water through an ion exchange column. (2) The particulate concentrations of the mine water were reduced at least ten-fold by passage of the waters through the impoundments. (3) The sediments were anoxic and enriched in uranium, molybdenum and selenium. The deposition of particulates and the formation of insoluble compounds were proposed as mechanisms for sediment enrichment. (4) The predominant algae of the treatment ponds were the filamentous Spirogyra and Oscillatoria, and the benthic alga, Chara. (5) Adsorptive processes resulted in the accumulation of metals in the algae cells. (6) Stimulation of sulfate reduction by the bacteria resulted in retention of molybdenum, selenium, and uranium in sediments. 1 figure, 16 tables.

  18. Electroreduction of uranium(VI) to uranium(IV) in strip product solutions

    Science.gov (United States)

    Skripchenko, S. Yu.; Chernyshov, M. V.; Smirnov, A. L.

    2017-09-01

    The electrochemical reduction of uranium(VI) to uranium(IV) in strip product solutions on a carbon electrode was investigated. The maximal tetravalent uranium yield as well as a high current efficiency could be achieved during the electrolysis at current densities of 8-10 mA/cm2. The use of solutions with fluoride ions addition for electrolysis resulted in increased process efficiency due to formation of fluoride complexes. The efficiency of the electrochemical reduction also increased with increasing uranium content in the strip product solutions. The addition of hydrazine in solution was very effective for preventing nitric acid reduction at cathode, oxidation of uranium ions and anode destruction.

  19. Uranium in the Mayoworth area, Johnson County, Wyoming - a preliminary report

    Science.gov (United States)

    Love, J.D.

    1954-01-01

    The uranium mineral, metatyuyamunite, occurs in the basal limestone of the Sundance formation of late Jurassic age along the east flank of the Bighorn Mountains, about 2 miles southwest of the abandoned Mayoworth post office. This occurrence is of particular interest because it is the first uranium mineralization reported from a marine limestone in Wyoming. The discovery uranium claims were filed in July 1953, by J.S. Masek, Dan Oglesby, and Jack Emery of Casper, Wyo. Subsequent reconnaissance investigations have been made by private individuals and geologists of the U.S. Geological Survey and Atomic Energy Commission. The metatyuyamunite is concentrated in a hard gray oolitic limestone that forms the basal bed of the Sundance formation. A selected sample of limestone from a fresh face in the northernmost deposit known at the time of the field examination contained 0.70 percent equivalent uranium and 0.71 percent uranium. Eight samples of the limestone taken at the sample place by the Atomic Energy Commission contained from 0.007 to 0.22 percent uranium. A chip sample from the weathered outcrop at the top of this limestone half a mile to the southeast contained 0.17 percent equivalent uranium and 0.030 percent uranium. A dinosaur bone from the middle part of the Morrison formation contained 0.044 percent equivalent uranium and 0.004 percent uranium. metatyuyamunite forms a conspicuous yellow coating along fracture planes cutting the oolitic limestone and has also replaced many of the oolites within the solid limestone and has also replaced many of the oolites within the solid limestone even where fractures are not present. Many radioactive spots in the basal limestone of the Sundance formation were examined in a reconnaissance fashion along the outcrop for a distance of half a mile south of the initial discovery. Samples were taken for analysis only at the northern and southern margins of this interval. Outcrops farther north and south were not studied. There are

  20. Efficacy of 3,4,3-LIHOPO for reducing the retention of uranium in rat after acute administration.

    Science.gov (United States)

    Henge-Napoli, M H; Archimbaud, M; Ansoborlo, E; Metivier, H; Gourmelon, P

    1995-10-01

    Decorporation therapy is the only known effective method of reducing the radiation dose to persons following accidental internal contamination with transportable radionuclides. Deposits of actinides in bone should be minimized because development of osteosarcoma appears to be related to internal exposure. In contrast with other actinides, such as plutonium or americium where chelating agent treatment is efficient, the therapeuric approaches used for cases of uranium contamination are widely ineffective. This is the first report on in vivo efficacy of a chelating agent, a siderophore analogue code named 3,4,3-LIHOPO, after systematic exposure to natural uranium in the rat. Using the classical antidotal therapy (sodium bicarbonate) for comparison, this ligand has been investigated for its ability to remove uranium from rats after intravenous or intramuscular injection as nitrate. Following an immediate single intramuscular or intravenous injection of 3,4,3-LIHOPO (30 mumol.kg-1) urinary excretion of uranium was greatly enhanced with a corresponding reduction 24 h later in kidney and bone uranium content (to about 20 and 50% of the control rat respectively). Under identical experimental conditions, sodium bicarbonate (640 mumol.kg-1) reduced the uranium content in kidney in kidney and bone only to about 90 and 70% of controls respectively, and there was less enhancement of uranium excretion. However, when treatment was delayed by 30 min and administered intraperitoneally, there was no marked difference in retention and excretion of uranium between the two compounds. As this ligand showed no apparent irreversible toxicity at effective dosages, it is concluded that the administration of the 3,4,3-LIHOPO chelating agent represents potentially a most significant advance for prompt treatment of uranium contamination, while a more detailed investigation is necessary on the possible advantage when treatment delayed.

  1. The structural and genetic position uranium-thorium mineralization of Azov megablock

    Directory of Open Access Journals (Sweden)

    Katalenets A.I.

    2014-12-01

    Full Text Available The genetic characteristics of development and placement uranium-thorium mineralization and distribution of their concentrations in Azov megablock areas are examined. The main structures of Azov megablock areas controlling of distribution of metasomatic types and ore occurrence related with them are set. Preliminary basis for the allocation of boundaries and areas of ore districts is created. Considered theoretical and practical problem associated with the establishment of regional characteristics, genetic types of mineralization, its structural and temporary accommodation, the development of search criteria and characteristics of mineralization, the release of potentially mineralized areas and study areas of prospecting for Azov megablock of Ukrainian shield. The research is based on data on the geological structure of the PM, and the structural control of the placement lithochemical uranium and thorium anomalies occurrences and deposits, typomorphic properties of minerals, the phase distribution of uranium, thorium. Distribution of uranium and thorium mineralization in areas considered structure is: own minerals, isomorphic impurity in minerals associated with them, or turn on the first to the last. Uranium and thorium PM mineralization is characterized by a genetic (paragenetic involving mineral associations exogenous and metasomatic rocks.

  2. Uranium favorability of late Eocene through Pliocene rocks of the South Texas Coastal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Quick, J.V.; Thomas, N.G.; Brogdon, L.D.; Jones, C.A.; Martin, T.S.

    1977-02-01

    The results of a subsurface uranium favorability study of Tertiary rocks (late Eocene through Pliocene) in the Coastal Plain of South Texas are given. In ascending order, these rock units include the Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand. The Vicksburg Group, Anahuac Formation, and Fleming Formation were not considered because they have unfavorable lithologies. The Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand contain sandstones that may be favorable uranium hosts under certain environmental and structural conditions. All except the Yegua are known to contain ore-grade uranium deposits. Yegua and Jackson sandstones are found in strand plain-barrier bar systems that are aligned parallel to depositional and structural strike. These sands grade into shelf muds on the east, and lagoonal sediments updip toward the west. The lagoonal sediments in the Jackson are interrupted by dip-aligned fluvial systems. In both units, favorable areas are found in the lagoonal sands and in sands on the updip side of the strand-plain system. Favorable areas are also found along the margins of fluvial systems in the Jackson. The Frio and Catahoula consist of extensive alluvial-plain deposits. Favorable areas for uranium deposits are found along the margins of the paleo-channels where favorable structural features and numerous optimum sands are present. The Oakville and Goliad Formations consist of extensive continental deposits of fluvial sandstones. In large areas, these fluvial sandstones are multistoried channel sandstones that form very thick sandstone sequences. Favorable areas are found along the margins of the channel sequences. In the Goliad, favorable areas are also found on the updip margin of strand-plain sandstones where there are several sandstones of optimum thickness.

  3. New french uranium mineral species; Nouvelles especes uraniferes francaises

    Energy Technology Data Exchange (ETDEWEB)

    Branche, G.; Chervet, J.; Guillemin, C. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; {beta} uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the {alpha} uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [French] Dans ce travail, les auteurs etudient les nouveaux mineraux uraniferes francais: parsonsite et renardite, phosphates hydrates de plomb et d'uranium; kasolite: silicate hydrate d'uranium et de plomb uranopilite: sulfate d'uranium hydrate; bayleyite: carbonate d'uranium et de magnesium hydrate; {beta} uranolite: silicate d'uranium et de calcium hydrate. Pour tous ces mineraux, les auteurs donnent les caracteres cristallographiques, optiques, et les analyses chimiques quantitatives. Par contre, les especes suivantes, tres rares dans les gites francais, n'ont pas permis d'effectuer d'analyses quantitatives. Ce sont: l'ianthinite: oxyde uraneux hydrate; l'{alpha} uranotile: silicate d'uranium et de calcium hydrate; le bassetite: phosphate d'uranium et de fer hydrate; la hosphuranylite: phosphate duranium hydrate; la becquerelite: oxyde d'uranium hydrate; la curite: oxyde d'uranium

  4. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Duquene, L. [SCK-CEN, Biosphere Impact Studies, Boeretang 200, B-2400 Mol (Belgium); Vandenhove, H., E-mail: hvandenh@sckcen.b [SCK-CEN, Biosphere Impact Studies, Boeretang 200, B-2400 Mol (Belgium); Tack, F. [Ghent University, Laboratory for Analytical Chemistry and Applied Ecochemistry, Coupure Links 653, B-9000 Gent (Belgium); Van Hees, M.; Wannijn, J. [SCK-CEN, Biosphere Impact Studies, Boeretang 200, B-2400 Mol (Belgium)

    2010-02-15

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C{sub DGT}) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO{sub 2}{sup 2+}, uranyl carbonate complexes and UO{sub 2}PO{sub 4}{sup -}. The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants.

  5. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    Science.gov (United States)

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  6. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C. W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  7. Landscape control of uranium and thorium in boreal streams – spatiotemporal variability and the role of wetlands

    Directory of Open Access Journals (Sweden)

    F. Lidman

    2012-11-01

    Full Text Available The concentrations of uranium and thorium in ten partly nested streams in the boreal forest region were monitored over a two-year period. The investigated catchments ranged from small headwaters (0.1 km2 up to a fourth-order stream (67 km2. Considerable spatiotemporal variations were observed, with little or no correlation between streams. The fluxes of both uranium and thorium varied substantially between the subcatchments, ranging from 1.7 to 30 g km−2 a−1 for uranium and from 3.2 to 24 g km−2 a−1 for thorium. Airborne gamma spectrometry was used to measure the concentrations of uranium and thorium in surface soils throughout the catchment, suggesting that the concentrations of uranium and thorium in mineral soils are similar throughout the catchment. The fluxes of uranium and thorium were compared to a wide range of parameters characterising the investigated catchments and the chemistry of the stream water, e.g. soil concentrations of these elements, pH, TOC (total organic carbon, Al, Si and hydrogen carbonate, but it was concluded that the spatial variabilities in the fluxes of both uranium and thorium mainly were controlled by wetlands. The results indicate that there is a predictable and systematic accumulation of both uranium and thorium in boreal wetlands that is large enough to control the transport of these elements. On the landscape scale approximately 65–80% of uranium and 55–65% of thorium entering a wetland were estimated to be retained in the peat. Overall, accumulation in mires and other types of wetlands was estimated to decrease the fluxes of uranium and thorium from the boreal forest landscape by 30–40%, indicating that wetlands play an important role for the biogeochemical cycling of uranium and thorium in the boreal forest landscape. The atmospheric deposition of uranium and thorium was also quantified, and its contribution to boreal streams was

  8. 31 CFR 540.315 - Uranium-235 (U235).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...

  9. Irradiation effects of the zirconium oxidation and the uranium diffusion in zirconia; Effets d'irradiation sur l'oxydation du zirconium et la diffusion de l'uranium dans la zircone

    Energy Technology Data Exchange (ETDEWEB)

    Bererd, N

    2003-07-01

    The context of this study is the direct storage of spent fuel assemblies after operation in reactor. In order to obtain data on the capacities of the can as the uranium diffusion barrier, a fundamental study has been carried out for modelling the internal cladding surface under and without irradiation. The behaviour of zirconium in reactor conditions has at first been studied. A thin uranium target enriched with fissile isotope has been put on a zirconium sample, the set being irradiated by a thermal neutrons flux leading to the fission of the deposited uranium. The energetic history of the formed fission products has revealed two steps: 1)the zirconium oxidation and 2)the diffusion of uranium in the zirconia formed at 480 degrees C. A diffusion coefficient under irradiation has been measured. Its value is 10{sup -15} cm{sup 2}.s{sup -1}. In order to be able to reveal clearly the effect of the irradiation by the fission products on the zirconium oxidation, measurements of thermal oxidation and under {sup 129}Xe irradiation have been carried out. They have shown that the oxidation is strongly accelerated by the irradiation and that the temperature is negligible until 480 degrees C. On the other hand, the thermal diffusion of the uranium in zirconium and in zirconia has been studied by coupling ion implantation and Rutherford backscattering spectroscopy. This study shows that the uranium diffuses in zirconium and is trapped in zirconia in a UO{sub 3} shape. (O.M.)

  10. Uranium Pyrophoricity Phenomena and Prediction

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  11. Occupational exposure to uranium particles

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, L.; Medeiros, G.; Dias da Cunha, K. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Rio de Janeiro, RJ (Brazil)]. E-mail: carneiro@ird.gov.br; Lima, C.; Barros Leite, C.V.; Ramos, J.L. [Pontificia Universidade Catolica do Rio de Janeiro (PUC-RIO), RJ (Brazil). Dept. de Fisica

    2007-07-01

    The risk for the human health due to exposure to aerosols containing uranium depend on the intake pattern, the mass concentration and the speciation of the elements present in airborne particles. In this work PIXE (Particle Induced X ray Emission) technique was used to characterize aerosols samples collected in the environment. The PIXE technique allows the identification of the elements present in the sample and to determine their mass concentrations. The aerosol samples were collected using a six-stage cascade impactor and coarse and fine air sampler (AGF sampler) in two sites of Rio de Janeiro City. One, a mineral laboratory processing mineral containing uranium associated to crystals lattice located at Fundao Island a industrial zone and the other, in a laboratory at Barra da Tijuca a residential zone close to a lagoon and to the seashore. The Mass Median Aerodynamic Diameter (MMAD) measured indicated that the airborne particulate were in the fine fraction of the aerosols collected in both locations. In order to identify the contribution of the seawater particles from the Guanabara Bay in the aerosols, seawater samples were also collected at Fundao Island. The analysis of the results suggests that the aerosols are different in both sampling site and also exist a contribution from the Guanabara Bay seawater particles to the aerosols collected in the Fundao Island. (author)

  12. Uranium Detection - Technique Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Colletti, Lisa Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division; Garduno, Katherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division; Lujan, Elmer J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division; Mechler-Hickson, Alexandra Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division; Univ. of Wisconsin, Madison, WI (United States); May, Iain [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division; Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-04-14

    As a LANL activity for DOE/NNSA in support of SHINE Medical Technologies™ ‘Accelerator Technology’ we have been investigating the application of UV-vis spectroscopy for uranium analysis in solution. While the technique has been developed specifically for sulfate solutions, the proposed SHINE target solutions, it can be adapted to a range of different solution matrixes. The FY15 work scope incorporated technical development that would improve accuracy, specificity, linearity & range, precision & ruggedness, and comparative analysis. Significant progress was achieved throughout FY 15 addressing these technical challenges, as is summarized in this report. In addition, comparative analysis of unknown samples using the Davies-Gray titration technique highlighted the importance of controlling temperature during analysis (impacting both technique accuracy and linearity/range). To fully understand the impact of temperature, additional experimentation and data analyses were performed during FY16. The results from this FY15/FY16 work were presented in a detailed presentation, LA-UR-16-21310, and an update of this presentation is included with this short report summarizing the key findings. The technique is based on analysis of the most intense U(VI) absorbance band in the visible region of the uranium spectra in 1 M H2SO4, at λmax = 419.5 nm.

  13. Autoradiography of geological fluorite samples for determination of uranium and thorium distribution using nuclear track methodology

    Energy Technology Data Exchange (ETDEWEB)

    Pi, T.; Sole, J. [Instituto de Geologia, UNAM, Cd. Universitaria, Coyoacan, 04510 Mexico DF (Mexico); Golzarri, J.I; Rickards, J.; Espinosa, G. [IFUNAM, AP 20-364, 01000 Mexico DF (Mexico)]. e-mail: espinosa@fisica.unam.mx

    2007-07-01

    In this paper we present the uranium and thorium distribution analysis of several samples of the 'La Azul' an epithermal fluorspar deposit in southern Mexico, using nuclear track methodology (NTM), in the alpha-autoradiography mode, by placing the mineral sample in contact with a polycarbonate detector. This constitutes a non-destructive analysis, with sufficient sensitivity to provide valuable information about textural and para genetic characteristics of the geological samples. The selected nuclear track detector was CR-39 (Landauer). The region of interest of the geological samples was polished and put in contact with the detector material surface for 45 days in a vacuum chamber (10-3 torr). After this period of time, the detectors were chemically etched, revealing the auto radiograph of the radioactive material. The results show a clear distribution of bands of uranium and thorium in the fluorite samples. This is valuable information for the genetic or geochronological studies of the ore deposits. (Author)

  14. Uinta Arch Project: investigations of uranium potential in Precambrian X and older metasedimentary rocks in the Unita and Wasatch ranges, Utah and Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Graff, P.J.; Sears, J.W.; Holden, G.S.

    1980-06-01

    This study is part of the United States Department of Energy's National Uranium Resource Evaluation Program to understand the geologic setting, amount, and availability of uranium resources within the boundaries of the United States. The systematic study of Precambrian quartz-pebble conglomerates and areas that may contain such conglomerates is an integral part of DOE's resource evaluation program, because deposits of world-wide importance occur in such terrains in Canada and South Africa, and because terrains similar to those producing uranium from quartz-pebble conglomerates exist elsewhere in the United States. Because of the ready availability of Tertiary sandstone and Colorado Plateau-type uranium deposits, large areas of Precambrian rocks in the US have not been fully assessed for uranium potential. Thus, the Uinta Arch Project was undertaken to assess the favorability of Precambrian metasedimentary rocks in northern Utah for deposits of uranium in Precambrian quartz-pebble conglomerates. Rocks of interest to this study are the thick, clastic sequences within the Uinta Arch that are considered to be of Early Proterozoic age. The Uinta Arch area is known to contain rocks which generally fit the lithologic characteristics that are understood to limit the occurrence of Precambrian fossil placers. However, detailed geology of these rocks and their exact fit to the model described for uraniferous conglomerates was not known. The primary goal of the Uinta Arch Project was to determine how well these Precambrian rocks resemble known deposits and to describe the favorability of placer uranium deposits.

  15. Uranium in the Islamic Republic of Mauritania (phase V, deliverable 81): Chapter N in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Fernette, Gregory

    2015-01-01

    Mauritania has 80 known uranium mineral occurrences and is the current focus of active exploration for uranium by a number of private companies. Seventeen occurrences have had resource estimates published and can be considered as mineral deposits. Fourteen of these are calcrete-type deposits with a total resource of 138.3 million tonnes at an average grade of 331 ppm U3O8. The three bedrock-hosted deposits are granite hosted vein/shear zone type deposits with a total resource of 46.5 million tonnes at a grade of 248 ppm U3O8.

  16. Uranium mineralization in fluorine-enriched volcanic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  17. Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions.

    Science.gov (United States)

    Wang, Tieshan; Zheng, Xinyan; Wang, Xiaoyu; Lu, Xia; Shen, Yanghao

    2017-02-01

    Uranium adsorption mechanisms of live and heat-killed Saccharomyces cerevisiae in different pH values and biomass concentrations were studied under environmentally relevant conditions. Compared with live cells, the adsorption capacity of heat-killed cells is almost one order of magnitude higher in low biomass concentration and highly acidic pH conditions. To explore the mesoscopic surface interactions between uranium and cells, the characteristic of uranium deposition was investigated by SEM-EDX, XPS and FTIR. Biosorption process of live cells was considered to be metabolism-dependent. Under stimulation by uranyl ions, live cells could gradually release phosphorus and reduce uranium from U(VI) to U(IV) to alleviate uranium toxicity. The uranyl-phosphate complexes were formed in scale-like shapes on cell surface. The metabolic detoxification mechanisms such as reduction and "self-protection" are of significance to the migration of radionuclides. In the metabolism-independent biosorption process of heat-killed cells: the cells cytomembrane was damaged by autoclaving which led to the free diffusion of phosphorous from intracellular, and the rough surface and nano-holes indicated that the dead cells provided larger contact area to precipitate U(VI) as spherical nano-particles. The high biosorption capacity of heat-killed cells makes it become a suitable biological adsorbent for uranium removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. United States Transuranium and Uranium Registries. Annual report February 1, 2000--January 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, Susan M. (ed.); Filipy, Ronald E. (ed.)

    2001-07-01

    The United States Transuranium and Uranium Registries (USTUR) comprise a human tissue research program studying the deposition, biokinetics and dosimetry of the actinide elements in humans with the primary goals of providing data fundamental to the verification, refinement, or future development of radiation protection standards for these and other radionuclides, and of determining possible bioeffects on both a macro and subcellular level attributable to exposure to the actinides. This report covers USTUR activities during the year from February 2000 through January 2001.

  19. United States Transuranium and Uranium Registries. Annual report October 1, 1994 - September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kathren, R.L.; Harwick, L.A.; Markel, M.J.

    1996-07-01

    The United States Transuranium and Uranium Registries (USTUR) comprise a human tissue research program studying the deposition, biokinetics and dosimetry of the actinide elements in humans with the primary goals of providing data fundamental to the verification, refinement, or future development of radiation protection standards for these and other radionuclides, and of determining possible bioeffects on both a macro and subcellular level attributable to exposure to the actinides. This report covers USTUR activities during the year from October 1994 through September 1995.

  20. India's Worsening Uranium Shortage

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  1. Technical Basis for Assessing Uranium Bioremediation Performance

    Energy Technology Data Exchange (ETDEWEB)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  2. Capstone Depleted Uranium Aerosols: Generation and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  3. Development of uranium processing at Wiluna

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, D., E-mail: dayle.kenny@toroenergy.com.au [Toro Energy Ltd., West Perth, WA (Australia); Dombrose, E. [Metallurgical Support Pty Ltd., Shelley, WA (Australia)

    2010-07-01

    Toro Energy Ltd. has identified a resource of 20.2 million tonnes at a grade of 548 ppm U{sub 3}O{sub 8} at Wiluna, Western Australia. Calcrete and clay delta formations host the uranium mineral carnotite. Initial studies indicate a mining operation is technically, environmentally and commercially viable. Increase in demand for uranium and a change in State Government policy on uranium mining have lead Toro to proceed with a bankable feasibility study and commence approvals with State and Federal Governments. This paper discusses how Toro arrived at the decision to utilise alkaline heap leach, a process not widely used, and how it is being developed. (author)

  4. Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger

    Energy Technology Data Exchange (ETDEWEB)

    Déjeant, Adrien, E-mail: adrien.dejeant@normalesup.org [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Case 115, 4 place Jussieu, 75005 Paris (France); Université Paris Diderot — Paris VII, 5 rue Thomas Mann, 75013 Paris (France); Galoisy, Laurence [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Case 115, 4 place Jussieu, 75005 Paris (France); Université Pierre et Marie Curie — Paris VI, 4 place Jussieu, 75005 Paris (France); Roy, Régis [AREVA Mines — Geoscience Department, Tour AREVA, 1 place Jean Millier, 92084 Paris, La Défense (France); Calas, Georges; Boekhout, Flora [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Case 115, 4 place Jussieu, 75005 Paris (France); Université Pierre et Marie Curie — Paris VI, 4 place Jussieu, 75005 Paris (France); Phrommavanh, Vannapha; Descostes, Michael [AREVA Mines — R& D Department, BAL 0414C-2, Tour AREVA, 1 place Jean Millier, 92084 Paris, La Défense (France)

    2016-03-01

    This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam — Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. - Highlights: • The evolution of U distribution and speciation in mill tailings is investigated. • High resolution satellite images provide useful information on tailings evolution. • U and many other elements are enriched in a sulfate-rich duricrust. • Formation of

  5. Evaluation of the effectiveness of the filtration leaching for uranium recovery from uranium ore

    Directory of Open Access Journals (Sweden)

    Bolat Uralbekov

    2015-09-01

    Full Text Available The physical and chemical processes taking place in filtration leaching of uranium from uranium ore sample by sulphuric acid solution have been studied by modern physico-chemical methods (X-ray diffraction, scanning electron spectroscopy, electron probe microanalysis, optical emission spectroscope, ICP OES. Column leaching test was carried out for ore samples obtained from a uranium in-situ leaching (ISL mining site using deluted sulphuricacid to study the evolution of various elements concentration in the pregnant leach solution. It has been shown that the uranium in pregnant solutions appears by dissolution of calcium and magnesium carbonates and uranium minerals as well. It was found the decreasing of filtration coefficient from 0.099 m day-1 to 0.082 m day-1, due to the presence of mechanical and chemical mudding. Partial extraction of uranium (85% from the ore has been explained by the slow diffusion of sulfuric acid to the uranium minerals locates in the cracks of silicate minerals. It was concluded that the studied uranium ore sample according to adverse geotechnical parameters is not suitable for uranium extraction by filtration leaching.

  6. Discrimination of uranium alteration zones in selected areas by use of LANDSAT MSS imagery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kober, C.L.; Procter-Gregg, H.D.

    1977-02-01

    The surface alteration halos of fifty known uranium occurrences in the Western United States have been analyzed to determine spectral signatures in imagery acquired by the LANDSAT Multi-Spectral Scanner. The deposits included veins and metasediments in the northeast of Washington, batholitic districts in the northwest of Idaho, veins and intrusives in a portion of the Colorado Front Range and sedimentary deposits on the Colorado Plateau. Image analysis employed an analog hybrid video processing system composed of a light table, vidicon camera, image analyzer and color output monitor. A complete description of the theory and methodology is provided in the report.

  7. Mountain wetlands: efficient uranium filters - potential impacts

    Science.gov (United States)

    Owen, D.E.; Otton, J.K.

    1995-01-01

    Sediments in 67 of 145 Colorado wetlands sampled by the US Geological Survey contain moderate (20 ppm) or greater concentrations of uranium (some as high as 3000 ppm) based on dry weight. The proposed maximum contaminant level (MCL) for uranium in drinking water is 20 ??g/l or 20 ppb. By comparison, sediments in many of these wetlands contain 3 to 5 orders of magnitude more uranium than the proposed MCL. Wetlands near the workings of old mines may be trapping any number of additional metals/elements including Cu, Pb, Zn, As and Ag. Anthropogenic disturbances and natural changes may release uranium and other loosely bound metals presently contained in wetland sediments. -from Authors

  8. A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits: Chapter J in Mineral deposit models for resource assessment

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.; Seal, Robert R.; McCafferty, Anne E.

    2014-01-01

    Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. A wide variety of other commodities have been exploited from carbonatites and alkaline igneous rocks including niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other elements enriched in these deposits include manganese, strontium, tantalum, thorium, vanadium, and uranium. Carbonatite and peralkaline intrusion-related rare earth element deposits are presented together in this report because of the spatial, and potentially genetic, association between carbonatite and alkaline rocks. Although these rock types occur together at many locations, carbonatite and peralkaline intrusion-related rare earth element deposits are not generally found together.

  9. Uranium Isotope Systematic in Saanich Inlet

    Science.gov (United States)

    Amini, M.; Holmden, C.; Francois, R.

    2008-12-01

    As a redox-sensitive element Uranium has become the focus of stable isotope studies. Based on the nuclear field shift effect [1], U isotope fractionation was predicted as a function of U(IV)-U(VI) exchange reactions with the insoluble reduced U(IV) species being heavier than the soluble oxidized U(VI) species. Recently, variations in 238U/235U were reported in low temperature aqueous and sedimentary environments [2,3] indicating that U deposited in well-oxygenated environments is characterized by light isotopic composition, whereas suboxic and anoxic deposits tend towards a heavy isotopic signature. U isotope fractionation has been hence proposed as a promising new paleo-redox proxy. In order to test the efficacy of U isotope fractionation to record oxidation states in marine systems, we are investigating sediment samples deposited over a range of redox conditions in the seasonally anoxic Saanich Inlet, on the east coast of Vancouver Island. We have also made δ238U measurements for water samples from above and below the redoxcline. The measurements were carried out by MC-ICPMS using 233U/236U-double spike technique. The data are reported as δ238U relative to NBL 112a with a 238U/235U ratio of 137.88 (2sd). External precision is better than 0.10 permil (2sd). Eleven analyses of seawater performed over the course of this work yielded δ238U of -0.41±0.07 permil (2sd). No clear difference in δ238U values has been found, thus far, in water samples collected at 10m (O2~380μM) and 200m (O2~1μM) depths from a single location in the middle of the inlet. The mean of two measurements of the deepwater sample yielded -0.43±0.01 permil (2sd). Two measurements of the shallow water sample yielded a mean value of -0.38±0.03 permil (2sd). The δ238U values for HF-HNO3 digestions of the organic rich sediments, one taken in the middle of the basin (3.11% organic carbon) below seasonally anoxic bottom waters (-0.22±0.01 permil, n=2), and the other taken from the sill (1

  10. Treatment of effluents from uranium oxide production.

    Science.gov (United States)

    Ladeira, A C Q; Gonçalves, J S; Morais, C A

    2011-01-01

    The nuclear fuel cycle comprises a series of industrial processes which involve the production of electricity from uranium in nuclear power reactors. In Brazil the conversion of uranium hexafluoride (UF6) into uranium dioxide (UO2) takes place in Resende (RJ) at the Nuclear Fuel Factory (FCN). The process generates liquid effluents with significant concentrations of uranium, which might be treated before being discharged into the environment. This study investigates the recovery of uranium from three distinct liquid effluents: one with a high carbonate content and the other with an elevated fluoride concentration. This paper also presents a study on carbonate removal from an effluent that consists of a water-methanol solution generated during the filtration of the yellow cake (ammonium uranyl tricarbonate). The results showed that: (1) the uranium from the carbonated solution can be recovered through the ion exchange technique using the strong base anionic resin IRA 910-U, as the carbonate has been removed as CO2 after heating; (2) the most suitable technique to recover uranium from the fluoride solution is its precipitation as (NH4)2UO4F2 (ammonium fluorouranate peroxide), (3) the solution free of carbonate can be added to the fluoride solution and the uranium from the final solution can be recovered by precipitation as ammonium fluorouranate peroxide as well; (4) the carbonate from the water-methanol solution can be recovered as calcium carbonate through the addition of calcium chloride, or it can be recovered as ammonium sulphate through the addition of sulphuric acid. The ammonium sulphate product can be used as a fertilizer.

  11. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    Science.gov (United States)

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  12. The ultimate disposition of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  13. Pentavalent uranium trans-dihalides and -pseudohalides.

    Science.gov (United States)

    Lewis, Andrew J; Nakamaru-Ogiso, Eiko; Kikkawa, James M; Carroll, Patrick J; Schelter, Eric J

    2012-05-21

    Pentavalent uranium complexes of the formula U(V)X(2)[N(SiMe(3))(2)](3) (X = F(-), Cl(-), Br(-), N(3)(-), NCS(-)) are accessible from the oxidation of U(III)[N(SiMe(3))(2)](3) through two sequential, one-electron oxidation reactions (halides) and substitution through salt metathesis (pseudohalides). Uranium(v) mixed-halides are also synthesized by successive one-electron oxidation reactions.

  14. Multifactorial Assessment of Depleted Uranium Neurotoxicity

    Science.gov (United States)

    2006-12-01

    Changes in sleep - wake cycle after chronic exposure to uranium in rats. Neurotoxicol Teratol 27: 835-40. Lestaevel, P., P. Houpert, C. Bussy, B...delivery to 43muscle and brain, acute stimulation of immune function, and 44sharpened cognition with increased cerebral glucose utilization . 45While...procedures. Inductively coupled plasma-mass spectrometry (ICP-MS) analysis was used to assess the kinetics of uranium in the cerebral cortex, hippocampus

  15. PROCESSES OF CHLORINATION OF URANIUM OXIDES

    Science.gov (United States)

    Rosenfeld, S.

    1958-09-16

    An improvement is described in the process fur making UCl/sub 4/ from uranium oxide and carbon tetrachloride. In that process, oxides of uranium are contacted with carbon tetrachloride vapor at an elevated temperature. It has been fuund that the reaction product and yield are improved if the uranlum oxide charge is disposed in flat trays in the reaction zone, to a depth of not more than 1/2 centimeter.

  16. [Biosorption of Radionuclide Uranium by Deinococcus radiodurans].

    Science.gov (United States)

    Yang, Jie; Dong, Fa-qin; Dai, Qun-wei; Liu, Ming-xue; Nie, Xiao-qin; Zhang, Dong; Ma, Jia-lin; Zhou, Xian

    2015-04-01

    As a biological adsorbent, Living Deinococcus radiodurans was used for removing radionuclide uranium in the aqueous solution. The effect factors on biosorption of radionuclide uranium were researched in the present paper, including solution pH values and initial uranium concentration. Meanwhile, the biosorption mechanism was researched by the method of FTIR and SEM/EDS. The results show that the optimum conditions for biosorption are as follows: pH = 5, co = 100 mg · L(-1) and the maximum biosorption capacity is up to 240 mgU · g(-1). According to the SEM results and EDXS analysis, it is indicated that the cell surface is attached by lots of sheet uranium crystals, and the main biosorpiton way of uranium is the ion exchange or surface complexation. Comparing FTIR spectra and FTIR fitting spectra before and after biosorption, we can find that the whole spectra has a certain change, particularly active groups (such as amide groups of the protein, hydroxy, carboxyl and phosphate group) are involved in the biosorption process. Then, there is a new peak at 906 cm(-1) and it is a stretching vibration peak of UO2(2+). Obviously, it is possible that as an anti radiation microorganism, Deinococcus radiodurans could be used for removing radionuclide uranium in radiation environment.

  17. Development of uranium reference particles for nuclear safeguards and non-proliferation control

    Science.gov (United States)

    Kips, Ruth

    In the oversight of the nuclear Non-Proliferation Treaty and as part of the Additional Protocol of the International Atomic Energy Agency, environmental sampling has become an important tool for the detection of non-declared nuclear activities. One extensively developed technique in environmental sampling (ES) makes use of pieces of cotton cloth called swipes to wipe surfaces in and around a nuclear facility. The dust collected on these swipes typically contains micrometer-sized uranium particles with an isotopic composition characteristic for the processes at the inspected facility. Since its implementation in the 1990s, ES has proven to be a very effective tool in the detection of clandestine activities owing to a number of highly sensitive and selective techniques, including secondary ion mass spectrometry and thermal ionisation mass spectrometry. However, considering the potential consequences of the analyses, these measurements need to be subjected to a rigorous quality management system. In a continuous effort to improve the accuracy and detection efficiency of the uranium isotope ratio measurements, uranium particle reference materials are being developed by different research groups. It was concluded however, that the existing methods for the production of particulate reference materials generally do not reproduce the particles recovered from swipe samples. For this reason, we developed the aerosol deposition chamber at the Institute for Reference Materials and Measurements for the production of reference uranium particles that are representative of the particles collected at enrichment facilities. This method is based on the controlled hydrolysis of milligram amounts of uranium hexafluoride with a certified uranium isotopic composition. After optimization of the experimental set-up, the particles produced by the aerosol deposition chamber were characterized by scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy and

  18. Uptake of radionuclides by a common reed (Phragmites australis (Cav.) Trin. ex Steud.) grown in the vicinity of the former uranium mine at Zirovski vrh

    Energy Technology Data Exchange (ETDEWEB)

    Cerne, Marko, E-mail: marko.cerne@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Smodis, Borut, E-mail: borut.smodis@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Strok, Marko, E-mail: marko.strok@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2011-04-15

    From uranium mining areas, in particular, the radionuclides are usually discharged to the environment during the mining and milling process. At the former uranium mine Zirovski vrh, Slovenia, mine waste and mill tailings were deposited at the Jazbec site and the Borst site, respectively. Plants grown in soils contaminated with the seepage waters from tailings may represent radiological concern if radionuclides from the uranium decay chain are transferred into the food chain. Uranium is usually accumulated in the roots and translocated to the shoots in limited amounts. Uranium plant accumulators are usually plants from Brassicaceae and Poaceae families. A common reed (Phragmites australis (Cav.) Trin. ex Steud.), a tall perennial grass, growing in a wetland habitats, accumulates metals in the above-ground parts. It may be used for phytoremediation of uranium-contaminated soils, because of high biomass production and high metal-accumulation potential. Preliminary results of radionuclide contents measured in such plants, growing on the deposit tailings are presented. A common reed, that was grown on the Borst tailings pile accumulated 8.6 {+-} 8 mBq/g dry weight (d.w.) and 2.4 {+-} 2 mBq/g dry weight (d.w.) of {sup 238}U in leaves and stems, respectively. In the paper, activity concentrations of other nuclides, i.e. {sup 226}Ra, {sup 210}Pb and {sup 40}K are also shown and discussed.

  19. Uranium and radium activities in samples of aquifers of the main cities of the Estado de Chihuahua; Actividades de uranio y radio en muestras de agua subterranea de las principales ciudades del Estado de Chihuahua

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, L.; Colmenero S, L.; Montero C, M.E. [CIMAV, Av. Miguel de Cervantes Saavedra 120, 31109 Chihuahua (Mexico)]. e-mail: lourdes.villalba@cimav.edu.mx

    2003-07-01

    The natural uranium is in four valence states +3, +4, +5 and +6 being the hexavalent state the more soluble, which plays an important role in the transport of the uranium in the environment. The high concentrations of uranium in water not only in near waters to uranium mines, but also are in some mineral waters or in waters that are extracted of deep wells as it happens in the State of Chihuahua, where the underground waters are the fundamental source of consumption. The radium is a disintegration product of the uranium, the radio content in water is considered the second source of natural radioactivity. The distribution of radium in water is in function of the uranium content present in the aquifer. It was determined the uranium and radium content in samples of underground water of the main cities of the State of Chihuahua according to their number of inhabitants. The extraction methods for uranium and sulfates precipitation of Ba-Ra by means of the addition of barium carriers for the radium were used. The measures of the activities of uranium and radium were carried out by means of a portable liquid scintillation detector trade mark Thiathler-OY HIDEX. The obtained results have demonstrated that the content of uranium and radium in dissolution are in most of the sampling wells above the permissible maximum levels that manage the Mexican regulations. The high contents of uranium and radio can be attributed since to the influence of the geologic substrate characteristic of the zone in the State of Chihuahua they exist but of 50 uranium deposits. (Author)

  20. Determination of uranium concentration in ground water samples of Northern Greece

    Directory of Open Access Journals (Sweden)

    Pashalidis I.

    2012-04-01

    Full Text Available The activity concentration of 238U and 234U has been determined in groundwater samples of hot springs and deep wells from the region of Northern Greece. The analysis was performed by alpha spectroscopy after pre-concentration and separation of uranium by cation exchange (Chelex 100 resin and finally its electro-deposition on stainless steel discs. The uranium concentration in deep wells and springs varies strongly between 0.15 and 7.66 μg l−1. Generally the springs present higher uranium concentration than the deep wells, except of the Apol-lonia spring, which has shown the lowest value of 0.15 mg l−1. 238U and 234U activity concentration ranged between 1.8–95.3 mBq l−1 and 1.7–160.1 mBq l−1, respectively. The obtained isotopic ratio 234U/238U varies between 0.95 and 1.74 which means that the two isotopes are not in radioactive equilibrium. The highest 234U/238U activity ratio values correspond to the Langada springs, indicating most probably old-type waters. On the other hand, ground waters from wells with relatively low uranium activity concentration and low 234U/238U isotopic ratios, point to the presence of younger waters with a stronger contribution of a local recharge component to the groundwater.

  1. Uranium delivery and uptake in a montane wetland, north-central Colorado, USA

    Science.gov (United States)

    Schumann, R. Randall; Zielinski, Robert A.; Otton, James K.; Pantea, Michael P.; Orem, William H.

    2017-01-01

    Comprehensive sampling of peat, underlying lakebed sediments, and coexisting waters of a naturally uraniferous montane wetland are combined with hydrologic measurements to define the important controls on uranium (U) supply and uptake. The major source of U to the wetland is groundwater flowing through locally fractured and faulted granite gneiss of Proterozoic age. Dissolved U concentrations in four springs and one seep ranged from 20 to 83 ppb (μg/l). Maximum U concentrations are ∼300 ppm (mg/kg) in lakebed sediments and >3000 ppm in peat. Uranium in lakebed sediments is primarily stratabound in the more organic-rich layers, but samples of similar organic content display variable U concentrations. Post-depositional modifications include variable additions of U delivered by groundwater. Uranium distribution in peat is heterogeneous and primarily controlled by proximity to groundwater-fed springs and seeps that act as local point sources of U, and by proximity to groundwater directed along the peat/lakebeds contact. Uranium is initially sorbed on various organic components of peat as oxidized U(VI) present in groundwater. Selective extractions indicate that the majority of sorbed U remains as the oxidized species despite reducing conditions that should favor formation of U(IV). Possible explanations are kinetic hindrances related to strong complex formation between uranyl and humic substances, inhibition of anaerobic bacterial activity by low supply of dissolved iron and sulfate, and by cold temperatures.

  2. Uranium and plutonium in marine sediments; Uranio y plutonio en sedimentos marinos

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E.; Almazan T, M. G. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Ruiz F, A. C., E-mail: eduardo.ordonez@inin.gob.mx [UNAM, Instituto de Ciencias del Mar y Limnologia, Unidad Academica Mazatlan, Sinaloa (MX)

    2011-11-15

    The marine sediments contain uranium concentrations that are considered normal, since the seawater contains dissolved natural uranium that is deposited in the bed sea in form of sediments by physical-chemistry and bio-genetics processes. Since the natural uranium is constituted of several isotopes, the analysis of the isotopic relationship {sup 234}U/{sup 238}U are an indicator of the oceanic activity that goes accumulating slowly leaving a historical registration of the marine events through the profile of the marine soil. But the uranium is not the only radioelement present in the marine sediments. In the most superficial strata the presence of the {sup 239+140}Pu has been detected that it is an alpha emitter and that recently it has been detected with more frequency in some coasts of the world. The Mexican coast has not been the exception to this phenomenon and in this work the presence of {sup 239-140}Pu is shown in the more superficial layers of an exploring coming from the Gulf of Tehuantepec. (Author)

  3. Statistical model of global uranium resources and long-term availability

    Directory of Open Access Journals (Sweden)

    Monnet Antoine

    2016-01-01

    Full Text Available Most recent studies on the long-term supply of uranium make simplistic assumptions on the available resources and their production costs. Some consider the whole uranium quantities in the Earth's crust and then estimate the production costs based on the ore grade only, disregarding the size of ore bodies and the mining techniques. Other studies consider the resources reported by countries for a given cost category, disregarding undiscovered or unreported quantities. In both cases, the resource estimations are sorted following a cost merit order. In this paper, we describe a methodology based on “geological environments”. It provides a more detailed resource estimation and it is more flexible regarding cost modelling. The global uranium resource estimation introduced in this paper results from the sum of independent resource estimations from different geological environments. A geological environment is defined by its own geographical boundaries, resource dispersion (average grade and size of ore bodies and their variance, and cost function. With this definition, uranium resources are considered within ore bodies. The deposit breakdown of resources is modelled using a bivariate statistical approach where size and grade are the two random variables. This makes resource estimates possible for individual projects. Adding up all geological environments provides a repartition of all Earth's crust resources in which ore bodies are sorted by size and grade. This subset-based estimation is convenient to model specific cost structures.

  4. Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan.

    Science.gov (United States)

    Al-Kharouf, Samer J; Al-Hamarneh, Ibrahim F; Dababneh, Munir

    2008-07-01

    Khan Al-Zabeeb, an irrigated cultivated area lies above a superficial uranium deposits, is regularly used to produce vegetables and fruits consumed by the public. Both soil and plant samples collected from the study area were investigated for their natural radioactivity to determine the uranium uptake by crops and hence to estimate the effective dose equivalent to human consumption. Concentrations of (238)U, (235)U, (232)Th, (226)Ra, (222)Rn, (137)Cs and (40)K in nine soil profiles were measured by gamma-ray spectrometry whereas watermelon and zucchini crops were analyzed for their uranium content by means of alpha spectrometry after radiochemical separation. Correlations between measured radionuclides were made and their activity ratios were determined to evaluate their geochemical behavior in the soil profiles. Calculated soil-plant transfer factors indicate that the green parts (leaves, stems and roots) of the studied crops tend to accumulate uranium about two orders of magnitude higher than the fruits. The maximum dose from ingestion of 1 kg of watermelon pulp was estimated to be 3.1 and 4.7 nSv y(-1) for (238)U and (234)U, respectively. Estimations of the annual effective dose equivalent due to external exposure showed extremely low values. Radium equivalent activity and external hazard index were seen to exceed the permissible limits of 370 Bq kg(-1) and 1, respectively.

  5. Study of reactions between uranium-plutonium mixed oxide and uranium nitride and between uranium oxide and uranium nitride; Etude des reactions entre l`oxyde mixte d`uranium-plutonium et le nitrure d`uranium et entre l`oxyde d`uranium et le nitrure d`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lecraz, C.

    1993-06-11

    A new type of combustible elements which is a mixture of uranium nitride and uranium-plutonium oxide could be used for Quick Neutrons Reactors. Three different studies have been made on the one hand on the reactions between uranium nitride (UN) and uranium-plutonium mixed oxide (U,Pu)O{sub 2}, on the other hand on these between UN and uranium oxide UO{sub 2}. They show a sizeable reaction between nitride and oxide for the studied temperatures range (1573 K to 1973 K). This reaction forms a oxynitride compound, MO{sub x} N{sub y} with M=U or M=(U,Pu), whose crystalline structure is similar to oxide`s. Solubility of nitride in both oxides is studied, as the reaction kinetics. (TEC). 32 refs., 48 figs., 22 tabs.

  6. ZDC Effective Cross Section for Uranium-Uranium Collisions in Run 12

    Energy Technology Data Exchange (ETDEWEB)

    Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-09

    An accurate calibration of the luminosity measurement of the 2012 Uranium-Uranium RHIC run at 96 GeV per beam is of the greatest importance in order to measure the total uranium-uranium cross section with a reasonably small error bar. During the run, which lasted from April 20th to May 15th 2012, three vernier scans per experiment were performed. Beam intensities of up to 3.4 1010 Uranium ions in one ring were successfully accelerated to flattop at γ = 103.48 corresponding to 96 GeV/beam. The desired model β value was 0.7 m in the two low beta Interaction Points IP6 and IP8. With these beam parameters interaction rates of up to 15 kHz were achieved. This note presents the data associated with the vernier scans, and discusses the results and systematic effects.

  7. Uranium Carbide Powder Ignition Studies

    Energy Technology Data Exchange (ETDEWEB)

    Berthinier, C.; Coullomb, S.; Rado, C.; Le Guyadec, F. [CEA, DEN, DTEC, SDTC, LEME, F-30207 Bagnols-sur-Ceze (France); Chatillon, C.; Blanquet, E.; Boichot, R. [SIMAP, Sciences et Ingenierie des Materiaux et Procedes, INPG-CNRS-UJF ENSEEG, BP 75, 38402 St Martin-d' Heres (France)

    2009-06-15

    Mixed (U, Pu) carbide, constituted by means of 80% of uranium monocarbide (UC), is considered as a possible fuel material for future gas fast reactors or sodium fast reactor. However, UC undergoes a strong exothermic reaction with air and fine powders of UC are pyrophoric. Thus, it is necessary to understand this high reactivity in order to determine safe handling conditions for the production and reprocessing of carbide fuels. UC powder was obtained by arc melting and milling. The reactivity of uranium carbide was studied in oxidizing atmosphere and different experimental devices were used to determine ignition temperatures. The phases formed at the various observed stages of the oxidation process were determined by post-mortem X ray diffraction analysis. Studies were first performed using small quantities of UC powder (around 50 mg) in Differential Thermal Analysis / Thermogravimetric Analysis (DTA/TGA) and Differential Scanning Calorimetry (DSC). Experiments were realized using different parameters, such as heating rate and gas flow rate and composition, to determine their influence on pyro-phoricity. Results obtained with small quantities (tens of milligrams) revealed that UC powder is highly reactive in air in the range 200- 250 deg. C. Studies were also performed in the 'Pyro' test facility multi-function furnace allowing CCD camera recording, during heating and ignition, through view-ports. Lower ignition temperatures, around 100 deg. C, were obtained using around 1 g UC powder samples. Results are discussed and analysed with theory of burning curve ignition and numerical simulations. Simulations aim to understand the influence of the different parameters on pyro-phoricity. Small scale simulations (on a spherical grain) confirm the influence of UC grains size, heat rate and gas composition on powder ignition temperature with small quantities. The issue is now to understand the influence of grain pile form factor and volume on the pyro-phoricity of

  8. Investigation of uranium (VI) adsorption by polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Abdi, S. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Nasiri, M., E-mail: mnasiri@semnan.ac.ir [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Mesbahi, A. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Khani, M.H. [Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, 14395-836 (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • The adsorbent (polypyrrole) was synthesized by a chemical method using PEG, DBSNa and CTAB as the surfactant. • The solution pH was one of the most important parameters affecting the adsorption of uranium. • The CTAB provided higher removal percentage compared with the other surfactants. • The maximum adsorption capacity obtained from Langmuir isotherm was 87.72 mg/g. • The pseudo second-order model fitted well with the adsorption kinetic of polypyrrole to uranium. - Abstract: The purpose of this study was to investigate the adsorption of uranium (VI) ions on the polypyrrole adsorbent. Polypyrrole was synthesized by a chemical method using polyethylene glycol, sodium dodecylbenzenesulfonate, and cetyltrimethylammonium bromide as the surfactant and iron (III) chloride as an oxidant in the aqueous solution. The effect of various surfactants on the synthesized polymers and their performance as the uranium adsorbent were investigated. Adsorbent properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The effect of different parameters such as pH, contact time, initial metal ion concentrations, adsorbent dose, and the temperature was investigated in the batch system for uranium adsorption process. It has been illustrated that the adsorption equilibrium time is 7 min. The results showed that the Freundlich model had the best agreement and the maximum adsorption capacity of polypyrrole for uranium (VI) was determined 87.72 mg/g from Langmuir isotherm. In addition, the mentioned adsorption process was fast and the kinetic data were fitted to the Pseudo first and second order models. The adsorption kinetic data followed the pseudo-second-order kinetic model. Moreover, the thermodynamic parameters ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0} showed that the uranium adsorption process by polypyrrole was endothermic and spontaneous.

  9. The biography of Uranium: from the Proto-solar cloud to the beginning of the oxygenic atmosphere; La biografia del Uranio. Desde la nube protosolar hast el comienzo de la atmosfera oxigenica

    Energy Technology Data Exchange (ETDEWEB)

    Garzon Ruiperez, L.; Cavero Cavero, A.

    2000-07-01

    The geo-chemical properties of uranium and its materials have allowed us to consistently describe this element's characteristics in the evolution of matter from the proto-solar nebula to the formation and subsequent evolution of the Earth. The formation of the most primitive deposits is considered , and it is inferred that they were of a detrital nature. The ionizing radiations emitted by these deposits and the existence of critical episodes in them have been considered. The low concentration of O{sub 2} until some 2.4 Ga ago was the reason why uranium deposits were not widespread and why their typology and the typology of their minerals were not very diversified. Uranium evolution, deposits, minerals, radiation, criticality. (Author)

  10. Combined high-resolution aeromagnetic and radiometric mapping of uranium mineralization and tectonic settings in Northeastern Nigeria

    Science.gov (United States)

    Adepelumi, A. A.; Falade, A. H.

    2017-10-01

    Geological lineaments, depths to the basement, uranium concentrations, and remobilization in parts of the Upper Benue Trough, covering about 55 × 55 km2 (longitudes 11°30'-12°00'E and 10°30'-10°30'N), Northeastern Nigeria were investigated using integrated High-Resolution Aeromagnetic Data (HRAD) and radiometric data. This was with a view to identifying the potential zones of uranium occurrence in the area. The HRAD was processed to accentuate anomalies of interest and depths estimate of 150-1941 m were obtained from source parameter imaging technique. The results from the superposition of the horizontal gradient magnitude, analytical signal amplitude, first vertical derivative, and 3D Euler solutions of the HRAD revealed that the study area was dissected by linear structures that trend ENE-WSW, NE-SW, E-W, NNE-SSW, WNW-ESE, and NW-SE; among which the ENE-WSW and NE-SW trends dominated. Analyses of radiometric data showed that uranium ores in the study area were possibly remobilized epigenetically from the granitic rocks, and were later deposited into sedimentary rocks (Bima formation). Burashika group (Bongna hills) and Wawa area of the study area showed vein-type deposits, while the anatectic migmatite in the northeastern region and the uranium rich Bima formation showed both fault/fracture and contact types of deposition. It was also observed the northwesterly and southeasterly, dominant dip direction, dipping faults dip in the same direction as the paleocurrent direction (direction of depositions of sediments), and trend in a direction perpendicular to the hypothetical direction of uranium deposition. The study concluded that the studied area is dissected by several linear structures and the studied area possibly contains deposits of uranium ore, which are likely to be found in: the Bima Sandstones of Wade, Shinga, Bima hill, Wuyo, Teli, Bryel, Dali, Barkan, Gasi, Kunkun, Boragara, Deba, and Gberundi localities; the anatectic migmatite at Kubuku, Whada

  11. Uranium Mines and Mills | RadTown USA | US EPA

    Science.gov (United States)

    2017-08-07

    Uranium is used as nuclear fuel for electric power generation. U.S. mining industries can obtain uranium in two ways: mining or milling. Mining waste and mill tailings can contaminate water, soil and air if not disposed of properly.

  12. Investigation of uranium (VI) adsorption by polypyrrole.

    Science.gov (United States)

    Abdi, S; Nasiri, M; Mesbahi, A; Khani, M H

    2017-06-15

    The purpose of this study was to investigate the adsorption of uranium (VI) ions on the polypyrrole adsorbent. Polypyrrole was synthesized by a chemical method using polyethylene glycol, sodium dodecylbenzenesulfonate, and cetyltrimethylammonium bromide as the surfactant and iron (III) chloride as an oxidant in the aqueous solution. The effect of various surfactants on the synthesized polymers and their performance as the uranium adsorbent were investigated. Adsorbent properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The effect of different parameters such as pH, contact time, initial metal ion concentrations, adsorbent dose, and the temperature was investigated in the batch system for uranium adsorption process. It has been illustrated that the adsorption equilibrium time is 7min. The results showed that the Freundlich model had the best agreement and the maximum adsorption capacity of polypyrrole for uranium (VI) was determined 87.72mg/g from Langmuir isotherm. In addition, the mentioned adsorption process was fast and the kinetic data were fitted to the Pseudo first and second order models. The adsorption kinetic data followed the pseudo-second-order kinetic model. Moreover, the thermodynamic parameters ΔG(0), ΔH(0) and ΔS(0) showed that the uranium adsorption process by polypyrrole was endothermic and spontaneous. Copyright © 2017. Published by Elsevier B.V.

  13. Urine proteomic profiling of uranium nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malard, V.; Gaillard, J.C.; Sage, N. [CEA, DSV, IBEB, SBTN, Laboratoire de Biochimie des Systemes Perturbes (LBSP), Bagnols-sur-Ceze, F-30207 (France); Berenguer, F. [CEA, DSV, IBEB, SBTN, Laboratoire d' Etude des Proteines Cibles (LEPC), Bagnols-sur-Ceze, F-30207 (France); Quemeneur, E. [CEA, DSV, IBEB, SBTN, Bagnols-sur-Ceze, F-30207 (France)

    2009-07-01

    Uranium is used in many chemical forms in civilian and military industries and is a known nephro-toxicant. A key issue in monitoring occupational exposure is to be able to evaluate the potential damage to the body, particularly the kidney. In this study we used innovative proteomic techniques to analyse urinary protein modulation associated with acute uranium exposure in rats. Given that the rat urinary proteome has rarely been studied, we first identified 102 different proteins in normal urine, expanding the current proteome data set for this central animal in toxicology. Rats were exposed intravenously to uranyl nitrate at 2.5 and 5 mg/kg and samples were collected 24 h later. Using two complementary proteomic methods, a classic 2-DE approach and semi-quantitative SDS-PAGE-LC-MS/MS, 14 modulated proteins (7 with increased levels and 7 with decreased levels) were identified in urine after uranium exposure. Modulation of three of them was confirmed by western blot. Some of the modulated proteins corresponded to proteins already described in case of nephrotoxicity, and indicated a loss of glomerular permeability (albumin, alpha-1-anti-proteinase, sero-transferrin). Others revealed tubular damage, such as EGF and vitamin D-binding protein. A third category included proteins never described in urine as being associated with metal stress, such as ceruloplasmin. Urinary proteomics is thus a valuable tool to profile uranium toxicity non-invasively and could be very useful in follow-up in case of accidental exposure to uranium. (authors)

  14. Uranium (-nickel-cobalt-molybdenum) mineralization along the Singhbhum copper belt, India, and the problem of ore genesis

    Science.gov (United States)

    Sarkar, S. C.

    1982-08-01

    Uranium mineralization is present at many places along the 200 km long Singhbhum copper belt, but the mineralization is relatively concentrated at the central part of it. The belt is characterized by many shear zone features, such as mylonites, phyllonites, and L-S type of structures and of course, copious metasomatism. Country rocks are basic schists, metapelites, quartzose rocks and albite schist/gneiss (‘Soda Granite’). Orebodies are sheet-like, conformable with the pervasive planar structures in the host rocks. No pronounced ‘wall rock alteration’ accompanied the mineralization. Grade of the ore is low (crystal structure. Additionally, nickel, cobalt and molybdenum are present at Jaduguda-Bhatin in the form of millerite, gersdorffite, melonite, nickel-bearing pyrite, molybdenite etc. Dominance of uraninite over pitchblende and the larger cell-edge of uraninite, development of hematite-bearing quartz and Na-oligoclase at places in the ore zone, association of uranium mineralization with Ni-Co-Mo(-S-As) mineralization at Jaduguda-Bhatin and continuation of the orebodies to considerable depths, suggest that the uranium mineralization along the Singhbhum belt belongs to moderate to high temperature ‘vein type’. The age obtained by Pb207/Pb206 ratio and the concordia method suggest that the uranium mineralization in Singhbhum took place 1500 1600 Ma ago and this age is not far different from the age of formation of uranium-vein deposits in many other Precambrian shields of the world. The following two mechanisms of the formation of the deposits are discussed: 1) uranium precipitated in the Dhanjori basal sediments was mobilized during deformation and metamorphism into ore deposits, 2) the hydrodynamic system that leached out copper from the metabasic rocks to form the copper deposits at an earlier stage, could, in one of the oxidised pulses leach out uranium from the basal sediments and precipitate it in the favourable situations. Subsequent small

  15. Uranium internal exposure evaluation based on urine assay data

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.N.P.

    1984-09-01

    The difficulties in assessing internal exposures to uranium from urine assay data are described. A simplified application of the ICRP-30 and ICRP Lung Model concepts to the estimation of uranium intake is presented. A discussion follows on the development of a computer code utilizing the ICRP-30-based uranium elimination model with the existing urine assay information. The calculated uranium exposures from 1949 through 1983 are discussed. 13 references, 1 table.

  16. PROCESS FOR RECOVERING URANIUM FROM AQUEOUS PHOSPHORIC ACID LIQUORS

    Science.gov (United States)

    Schmitt, J.M.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from aqueous solutions. An acidic aqueous solution containing uranium values is contacted with an organic phase comprising an organic diluent and the reaction product of phosphorous pentoxide and a substantially pure dialkylphosphoric acid. The uranium values are transferred to the organic phase even from aqueous solutions containing a high concentration of strong uranium complexing agents such as phosphate ions. (AEC)

  17. SOLVENT EXTRACTION PROCESS FOR URANIUM FROM CHLORIDE SOLUTIONS

    Science.gov (United States)

    Blake, C.A. Jr.; Brown, K.B.; Horner, D.E.

    1960-05-24

    An improvement was made in a uranium extraction process wherein the organic extractant is a phosphine oxide. An aqueous solution containing phosphate ions or sulfate ions together with uranium is provided with a source of chloride ions during the extraction step. The presence of the chloride ions enables a phosphine oxide to extract uranium in the presence of strong uranium- complexing ions such as phosphate or sulfate ions.

  18. Nephrotoxicity and uranium decorporation and means to study them in vitro; Nephrotoxicite et decorporation de l'uranium et moyens de les etudier in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Mirto, H

    1997-07-01

    The contamination risk by uranium is bound to professional activities, imposes to better understand the becoming of this element in organism and the toxicological attack it leads, in order to understand the mechanisms of its toxicity and to be able to propose an efficient therapy. After an accidental contamination, it is necessary to give a treatment that accelerates the excretion of the product and to reduce the engaged dose by limiting the deposit of the contaminant in the target organs, the kidneys and the bones. (N.C.)

  19. Selective Removal of Uranium from the Washing Solution of Uranium-Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Han, G. S.; Kim, G. N.; Koo, D. S.; Jeong, J. W.; Choi, J. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This study examined selective removal methods of uranium from the waste solution by ion exchange resins or solvent extraction methods to reduce amount of the 2{sup nd} waste. Alamine-336, known as an excellent extraction reagent of uranium from the leaching solution of uranium ore, did not remove uranium from the acidic washing solution of soil. Uranyl ions in the acidic waste solution were sorbed on ampholyte resin with a high sorption efficiency, and desorbed from the resin by a washing with 0.5 M Na{sub 2}CO{sub 3} solution at 60 .deg. C. However, the uranium dissolved in the sulfuric acid solution was not sorbed onto the strong anion exchanger resins. A great amount of uranium-contaminated (U-contaminated) soil had been generated from the decommissioning of a uranium conversion plant. Our group has developed a decontamination process with washing and electrokinetic methods to decrease the amount of waste to be disposed of. However, this process generates a large amount of waste solution containing various metal ions.

  20. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Elizabeth J. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Barefield, James E., E-mail: jbarefield@lanl.gov [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Berg, John M. [Manufacturing Engineering and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines. - Highlights: • LIBS analysis of mixed actinide samples: depleted uranium oxide and thorium oxide • LIBS analysis of actinide samples in powder form on carbon adhesive discs • Detection of uranium in a complex matrix (uranium ore) as a precursor to analyzing uranium in environmental samples.

  1. Effect of uranium (VI) on two sulphate-reducing bacteria cultures from a uranium mine site

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Faculdade de Ciencias e Tecnologia, DQF, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB-Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande 1749-016 Lisboa (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Faculdade de Ciencias e Tecnologia, DQF, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-05-15

    This work was conducted to assess the impact of uranium (VI) on sulphate-reducing bacteria (SRB) communities obtained from environmental samples collected on the Portuguese uranium mining area of Urgeirica. Culture U was obtained from a sediment, while culture W was obtained from sludge from the wetland of that mine. Temperature gradient gel electrophoresis (TGGE) was used to monitor community changes under uranium stress conditions. TGGE profiles of dsrB gene fragment demonstrated that the initial cultures were composed of SRB species affiliated with Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Desulfomicrobium spp. (sample U), and by species related to D. desulfuricans (sample W). A drastic change in SRB communities was observed as a result of uranium (VI) exposure. Surprisingly, SRB were not detected in the uranium removal communities. Such findings emphasize the need of monitoring the dominant populations during bio-removal studies. TGGE and phylogenetic analysis of the 16S rRNA gene fragment revealed that the uranium removal consortia are composed by strains affiliated to Clostridium genus, Caulobacteraceae and Rhodocyclaceae families. Therefore, these communities can be attractive candidates for environmental biotechnological applications associated to uranium removal.

  2. Rays Emitted by Compounds of Uranium and of Thorium

    Indian Academy of Sciences (India)

    27 from 2 to 14. 20. 11 from 3 to 7 very active. All the uranium compounds studied are active, and are, in general, more active to the extent that they contain more uranium. The compounds of thorium are very active. Thorium oxide surpasses even metallic uranium in activity. It is remarkable that the two most active elements, ...

  3. Trace determination of uranium in fertilizer samples by total ...

    Indian Academy of Sciences (India)

    Abstract. Uranium is reported to be present in phosphate fertilizers. The recovery of uranium from the fertilizers is important because it can be used as fuel in nuclear reactors and also because of en- vironmental concerns. For both these activities suitable method of uranium determinations at trace levels in these fertilizers ...

  4. 78 FR 75579 - Low Enriched Uranium From France

    Science.gov (United States)

    2013-12-12

    ... COMMISSION Low Enriched Uranium From France Determination On the basis of the record \\1\\ developed in the... antidumping duty order on low enriched uranium from France would be likely to lead to continuation or...), entitled Low Enriched Uranium from France: Investigation No. 731-TA-909 (Second Review). By order of the...

  5. Depleted Uranium | RadTown USA | US EPA

    Science.gov (United States)

    2017-08-07

    Depleted uranium is the material left after most of the highly radioactive uranium-235 is removed from uranium ore for nuclear power and weapons. DU is used for tank armor, armor-piercing bullets and as weights to help balance aircraft. DU is both a toxic chemical and radiation health hazard when inside the body.

  6. Trace determination of uranium in fertilizer samples by total ...

    Indian Academy of Sciences (India)

    For TXRF determinations the fertilizer samples were processed with nitric acid and the uranium present in it was removed by solvent extraction using tri-n-butyl phosphate as the extractant. The organic phase containing uranium was equilibrated with 1.5% suprapure nitric acid to bring out uranium in aqueous phase.

  7. Measurement of photoexcitation cross-sections of uranium by ...

    Indian Academy of Sciences (India)

    type time-of-flight mass spectrometer, digital oscilloscope, home-made hollow cath- ode discharge lamp and a fast photodiode. Uranium atomic beam was generated by resistive heating of uranium metal in tantalum crucible in a vacuum chamber hav- ing vacuum better than 10−7mbar. Uranium vapours, thus produced, ...

  8. Fission enhanced diffusion of uranium in zirconia

    Science.gov (United States)

    Bérerd, N.; Chevarier, A.; Moncoffre, N.; Sainsot, Ph.; Faust, H.; Catalette, H.

    2005-11-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin 235UO2 layer in direct contact with an oxidised zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 1011 ions cm-2 s-1 and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10-15 cm2 s-1 at 480 °C and compared to uranium thermal diffusion data in ZrO2 in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  9. Monitoring genotoxic exposure in uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Sram, R.J.; Vesela, D.; Vesely, D. [Institute of Experimental Medicine, Prague (Czech Republic)] [and others

    1993-10-01

    Recent data from deep uranium mines in Czechoslovakia indicated that miners are exposed to other mutagenic factors in addition to radon daughter products. Mycotoxins were identified as a possible source of mutagens in these mines. Mycotoxins were examined in 38 samples from mines and in throat swabs taken from 116 miners and 78 controls. The following mycotoxins were identified from mines samples: aflatoxins B{sub 1} and G1, citrinin, citreoviridin, mycophenolic acid, and sterigmatocystin. Some mold strains isolated from mines and throat swabs were investigated for mutagenic activity by the SOS chromotest and Salmonella assay with strains TA100 and TA98. Mutagenicity was observed, especially with metabolic activation in citro. These data suggest that mycotoxins produced by molds in uranium mines are a new genotoxic factor im uranium miners. 17 refs., 4 tabs.

  10. Trivalent-uranium thioether coordination compound

    Energy Technology Data Exchange (ETDEWEB)

    Zalkin, A.; Brennan, J.G.

    1985-09-15

    Tris(methylcyclopentadienyl)(tetrahydrothiophene)uranium(III), (U(CH3C5H4)3(C4H8S)), Msub(r)=563.57, orthorhombic, Pbca, a=15.146 (5), b=27.598 (8), c=9.911 (4) A, V=4143 (4) AT, Z=8, Dsub(x)=1.81 g cm T, Mo K , lambda( 1)=0.70930 A, =75.3 cm , F(000)=2152, T=296 K, R=0.035 for 1382 observed reflections. The structure consists of uranium-centered monomolecular units in which the uranium atom is coordinated to three cyclopentadiene rings and to the sulfur atom of a tetrahydrothiophene molecule. The average U-C distance is 2.81 +- 0.04 A and the U-S distance is 2.986 (5) A.

  11. The Role of Biogeochemical Dynamics in the Alteration of Uranium Solid Phases Under Oxic Conditions.

    Science.gov (United States)

    Letain, T. E.; Silva, R. J.; Nitsche, H.; Nitsche, H.; Hazen, T. C.; Clark, S. B.; Douglas, M.; Gillaspie, C.; Knopp, R.; Panak, P. J.

    2001-12-01

    Microbial reduction of uranium has been shown to lower groundwater concentrations of uranium in anoxic systems, but such biological alterations must be considered temporary unless long-term anoxia can be guaranteed. Under oxic conditions, the more soluble higher oxidation state of uranium, e.g. the uranyl cation UO2(2+), is thermodynamically favored. For example, in U ore deposits in which uraninite - consisting of reduced U(IV) as UO(2+x) - is the parent material, exposure to oxidizing conditions results in alteration to U(VI) minerals, with the U(VI)-phosphates frequently defining the boundaries of the ore body. U(VI)-phosphates are of interest because of their relatively low solubilities compared to other U(VI) solid phases. Since microorganisms are undoubtedly present in such ore deposits, they likely play a role in the formation of U(VI)-phosphate solid phases. To assist the U.S. Department of Energy (DOE) with long-term stewardship issues associated with bioremediation of uranium, the overall goal of this project is to work with model biological systems to define the mechanisms by which microorganisms facilitate the formation of U(VI)-phosphate solid phases. This information can then be used by DOE to design remediation systems that stimulate biological activity to favor the formation of U(VI)-phosphate phases. In this project, we are investigating the role of some individual bacterial strains (Bacillus sphaericus and Shewanella putrefaciens) as well as microbial consortia isolated from the NABIR Field Research Center at Oak Ridge National Laboratory on the alteration of U(VI) solid phases. These strains were selected to reflect a variety of subsurface conditions including aerobic, microaerophilic, and episodically anaerobic. These bacteria or similar species are found throughout subsurface environments. They are believed to influence actinide geochemistry through various mechanisms. These mechanisms are not independent of one another, and together they

  12. Preliminary study of uranium favorability of the Wilcox and Claiborne Groups (Eocene) in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilbert, W.P.; Templain, C.J.

    1978-01-01

    Rocks of the Wilcox and Claiborne Groups crop out in the Texas Gulf Coastal Plain and are represented by a series of sands and shales which reflect oscillation of the strandline. The Wilcox Group (lower Eocene), usually undifferentiated in Texas, consists of very fine sands and clays and abundant lignite. The Claiborne Group (middle Eocene) comprises, in ascending order, Carrizo Sand, Reklaw Formation (clay), Queen City Sand, Weches Formation (clay), Sparta Sand, Cook Mountain Formation (clay), and Yegua Formation (sand). Fluvial systems of the Wilcox and Claiborne Groups exist in east Texas and trend perpendicular to the present coastline. In central Texas, sand bodies are parallel to the present coastline and are strand-plain, barrier-bar systems. Since the time of deposition of the Queen City Sand, a significant fluvial sand buildup occurred in the area of the present Rio Grande embayment where the marine clays pinch out. Known occurrences of mineral matter in the Wilcox and Claiborne (up to the Yegua) are limited to lignite (particularly in the Wilcox), cannel coal in the upper Claiborne, and hydrocarbons throughout. No uranium mineralization is known, and no uranium is likely to be discovered in the Claiborne and Wilcox. Approximately 50 surface samples and many gamma-ray logs showed no significant anomalies. The sands are very good potential host rocks, but no uranium source was discovered. During deposition of the Wilcox and Claiborne Groups, there was no volcanism to serve as a source of uranium (as with the prolific occurrences in the younger rocks of south Texas); also, Precambrian crystalline rocks in the Llano uplift were not exposed.

  13. Uranium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.G.; Bauer, L.R.; Haselow, J.S.; Hayes, D.W.; Martin, H.L.; McDowell, W.L.; Pickett, J.B.

    1992-12-09

    The purpose of this report is to consolidate the history of environmental uranium studies conducted by SRS and to describe the status of uranium in the environment. The report is intended to be a living document'' that will be updated periodically. This draft issue, February 1992, documents studies that occurred from 1954 to 1989. Data in this report are taken primarily from annual and semiannual environmental reports for SRS. Semiannual reports were published from 1954 through 1962. Annual reports have been published since 1963. Occasionally unpublished data are included in this report for completeness.

  14. Uranium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.G.; Bauer, L.R.; Haselow, J.S.; Hayes, D.W.; Martin, H.L.; McDowell, W.L.; Pickett, J.B.

    1992-12-09

    The purpose of this report is to consolidate the history of environmental uranium studies conducted by SRS and to describe the status of uranium in the environment. The report is intended to be a ``living document`` that will be updated periodically. This draft issue, February 1992, documents studies that occurred from 1954 to 1989. Data in this report are taken primarily from annual and semiannual environmental reports for SRS. Semiannual reports were published from 1954 through 1962. Annual reports have been published since 1963. Occasionally unpublished data are included in this report for completeness.

  15. AREVA's uranium mining business

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V., E-mail: vincent.martin@areva.ca [AREVA Resources Canada Inc., Saskatoon, SK (Canada)

    2010-07-01

    'Full text:' In 2009, AREVA became the world's 1st uranium producer. Historically, since the closure of all uranium mines in France, AREVA's production was essentially coming from Canada and Niger. Most recently intense development in Kazakhstan contributed to AREVA's ascension to its current leading position. AREVA's production will continue to increase in Kazakhstan, in Canada and in Niger and preparations are under way for the launch of production in Namibia. AREVA plans to remain a major player in the long term, with its aggressive exploration program across the world. This is particularly true here in Canada with world class projects such as Shea Creek in the Western Athabasca Basin and Kiggavik in Nunavut that will add during the coming decades to AREVA's flagship state of the art uranium mill at McClean Lake and its participation in the two world largest uranium high-grade projects, the McArthur River mine and the Cigar Lake project scheduled for start-up in 2013.In 2009, AREVA became the world's 1st uranium producer. Historically, since the closure of all uranium mines in France, AREVA's production was essentially coming from Canada and Niger. Most recently intense development in Kazakhstan contributed to AREVA's ascension to its current leading position. AREVA's production will continue to increase in Kazakhstan, in Canada and in Niger and preparations are under way for the launch of production in Namibia. AREVA plans to remain a major player in the long term, with its aggressive exploration program across the world. This is particularly true here in Canada with world class projects such as Shea Creek in the Western Athabasca Basin and Kiggavik in Nunavut that will add during the coming decades to AREVA's flagship state of the art uranium mill at McClean Lake and its participation in the two world largest uranium high-grade projects, the McArthur River mine and the Cigar Lake project scheduled for

  16. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, V.N., E-mail: jhavn1971@gmail.com; Tripathi, R.M., E-mail: tripathirm@yahoo.com; Sethy, N.K., E-mail: sethybarc@rediffmail.com; Sahoo, S.K., E-mail: sksbarc@gmail.com

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r = 0.86, p < 0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r = 0.88, p < 0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p < 0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. - Highlights: • Uranium mill tailings pond. • Jaduguda, India. • Fresh water plants. • Uranium uptake. • Relationship of uranium with stable elements.

  17. Standard specification for uranium metal enriched to more than 15 % and less Than 20 % 235U

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This specification covers nuclear grade uranium metal that has either been processed through an enrichment plant, or has been produced by the blending of highly enriched uranium with other uranium, to obtain uranium of any 235U concentration below 20 % (and greater than 15 %) and that is intended for research reactor fuel fabrication. The scope of this specification includes specifications for enriched uranium metal derived from commercial natural uranium, recovered uranium, or highly enriched uranium. Commercial natural uranium, recovered uranium and highly enriched uranium are defined in Section 3. The objectives of this specification are to define the impurity and uranium isotope limits for commercial grade enriched uranium metal. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched uranium metal which is to be used in the production of research reactor fuel. In addition to this specification, the parties concerned may agree to other appropriate conditions. ...

  18. Mineralogy and uranium leaching of ores from Triassic Peribaltic sandstones.

    Science.gov (United States)

    Gajda, Dorota; Kiegiel, Katarzyna; Zakrzewska-Koltuniewicz, Grazyna; Chajduk, Ewelina; Bartosiewicz, Iwona; Wolkowicz, Stanislaw

    The recovery of uranium and other valuable metals from Polish Peribaltic sandstones were examined. The solid-liquid extraction is the first stage of the technology of uranium production and it is crucial for the next stages of processing. In the laboratory experiments uranium was leached with efficiencies 71-100 % by acidic lixiviants. Satisfactory results were obtained for the alkaline leaching process. Almost 100 % of uranium was leached with alkaline carbonate solution. In post leaching solutions only uranium and small amounts of vanadium were present.

  19. Bioaccumulation in earthworm exposed to uranium particles and anions

    OpenAIRE

    Basnet, Pabitra

    2012-01-01

    This study contains information about the bioaccumulation of uranium (U) in earthworms following exposure of the worms exposed to different uranium species in food (horse manure). Three different uranium species were used: synthesized uranium nano-micrometer particles (UO2 and U3O8) and uranyl ions at two different concentrations (50 and 500 μg/g dw manure). The study started with the culturing of worms, growing them in OECD soil and ended by performing uranium measurements by ICP-MS of fo...

  20. On the uptake and binding of uranium (VI) by the green alga Chlorella Vulgaris; Zur Aufnahme und Bindung von Uran(VI) durch die Gruenalge Chlorella Vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Manja

    2011-07-01

    Uranium could be released into the environment from geogenic deposits and from former mining and milling areas by weathering and anthropogenic activities. The elucidation of uranium behavior in geo- and biosphere is necessary for a reliable risk assessment of radionuclide migration in the environment. Algae are widespread in nature and the most important group of organisms in the aquatic habitat. Because of their ubiquitous occurrence in nature the influence of algae on the migration process of uranium in the environment is of fundamental interest e.g. for the development of effective and economical remediation strategies for contaminated waters. Besides, algae are standing at the beginning of the food chain and play an economically relevant role as food and food additive. Therefore the transfer of algae-bound uranium along the food chain could arise to a serious threat to human health. Aim of this work was the quantitative and structural characterization of the interaction between U(VI) and the green alga Chlorella vulgaris in environmental relevant concentration and pH range with special emphasis on metabolic activity. Therefore a defined medium was created which assures the survival/growth of the algae as well as the possibility to predict the uranium speciation. The speciation of uranium in the mineral medium was calculated and experimentally verified by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results of the sorption experiments showed that both metabolic active and inactive algal cells bind uranium in significant amounts of around 14 mg U/g dry biomass and 28 mg U/g dry biomass, respectively. Another interesting observation was made during the growth of Chlorella cells in mineral medium at the environmental relevant uranium concentration of 5 {mu}M. Under these conditions and during ongoing cultivation a mobilization of the algae-bound uranium occurred. At higher uranium concentrations this effect was not observed due to the die off

  1. Uranium: active even at low doses; Uranium: actif meme a faible dose

    Energy Technology Data Exchange (ETDEWEB)

    Souidi, M.; Lestaevel, Ph.; Gueguen, Y. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France)

    2006-11-15

    The human body, in normal conditions, contains 40 to 90 10{sup -6} grams of uranium, this quantity is mainly stored in the bones (66%), in the kidneys (8%) and in soft tissues. Man daily absorbs between 1 to 3 10{sup -6} grams of uranium. A recent experiment on rats has showed that water contaminated with low quantities of uranium (10{sup -6} grams a day and per rat) can lead to short-term memory impairment, to higher level of anxiety and to a 38% increase of the paradoxal sleep. No toxic effects on liver and kidneys have been found but it has been showed that low quantities of uranium can entail changes, in some organs, concerning the expression of the genes coding the P450 cytochromes. (A.C.)

  2. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation

    Science.gov (United States)

    Campbell, Kate M.; Gallegos, Tanya J.; Landa, Edward R.

    2015-01-01

    Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can affect the fate and transport of U and associated elements in the environment, and possible remediation strategies for site closure and aquifer restoration.This paper represents the fourth in a series of review papers from the U.S. Geological Survey (USGS) on geochemical aspects of UMT management that span more than three decades. The first paper (Landa, 1980) in this series is a primer on the nature of tailings and radionuclide

  3. Uranium-induced oxidative stress in Arabidopsis thaliana: influence of pH on uranium toxicity

    OpenAIRE

    Saenen, Eline

    2013-01-01

    Uranium (U) is a naturally and commonly occurring radioactive element and heavy metal. Due to anthropogenic activities, such as U mining and milling, large areas have been contaminated with U. Uranium has a complex chemistry and its behaviour, mobility and bioavailability in the soil is strongly dependent on the U speciation. One of the important factors controlling the speciation is the pH value. Toxicity of U in plants (e.g. Arabidopsis thaliana), is mainly investigated in lab experiments u...

  4. A Mine-Based Uranium Market Clearing Model

    Directory of Open Access Journals (Sweden)

    Aris Auzans

    2014-11-01

    Full Text Available Economic analysis and market simulation tools are used to evaluate uranium (U supply shocks, sale or purchase of uranium stockpiles, or market effects of new uranium mines or enrichment technologies. This work expands on an existing U market model that couples the market for primary U from uranium mines with those of secondary uranium, e.g., depleted uranium (DU upgrading or highly enriched uranium (HEU down blending, and enrichment services. This model accounts for the interdependence between the primary U supply on the U market price, the economic characteristics of each individual U mine, sources of secondary supply, and the U enrichment market. This work defines a procedure for developing an aggregate supply curve for primary uranium from marginal cost curves for individual firms (Uranium mines. Under this model, market conditions drive individual mines’ startup and short- and long-term shutdown decisions. It is applied to the uranium industry for the period 2010–2030 in order to illustrate the evolution of the front end markets under conditions of moderate growth in demand for nuclear fuel. The approach is applicable not only to uranium mines but also other facilities and reactors within the nuclear economy that may be modeled as independent, decision-making entities inside a nuclear fuel cycle simulator.

  5. Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms

    Science.gov (United States)

    Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.

    2014-01-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347

  6. Biosorption of uranium by chemically modified Rhodotorula glutinis.

    Science.gov (United States)

    Bai, Jing; Yao, Huijun; Fan, Fangli; Lin, Maosheng; Zhang, Lina; Ding, Huajie; Lei, Fuan; Wu, Xiaolei; Li, Xiaofei; Guo, Junsheng; Qin, Zhi

    2010-11-01

    The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L. The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9.

  7. Recovery and removal of uranium by using plant wastes

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Akira; Sakaguchi, Takashi (Miyazaki Medical Coll. (Japan). Dept. of Chemistry)

    1990-01-01

    The uranium-adsorbing abilities of seven plant wastes were investigated. High abilities to adsorb uranium from non-saline water containing 10 mg dm{sup -3} of uranium were observed with a number of plant wastes tested. However, with seawater supplemented with 10 mg dm {sup -3} of uranium, similar results were found only with chestnut residues. When the plant wastes were immobilized with formaldehyde, their ability to adsorb uranium was increased. Uranium and copper ions were more readily adsorbed by all plant wastes tested than other metal ions from a solution containing a mixture of seven different heavy metals. The selective adsorption of heavy metal ions differs with different species of plant wastes. The immobilization of peanut inner skin, orange peel and grapefruit peel increased the selectivity for uranium. (author).

  8. Pollution of the stream waters and sediments associated with the Crucea uranium mine (East Carpathians, Romania)

    Science.gov (United States)

    Petrescu, L.; Bilal, E.; Iatan, E. L.

    2009-04-01

    Uranium and thorium are omnipresent in our environment. Various anthropogenic activities involving the processing or use of materials rich in uranium may modify the natural abundance of uranium in water. The study is related to uranium mineralization located within Crucea ore deposit, in the East Carpathians, Romania. The Crucea uranium ore deposit is located in the eastern part of the Bistrita Mountains (40 Km southeast of the town of Vatra Dornei) in the headwaters of Crucea, Lesu and Livezi valleys. At present, this is the largest uranium mine in the country. In the past, the mining area covered 18 km2, but was gradually overtaken by logging activities. The exploration and mining facilities include thirty-two galleries, situated between 780 and 1040 m above sea level. Radioactive waste resulted from mining are disposed next to the mining facilities. The waste rock was disposed in piles of variable size that are spread over an area of 364,000 m2. Older dumps (18) have been already naturally reclaimed by forest vegetation. The vegetation cover played an important role in stabilizing the waste dump cover and in slowing down the uranium migration processes. A number of 46 water samples were taken in order to evaluate the impact of ore deposit (including its exploitation process) on the chemical composition of waters down to the exploitation galleries. The sediment samples were collected at 16 sampling points from the bottom of the studied stream waters. ICP-OES, XRF and IC methods was used to evaluate the impact of uranium mine dumps on the surface waters from Crucea region. According to the analytical data the stream waters showed a Ca - carbonate character. In relation to salinity, the pH and the anion NO3-, CO32-and SO42- contents display generally non-linear relationships with chloride. Uranium is the most significant trace element in the river waters nearby the waste rock dumps, sometimes reaching levels up to 1-mgṡL-1, well in excess of the Romanian

  9. National Uranium Resource Evaluation program. Uranium geochemical survey in the Crystal City and Beeville Quadrangles, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C.E.; Butz, T.R.; Cagle, G.W.; Kane, V.E.

    1977-02-11

    A uranium geochemical survey was conducted in the Crystal City and western half of the Beeville Quadrangles, Texas, an area of approximately 34,000 km/sup 2/. Using the Texas Gulf Coast Uranium Province as a study area, this survey demonstrates the applicability of a 2 phase hierarchical sampling program with multielement analysis of the samples for regional geochemical reconnaissance for uranium. Phase I samples of stream sediment, stream water, and well water were collected from drainage basins with a target drainage of 250 km/sup 2/ to identify uranium province lines which define the area in which closer spaced Phase II sampling should be conducted. Phase II samples of stream sediment, stream water, well water, and tree branches were collected from drainage basins with a target drainage of 25 km/sup 2/ in order to identify uranium district lines. Stream sediment, stream water, well water, and ash of tree branches were analyzed for approximately 25 parameters. The most useful sample type for identifying potential uranium mineralization in the Texas Gulf Coast is well water. Wells were found to accurately distinguish both province lines at Phase I sample spacing and district lines at Phase II sample spacing by several methods of evaluation. Results of the survey indicate that the concept of 2 phase sampling with multielement analyses of samples, developed by the ORGDP Project, may yield good results for the remainder of the area to be surveyed by ORGDP with modifications for different geologic regions.

  10. Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment.

  11. United States Transuranium and Uranium Registries: Researching radiation protection. USTUR annual report for February 1, 1999 through January 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, Susan M. (ed.); Filipy, Ronald E. (ed.)

    2000-07-01

    The United States Transuranium and Uranium Registries (USTUR) comprise a human tissue research program studying the deposition, biokinetics and dosimetry of the actinide elements in humans with the primary goals of providing data fundamental to the verification, refinement, or future development of radiation protection standards for these and other radionuclides, and of determining possible bioeffects on both a macro and subcellular level attributable to exposure to the actinides. This report covers USTUR activities during the year from February 1999 through January 2000.

  12. Uranium statistical and geological evaluation of airborne spectrometric data in the Al-Awabed region and its surroundings (Area-3), Northern Palmyrides, Syria.

    Science.gov (United States)

    Asfahani, J; Al-Hent, R; Aissa, M

    2009-04-01

    Qualitative and quantitative statistical analysis have been applied to the Airborne spectrometric data from the Al-Awabed region and its surroundings (Area-3), Northern Palmyrides, Syria. It was shown that equivalent uranium eU values vary between a minimum of 0.01 and a maximum of 22.33 ppm. The probability graph has been used to compute the threshold level of uranium in the study area. It was found that this threshold level of 5.54 ppm agrees well with that obtained by traditional statistical computation (X+2sigma). Uranium prospecting methodology is proposed in order to explain the origin of the radioactive anomalies related to the Al-Awabed region and its surroundings in Area-3, and to determine the dominant geological conditions that effectively contribute to the radioactive anomalies occurring in the study area. Four radioactive-geological profiles have been established in Area-3, where their analysis and study reveal that lowlands and basins, the unconformity between Paleogene and Neogene, the contact between Cretaceous and Paleogene and the phosphate beds themselves are considered favorable environments for uranium deposits. The proposed methodology is proven and field verified and can be therefore applied in other areas considered as promising for uranium deposits.

  13. Improved ionic model of liquid uranium dioxide

    NARCIS (Netherlands)

    Gryaznov, [No Value; Iosilevski, [No Value; Yakub, E; Fortov, [No Value; Hyland, GJ; Ronchi, C

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species

  14. Regulatory harmonization of the Saskatchewan uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, R. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada); Moulding, T. [Saskatchewan Environment, Saskatchewan (Canada); Alderman, G. [Saskatchewan Labour, Saskatchewan (Canada)

    2006-07-01

    The uranium mining industry in Saskatchewan produces approximately 30% of the world's production of uranium. The industry is regulated by federal and provincial regulators. The Canadian Nuclear Safety Commission is the principal federal regulator. The principal Saskatchewan provincial regulators are Saskatchewan Environment for provincial environmental regulations and Saskatchewan Labour for occupational health and safety regulations. In the past, mine and mill operators have requested harmonization in areas such as inspections and reporting requirements from the regulators. On February 14, 2003, Saskatchewan Environment, Saskatchewan Labour and the Canadian Nuclear Safety Commission signed a historical agreement for federal/provincial co-operation called the Canadian Nuclear Safety Commission - Saskatchewan Administrative Agreement for the Regulation of Health, Safety and the Environment at Saskatchewan Uranium Mines and Mills. This initiative responds to a recommendation made by the Joint Federal-Provincial Panel on Uranium Mining Developments in Northern Saskatchewan in 1997 and lays the groundwork to co-ordinate and harmonize their respective regulatory regimes. The implementation of the Agreement has been very successful. This paper will address the content of the Agreement including the commitments, the deliverables and the expectations for a harmonized compliance program, harmonized reporting, and the review of harmonized assessment and licensing processes as well as possible referencing of Saskatchewan Environment and Saskatchewan Labour regulations in the Nuclear Safety and Control Act. The management and implementation process will also be discussed including the schedule, stakeholder communication, the results to date and the lessons learned. (author)

  15. Radiological health aspects of uranium milling

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.; Stoetzel, G.A.

    1983-05-01

    This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

  16. RECALIBRATION OF H CANYON ONLINE SPECTROPHOTOMETER AT EXTENDED URANIUM CONCENTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Lascola, R

    2008-10-29

    The H Canyon online spectrophotometers are calibrated for measurement of the uranium and nitric acid concentrations of several tanks in the 2nd Uranium Cycle.[1] The spectrometers, flow cells, and prediction models are currently optimized for a process in which uranium concentrations are expected to range from 0-15 g/L and nitric acid concentrations from 0.05-6 M. However, an upcoming processing campaign will involve 'Super Kukla' material, which has a lower than usual enrichment of fissionable uranium. Total uranium concentrations will be higher, spanning approximately 0-30 g/L U, with no change in the nitric acid concentrations. The new processing conditions require the installation of new flow cells with shorter path lengths. As the process solutions have a higher uranium concentration, the shorter path length is required to decrease the absorptivity to values closer to the optimal range for the instrument. Also, new uranium and nitric acid prediction models are required to span the extended uranium concentration range. The models will be developed for the 17.5 and 15.4 tanks, for which nitric acid concentrations will not exceed 1 M. The restricted acid range compared to the original models is anticipated to reduce the measurement uncertainty for both uranium and nitric acid. The online spectrophotometers in H Canyon Second Uranium Cycle were modified to allow measurement of uranium and nitric acid for the Super Kukla processing campaign. The expected uranium concentrations, which are higher than those that have been recently processed, required new flow cells with one-third the optical path length of the existing cells. Also, new uranium and nitric acid calibrations were made. The estimated reading uncertainties (2{sigma}) for Tanks 15.4 and 17.5 are {approx}5% for uranium and {approx}25% for nitric acid.

  17. Enhancement of Extraction of Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sheikhly, Mohamad [Univ. of Maryland, College Park, MD (United States); Dietz, Travis [Univ. of Maryland, College Park, MD (United States); Tsinas, Zois [Univ. of Maryland, College Park, MD (United States); Tomaszewski, Claire [Univ. of Maryland, College Park, MD (United States); Pazos, Ileana M. [Univ. of Maryland, College Park, MD (United States); Nigliazzo, Olga [The Catholic Univ. of America, Washington, DC (United States); Li, Weixing [The Catholic Univ. of America, Washington, DC (United States); Adel-Hadadi, Mohamad [Univ. of Maryland, College Park, MD (United States); Barkatt, Aaron [Univ. of Palermo (Italy)

    2016-04-01

    Even at a concentration of 3 μg/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand, which was originally discovered and promoted by Japanese studies in the late 1980s. Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of

  18. Uranium mining in Virginia: scientific, technical, environmental, human health and safety, and regulatory aspects of uranium mining and processing in Virginia

    National Research Council Canada - National Science Library

    Committee on Uranium Mining in Virginia; Committee on Earth Resources; National Research Council

    2012-01-01

    .... Uranium Mining in Virginia examines the scientific, technical, environmental, human health and safety, and regulatory aspects of uranium mining, milling, and processing as they relate to the Common...

  19. Geochemical Prospecting of a Uraniferous Bog Deposit at Masugnsbyn, Northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Armands, Goesta

    1961-01-15

    In connection with prospecting for uranium ores in northern Sweden a peat bog, situated 4.5 km NW of Masugnsbyn, Norrbotten, Sweden and showing a remarkable content of uranium, was discovered. Closer investigation of several samples of the peat indicated that the comparatively high content of uranium and radon was connected with the occurrence of radioactive springs in the region. It was found that four different kinds of water were responsible for the supply of radioactive material to the peat, viz: ground water, surface water, spring water and ground water emanating from fractured rock. The spring water - probably a mixture of ground water and water from the fractured rock - contains uranium to the extent of micrograms per litre. The pH is about 7. The uranium content of the water system deriving from the fractured rock is about 200-300 micrograms per litre. The maximum radon content is about 3000 emans. The pH is >7 and the specific conductivity about 150 x 10{sup -6}/Ohm/cm The radioactive peat is characterised by extremely low gamma radioactivity which may be due to the recent emplacement of uranium by spring waters. It is suggested that the peat in question has served as a 'collector' for uranium, rare earth metals etc., since the pH condition - pH about 7 - was favourable to the settling of these elements. The uranium enrichment seems to be due to a transport of Na, Mg and Ca bicarbonates emanating from dolomite deposits or pegmatitic granite dikes in the vicinity of the peat, the bicarbonate waters serving as carriers of the uranium.

  20. Ecological and corrosion behavior of depleted uranium

    Directory of Open Access Journals (Sweden)

    Stojanović Mirjana D.

    2015-01-01

    Full Text Available Environmental pollution with radionuclides, particularly uranium and its decay products is a serious global problem. The current scientific studies estimated that the contamination originating from TENORM, caused by nuclear and non-nuclear technologies, has significantly increased natural level of radioactivity in the last thirty years. During the last decades all the more were talking about the "new pollutant" - depleted uranium (DU, which has been used in anti-tank penetrators because of its high density, penetration and pyrophoric properties. It is estimated that during the Gulf War, the war in Bosnia and Yugoslavia and during the invasion of Iraq, 1.4 million missiles with depleted uranium was fired. During the NATO aggression against the ex Yugoslavia in 1999., 112 locations in Kosovo and Metohija, 12 locations in southern Serbia and two locations in Montenegro were bombed. On this occasion, approximately 10 tons of depleted uranium were entered into the environment, mainly on land, where the degree of contamination ranged from 200 Bq / kg to 235 000 Bq/kg, which is up to 1000 times higher than the natural level. Fourteen years ago there was very little information about the behavior of ecological systems damaged by DU penetrators fired. Today, unfortunately, we are increasingly faced with the ―invisible threat" of depleted uranium, which has a strong radioactive and hemotoxic impact on human health. Present paper provides a detailed overview of the current understanding of corrosion and corrosion behavior of DU and environmental factors that control corrosion, together with indicators of environmental impact in order to highlight areas that need further attention in developing remediation programs.

  1. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    Science.gov (United States)

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. 78 FR 66898 - Low Enriched Uranium From France: Final Results of Changed Circumstances Review

    Science.gov (United States)

    2013-11-07

    ... uranium. Low- enriched uranium is enriched uranium hexafluoride (UF 6 ) with a U\\235\\ product assay of... a U\\235\\ assay of 20 percent or greater, also known as highly- enriched uranium. In addition... rods or assemblies. Natural uranium concentrates (U 3 O 8 ) with a U\\235\\ concentration of no greater...

  3. 78 FR 72123 - Request To Amend a License to Export High-Enriched Uranium

    Science.gov (United States)

    2013-12-02

    ... contained in 6.2 kg uranium to a new cumulative total of 12.615 kg of U-235 contained in 13.5 kg uranium; 2... COMMISSION Request To Amend a License to Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public... in Belgium. National Nuclear Security Uranium (HEU) uranium France for irradiation in Administration...

  4. 77 FR 51579 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-08-24

    ... kilograms For the export of Canada. Complex, July 30, 2012, August Uranium (93.35%). uranium-235 high-enriched 1, 2012, XSNM3726, 11006037. contained in 7.5 uranium in the kilograms uranium. form of broken... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public...

  5. A simple method for determination of natural and depleted uranium in surface soil samples.

    Science.gov (United States)

    Vukanac, I; Novković, D; Kandić, A; Djurasević, M; Milosević, Z

    2010-01-01

    A simple and efficient method for determination of uranium content in surface soil samples contaminated with depleted uranium, by gamma ray spectrometry is presented. The content of natural uranium and depleted uranium, as well as the activity ratio (235)U/(238)U of depleted uranium, were determined in contaminated surface soil samples by application of this method. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Measured sections and analyses of uranium host rocks of the Dockum Group, New Mexico and Texas

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, R.E.; Drake, D.P.; Reese, T.J.

    1977-02-01

    This report presents 27 measured sections from the Dockum Group of Late Triassic age, in the southern High Plains of eastern New Mexico and northwestern Texas. Many of the measured sections are only partial; the intent in those cases was to measure the parts of sections that had prominent sandstone/conglomerate beds or that had uranium deposits. No attempt was made to relate rock color to a rock color chart; rock colors are therefore approximate. Modal analyses (by thin-section examination) of sandstone and conglomerate samples and gamma-ray spectrometric analyses of the samples are presented in appendices. (DLC)

  7. Uranium alloy forming process research

    Energy Technology Data Exchange (ETDEWEB)

    Chow, T.S.; Biesiada, T.A.; Sunwoo, A.; Long, J.; Anklam, T.; Kang, S.W.

    1997-03-01

    The study of modern U-6Nb processes is motivated by the needs to reduce fabrication costs and to improve efficiency in material usage. We have studied two potential options: physical vapor deposition (PVD) for manufacturing near-net-shape U-6Nb, and kinetic-energy metallization (KEM) as a supplemental process for refurbishing recycled parts. In FY 1996, we completed two series of PVD runs and heat treatment analyses, the characterization of the microstructure and mechanical properties, a comparison of the results to data for wrought-processed material, and experimental demonstration of the KEM feasibility process with a wide range of variables (particle materials and sizes, gases and gas pressures, and substrate materials), and computer modeling calculations.

  8. Uranium in South America with Emphasis on the Brazilian Uranium Province (Summary L'uranium en Amérique du Sud et plus particulièrement dans la province uranifère brésilienne (résumé

    Directory of Open Access Journals (Sweden)

    Forman J. M. A.

    2006-11-01

    Full Text Available The search for uranium hos been going on in South America for the last 30 years and has led to discoveries of deposits in the following countries: Brazil, Argentine, Venezuela, Peru, Chile, Colombia and Ecuador. - In addition to the already known deposits in Brazil at Pocas de Caldas (Minas Gerais, Figueira (Parana and Quadrilatère Ferrifère (Minas Gerais, other deposits have been discovered at Itatiaia where the uranium is associated with phosphates, in the Lagoa Real region where the uranium is in microclinal gneiss, and in the Rio Preto region. Nearly 100 ore shows have been found in Lower Precarnbrian shales covered by Middle Precambrion quartzose sandstore. The industrial complexes of Pocas de Caldas and Fiqueira will start production respectively in 1980 and 1983. - In Argentina the mains deposits are in the Serra Pintada (Mendoza Province, at Los Adobes and Cerro Condor (Chubut Province and at Don Otto in the northern part of the country. Reserves now known and those being developed are very promising for the future. Pendant les 30 dernières années la recherche de l'uranium s'est poursuivie en Amérique du Sud et a abouti à la découverte de gisements dans les pays suivants : Brésil, Argentine, Venezuela, Pérou, Chili, Colombie et Équateur. . - Au Brésil, outre les gisements déjà connus de Poças de Caldas (Minas Gerais de Figueira (Parana et du Quadrilatère Ferrifère des Minas Gerais, d'autres gisements ont été découverts à Itatiaia où l'uranium est associé à des phosphates, dans la zone de Lagoa Real où l'uranium se trouve dans des gneiss à microcline et dans la région de Rio Preto. Près de 100 indices minéralisés sont reconnus dans les schistes du Précambrien inférieur recouverts par des grès quartzeux d'âge précambrien moyen. Les complexes industriels de Pocas de Caldas et de Figueira entreront en production respectivement en 1980 et 1983. - En Argentine, les principaux gisements se trouvent dans la

  9. Assessing the environmental availability of uranium in soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, J.E.; Holdren, G.R. Jr.; Krupa, K.M.; Lindenmeier, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1994-06-01

    Soils and sediments contaminated with uranium pose certain environmental and ecological risks. At low to moderate levels of contamination, the magnitude of these risks depends not only on the absolute concentrations of uranium in the material but also on the availability of the uranium to drinking water supplies, plants, or higher organisms. Rational approaches for regulating the clean-up of sites contaminated with uranium, therefore, should consider the value of assessing the environmental availability of uranium at the site before making decisions regarding remediation. The purpose of this work is to review existing approaches and procedures to determine their potential applicability for assessing the environmental availability of uranium in bulk soils or sediments. In addition to making the recommendations regarding methodology, the authors have tabulated data from the literature on the aqueous complexes of uranium and major uranium minerals, examined the possibility of predicting environmental availability of uranium based on thermodynamic solubility data, and compiled a representative list of analytical laboratories capable of performing environmental analyses of uranium in soils and sediments.

  10. Biosorption of uranium by chemically modified Rhodotorula glutinis

    Energy Technology Data Exchange (ETDEWEB)

    Bai Jing, E-mail: baijing@impcas.ac.c [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yao Huijun [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Fan Fangli; Lin Maosheng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang Lina; Ding Huajie; Lei Fuan; Wu Xiaolei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xiaofei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Guo Junsheng; Qin Zhi [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-11-15

    The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L. The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9. -- Research highlights: {yields} Uranium biosorption on to chemically modified yeast cells {yields} Cells before and after uranium sorption were investigate by FTIR spectroscopy {yields} Amino and carboxyl groups were important functional groups involved in uranium binding {yields} The sorption equilibrium date of raw and chemically modified biomass fitted well with Langmuir and Freundlich models

  11. Investigations into Pb isotope signatures in groundwater and sediments in a uranium-mineralized area

    Energy Technology Data Exchange (ETDEWEB)

    Vecchia, Adriana Monica Dalla; Rodrigues, Paulo Cesar Horta; Rios, Francisco Javier; Ladeira, Ana Claudia Queiroz, E-mail: amdvc@cdtn.br, E-mail: acql@cdtn.br, E-mail: javier@cdtn.br, E-mail: pchr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-01-15

    This work presents the investigation in an environment that contains uranium deposits by using Pb isotope signatures. The study area, southeast of Brazil, is characterized by the lack of surface water and, as a consequence, the groundwater plays an important role in the economy of the region, such as the supply to the uranium industry and, above all serving the needs of the local population. The objective of the present investigation is the determination of the signatures of Pb in groundwater and sediments as well as the identification of environments under influences of geogenic and/or anthropogenic sources. It was determined that the Pb in the majority of sediments was geogenic in origin. Although data from the literature, related to the environmental studies, consider {sup 206}Pb/{sup 207}Pb isotopic ratio values below or close to 1.2 as an indicative of anthropogenic Pb, the {sup 206}Pb/{sup 207}Pb determined for the majority of groundwater samples ranged from 1.14 to 1.19, and are similar to the data reported for rocks samples (1.09 to 1.96) from area with U mineralization. It was also determined that the anthropogenic influence of the uranium was restricted to a single sampling point within the mining area. (author)

  12. Functional magnetic nanoshells integrated nanosensor for trace analysis of environmental uranium contamination

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Reshmi [Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States); Katsenovich, Yelena; Lagos, Leonel [Applied Research Center, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States); Senn, Mark [Department of Chemistry, University of Texas at El Paso, TX (United States); Naja, Melodie [Everglades Foundation, 18001 Old Cutler Road, Palmetto Bay, FL 33157 (United States); Balsamo, Vittoria [Dpto. Ciencias de los Materiales, Universidad Simon Bolivar, Valle de Sartenejas, Baruta 1080, Edo. Miranda, Caracas (Venezuela, Bolivarian Republic of); Pannell, Keith H. [Department of Chemistry, University of Texas at El Paso, TX (United States); Li Chenzhong, E-mail: licz@fiu.ed [Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States)

    2010-11-30

    Transuranic radionuclides such as uranium tend to be a pervasive environmental contaminant. It is absorbed through the intestine or a lung, deposited in the tissues, predominantly kidney and bone, and is carcinogenic. A novel nanosensor system has been developed for voltammetric tracing of environmental uranium contamination. The sensor consists of an organophosphorous ligand, (t-butylphenyl)-N,N-di-(isobutyl) carbamoylmethylphosphineoxide (CMPO) functionalized superparamagnetic core-shell magnetic nanoparticles and magnet based electrodes. It exploits the natural affinity of uranium for phosphate molecules to fabricate a highly specific and reproducible sensor. The small dimension along with a dramatically increased contact surface has lead to a faster response and higher sensitivity. The system uses an external magnetic field gradient for preconcentration and removal of the analyte from the surrounding aqueous media. The redox properties of the analyte are exploited for enumeration of variables by electrochemical techniques such as square wave voltammetry. The detection limit of the system is observed to be in parts-per-billion (ppb) of the uranyl concentration.

  13. Molybdenum and selenium speciation in uranium mine tailings using x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Essilfie-Dughan, J.; Hendry, M.J.; Pickering, I.; George, G., E-mail: joe377@mail.usask.ca [Univ. of Saskatchewan, Dept. of Geological Sciences, Saskatoon, SK (Canada); Kotzer, T. [Univ. of Saskatchewan, Dept. of Geological Sciences, Saskatoon, SK (Canada); Cameco Corp., Saskatoon, SK (Canada)

    2010-07-01

    Mined uranium (U) ore often contains relatively high concentrations of elements (other than uranium) that may be deleterious to the environment. These include molybdenum (Mo) and selenium (Se), which are liberated from uranium oxides and associated sulphide minerals during milling processing. A critical environmental concern in the U mining industry is the possibility of long-term mobilization of elements such as Mo and Se from tailings deposited in in-pit tailings facilities to regional groundwater systems. In this study, x-ray absorption spectroscopy (XAS) was used to study the molecular speciation of these elements of concern (EOC) in samples from the Deilmann Tailings Management Facility (DTMF) at Key Lake in northern Saskatchewan, Canada. An understanding of Mo and Se speciation will help to characterize their long-term stability and evolution in the mine tailings. Results indicate Mo exists mainly as molybdate (+6 oxidation state) and Se exists mainly as selenite (+4 oxidation state). Linear combination fitting (LCF) analysis of the Mo K-edge XANES spectra on tailings samples using standard reference compounds suggests various proportions of NiMoO{sub 4} and CaMoO{sub 4} complexes as well as molybdate adsorbed onto ferrihydrite. (author)

  14. Investigations into Pb isotope signatures in groundwater and sediments in a uranium-mineralized area

    Directory of Open Access Journals (Sweden)

    Adriana Mônica Dalla Vecchia

    Full Text Available ABSTRACT: This work presents the investigation in an environment that contains uranium deposits by using Pb isotope signatures. The study area, southeast of Brazil, is characterized by the lack of surface water and, as a consequence, the groundwater plays an important role in the economy of the region, such as the supply to the uranium industry and, above all serving the needs of the local population. The objective of the present investigation is the determination of the signatures of Pb in groundwater and sediments as well as the identification of environments under influences of geogenic and/or anthropogenic sources. It was determined that the Pb in the majority of sediments was geogenic in origin. Although data from the literature, related to the environmental studies, consider 206Pb/207Pb isotopic ratio values below or close to 1.2 as an indicative of anthropogenic Pb, the 206Pb/ 207Pb determined for the majority of groundwater samples ranged from 1.14 to 1.19, and are similar to the data reported for rocks samples (1.09 to 1.96 from area with U mineralization. It was also determined that the anthropogenic influence of the uranium was restricted to a single sampling point within the mining area.

  15. The United States Transuranium and Uranium Registries. Revision 1, [Annual] report, October 1, 1990--April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kathren, R.L.

    1992-09-01

    This paper describes the history, organization, activities and recent scientific accomplishments of the United States Transuranium and Uranium Registries. Through voluntary donations of tissue obtained at autopsies, the Registries carry out studies of the concentration, distribution and biokinetics of plutonium in occupationally exposed persons. Findings from tissue analyses from more than 200 autopsies include the following: a greater proportion of the americium intake, as compared with plutonium, was found in the skeleton; the half-time of americium in liver is significantly shorter than that of plutonium; the concentration of actinide in the skeleton is inversely proportional to the calcium and ash content of the bone; only a small percentage of the total skeletal deposition of plutonium is found in the marrow, implying a smaller risk from irradiation of the marrow relative to the bone surfaces; estimates of plutonium body burden made from urinalysis typically exceed those made from autopsy data; pathologists were unable to discriminate between a group of uranium workers and persons without known occupational exposure on the basis of evaluation of microscopic kidney slides; the skeleton is an important long term depot for uranium, and that the fractional uptake by both skeleton and kidney may be greater than indicated by current models. These and other findings and current studies are discussed in depth.

  16. GIS-based identification of areas with mineral resource potential for six selected deposit groups, Bureau of Land Management Central Yukon Planning Area, Alaska

    Science.gov (United States)

    Jones, James V.; Karl, Susan M.; Labay, Keith A.; Shew, Nora B.; Granitto, Matthew; Hayes, Timothy S.; Mauk, Jeffrey L.; Schmidt, Jeanine M.; Todd, Erin; Wang, Bronwen; Werdon, Melanie B.; Yager, Douglas B.

    2015-01-01

    This study, covering the Bureau of Land Management (BLM) Central Yukon Planning Area (CYPA), Alaska, was prepared to aid BLM mineral resource management planning. Estimated mineral resource potential and certainty are mapped for six selected mineral deposit groups: (1) rare earth element (REE) deposits associated with peralkaline to carbonatitic intrusive igneous rocks, (2) placer and paleoplacer gold, (3) platinum group element (PGE) deposits associated with mafic and ultramafic intrusive igneous rocks, (4) carbonate-hosted copper deposits, (5) sandstone uranium deposits, and (6) tin-tungsten-molybdenum-fluorspar deposits associated with specialized granites. These six deposit groups include most of the strategic and critical elements of greatest interest in current exploration.

  17. Evaluation of adsorption of uranium from aqueous solution using biochar materials

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Wagner Clayton; Guilhen, Sabine Neusatz; Ortiz, Nilce; Fungaro, Denise Alves, E-mail: wcorrea@ipen.br, E-mail: snguilhen@ipen.br, E-mail: notriz@ipen.br, E-mail: dfungaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Uranium is present in the environment as a result of leaching from natural deposits and activities associated with nuclear fuel, copper mining, uranium mining, milling industry, etc. For the purpose of protecting ecosystem stability and public health, it is crucial to eliminate uranium from aqueous solutions before they are discharged into the environment. Various technologies have been used for removing U(VI) ions from aqueous systems. Among these methods, adsorption has been applied in wastewater because of simple operation procedure and high removal efficiency. Brazil is the largest producer of charcoal in the world, with nearly half of the woody biomass harvested for energy in Brazil being transformed into charcoal. Biochar exhibits a great potential as an adsorbent because of favorable physical/chemical surface characteristics. The objective of this work was to evaluate the adsorption potential of biochar materials prepared from pyrolysis of Bamboo (CBM), Eucalyptus (CEM) and Macauba (CMA) nuts for the removal of uranium from solutions. Adsorption experiments were carried out by a batch technique. Equilibrium adsorption experiments were performed by shaking a known amount of biochar material with 100 mL of U(VI) solution in Erlenmeyer flasks in a shaker at 120 rpm and room temperature (25 deg C) for 24 h. The adsorbent was separated by centrifugation from the solution. The U(VI) concentration remaining in the supernatant solution was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The influences of different experimental parameters such as solution pH and bioadsorbent dose on adsorption were investigated. The highest uranium adsorption capacity were obtained at pH 3.0 and 16 g/L biomass dosage for CMA, pH 3.0 and 12 g/L biomass dosage for CBM and pH 2.0 and 10 g/L biomass dosage for CEM. The results demonstrated that the biomass derived char can be used as a low-cost adsorbent for removal of uranium from wastewater. (author)

  18. Geology and ore deposits of the McDermitt Caldera, Nevada-Oregon

    Science.gov (United States)

    Rytuba, James J.

    1976-01-01

    The McDermitt caldera is a Miocene collapse structure along the Nevada-Oregon border. The oval-shaped caldera is bounded by arcuate normal faults on the north and south and by rhyolite ring domes on the west. Precollapse ash-flow tuffs exposed within the south caldera rim consist of three cooling units and are peralkaline in composition. Refractive indexes of nonhydrated glasses from basal vitrophyres of the. units range from 1.493 to 1.503 and are typical of comendites. Post-collapse intracaldera rocks consist of tuffaceous lake sediments, rhyolite flows and domes, and ash-flow tuffs. Within the caldera are the mercury mines of Bretz, Cordero, McDermitt, Opalite, and Ruja and the Moonlight uranium mine. The mercury mines are adjacent to ring fracture faults, and the uranium mine and other uranium occurrences are located within rhyolite ring domes. Fluid inclusions in quartz indicate a deposition temperature of 340?C for the uranium deposit and 200?C for the mercury deposits. The mercury deposits formed at shallow depth by replacement of lakebed sediments and volcanic rocks.

  19. Preliminary study of the uranium favorability of granitic and contact-metamorphic rocks of the Owens Valley area, Inyo and Mono Counties, California, and Esmeralda and Mineral Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Cupp, G.M.; Mitchell, T.P.

    1978-01-01

    Granitic and contact-metamorphic rocks of the Owens Valley area were sampled to determine their favorability for uranium. Uranium deposits associated with these rocks were examined to determine the mode of occurrence. Metamorphic rocks near contacts with intrusive rocks include skarns, schists, quartzites, metaconglomerates, hornfels, gneisses, and metavolcanics. The grade of contact metamorphism ranges from slight to intense, depending upon the distance from the intrusive contact. The average U/sub 3/O/sub 8/ content of the metamorphic rock samples is 3 ppM. Metamorphic rock samples in a roof pendant at the Claw prospect contain as much as 3 percent U/sub 3/O/sub 8/. Skarn samples from the Birch Creek pluton contain as much as 114 ppM U/sub 3/O/sub 8/; those from the Santa Rita Flat pluton contain as much as 23 ppM U/sub 3/O/sub 8/. Most of the intrusive rocks are granite, quartz monzonite, or monzonite. Granodiorite and diorite are less common, and gabbro is rare. The average U/sub 3/O/sub 8/ content of the crystalline rock samples is 4 ppM. Samples from a quartz-monzonite pluton east of Lone Pine, California, and quartz monzonite in the Santa Rosa Hills had maximum contents of 28 and 13 ppM U/sub 3/O/sub 8/, respectively. Areas of contact metamorphism and metasomatism, such as those at the Claw prospect and Birch Creek pluton, are probably the most favorable sites for uranium deposits. There are many miles of granitic and contact-metamorphic zones in which undiscovered uranium deposits may exist. Although the overall uranium content of granitic rocks appears to be low, the pluton east of Lone Pine and the Hunter Mountain pluton in the area of the Santa Rosa Hills have sufficient uranium to have acted as uranium and detrital source rocks for uranium deposits that may now be buried in Tertiary sediments in the basins around the plutons. The Claw deposit is the only known uranium deposit of a size and grade to be of possible commercial interest.

  20. Phanerozoic Rifting Phases And Mineral Deposits

    Science.gov (United States)

    Hassaan, Mahmoud

    2016-04-01

    connected with NW,WNW and N-S faults genetically related to volcano-hydrothermal activity associated the Red Sea rifting. At Sherm EL-Sheikh hydrothermal manganese deposit occurs in Oligocene clastics within fault zone. Four iron-manganese-barite mineralization in Esh-Elmellaha plateau are controlled by faults trending NW,NE and nearly E-W intersecting Miocene carbonate rocks. Barite exists disseminated in the ores and as a vein in NW fault. In Shalatee - Halaib district 24 manganese deposits and barite veins with sulphide patches occur within Miocene carbonates distributed along two NW fault planes,trending 240°and 310° and occur in granite and basalt . Uranium -lead-zinc sulfide mineralization occur in Late Proterozoic granite, Late Cretaceous sandstones, and chiefly in Miocene clastic-carbonate-evaporate rocks. The occurrences of uranium- lead-zinc and iron-manganese-barite mineralization have the characteristic features of hypogene cavity filling and replacement deposits correlated with Miocene- Recent Aden volcanic rocks rifting. In western Saudi Arabia barite-lead-zinc mineralization occurs at Lat. 25° 45' and 25° 50'N hosted by Tertiary sediments in limestone nearby basaltic flows and NE-SW fault system. The mineralized hot brines in the Red Sea deeps considered by the author a part of this province. The author considers the constant rifting phases of Pangea and then progressive fragmentation of Western Gondwana during the Late Carboniferous-Lias, Late Jurassic-Early Aptian, Late Aptian - Albian and Late Eocene-Early Miocene and Oligocene-Miocene, responsible for formation of the mineral deposits constituting the M provinces. During these events, rifting, magmatism and hydrothermal activities took place in different peri-continental margins.

  1. Extraction of uranium from seawater: evaluation of uranium resources and plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Rodman, M.R.; Gordon, L.I.; Chen, A.C.T.

    1979-02-01

    This report deals with the evaluation of U.S. coastal waters as a uranium resource and with the selection of a suitable site for construction of a large-scale plant for uranium extraction. Evaluation of the resource revealed that although the concentration of uranium is quite low, about 3.3 ppB in seawater of average oceanic salinity, the amount present in the total volume of the oceans is very great, some 4.5 billion metric tons. Of this, perhaps only that uranium contained in the upper 100 meters or so of the surface well-mixed layer should be considered accessible for recovery, some 160 million tonnes. The study indicated that open ocean seawater acquired for the purpose of uranium extraction would be a more favorable resource than rivers entering the sea, cooling water of power plants, or the feed or effluent streams of existing plants producing other products such as magnesium, bromine, or potable and/or agricultural water from seawater. Various considerations led to the selection of a site for a pumped seawater coastal plant at a coastal location. Puerto Yabucoa, Puerto Rico was selected. Recommendations are given for further studies. 21 figures, 8 tables.

  2. Radiological Modeling for Determination of Derived Concentration Levels of an Area with Uranium Residual Material - 13533

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, Danyl [CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain)

    2013-07-01

    As a result of a pilot project developed at the old Spanish 'Junta de Energia Nuclear' to extract uranium from ores, tailings materials were generated. Most of these residual materials were sent back to different uranium mines, but a small amount of it was mixed with conventional building materials and deposited near the old plant until the surrounding ground was flattened. The affected land is included in an area under institutional control and used as recreational area. At the time of processing, uranium isotopes were separated but other radionuclides of the uranium decay series as Th-230, Ra-226 and daughters remain in the residue. Recently, the analyses of samples taken at different ground's depths confirmed their presence. This paper presents the methodology used to calculate the derived concentration level to ensure that the reference dose level of 0.1 mSv y-1 used as radiological criteria. In this study, a radiological impact assessment was performed modeling the area as recreational scenario. The modelization study was carried out with the code RESRAD considering as exposure pathways, external irradiation, inadvertent ingestion of soil, inhalation of resuspended particles, and inhalation of radon (Rn-222). As result was concluded that, if the concentration of Ra-226 in the first 15 cm of soil is lower than, 0.34 Bq g{sup -1}, the dose would not exceed the reference dose. Applying this value as a derived concentration level and comparing with the results of measurements on the ground, some areas with a concentration of activity slightly higher than latter were found. In these zones the remediation proposal has been to cover with a layer of 15 cm of clean material. This action represents a reduction of 85% of the dose and ensures compliance with the reference dose. (authors)

  3. Organic tissues, graphite, and hydrocarbons in host rocks of the Rum Jungle Uranium Field, northern Australia

    Science.gov (United States)

    Foster, C.B.; Robbins, E.I.; Bone, Y.

    1990-01-01

    The Rum Jungle Uranium field consists of at least six early Proterozoic deposits that have been mined either for uranium and/or the associated base and precious metals. Organic matter in the host rocks of the Whites Formation and Coomalie Dolomite is now predominantly graphite, consistent with the metamorphic history of these rocks. For nine samples, the mean total organic carbon content is high (3.9 wt%) and ranged from 0.33 to 10.44 wt%. Palynological extracts from the host rocks include black, filamentous, stellate (Eoastrion-like), and spherical morphotypes, which are typical of early Proterozoic microbiota. The colour, abundance, and shapes of these morphotypes reflect the thermal history, organic richness, and probable lacustrine biofacies of the host rocks. Routine analysis of rock thin sections and of palynological residues shows that mineral grains in some of the host rocks are coated with graphitized organic matter. The grain coating is presumed to result from ultimate thermal degradation of a petroleum phase that existed prior to metamorphism. Hydrocarbons are, however, still present in fluid inclusions within carbonates of the Coomalie Dolomite and lower Whites Formation. The fluid inclusions fluoresce dull orange in blue-light excitation and their hydrocarbon content is confirmed by gas chromatography of whole-rock extracts. Preliminary analysis of the oil suggests that it is migrated, and because it has escaped graphitization through metamorphism it is probably not of early Proterozoic age. The presence of live oil is consistent with fluid inclusion data that suggest subsequent, low-temperature brine migration through the rocks. The present observations support earlier suggestions that organic matter in the host formations trapped uranium to form protore. Subsequent fluid migrations probably brought additional uranium and other metals to these formations, and the organic matter provided a reducing environment for entrapment. ?? 1990.

  4. Characterization of low concentration uranium glass working materials

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, G. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wimpenny, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leever, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-22

    A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient for methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.

  5. Health Impact of Uranium in Phosphate Fertilizers - Assessing the radiological impact of using Israeli phosphate fertilizers: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Moinester, Murray [Tel Aviv University, School of Physics and Astronomy, 69978 Tel Aviv (Israel); Kronfeld, Joel [Tel Aviv University, Department of Geosciences, 69978 Tel Aviv (Israel)

    2014-07-01

    Of the three main ingredients used in agricultural nitrogen, phosphorous, and potassium (NPK) fertilizers in Israel and elsewhere, two of them, the phosphorous and potassium additions, contain radio-elements. The P is derived from the use of Senonian aged phosphorite. The extensive Israeli phosphorite deposits (averaging approximately 140 ppm uranium) can be considered a potential low grade uranium ore. Sufficient time has passed since the deposits were laid down for secular equilibrium to be achieved in the uranium decay-series. Thus, deposits now include radioactive daughters thorium, radium, radon, polonium and lead. Besides being radioactive, these or their daughters are biologically deleterious elements. The potential dangers of using enriched phosphate derivatives are both that of adding phosphate radio-metals to the agricultural soils, the uptake by crops, their leakage to the underlying aquifers; or contrariwise, their retention and long term residence in the agricultural top soils. The latter needs to be considered over time, as farmlands are increasingly converted to urban housing. Based upon open sourced literature from Israel and other countries where phosphate fertilizers have been employed, the implications of the above potential problems are reviewed and evaluated. It appears at the moment, that for Israel, the use of phosphate fertilization does not present an immediate health hazard by increasing external dose rates or via crop uptake. However, a continuing build-up of radio-metals over the phreatic aquifers may at some point of time in the future warrant a more rigorous monitoring of the water supplies. Various methods of cleaning soils of the radio-metal contamination are available, though cost via conventional methods would be prohibitive. Though, some of the radionuclides congregate in the phosphogypsum phase during the industrial process, it is currently feasible, if not entirely economical at current depressed prices, to efficiently extract

  6. Assessment of Preferred Depleted Uranium Disposal Forms

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  7. Uranium enrichment management review: summary of analysis

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    In May 1980, the Assistant Secretary for Resource Applications within the Department of Energy requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. After extensive investigation, analysis, and discussion, the review group presented its findings and recommendations in a report on December 2, 1980. The following pages contain background material on which that final report was based. This report is arranged in chapters that parallel those of the uranium enrichment management review final report - chapters that contain summaries of the review group's discussion and analyses in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. Further information, in-depth analysis, and discussion of suggested alternative management practices are provided in five appendices.

  8. CPE OF URANIUM (VI USING IONIC LIQUID

    Directory of Open Access Journals (Sweden)

    SANAA NAÏT-TAHAR

    2016-07-01

    Full Text Available Cloud point extraction (CPE was used to extract uranium (VI from an aqueous solution in acetate media. The methodology used is based on the formation of uranyl-ionic liquid (I complexes and uranyl-D2EHPA soluble in a micellar phase of non-ionic surfactant (Triton X-100. The uranium (VI complexes are then extracted into the surfactant-rich phase at ambient temperature. The ionic liquid (IL used as a chelating agent was synthesized and characterized in this study. It is composed of N-butyl N’-triethoxy methyl imidazolium cation and diethylhexylphosphate (D2EHPA-H as anion. The effect of the IL on the extraction efficiency was studied in presence and in absence of IL’s cation in acetate medium.

  9. Uranium series dating of Allan Hills ice

    Science.gov (United States)

    Fireman, E. L.

    1986-01-01

    Uranium-238 decay series nuclides dissolved in Antarctic ice samples were measured in areas of both high and low concentrations of volcanic glass shards. Ice from the Allan Hills site (high shard content) had high Ra-226, Th-230 and U-234 activities but similarly low U-238 activities in comparison with Antarctic ice samples without shards. The Ra-226, Th-230 and U-234 excesses were found to be proportional to the shard content, while the U-238 decay series results were consistent with the assumption that alpha decay products recoiled into the ice from the shards. Through this method of uranium series dating, it was learned that the Allen Hills Cul de Sac ice is approximately 325,000 years old.

  10. THE RADIOECOLOGICAL CHARACTERISTIC OF THE RADIOACTIVE WASTE DISPOSAL SITES OF URANIUM PRODUCTION AND RECOMMENDATIONS FOR THEIR IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    O. L. Ten

    2015-01-01

    Full Text Available This article deals with the issues of management of the uranium industry wastes at the territory of the Republic of Uzbekistan. The characteristics of the main uranium deposits and mining methods are given. The environmental problems associated with presence of large areas occupied by the uranium industry wastes and with the influence of natural processes on the integrity of such storage places are discussed. The author gives a generalized description of the measures on improving radiation situation in the ecosystems at contaminated territories and facilities of the country. The efforts of the State in relation to the remediation of contaminated land on dangerous facilities are described. The main directions of responsibility and control of radiation safety at the territories containing the uranium industry wastes are indicated. Based on the analysis, the author highlights promising areas of the state policy to improve the system of protective actions to reduce existing or unregulated radiation risks. The main tasks in the field of protection of public health and the environment are defined in the paper.

  11. Separation of plutonium from irradiated uranium and identified by {alpha}-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, G.J.; Iturbe G, J.L.; Solache-Rios, M. [Instituto Nacional de Investigaciones Nucleares, Hidalgo (Mexico). Dept. de Quimica

    1996-01-01

    Plutonium was separated by ionic exchange from irradiated metallic uranium. Solutions of plutonium and uranium were electrodeposited on stainless-steel discs and identified by {alpha}-spectroscopy. Plutonium could be separated from uranium and the fission products. (author).

  12. Alternatives for Disposal of Depleted Uranium Waste.

    Science.gov (United States)

    1985-11-01

    minimize silting and root penetration into the cobble. The sand layer of the graded filter will also provide a lateral transport path for moisture to flow ...Form Release Source Model Computer Code Flow Chart .................... 184 E-11 Groundwater Pathway Release Model .. ........ 189 vii It.- ,.p ~ . f...kidney damaged by uranium. The earliest symptom of this damage is an increase in urinary catalase and albuminuria observed in both animals and humans

  13. Spectroscopic Evidence of Uranium Immobilization in Acidic ...

    Science.gov (United States)

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6-5.8) conditions using U L3-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U-C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland process, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication on the long-term stewardship of U-contaminated wetlands. There were several former U processing facilities at the Savannah River Site (SRS), Aiken, SC. As a result of their operations, uranium has entered the surrounding environments. For example, approximately 45,000 kg o

  14. BTD building uranium mass balance study

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, S.L.; Johnston, J.W.; Glissmeyer, J.A.; Athey, G.F.

    1985-01-01

    Fifteen test firings of depleted uranium (DU) munitions were made during the qualification study of the new target building at the BTD Range operated by the US Army Combat Systems Test Activity (CSTA) at Aberdeen Proving Ground, Maryland. Following these test firings, the total mass and mass distribution of DU inside the BTD facility was determined to define decontamination requirements for the new target building. 4 references, 17 figures, 17 tables.

  15. Basic characterization of highly enriched uranium by gamma spectrometry

    OpenAIRE

    Nguyen, Cong Tam; Zsigrai, Jozsef

    2005-01-01

    Gamma-spectrometric methods suitable for the characterization of highly enriched uranium samples encountered in illicit trafficking of nuclear materials are presented. In particular, procedures for determining the 234U, 235U, 238U, 232U and 236U contents and the age of highly enriched uranium are described. Consequently, the total uranium content and isotopic composition can be calculated. For determining the 238U and 232U contents a low background chamber was used. In addition, age dating of...

  16. The US uranium industry: Regulatory and policy impediments

    Energy Technology Data Exchange (ETDEWEB)

    Drennen, T.E.; Glicken, J.

    1995-06-01

    The Energy Policy Act of 1992 required the DOE to develop recommendations and implement government programs to assist the domestic uranium industry in increasing export opportunities. In 1993, as part of that effort, the Office of Nuclear Energy identified several key factors that could (or have) significantly impact(ed) export opportunities for domestic uranium. This report addresses one of these factors: regulatory and policy impediments to the flow of uranium products between the US and other countries. It speaks primarily to the uranium market for civil nuclear power. Changes in the world political and economic order have changed US national security requirements, and the US uranium industry has found itself without the protected market it once enjoyed. An unlevel playing field for US uranium producers has resulted from a combination of geology, history, and a general US political philosophy of nonintervention that precludes the type of industrial policy practiced in other uranium-exporting countries. The US has also been hampered in its efforts to support the domestic uranium-producing industry by its own commitment to free and open global markets and by international agreements such as GATT and NAFTA. Several US policies, including the imposition of NRC fees and licensing costs and Harbor Maintenance fees, directly harm the competitiveness of the domestic uranium industry. Finally, requirements under US law, such as those in the 1979 Nuclear Nonproliferation Act, place very strict limits on the use of US-origin uranium, limitations not imposed by other uranium-producing countries. Export promotion and coordination are two areas in which the US can help the domestic uranium industry without violating existing trade agreements or other legal or policy constraints.

  17. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Science.gov (United States)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-04-01

    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  18. Texturing formulations for uranium skin decontamination.

    Science.gov (United States)

    Belhomme-Henry, Corinne; Phan, Guillaume; Huang, Nicolas; Bouvier, Céline; Rebière, François; Agarande, Michelle; Fattal, Elias

    2014-09-01

    Since no specific treatment exists in case of cutaneous contamination by radionuclides such as uranium, a nanoemulsion comprising calixarene molecules, known for their good chelation properties, was previously designed. However, this fluid topical form may be not suitable for optimal application on the skin or wounds. To develop a texturing pharmaceutical form for the treatment of wounded skins contaminated by uranium. The formulations consisted in oil-in-water (O/W) nanoemulsions, loaded with calixarene molecules. The external phase of the initial liquid nanoemulsion was modified with a combination of thermosensitive gelifying polymers: Poloxamer and HydroxyPropylMethylcellulose (HPMC) or methylcellulose (MC). These new formulations were characterized then tested by ex vivo experiments on Franz cells to prevent uranyl ions diffusion through excoriated pig ear skin explants. Despite strong changes in rheological properties, the physico-chemical characteristics of the new nanoemulsions, such as the size and the zeta potential as well as macroscopic aspect were preserved. In addition, on wounded skin, diffusion of uranyl ions, measured by ICP-MS, was limited to less than 5% for both HPMC and MC nanoemulsions. These results demonstrated that a hybrid formulation of nanoemulsion in hydrogel is efficient to treat uranium skin contamination.

  19. Magnetic graphene based nanocomposite for uranium scavenging

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghrabi, Heba H. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Abdelmaged, Shaimaa M. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt); Nada, Amr A. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Zahran, Fouad, E-mail: f.zahran@quim.ucm.es [Faculty of Science, Helwan University, 11795, Cairo (Egypt); El-Wahab, Saad Abd; Yahea, Dena [Faculty of Science, Ain shams University, Cairo (Egypt); Hussein, G.M.; Atrees, M.S. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt)

    2017-01-15

    Graphical abstract: Graphical representation of U{sup 6+} adsorption on Magnetic Ferberite-Graphene Nanocomposite. - Highlights: • Synthesis of new magnetic wolframite bimetallic nanostructure on graphene. • A promising adsorption capacity of 455 mg/g was recorded for FG-20 within 60 min at room temperature. • The uranium removal was followed pseudo-second order kinetics and Langmuir isotherm. - Abstract: Magnetic graphene based ferberite nanocomposite was tailored by simple, green, low cost and industrial effective method. The microstructure and morphology of the designed nanomaterials were examined via XRD, Raman, FTIR, TEM, EDX and VSM. The prepared nanocomposites were introduced as a novel adsorbent for uranium ions scavenging from aqueous solution. Different operating conditions of time, pH, initial uranium concentration, adsorbent amount and temperature were investigated. The experimental data shows a promising adsorption capacity. In particular, a maximum value of 455 mg/g was obtained within 60 min at room temperature with adsorption efficiency of 90.5%. The kinetics and isotherms adsorption data were fitted with the pseudo-second order model and Langmuir equation, respectively. Finally, the designed nanocomposites were found to have a great degree of sustainability (above 5 times of profiteering) with a complete maintenance of their parental morphology and adsorption capacity.

  20. Supply of enriched uranium for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  1. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding

  2. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Horng-Bin [Department of Chemistry, University of Idaho, Moscow, Idaho 83844 USA; Wai, Chien M. [Department of Chemistry, University of Idaho, Moscow, Idaho 83844 USA; Kuo, Li-Jung [Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington 98382 USA; Gill, Gary [Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington 98382 USA; Tian, Guoxin [Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA; Rao, Linfeng [Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA; Das, Sadananda [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA; Mayes, Richard T. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA; Janke, Christopher J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA

    2017-05-02

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10-3 M) in seawater. In real seawater experiments, the bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent. Using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.

  3. Microbial reduction of uranium(VI) by anaerobic microorganisms isolated from a former uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Ulrike; Krawczyk-Baersch, Evelyn [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry; Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    The former uranium mine Koenigstein (Germany) is currently in the process of controlled flooding by reason of remediation purposes. However, the flooding water still contains high concentrations of uranium and other heavy metals. For that reason the water has to be cleaned up by a conventional waste water treatment plant. The aim of this study was to investigate the interactions between anaerobic microorganisms and uranium for possible bioremediation approaches, which could be an great alternative for the intensive and expensive waste water treatment. EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) measurements were performed and revealed a complete reduction of U(VI) to U(IV) only by adding 10 mM glycerol.

  4. Measurement and Analysis of Fission Rates in a Spherical Mockup of Uranium and Polyethylene

    OpenAIRE

    Tong-Hua, Zhu; Chao-Wen, YANG; Xin-Xin, Lu; Rong, Liu; Zi-Jie, Han; Li, Jiang; Mei, Wang

    2013-01-01

    Measurements of the reaction rate distribution were carried out using two kinds of Plate Micro Fission Chamber(PMFC). The first is a depleted uranium chamber and the second an enriched uranium chamber. The material in the depleted uranium chamber is strictly the same as the material in the uranium assembly. With the equation solution to conduct the isotope contribution correction, the fission rate of 238U and 235U were obtained from the fission rate of depleted uranium and enriched uranium. A...

  5. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    Science.gov (United States)

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  6. Uranium quantification in semen by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Todorov, Todor I; Ejnik, John W; Guandalini, Gustavo; Xu, Hanna; Hoover, Dennis; Anderson, Larry; Squibb, Katherine; McDiarmid, Melissa A; Centeno, Jose A

    2013-01-01

    In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4-7% RSD and spike recoveries were 97-100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n=10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans' semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments. Published by Elsevier GmbH.

  7. Methods for obtaining sorption data from uranium-series disequilibria

    Energy Technology Data Exchange (ETDEWEB)

    Finnegan, D.L.; Bryant, E.A.

    1987-12-01

    Two possible methods have been identified for obtaining in situ retardation factors from measurements of uranium-series disequilibria at Yucca Mountain. The first method would make use of the enhanced {sup 234}U/{sup 238}U ratio in groundwater to derive a signature for exchangeable uranium sorbed on the rock; the exchangeable uranium would be leached and assayed. The second method would use the ratio of {sup 222}Rn to {sup 234}U in solution, corrected for weathering, to infer the retardation factor for uranium. Similar methods could be applied to thorium and radium.

  8. Uranium quantification in semen by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Todorov, Todor; Ejnik, John W.; Guandalini, Gustavo S.; Xu, Hanna; Hoover, Dennis; Anderson, Larry W.; Squibb, Katherine; McDiarmid, Melissa A.; Centeno, Jose A.

    2013-01-01

    In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2 g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4–7% RSD and spike recoveries were 97–100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n = 10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans’ semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.

  9. Uranium (III) precipitation in molten chloride by wet argon sparging

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, Jean-François, E-mail: jean-francois.vigier@ec.europa.eu [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Laplace, Annabelle [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Renard, Catherine [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Miguirditchian, Manuel [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, Francis [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2016-06-15

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl{sub 2} (30–70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10{sup −4.0}, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl{sub 3} precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO{sub 2} powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation. - Highlights: • Precipitation of Uranium (III) is quantitative in molten salt LiCl-CaCl{sub 2} (30–70 mol%). • The salt is oxoacid with a water dissociation constant of 10{sup −4.0} at 705 °C. • Volatility of uranium chloride is strongly reduced in reductive conditions. • Coprecipitation of U(III) and Nd(III) leads to a consecutive precipitation of the two elements.

  10. Tris(bis(trimethylsilyl)amido)uranium: Compounds with tri-, tetra-, and penta-valent uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, J.L.

    1988-04-01

    This trivalent uranium compound, serves as a precursor to new tri-, tetra-, and penta-valent uranium species. The geometry about the U atom is pyramidal. Lewis-base coordination compounds of U(N(SiMe/sub 3/)/sub 2/)/sub 3/ with a one-to-one- ratio of Lewis base to uranium were isolated with pyridine, 4-dimethylamino-pyridine, 2,6-Me/sub 2/-C/sub 6/H/sub 3/NC, and TPO. Two-to-one coordination compounds were obtained with t-butylnitrile and t-butylisocyanide. Compounds with more sterically demanding bases could not be isolated. The expected decrease in U-N(SiMe/sub 3/)/sub 2/ bond length with increase in oxidation state is not observed. Reaction of ClU(N(SiMe/sub 3/)/sub 2/)/sub 3/and Li(NH(p-tolyl)) yields the uranium (IV) dimer, U/sub 2/(N(SiMe/sub 3/)/sub 2/)/sub 4/(..mu..-N(p-tolyl))/sub 2/. Reaction with 2,4,6-triemethylaniline produces a dimer. Analogous substitution products could not be obtained with aniline or p-toluidine. t-Bu/sub 3/CO/sup /minus//, t-Bu/sub 2/CHO/sup /minus//, and t-Bu/sub 3/SiO/sup /minus// are used to synthesize new tetravalent, mononuclear uranium compounds. Reaction of ClU(tritox)/sub 3/ with alkyllithium reagents leads to isolation of RU(tritox)/sub 3/. The reaction of U(ditox)/sub 4/ with MeLi affords the addition product U(ditox)/sub 4/(Me)Li, whose crystal structure is described. Preparation of uranium silox compounds is reported. 97 refs., 26 figs., 39 tabs.

  11. Uranium: War, Energy and the Rock That Shaped the World; Uranium: la biographie

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, T.

    2009-07-01

    Having traveled extensively through the savannah of Africa, the mountains of Eastern Europe, and the deserts of Utah, the author delves into the complex science, politics and history of uranium, which presents the best and worst of mankind: the capacity for scientific progress and political genius; the capacity for nihilism, exploitation, and terror. Because the author covers so much ground, from the discovery of radioactivity, through the development of the atomic bomb, he does not go into great depth on any one topic. Nonetheless, he paints vivid pictures of uranium's impact, including forced labor in Soviet mines and lucky prospectors who struck it rich in harsh environments, the spread of uranium smuggling, as well as an explanation of why it was absurd to claim that Saddam Hussein was attempting to purchase significant quantities of uranium from Niger. The only shortcoming is the author's omission of the issue of radioactive wastes generated by nuclear power. The author knows well what uranium looks like, why peril pulses in its every atom, and how scientists exploit its nuclear volatility. The drama is found in the weaponry uranium has spawned as demonstrated at Hiroshima and Nagasaki. In pursuit of this raw power, the U.S. let Navajos die extracting needed ore and let southwestern cities sicken beneath clouds from reckless testing. The Soviet Union sentenced tens of thousands to lethal gulag mines. Israel diverted ore through deception on the high seas. Pakistan stole European refining technology. Alive with devious personalities, the author's narrative ultimately exposes the frightening vulnerability of a world with too many sources of a dangerous substance and too little wisdom to control it

  12. Growth and alteration of uranium-rich microlite

    Energy Technology Data Exchange (ETDEWEB)

    Giere, R.; Swope, R. J.; Buck, E. C.; Guggenheim, R.; Mathys, D.; Reusser, E.

    2000-02-01

    Uranium-rich microlite, a pyrochlore-group mineral, occurs in 440 Ma old lithium pegmatites of the Mozambique Belt in East Africa. Microlite exhibits a pronounced growth zoning, with a U-free core surrounded by a U-rich rim (UO{sub 2} up to 17 wt.%). The core exhibits conjugate sets of straight cracks (cleavage planes) which provided pathways for a late-stage U-enriched pegmatitic fluid which interacted with the U-free microlite to produce a distinct U enrichment along the cracks and led to the formation of the U-rich rim. Following the stage of U incorporation into microlite, a second generation of hydrothermal fluids deposited mica along the cleavage planes. Subsequent to these two hydrothermal stages, the host rock was uplifted and subjected to intense low-temperature alteration during which Na, Ca and F were leached from the microlite crystals. This alteration also led to a hydration of microlite, but there is no evidence of U loss. These low-temperature alteration effects were only observed in the U-rich rim which is characterized by a large number of irregular cracks which are most probably the result of metamictization, as indicated by electron diffraction images and powder X-ray patterns. The pyrochlore-group minerals provide excellent natural analogues for pyrochlore-based nuclear waste forms, because samples of variable age and with high actinide contents are available.

  13. Contribution to the study of gaseous Carburization of Uranium; Contribucion al estudio de la Carburacion gaesosa del uranio

    Energy Technology Data Exchange (ETDEWEB)

    Esteban Hernandez, J. A.; Jimenez Moreno, J. M.; Villota Ruiz, P. de

    1966-07-01

    Thermal decomposition of uranium hydride powder obtained by hydrogenation of uranium turnings is studied on the first part of this paper. Carburization of the uranium hydride or metallic uranium powder with methane is studied in the second part. A method of uranium monocarbide fabrication under static atmosphere is described. On this method hydrogen is removed by means of an uranium getter. (Author) 6 refs.

  14. 76 FR 68404 - Uranium From the Russian Federation; Final Results of Expedited Sunset Review of the Suspension...

    Science.gov (United States)

    2011-11-04

    ... natural uranium compounds; uranium enriched in U\\235\\ and its compounds; alloys, dispersions (including cermets), ceramic products, and mixtures containing uranium enriched in U\\235\\ or compounds of uranium enriched in U\\235\\; and any other forms of uranium within the same class or kind. Uranium ore from Russia...

  15. Selected bibliography for the extraction of uranium from seawater: evaluation of uranium resources and plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A.C.T.; Gordon, L.I.; Rodman, M.R.; Binney, S.E.

    1979-02-06

    This bibliography contains 471 references pertaining to the evaluation of U.S. territorial ocean waters as a potential uranium resource and to the selection of a site for a plant designed for the large scale extraction of uranium from seawater. This bibliography was prepared using machine literature retrieval, bibliographic, and work processing systems at Oregon State University. The literature cited is listed by author with indices to the author's countries, geographic areas of study, and to a set of keywords to the subject matter.

  16. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    Energy Technology Data Exchange (ETDEWEB)

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to

  17. On the energy resolution of {alpha}-sources prepared by electrodeposition of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.; Vater, P.; Esterlund, R.A.; Patzelt, P

    1999-03-01

    Using energy-dispersive X-ray fluorescence (EDXF) analysis of electrodeposited {alpha}-sources, we show that, after heating to glowing, the deposited material on the metal plates takes the form of very small spheres. Moreover, the average diameter of these spheres is found to depend on the degree of smoothness of the metal-plate surface. In addition, this spherelike material is found to consist not only of uranium but also of platinum, the latter of which originates from the platinum anode used for electrodeposition. Consequently, the energy resolution of {alpha}-sources prepared in this way is dependent not only on the physical attributes of the surface of the planchets used, but also on the duration of deposition.

  18. On the energy resolution of α-sources prepared by electrodeposition of uranium

    Science.gov (United States)

    Weber, R.; Vater, P.; Esterlund, R. A.; Patzelt, P.

    1999-03-01

    Using energy-dispersive X-ray fluorescence (EDXF) analysis of electrodeposited α-sources, we show that, after heating to glowing, the deposited material on the metal plates takes the form of very small spheres. Moreover, the average diameter of these spheres is found to depend on the degree of smoothness of the metal-plate surface. In addition, this spherelike material is found to consist not only of uranium but also of platinum, the latter of which originates from the platinum anode used for electrodeposition. Consequently, the energy resolution of α-sources prepared in this way is dependent not only on the physical attributes of the surface of the planchets used, but also on the duration of deposition.

  19. Profile of World Uranium Enrichment Programs - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL

    2007-11-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring weapons grade fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, while HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use in fuel for nuclear reactors. However, the same equipment used to produce LEU for nuclear fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is only enriched to LEU, no undeclared LEU is produced, and no uranium is enriched to HEU or secretly diverted. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity, but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 53 million kg-separative work units (SWU) per year, with 22 million in gaseous diffusion and 31 million in gas centrifuge plants. Another 23 million SWU/year of capacity are under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique

  20. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    Science.gov (United States)

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, pplants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, pplants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Development of Novel Sorbents for Uranium Extraction from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenbin [Univ. of Chicago, IL (United States); Taylor-Pashow, Kathryn [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be

  2. Uranium speciation and stability after reductive immobilization in aquifer sediments

    Science.gov (United States)

    Sharp, Jonathan O.; Lezama-Pacheco, Juan S.; Schofield, Eleanor J.; Junier, Pilar; Ulrich, Kai-Uwe; Chinni, Satya; Veeramani, Harish; Margot-Roquier, Camille; Webb, Samuel M.; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-11-01

    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO 2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (˜1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO 2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO 2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.

  3. Carbonate heap leach of uranium-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Turney, W.R.; Mason, C.F.V.; Longmire, P. [Los Alamos National Lab., NM (United States)] [and others

    1994-12-31

    A new approach to removal of uranium from soils based on existing heap leach mining technologies proved highly effective for remediation of soils from the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. In laboratory tests, remediation of uranium-contaminated soils by heap leaching with carbonate salt solutions was demonstrated in column experiments. An understanding of the chemical processes that occur during carbonate leach of uranium from soils may lead to enhancement of uranium removal. Carbonate leaching requires the use of an integrated and closed circuit process, wherein the leach solutions are recycled and the reagents are reused, resulting in a minimum secondary waste stream. Carbonate salt leach solution has two important roles. Primarily, the formation of highly soluble anionic carbonate uranyl species, including uranyl dicarbonate (UO{sub 2}CO{sub 3}{sub 2}{sup =}) and uranyl tricarbonate (UO{sub 2}CO{sub 3}{sub 3}{sup 4-}), allows for high concentration of uranium in a leachate solution. Secondly, carbonate salts are nearly selective for dissolution of uranium from uranium contaminated soils. Other advantages of the carbonate leaching process include (1) the high solubility, (2) the selectivity, (3) the purity of the solution produced, (4) the relative ease with which a uranium product can be precipitated directly from the leachate solution, and (5) the relatively non-corrosive and safe handling characteristics of carbonate solutions. Experiments conducted in the laboratory have demonstrated the effectiveness of carbonate leach. Efficiencies of uranium removal from the soils have been as high as 92 percent. Higher molar strength carbonate solutions ({approx}0.5M) proved more effective than lower molar strength solutions ({approx} 0.1M). Uranium removal is also a function of lixiviant loading rate. Furthermore, agglomeration of the soils with cement resulted in less effective uranium removal.

  4. How Much Uranium? an Account of the International Uranium Resources Evaluation Project (Iurep Compte rendu sur le Projet International d'Évolution des Ressources en Uranium (IUREP.

    Directory of Open Access Journals (Sweden)

    Taylor D. M.

    2006-11-01

    Full Text Available Since August 1962, the OECD Nuclear Energy Agency (NEA - from 1967 onwards in conjunction with the International Atomic Energy Agency (IAEA - has periodically published report on uranium resources and demand. It had been recognised for some time that the uranium resource estimates given in these reports did not constitute a complete appraisal of the world's uranium resources and therefore a major study, possibly the first of its kind, was undertaken by an international group of experts on uranium resources to try to define the possible extent and location of undiscovered uranium resources. This paper is an account of this project. Depuis le mois d'août 1965, l'Agence pour l'Énergie Nucléaire (AEN de l'OCDE - et, à partir de 1967, de concert avec l'Agence Internationale de l'Énergie Atomique (AIEA - a publié périodiquement des rapports sur les ressources et la demande en uranium. Les estimations des ressources en uranium fournies dans ces rapports, comme on l'a reconnu depuis, n'ont pas correspondu à une estimation complète des ressources mondiales en uranium et, par conséquent, une étude plus importante - peut-être la première de son espèce - a été entreprise par un groupe international d'experts pour essayer de définir l'importance et la localisation éventuelles de ces ressources en uranium qui n'étaient pas encore trouvées. Le contenu de cette communication est un historique de ce projet.

  5. L'uranium et les armes a l'uranium appauvri

    CERN Document Server

    Roussel, P

    2001-01-01

    Selon la presse, dans la guerre des Balkans et bien plus massivement dans la guerre du Golfe, des obus anti- chars ont ete utilises, avec des "charges d'uranium appauvri". La presse a decrit deux types de ces "obus- crayons", l'un de diametre 30 mm et 300 mm de long, avec une charge de 300 g d'uranium et tire par des avions, l'autre de 120 mm de diametre avec une charge de 1 a 5 Kg d'uranium, tire par des chars et donc peu ou pas utilise au Kosovo. Les commentaires ont ete varies. On a parle d'armes atomiques, on a dit que c'etait completement inoffensif ou au contraire tres dangereux. Les elements d'information qui suivent tentent d'eclairer le probleme, car on va montrer que probleme il y a, avec des donnees incontournables. Mais faute d'une enquete approfondie et faute d'informations precises, on conclura aussi avec des questions. Il a semble utile egalement de decrire quelques-unes des realites de la radioactivite et de parler du role particulier de l'uranium 238 pour notre planete.

  6. Uranium and cesium accumulation in bean (Phaseolus vulgaris L. var. vulgaris) and its potential for uranium rhizofiltration.

    Science.gov (United States)

    Yang, Minjune; Jawitz, James W; Lee, Minhee

    2015-02-01

    Laboratory scale rhizofiltration experiments were performed to investigate uranium and cesium accumulation in bean (Phaseolus vulgaris L. var. vulgaris) and its potential for treatment of uranium contaminated groundwater. During 72 h of rhizofiltration, the roots of the bean accumulated uranium and cesium to concentrations 317-1019 times above the initial concentrations, which ranged from 100 to 700 μg l(-1) in artificially contaminated solutions. When the pH of the solution was adjusted to 3, the ability to accumulate uranium was 1.6 times higher than it was for solutions of pH 7 and pH 9. With an initial uranium concentration of 240 μg l(-1) in genuine groundwater at pH 5, the bean reduced the uranium concentration by 90.2% (to 23.6 μg l(-1)) within 12 h and by 98.9% (to 2.8 μg l(-1)) within 72 h. A laboratory scale continuous clean-up system reduced uranium concentrations from 240 μg l(-1) to below 10 μg l(-1) in 56 h; the whole uranium concentration in the bean roots during system operation was more than 2600 μg g(-1) on a dry weight basis. Using SEM and EDS analyses, the uranium removal in solution at pH 7 was determined based on adsorption and precipitation on the root surface in the form of insoluble uranium compounds. The present results demonstrate that the rhizofiltration technique using beans efficiently removes uranium and cesium from groundwater as an eco-friendly and cost-effective method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Processing and Applications of Depleted Uranium Alloy Products

    Science.gov (United States)

    1976-09-01

    PC r X120 ’V 10- "I 0 %Z: 0 500 600 700 800 Temperature,"°C FIGURE 13. VARIATION IN HARDNESS OF URANIUM WITH TEMPERATURE METALWORKING TECHNIQUES...Ceramics, Battelle Memoria , Institute, Columbus, Ohio Contract W-1405-eng-92. (13) Physical Metallurgy of Uranium Alloys, 1974 Proceedings of the Third Army

  8. Uranium and cesium diffusion in fuel cladding of electrogenerating channel

    Science.gov (United States)

    Vasil'ev, I. V.; Ivanov, A. S.; Churin, V. A.

    2014-12-01

    The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500°C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

  9. Behaviour of uranium alloys at high loading rates

    Energy Technology Data Exchange (ETDEWEB)

    Rolc, S.; Pechacek, J.; Krejci, J. (Ceskoslovenska Akademie Ved, Brno (CS). Ustav Fyzikalni Metalurgie); Buchar, J.

    1991-10-01

    The mechanical behaviour of depleted uranium, uranium with molybdenum, niobium, titanium and rhenium was investigated under high strain rates. The Hopkinson split pressure bar was used. The spallation of these materials was also studied. The correlation of the spall strength, {sigma}{sub c}, with flow properties was found. 11 refs., 4 figs., 1 tab..

  10. [Adsorption characteristics and mechanism of uranium on attapulgite].

    Science.gov (United States)

    Liu, Juan; Chen, Di-yun; Zhang, Jing; Song, Gang; Luo, Ding-gui

    2012-08-01

    The adsorption characteristics of uranium on attapulgite were investigated by conducting a series of batch adsorption experiments in this study. The influence of solution pH, initial uranium concentration and contact time was investigated. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to characterize the surface structure of the attapulgite, Fourier transform infrared spectrometer (FTIR) were used to characterize the surface properties of the attapulgite before and after uranium adsorption, and to analyze the adsorption mechanism and adsorption kinetics of uranium on attapulgite. The experimental results showed that sorption of uranium on attapulgite was strongly dependent on pH, and the highest adsorption reached at pH = 5. The adsorption quantity increased with time, adsorption could achieve balance in 2 h. The adsorption isotherm equation conformed to the Langmuir isothermal adsorption model and adsorption process could be described by the two-order kinetics model. According to FTIR spectral, the absorbance of attapulgite decreased, which may result from R--OUO2+ or (R--O)2UO2 formed by the bond between uranium and R-OH of attapulgite in the high frequency area 3700-3000 cm(-1), and which uranium ion and magnesium ions may produce ion exchanges in the intermediate frequency area 1700-800 cm(-1). Adsorption mechanism of uranium on attapulgite was mainly ion exchange and complexation.

  11. Uranium Glass: A Glowing Alternative to Conventional Sources of Radioactivity

    Science.gov (United States)

    Boot, Roeland

    2017-01-01

    There is a relatively simple way of using radioactive material in classroom experiments: uranium glass, which provides teachers with a suitable substance. By using the right computer software and a radiation sensor, it can be demonstrated that uranium glass emits radiation at a greater rate than the background radiation and with the aid of UV…

  12. Lithologic features and Uranium possibilities of the granites of ...

    African Journals Online (AJOL)

    Data treatment and interpretation of the result suggest that the fairly enhanced radioactivity in the fine-grained granite, southeast of Pupule, may be related to high background values rather than concentration of uranium minerals in this rock that may justify further more detailed investigation. Keywords: Uranium, Granite ...

  13. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  14. Uranium isotopes in carbonate aquifers of arid region setting

    DEFF Research Database (Denmark)

    Alshamsi, Dalal M.; Murad, Ahmed A.; Aldahan, Ala

    2013-01-01

    ) and 429–5,293 ng L-1 (average: 2,508 ng L-1) respectively. These uranium concentrations are below the higher permissible WHO limit for drinking water and also comparable to averages found in groundwater from similar aquifers in Florida and Tunisia. Negative correlation between rainfall and uranium...

  15. Laser fluorometric analysis of plants for uranium exploration

    Science.gov (United States)

    Harms, T.F.; Ward, F.N.; Erdman, J.A.

    1981-01-01

    A preliminary test of biogeochemical exploration for locating uranium occurrences in the Marfa Basin, Texas, was conducted in 1978. Only 6 of 74 plant samples (mostly catclaw mimosa, Mimosa biuncifera) contained uranium in amounts above the detection limit (0.4 ppm in the ash) of the conventional fluorometric method. The samples were then analyzed using a Scintrex UA-3 uranium analyzer* * Use of trade names in this paper is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey. - an instrument designed for direct analysis of uranium in water, and which can be conveniently used in a mobile field laboratory. The detection limit for uranium in plant ash (0.05 ppm) by this method is almost an order of magnitude lower than with the fluorometric conventional method. Only 1 of the 74 samples contained uranium below the detection limit of the new method. Accuracy and precision were determined to be satisfactory. Samples of plants growing on mineralized soils and nonmineralized soils show a 15-fold difference in uranium content; whereas the soils themselves (analyzed by delayed neutron activation analysis) show only a 4-fold difference. The method involves acid digestion of ashed tissue, extraction of uranium into ethyl acetate, destruction of the ethyl acetate, dissolution of the residue in 0.005% nitric acid, and measurement. ?? 1981.

  16. Ramie (Boehmeria nivea)'s uranium bioconcentration and tolerance attributes.

    Science.gov (United States)

    Wang, Wei-Hong; Luo, Xue-Gang; Liu, Lai; Zhang, Yan; Zhao, Hao-Zhou

    2018-04-01

    The authors sampled and analyzed 15 species of dominant wild plants in Huanan uranium tailings pond in China, whose tailings' uranium contents were 3.21-120.52 μg/g. Among the 15 species of wild plants, ramie (Boehmeria nivea) had the strongest uranium bioconcentration and transfer capacities. In order to study the uranium bioconcentration and tolerance attributes of ramie in detail, and provide a reference for the screening remediation plants to phytoremedy on a large scale in uranium tailings pond, a ramie cultivar Xiangzhu No. 7 pot experiment was carried out. We found that both wild ramie and Xiangzhu No. 7 could bioconcentrate uranium, but there were two differences. One was wild ramie's shoots bioconcentrated uranium up to 20 μg/g (which can be regarded as the critical content value of the shoot of uranium hyperaccumulator) even the soil uranium content was as low as 5.874 μg/g while Xiangzhu No. 7's shoots could reach 20 μg/g only when the uranium treatment concentrations were 275 μg/g or more; the other was that all the transfer factors of 3 wild samples were >1, and the transfer factors of 27 out of 28 pot experiment samples were attributes between wild ramie and Xiangzhu No. 7., and proposed the direction for further research. In our opinion, both the plants which bioconcentrate contaminants in the shoots and roots can act as phytoextractors. Although Xiangzhu No. 7's biomass and accumulation of uranium were concentrated on the roots, the roots were small in volume and easy to harvest. And Xiangzhu No. 7's cultivating skills and protection measures had been developed very well. Xiangzhu No. 7's whole bioconcentration factors and the roots' bioconcentration factors, which were 1.200-1.834 and 1.460-2.341, respectively, increased with the increases of uranium contents of pot soil when the soil's uranium contents are 25-175 μg/g, so it can act as a potential phytoextractor when Huanan uranium tailings pond is phytoremediated. Copyright

  17. RADIONUCLIDES DISTRIBUTION NEAR FORMER URANIUM MINING

    Directory of Open Access Journals (Sweden)

    D. A. Zaredinov

    2016-01-01

    Full Text Available The paper shows, that radionuclides from the stony rocks of uranium mines can be leached by atmospheric precipitations. In acid conditions, a degree of leaching is greater.Goal. The aim of this investigation was to study the distribution of radionuclides in uranium minings and their impact on the environmental contamination.Materials and methods. The study was carried out in two stages. In the first stage, a blade of rock was mixed with distilled water in proportions of 0,3 kg of gravel and 1 liter of water. After thirty days of soaking, water was sent to the gamma-spectrometric analysis to Canberra’s spectrometer (USA with a high-purity germanium detector. In the second stage, we carried out the similar experiment with water, wich was acidified to pH = 3. Contamination levels of areas near the in-situ leaching mine were determined. Intervention levels were used to estimate risk and possible water consumption by the population. Estimations were carried out taking into account the combined presence of several radionuclides in the water.Results. The results of these studies have shown that the distribution of radionuclides from the source of the contamination is about 360 meters during the 30 y period. The stream, along which samples of soil were collected and studied, was formed by the miner waters that flow along small ruts towards a village, thereby increasing the likelihood of water use by the public.Conclusions. The uranium mines are the source of radioactive contamination. Radionuclides are distributed due to the erosion of rocks and leached out of the stony rock by precipitations. The extent of leaching is significantly increased in an acidic environment, which takes place near the in-situ leaching mines.

  18. A Uranium Bioremediation Reactive Transport Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    2015-06-01

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

  19. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although

  20. Possible domestication of uranium oxides using biological assistance reduction

    Directory of Open Access Journals (Sweden)

    Slah Hidouri

    2017-01-01

    Full Text Available Uranium has been defined in material research engineering field as one of the most energetic radioactive elements in the entire Mendeleev periodic table. The manipulation of uranium needs higher theories and sophisticated apparatus even in nuclear energy extraction or in many other chemical applications. Above the nuclear exploitation level, the chemical conventional approaches used, require a higher temperature and pressure to control the destination of ionic form. However, it has been discovered later that at biological scale, the manipulation of this actinide is possible under friendly conditions. The review summarizes the relevant properties of uranium element and a brief characterization of nanoparticles, based on some structural techniques. These techniques reveal the common link between chemical approaches and biological assistance in nanoparticles. Also, those biological entities have been able to get it after reduction. Uranium is known for its ability to destroy ductile materials. So, if biological cell can really reduce uranium, then how does it work?

  1. Recovering and recycling uranium used for production of molybdenum-99

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-12-12

    A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated target suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.

  2. Risk evaluation of uranium mining: a new kinetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Scislewski, Alexandro [Brazilian Nuclear Energy Comission (CNEN), Avenida Santana, 680, Centro, Caetite-Bahia, 46400-000 (Brazil); Zuddas, Pierpaolo [Universite Pierre et Marie Curie, Paris-Sorbonne, ISTEP place Jussieu, Tour 56-55, case 116, F75252 Paris Cedex 05 (France)

    2013-07-01

    Release of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. Increasing uranium mining activities potentially increase the risks linked to radiation exposure. As a tool to evaluate these risks, a geochemical inverse modeling approach was developed to estimate the water-mineral interaction in the presence of uranium. Our methodology is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reaction by reconstructing the chemical evolution of the interacting fluids. We found that the reactive surface area of parent-rock minerals changes over several orders of magnitude during the investigated reaction time. We propose that the formation of coatings on dissolving mineral surfaces significantly reduces reactivity. Our results show that negatively charged uranium complexes decrease when alkalinity and rock buffer capacity is similarly lower, indicating that the dissolved carbonate is an important parameter impacting uranium mobility. (authors)

  3. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Farawila, Anne F.; O' Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used

  4. Analysis of solid uranium samples using a small mass spectrometer

    Science.gov (United States)

    Kahr, Michael S.; Abney, Kent D.; Olivares, José A.

    2001-07-01

    A mass spectrometer for isotopic analysis of solid uranium samples has been constructed and evaluated. This system employs the fluorinating agent chlorine trifluoride (ClF 3) to convert solid uranium samples into their volatile uranium hexafluorides (UF 6). The majority of unwanted gaseous byproducts and remaining ClF 3 are removed from the sample vessel by condensing the UF 6 and then pumping away the unwanted gases. The UF 6 gas is then introduced into a quadrupole mass spectrometer and ionized by electron impact ionization. The doubly charged bare metal uranium ion (U 2+) is used to determine the U 235/U 238 isotopic ratio. Precision and accuracy for several isotopic standards were found to be better than 12%, without further calibration of the system. The analysis can be completed in 25 min from sample loading, to UF 6 reaction, to mass spectral analysis. The method is amenable to uranium solid matrices, and other actinides.

  5. Thermodynamic properties of uranium--mercury system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.S.

    1979-01-01

    The EMF values in the fused salt cells of the type U(..cap alpha..)/KCl--LiCl--BaCl/sub 2/ eutectic, UCl/sub 3//U--Hg alloy, for the different two-phase alloys in the uranium--mercury system have been measured and the thermodynamic properties of this system have been calculated. These calculated values are in good agreement with values based on mercury vapor pressure measurements made by previous investigators. The inconsistency of the thermodynamic properties with the phase diagram determined by Frost are also confirmed. A tentative phase diagram based on the thermodynamic properties measured in this work was constructed.

  6. Coordination polymers of uranium(IV) terephthalates.

    Science.gov (United States)

    Falaise, Clément; Assen, Ayalew; Mihalcea, Ionut; Volkringer, Christophe; Mesbah, Adel; Dacheux, Nicolas; Loiseau, Thierry

    2015-02-14

    A series of tetravalent uranium terephthalates has been solvothermally synthesized in the solvent N,N-dimethylformamide (DMF) at temperature 100-150 °C with different water amounts. Composition diagrams have been determined for the U(4+) metallic cation in the presence of terephthalic acid, and their crystal structures revealed the occurrence of two- or three-dimensional coordination polymers. In the absence of water, a mixture of two polytypes T-U(2)Cl(2)(bdc)(3)(DMF)(4) (1) and M-U(2)Cl(2)(bdc)(3)(DMF)(4) (2) has been identified at low temperature (100-110 °C) for bdc/U = 1-4 (bdc = terephthalate linker). Their structures are built up from isolated uranium centers in nine-fold coordination, surrounded by 6 carboxyl oxygen atoms, 2 oxygen atoms coming from DMF molecules and one chlorine atom. The uranium cations are linked to each other through the bdc ligand in order to generate a 3D framework. By increasing the temperature (130-150 °C), a layered like compound has been isolated, U(2)(bdc)(4)(DMF)(4) (3). It is composed of discrete actinide centers in ten-fold coordination, with 8 carboxyl oxygen atoms and 2 oxygen atoms from DMF molecules. The connection of the UO10 units with the bdc linkers generates 2D sheets. When a controlled amount of water is added to the reaction medium, the crystallization of the UiO-66-like U(6)O(4)(OH)(4)(H(2)O)(6)(bdc)(6)·10DMF solid (containing a hexanuclear sub-unit) is observed for temperature 110-120 °C and the H(2)O/U molar ratio in the range of 2-10. At higher temperature (140-150 °C), a distinct phase appeared, U(2)O(2)(bdc)(2)(DMF) (4), which consists of infinite chains of uranium centers, linked to each other via the bdc ligands. Higher water contents led to the formation of urania UO(2).

  7. Uranium mining and hydrogeology II. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, B.; Helling, C. [eds.] [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Geologie

    1998-12-31

    The 101 papers of the conference deal with the problems of the danger o f groundwater contamination by uranium mining activities, tailings anddumps. Further topics under discussion were the flooding of old mines, remediation strategies for tailings and dumps, hydrogeological, hydrochemical and hydrogeochemical problems and theirsolutions by several monitoring and analytical methods as well as model ling tools. As the first European conference of this kind regarding ura nium mining under hydrogeological aspects, this conference received a b road interest and positive feedback. Especially the cooperation between theoreticians and practicians is very necessary. This was another dist inctive feature of this conference.

  8. Different periods of uranium and thorium occurrence in Madagascar (1960); Cycles uraniferes et thoriferes a Madagascar (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, M. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In Madagascar, the first typical occurrences of thorium and uranium are about 500 million years old. Previously thorium and uranium were rather concentrated in the granitic and charnockitic zones, chiefly in minerals such as monazite, apatite and zircon. At the end of the Precambrian period, metasomatic granites occur especially in the anticlinal series (Andriba orthite granite). The granitization is followed by the formation of the main pegmatitic areas in the Island with Th-U niobotantalates, uraninite and beryl. The pegmatites are well developed in the synclinal series with a poor migmatization or no migmatization at all. In the same time a large uranium and thorium province with uranothorianite deposits appears within the calcomagnesian series of the Southern part of Madagascar. Later, large amounts of monazite were carried down to the detritic Karroo sediments during tile erosion of the metamorphic precambrian rocks. Monazite has been concentrated again by frequent marine incursions, till the present time. In the medium Karroo, near Folakara, uranium minerals occur in direct relation with carbonaceous material. Finally we must note the uranium occurrence in the pleistocene carbonaceous shales of Antsirabe basin, in contact with crystalline rocks. (author) [French] A Madagascar, le premier cycle uranifere et thorifere bien caracterise se situe aux alentours de 500 millions d'annees. Auparavant, le thorium et l'uranium sont concentres de preference dans les zones granitiques et charnockites sous forme de monazite, apatite ou zircon. Vers la fin du Precambrien, se produisent des granitisations metasomatiques, surtout dans les zones anticlinales (type Andriba a orthite). La fin de cette granitisation s'accompagne de la formation des principaux champs pegmatitiques de l'Ile a niobotantalates uraniferes, uraninite et beryl, qui se developpent de preference dans les series synclinales peu ou pas migmatisees. A cette meme epoque s

  9. Recent activities and trend in the uranium market

    Energy Technology Data Exchange (ETDEWEB)

    Kwasny, R.; Aul, F.; Lohrey, K. [NUKEM GmbH, Alzenau (Germany)

    2007-11-15

    Concerns about the impact of hydrocarbon use on climate and global warming are significantly growing. Furthermore, we are all well aware that security of supply is increasingly an issue. In this context, it is now principally recognised that nuclear energy has to be back on the agenda. All in all, the prospects for the nuclear power industry and thus for the uranium activities is very positive for the coming years. The changes that have taken place in the international uranium market during the past several years are remarkable. Since 2002, the uranium prices have increased more than tenfold. The spot market price of uranium began an increase from about USD 9/lb U{sub 3}O{sub 8} in mid 2001 following a fire at the Olympic Dam mill (Australia) in October 2001 and was propelled in subsequent years by a series of interrupting events, such as the mine shaft flooding at the McArthur River mine (Canada) in April 2003, the threat of the early shutdown of the Roessing mine (Namibia) and the Ranger mine (Australia) in 2003, the decision of Techsnabexport (Tenex, Russia) in October 2003 to terminate sales of UF6 to the US trading company Globe Nuclear Services and Supply GNSS Ltd. (GNSS), and finally the complete flooding at the developing Cigar