WorldWideScience

Sample records for sands oil shales

  1. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  2. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh [Univ. of Utah, Salt Lake City, UT (United States); Miller, Jan [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  3. Developments in Oil Shale

    Science.gov (United States)

    2008-11-17

    demonstration (RD&D). The ongoing program will confirm whether an economically significant shale oil volume can be extracted under current operating...Petroleum Trade, [http://www.eia.doe.gov/emeu/mer/pdf/pages/sec1_15.pdf]. 2 Oil sands yield a bitumen substantially heavier most crude oils and shale oil. 3...hydrocarbon products that can be extracted from the shale. The most promising oil shales occur in the Green River formation that underlies 16,000 square

  4. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  5. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    Energy Technology Data Exchange (ETDEWEB)

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  6. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  7. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States)

    2010-03-01

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  8. Oil Shale

    Science.gov (United States)

    Birdwell, Justin E.

    2017-01-01

    Oil shales are fine-grained sedimentary rocks formed in many different depositional environments (terrestrial, lacustrine, marine) containing large quantities of thermally immature organic matter in the forms of kerogen and bitumen. If defined from an economic standpoint, a rock containing a sufficient concentration of oil-prone kerogen to generate economic quantities of synthetic crude oil upon heating to high temperatures (350–600 °C) in the absence of oxygen (pyrolysis) can be considered an oil shale.

  9. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future

  10. Chemistry of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Iida, T.

    1974-01-01

    A review with several references covers the formation, distribution, and mining of oil shales of Fu-Shun colliery; retorting furnaces for oil shale; refining of crude shale oils; and components of oil from Fu-Shun oil shales including pyrolle, matrine, fatty acid anilides, 2,4,5-trimethylpyrrole, and middle-layer bases.

  11. Oil shale commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    Warner, M.M.

    1981-09-01

    Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

  12. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  13. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

  14. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  15. Power from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Yerushalmi, J.; Wohlfarth, A.; Schwartz, M.; Luria, S.

    1988-02-01

    The possibilities for burning oil shale directly to generate a substantial fraction of Israel's electric power are to be investigated by means of a demonstration plant. The plant incorporates a fluidized bed reactor in which combustion tests have shown Israeli oil-shale will burn with high carbon utilization and without the need for supplementary fuel. Sulphur dioxide emissions are nearly all absorbed by the limestone that makes up about 50% of the shale. The design is for co-generation, supplying low pressure process steam for a chemical plant and electricity to the grid. Economic evaluation suggests that oil shale power generation in Israel could in the future be at least competitive with coal and under some circumstances have a cost advantage.

  16. Oil shales and tar sands: a bibliography. Supplement 2, Parts 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Grissom, M.C. (ed.)

    1984-07-01

    This bibliography includes 4715 citations arranged in the broad subject categories: reserves and exploration; site geology and hydrology; drilling, fracturing, and mining; oil production, recovery, and refining; properties and composition; direct uses and by-products; health and safety; marketing and economics; waste research and management; environmental aspects; regulations; and general. There are corporate, author, subject, contract number, and report number indexes.

  17. A Theoretical Investigation of the Structure and Reactivity of the Molecular Constituents of Oil Sand and Oil Shale

    Energy Technology Data Exchange (ETDEWEB)

    Parish, Carol A. [Univ. of Richmond, VA (United States)

    2016-11-28

    We used a variety of small organic models of asphaltenes to investigate the molecular mechanism for the high temperature decomposition that would take place as part of the oil refinery process. We determined that the decomposition is initiated via four different types of hydrogen migration reactions. According to the energetics of the reactions, the dominant 1,2-H shift mechanism involves two competitive product channels, namely, C2H2 + CH2CS and CS + CH3CCH. The minor channels include the formation of CS + CH2CCH2, H2S + C4H2, HCS + CH2CCH, CS + CH2CHCH, H + C4H3S, and HS + C4H3. We also investigated the alkyl substitution effect by exploring the decomposition pathways of models with alkyl arms. The energetics of such systems were very similar to that for unsubstituted model compounds, which suggests that asphaltene alkylation may not play a significant role in the decomposition of asphaltene compounds. This work was published in the Journal of Physical Chemistry A 2011, 115, 2882-2891. A MECHANISTIC STUDY OF THE 2-THIENYLMETHYL + HO2 RADICAL RECOMBINATION REACTION Radicals are molecules which contain single electrons. They are very reactive. Radical recombination reactions are important in the combustion of fuel oils. Shale oil contains radicals. We used quantum mechanics to explore the reactivity of shale oil model radical compounds. Seventeen product channels corresponding to either addition/elimination or direct hydrogen abstraction were characterized. Direct hydrogen abstraction proceeds via a weakly bonded complex, which leads to 2-methylthiophene, 2-methylene-2,3-dihydrothiophene or 2-methylene-2,5-dihydrothiophene depending upon the 2-thienylmethyl radical reaction site. The addition pathway for the two radical reactants is barrierless with the formation of three adducts, as distinguished by HO

  18. Fire and explosion hazards of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  19. Fire and explosion hazards of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  20. High efficiency shale oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  1. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  2. Paraho oil shale project. [Coloardo

    Energy Technology Data Exchange (ETDEWEB)

    Pforzheimer, H.

    1976-01-01

    The Paraho Oil Shale Project is a privately financed program to prove the Paraho retorting process and hardware on oil shale at Anvil Points, Colo., near Rifle. The project was launched in late 1973 under the sponsorship of 17 participants many of whom were active in earlier oil shale research. Two new Paraho retorts, a pilot and a semiworks size unit, were installed at Anvil Points. The oil-shale mine on the adjacent Naval Oil Shale Reserve was reactivated. The mine and new retorts were put into operation during 1974. The pilot plant is used to explore operating parameters in order to define conditions for testing in the larger semiworks size retort. The experimental operations in 1974 set the stage for the successful runs in 1975 and early 1976. The results of the Paraho operations to date have been encouraging. They demonstrate that the process works, that the equipment is durable, and that both are environmentally acceptable on a pilot and a semiworks plant scale.

  3. Oil-shale plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Suurkuusk, T. (Power Engineering Department, Tallinn Technical University, Tallinn, Estonia (SU))

    1991-08-01

    The specific feature of the Estonian energy system is the oil-shale based energy production. The total capacity of the Estonian energy system is 3311 MW, and from this 3104 MW is oil-shale based. There are four oil-shale based power plants in the North-East region of Estonia. (author).

  4. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  5. Petrophysical Analysis of Oil Sand in Athabasca

    Science.gov (United States)

    cheong, S.; Lee, H.

    2013-12-01

    Oil sands are the major unconventional energy sources which have great reserves in Alberta, Canada. Recovery techniques such as CSS (Cyclic Steam Stimulation) and SAGD (Steam Assisted Gravity Drainage) enabled to develop deeper bitumen about several hundred meter depth. Before applying CSS and SAGD, reservoir heterogeneity of mud barriers or shale breccias should be clarified to establish injection and production wells successfully. We conducted the integrated petro-physical analysis for oil sands deposits in Athabasca by correlating well logs with seismic data. From 33 well logs and 3D seismic, we have made P-wave impedance by recursive inversion. Target formations of our analysis were the top of Wabiskaw member. Using inverted impedance and multi-attributes, porosity volume was derived at a target depth. Porosity of time slice 375 ms ranged 20 ~ 40 % stretching porous sand body from NE to SW direction. Characteristics of porosity distribution may be useful to design optimum oil sands recovery in Athabasca.

  6. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available In recent years there has been a world “revolution” in the field of unconventional hydrocarbon reserves, which goes by the name of “shale gas”, gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also “oil shales” (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil, extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  7. Cementing Properties of Oil Shale Ash

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The oil crisis has prompted renewed interest in direct burning of oil shale as an alternative energy source.A major problem in this process is the large portion of ash produced.The cementing properties of this ash were investigated to determine its applicability as a building material.By means of XRD, IR, NMR and ICP, we have studied the effects of burning temperature on the reactivity of ash.Maximum reactivity was obtained with ash samples produced at 700 °C to 900 °C.In this range, the strength of oil-shale-based material, with properties similar to cement, which is composed of oil shale and several other kinds of solid wastes, can achieve the standard of 42.5# cement.Our study has provided an experimental foundation and theoretical base for a massive utilization of oil shale.

  8. Oil shale mining and processing in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Viilup, V. (Eesti Polevkivi Co., Johvi (Estonia))

    1994-01-01

    The overview begins with some background information containing historical data about the shale oil deposite in Estonia, which are well known since the 17th century. One major issue is the importance of the deposits in Estonia regarding the energy supply. Shale oil mining has been taking place there since 1919. More detailed information is supplied about the geology of those deposits that are close to the surface. They, today, are being exploited in six underground mines as well as three surface mines. Recent, most modern, technology is applied for working these mines. The mining methods, as well as the machines used for exploiting the shale oil, will be described in some more detail, followed by a closer look on the numerous possibilities of application of the shale oil products. In order to complete the overview some data and production numbers will be supplied. (orig.)

  9. Military jet fuel from shale oil

    Science.gov (United States)

    Coppola, E. N.

    1980-01-01

    Investigations leading to a specification for aviation turbine fuel produced from whole crude shale oil are described. Refining methods involving hydrocracking, hydrotreating, and extraction processes are briefly examined and their production capabilities are assessed.

  10. Highlights of the Messel Oil Shale

    Institute of Scientific and Technical Information of China (English)

    Stephan Schaal

    2008-01-01

    The Messel oil shale, Germany, was deposited in a maar crater that formed 47 million years ago. Since 1975 the Senckenberg Research Institute in Frankfurt am Main, has conducted systematic scientific excavations of this oil shale with much success. Besides plants and insects, more than 130 species of well-preserved fossil vertebrates like reptiles, fishes, birds and mammals have been found and have made Messel world-famous. Some examples of these vertebrates are presented.

  11. Environmental control costs for oil shale processes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

  12. 2010 oil sands performance report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    With the depletion of traditional energy resources and the rising demand for energy, oil sands have become an important energy resource for meeting energy needs. Oil sands are a mixture of water, sand, clay and bitumen which is recovered either through open pit mining or in situ drilling techniques. The bitumen is then converted into syncrude or sold to refineries for the production of gasoline, diesel or other products. Shell has oil sands operations in Alberta and the aim of this report is to present its 2010 performance in terms of CO2, water, tailings, land, and reclamation and engagement. This document covers several of Shell's operations in the Muskeg River and Jackpine mines, Scotford upgrader, Peace River, Orion, Seal, Cliffdale and Chipmunk. It provides useful information on Shell's oil sands performance to governments, environmental groups, First Nations, local communities and the public.

  13. EVALUATION AND STANDARDIZATION OF ESTONIAN OIL SHALE QUALITY CHARACTERISTICS

    OpenAIRE

    Aruküla, Heino

    1997-01-01

    The most important mineral wealth of Estonia is oil shale, which is used as fuel for generating electricity, thermal energy, for producing the shale oil, impregnation oil, cement, concrete and other products.Estonian oil shale (Kukersite) deposit occupies an extensive territory (about of 1830 square km). Proved reserves in this deposit were estimated' about 4 billions tons of bil shale. (Fig. 1). The industrial oil shale seam (thickness 2,5 - 3,2 m) contains 6 "oil shale' layers (A - F2) whic...

  14. Piceance Basin Oil Shale Data: Assays, Boreholes and Formation Tops

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This database contains Oil Shale Assays, Borehole Locations and Formation Tops that were used in support of the 2009 Oil Shale Assessment (Survey Fact Sheet...

  15. CO2 Sequestration within Spent Oil Shale

    Science.gov (United States)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of

  16. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  17. Oil Shale: History, Incentives, and Policy

    Science.gov (United States)

    2006-04-13

    of Crude Oil (for July 2005 to Jan. 2006), at [http://tonto.eia.doe.gov/dnav/pet/pet_pri_rac2_dcu_nus_m.htm]. Crude oil production costs vary widely by... oil production declined through the 1970s, many marginally profitable and often smaller refineries were closed or idled.48 Of the 324 refineries...whereas Shell’s estimate is based on oil field-based technology for resource extraction. The Ideal Size for an Oil Shale Facility As domestic crude

  18. Pyrolysis and co-pyrolysis of coal and oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Qiumin Zhang; Demin He; Jun Guan [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2007-07-01

    Pyrolysis and co-pyrolysis of coal and oil shale was investigated by using Yilan oil shale, Longkou oil shale, Huolinhe lignite, Taiji gas coal and Ruqigou anthracite as raw materia1s. A fixed-bed pyrolysis and co-pyrolysis of these coal and oil shale were investigated. The results indicated that synergetic effect existed with the oil yield increased, water yield decreased, and the synergetic effect varied with the mass percentage of coal differed. The co-pyrolysis oil yield of Yilan oil shale and Ruqigou anthracite is a little higher than the linear sum of their oil yield in the pyrolysis process. But for the co-pyrolysis of Taiji gas coal and Yilan oil shale, no significant change of the oil yield was found. Huolinhe lignite and Longkou oil shale were chosen as the material for the solid heat carrier experiment. Synergetic effect analyses of both the fixed-bed pyrolysis and the retorting process with solid heat carrier were given. Huolinhe lignite is an ideal material for oil recovery by pyrolysis, with high volatile and low ash, its oil content is 8.55%. Longkou oil shale is an ideal material for oil recovery by pyrolysis, with high oil content of 14.38%. The optimum co-pyrolysis temperature for Huolinhe lignite and Longkou oil shale is 510{sup o}C. Synergetic effect was found with the oil increased 9% and water decreased 36%. 5 refs., 2 figs., 10 tabs.

  19. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  20. Thermal Properties of oil sand

    Science.gov (United States)

    LEE, Y.; Lee, H.; Kwon, Y.; Kim, J.

    2013-12-01

    Thermal recovery methods such as Cyclic Steam Injection or Steam Assisted Gravity Drainage (SAGD) are the effective methods for producing heavy oil or bitumen. In any thermal recovery methods, thermal properties (e.g., thermal conductivity, thermal diffusivity, and volumetric heat capacity) are closely related to the formation and expansion of steam chamber within a reservoir, which is key factors to control efficiency of thermal recovery. However, thermal properties of heavy oil or bitumen have not been well-studied despite their importance in thermal recovery methods. We measured thermal conductivity, thermal diffusivity, and volumetric heat capacity of 43 oil sand samples from Athabasca, Canada, using a transient thermal property measurement instrument. Thermal conductivity of 43 oil sand samples varies from 0.74 W/mK to 1.57 W/mK with the mean thermal conductivity of 1.09 W/mK. The mean thermal diffusivity is 5.7×10-7 m2/s with the minimum value of 4.2×10-7 m2/s and the maximum value of 8.0×10-7 m2/s. Volumetric heat capacity varies from 1.5×106 J/m3K to 2.11×106 J/m3K with the mean volumetric heat capacity of 1.91×106 J/m3K. In addition, physical and chemical properties (e.g., bitumen content, electric resistivity, porosity, gamma ray and so on) of oil sand samples have been measured by geophysical logging and in the laboratory. We are now proceeding to investigate the relationship between thermal properties and physical/chemical properties of oil sand.

  1. Plan for addressing issues relating to oil shale plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  2. Comparative study on direct burning of oil shale and coal

    Science.gov (United States)

    Hammad, Ahmad; Al Asfar, Jamil

    2017-07-01

    A comparative study of the direct burning processes of oil shale and coal in a circulating fluidized bed (CFB) was done in this study using ANSYS Fluent software to solve numerically the governing equations of continuity, momentum, energy and mass diffusion using finite volume method. The model was built based on an existing experimental combustion burner unit. The model was validated by comparing the theoretical results of oil shale with proved experimental results from the combustion unit. It was found that the temperature contours of the combustion process showed that the adiabatic flame temperature was 1080 K for oil shale compared with 2260 K for coal, while the obtained experimental results of temperatures at various locations of burner during the direct burning of oil shale showed that the maximum temperature reached 962 K for oil shale. These results were used in economic and environmental analysis which show that oil shale may be used as alternative fuel for coal in cement industry in Jordan.

  3. Combustion characteristics of Daqing oil shale and oil shale semi-cokes

    Institute of Scientific and Technical Information of China (English)

    MIAO Zhen-yong; WU Guo-guang; LI Ping; ZHAO Na; WANG Pan-cheng; MENG Xian-liang

    2009-01-01

    Thermo-gravimetric-analysis (TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it. The effect of prior pyrolysis and TGA heating rate on the combustion process was studied. Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature. The ignition temperature increases as the volatile content of the sample decreases. TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature. But the peak of combustion shifts to higher temperatures as the heating rate is increased. The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.

  4. Environmental Impact of Estonian Oil Shale CFB Firing

    Science.gov (United States)

    Loosaar, J.; Parve, T.; Konist, A.

    Oil shale based power production has been the basement of Estonia's energetical independency and economy for over 60 years. At the same time oil shale power plants emissions still give the biggest share of Estonian stationary source pollution, having significant impact to the environment. Thanks to the introduction of oil shale large scale CFB firing, reduction of the total environmental impact was achieved in last years.

  5. Bayesian inversion of synthetic AVO data to assess fluid and shale content in sand-shale media

    Indian Academy of Sciences (India)

    Hafiz Mubbasher Anwer; Aamir Ali; Tiago M Alves

    2017-04-01

    Reservoir characterization of sand-shale sequences has always challenged geoscientists due to the presence of anisotropy in the form of shale lenses or shale layers. Water saturation and volume of shale are among the fundamental reservoir properties of interest for sand-shale intervals, and relate to the amount of fluid content and accumulating potentials of such media. This paper suggests an integrated workflow using synthetic data for the characterization of shaley-sand media based on anisotropic rock physics (T-matrix approximation) and seismic reflectivity modelling. A Bayesian inversion scheme for estimating reservoir parameters from amplitude vs. offset (AVO) data was used to obtain the information about uncertainties as well as their most likely values. The results from our workflow give reliable estimates of water saturation from AVO data at small uncertainties, provided background sand porosity values and isotropic overburden properties are known. For volume of shale, the proposed workflow provides reasonable estimates even when larger uncertainties are present in AVO data.

  6. Oil shale and nahcolite resources of the Piceance Basin, Colorado

    Science.gov (United States)

    ,

    2010-01-01

    This report presents an in-place assessment of the oil shale and nahcolite resources of the Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin is one of three large structural and sedimentary basins that contain vast amounts of oil shale resources in the Green River Formation of Eocene age. The other two basins, the Uinta Basin of eastern Utah and westernmost Colorado, and the Greater Green River Basin of southwest Wyoming, northwestern Colorado, and northeastern Utah also contain large resources of oil shale in the Green River Formation, and these two basins will be assessed separately. Estimated in-place oil is about 1.5 trillion barrels, based on Fischer a ssay results from boreholes drilled to evaluate oil shale, making it the largest oil shale deposit in the world. The estimated in-place nahcolite resource is about 43.3 billion short tons.

  7. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  8. Market analysis of shale oil co-products. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  9. Market enhancement of shale oil: The native products extraction technology

    Energy Technology Data Exchange (ETDEWEB)

    Bunger, J.W. (Bunger (James W.) and Associates, Inc., Salt Lake City, UT (United States)); DuBow, J.B. (Utah Univ., Salt Lake City, UT (United States))

    1991-10-01

    The overall objective of this work was to assess the feasibility of enhancing shale oil commercialization through SO/NPX technology. Specific objectives were: (1) To determine the properties and characteristics of fractions isolable from shale oil utilizing separation sequences which are based on thermodynamic considerations; (2) To identify product streams of market value for promising technology development; (3)To conduct technology development studies leading to a shale oil extraction and processing sequence which promises economic enhancement of shale oil commercialization; (4) To develop an analytical methodology and model for obtaining engineering design data required for process development; (5) To estimate the economics of SO/NPX including the potential for enhancing the profitability of a commercial-scale shale oil MIS retort.

  10. Non-isothermal pyrolysis kinetics of three Turkish oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Dogon, O.M.; Uysal, B.Z. [Gazi University, Ankara (Turkey). Dept. of Chemical Engineering

    1996-10-01

    A non-isothermal experimental study using thermogravimetric analysis (t.g.a.) was conducted to determine the overall kinetics of pyrolysis of three Turkish oil shales: Beypazari, Seyitomer and Himmetoglu. The integral method was used in the analysis of the t.g.a. data to determine first-order pyrolysis kinetics. Particle sizes of 0.7, 1.3. and 2.6 mm and final temperatures of 400, 550 and 700{degree}C were used. Himmeltoglue oil shale was found to give better yields than the other two shales. The extent of pyrolysis was found to be practically independent of particle size for all the shales. The rates of decomposition of Seyitomer and Himmetoglu oil shales were found to change at critical temperatures of {approximately} 300 and {approximately} 350{degree}C respectively. Porosities and surface areas of raw and spent shales were also determined. 35 refs., 3 figs., 5 tabs.

  11. Risk assessment methodology in oil shale mining

    Energy Technology Data Exchange (ETDEWEB)

    Sabanov, S. [Tallinn Univ. of Technology, Tallinn (Estonia)

    2009-07-01

    The safety challenges posed by different mining processes were discussed in terms of geotechnical risk factors. Various mining processes can result in work hazards, a production shut-down, economic damage to the enterprise, and environmental impacts. In Estonia, risk assessment methods are utilized in different branches of industry. However, the literature on solving mining problems is limited. Various methods are applicable for solving complicated mining problems. This paper elaborated on a modified risk assessment methodology for oil shale mining in Estonia. The paper specifically discussed problems associated with oil shale mining as well as risk assessment methods such as risk analysis and risk evaluation. Topics that were introduced included risk analysis; risk identification; risk estimation; risk evaluation; risk mitigation; and risk acceptance. The modified risk assessment methodology was successfully applied to the extraction of mineral resources, stability of a mining block, and their influence on the environment. It was concluded that the methodology provides opportunity to find improved methods for new mine planning in accordance with environmental performances and the economical profit for companies. 8 refs., 2 figs.

  12. Ion chromatographic analysis of oil shale leachates

    Energy Technology Data Exchange (ETDEWEB)

    Butler, N.L.

    1990-10-01

    In the present work an investigation of the use of ion chromatography to determine environmentally significant anions present in oil shale leachates was undertaken. Nadkarni et al. have used ion chromatography to separate and quantify halogen, sulfur and nitrogen species in oil shales after combustion in a Parr bomb. Potts and Potas used ion chromatography to monitor inorganic ions in cooling tower wastewater from coal gasification. Wallace and coworkers have used ion chromatography to determine anions encountered in retort wastewaters. The ions of interest in this work were the ions of sulfur oxides including sulfite (SO{sub 3}{sup 2{minus}}), sulfate (SO{sub 4}{sup 2{minus}}), thiosulfate (S{sub 2}O{sub 3}{sup 2{minus}}), dithionite (S{sub 2}O{sub 4}{sup 2{minus}}), dithionate (S{sub 2}O{sub 6}{sup 2{minus}}), peroxyodisulfate (S{sub 2}O{sub 8}{sup 2{minus}}), and tetrathionate (S{sub 4}O{sub 6}{sup 2{minus}}), and thiocyanate (SCN{sup {minus}}), sulfide (S{sup 2{minus}}) hydrosulfide (HS{sup {minus}}), cyanide (CN{sup {minus}}), thiocyanate (SCN{sup {minus}}), and cyanate (OCN{sup {minus}}). A literature search was completed and a leaching procedure developed. 15 refs., 6 figs., 1 tab.

  13. Shale oil specialty markets: Screening survey for United States applications

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    EG and G requested J. E. Sinor Consultants Inc. to carry out an initial screening study on the possibilities for producing specialty chemicals from oil shale. Raw shale oil is not an acceptable feedstock to refineries and there are not enough user of heavy fuel oil in the western oil shale region to provide a dependable market. The only alternatives are to hydrotreat the oil, or else ship it long distances to a larger market area. Either of these alternatives results in a cost penalty of several dollars per barrel. Instead of attempting to enter the large-volume petroleum products market, it was hypothesized that a small shale oil facility might be able to produce specialty chemicals with a high enough average value to absorb the high costs of shipping small quantities to distant markets and still provide a higher netback to the plant site than sales to the conventional petroleum products market. This approach, rather than attempting to refine shale oil or to modify its characteristics to satisfy the specifications for petroleum feedstocks or products, focuses instead on those particular characteristics which distinguish shale oil from petroleum, and attempts to identify applications which would justify a premium value for those distinctive characteristics. Because byproducts or specialty chemicals production has been a prominent feature of oil shale industries which have flourished for periods of time in various countries, a brief review of those industries provides a starting point for this study. 9 figs., 32 tabs.

  14. Potential small-scale development of western oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.; Renk, R.; Nordin, J.; Chatwin, T.; Harnsberger, M.; Fahy, L.J.; Cha, C.Y.; Smith, E.; Robertson, R.

    1989-10-01

    Several studies have been undertaken in an effort to determine ways to enhance development of western oil shale under current market conditions for energy resources. This study includes a review of the commercial potential of western oil shale products and byproducts, a review of retorting processes, an economic evaluation of a small-scale commercial operation, and a description of the environmental requirements of such an operation. Shale oil used as a blend in conventional asphalt appears to have the most potential for entering today's market. Based on present prices for conventional petroleum, other products from oil shale do not appear competitive at this time or will require considerable marketing to establish a position in the marketplace. Other uses for oil shale and spent shale, such as for sulfur sorbtion, power generation, cement, aggregate, and soil stabilization, are limited economically by transportation costs. The three-state area area consisting of Colorado, Utah, and Wyoming seems reasonable for the entry of shale oil-blended asphalt into the commercial market. From a review of retorting technologies and the product characteristics from various retorting processes it was determined that the direct heating Paraho and inclined fluidized-bed processes produce a high proportion of heavy material with a high nitrogen content. The two processes are complementary in that they are each best suited to processing different size ranges of materials. An economic evaluation of a 2000-b/d shale oil facility shows that the operation is potentially viable, if the price obtained for the shale oil residue is in the top range of prices projected for this product. Environmental requirements for building and operating an oil shale processing facility are concerned with permitting, control of emissions and discharges, and monitoring. 62 refs., 6 figs., 10 tabs.

  15. Assessment of potential shale gas and shale oil resources of the Norte Basin, Uruguay, 2011

    Science.gov (United States)

    Schenk, Christopher J.; Kirschbaum, Mark A.; Charpentier, Ronald R.; Cook, Troy; Klett, Timothy R.; Gautier, Donald L.; Pollastro, Richard M.; Weaver, Jean N.; Brownfield, Michael

    2011-01-01

    Using a performance-based geological assessment methodology, the U.S. Geological Survey estimated mean volumes of 13.4 trillion cubic feet of potential technically recoverable shale gas and 0.5 billion barrels of technically recoverable shale oil resources in the Norte Basin of Uruguay.

  16. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John

    2012-09-30

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

  17. Oil shale resources of the Uinta Basin, Utah and Colorado

    Science.gov (United States)

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales of the Eocene Green River Formation of the Uinta Basin of eastern Utah and western Colorado. The oil shale interval was subdivided into eighteen roughly time-stratigraphic intervals, and each interval was assessed for variations in gallons per ton, barrels per acre, and total barrels in each township. The Radial Basis Function extrapolation method was used to generate isopach and isoresource maps, and to calculate resources. The total inplace resource for the Uinta Basin is estimated at 1.32 trillion barrels. This is only slightly lower than the estimated 1.53 trillion barrels for the adjacent Piceance Basin, Colorado, to the east, which is thought to be the richest oil shale deposit in the world. However, the area underlain by oil shale in the Uinta Basin is much larger than that of the Piceance Basin, and the average gallons per ton and barrels per acre values for each of the assessed oil shale zones are significantly lower in the depocenter in the Uinta Basin when compared to the Piceance Basin. These relations indicate that the oil shale resources in the Uinta Basin are of lower grade and are more dispersed than the oil shale resources of the Piceance Basin.

  18. Assessment of industry needs for oil shale research and development

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  19. Oil-shale mining in Maoming basin of China

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell-Tapping, H.J.

    1989-03-01

    The Maoming basin in Guangdong Province is one of the major oil-shale mining areas of China and is situated about 300 km southwest of Hong Kong. This Tertiary basin produces oil from shales mined from a 5-km long open-faced pit on the crest of an anticline in the center of an uplifted and tilted graben. The oil shale extends about 30 km in a northwest-southeast line, and the beds dip as much as 10/degree/ toward metamorphic mountains to the northeast. In the surrounding area are numerous oil seeps, especially in ponds, water wells, and at the foundations of buildings. Holes with oil shows, made to test the extent of the oil shale, have been drilled to a depth of 1000 m. At the base of the mine face is a limestone hardground on top of which is a coal seam about 0.5 m thick that can be traced throughout the basin. Atop this Paleocene coal bed are Eocene oil-shale and thin sandstone beds in five repeated sections, each about 15 m thick, called the Youganwou formation. All kinds of freshwater fossils - fish, insects, plants, turtles, and tree trunks - are found in a near-perfect state of preservation in these oil-rich shales and coal sections. The estimated oil content of the rock is about 8% of good-quality oil with plenty of light ends.

  20. Trace elements in oil shale. Progress report, 1979-1980

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W R

    1980-01-01

    The purpose of this research program is to understand the potential impact of an oil shale industry on environmental levels of trace contaminants in the region. The program involves a comprehensive study of the sources, release mechanisms, transport, fate, and effects of toxic trace chemicals, principally the trace elements, in an oil shale industry. The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements by shale and oil production and use. The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. Leachate studies show that significant amounts of B, F, and Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements are not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. Many of the so-called standard methods for analyzing trace elements in oil shale-related materials are inadequate. A sampling manual is being written for the environmental scientist and practicing engineer. A new combination of methods is developed for separating the minerals in oil shale into different density fractions. Microbial investigations have tentatively identified the existence of thiobacilli in oil shale materials such as leachates. (DC)

  1. Effects of pollution from oil shale mining in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Vallner, L. (AN Ehstonskoj SSR, Tallin (Estonia). Inst. Geologii); Sepp, K. (Taru Univ. (Estonia). Dept. of Geography)

    1993-01-01

    The largest commercially exploited oil shale deposit in the world is in northeast Estonia. The accumulation of solid residues by oil shale mines and processing plants has resulted in numerous dumps and ash hills, which are polluting the environment. The groundwater and streams are highly polluted by sulphates, phenols and oil products. A dump hill of radioactive wastes poses a serious threat to the Baltic Sea. Local people suffer from diseases more often than in other regions of Estonia. (author)

  2. Enhanced Microbial Pathways for Methane Production from Oil Shale

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  3. Multivariate analysis relating oil shale geochemical properties to NMR relaxometry

    Science.gov (United States)

    Birdwell, Justin E.; Washburn, Kathryn E.

    2015-01-01

    Low-field nuclear magnetic resonance (NMR) relaxometry has been used to provide insight into shale composition by separating relaxation responses from the various hydrogen-bearing phases present in shales in a noninvasive way. Previous low-field NMR work using solid-echo methods provided qualitative information on organic constituents associated with raw and pyrolyzed oil shale samples, but uncertainty in the interpretation of longitudinal-transverse (T1–T2) relaxometry correlation results indicated further study was required. Qualitative confirmation of peaks attributed to kerogen in oil shale was achieved by comparing T1–T2 correlation measurements made on oil shale samples to measurements made on kerogen isolated from those shales. Quantitative relationships between T1–T2 correlation data and organic geochemical properties of raw and pyrolyzed oil shales were determined using partial least-squares regression (PLSR). Relaxometry results were also compared to infrared spectra, and the results not only provided further confidence in the organic matter peak interpretations but also confirmed attribution of T1–T2 peaks to clay hydroxyls. In addition, PLSR analysis was applied to correlate relaxometry data to trace element concentrations with good success. The results of this work show that NMR relaxometry measurements using the solid-echo approach produce T1–T2 peak distributions that correlate well with geochemical properties of raw and pyrolyzed oil shales.

  4. Response to Oil Sands Products Assessment

    Science.gov (United States)

    2015-09-01

    Tailings ponds are an operating facility common to all types of surface mining. For oil sands, tailings consisting of water , sand, clay, and residual ...oil, are pumped to these basins—or ponds— where settling occurs and water is recycled for reuse in the process. When the ponds are no longer required...of crude oil transported by tank vessel in Washington waters . In a 2013 Bloomburg Business news article , Dan Murtaugh states, “The dock probably

  5. Effect of Shale Distribution on Hydrocarbon Sands Integrated with Anisotropic Rock Physics for AVA Modelling: A Case Study

    Science.gov (United States)

    Ali, Aamir; Zubair; Hussain, Matloob; Rehman, Khaista; Toqeer, Muhammad

    2016-08-01

    Shales can be distributed in sand through four different ways; laminated, structural, dispersed and any combination of these aforementioned styles. A careful analysis of well log data is required for the determination of shale distribution in sand affecting its reservoir quality. The objective of this study is to characterize the effect of shale distribution on reservoir quality of sands using well log data. The correlation of well data in terms of lithology has revealed four sand and three shale layers in Lower Goru Formation acting as a major reservoir in the study area. Our results indicate that the laminated type of shale distribution prevails at the Basal sand level, which does not affect its reservoir quality greatly. The remaining layers of variable vertical extent show a variety of shale distribution models affecting their reservoir quality adversely. We also present anisotropic rock physics modelling for AVA analysis at Basal sand level.

  6. Oil shale program. Eighteenth quarterly report, April 1980-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. L. [ed.

    1980-11-01

    Instrumentation and evaluation activities are in progress at two DOE-supported in situ oil shale field projects, namely, the Geokinetics Oil Shale Project near Vernal, Utah, and the Occidental Oil Shale Project near DeBeque, Colorado. In support of these projects, it is necessary to develop new and advanced instrumentation systems and associated deployment, recording and analysis techniques that are unique to the field project needs. A rock mechanics program provides material properties, material response models and computational methods for use in the design analysis, and evaluation functions. In addition, retorting studies are in progress on problems unique to the low void conditions encountered in field experiments.

  7. Characterization of nitrogen compound types in hydrotreated Paraho shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, S.A.; Latham, D.R.

    1980-10-01

    Results from the separation and characterization of nitrogen compound types in hydrotreated Paraho shale oil samples were obtained. Two samples of Paraho shale oil were hydrotreated by Chevron Research Company such that one sample contained about 0.05 wt. percent nitrogen and the other sample contained about 0.10 wt. percent nitrogen. A separation method concentrate specific nitrogen compound types was developed. Characterization of the nitrogen types was accomplished by infrared spectroscopy, mass spectrometry, potentiometric titration, and elemental analysis. The distribution of nitrogen compound types in both samples and in the Paraho crude shale oil is compared.

  8. Morphology of retorted oil shale particles

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.C.; Mahajan, O.P.

    The formation of two distinct coked particle morphotypes, namely exfoliated and peripheral, during oil shale retorting and their implications toward the coking mechanism are discussed. Rapid heating causes swelling, exfoliation, and formation of a matrix of veinlets and cracks; these changes lead to uniform coking within the particle body. In contrast, slow heating produces the peripheral morphotype with a low coke density at the center and a high coke density at the periphery. The difference in the coking morphology of the two particle types has been explained on the basis of kerogen pyrolysis kinetics. Of the two morphotypes, peripheral coke makes the particles stronger and more resistant to size attrition. In addition to the formation of coke in the particle body of the two morphotypes, coke is also formed on the outer surface of both the particle types. It has been concluded that more coke is produced from the secondary decomposition reactions than directly from the kerogen itself. 25 references, 8 figures.

  9. Validation Results for Core-Scale Oil Shale Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  10. Technology experience and economics of oil shale mining in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1995-11-01

    The exhaustion of fuel-energy resources became an evident problem of the European continent in the 1960s. Careful utilization of their own reserves of coal, oil, and gas (Germany, France, Spain) and assigned shares of imports of these resources make up the strategy of economic development of the European countries. The expansion of oil shale utilization is the most topical problem. The experience of mining oil shale deposits in Estonia and Russia, in terms of the practice and the economic results, is reviewed in this article. The room-and-pillar method of underground mining and the open-cut technology of clearing the ground ensure the fertility of a soil. The economics of underground and open pit oil shale mines is analyzed in terms of natural, organizational, and technical factors. These analyses are used in the planning and management of oil shale mining enterprises. The perspectives of the oil shale mining industry of Estonia and the economic expediency of multiproduction are examined. Recommendations and guidelines for future industrial utilization of oil shale are given in the summary.

  11. Recultivation work in the oil shale basin of Estonia, USSR

    Energy Technology Data Exchange (ETDEWEB)

    Luik, H.

    1980-01-01

    Soviet Estonia, situated in northwestern USSR has important mineral resources of oil shale, the majority of which is deep-mined. Recultivation of exhausted oil shale pits, begun in 1959, has proceeded at an average of 150 ha/yr. Selective mining is adopted, followed quickly by physical recontouring and cultivation work. Maintenance and improvement of soil fertility is emphasized. Afforestation is the main form of biological recultivation. The most successful trees have been Pinus sylvestris, Betula verrucosa, Larix europea, and Larix japonica.

  12. Analysis of the environmental control technology for oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Eckhoff, D.; Swanson, S.; Glenne, B.; Wagner, F.

    1978-02-01

    The environmental control technology proposed in the various oil shale projects which are under development are examined. The technologies for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the processed shale were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. There are no published national standards against which to judge the stabilization and vegetation of the processed shale. However, based on the goal of producing an environmentally and aesthetically acceptable finished processed shale pile, it seems probable that this can be accomplished. It is concluded that the environmental control technology is available to meet all current legal requirements. This was not the case before Colorado changed their applicable Air Pollution regulations in August of 1977; the previous ones for the oil shale region were sufficiently stringent to have caused a problem for the current stage of oil shale development. Similarly, the federal air-quality, non-deterioration regulations could be interpreted in the future in ways which would be difficult for the oil shale industry to comply with. The Utah water-quality, non-deterioration regulations could also be a problem. Thus, the only specific regulations which may be a problem are the non-deterioration parts of air and water quality regulations. The unresolved areas of environmental concern with oil shale processing are mostly for the problems not covered by existing environmental law, e.g., trace metals, polynuclear organics, ground water-quality changes, etc. These may be problems, but no evidence is yet available that these problems will prevent the successful commercialization of oil shale production.

  13. Recultivation work in the oil shale basin of Estonia, USSR

    Energy Technology Data Exchange (ETDEWEB)

    Luik, H.

    1980-01-01

    Soviet Estonia is situated in the northwestern part of the Soviet Union. The most important mineral resources are oil shale, phosphorite, peat and construction materials. Oil shale production is about 30 x 10/sup 6/ tonnes a year. The oil shale is partly surface mined but the majority is deep mined. Recultivation of exhausted oil shale pits started in 1959 and has proceeded at an average of 150 ha per annum. In the course of recultivation a process of selective mining is adopted, this is followed quickly by physical recontouring and cultivation work. Particular attention is given to the maintenance and improvement of soil fertility. Afforestation is the main form of biological recultivation with more than 2450 ha of exhausted oil shale workings having been planted. The most successful trees have been Pinus sylvestris, Betula verrucosa, Larix europea and Larix japonica. The development of mining and land use in the oil shale basin is closely regulated. To ensure efficient mining development and to maximise nature conservation and recreation potential a scheme of functional zoning has been drawn up and a policy of progressive recultivation has been adopted.

  14. Oil shale in the United States: prospects for development

    Energy Technology Data Exchange (ETDEWEB)

    Drabenstott, M.; Duncan, M.; Borowski, M.

    1984-05-01

    The development of an oil shale industry has had its ups and downs throughout this century. Despite vast reserves of recoverable shale oil, energy prices usually have been high enough to make extraction of that oil commercially viable. The tripling and then tripling again of world oil prices in the 1970s gave initial promise that development had become economically feasible. After only a few years of rapid development activity, however, the effort was brought to a near-halt by falling world oil prices. The results were a substantial reduction in economic activity for northwestern Colorado and, maybe more importantly, sharply lower expectations for the region's future economic growth. In both the upturn and the downturn, the local public sector was essentially shielded from financial stress because the energy companies helped fund public spending on infrastructure and services. The future for oil shale remains uncertain. A few energy companies continue to pursue their development plans. To spur development of commercial scale plants, Synthetic Fuels Corporation has made loan and price guarantees to energy firms. Some projects may soon be extracting oil, providing needed technological and financial information on various techniques of oil extraction. But the future for oil shale remains clouded by uncertainties regarding the cost of producing syncrude and future oil prices. Environmental issues could also hamper oil shale development. Therefore, oil shale remains, as it has for more than a century, a technical and economic enigma that has only begun to be understood and developed. 8 references, 3 figures, 3 tables

  15. Western states enhanced oil shale recovery program: Shale oil production facilities conceptual design studies report

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    This report analyzes the economics of producing syncrude from oil shale combining underground and surface processing using Occidental's Modified-In-Situ (MIS) technology and Lawrence Livermore National Laboratory's (LLNL) Hot Recycled Solids (HRS) retort. These retorts form the basic technology employed for oil extraction from oil shale in this study. Results are presented for both Commercial and Pre-commercial programs. Also analyzed are Pre-commercialization cost of Demonstration and Pilot programs which will confirm the HRS and MIS concepts and their mechanical designs. These programs will provide experience with the circulating Fluidized Bed Combustor (CFBC), the MIS retort, the HRS retort and establish environmental control parameters. Four cases are considered: commercial size plant, demonstration size plant, demonstration size plant minimum CFBC, and a pilot size plant. Budget cost estimates and schedules are determined. Process flow schemes and basic heat and material balances are determined for the HRS system. Results consist of summaries of major equipment sizes, capital cost estimates, operating cost estimates and economic analyses. 35 figs., 35 tabs.

  16. Shale Gas and Oil in Germany - Resources and Environmental Impacts

    Science.gov (United States)

    Ladage, Stefan; Blumenberg, Martin; Houben, Georg; Pfunt, Helena; Gestermann, Nicolai; Franke, Dieter; Erbacher, Jochen

    2017-04-01

    In light of the controversial debate on "unconventional" oil and gas resources and the environmental impacts of "fracking", the Federal Institute for Geosciences and Natural Resources (BGR) conducted a comprehensive resource assessment of shale gas and light tight oil in Germany and studied the potential environmental impacts of shale gas development and hydraulic fracturing from a geoscientific perspective. Here, we present our final results (BGR 2016), incorporating the majority of potential shale source rock formations in Germany. Besides shale gas, light tight oil has been assessed. According to our set of criteria - i.e. thermal maturity 0.6-1.2 %vitrinite reflectance (VR; oil) and >1.2 % VR (gas) respectively, organic carbon content > 2%, depth between 500/1000 m and 5000 m as well as a net thickness >20 m - seven potentially generative shale formations were indentified, the most important of them being the Lower Jurassic (Toarcian) Posidonia shale with both shale gas and tight oil potential. The North German basin is by far the most prolific basin. The resource assessment was carried out using a volumetric in-place approach. Variability inherent in the input parameters was accounted for using Monte-Carlo simulations. Technically recoverable resources (TRR) were estimated using recent, production-based recovery factors of North American shale plays and also employing Monte-Carlo simulations. In total, shale gas TRR range between 320 and 2030 bcm and tight oil TRR between 13 and 164 Mio. t in Germany. Tight oil potential is therefore considered minor, whereas the shale gas potential exceeds that of conventional resources by far. Furthermore an overview of numerical transport modelling approaches concerning environmental impacts of the hydraulic fracturing is given. These simulations are based on a representative lithostratigraphy model of the North-German basin, where major shale plays can be expected. Numerical hydrogeological modelling of frac fluid

  17. Western oil shale development: a technology assessment. Volume 8. Health effects of oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G.J.

    1982-02-01

    Information on the potential health effects of a developing oil shale industry can be derived from two major sources: (1) the historical experience in foreign countries that have had major industries; and (2) the health effects research that has been conducted in the US in recent years. The information presented here is divided into two major sections: one dealing with the experience in foreign countries and the second dealing with the more recent work associated with current oil shale development in the US. As a result of the study, several observations can be made: (1) most of the current and historical data from foreign countries relate to occupational hazards rather than to impacts on regional populations; (2) neither the historical evidence from other countries nor the results of current research have shown pulmonary neoplasia to be a major concern, however, certain types of exposure, particularly such mixed source exposures as dust/diesel or dust/organic-vapor have not been adequately studied and the lung cancer question is not closed; (3) the industry should be alert to the incidence of skin disease in the industrial setting, however, automated techniques, modern industrial hygiene practices and realistic personal hygiene should greatly reduce the hazards associated with skin contact; and (4) the entire question of regional water contamination and any resultant health hazard has not been adequately addressed. The industrial practice of hydrotreating the crude shale oil will diminish the carcinogenic hazard of the product, however, the quantitative reduction of biological activity is dependent on the degree of hydrotreatment. Both Soviet and American experimentalists have demonstrated a correlation betweed carcinogenicity/toxicity and retorting temperature; the higher temperatures producing the more carcinogenic or toxic products.

  18. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    Science.gov (United States)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  19. Cyclone oil shale retorting concept. [Use it all retorting process

    Energy Technology Data Exchange (ETDEWEB)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  20. Assessment of undiscovered shale gas and shale oil resources in the Mississippian Barnett Shale, Bend Arch–Fort Worth Basin Province, North-Central Texas

    Science.gov (United States)

    Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2015-12-17

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 53 trillion cubic feet of shale gas, 172 million barrels of shale oil, and 176 million barrels of natural gas liquids in the Barnett Shale of the Bend Arch–Fort Worth Basin Province of Texas.

  1. Assessment of undiscovered shale gas and shale oil resources in the Mississippian Barnett Shale, Bend Arch–Fort Worth Basin Province, North-Central Texas

    Science.gov (United States)

    Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2015-12-17

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 53 trillion cubic feet of shale gas, 172 million barrels of shale oil, and 176 million barrels of natural gas liquids in the Barnett Shale of the Bend Arch–Fort Worth Basin Province of Texas.

  2. SFC status report on major shale oil projects

    Energy Technology Data Exchange (ETDEWEB)

    Zukor, S.H.

    1982-06-01

    The SFC was created by the Energy Security Act on June 30, 1980. Solicitations for financial assistance from the DOE came from Union Oil and the Tosca company, both for projects near Parachute, Colorado. Both projects received DOE assistance. The first SFC solicitations came in 1981. 6 Of 28 solicitations were for shale oil. In January 1983, seven phase I maturity criteria were applied to the projects and the list was reduced to eleven--only one of which was for shale oil. The SFC will now meet to consider which of the eleven projects that met the maturity criteria of Phase I can also meet the six Phase I criteria. Of the shale oil projects that lacked maturity, a brief is included that indicates SFC policy will tradeoff some near-term production for diversity that will enhance long term use.

  3. Geolipids in the oil shale from Aleksinac (Yugoslavia)

    Energy Technology Data Exchange (ETDEWEB)

    Vitorovic, D.; Saban, M.

    1983-01-01

    The oil shale from Aleksinac (Yugoslavia) is a lacustrine sediment of Micocene age. Both the soluble portion of the organic matter (the bitumen) and the insoluble kerogen of this shale were studied extensively. In this paper, isolation and identification of various types of geolipids from the Aleksinac shale, carried out in the last few years, will be reviewed. A thorough examination of the bitumen was expected to give additional data on the origin of the organic matter as well as on the sedimentation conditions and postburial changes. (JMT)

  4. Mitigating in situ oil sands carbon costs

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, D.J.; Peterson, J. [Laricina Energy Ltd., Calgary, AB (Canada); Heinrichs, H. [Canadian Chemical Technology Inc., Calgary, AB (Canada)

    2008-10-15

    Carbon capture and sequestration is a complex problem with a variety of dimensions that need to be considered. The political, social, and regulatory pressures are forcing carbon costs on the oil sands industry in an effort to reduce the carbon footprint of oil sands operations. This paper reviewed the political, social, and regulatory pressures and obligations for the in-situ oil sands industry. It presented the views and insights of Laricina Energy on the carbon challenge. It also described the initiatives that Laricina Energy is taking to manage these imperatives and outlined the challenges the industry is facing. The purpose of the paper was to encourage dialogue and collaboration by the oil sands industry. The paper also described the dimensions of the carbon problem and how the industry can contribute to a solution. Last, the paper reviewed the parameters of carbon dioxide or greenhouse gas containment and storage issues. It was concluded that the regulatory and policy requirements need to be clarified so that industry understands the new business landscape as well as the requirements that influence the economics of in-situ oil sands development. 7 refs., 7 figs.

  5. Beneficiation-hydroretort processing of US oil shales, engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Riley, R.H.

    1988-12-01

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  6. Cleaning oil sands drilling waste in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Mikic, N.; Nilsen, C.; Markabi, M. [Mi SWACO, Calgary, AB (Canada)

    2008-07-01

    The waste generated from steam assisted gravity drainage (SAGD) wells is brought to the surface and separated by shale shakers. The waste can include drilling fluids and sand contaminated with bitumen. This paper described a new technology developed to treat waste using the addition of hot water and various mixing and separation technologies to reduce the viscosity of the bitumen and separate it from the sand. The bitumen-contaminated drill cuttings were mixed with hot water to form a slurry that was then separated through the G-force created by a hydrocyclone. A secondary separation was then conducted in an elutriation column to remove residual contaminants from the sand. The flow rate of the process was controlled by the fine solids composition of the cuttings, the temperature of the cleaning process, and the performance of the individual components. Laboratory tests conducted to tests the method showed that the sand particles produced using the method were clean enough to be safely disposed in the environment. A pilot study will be conducted to test the sand cleaning technology at a commercial scale. 6 refs., 3 figs.

  7. OIL SHALE ASH UTILIZATION IN INDUSTRIAL PROCESSES AS AN ALTERNATIVE RAW MATERIAL

    OpenAIRE

    Azeez Mohamed, Hussain; Campos, Leonel

    2016-01-01

    Oil shale is a fine-grained sedimentary rock with the potential to yield significant amounts of oil and combustible gas when retorted. Oil shale deposits have been found on almost every continent, but only Estonia, who has the 8th largest oil shale deposit in the world has continuously utilized oil shale in large scale operations. Worldwide, Estonia accounts for 80% of the overall activity involving oil shale, consuming approximately 18 million tons while producing 5–7 million tons of oil sha...

  8. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  9. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.

    1998-01-01

    Emission levels of selected trace metals from the Estonian oil shale fired power plant were studied. The plant is the largest single power plant in Estonia with an electricity production capacity of 1170 MWe (1995). Trace metals were sampled from the flue gases by a manual method incorporating...... a two-fraction particle sampling and subsequent absorption of the gaseous fraction. The analyses were principally performed with ICP-MS techniques. The trace metal contents of Estonian oil shale were found to be in the same order of magnitude as of coal on average. The high total particle concentrations...... in the flue gases of the studied oil shale plant contribute, however, to clearly higher total trace metal emission levels compared to modern coal fired power plants. Although the old electrostatic precipitators in the plant have been partly replaced by state-of-the-art electrostatic precipitators...

  10. Tiger Team Assessment of the Naval Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    OpenAIRE

    1992-01-01

    This report documents the Tiger Team Assessment of the Naval Petroleum and Oil Shale Reserves in Colordao, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 (NPR-3) located near Casper, Wyoming; Naval Oil Shale Reserve Number 1 (NOSR-1) and Naval Oil Shale Reserve Number 3 (NOSR-3) located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 (NOSR-2) located near Vernal, Utah, which was not examined as part of this assessment.

  11. Executive summary. Western oil shale developmet: a technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The objectives are to review shale oil technologies as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  12. Oil shale research and coordination. Progress report, 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W R

    1981-01-01

    Purpose is to evaluate the environmental and health consequences of the release of toxic trace elements by an oil shale industry. Emphasis is on the five elements As, Mo, F, Se, and B. Results of four years' research are summarized and the research results over the past year are reported in this document. Reports by the task force are included as appendices, together with individual papers on various aspects of the subject topic. Separate abstracts were prepared for the eleven individual papers. A progress report on the IWG oil shale risk analysis is included at the end of this document. (DLC)

  13. Water management in the oil sands industry

    Energy Technology Data Exchange (ETDEWEB)

    Pauls, R. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2004-07-01

    Water management issues at Alberta's 4 oil sand deposits were discussed. The 4 deposits include the Peace River, Athabasca, Wabasca and Cold Lake deposits, with the Athabasca deposit being the largest and the only surface-mineable deposit. Large quantities of water are needed to extract bitumen from oil sands. This paper addressed water volume withdrawal from the Athabasca River, the primary source of water for the surface-mining oil sands industry. It also addressed Muskeg River watershed integrity, quality of water withdrawn from reclaimed landscapes, groundwater contamination, and ecological viability of end-pit lakes. Currently, half of Syncrude's oil sand is transported from mine to extraction plant by conveyor belts. The other half is pipelined as a warm water slurry. By 2005, all transport will be by pipeline. The oil sand is mixed with hot water, steam and surfactants to condition it for extraction. Seventy-nine per cent of the water used by Syncrude is recycled water and the remainder comes from the Athabasca River. Syncrude diverts 2.5 to 3 barrels of water from the Athabasca River for every barrel of oil produced. This paper discussed the in-stream flow needs of the Athabasca River based on protection of aquatic ecosystems. Flow needs are addressed by the Cumulative Effects Management Association (CEMA). The paper states that the proportion of annual flow withdrawn from the Athabasca River is too low to have a significant impact on aquatic systems, but the main concern lies in water use during low flow periods, typically during the winter months. Developers will likely come under pressure to develop off-site reservoirs to store water for use during these low-flow periods. tabs., figs.

  14. Trace elements in oil shale. Progress report, 1976--1979

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W.R.

    1979-01-01

    The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements (As, B, F, Mo, Se) by shale oil production and use. Some of the particularly significant results are: The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. This implies that the number of analytical determinations required of processed shales is not large. Leachate studies show that significant amounts of B, F, And Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements ae not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Upon oxidation a drastic lowering in pH is observed. Preliminary data indicates that this oxidation is catalyzed by bacteria. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. These amounts depend upon the process and various site specific characteristics. In general, the amounts taken up decrease with increasing soil cover. On the other hand, we have not observed significant uptake of As, Se, and F into plants. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. In particular, most of the Cd, Se, and Cr in shale oil is associated with the organic fraction containing most of the nitrogen-containing compounds.

  15. Comparison of the Acceptability of Various Oil Shale Processes

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A K; McConaghy, J R

    2006-03-11

    While oil shale has the potential to provide a substantial fraction of our nation's liquid fuels for many decades, cost and environmental acceptability are significant issues to be addressed. Lawrence Livermore National Laboratory (LLNL) examined a variety of oil shale processes between the mid 1960s and the mid 1990s, starting with retorting of rubble chimneys created from nuclear explosions [1] and ending with in-situ retorting of deep, large volumes of oil shale [2]. In between, it examined modified-in-situ combustion retorting of rubble blocks created by conventional mining and blasting [3,4], in-situ retorting by radio-frequency energy [5], aboveground combustion retorting [6], and aboveground processing by hot-solids recycle (HRS) [7,8]. This paper reviews various types of processes in both generic and specific forms and outlines some of the tradeoffs for large-scale development activities. Particular attention is given to hot-recycled-solids processes that maximize yield and minimize oil shale residence time during processing and true in-situ processes that generate oil over several years that is more similar to natural petroleum.

  16. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2017-06-01

    Full Text Available Air injection in light oil reservoirs has received considerable attention as an effective, improved oil recovery process, based primarily on the success of several projects within the Williston Basin in the United States. The main mechanism of air injection is the oxidation behavior between oxygen and crude oil in the reservoir. Air injection is a good option because of its wide availability and low cost. Whether air injection can be applied to shale is an interesting topic from both economic and technical perspectives. This paper initiates a comprehensive discussion on the feasibility and potential of air injection in shale oil reservoirs based on state-of-the-art literature review. Favorable and unfavorable effects of using air injection are discussed in an analogy analysis on geology, reservoir features, temperature, pressure, and petrophysical, mineral and crude oil properties of shale oil reservoirs. The available data comparison of the historically successful air injection projects with typical shale oil reservoirs in the U.S. is summarized in this paper. Some operation methods to improve air injection performance are recommended. This paper provides an avenue for us to make use of many of the favorable conditions of shale oil reservoirs for implementing air injection, or air huff ‘n’ puff injection, and the low cost of air has the potential to improve oil recovery in shale oil reservoirs. This analysis may stimulate further investigation.

  17. Cumulative environmental management and the oil sands

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    In response to concerns regarding the cumulative environmental impacts of oil sands development within the Athabasca oil sands deposit, the government of Alberta established a Regional Sustainable Development Strategy (RSDS) to balance development with environmental protection. The environmental issues identified through the RSDS were addressed by the Cumulative Environmental Management Association (CEMA). CEMA's boundary is the Wood Buffalo region of northeastern Alberta. It identifies existing and future environmental effects in the region and proposes recommendations to regulatory bodies for reducing environmental impacts associated with oil sands development. This presentation outlined some of the 55 stakeholder representatives of CEMA, including Alberta government departments associated with resource development, oil sand developers within the region, and Aboriginal communities and First Nations. These stakeholders provide input on sector priorities and agree on environmental thresholds. Established working groups also address technical and scientific research issues identified in the RSDS such as sustainable ecosystems; surface waters; trace metals and air contaminants; nitrogen oxides and sulphur dioxides; and land reclamation. To date, CEMA has submitted more than 50 reports and has made 4 major environmental recommendations for trace metal management, ecosystem management tools, a framework for acid deposition management, and a landscape design checklist. tabs., figs.

  18. Organic geochemical characterization of Aleksinac oil shale deposit (Serbia)

    Science.gov (United States)

    Gajica, Gordana; Kašanin-Grubin, Milica; Šajnović, Aleksandra; Stojanović, Ksenija; Kostić, Aleksandar; Jovančićević, Branimir

    2016-04-01

    Oil shales represent a good source of energy and industrial raw material. The Aleksinac oil shale deposit is the biggest and most important oil shale deposit in Serbia. It covers an area of over 20 km2, and it has three fields: "Dubrava", "Morava" and "Logorište". The potential reserves of oil shale in the Aleksinac deposit are estimated at about 2.1 billion tons. The genesis of oil shales is associated with the lacustrine depositional environments, which existed from Upper to Lower Miocene. In order to determine the generative potential, type of organic matter (OM) and thermal maturity, Rock-Eval pyrolysis was used. In analyzed oil shale samples the content of total organic carbon (TOC), as a general indicator of petroleum generation potential, range from 1.48 to 29.57%. The content of naturally generated hydrocarbons, expressed as S1 peak from the Rock-Eval pyrolysis in most analyzed samples have extremely low values 0.002-0.28, which indicate low maturity level [1]. The pyrolysable hydrocarbons expressed as S2 peak from the Rock-Eval pyrolysis, represent the potential to generate hydrocarbons and with that the potential of oil generation through thermal decomposition of kerogen. S2 ranging 3.93-141.36 mg HC/g rock is higher than 20 mg HC/g rock and indicates excellent source rock potential [1]. In order to accept a formation as a source rock, it should exhibit TOC more than 0.5 % and sufficient maturity, but also OM types should be suitable for the oil and gas generation. The kerogen type is determined by Hydrogen Index (HI) and diagram HI vs. Tmax (temperature, corresponding to S2 peak maximum). HI in range 265-728 mg HC/g TOC, indicates Type I and Type II kerogen or their mixture i.e. oil prone kerogen [1], whereas only one sample appears to be oil/gas prone (Type II/III). Similar results are obtained by plotting the Tmax against HI. Maturation degree depends on the overall thermal history of the evaluated rocks; it is very important parameter for evaluation

  19. Oil shale production and power generation in Estonia; Economic and environmental dilemmas

    Energy Technology Data Exchange (ETDEWEB)

    Barabaner, N.I.; Kaganovich, I.Z. (Estonian Academy of Sciences, Tallinn (Estonia). Inst. of Economics)

    1993-06-01

    Combustive oil shale is the main type of fuel used in Estonian power plants. The economic state of the oil shale mining industry has deteriorated during the last decade. The development of oil shale production and use in power generation is accompanied by severe environmental pollution. The future of shale based power generation in Estonia depends on building new small capacity mines, in conjunction with the renovation and reconstruction of existing power plants and implementing measures to protect the environment. (author)

  20. CFBC to burn oil shale in the northern Negev

    Energy Technology Data Exchange (ETDEWEB)

    Schaal, M.; Podshivalov, V. (Israel Electric Corp., Haifa (Israel)); Wohlfarth, A.; Schwartz, M. (PAMA, Mishov Rotem (Israel))

    1994-09-01

    This paper describes a 525 MWe power station designed to run on a high sulphur, high moisture content oil shale. Fluidized bed combustion is expected to be used by all three of the main 150 MWe units as well as by the initial demonstration unit which is rated at some 75 MWe. (UK)

  1. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G. J.

    1982-02-01

    The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We

  2. Environmental effects of soil contamination by shale fuel oils.

    Science.gov (United States)

    Kanarbik, Liina; Blinova, Irina; Sihtmäe, Mariliis; Künnis-Beres, Kai; Kahru, Anne

    2014-10-01

    Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)--'VKG D' and 'VKG sweet'--in different soil matrices under natural climatic conditions. Dynamics of SFOs' hydrocarbons (C10-C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons' content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak.

  3. Changes in Texture and Retorting Yield in Oil Shale During Its Bioleaching by Bacillus Mucilaginosus

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-qing; REN He-jun; LIU Na; ZHANG Lan-ying; ZHOU Rui

    2013-01-01

    Bioleaching of oil shale by Bacillus mucilaginosus was carried out in a reaction column for 13 d.The pH value of the leaching liquor decreased steadily from 7.5 to 5.5 and the free silicon dioxide concentration reached approximately 200 mg/L in it.Scanning electron microscopy(SEM) observations revealed that a mass of small particles separated from the matrix of oil shale.Energy dispersive spectrometry(EDS) analysis implied that the total content of Si,O,A1 was decreased in the particle area of the matrix.These facts indicate that the silicate was removed,leading to the structural transformation of oil shale.Comparison of the shale oil yields before and after bioleaching illustrated that approximately 10% extra shale oil was obtained.This finding suggests that the demineralisation of the oil shale by silicate bacteria improves shale oil yield.

  4. Ground disposal of oil shale wastes: a review with an indexed annotated bibliography through 1976

    Energy Technology Data Exchange (ETDEWEB)

    Routson, R.C.; Bean, R.M.

    1977-12-01

    This review covers the available literature concerning ground-disposed wastes and effluents of a potential oil shale industry. Ground disposal has been proposed for essentially all of the solid and liquid wastes produced (Pfeffer, 1974). Since an oil shale industry is not actually in operation, the review is anticipatory in nature. The section, Oil Shale Technology, provides essential background for interpreting the literature on potential shale oil wastes and the topics are treated more completely in the section entitled Environmental Aspects of the Potential Disposal of Oil Shale Wastes to Ground. The first section of the annotated bibliography cites literature concerning potential oil shale wastes and the second section cites literature concerning oil shale technology. Each section contains references arranged historically by year. An index is provided.

  5. Incipient Motion of Sand and Oil Agglomerates

    Science.gov (United States)

    Nelson, T. R.; Dalyander, S.; Jenkins, R. L., III; Penko, A.; Long, J.; Frank, D. P.; Braithwaite, E. F., III; Calantoni, J.

    2016-12-01

    Weathered oil mixed with sediment in the surf zone in the northern Gulf of Mexico after the 2010 Deepwater Horizon oil spill, forming large mats of sand and oil. Wave action fragmented the mats into sand and oil agglomerates (SOAs) with diameters of about 1 to 10 cm. These SOAs were transported by waves and currents along the Gulf Coast, and have been observed on beaches for years following the spill. SOAs are composed of 70%-95% sand by mass, with an approximate density of 2107 kg/m³. To measure the incipient motion of SOAs, experiments using artificial SOAs were conducted in the Small-Oscillatory Flow Tunnel at the U.S. Naval Research Laboratory under a range of hydrodynamic forcing. Spherical and ellipsoidal SOAs ranging in size from 0.5 to 10 cm were deployed on a fixed flat bed, a fixed rippled bed, and a movable sand bed. In the case of the movable sand bed, SOAs were placed both proud and partially buried. Motion was tracked with high-definition video and with inertial measurement units embedded in some of the SOAs. Shear stress and horizontal pressure gradients, estimated from velocity measurements made with a Nortek Vectrino Profiler, were compared with observed mobility to assess formulations for incipient motion. For SOAs smaller than 1 cm in diameter, incipient motion of spherical and ellipsoidal SOAs was consistent with predicted critical stress values. The measured shear stress at incipient motion of larger, spherical SOAs was lower than predicted, indicating an increased dependence on the horizontal pressure gradient. In contrast, the measured shear stress required to move ellipsoidal SOAs was higher than predicted, even compared to values modified for larger particles in mixed-grain riverine environments. The laboratory observations will be used to improve the prediction of incipient motion, transport, and seafloor interaction of SOAs.

  6. Collaborative production management for oil sands operations

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Andrew [Matrikon (Canada)

    2011-07-01

    This paper gives an overview of the collaborative production management of oil sands operations. Some characteristics of oil sands operations include oil treatment, hydro treating, diluent addition, logistics, and environmental impact assessments. Some of the business challenges include regulatory uncertainty, a fluid workforce and a technology still in the process of being developed. Improvement is only possible when process is assessed and measured; hence, production data management is very important. Production data measurements encompass such areas as planning, documentation and transactions. Regulatory data reporting is represented using a flow chart. The concepts of business application architecture and functional reference modeling are also explained. Benchmarking plays a vital role, some aspects of which would be technology, automation and integration. Certain advantages of timely assessment are increased production, equity, and goodwill as well as reduction in costs, risk, and capital requirements. The relevance and importance of collaboration, awareness of web technology and aggregate information are also explained. From the study, it can be concluded that the key to overall improvement in the oil sands industry will be improved production management.

  7. Plan and justification for a Proof-of-Concept oil shale facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  8. Plan and justification for a Proof-of-Concept oil shale facility

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  9. Wet separation processes as method to separate limestone and oil shale

    Science.gov (United States)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  10. Oil sands mining water use and management

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Long, D.; Fitch, M. [Golder Associates Ltd., Calgary, AB (Canada)

    2010-07-01

    There are currently 4 bitumen mining operations operating along the Athabasca River in northern Alberta. This paper presented details of the water licences, historical water use, present water use, and future plans for water management in relation to oil sands mining operations. The study was based on work currently conducted for the Oil Sands Developers Group (OSDG) and Canadian Association of Petroleum Producers (CAPP), as well as on mine site water balance analyses for proposed mines in the region. Typical mine site water balances were discussed, and water use rates for the mining operations were reviewed. The new Athabasca River water management framework may require that mines provide additional water storage or delayed reclamation of mine areas in order to offset water losses during winter low-flow periods. New regulations may also reduce the requirement for make-up water. The study also noted that release criteria are still being developed for on-site water within closed-loop mine operations. The oil sands industry will need to balance various factors related to water use in the future. 5 refs., 3 figs.

  11. Possibilities of preparation asphalt concrete by oil sands of Kazakhstan

    OpenAIRE

    Erbol Tileuberdi; Yerdos Ongarbayev; F. Behrendt; Schneider, I.; Yerzhan Imanbayev; B. Tuleutayev; Yerlan Doszhanov; Zulkhair Mansurov

    2012-01-01

    In the paper physicochemical properties of oil sands of Munayli-Mola deposits and efficient ways to use them for preparing asphalt concrete were represented. For determination of organic part of oil sands the extraction methods were used in Soxhlet apparatus by variety of solvents. It has been established 16 wt.% content of natural bitumen in oil sands, which compared with results of ash content determination. According to results of experiment, the natural bitumen is heavy oil and its charac...

  12. Microwave processing of oil sands and contribution of clay minerals

    OpenAIRE

    John P. Robinson; Binner, Eleanor; Saeid, Abdul; Al-Harahsheh, Mohammad; Kingman, S. W.

    2014-01-01

    This study establishes the feasibility of microwave heating for extracting oil from Oil Sands in ex-situ processes. Previous studies in this area have shown some potential, but have not characterised the dielectric properties of the Oil Sands used, nor related them to the mineral composition, both of which are vital if successful scale up is to be achieved. In this work the fundamental interactions of microwave energy with Oil Sands are investigated and understood for the first time, and the ...

  13. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W.; Mehta, R.K.; Lamont, W.E. (Alabama Univ., University, AL (United States)); Chiang, S.H.; Venkatadri, R. (Pittsburgh Univ., PA (United States)); Misra, M. (Nevada Univ., Reno, NV (United States))

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  14. Oil Shale Development from the Perspective of NETL's Unconventional Oil Resource Repository

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.W. (REM Engineering Services, Morgantown, WV); Shadle, L.J.; Hill, D. (REM Engineering Services, Morgantown, WV)

    2007-01-01

    The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.

  15. Policy Analysis of the Canadian Oil Sands Experience

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-09-01

    For those who support U.S. oil sands development, the Canadian oil sands industry is often identified as a model the U.S. might emulate, yielding financial and energy security benefits. For opponents of domestic oil sands development, the Canadian oil sands experience illustrates the risks that opponents of development believe should deter domestic policymakers from incenting U.S. oil sands development. This report does not seek to evaluate the particular underpinnings of either side of this policy argument, but rather attempts to delve into the question of whether the Canadian experience has relevance as a foundational model for U.S. oil sands development. More specifically, this report seeks to assess whether and how the Canadian oil sands experience might be predictive or instructive in the context of fashioning a framework for a U.S. oil sands industry. In evaluating the implications of these underpinnings for a prospective U.S. oil sands industry, this report concentrates on prospective development of the oil sands deposits found in Utah.

  16. Oil sands to the rescue: oil sand microbial communities can degrade recalcitrant alkyl phenyl alkanoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, Corinne [University of Essex (Canada)], email: cwhitby@essex.ac.uk

    2011-07-01

    Almost half of all global oil reserves are found as biodegraded heavy oils found in vast tar sand deposits located in North and South America and these account for 47% of Canadian oil production. Oil sand extraction generates large amounts of toxic waste water, known as oil sand process waters (OSPW), that are stored in large tailing ponds that contain toxic compounds like naphthenic acids (NAs). The presence of NAs creates problems like toxicity, corrosion, and the formation of calcium napthenate deposits which block pipelines and other infrastructure and need to be removed. This paper presents oil sand microbial communities that can degrade these NAs. The approach is to apply new aliphatic and aromatic NAs as substrates to supplement and identify NA degrading microbes and also to identify the metabolites produced and explain NA degradation pathways and the functional genes involved. The chemistry and the processes involved are explained. From the results, it is suggested that pure cultures of P. putida KT2440 be used against NAs.

  17. Sand Failure Mechanism and Sanding Parameters in Niger Delta Oil Reservoirs

    OpenAIRE

    Sunday Isehunwa,; Andrew Farotade

    2010-01-01

    Sand production is a major issue during oil and gas production from unconsolidated reservoirs. In predicting the onset of sand production, it is important to accurately determine the failure mechanism and the contributing parameters. The aim of this study was to determine sand failure mechanism in the Niger-Delta, identify themajor contributing parameters and evaluate their effects on sanding.Completion and production data from 78 strings completed on 22 reservoirs in a Niger Delta oil Field ...

  18. Athabasca oil sands development : lessening the footprint

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R. [Alberta Environment, AB (Canada)

    2005-07-01

    This presentation provided an overview of the oil sands development footprint from the perspectives of industry, environmental associations and regulatory agencies. A map of regional oil sands developments was presented along with details of land disturbance to date. Industry strategies for lessening the impact of land disturbance include compact space-efficient mining operations; good planning; and effective, progressive reclamation. A closure and reclamation model was presented, along with key reclamation challenges such as overburden. Issues concerning tailings sands were examined. Details of Syncrude's closure vision were presented, including details of the Mildred Lake site. Details of the Fort McMurray Environmental Association were presented as well as various regional multi-stakeholder initiatives. A background of Syncrude and Suncor operations was presented as well as development projection forecasts. Impacts to the Boreal region were examined. Details of land reclamation by Syncrude were provided, as well as a chart of cumulative disturbances. It was noted that recent applications have indicated numerous reclamation uncertainties, including long-term performance of landforms and the feasibility of developing trafficable tailings landforms. It was suggested that the ecosystem dynamics of the Boreal are poorly understood. Exacerbating factors include the degraded state of soils; viability of end pit lakes; and climate change. It was suggested that operators are proposing to deal with landscape and technology uncertainty using adaptive management strategies. Government responses to the oil sand development footprint include the encouragement of more research into tailings technologies, end pit lake viability and reclamation; and the identification of regional landscape ecological thresholds by the Cumulative Environmental Management Association (CEMA). It was concluded that uncertainty needs to be addressed via a variety of policy and management options

  19. Modelling the drying of a parallelepipedic oil shale particle

    Energy Technology Data Exchange (ETDEWEB)

    Porto, P.S.S.; Lisboa, A.C.L. [State University of Campinas (UNICAMP), SP (Brazil). School of Chemical Engineering], Emails: porto@feq.unicamp.br, lisboa@feq.unicamp.br

    2005-04-15

    A numerical model is proposed to describe the process of drying a parallelepipedic oil shale particle. Assuming Fick's law, the diffusion equation for the shape of the particle was used. The objective of the study was to develop a computer program in Fortran to estimate the moisture content of an oil shale particle undergoing drying as a function of time and position. The average moisture content was also obtained. The model takes into account the migration of water by diffusion within the solid and its loss at the interface. The model results were compared to experimental data from an apparatus which measured the mass loss of a particle. The apparatus comprised an electronic balance attached by a thin wire to the particle placed inside an incubator. (author)

  20. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  1. Porous structure and specific surface of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Lopachenok, L.V.; Belyanin, Yu.I.; Proskuryakov, V.A.

    1976-01-01

    The total oil shale pore volume, measured by mercury porometry and benzene picnometry, was 0.157 cu m/g (0.225 cc/cc), with 62% of it made up of 200 to 600 angstrom pores and 3.2% of pores below 31.4 angstroms. The oil shale and kerogen specific surface, measured by low-temperature adsorption of radioactive krypton, decreased from 8.7 to 4.1 sq m/g with increase in the organic matter content from 29 to 97.16%. Crushing in a ball mill changed only the particle external surface and thus did not increase adsorptivity relative to flotation concentration reagents.

  2. Subsidence prediction in Estonia's oil shale mines

    Energy Technology Data Exchange (ETDEWEB)

    Pastarus, J.R. [Tallinn Technical University, Tallinn (Estonia); Toomik, A. [Institute of Ecology, Johvi (Estonia)

    2000-07-01

    This paper analysis the stability of the mining blocks in Estonian oil shale mines, where the room-and-pillar mining system is used. The pillars are arranged in a singular grid. The oil shale bed is embedded at the depth of 40-75 m. The processes in overburden rocks and pillars have caused the subsidence of the ground surface. The conditional thickness and sliding rectangle methods performed calculations. The results are presented by conditional thickness contours. Error does not exceed 4%. Model allows determining the parameters of spontaneous collapse of the pillars and surface subsidence. The surface subsidence parameters will be determined by conventional calculation scheme. Proposed method suits for stability analysis, failure prognosis and monitoring. 8 refs.

  3. Modelling the drying of a parallelepipedic oil shale particle

    Directory of Open Access Journals (Sweden)

    P. S. S. Porto

    2005-06-01

    Full Text Available A numerical model is proposed to describe the process of drying a parallelepipedic oil shale particle. Assuming Fick's law, the diffusion equation for the shape of the particle was used. The objective of the study was to develop a computer program in Fortran to estimate the moisture content of an oil shale particle undergoing drying as a function of time and position. The average moisture content was also obtained. The model takes into account the migration of water by diffusion within the solid and its loss at the interface. The model results were compared to experimental data from an apparatus which measured the mass loss of a particle. The apparatus comprised an electronic balance attached by a thin wire to the particle placed inside an incubator.

  4. Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J H; Huss, E B; Ott, L L; Clarkson, J E; Bishop, M O; Taylor, J R; Gregory, L J; Morris, C J

    1982-09-01

    A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data in a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.

  5. Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J H; Huss, E B; Ott, L L; Clarkson, J E; Bishop, M O; Taylor, J R; Gregory, L J; Morris, C J

    1982-09-01

    A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data in a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.

  6. Ignition technique for an in situ oil shale retort

    Science.gov (United States)

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  7. Paraho oil shale module. Site development plan, Task 4

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    A management plan and schedule which covers all requirements for gaining access to the site and for conducting a Paraho Process demonstration program have been prepared. The oil shale available should represent a regional resource of suitable size and quality for commercial development. Discussed in this report are: proof of ownership; requirements for rights-of-way for access to the site; local zoning restrictions; water rights; site availability verification; and other legal requirements. (DMC)

  8. Revegetation research on oil shale lands in the Piceance Basin

    Energy Technology Data Exchange (ETDEWEB)

    Redente, E.F.; Cook, C.W.

    1981-02-01

    The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Satisfactory stands of vegetation failed to establish on unleached retorted shale during two successive years of seeding. All seedings with soil over retorted shale were judged to be successful at the end of three growing seasons, but deep-rooted shrubs that depend upon subsoil moisture may have their growth hampered by the retorted shale substrate. Natural revegetation on areas with various degrees of disturbance shows that natural invasion and succession was slow at best. Invasion of species on disturbed topsoil plots showed that after three years introduced seed mixtures were more effective than native mixtures in occupying space and closing the community to invading species. Fertilizer appears to encourage the invasion of annual plants even after the third year following application. Long-term storage of topsoil without vegetation significantly decreases the mycorrhizal infection potential and, therefore, decreases the relative success of aboveground vegetation and subsequent succession. Ecotypic differentation related to growth and competitive ability, moisture stress tolerance, and reproductive potential have been found in five native shrub species. Germplasm sources of two grasses and two legumes, that have shown promise as revegetation species, have been collected and evaluated for the production of test seed. Fertilizer (nitrogen) when added to the soil at the time of planting may encourage competition from annual weeds to the detriment of seeded species.

  9. Proof-of-Concept Oil Shale Facility Environmental Analysis Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    The objectives of the Project are to demonstrate: (1) the Modified In- Situ (MIS) shale oil extraction process and (2) the application of CFBC technology using oil shale, coal and waste gas streams as fuels. The project will focus on evaluating and improving the efficiency and environmental performance of these technologies. The project will be modest by commercial standards. A 17-retort MIS system is planned in which two retorts will be processed simultaneously. Production of 1206-barrels per calendar day of raw shale oil and 46-megawatts of electricity is anticipated. West Virginia University coordinated an Environmental Analysis Program for the Project. Experts from around the country were retained by WVU to prepare individual sections of the report. These experts were exposed to all of OOSI`s archives and toured Tract C-b and Logan Wash. Their findings were incorporated into this report. In summary, no environmental obstacles were revealed that would preclude proceeding with the Project. One of the most important objectives of the Project was to verify the environmental acceptability of the technologies being employed. Consequently, special attention will be given to monitoring environmental factors and providing state of the art mitigation measures. Extensive environmental and socioeconomic background information has been compiled for the Tract over the last 15 years and permits were obtained for the large scale operations contemplated in the late 1970`s and early 1980`s. Those permits have been reviewed and are being modified so that all required permits can be obtained in a timely manner.

  10. Chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-01-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which precipitated dawsonite and crystallized nahcolite in the sediment as a result of CO/sub 2/ production from organic matter. (JMT)

  11. The chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-02-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lake's lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which

  12. Geology of the oil shales of Messel near Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Matthess, G.

    1966-07-25

    The oil shale, with a thickness of nearly 190 m, represents the middle part of the strata of Messel. Freshly mined, it consists of about 40% water and about 25% organic matter. The rest are clay minerals, chiefly montmorillonite. Kaolinite, messelite, vivianite, pyrites, markasite, siderite, and gypsum occur in small quantities. The organic components are kerogens which are extraordinary rich in oxygen. They are tied adsorptively to montmorillonite. The bitumina are supposed to be chiefly derived from algae, in a smaller extent from fungi and pollen. Plants as well as the large ganoid fishes and the crocodiles indicate a tropical to subtropical climate and a larger extent of the former water system. The oil shales of Messel are preserved in a tectonic graben that is 1,000 m long and up to 700 m wide. This graben is divided into 3 depressions. Both depressions are close together in the south and diverge northward. The ground water lifted in the open mining shows high degrees of total hardness and unusual high sulfate and phosphate contents. These matters can be derived from the weathering events in the exposed oil shale. (133 refs.)

  13. Dioxin emission from two oil shale fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, O.; Jensen, A.A. [FORCE Technology, Soborg (Denmark); Herrmann, T. [Estonian Environmental Research Centre (EERC), Tallinn (Estonia); Roots, O. [ERGO Forschungsgesellschaft GmbH, Hamburg (Germany); Tordik, A. [AS Narva Elektrijaamad, Narva (Estonia)

    2004-09-15

    In March 2003, dioxin emissions were measured from four oil shale fired boilers at two power plants located near the city of Narva in Estonia. The two power plants produce more than 90% of the electricity consumption in Estonia by combusting more than 10 million tons of oil shale per year, which is around 85% of the total consumption of oil shale in the country. These power plants are the world's largest thermal power stations burning low-grade oil shale. These measurements of dioxin air emission from oil shale fuelled plants are the first performed in Estonia. The aim of the measurements was to get background data for the estimation of the annual dioxin emission from oil shale power plants in Estonia, in order to improve or qualify the estimation based on emissions factors for large coal fired power stations given in the recent DANCEE Project: Survey of anthropogenic sources of dioxins in the Baltic Region.

  14. Energy supply strategy: getting technology commercialized, shale oil and enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Steger, J.E.; Sullo, P.; Michaelis, M.; Nason, H.K.

    1979-12-01

    Purpose is to identify factors inhibiting the near-term investment of industrial funds for producing oil from shale and through enhanced oil recovery, and to estimate the investment and production which would result if these deterrents were removed and suitable incentives provided. The barriers are discussed under the following categories: economic, environmental, institutional/regulatory, and technical. (DLC)

  15. Do peat amendments to oil sands wet sediments affect Carex aquatilis biomass for reclamation success?

    Science.gov (United States)

    Roy, Marie-Claude; Mollard, Federico P O; Foote, A Lee

    2014-06-15

    The oil sands industries of Alberta (Canada) have reclamation objectives to return the mined landscape to equivalent pre-disturbance land capability. Industrial operators are charged with reclaiming a vast landscape of newly exposed sediments on saline-sodic marine-shales sediments. Incorporated in these sediments are by-products resulting from bitumen extraction (consolidated tailings (CT), tailings-sand (TS), and oil sands processed water (OSPW)). A sedge community dominated by Carex aquatilis was identified as a desirable and representative late-succession community for wet-meadow zones of oil sands-created marshes. However, the physical and chemical conditions, including high salinity and low nutrient content of CT and TS sediments suppress plant growth and performance. We experimentally tested the response of C. aquatilis to amendments with peat-mineral-mix (PM) on oil sand sediments (CT and TS). In a two factorial design experiment, we also tested the effects of OSPW on C. aquatilis. We assessed survival, below- and aboveground biomass, and physiology (chlorophyll a fluorescence). We demonstrated that PM amendments to oil sands sediments significantly increased C. aquatilis survival as well as below and aboveground biomass. The use of OSPW significantly reduced C. aquatilis belowground biomass and affected its physiological performance. Due to its tolerance and performance, we verified that C. aquatilis was a good candidate for use in reclaiming the wet-meadow zones of oil sands-created marshes. Ultimately, amending CT and TS with PM expedited the reclamation of the wetland to a C. aquatilis-community which was similar in gross structure to undisturbed wetlands of the region.

  16. MAPPING POTENTIAL AREAS OF GROUND SUBSIDENCE IN ESTONIAN UNDERGROUND OIL SHALE MINING DISTRICT

    OpenAIRE

    Valgma, Ingo

    1999-01-01

    Northeast part of Estonia has been subject to oil shale mining since 1916. Oil shale as main source for power industry in Estonia is mined in amount of 12 million tonnes per year. The underground production rate is about 6 million tonnes of the mineral annually. Currently three open casts and six underground mines are operating, hi past 6 underground oil shale mines have been closed. Totally 979 million tonnes of rock, including oil shale has been mined underground. Today, about 305 km2 area ...

  17. Oil shale in the Piceance Basin: an analysis of land use issues

    Energy Technology Data Exchange (ETDEWEB)

    Rubenson, D.; Pei, R.

    1983-07-01

    The purpose of this study was to contribute to a framework for establishing policies to promote efficient use of the nation's oil shale resources. A methodology was developed to explain the effects of federal leasing policies on resource recovery, extraction costs, and development times associated with oil shale surface mines. This report investigates the effects of lease size, industrial development patterns, waste disposal policies, and lease boundaries on the potential of Piceance Basin oil shale resource. This approach should aid in understanding the relationship between federal leasing policies and requirements for developing Piceance Basin oil shale. 16 refs., 46 figs. (DMC)

  18. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Progress report, December 1991--February 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lau, F.S.; Mensinger, M.C.; Roberts, M.J.; Rue, D.M.

    1992-03-01

    The objective is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Easter oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. Accomplishments for this period are presented for the following tasks: Testing of Process Improvement Concepts; Beneficiation Research; Operation of PFH on Beneficiated Shale; Environmental Data and Mitigation Analyses; Sample Procurement, Preparation, and Characterization; and Project Management and Reporting. 24 figs., 19 tabs. (AT)

  19. Geology of the Athabasca oil sands

    Science.gov (United States)

    Mossop, G. D.

    1980-01-01

    In-place bitumen resources in the Alberta oil sands are estimated at 1350 billion barrels. Open-pit mining and hot water extraction methods, which involve the handling of huge tonnages of earth materials, are being employed in the two commercial plants now operating. In situ recovery methods will be required to tap the 90 percent of reserves that are too deeply buried to be surface mined. Development of in situ technologies will be painstaking and expensive, and success will hinge on their compatibility with extremely complex geological conditions in the subsurface.

  20. New international developments in oil sands projects

    Energy Technology Data Exchange (ETDEWEB)

    Vercoe, J. [Fasken Martineau DuMoulin LLP, London (United Kingdom)

    2008-09-15

    Governments and oil companies from a variety of different countries are now working to create alternative oil and gas operations and the policies required to enable their financial success. The Africa Energy Commission was developed to coordinate policy and act as a framework for the African energy sector. Several large oil and gas operators have become involved in the creation of new contracts to develop training and human resources policies for the petroleum industry in Congo. Issues related to national oil companies and value creation in African countries are currently being studied by the World Bank. A biofuel alliance was recently signed between Congo and Brazil, and a Congo Forest Fund has also been created to help the inhabitants of the Congolese rainforest protect their environment. Congo is also offering opportunities for international companies to implement greenhouse gas (GHG) emission reduction programs to trade emission credits when requirements are satisfied. It was concluded that several African countries are suitable candidates for oil sands development. 1 fig.

  1. Airborne Trace Gas and Aerosol Measurements in Several Shale Gas Basins during the SONGNEX (Shale Oil and Natural Gas Nexus) Campaign 2015

    Science.gov (United States)

    Warneke, C.; Trainer, M.; De Gouw, J. A.

    2015-12-01

    Oil and natural gas from tight sand and shale formations has increased strongly over the last decade. This increased production has been associated with emissions of methane, non-methane hydrocarbons and other trace gases to the atmosphere, which are concerns for air quality, climate and air toxics. The NOAA Shale Oil and Natural Gas Nexus (SONGNEX) aircraft campaign took place in 2015, when the NOAA WP-3 aircraft conducted 20 research flights between March 19 and April 27, 2015 in the following shale gas regions: Denver-Julesberg, Uintah, Upper Green River, San Juan, Bakken, Barnett, Eagle Ford, Haynesville, Woodford, and Permian. The NOAA P3 was equipped with an extensive set of gas phase measurements, including instruments for methane, ethane, CO, CO2, a new H3O+CIMS, canister and cartridge samples for VOCs, HCHO, glyoxal, HNO3, NH3, NOx, NOy, PANs, ozone, and SO2. Aerosol number and size distributions were also measured. This presentation will focus on an overview of all the measurements onboard the NOAA WP-3 aircraft and discuss the differences between the shale gas regions. Due to a drop in oil prices, drilling for oil decreased in the months prior to the mission, but nevertheless the production of oil and natural gas were near the all-time high. Many of the shale gas basins investigated during SONGNEX have quite different characteristics. For example, the Permian Basin is a well-established field, whereas the Eagle Ford and the Bakken saw an almost exponential increase in production over the last few years. The basins differ by the relative amounts of natural gas versus oil that is being produced. Previous work had shown a large variability in methane emissions relative to the production (leak rate) between different basins. By including more and qualitatively different basins during SONGNEX, the study has provided an extensive data set to address how emissions depend on raw gas composition, extraction techniques and regulation. The influence of these

  2. Depositional Environment of the Sangkarewang Oil Shale, Ombilin Basin, Indonesia

    Directory of Open Access Journals (Sweden)

    Komang Anggayana

    2014-12-01

    Full Text Available Five samples from 56 m long drill core of lacustrine Sangkarewang oil shale have been studied by means of petrography and organic geochemistry to investigate the organic matter composition and depositional environments of the shale. The organic matter consists of abundant lamalginite (30%, v/v and very limited amount of vitrinite, suggesting aquatic depositional environments with minor terrestrial influence. Organic geochemical analysis exhibits the dominance of pristane, phytane, and generally n-alkanes compounds. These compounds might originate mostly from aquatic photosynthetic organisms. The oil shale was likely deposited in anoxic lake environments, suggested by the presence of framboidal pyrite (6%, v/v and preserved organic matter with total organic carbon (TOC about 4.9%. The pristane/phytane ratio is relatively high about 3.9 and thought as source sensitive rather than redox sensitive. Hopanoid and aryl isoprenoid compounds are present in minor amounts. The latter compounds are interpreted to be derived from green sulfur bacteria dwelling in anoxic and the presence of H2S in bottom water.

  3. Non-aqueous heavy oil extraction from oil sand

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George [National Nuclear Security Administration (United States)

    2011-07-01

    The Kansas City plant operated by Honeywell has a long history of working with DOE NNSA on engineering and manufacturing services supporting national security requirements. The plant has developed a non-aqueous method for heavy oil extraction from oil sands. This method is environmentally friendly as it does not use any external body of water, which would normally be contaminated in the conventional method. It is a 2 phase process consisting of terpene, limonene or alpha pinene, and carbon dioxide. The CO2 and terpene phases are both closed loop systems which minimizes material loss. The limonene and alpha pinene are both naturally derived solvents that come from citrus sources or pine trees respectively. Carbon dioxide is an excellent co-solvent with terpene. There is also a possibility for heat loss recovery during the distillation phase. This process produces clean dry sand. Laboratory tests have concluded that this using non-aqueous liquids process works effectively.

  4. Sand Failure Mechanism and Sanding Parameters in Niger Delta Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Sunday Isehunwa,

    2010-05-01

    Full Text Available Sand production is a major issue during oil and gas production from unconsolidated reservoirs. In predicting the onset of sand production, it is important to accurately determine the failure mechanism and the contributing parameters. The aim of this study was to determine sand failure mechanism in the Niger-Delta, identify themajor contributing parameters and evaluate their effects on sanding.Completion and production data from 78 strings completed on 22 reservoirs in a Niger Delta oil Field were evaluated. Sand failure mechanisms and contributing parameters were identified and compared with published profiles. The results showed that cohesive stress is the predominant sand failure mechanism. Water cut, bean size and gas oil ratio (GOR impact sand production in the Niger Delta.

  5. Dioxin and PAH emissions from a shale oil processing plant in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, O.; Jensen, A.A. [FORCE Technology, Soborg (Denmark); Roots, O. [Estonian Environmental Research Centre (EERC), Tallinn (Estonia); Herrmann, T. [ERGO Forschungsgesellschaft GmbH, Hamburg (Germany); Tordik, A. [AS Narva Elektrijaamad, Narva (Estonia)

    2004-09-15

    In March 2003, dioxin emissions were measured from a shale oil producing plant located near the city of Narva in Estonia. The measurement was a part of a project on measuring the dioxin emission from four oil shale fired boilers at two power plants located near the city of Narva in Estonia. These power plants produce more than 90% of the electricity consumption in Estonia by combusting more than 10 million tons of oil shale per year, which is around 85 % of the total consumption of oil shale in the country. The oil plant is the second largest consumer of oil shale, with an annual consumption of around 800,000 ton. Two other smaller plants producing oil from oil shale is known to exist in Estonia, and one in Australia. These measurements of dioxin air emission from oil shale pyrolysis are the first performed in Estonia. The aim of the measurements was to get background data for the estimation of the annual dioxin emission from the use of oil shale in pyrolysis processes in Estonia, in order to improve or qualify the estimation based on emissions factors for large coal fired power stations given in the recent DANCEE Project: Survey of anthropogenic sources of dioxins in the Baltic Region. The Danish environmental assistance to Eastern Europe (DANCEE) has sponsored the project, and dk-TEKNIK ENERGY and ENVIRONMENT (now FORCE Technology) was responsible for the measurements, which where conducted in cooperation with EERC in Tallinn.

  6. Geolipids in the oil shale from Aleksinac (Yugoslavia)

    Energy Technology Data Exchange (ETDEWEB)

    Vitorovic, D.; Saban, M.

    1983-02-01

    Most of the geolipids so far identified in the oil shale from Aleksinac represent well known /eta/ and ubiquitous constituents of sediments: /eta/-alkanes, aliphatic and cyclic isoprenoid alkanes including steranes, triterpanes and tetraterpanes and aliphatic and aromatic mono- and dicarboxylic acids. Moreover, several classes of compounds were identified which were also known as constituents of some ancient sediments but were not found to be ubiquitous, such as aliphatic isoprenoid ketones C/sub 13/ and C/sub 18/, aliphatic methyl ketones C/sub 13/-C/sub 24/ and the triterpenoid ketone adiantone. However, in the Aleksinac shale bitumen geolipid constituents were identified which had not been found earlier in ancient sediments: a homologous C/sub 7/-C/sub 15/ series of aliphatic /tau/homologous series of 4 members of sigma-lactones, two cyclic ..gamma..-lactones (dihydro- and tetrahydroactinidiolide), as well as a homologous series of methyl esters of fatty acids (C/sub 4/-C/sub 25/). The composition and distribution of identified geolipids suggest: a) that the Aleksinac oil shale is a non-mature sediment (relatively high content of oxygen compounds with unchanged biolipid molecules, high /eta/-alkane CPI values, relatively high amount of unstable stereoisomers in the fraction of steranes and triterpanes) and b) that the organic matter of Aleksinac shale is of mixed origin; the following precursors of the organic substance were incorporated in this lacustrine sediment: residues of continental plants, ferns and algae, as well as residues of micro-organisms, most probably of those which took part in early diagenetic changes of sedimented organic matter.

  7. A New Type of Exposed Oil Sand Mine

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With several means of analysis, the unique organic compound component and distribution of exposed oil sand existing in Qinghai, north-west China, is revealed. Qinghhai oil sand has great content of light components with high saturated hydrocarbon content up to approximately 50%, while its heavy components of colloid and asphaltene is rather low (<38%); straight-chain alkane has a regular distribution concentrating mainly around C28; it has a very high atom ratio of H/C. The physical parameters of the oil sand mine are within the range of common heavy oils. Such chemical composition and distribution obviously differs from that of other known exposed oil sand mines. This particular property of the oil sand is formed due to the unique geographical and geological environment. Therefore, it is intended to exploit the mine with a new combined method, i.e., first drill horizontal wells and then opencut.

  8. Sand Production during Improved Oil Recovery in Unconsolidated Cores

    OpenAIRE

    Mohammad A. J. Ali.; S. M. Kholosy; A. A. Al-Haddad; K. K. AL-Hamad

    2012-01-01

    Steam injection is a mechanisms used for improved oil recovery (IOR) in heavy oil reservoirs. Heating the reservoir reduces the oil viscosity and causes the velocity of the moving oil to increase; and thus, the heated zone around the injection well will have high velocity. The increase of velocity in an unconsolidated formation is usually accompanied with sand movement in the reservoir creating a potential problem. Core samples from different wells in Kuwait were used to examine sand producti...

  9. Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution.

    Science.gov (United States)

    Jiang, Cheng; Jia, Liyue; Zhang, Bo; He, Yiliang; Kirumba, George

    2014-02-01

    The choice of substrates with high phosphorus adsorption capacity is vital for sustainable phosphorus removal from waste water in constructed wetlands. In this study, four substrates were used: quartz sand, anthracite, shale and biological ceramsite. These substrate samples were characterized by Xray diffractometry and scanning electron microscopy studies for their mineral components (chemical components) and surface characteristics. The dynamic experimental results revealed the following ranking order for total phosphorus (TP) removal efficiency: anthracite > biological ceramsite > shale > quartz sand. The adsorptive removal capacities for TP using anthracite, biological ceramsite, shale and quartz sand were 85.87, 81.44, 59.65, and 55.98 mg/kg, respectively. Phosphorus desorption was also studied to analyze the substrates' adsorption efficiency in wastewater treatment as well as the substrates' ability to be reused for treatment. It was noted that the removal performance for the different forms of phosphorus was dependent on the nature of the substrate and the adsorption mechanism. A comparative analysis showed that the removal of particulate phosphorus was much easier using shale. Whereas anthracite had the highest soluble reactive phosphorus (SRP) adsorptive capacity, biological ceramsite had the highest dissolved organic phosphorus (DOP) removal capacity. Phosphorus removal by shale and biological ceramsite was mainly through chemical adsorption, precipitation or biological adsorption. On the other hand, phosphorus removal through physical adsorption (electrostatic attraction or ion exchange) was dominant in anthracite and quartz sand.

  10. Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.

    Science.gov (United States)

    Blinova, Irina; Kanarbik, Liina; Sihtmäe, Mariliis; Kahru, Anne

    2016-02-01

    Estonia is the worldwide leading producer of the fuel oils from the oil shale. We evaluated the ecotoxicity of water accommodated fraction (WAF) of two Estonian shale fuel oils ("VKG D" and "VKG sweet") to aquatic species belonging to different trophic levels (marine bacteria, freshwater crustaceans and aquatic plants). Artificial fresh water and natural lake water were used to prepare WAFs. "VKG sweet" (lower density) proved more toxic to aquatic species than "VKG D" (higher density). Our data indicate that though shale oils were very toxic to crustaceans, the short-term exposure of Daphnia magna to sub-lethal concentrations of shale fuel oils WAFs may increase the reproductive potential of survived organisms. The weak correlation between measured chemical parameters (C10-C40 hydrocarbons and sum of 16 PAHs) and WAF's toxicity to studied species indicates that such integrated chemical parameters are not very informative for prediction of shale fuel oils ecotoxicity.

  11. Proof-of-Concept Oil Shale Facility Environmental Analysis Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    The objectives of the Project are to demonstrate: (1) the Modified In- Situ (MIS) shale oil extraction process and (2) the application of CFBC technology using oil shale, coal and waste gas streams as fuels. The project will focus on evaluating and improving the efficiency and environmental performance of these technologies. The project will be modest by commercial standards. A 17-retort MIS system is planned in which two retorts will be processed simultaneously. Production of 1206-barrels per calendar day of raw shale oil and 46-megawatts of electricity is anticipated. West Virginia University coordinated an Environmental Analysis Program for the Project. Experts from around the country were retained by WVU to prepare individual sections of the report. These experts were exposed to all of OOSI's archives and toured Tract C-b and Logan Wash. Their findings were incorporated into this report. In summary, no environmental obstacles were revealed that would preclude proceeding with the Project. One of the most important objectives of the Project was to verify the environmental acceptability of the technologies being employed. Consequently, special attention will be given to monitoring environmental factors and providing state of the art mitigation measures. Extensive environmental and socioeconomic background information has been compiled for the Tract over the last 15 years and permits were obtained for the large scale operations contemplated in the late 1970's and early 1980's. Those permits have been reviewed and are being modified so that all required permits can be obtained in a timely manner.

  12. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  13. Flow of products of thermal decomposition of oil shale through porous skeleton

    Science.gov (United States)

    Knyazeva, A. G.; Maslov, A. L.

    2016-11-01

    Oil shale is sedimentary rock formed by the accumulation of pelagic sediments, minerals and their further transformation. Experimental investigation of shale decomposition is very complex and expensive. The model of underground oil shale retorting is formulated in this paper. Model takes into account the reactions in solid phase and in fluid, mass and heat exchange, gaseous product flow in pores. Example of the numerical solution of the developed system of equations for the particular problem is shown.

  14. Inflation and government indecisiveness: key deterrents to significant shale oil production by 1985

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-01

    This work examines the progress of the shale oil industry in its efforts to achieve production of synthetic crude oil from oil shale on a profitable, commercial basis. A projection is made regarding the ability of the shale oil industry to produce 1,000,000 bbl of synthetic crude oil by 1985. That year was chosen because of the long lead time required to obtained leases; to acquire investment capital; to gain approval of environmental impact documents; and to acquire the equipment and construct plants of sufficient magnitude to be economically feasible. 31 references.

  15. The economics of oil definitions: the case of Canada's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D.B. [University of Alaska Fairbanks (United States). School of Management, Department of Economics

    2005-03-01

    Canada has chosen to define its 174 billion barrels of oil sand bitumen reserves as crude oil deposits, putting the country on a par with Saudi Arabia in potential oil production. However, the physical and economic definition of calling oil sand bitumen crude oil needs to be questioned. On the face of it, these definitions make Canada look as powerful as OPEC's leading producer, or Russia, on the world oil market. However, a fuller analysis shows that Canadian oil sand is quite different from crude oil and that Canada will have little if any effect on the global oil market, or on OPEC. (author)

  16. Alberta oil sands crudes : upgrading and marketing

    Energy Technology Data Exchange (ETDEWEB)

    Ashar, M. [Suncor Energy, Fort McMurray, AB (Canada)

    2008-05-15

    Open pit mining and in situ techniques, such as steam stimulation, are used to recover Alberta's bitumen and heavy oil resources, which have higher viscosities than conventional hydrocarbons. The bitumen is typically upgraded to synthetic crude oil (SCO). In the simplest processing scheme, the bitumen is blended with diluent for ease in pipeline transport and then processed at refineries with upgrading facilities. The bitumen is also upgraded to light SCO at world-scale upgraders in Alberta. The SCO is then processed at refineries in downstream markets. The 2 categories of upgrading, notably primary and secondary upgrading, were described in this article along with technology options for both categories. Slurry hydrocracking is regarded as the most interesting emerging residual fuel upgrading technology. It combines special catalyst mixes with the latest slurry reactor designs as well as innovative catalyst capture and recycle schemes to produce very high conversions and potentially superior upgrading economics. The increase in volume and rate of SCO from Alberta provides refiners in the oil sands marketing sector an unprecedented choice of opportunities to improve profitability. Key trends indicate that production will increase substantially from 2008 to 2030. 5 figs.

  17. Effect of mineral matter and phenol in supercritical extraction of oil shale with toluene

    Science.gov (United States)

    Abourriche, A.; Ouman, M.; Ichcho, S.; Hannache, H.; Pailler, R.; Naslain, R.; Birot, M.; Pillot, J.-P.

    2005-03-01

    In the present work, Tarfaya oil shale was subjected to supercritical toluene extraction. The experimental results obtained show clearly that the mineral matter and phenol have a significant effect on the yield and the composition of the obtained oil.

  18. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  19. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.

    Science.gov (United States)

    Alstadt, Kristin N; Katti, Dinesh R; Katti, Kalpana S

    2012-04-01

    Step-scan photoacoustic infrared spectroscopy experiments were performed on Green River oil shale samples obtained from the Piceance Basin located in Colorado, USA. We have investigated the molecular nature of light and dark colored areas of the oil shale core using FTIR photoacoustic step-scan spectroscopy. This technique provided us with the means to analyze the oil shale in its original in situ form with the kerogen-mineral interactions intact. All vibrational bands characteristic of kerogen were found in the dark and light colored oil shale samples confirming that kerogen is present throughout the depth of the core. Depth profiling experiments indicated that there are changes between layers in the oil shale molecular structure at a length scale of micron. Comparisons of spectra from the light and dark colored oil shale core samples suggest that the light colored regions have high kerogen content, with spectra similar to that from isolated kerogen, whereas, the dark colored areas contain more mineral components which include clay minerals, dolomite, calcite, and pyrite. The mineral components of the oil shale are important in understanding how the kerogen is "trapped" in the oil shale. Comparing in situ kerogen spectra with spectra from isolated kerogen indicate significant band shifts suggesting important nonbonded molecular interactions between the kerogen and minerals.

  20. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  1. Atomistic modeling of oil shale kerogens and asphaltenes along with their interactions with the inorganic mineral matrix

    Energy Technology Data Exchange (ETDEWEB)

    Facelli, Julio [Univ. of Utah, Salt Lake City, UT (United States); Pugmire, Ronald [Univ. of Utah, Salt Lake City, UT (United States); Pimienta, Ian [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-31

    The goal of this project is to obtain and validate three dimensional atomistic models for the organic matter in both oil shales and oil sands. In the case of oil shales the modeling was completed for kerogen, the insoluble portion of the organic matter; for oil sands it was for asphaltenes, a class of molecules found in crude oil. The three dimensional models discussed in this report were developed starting from existing literature two dimensional models. The models developed included one kerogen, based on experimental data on a kerogen isolated from a Green River oil shale, and a set of six representative asphaltenes. Subsequently, the interactions between these organic models and an inorganic matrix was explored in order to gain insight into the chemical nature of this interaction, which could provide vital information in developing efficient methods to remove the organic material from inorganic mineral substrate. The inorganic substrate used to model the interaction was illite, an aluminum silicate oxide clay. In order to obtain the feedback necessary to validate the models, it is necessary to be able to calculate different observable quantities and to show that these observables both reproduce the results of experimental measurements on actual samples as well as that the observables are sensitive to structural differences between models. The observables that were calculated using the models include 13C NMR spectra, the IR vibrational spectra, and the atomic pair wise distribution function; these were chosen as they are among the methods for which both experimental and calculated values can be readily obtained. Where available, comparison was made to experiment results. Finally, molecular dynamic simulations of pyrolysis were completed on the models to gain an understanding into the nature of the decomposition of these materials when heated.

  2. Effects of oil sands sediments on fish

    Energy Technology Data Exchange (ETDEWEB)

    Parrott, J.; Colavecchia, M.; Hewitt, L.; Sherry, J.; Headley, J. [Environment Canada, Ottawa, ON (Canada); Turcotte, D.; Liber, K. [Saskatchewan Univ., Regina, SK (Canada)

    2010-07-01

    This paper described a collaborative project organized by Natural Resources Canada (NRCan) Panel of Energy Research and Development (PERD) with researchers from Environment Canada and the University of Saskatchewan. The 4-year study was conducted to assess the toxicity of oil sands sediments and river waters, and reclamation ponds and sediments on laboratory-raised fish. Three sediments from rivers were evaluated for their potential to cause adverse impacts on fathead minnow eggs and larvae for a period of 18 days. The study monitored hatching, larval survival, development, and growth. Naphthenic acids (NA), polycyclic aromatic hydrocarbons (PAHs) and metals were measured in the sediments to determine if the compounds can be correlated with observed toxicity. The study will also assess walleye eggs exposed to sediments, and in situ fish exposures. Toxicity identification and evaluation (TIE) studies will be conducted to isolate the fractions that may affect fish development and growth.

  3. The state of oil sands wetland reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    The state of oil sand and wetlands reclamation was the subject of this presentation. Wildlife habitat and response, plant community and production, and microbial biology were examples of research areas surrounding this body of knowledge. Hydrological research and landscape ecology were discussed along with peatlands and marshes such as the Corvette and the Kia. A few examples of what has been learned in the area of wetlands reclamation was presented. Other topics were also discussed, such as timeframes, pragmatic policy approaches, reclamation costs, research needs and some ideas on maturing the field. It was concluded that environmental conditions change with time and area because of time, chemistry, physics, stoichiometry, as well as biotic mediation and facilitation. figs.

  4. Sulfur biogeochemistry of oil sands composite tailings

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Lesley; Stephenson, Kate [Earth Sciences, McMaster University (Canada)], email: warrenl@mcmaster.ca; Penner, Tara [Syncrude Environmental Research (Canada)

    2011-07-01

    This paper discusses the sulfur biogeochemistry of oil sands composite tailings (CT). The Government of Alberta is accelerating reclamation activities on composite tailings. As a CT pilot reclamation operation, Syncrude is currently constructing the first freshwater fen. Minor unpredicted incidents with H2S gas released from the dewatering process associated with these reclamations have been reported. The objective of this study is to ascertain the connection between microbial activity and H2S generation within CT and to assess the sulfur biogeochemistry of untreated and treated (fen) CT over seasonal and annual timescales. The microbial geochemical interactions taking place are shown using a flow chart. CT is composed of gypsum, sand, clay and organics like naphthenic acids and bitumen. Sulfur and Fe cycling in mining systems and their microbial activities are presented. The chemistry and the processes involved within CT are also given along with the results. It can be said that the diverse Fe and S metabolizing microorganisms confirm the ecology involved in H2S dynamics.

  5. Microstructural characterization of a Canadian oil sand

    CERN Document Server

    Dinh, Hong Doan; Nauroy, Jean-François; Tang, Anh-Minh; Souhail, Youssef; 10.1139/T2012-072

    2013-01-01

    The microstructure of oil sand samples extracted at a depth of 75 m from the estuarine Middle McMurray formation (Alberta, Canada) has been investigated by using high resolution 3D X-Ray microtomography ($\\mu$CT) and Cryo Scanning Electron Microscopy (CryoSEM). $\\mu$CT images evidenced some dense areas composed of highly angular grains surrounded by fluids that are separated by larger pores full of gas. 3D Image analysis provided in dense areas porosity values compatible with in-situ log data and macroscopic laboratory determinations, showing that they are representative of intact states. $\\mu$CT hence provided some information on the morphology of the cracks and disturbance created by gas expansion. The CryoSEM technique, in which the sample is freeze fractured within the SEM chamber prior to observation, provided pictures in which the (frozen) bitumen clearly appears between the sand grains. No evidence of the existence of a thin connate water layer between grains and the bitumen, frequently mentioned in th...

  6. New uses of gas in Canada : oil sands gas demand

    Energy Technology Data Exchange (ETDEWEB)

    Camarta, N. [Shell Canada Ltd., Calgary, AB (Canada)

    2003-07-01

    The relationship between the price of natural gas and the development of oil sands in northern Alberta was discussed with reference to Shell Canada's Athabasca Oil Sands Project (AOSP), its resource base and plans for future expansion. Several graphs were presented, depicting world scale resources, Canadian oil production, and the North American oil market. Graphs depicting future projections for oil sands natural gas demand and cogeneration capacity showed that the trend for both demand and capacity is steadily increasing. The AOSP is a large high quality reserve with low overburden. The project utilizes advanced bitumen clean-up technology and the site is equipped with a highly integrated refinery that exploits infrastructure synergies. Some of the risk factors associated with oil sand development were described as being capital costs, operating costs, commodity prices, labour supply, and the Kyoto Protocol. 24 figs.

  7. Application of fluid-rock reaction studies to in situ recovery from oil sand deposits, Alberta Canada. II. Mineral transformations during an experimental-statistical study of water-bitumen-shale reactions

    Energy Technology Data Exchange (ETDEWEB)

    Boon, J.A.; Hitchon, B.

    1983-01-01

    During the experiment, calculations were made of the mud-mineral equilibrium and studies were made of the x-ray diffractogram of the solid phases. Data on deviations from equilibriums and intensity of the normalized x-ray diffraction peaks were processed by the method of dispersion analysis. It was established that in addition to dissolving the quartz, formation of montmorillonite occurs, probably by forming transitional illite-montmorillonite interstratified layered structures. The reactions promote high pH values of the aqueous medium. The solubility of siderite to a considerable degree is determined by the reaction time and mineralization of the aqueous phase, and also the ratios of pH/mineralization, time/mineralization and pH/temperature/time. Despite the limitations associated with laboratory nature of the experiment, one can draw the conclusion that during development of the bituminous sands by the in situ method, processes of dissolving minerals are widespread.

  8. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G. J.

    1982-02-01

    The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We

  9. Developments in CO2 mineral carbonation of oil shale ash.

    Science.gov (United States)

    Uibu, M; Velts, O; Kuusik, R

    2010-02-15

    Solid waste and atmospheric emissions originating from power production are serious problems worldwide. In the Republic of Estonia, the energy sector is predominantly based on combustion of a low-grade carbonaceous fossil fuel: Estonian oil shale. Depending on the combustion technology, oil shale ash contains 10-25% free lime. To transport the ash to wet open-air deposits, a hydraulic system is used in which 10(7)-10(8) cubic meters of Ca(2+)-ion-saturated alkaline water (pH level 12-13) is recycled between the plant and sedimentation ponds. The goals of the current work were to design an ash-water suspension carbonation process in a continuous mode laboratory-scale plant and to search for potential means of intensifying the water neutralization process. The carbonation process was optimized by cascading reactor columns in which the pH progressed from alkaline to almost neutral. The amount of CO(2) captured from flue gases can reach 1-1.2 million ton at the 2007 production level of the SC Narva Power Plants. Laboratory-scale neutralization experiments were carried out to compare two reactor designs. Sedimentation of PCC particles of rhombohedral crystalline structure was demonstrated and their main characteristics were determined. A new method providing 50x greater specific intensity is also discussed.

  10. Environmental hazard of oil shale combustion fly ash.

    Science.gov (United States)

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Sustainable water management in Alberta's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Byers, Bill; Usher, Robyn; Roach, Andrea [CH2M HILL, Englewood, CO (United States); Lambert, Gord; Kotecha, Prit [Suncor Energy Inc., Calgary (Canada)

    2012-07-01

    The Canadian Association of Petroleum Producers forecast published in 2011 predicts that oil production from oil sands will increase by 50% in the next 3 years and double by 2020. This rate of growth will result in significant pressure on water resources; water use per barrel of oil sands production is comparable to other energy resources - about 2.5 barrels of fresh water per barrel of oil produced are used by mining operations and 0.5 barrels by in-situ operations. Suncor Energy Inc. (Suncor) was the first company to develop the oil sands in northern Alberta and holds one of the largest oil sands positions in Canada. In 2010, Suncor announced plans to increase production to more than 1 million barrels of oil equivalent per day by 2020, which it plans to achieve through oil sands production growth of approximately 10% per year. Because water supply and potential impacts to water quality are critical to its future growth, in 2010-2011 Suncor conducted a risk assessment to identify water-related business risks related to its northern Alberta operations. The assessment identified more than 20 high level business risks in strategic water risk areas including water supply, water reuse, storm water management, groundwater, waste management and river water return. The risk assessment results prompted development of a strategic roadmap to guide water stewardship across Suncor's regional operations. The roadmap describes goals, objectives, and specific activities for each of six key water risk areas, and informs prioritization and selection of prospective water management activities. Suncor is not only exploring water within its own boundaries, but is also collaborating with other oil sands producers to explore ways of integrating its water systems through industry consortia; Suncor is a member of the Oil Sands Leadership Initiative and of the recently formed Canadian Oil Sands Innovation Alliance, among others. (author)

  12. Experience and prospects of oil shale utilization for power production in Russia

    Science.gov (United States)

    Potapov, O. P.

    2016-09-01

    Due to termination of work at the Leningrad Shale Deposit, the Russian shale industry has been liquidated, including not only shale mining and processing but also research and engineering (including design) activities, because this deposit was the only commercially operated complex in Russia. UTT-3000 plants with solid heat carrier, created mainly by the Russian specialists under scientific guidance of members of Krzhizhanovsky Power Engineering Institute, passed under the control of Estonian engineers, who, alongside with their operation in Narva, construct similar plants in Kohtla-Jarve, having renamed the Galoter Process into the Enifit or Petroter. The main idea of this article is to substantiate the expediency of revival of the oil shale industry in Russia. Data on the UTT-3000 plants' advantages, shale oils, and gas properties is provided. Information on investments in an UTT-3000 plant and estimated cost of Leningrad oil shale mining at the Mezhdurechensk Strip Mine is given. For more detailed technical and economic assessment of construction of a complex for oil shale extraction and processing, it is necessary to develop a feasibility study, which should be the first stage of this work. Creation of such a complex will make it possible to produce liquid and gaseous power fuel from oil shale of Leningrad Deposit and provide the opportunity to direct for export the released volumes of oil and gas for the purposes of Russian budget currency replenishment.

  13. Characterization of raw and burnt oil shale from Dotternhausen: Petrographical and mineralogical evolution with temperature

    Energy Technology Data Exchange (ETDEWEB)

    Thiéry, Vincent, E-mail: vincent.thiery@mines-douai.fr [Mines Douai, LGCgE-GCE, F-59508 Douai (France); Université de Lille (France); Bourdot, Alexandra, E-mail: alexandra.bourdot@gmail.com [Mines Douai, LGCgE-GCE, F-59508 Douai (France); Bulteel, David, E-mail: david.bulteel@mines-douai.fr [Université de Lille (France)

    2015-08-15

    The Toarcian Posidonia shale from Dotternhausen, Germany, is quarried and burnt in a fluidized bed reactor to produce electricity. The combustion residue, namely burnt oil shale (BOS), is used in the adjacent cement work as an additive in blended cements. The starting material is a typical laminated oil shale with an organic matter content ranging from 6 to 18%. Mineral matter consists principally of quartz, feldspar, pyrite and clays. After calcination in the range, the resulting product, burnt oil shale, keeps the macroscopic layered texture however with different mineralogy (anhydrite, lime, iron oxides) and the formation of an amorphous phase. This one, studied under STEM, reveals a typical texture of incipient partial melting due to a long retention time (ca. 30 min) and quenching. An in-situ high temperature X-ray diffraction (HTXRD) allowed studying precisely the mineralogical changes associated with the temperature increase. - Highlights: • We present oil shale/burnt oil shale characterization. • The Posidonia Shale is burnt in a fluidized bed. • Mineralogical evolution with temperature is complex. • The burnt oil shale is used in composite cements.

  14. Possibilities of preparation asphalt concrete by oil sands of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Erbol Tileuberdi

    2012-12-01

    Full Text Available In the paper physicochemical properties of oil sands of Munayli-Mola deposits and efficient ways to use them for preparing asphalt concrete were represented. For determination of organic part of oil sands the extraction methods were used in Soxhlet apparatus by variety of solvents. It has been established 16 wt.% content of natural bitumen in oil sands, which compared with results of ash content determination. According to results of experiment, the natural bitumen is heavy oil and its characteristics close to characteristics of paving bitumen. The optimum content of oil sands in asphalt mix are 28 and 47 mass %, the mixes prepared under these conditions satisfy standard requirements of the Republic of Kazakhstan on the asphalt mixture ST RK 1225-2003.

  15. Assessment of industry needs for oil shale research and development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry`s view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R&D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  16. Geological characteristics and resource potentials of oil shale in Ordos Basin, Center China

    Energy Technology Data Exchange (ETDEWEB)

    Yunlai, Bai; Yingcheng, Zhao; Long, Ma; Wu-jun, Wu; Yu-hu, Ma

    2010-09-15

    It has been shown that not only there are abundant oil, gas, coal, coal-bed gas, groundwater and giant uranium deposits but also there are abundant oil shale resources in Ordos basin. It has been shown also that the thickness of oil shale is, usually, 4-36m, oil-bearing 1.5%-13.7%, caloric value 1.66-20.98MJ/kg. The resource amount of oil shale with burial depth less than 2000 m is over 2000x108t (334). Within it, confirmed reserve is about 1x108t (121). Not only huge economic benefit but also precious experience in developing oil shale may be obtained in Ordos basin.

  17. Technical-economic parameters of the new oil shale mining-chemical complex in Northeast Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmiv, I. [Estonian Oil Shale Company ' Eesti Polevkivi, Johvi (Estonia); Fraiman, J. [Mining Engineer, Kohtla-Jarve (Estonia)

    2006-05-15

    The history of oil shale mining in Estonia has reached its century mark. Three oil shale branches have been formed and have been working on the basis of Estonian oil shale deposits: the mining industry (underground and surface extraction), the power industry (heat and electric energy generation), and the chemical industry (gas and synthetic oils). The authors attempted to summarize the experience of the activities of these branches and to make into a whole the results of their research developments in the past years, as well as to form a notion about perspectives of oil shale in Estonia. Variants of the mining-chemical oil shale complex production and trade patterns differed from used ones. Mining methods, thermal processing of oil shale, and solid, liquid, and gas waste recovery have been studied, analyzed, and worked out up to the present. Setting up a flexible trade structure within the framework of that complex is considered the main economic mechanism capable of balancing production costs of such a complex with its earnings, which could respond properly to any, even peak, fluctuations of the market for final products processed from oil shale. Data of the working 'Estonia' oil shale mine were used as the basis of the analysis and practical conclusions. Information on the mine being projected in the region of Ojamaa in the northeast of Estonia was taken as the data of the worthwhile supplier. Oil shale processing chemical complex is considered in two structural alternatives: in technological chain with the 'Estonia' mine (the first variant), and the projected mine of a new technical level (the second variant). (author)

  18. Reclamation studies on oil shale lands in northwestern Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.W.; Redente, E.F.

    1980-02-01

    The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Some of the more significant results are: (1) a soil cover of at least 61 cm in conjunction with a capiallary barrier provided the best combination of treatments for the establishment of vegetation and a functional microbial community, (2) aboveground production values for native and introduced species mixtures are comparable after three growing seasons, (3) cover values for native species mixtures are generally greater than for introduced species, (4) native seed mixtures, in general, allow greater invasion to occur, (5) sewage sludge at relatively low rates appears to provide the most beneficial overall effect on plant growth, (6) cultural practices, such as irrigated and mulching have significant effects on both above- and belowground ecosystem development, (7) topsoil storage after 1.5 years does not appear to significantly affect general microbial activities but does reduce the mycorrhizal infection potential of the soil at shallow depths, (8) populations of mycorrhizal fungi are decreased on severely disturbed soils if a cover of vegetation is not established, (9) significant biological differences among ecotypes of important shrub species have been identified, (10) a vegetation model is outlined which upon completion will enable the reclamation specialist to predict the plant species combinations best adapted to specific reclamation sites, and (11) synthetic strains of two important grass species are close to development which will provide superior plant materials for reclamation in the West.

  19. Fluidized-bed retorting of Colorado oil shale: Topical report. [None

    Energy Technology Data Exchange (ETDEWEB)

    Albulescu, P.; Mazzella, G.

    1987-06-01

    In support of the research program in converting oil shale into useful forms of energy, the US Department of Energy is developing systems models of oil shale processing plants. These models will be used to project the most attractive combination of process alternatives and identify future direction for R and D efforts. With the objective of providing technical and economic input for such systems models, Foster Wheeler was contracted to develop conceptual designs and cost estimates for commercial scale processing plants to produce syncrude from oil shales via various routes. This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of Colorado oil shale. The plant has a nominal capacity of 50,000 barrels per operating day of syncrude product, derived from oil shale feed having a Fischer Assay of 30 gallons per ton. The scope of the plant encompasses a grassroots facility which receives run of the mine oil shale, delivers product oil to storage, and disposes of the processed spent shale. In addition to oil shale feed, the battery limits input includes raw water, electric power, and natural gas to support plant operations. Design of the individual processing units was based on non-confidential information derived from published literature sources and supplemented by input from selected process licensors. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is similarly detailed by plant section and an estimate of the annual operating requirements and costs is provided. In addition, the process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed.

  20. A Sand Control System for Light Oil Reservoir

    Institute of Scientific and Technical Information of China (English)

    Xiang Yuzhang

    1996-01-01

    @@ Over 30-year water flooding in light oil sandstone reservoirs with loose argillaceous cement in Karamay oilfield results in severe sand production, varying from well to well with the different date of well completion.

  1. THE SURFACE MINER SUSTAINABLE TECHNOLOGY INTRODUCTION FOR OIL-SHALE MINING IN ESTONIA

    OpenAIRE

    Nikitin, Oleg; Väli, Erik; Sabanov, Sergei; Pastarus, Jyri-Rivaldo

    2007-01-01

    The paper introduces a high-selective oil-shale mining technology and the first results of surface miner Wirtgen 2500SM tests. The technology allows to decrease oil-shale loses from 10-15% up to 5-7%. Mining process of the surface miner has a lower disturbing impact, which is topical in open pits and quarries especially in densely populated areas. The low level of dust and noise emissions and also very’ low vibration are arguments to mine oil shale with surface miner instead of drilling-blast...

  2. Survival of the Unfit : Path Dependence and the Estonian Oil Shale Industry

    OpenAIRE

    HOLMBERG Rurik

    2008-01-01

    Estonia is the only country in the world, which is totally dependent on oil shale in its energy system. Although this fossil fuel exists in enormous quantities around the world, it has so far not been utilized on a larger scale. The reasons for this have been both economic and, in recent times, ecological. It can therefore be argued that in most cases, oil shale represents an inferior solution compared to other energy sources. This work examines why a technology utilizing oil shale has develo...

  3. Multiscale Characterization of Geological Properties of Oil Shale

    Science.gov (United States)

    Mehmani, Y.; Burnham, A. K.; Vanden Berg, M. D.; Tchelepi, H.

    2015-12-01

    Detailed characterization of geologic properties of oil shale is important for predictive modeling of geomechanics as well as heat and mass transfer in these geomaterials. Specifically, quantitative knowledge of the spatial distribution of thermal, hydraulic, and mechanical properties is requisite. The primary parameter upon which these properties strongly depend is kerogen content. We have developed a simple but accurate method for quantifying the spatial distribution of kerogen content, spanning scales from a few microns to a hundred feet. Our approach is based on analyzing raw optical images. Promising results regarding the viability of this approach, based on comparison with lab measurements, are presented for the well-known Mahogany Zone of the Green River Formation, Utah. A combination of Scanning Electron Microscopy (SEM) and appropriately chosen mixing rules allows for the quantification of thermal, hydraulic, and mechanical properties with micron-scale resolution. Numerical upscaling can subsequently produce averaged properties at the scale of individual grid blocks in field-scale simulators.

  4. Thermodynamically consistent model of brittle oil shales under overpressure

    Science.gov (United States)

    Izvekov, Oleg

    2016-04-01

    The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.

  5. Market Efficiency in the Crude Oil Futures Market - an Empirical Study after the Shale Oil Revolution

    OpenAIRE

    Lade, Ragne Myrhol

    2016-01-01

    This thesis has studied efficiency in the crude oil futures market for WTI and the Brent Blend for a period including the “shale oil revolution”. The main objective was to provide new information by investigating a period in time not much explored in already published articles. Furthermore, the thesis sought to close a gap of earlier empirical studies performed, by combining the two crude oil types and including up to 6 months maturities for futures contracts, while at the same time having a ...

  6. Hydrothermal Liquefaction Biocrude Compositions Compared to Petroleum Crude and Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Jacqueline M.; Billing, Justin M.; Hallen, Richard T.; Schmidt, Andrew J.; Schaub, Tanner M.

    2017-02-17

    We provide a direct and detailed comparison of the chemical composition of petroleum crude oil (from the Gulf of Mexico), shale oil, and three biocrudes (i.e., clean pine, microalgae Chlorella sp., and sewage sludge feedstocks) generated by hydrothermal liquefaction (HTL). Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals that HTL biocrudes are compositionally more similar to shale oil than petroleum crude oil and that only a few heteroatom classes (e.g., N1, N2, N1O1, and O1) are common to organic sediment- and biomass-derived oils. All HTL biocrudes contain a diverse range of oxygen-containing compounds when compared to either petroleum crude or shale oil. Overall, petroleum crude and shale oil are compositionally dissimilar to HTL oils, and >85% of the elemental compositions identified within the positive-ion electrospray (ESI) mass spectra of the HTL biocrudes were not present in either the petroleum crude or shale oil (>43% for negative-ion ESI). Direct comparison of the heteroatom classes that are common to both organic sedimentand biomass-derived oils shows that HTL biocrudes generally contain species with both smaller core structures and a lower degree of alkylation relative to either the petroleum crude or the shale oil. Three-dimensional plots of carbon number versus molecular double bond equivalents (with observed abundance as the third dimension) for abundant molecular classes reveal the specific relationship of the composition of HTL biocrudes to petroleum and shale oils to inform the possible incorporation of these oils into refinery operations as a partial amendment to conventional petroleum feeds.

  7. University of Utah Oil Sand Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-12-31

    An overview of the Oil Sand Research and Development Program at the University of Utah will be presented. It will include resource characterization of the Uinta Basin oils and deposits and bitumens and bitumen-derived liquid recovery and upgrading technology and product utilization. The characterization studies will include the Whiterocks and Asphalt Ridge oil sands. The discussion of recovery and upgrading technologies will include aqueous separation, thermal recovery processes; solvent extraction, and thermal and catalytic upgrading of bitumen and bitumen-derived heavy oils. Product evaluation studies will include jet fuels, diesel fuel, asphalt and specialty chemicals. Plans for the future of the project will be discussed.

  8. The stable isotopes of site wide waters at an oil sands mine in northern Alberta, Canada

    Science.gov (United States)

    Baer, Thomas; Barbour, S. Lee; Gibson, John J.

    2016-10-01

    Oil sands mines have large disturbance footprints and contain a range of new landforms constructed from mine waste such as shale overburden and the byproducts of bitumen extraction such as sand and fluid fine tailings. Each of these landforms are a potential source of water and chemical release to adjacent surface and groundwater, and consequently, the development of methods to track water migration through these landforms is of importance. The stable isotopes of water (i.e. 2H and 18O) have been widely used in hydrology and hydrogeology to characterize surface water/groundwater interactions but have not been extensively applied in mining applications, or specifically to oil sands mining in northern Alberta. A prerequisite for applying these techniques is the establishment of a Local Meteoric Water Line (LMWL) to characterize precipitation at the mine sites as well as the development of a 'catalogue' of the stable water isotope signatures of various mine site waters. This study was undertaken at the Mildred Lake Mine Site, owned and operated by Syncrude Canada Ltd. The LMWL developed from 2 years (2009/2012) of sample collection is shown to be consistent with other LMWLs in western Canada. The results of the study highlight the unique stable water isotope signatures associated with hydraulically placed tailings (sand or fluid fine tailings) and overburden shale dumps relative to natural surface water and groundwater. The signature associated with the snow melt water on reclaimed landscapes was found to be similar to ground water recharge in the region. The isotopic composition of the shale overburden deposits are also distinct and consistent with observations made by other researchers in western Canada on undisturbed shales. The process water associated with the fine and coarse tailings streams has highly enriched 2H and 18O signatures. These signatures are developed through the non-equilibrium fractionation of imported fresh river water during evaporation from

  9. Application des fluides supercritiques à la production d'hydrocarbures. Exploitation des gisements par récupération assistée et applications diverses : pétrole, sables, schistes, charbons Application of Supercritical Fluids to Hydrocarbon Production. Enhanced Oi Recovery and Miscellaneous Applications: Oil, Tar Sands, Shales, Coals

    Directory of Open Access Journals (Sweden)

    Behar E.

    2006-11-01

    dioxide. This article briefly describes the ranges of application and the thermodynamic mechanisms involved. Sources of available supercritical fluids in the vicinity of oil fields are quickly reviewed together with various operational problems. In addition to being used for enhanced recovery, supercritical fluids are also involved in various refining and extraction processes. The first industrial application was the process for deasphalting heavy petroleum fractions in 1956, making use of the great variations in the solvent power of a fluid in the vicinity of its critical point. This process has received revived interest in recent years because of the energy saving it entails. Likewise, oil shales, tar sands and coals, which are appreciable hydrocarbon sources for the future, are fields of potential applications for supercritical fluids. Specific processes are reviewed, most of which are undergoing pilot-plant development.

  10. Dynamic simulation of cable shovel specific energy in oil sands excavation

    Energy Technology Data Exchange (ETDEWEB)

    Awuah-Offei, K. [Missouri-Rolla Univ., Rolla, MO (United States). School of Materials, Energy and Earth Resources; Frimpong, S. [Missouri-Rolla Univ., Rolla, MO (United States). Dept. of Mining Engineering, Mining and Nuclear Engineering; Askari-Nasab, H. [Alberta Univ., Edmonton, AB (Canada). School of Mining and Petroleum Engineering

    2005-07-01

    Oil sand excavation requires the use cable shovels which constitute one of the major costs in surface mining operations. Random occurrences of shales and limestones within the Athabasca oil sands formation result in varying shovel diggability and stress loading of the boom-crowd-dipper-teeth assembly which reduces digging efficiency. This inefficient use of cable shovels negatively affects the return on capital investment in these otherwise effective machines. In the Athabasca oil sands, varying stress loading has the potential to increase shovel downtime and increase maintenance costs. This paper presented a newly developed cable shovel simulator that uses shovel kinematics and dynamics, dynamic cutting resistance and payload models. It can model the specific energy needed to overcome the resistance to machine motion and material digging. The comprehensive model considers both machine motion and machine-formation interaction forces. It also provides a comprehensive theoretical assessment of shovel performance. The model is useful to mining engineers when examining both the machine operating parameters and material parameters that influence shovel performance. The study showed that bulk density is the most important material property influencing diggability. Operator preferences also influence the specific energy of excavation. 12 refs., 2 tabs., 6 figs.

  11. Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Kavanagh, Richard J; Burnison, B Kent; Frank, Richard A; Solomon, Keith R; Van Der Kraak, Glen

    2009-06-01

    Large volumes of oil sands process-affected waters (OSPW) are produced during the extraction of bitumen from oil sand. There are approximately 10(9) m(3) of OSPW currently being stored in settling basins on oil sands mining sites in Northern Alberta. Developers plan to create artificial lakes with OSPW and it is expected that this water may eventually enter the environment. This study was conducted in order to determine if synchronous fluorescence spectroscopy (SFS) could detect OSPW contamination in water systems. Water samples collected from ponds containing OSPW and selected sites in the Alberta oil sands region were evaluated using SFS with an offset value of 18 nm. OSPW ponds consistently displayed a minor peak at 282.5 nm and a broad major peak ranging between 320 and 340 nm. Water from reference sites within the oil sands region had little fluorescence at 282.5 nm but greater fluorescence beyond 345 nm. Naphthenic acids are the major toxic component of OSPW. Both a commercial naphthenic acid and a naphthenic acid extract prepared from OSPW had similar fluorescent spectra with peaks at 280 nm and 320 nm and minor shoulders at approximately 303 and 331 nm. The presence of aromatic acids closely associated with the naphthenic acids may be responsible for unique fluorescence at 320-340 nm. SFS is proposed to be a simple and fast method to monitor the release of OSPW into ground and surface waters in the oil sands region.

  12. Piceance Creek Basin, Colorado, Oil Shale Geodatabase (Compiled from 3 legacy publications)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geodatabase is a digital reproduction of three legacy USGS oil shale publications--MF-958 (Pitman and Johnson, 1978), MF-1069 (Pitman, 1979), and OC-132 (Pitman...

  13. Oil Shale Core Hole and Rotary Hole Locations in the State of Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file contains points that describe locations of oil shale core holes and rotary holes in the state of Colorado and is available as an ESRI shapefile, Google...

  14. Oil Shale Core Holes Containing Nahcolite in the State of Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file contains points that describe locations of oil shale core holes that contain nahcolite in the state of Colorado and is available as an ESRI shapefile,...

  15. Production of oil from Intermountain West tar sands deposits

    Energy Technology Data Exchange (ETDEWEB)

    Glassett, J.M.; Glassett, J.A.

    1976-03-01

    Six tar sand deposits in the Intermountain West, each containing more than one billion barrels of oil in place, are identified. All of these deposits are in eastern Utah and contain a total of twenty-eight billion barrels of oil. The names of the six deposits arranged in descending order of desirability for large-scale surface-mining oil recovery operations are as follows: Sunnyside, Tar Sand Triangle, Asphalt Ridge, P.R. Spring, Circle Cliffs, and Hill Creek. An overview of each deposit is presented including geology, surface-mining variables, chemical processing variables, environmental aspects, and economics. A comparison of Utah tar sands and Athabasca, Alberta, Canada tar sands is also presented.

  16. Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins--the Piceance Creek basin in northwestern Colorado and the Uinta basin in northeastern Utah. The ancient lakes served as a basin for the accumulation of tremendous quantities of aquatic organisms. The predominance of microscopic fresh-water algae and protozoa over the remains of land plants, pollens and spores suggests that the greater part of the organic matter was derived from microorganisms that grew in the lakes. The pollens and spores were carried into the lakes by wind. Fish, mollusks, crustaceans, and aquatic insect larvae were also plentiful; and turtles, crocodiles, birds, small camels, and insects may have contributed to the organic matter. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. When the residue was reduced to a gelatinous condition, it apparently resisted further bacterial decay, and other organisms accidently entombed in the gel were protected from disintegration. An accumulation of inorganic material occurred simultaneously with the disintegration of the organic ooze, and the entire mass became lithified. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. The streams in the vicinity of the lake were rejuvenated and carried great quantities of medium- to coarse-grained sand into the basin and formed a thick layer over the lakebeds.

  17. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, J. Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Stanchina, William [Univ. of Pittsburgh, PA (United States); National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2011-01-01

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (<200° C) and constant oil shale grade, both the relative dielectric constant (ε') and imaginary permittivity (ε'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, ε' decreases or remains constant with oil shale grade, while ε'' increases or shows no trend with oil shale grade. At higher temperatures (>200º C) and constant frequency, epsilon' generally increases with temperature regardless of grade while ε'' fluctuates. At these temperatures, maximum values for both ε' and ε'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools.

  18. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, J. Alexandra; Soong, Yee; Hedges, Sheila [National Energy Technology Laboratory, Pittsburgh, PA (United States); Stanchina, William [National Energy Technology Laboratory, Pittsburgh, PA (United States); Department of Electrical and Computer Engineering, University of Pittsburgh, PA (United States)

    2011-01-15

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (< 200 C) and constant oil shale grade, both the relative dielectric constant ({epsilon}') and imaginary permittivity ({epsilon}'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, {epsilon}' decreases or remains constant with oil shale grade, while {epsilon}'' increases or shows no trend with oil shale grade. At higher temperatures (> 200 C) and constant frequency, {epsilon}' generally increases with temperature regardless of grade while {epsilon}'' fluctuates. At these temperatures, maximum values for both {epsilon}' and {epsilon}'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools. (author)

  19. Characterization and Thermal/Catalytic Upgrading of Kerogen in a Green River Oil Shale

    OpenAIRE

    Yeboah, Isaac

    2015-01-01

    Comprehensive structural characterization of oil shale (kerogen) and subsequent upgrading to fuels are of paramount scientific and industrial importance, calling for a better understanding. In this work, an oil shale from Green River formation was employed and characterized by multiple techniques such as Rock-Eval pyrolysis, TOC, XRD, FTIR and TGA-MS. It is found that the inorganic matter were mainly calcite, dolomite and Fe-doped quartz, while the organic matter consists of soluble bitumen a...

  20. Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1981-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.

  1. Joint DoD/DoE Shale Oil Project. Volume 3. Testing of Refined Shale Oil Fuels.

    Science.gov (United States)

    1983-12-01

    10-9. GROWTH RATINGS OF CLADOSPORIUM RESINAE AT VARIOUS INCUBATION STAGES ......................... 10-25 S 0 xv - LIST OF TABLES (Continued) TABLE 10...both shale DFM and shale JP-5 support heavy growth of Cladosporium resinae . Short-term engine performance tests were conducted on two gas turbine...microbiological growth of shale DFM and shale JP-5 was investigated by inoculating a mixture of fuel and 0 nutrient medium with Cladosporium resinae

  2. Acid mine drainage potential of raw, retorted, and combusted Eastern oil shale: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, P.J.; Yelton, J.L.; Reddy, K.J.

    1987-09-01

    In order to manage the oxidation of pyritic materials effectively, it is necessary to understand the chemistry of both the waste and its disposal environment. The objective of this two-year study was to characterize the acid production of Eastern oil shale waste products as a function of process conditions, waste properties, and disposal practice. Two Eastern oil shales were selected, a high pyrite shale (unweathered 4.6% pyrite) and a low pyrite shale (weathered 1.5% pyrite). Each shale was retorted and combusted to produce waste products representative of potential mining and energy conversion processes. By using the standard EPA leaching tests (TCLP), each waste was characterized by determining (1) mineralogy, (2) trace element residency, and (3) acid-base account. Characterizing the acid producing potential of each waste and potential trace element hazards was completed with laboratory weathering studies. 32 refs., 21 figs., 12 tabs.

  3. Food web structure in oil sands reclaimed wetlands.

    Science.gov (United States)

    Kovalenko, K E; Ciborowski, J J H; Daly, C; Dixon, D G; Farwell, A J; Foote, A L; Frederick, K R; Costa, J M Gardner; Kennedy, K; Liber, K; Roy, M C; Slama, C A; Smits, J E G

    2013-07-01

    Boreal wetlands play an important role in global carbon balance. However, their ecosystem function is threatened by direct anthropogenic disturbance and climate change. Oil sands surface mining in the boreal regions of Western Canada denudes tracts of land of organic materials, leaves large areas in need of reclamation, and generates considerable quantities of extraction process-affected materials. Knowledge and validation of reclamation techniques that lead to self-sustaining wetlands has lagged behind development of protocols for reclaiming terrestrial systems. It is important to know whether wetlands reclaimed with oil sands process materials can be restored to levels equivalent to their original ecosystem function. We approached this question by assessing carbon flows and food web structure in naturally formed and oil sands-affected wetlands constructed in 1970-2004 in the postmining landscape. We evaluated whether a prescribed reclamation strategy, involving organic matter amendment, accelerated reclaimed wetland development, leading to wetlands that were more similar to their natural marsh counterparts than wetlands that were not supplemented with organic matter. We measured compartment standing stocks for bacterioplankton, microbial biofilm, macrophytes, detritus, and zoobenthos; concentrations of dissolved organic carbon and residual naphthenic acids; and microbial production, gas fluxes, and aquatic-terrestrial exports (i.e., aquatic insect emergence). The total biomass of several biotic compartments differed significantly between oil sands and reference wetlands. Submerged macrophyte biomass, macroinvertebrate trophic diversity, and predator biomass and richness were lower in oil sands-affected wetlands than in reference wetlands. There was insufficient evidence to conclude that wetland age and wetland amendment with peat-mineral mix mitigate effects of oil sands waste materials on the fully aquatic biota. Although high variability was observed within

  4. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    Energy Technology Data Exchange (ETDEWEB)

    Motlep, Riho, E-mail: riho.motlep@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Sild, Terje, E-mail: terje.sild@maaamet.ee [Estonian Land Board, Mustamaee tee 51, 10621 Tallinn (Estonia); Puura, Erik, E-mail: erik.puura@ut.ee [Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu (Estonia); Kirsimaee, Kalle, E-mail: kalle.kirsimae@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  5. Advanced testing and characterization of shear modulus and deformation characteristics of oil sand materials

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2014-09-01

    Full Text Available Oil sands are natural deposits of sand materials that are rich in bitumen. Limited studies have been conducted to determine the dynamic behavior of oil sand materials. Recent difficulties encountered in oil sand mine fields in Canada substantiated...

  6. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin

    Science.gov (United States)

    Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  7. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.

    Science.gov (United States)

    Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C

    2016-04-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  8. Origin of Unliberated Bitumen in Athabasca Oil Sands

    Institute of Scientific and Technical Information of China (English)

    TuYun; J.B.O'Carroll; B.D.Sparks; L.S.Kotlyar; S.Ng; K.H.Chung; G.Cuddy

    2005-01-01

    Oil sands contain a so-called organic rich solids component (ORS), i.e., solids whose surfaces are strongly associated with toluene insoluble organic matter (TIOM). Typically, humic material is the major component of TIOM.It provides sites for adsorption and chemical fixation of bitumen. This bound bitumen is """"""""unliberated"""""""", and considerable mechanical or chemical energy may be required to release it. In order to establish a correlation between bitumen recovery and ORS content, a few selected oil sands were processed in a Batch Extraction Unit (BEU).Analysis of the middlings and coarse tailings streams from these tests indicated a relatively constant bitumen to ORS ratio of 2.8±0.7. This value allows the liberated-unliberated bitumen balance (LUBB) to be calculated for any given oil sands. The amounts of bitumen recovered as primary froth during the BEU experiments are close to the estimated liberated bitumen contents in each case tested. This observation indicates that the liberated-unliberated bitumen calculation is an important quantitative parameter for prediction of bitumen recovery under specific recovery conditions. Preliminary results indicate that the ORS content of an oil sands may be estimated from the carbon content of bitumen free oil sands solids.

  9. The use of stable isotopes to trace oil sands constituents

    Energy Technology Data Exchange (ETDEWEB)

    Farwell, A.J.; Nero, V.; Dixon, D.G. [Waterloo Univ., ON (Canada). Dept. of Biology

    2002-07-01

    A study was conducted to determine the biological effects of oil sands mining operations on aquatic ecosystems. The study focused on the Athabasca oil sand deposit, the largest of 4 deposits in northern Alberta. In particular, the study examined the cycling of oil sand constituents in Benthic invertebrates collected from test pits at Syncrude Canada Ltd.. The invertebrates were similar in size, but different in the quantity of process-affected water or mature fine tailings containing residual bitumen. Dragonflies and damselflies in particular, showed trends of depletion for the carbon 13 isotope and enrichment in nitrogen 15 isotope in pits where levels of process affected water was high. The depletion of carbon 13 isotope suggests that oil sand constituents assimilate into the benthic food chain. The greatest carbon 13 depletion, which was approximately 27 per cent, was found to be in test pits with high turbidity. This implies that oil sands constituents degrade microbially instead of by photosynthetic production. All benthic invertebrate group demonstrated an incremental enrichment in nitrogen 15 isotope from the control pit to the pit with greatest levels of mature fine tailings.

  10. Military Fuels Refined from Paraho-II Shale Oil.

    Science.gov (United States)

    1981-03-01

    Laboratories showed that growth of Cladosporium resinae was supported by the shale-derived JP-5 and DFM. 1t The performances of shale fuels in a turbine...27 11 Corrosion Tendencies of Shale Fuels ............................. 28 12 Growth Rating of Cladosporium Resinae in Tubes After Days of...screw cap test tubes and overlayed with 3 ml of the test fuel. Each tube was inoculated with one drop of a spore suspension of Cladosporium resinae , QM

  11. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    Science.gov (United States)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low

  12. Assessment of undiscovered oil and gas resources of the Mississippian Sunbury shale and Devonian–Mississippian Chattanooga shale in the Appalachian Basin Province, 2016

    Science.gov (United States)

    Higley, Debra K.; Rouse, William A.; Enomoto, Catherine B.; Trippi, Michael H.; Klett, Timothy R.; Mercier, Tracey J.; Brownfield, Michael E.; Tennyson, Marilyn E.; Drake, Ronald M.; Finn, Thomas M.; Gianoutsos, Nicholas J.; Pearson, Ofori N.; Doolan, Colin; Le, Phuong A.; Schenk, Christopher J.

    2016-11-08

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources that total 464 million barrels of oil and 4.08 trillion cubic feet of gas in the Lower Mississippian Sunbury Shale and Middle Devonian–Lower Mississippian Chattanooga Shale of the Appalachian Basin Province.

  13. Understanding the Canadian oil sands industry's greenhouse gas emissions

    Science.gov (United States)

    Charpentier, Alex D.; Bergerson, Joule A.; MacLean, Heather L.

    2009-01-01

    The magnitude of Canada's oil sands reserves, their rapidly expanding and energy intensive production, combined with existing and upcoming greenhouse gas (GHG) emissions regulations motivate an evaluation of oil sands-derived fuel production from a life cycle perspective. Thirteen studies of GHG emissions associated with oil sands operations are reviewed. The production of synthetic crude oil (SCO) through surface mining and upgrading (SM&Up) or in situ and upgrading (IS&Up) processes is reported to result in emissions ranging from 62 to 164 and 99 to 176 kgCO2eq/bbl SCO, respectively (or 9.2-26.5 and 16.2-28.7 gCO2eq MJ-1 SCO, respectively), compared to 27-58 kgCO2eq/bbl (4.5-9.6 gCO2eq MJ-1) of crude for conventional oil production. The difference in emissions intensity between SCO and conventional crude production is primarily due to higher energy requirements for extracting bitumen and upgrading it into SCO. On a 'well-to-wheel' basis, GHG emissions associated with producing reformulated gasoline from oil sands with current SM&Up, IS&Up, and in situ (without upgrading) technologies are 260-320, 320-350, and 270-340 gCO2eq km-1, respectively, compared to 250-280 gCO2eq km-1 for production from conventional oil. Some variation between studies is expected due to differences in methods, technologies studied, and operating choices. However, the magnitude of the differences presented suggests that a consensus on the characterization of life cycle emissions of the oil sands industry has yet to be reached in the public literature. Recommendations are given for future studies for informing industry and government decision making.

  14. High efficiency shale oil recovery. Fifth quarterly report, January 1, 1993--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft{sup 2}/{degrees}F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000{degrees}F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  15. Oil shale plant siting methodology: A guide to permits and approvals

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, J.S.; Hill, S.; Barker, F.; Renk, R.; Dean, J.

    1988-09-01

    This report is a guide to the permits and approvals required to develop an oil shale resource. The permitting requirements of the federal government, six states (Colorado, Utah, Wyoming, Indiana, Kentucky, and Ohio), and selected county or local governments are reviewed. The permits and approvals are organized into nine categories: (1) mineral leases and rights-of-way, (2) acquisition of a water supply, (3) environmental impact statement, (4) environmental quality (air quality, water quality, waste disposal, and wildlife values), (5) historical and cultural protection, (6) land use and socioeconomics, (7) prospecting and mining, (8) safety and health, and (9) transportation and communication. This report also contains examples of the permitting process required for the startup of two hypothetical oil shale plants. The first example is for a hypothetical 50,000 barrel-per-day oil shale plant located near Rio Blanco, Colorado. This plant uses conventional open pit mining and surface (Lurgi) processing of the shale. The permitting costs for this plant, including baseline data acquisition and monitoring, exceed $2 million. The second example, a 5,000 barrel-per-day demonstration plant in eastern Montgomery County, Kentucky, is based on open pit mining and surface (Hytort) processing of the shale. Permitting costs for the demonstration plant, including an environmental impact statement, could approach $500,000. Several potential impediments to the development of an oil shale resource are identified and discussed. 33 refs., 11 figs., 10 tabs.

  16. An assessment of using oil shale for power production in the Hashemite Kingdom of Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hill, L.J.; Holcomb, R.S.; Petrich, C.H.; Roop, R.D.

    1990-11-01

    This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20- and 50-MW demonstration units and a 400-MW, commercial-scale plant with, at the 400-MW scale, a mining operation capable of supplying 7.8 million tonnes per year of shale fuel and also capable of disposal of up to 6.1 million tonnes per year of wetted ash. The plant would be a direct combustion facility, burning crushed oil shale through use of circulating fluidized bed combustion technology. The report emphasizes four areas: (1) the need for power in Jordan, (2) environmental aspects of the proposed oil shale-for-power plant(s), (3) the engineering feasibility of using Jordan's oil shale in circulating fluidized bed combustion (CFBC) boiler, and (4) the economic feasibility of the proposed plant(s). A sensitivity study was conducted to determine the economic feasibility of the proposed plant(s) under different cost assumptions and revenue flows over the plant's lifetime. The sensitivity results are extended to include the major extra-firm benefits of the shale-for-power option: (1) foreign exchange savings from using domestic energy resources, (2) aggregate income effects of using Jordan's indigenous labor force, and (3) a higher level of energy security. 14 figs., 47 tabs.

  17. Hydrodenitrogenation of Aleksinac shale oil distillates in a pilot trickle-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Saban, M.D.; Skala, D.U.; Jovanovic, J.A.; Mayn, V.W.; Rahimian, I.G.-H. (University of Belgrade, Belgrade (Yugoslavia). Faculty of Technology and Metallurgy)

    1992-02-01

    Hydrodenitrogenation (HDN) of the Aleksinac shale oil distillates was studied in a pilot trickle-bed reactor at 340-435{degree}C, 8.0 MPa, 1-4.57 h{sup -1} liquid hourly space velocity (LHSV) and 500 cm{sup 3} (STP) of H{sub 2}/cm{sup 3} oil. The commercial Co-Mo/Al{sub 2}O{sub 3} and Ni-Mo/Al{sub 2}O{sub 3} presulfided catalysts were evaluated for the HDN of three different shale oil distillates. The initial HDN catalyst deactivation was followed using a linear catalyst deactivation model. The Ni-Mo/Al{sub 2}O{sub 3} catalyst showed somewhat higher initial HDN activity and lower initial deactivation rate than the Co-Mo/Al{sub 2}O{sub 3} catalyst for the first 30-45 h on shale oil feedstock. Nitriles in shale oil first undergo HDN reaction at mild operating conditions, much faster than five-and six-membered nitrogen heterocyclic compounds. The overall HDN kinetics of refractive nitrogen in shale oil was analyzed using a modified pseudo-first order behaviour. The on-line measured hydrogen consumption was in the range 200-300 cm{sup 3}(STP)/cm{sup 3} for HDN{gt}80% regardless of the catalyst type and feedstock. 31 refs., 7 figs., 7 tabs.

  18. Investigation into co-pyrolysis characteristics of oil shale and coal

    Institute of Scientific and Technical Information of China (English)

    Miao Zhenyong; Wu Guoguang; Li Ping; Meng Xianliang; Zheng Zhilei

    2012-01-01

    Samples of five types of coal and oil shale from the Daqing region have been subjected to co-pyrolysis in different blending ratios with thermo-gravimetry (TG).given a heating rate of 30 ℃/min to a final temperature of 900 ℃.Investigations on pyrolysis of mixing coal and oil shale in different proportions were carried out,indicating that the main scope of weight loss corresponding to hydrocarbon oil and gas release was between 350 and 550 ℃.At higher temperatures,significant weight loss was attributed to coke decomposition.Characteristic pyrolysis parameters of blends from oil shale and the high ranked XZ coal varied with the blending ratio,but oil shale dominated the process.At the same blending proportions,highly volatile medium and low ranked coal of low moisture and ash content reacted well during pyrolysis and could easily create synergies with oil shale.Medium and high ranked coal with high moisture content played a negative role in co-pyrolysis.

  19. Western oil shale development: a technology assessment. Volume 7: an ecosystem simulation of perturbations applied to shale oil development

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    Progress is outlined on activities leading toward evaluation of ecological and agricultural impacts of shale oil development in the Piceance Creek Basin region of northwestern Colorado. After preliminary review of the problem, it was decided to use a model-based calculation approach in the evaluation. The general rationale and objectives of this approach are discussed. Previous studies were examined to characterize climate, soils, vegetation, animals, and ecosystem response units. System function was methodically defined by developing a master list of variables and flows, structuring a generalized system flow diagram, constructing a flow-effects matrix, and conceptualizing interactive spatial units through spatial matrices. The process of developing individual mathematical functions representing the flow of matter and energy through the various system variables in different submodels is discussed. The system model diagram identified 10 subsystems which separately account for flow of soil temperatures, soil water, herbaceous plant biomass, shrubby plant biomass, tree cover, litter biomass, shrub numbers, animal biomass, animal numbers, and land area. Among these coupled subsystems there are 45 unique kinds of state variables and 150 intra-subsystem flows. The model is generalizeable and canonical so that it can be expanded, if required, by disaggregating some of the system state variables and allowing for multiple ecological response units. It integrates information on climate, surface water, ecology, land reclamation, air quality, and solid waste as it is being developed by several other task groups.

  20. Interaction forces in bitumen extraction from oil sands.

    Science.gov (United States)

    Liu, Jianjun; Xu, Zhenghe; Masliyah, Jacob

    2005-07-15

    Water-based extraction process (WBEP) has been successfully applied to bitumen recovery from Athabasca oil sand ore deposits in Alberta. In this process, two essential steps are involved. The bitumen first needs to be "liberated" from sand grains, followed by "aeration" with air bubbles. Bitumen "liberation" from the sand grains is controlled by the interaction between the bitumen and sand grains. Bitumen "aeration" is dependent, among other mechanical and hydrodynamic variables, on the hydrophobicity of the bitumen surface, which is controlled by water chemistry and interactions between bitumen and fine solids. In this paper, the interaction force measured with an atomic force microscope (AFM) between bitumen-bitumen, bitumen-silica, bitumen-clays and bitumen-fines is summarized. The measured interaction force barrier coupled with the contacted adhesion force allows us to predict the coagulative state of colloidal systems. Zeta potential distribution measurements, in terms of heterocoagulation, confirmed the prediction of the measured force profiles using AFM. The results show that solution pH and calcium addition can significantly affect the colloidal interactions of various components in oil sand extraction systems. The strong attachment of fines from a poor processing ore on bitumen is responsible for the corresponding low bitumen flotation recovery. The identification of the dominant non-contact forces by fitting with the classical DLVO or extended DLVO theory provides guidance for controlling the interaction behavior of the oil sand components through monitoring the factors that could affect the non-contact forces. The findings provide insights into megascale industrial operations of oil sand extraction.

  1. Interactive Matching between the Temperature Profile and Secondary Reactions of Oil Shale Pyrolysis

    DEFF Research Database (Denmark)

    Zhang, Yu; Han, Zhennan; Wu, Hao;

    2016-01-01

    degrees C and a shale char bed operating at different temperatures. At low temperatures (550 degrees C), severe cracking occurred, converting both heavy and light oil to carbon and gas. The desirably matched reactor temperature profile for high oil yield is discussed via analysis of the tendency......This article investigates the effect of the reactor temperature profile on the distribution and characteristics of the products from fixed-bed pyrolysis of oil shale. Experiments were performed in a one-stage fixed-bed reactor and in a two-stage fixed-bed reactor. In the one-stage reactor......, the shale oil yield reached 7.40 wt % with a reactor temperature profile from 900 to 550 degrees C and decreased to 2.23 wt % with the reverse temperature profile. The effect of the temperature profile was investigated further in the two-stage fixed-bed reactor combining a pyrolysis stage operating at 550...

  2. Estonia`s oil shale industry - meeting environmental standards of the future

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, T. [Jaakko Poyry International, Helsinki (Finland); Bird, G.; Wallace, D. [Alberta Research Council, Edmonton (Canada)] [and others

    1995-12-31

    Oil shale is Estonia`s greatest mineral resource. In the 1930s, it was used as a source of gasoline and fuel oil, but now it is mined primarily for thermal generation of electricity. With the loss of its primary market for electricity in the early 1990s and in the absence of another domestic source of fuel Estonia once again is considering the use of a larger proportion of its shale for oil production. However, existing retorting operations in Estonia may not attain western European environmental standards and desired conversion efficiencies. As a reference point, the Estonian authorities have documented existing environmental impacts. It is evaluating technologies to reduce the impacts and is setting a direction for the industry that will serve domestic needs. This paper provides a description of the existing oil shale industry in Estonia and options for the future.

  3. Microfossils and molecular records in oil shales of the Songliao Basin and implications for paleo-depositional environment

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Several oil shale beds, over 10 m thick, occur at the base of the first member of the Upper Cretaceous Qingshankou Formation (K2qn1) in the Songliao Basin. They act both as excellent source rocks for conventional oil and as potential oil deposit for shale oil production. Here we combine micropaleon-tology with organic geochemistry to investigate the paleo-depositional environment and organic source characteristics of the oil shales and black shales. Our results indicate that algal remains are dominant microfossils in K2qn1 oil shales, and their relatively high abundance suggests a major algal thriving event during the oil shale deposition. The presence of fresh water and brackish water species, Sentusidinium, Vesperopsis and Nyktericysta, and marine or brackish water deltaic and lagoonal species such as Kiokansium and Dinogymniopsis demonstrate that this paleo-continental lake was influenced by marine transgressions at the time of K2qn1 oil shale formation. The extremely low pristine/phytane ratios, relatively high abundance of gammacerane and 4-methyl steranes, and low δ 13C values of C14-C37 n-alkanes in the oil shale organic extracts indicate the deposition of oil shales in anoxic and highly stratified water columns and the significant contribution of lacustrine algae to sedimentary organic matter. High molecular-weight paraffinic hydrocarbons with unusually high abundance of nC43, nC45, and nC47 may be related to special algal species associated with marine transgression events. The giant water body of Songliao paleo-lake and the change in the organic and chemical environment (such as nutrition source and water column salinity) associated with seawater transgression into the lake are among the most important reasons for oil shales in the Songliao Basin being different from mudstone and oil shale in other rifted basins.

  4. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  5. Oil shale mining cost analysis. Volume I. Surface retorting process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, B.S.; English, L.M.; Metz, R.D.; Lewis, A.G.

    1981-01-01

    An Oil Shale Mining Economic Model (OSMEM) was developed and executed for mining scenarios representative of commercially feasible mining operations. Mining systems were evaluated for candidate sites in the Piceance Creek Basin. Mining methods selected included: (1) room-and-pillar; (2) chamber-and-pillar, with spent shale backfilling; (3) sublevel stopping; and (4) sublevel stopping, with spent shale backfilling. Mines were designed to extract oil shale resources to support a 50,000 barrels-per-day surface processing facility. Costs developed for each mining scenario included all capital and operating expenses associated with the underground mining methods. Parametric and sensitivity analyses were performed to determine the sensitivity of mining cost to changes in capital cost, operating cost, return on investment, and cost escalation.

  6. Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography

    Science.gov (United States)

    Saif, Tarik; Lin, Qingyang; Singh, Kamaljit; Bijeljic, Branko; Blunt, Martin J.

    2016-07-01

    The structure and connectivity of the pore space during the pyrolysis of oil shales determines hydrocarbon flow behavior and ultimate recovery. We image the time evolution of the pore and microfracture networks during oil shale pyrolysis using synchrotron X-ray microtomography. Immature Green River (Mahogany Zone) shale samples were thermally matured under vacuum conditions at temperatures up to 500°C while being periodically imaged with a 2 µm voxel size. The structural transformation of both organic-rich and organic-lean layers within the shale was quantified. The images reveal a dramatic change in porosity accompanying pyrolysis between 390 and 400°C with the formation of micron-scale heterogeneous pores. With a further increase in temperature, the pores steadily expand resulting in connected microfracture networks that predominantly develop along the kerogen-rich laminations.

  7. A novel and innovative process to produce oil from tar sands and heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Denivelle, C. [OSEAD, Paris (France); Fourt, J.F. [Truffle Capital, Paris (France)

    2009-07-01

    Oil sands extraction by adsorption (OSEAD) was created in October 2006 to develop an innovative hydrocarbon extraction technology from oil sands. It has since grown by taking control of a lead, zinc and silver mine in Morocco. This paper discussed the novel and innovative OSEAD process to produce oil from tar sands and heavy oil. The paper provided a description of the oil sand samples and discussed lab testing. The adsorption and desorption phases were both outlined. The main properties of the agent were identified. A summary of the test work results was also presented. The optimized OSEAD process includes an ore preparation step involving mixing of oil sand and water at ambient temperature; an adsorption step involving addition of agent to the sand/water mix; a phase separation step; a desorption step; and a tailings treatment step. It was concluded that the laboratory test work performed on Canadian oil sands is conclusive in demonstrating the capacity of the OSEAD process to efficiently adsorb heavy and viscous hydrocarbon at ambient temperature and with limited amount of water addition. 11 figs., 1 appendix.

  8. OCCIDENTAL VERTICAL MODIFIED IN SITU PROCESS FOR THE RECOVERY OF OIL FROM OIL SHALE. PHASE II

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Reid M.

    1980-09-01

    The progress presented in this report covers the period June 1, 1980 through August 31, 1980 under the work scope for.Phase II of the DOE/Occidental Oil Shale, Inc. (OOSI) Cooperative Agreement. The major activities at OOSI 1s Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7, 8 and 8x; completing Mini-Retort (MR) construction; continuing surface facility construction; tracer testing the MR 1 s; conducting Retorts 7 & 8 related Rock Fragmentation tests; setting up and debugging the Sandia B-61 trailer; and preparing the Phase II instrumentation plan.

  9. Selective catalytic reduction of NO by ammonia over oil shale ash and fly ash catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Changtao Yue; Shuyuan Li [University of Petroleum, Beijing (China). State Key Lab of Heavy Oil Processing

    2003-07-01

    Acid rain and urban air pollution, produced mainly by pollutants such as SOX and NOX and other volatile organic compounds, has become the most serious environmental problem. The selective catalytic reduction (SCR) of NO with NH{sub 3} in the presence of oxygen is a wellproven method to limit the NOX emissions. The work in this field has been the subject of much research in recent years. In this paper, NO reduction with NH{sub 3} over oil shale ash or fly ash catalysts was studied. Fe, Cu, V or Ni as active elements was loaded by adding aqueous solutions of the metal nitrate over the oil shale ash or fly ash support. The activities of the catalysts for NO removal were measured in a fixed-bed reactor. According to the results, oil shale ash or fly ash, after pre-treatment, can be reasonably used as the SCR catalyst support to remove NO from flue gas. Cu gave the highest catalytic activity and NO conversion for fly ash while V for oil shale ash. As the support, fly ash is more feasible than oil shale ash. Because of their low cost and high efficiency, the catalysts should be used in the SCR process. Further research on this subject is necessary in the future to understand more details of the SCR system and issue of pollution control. 9 refs., 2 figs., 2 tabs.

  10. Detailed description of oil shale organic and mineralogical heterogeneity via fourier transform infrared mircoscopy

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.; Foster, Michael; Gutierrez, Fernando

    2015-01-01

    Mineralogical and geochemical information on reservoir and source rocks is necessary to assess and produce from petroleum systems. The standard methods in the petroleum industry for obtaining these properties are bulk measurements on homogenized, generally crushed, and pulverized rock samples and can take from hours to days to perform. New methods using Fourier transform infrared (FTIR) spectroscopy have been developed to more rapidly obtain information on mineralogy and geochemistry. However, these methods are also typically performed on bulk, homogenized samples. We present a new approach to rock sample characterization incorporating multivariate analysis and FTIR microscopy to provide non-destructive, spatially resolved mineralogy and geochemistry on whole rock samples. We are able to predict bulk mineralogy and organic carbon content within the same margin of error as standard characterization techniques, including X-ray diffraction (XRD) and total organic carbon (TOC) analysis. Validation of the method was performed using two oil shale samples from the Green River Formation in the Piceance Basin with differing sedimentary structures. One sample represents laminated Green River oil shales, and the other is representative of oil shale breccia. The FTIR microscopy results on the oil shales agree with XRD and LECO TOC data from the homogenized samples but also give additional detail regarding sample heterogeneity by providing information on the distribution of mineral phases and organic content. While measurements for this study were performed on oil shales, the method could also be applied to other geological samples, such as other mudrocks, complex carbonates, and soils.

  11. Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Wilder, Joseph; Gadhamshetty, Venkataramana; Stone, James J

    2017-01-01

    Modern drilling techniques, notably horizontal drilling and hydraulic fracturing, have enabled unconventional oil production (UOP) from the previously inaccessible Bakken Shale Formation located throughout Montana, North Dakota (ND) and the Canadian province of Saskatchewan. The majority of UOP from the Bakken shale occurs in ND, strengthening its oil industry and businesses, job market, and its gross domestic product. However, similar to UOP from other low-permeability shales, UOP from the Bakken shale can result in environmental and human health effects. For example, UOP from the ND Bakken shale generates a voluminous amount of saline wastewater including produced and flowback water that are characterized by unusual levels of total dissolved solids (350 g/L) and elevated levels of toxic and radioactive substances. Currently, 95% of the saline wastewater is piped or trucked onsite prior to disposal into Class II injection wells. Oil and gas wastewater (OGW) spills that occur during transport to injection sites can potentially result in drinking water resource contamination. This study presents a critical review of potential water resource impacts due to deterministic (freshwater withdrawals and produced water management) and probabilistic events (spills due to leaking pipelines and truck accidents) related to UOP from the Bakken shale in ND.

  12. Role of spent shale in oil shale processing and the management of environmental residues. Final technical report, January 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hines, A.L.

    1980-08-15

    The adsorption of hydrogen sulfide on retorted oil shale was studied at 10, 25, and 60/sup 0/C using a packed bed method. Equilibrium isotherms were calculated from the adsorption data and were modeled by the Langmuir, Freundlich, and Polanyi equations. The isosteric heat of adsorption was calculated at three adsorbent loadings and was found to increase with increased loading. A calculated heat of adsorption less than the heat of condensation indicated that the adsorption was primarily due to Van der Waals' forces. Adsorption capacities were also found as a function of oil shale retorting temperature with the maximum uptake occurring on shale that was retorted at 750/sup 0/C.

  13. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    Science.gov (United States)

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  14. Performance monitoring of electric shovels digging oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Patnayak, S. [Alberta Univ., Edmonton, AB (Canada). Natural Resources Engineering Facility; Tannant, D.D. [Alberta Univ., Edmonton, AB (Canada). School of Mining and Petroleum Engineering; Parsons, I. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre; Del Valle, V. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2005-07-01

    Some of the largest available mining equipment is used for oil sand mining operations. However, the performance of electric cable shovels varies with the diggability characteristics of the ground. In particular, oil sands diggability with cable shovels depends on structural geology, the depositional environment and geotechnical parameters. This paper described some of the key shovel performance indicators such as dig cycle time, digging energy and digging power. In winter, frost penetration can also affect oil sands diggability. The challenge of hard digging in oil sands is often addressed by blasting or ripping, which increases the cost of production and impedes productivity. The shovel performance is also influenced by other parameters such as operator skills, bucket and tooth design and shovel dipper trajectory. This paper demonstrated that hoist and crowd motor voltages and currents are useful in identifying the beginning and end of dig cycles. Performance indicators such as dig cycle time, hoist motor energy and power, and crowd motor energy and power were considered to assess material diggability. It was suggested that hoist power represents the ground diggability better than other performance indicators. 5 refs., 1 tab., 10 figs.

  15. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Annual report, June 1991--May 1992

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W. [Alabama Univ., University, AL (United States); Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Misra, M. [Nevada Univ., Reno, NV (United States); Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  16. Sustainable use of oil sands for geotechnical construction and road building

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-02-01

    Full Text Available Oil sands are natural deposits of bituminous sand materials that are mined and processed for crude oil. They are routinely used in oil sand fields for building temporary and sometimes permanent roads serving mining and hauling activities. Although...

  17. Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe

    NARCIS (Netherlands)

    Song, J.; Littke, R.; Weniger, P.; Ostertag-Henning, C.; Nelskamp, S.

    2015-01-01

    A suite of drilling cores and outcrop samples of the Lower Toarcian Posidonia Shale (PS) were collected from multiple locations including the Swabian Alb and Franconian Alb of Southwest-Germany, Runswick Bay of UK and Loon op Zand well (LOZ-1) of the West Netherlands Basin. In order to assess the th

  18. Shale oil value enhancement research. Quarterly report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The first year of this effort was focussed on the following broad objectives: (1) Analyze the molecular types present in shale oil (as a function of molecular weight distribution); (2) Determine the behavior of these molecular types in liquid-liquid extraction; (3) Develop the analytical tools needed to systematize the process development; (4) Survey the markets to assure that these have high value uses for the types found in shale oil; (5) Explore selective process means for extracting/converting shale oil components into concentrates of potentially marketable components; (6) Compile overview of the venture development strategy and begin implementation of that strategy. Each of these tasks has been completed in sufficient detail that we can now focus on filling in the knowledge gaps evident from the overview.

  19. Western oil shale development: a technology assessment. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The general goal of this study is to present the prospects of shale oil within the context of (1) environmental constraints, (2) available natural and economic resources, and (3) the characteristics of existing and emerging technology. The objectives are: to review shale oil technologies objectively as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  20. Oil shale mining and processing impact on landscapes in north-east Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Toomik, Arvi; Liblik, Valdo [North-East Estonian Department of Institute of Ecology, 15 Pargi Street, EE2045 Johvi (Estonia)

    1998-07-06

    As the world`s largest commercial oil shale reserve, the Estonian Oil Shale Deposit has been exploited since 1916. As a result of mining, storing of solid wastes from the oil shale separation, combustion in the power plants and its thermal processing, the landscape in northeastern Estonia has been essentially changed and the man-made landforms have developed: the new microreliefs of natural and artificial structure are formed, as well as `mountainous` and hilly reliefs in the form of waste heaps, ash plateaus, coke-ash dumps etc. Deformed (stable) and undeformed (unstable) areas from underground mining currently cover about 220km{sup 2}. About 90km{sup 2} (80%) of the area damaged by open pits are recultivated and reformed as forested and agricultural (grassland) areas. The total area occupied by solid waste has reached up to 26km{sup 2}. New technogenic landscape units, i.e. made by technical means, will essentially influence the environment

  1. Method for forming an in situ oil shale retort with horizontal free faces

    Science.gov (United States)

    Ricketts, Thomas E.; Fernandes, Robert J.

    1983-01-01

    A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.

  2. Modelling of underground geomechanical characteristics for electrophysical conversion of oil shale

    Science.gov (United States)

    Bukharkin, A. A.; Koryashov, I. A.; Martemyanov, S. M.; Ivanov, A. A.

    2015-11-01

    Oil shale energy extraction is an urgent issue for modern science and technique. With the help of electrical discharge phenomena it is possible to create a new efficient technology for underground conversion of oil shale to shale gas and oil. This method is based on Joule heat in the rock volume. During the laboratory experiments the problem has arisen, when the significant part of a shale fragment is being heated, but the further heating is impossible due to specimen cracking. It leads to disruption in current flow and heat exchange. Evidently, in the underground conditions these failure processes will not proceed. Cement, clay and glass fiber/epoxy resin armature have been used for modelling of geomechanical underground conditions. Experiments have shown that the use of a reinforcing jacket makes it possible to convert a full rock fragment. Also, a thermal field extends radially from the centre of a tree-type structure, and it has an elliptic cross section shape. It is explained by the oil shale anisotropy connected with a rock laminar structure. Therefore, heat propagation is faster along the layers than across ones.

  3. Shale Hydrocarbon Prospecting in the Central Part of the Volga-Ural Oil and Gas Province

    Science.gov (United States)

    Muslimov, Renat Kh.; Plotnikova, Irina N.

    2014-05-01

    Until now nobody has prospected or estimated the oil shale resources in Tatarstan, although the high-carbon rocks of Domanikoidtype often became an object of studies dedicated to assessment of the generation potential of liquid and gaseous hydrocarbons. The evaluation of oil-shale deposits in Tatarstan should base on the well-known geological, geochemical and technological criteria. The main, determining conditions for shale oil and gas deposit formation are the following: high content of organic matter (OM) in the rock, and its certain catagenetic maturity; special features of the mineral composition of rocks that contribute to the formation of fractures; and the presence of overlying and underlying impermeable dense strata that ensure the safety of hydrocarbons in the shale series. In Tatarstan, the development prospects of shale oil fields should be associated primarily with the rocks ofDomanikoid formations of Upper Devonian - such as Semiluksky (Domanik) horizon, as well asRechitsky (Mendymsky) horizon and Domanikoid formations of central and side areas of the Kama-Kinel trough system. Studies on Domanikwere started in the middle of the last century, when the Ural-Volga region experienced active interest for oil exploration. Then the research of Domanikoid series was carried out at the Department of Oil and Gas Geology, Kazan State University. Butback then the prospecting was not clearly associated with an estimate of shale oil resources. As revealed during rock geochemical studies of the rock, the average content of organic matter in deposits of Semiluksky and Mendymsky horizons is 8.35 and 2.56 % respectively, which is enough to takethese horizons as the main object of research and resource assessment. The presence of silica rocks and dense limestone in such a large proportion is a favorable factor in terms of assessing the effectiveness of fracturing. So we have a quite clear understanding of how to explore Domanik. In fact, the geological structure of our

  4. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  5. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  6. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    Science.gov (United States)

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  7. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments.

    Science.gov (United States)

    Mõtlep, Riho; Sild, Terje; Puura, Erik; Kirsimäe, Kalle

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    Science.gov (United States)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  9. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

  10. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

  11. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Wendy; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  12. Discrimination of moist oil shale and limestone using laser induced breakdown spectroscopy

    Science.gov (United States)

    Paris, P.; Piip, K.; Lepp, A.; Lissovski, A.; Aints, M.; Laan, M.

    2015-05-01

    Laser-induced plasma emission spectra of Estonian oil shale and associated limestone with varying moisture content were studied. Time gated spectra excited by 1064 nm laser radiation were recorded. Spectral lines for determination of plasma parameters were selected. Moisture causes the reduction of the intensity of the total emission, and increases the intensity of the Hα line. It was found that the effect of the moisture content on the plasma temperature and electron concentration was inconsiderable. Using the ratio of intensities of Hα and Mg spectral lines, it was possible to distinguish reliably between limestone and oil shale independently of their moisture content.

  13. Successful strategies for water management in the oil sands region

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Baker, M. [Shell Canada Ltd., Calgary, AB (Canada). Oil Sands Division

    2004-07-01

    Since large quantities of water are required for oil sand mining, water withdrawals from rivers located near oil sand mining facilities may increase. This paper referred to the water-based extraction process at the Muskeg River Mine operated by Albian Sands Energy. Although water is recycled and reused as much as possible, drought conditions in Alberta have raised concerns about the potential increased rates of water withdrawal during seasonal low flow periods. Measures have been taken to manage river withdrawals and ensure sustainability of aquatic resources. A committee has been established under the Cumulative Environmental Management Association (CEMA) to develop a management system for the Athabasca River. The committee includes stakeholders from federal and provincial governments, First Nations, non-government groups and industry. This paper describes the challenges facing oil sands developers in the region with particular emphasis on the role that the newly developed management system called 'Instream Flow Needs', will have on the cumulative water withdrawal from the Athabasca River. 9 figs.

  14. Tar sands : dirty oil and the future of a continent

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforuk, A.

    2008-07-01

    This book exposes the environmental, social and political costs of oil sands development in Alberta's Athabasca Deposit. It argues that the earth-destroying production methods of bitumen cost nearly 20 times more than conventional crude to produce and upgrade. Most of the tar sands lie in such deep formations that bitumen must be steamed out of the ground using an array of pumps, pipes and horizontal wells. Steam assisted gravity drainage (SAGD), which is the most popular in situ technology used to recover oil sands can have detrimental effects on the boreal forests, wildlife and their habitat. The book emphasized the high greenhouse gas emissions, high energy consumption and suspected health problems associated with oil sands development. It also highlighted the industry's poor record on reclamation. Although some industry players have taken measures to reduce water consumption, more will have to be done to treat and reuse water. The author advocates that changes must be made in order to ensure sustainable development. refs., figs.

  15. Erosion/corrosion testing of materials for oil sands applications

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, G.; Wolodko, J.; Alemaskin, K.; Been, J.; Danysh, M. [Alberta Research Council, Edmonton, AB (Canada)

    2008-07-01

    Erosion and corrosion are common wear mechanisms for components used in oil sands processing facilities. This paper described a slurry jet test apparatus designed to evaluate and assess materials for oil sands service conditions. The jet testing apparatus was designed to mimic the wet erosion phenomena typically found in oil sands applications. Wear- and corrosion-resistant materials tested by the apparatus included carbon steel, tungsten carbide metal matrix composite (WC-MMC) overlays, and a range of polymer and rubber liner materials. Polymeric materials included hydrogenated nitrile rubber (HNBR); polyurethane elastomer; and high density polyethylene (HDPE). Material losses were determined by measuring the mass of the samples before and after testing. Normalized rates of abrasion were calculated by dividing total mass lost in the specimens by the total mass of sand impinged on the sample surface. Samples were also visually assessed and analyzed using scanning electron microscopy (SEM) in order to determine failure modes. Tests were conducted for a 2-hour period at an impingement angle of 90 degrees. Results of the study showed that the average abrasion rates of the polymeric samples are lower than rates seen with the carbon steel and overlay materials. Future work on the apparatus will include testing the materials under varying slurry jet parameters. 15 refs., 5 tabs., 10 figs.

  16. Characterization of low contrast shale-sand reservoir using Poisson impedance inversion: Case study of Gumai formation, Jambas field Jambi Sub-basin

    Science.gov (United States)

    Haris, A.; Nenggala, Y.; Suparno, S.; Raguwanti, R.; Riyanto, A.

    2017-07-01

    Low impedance contrast between the shale-sand layer, which can be found in the situation where shale layer wrapped in the sand reservoir, is a challenging case for explorationist in characterizing sand distribution from shale layer. In this paper, we present the implementation of Poisson impedance in mapping sand distribution in Gumai formation, Jambas Field, Jambi Sub-basin. Gumai formation has become a prospective zone, which contains sandstone with strong laterally change. The characteristic of facies at Gumai formation, which is laterally changing, has been properly mapped based on the Acoustic impedance (AI) and Shear impedance (SI). These two impedances, which is yielded by performing seismic simultaneous inversion, is then combined to generate Poisson impedance. The Poisson impedance is conceptually formulated as a contrast between AI and a scaled SI with the scale is estimated from the gradient of the relationship between AI and SI. Our experiment shows that the Poisson impedance map is able to separate the sand distribution from the shale layer. Therefore the sand facies has been clearly delineated from the contrast of Poisson impedance.

  17. Laboratory Observations of Artificial Sand and Oil Agglomerates: Video and Velocity Data: Sea Floor Interaction Experiment Video (GoPro)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in...

  18. Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data: Sea Floor Interaction Experiment Flow Velocity

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in...

  19. Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data: False-Floor Experiment Interpretive Video

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in...

  20. Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data: Sea Floor Interaction Experiment Interpretive Video

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in...

  1. 页岩油分类与评价%Classification and evaluation of shale oil

    Institute of Scientific and Technical Information of China (English)

    张金川; 林腊梅; 李玉喜; 唐玄; 朱亮亮; 邢雅文; 姜生玲; 荆铁亚; 杨升宇

    2012-01-01

    Shale oil is liquid hydrocarbon formed in the effective source rocks with free phase(condense oil),adsorbed and dissolved phase(dissolved in gas,kerogen and residual water).According to hydrocarbon phase,genesis and exploration procedures of hydrocarbon within the shale,the shale oil and gas are classified into two groups and eight classes.Based on the shale oil characteristics in China,the shale oil forming conditions and distribution law were concluded.Large scale distribution of effective shales,development of organic rich shales in deep water-half deep water with thermal maturity,and good matrix physical properties are the necessary conditions for the formation of shale oil.Furthermore,we created the shale oil development mode in the continental faulted lake basin,and pointed out that the probability volumetric calculation method can be used to assess shale oil resource,and also put forward the parameter system and criteria for shale oil prospective area,favorable area and target area.The success in shale oil development has significant impact on the energy consumption structure in China.%页岩油是以游离(含凝析态)、吸附及溶解(可溶解于天然气、干酪根和残余水等)态等多种方式赋存于有效生烃泥页岩地层层系中且具有勘探开发意义的非气态烃类。根据泥页岩地层中所含烃类相态、成因机理及勘探开发等特点,将页岩类油气划分为页岩气和页岩油等两类八种。结合页岩油特点,指出了我国页岩油形成条件和分布规律,即规模分布的有效生烃泥页岩、形成于深水-半深水相的富有机质泥页岩、较高的有机质丰度和适当的热演化程度以及较好的基质物性条件等是页岩油形成的主要条件。建立了中国陆相断陷湖盆页岩油发育模式,指出概率体积法可以作为页岩油资源评价的主要方法,提出了页岩油远景区、有利区及目标区优选的参数体系和标准。作为非常规

  2. Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1993-03-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

  3. Oil sand process-affected water treatment using coke adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Gamal El-Din, M.; Pourrezaei, P.; Chelme-Ayala, P.; Zubot, W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    Oil sands operations generate an array of oil sands process-affected water (OSPW) that will eventually be released to the environment. This water must be evaluated within conventional and advanced water treatment technologies. Water management strategies propose options for increased reuse and recycling of water from settling ponds, as well as safe discharge. This presentation outlined the typical composition of OSPW. Constituents of concern in OSPW include suspended solids, hydrocarbons, salts, ammonia, trace metals, and dissolved organics such as naphthenic acids (NAs). Petroleum coke is one of the by-products generated from bitumen extraction in the oil sands industry and can be used as one of the possible treatment processes for the removal of organic compounds found in OSPW. Activated carbon adsorption is an effective process, able to adsorb organic substances such as oils, radioactive compounds, petroleum hydrocarbons, poly aromatic hydrocarbons and various halogenated compounds. The objectives of this study were to evaluate the production of activated carbon from petroleum coke using steam as the activation media; to determine the factors affecting the absorption of NAs; and to evaluate the activated coke adsorption capacity for the reduction of NAs and dissolved organic carbons present in OSPW. It was concluded that petroleum non-activated coke has the ability to decrease COD, alkalinity, and NA concentration. tabs., figs.

  4. Opportunities in oil sands production bi-products

    Energy Technology Data Exchange (ETDEWEB)

    Gunardson, H. [Air Products Canada Ltd., Calgary, AB (Canada)

    2006-07-01

    This presentation investigated potential by-products from oil sands production and upgrading facilities, and examined the extent to which carbon dioxide (CO{sub 2}) enhanced oil recovery (EOR) projects can absorb greenhouse gas (GHG) emissions from oil sands developments. Oil sands production by-products included bitumen and petroleum coke; heat; hydrocarbon off-gases; hydrogen; syngas; sulfur; metals; and CO{sub 2} sources from combustion processes and hydrogen production. CO{sub 2} concentrations from flue gases are typically less than 17 per cent, and contain contaminants such as nitrogen, particulates, nitrogen oxide (NO{sub x}) and sulphur dioxide (SO{sub x}). CO{sub 2} concentrations derived from hydrogen production have a high purity and contain water vapour, unreacted hydrocarbons, hydrogen sulphide (H{sub 2}S) and volatile metals. Existing carbon capture technologies are currently not capable of processing large volumes of CO{sub 2}. However, small volumes of CO{sub 2} are used in the manufacturing of carbonated beverages. Larger volumes of CO{sub 2} are used in EOR and coalbed methane (CBM) recovery as well as in CO{sub 2} sequestration. Carbon capture technologies include amine scrubbers, selexol and rectisol gasification processes, and Benfield Catacarb processes. The market price for CO{sub 2} in EOR and gas recovery is approximately $35 per tonne. However, combustion processes typically cost $103 per tonne. CO{sub 2} sources and sinks were also identified. It is estimated that total CO{sub 2} sequestration using EOR will equal 200 mega tonnes by 2030. Apart from gasification processes, all CO{sub 2} sources are uneconomic using current technology. The oil sands industry is in need of a policy framework and support for infrastructure investments for CO{sub 2} pipelines and sequestration facilities. tabs., figs.

  5. North American Oil Sands: History of Development, Prospects for the Future

    Science.gov (United States)

    2008-01-17

    mixture of sand, bitumen (a heavy crude that does not flow naturally), and water, can be mined or the oil can be extracted in-situ using thermal recovery...quartz sand, bitumen , and water that can either be mined or extracted in-situ5 using thermal recovery techniques. Typically, oil sands contain about...different technology for bitumen extraction than that used for Alberta’s water-wetted deposits. Oil sands are characterized as having a wet interface

  6. UK Frac Sand Resources

    OpenAIRE

    Mitchell, C J

    2015-01-01

    Although still just a glimmer in the gas man’s eye, the prospect of shale hydrocarbon (oil and gas) development in the UK has many companies thinking about the industrial minerals it will require. Chief amongst these is silica sand which is used as a ‘proppant’ in the hydraulic fracturing, or ‘fracking’, of shales to help release the gas. The UK has large resources of sand and sandstone, of which only a small proportion have the necessary technical properties that classify them as ‘silica san...

  7. UK silica sand resources for fracking

    OpenAIRE

    Mitchell, Clive

    2013-01-01

    UK silica sand resources for fracking Clive Mitchell, Industrial Minerals Specialist, British Geological Survey, Keyworth, Nottingham, NG12 5GG Email: Silica sand is high purity quartz sand that is mainly used for glass production, as foundry sand, in horticulture, leisure and other industrial uses. One specialist use is as a ‘proppant’ to enhance oil and gas recovery. This presentation will focus on this application, particularly for shale gas recovery where it is mo...

  8. Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?

    Science.gov (United States)

    Hughes, J. D.

    2012-12-01

    Shale gas has been heralded as a "game changer" in the struggle to meet America's demand for energy. The "Pickens Plan" of Texas oil and gas pioneer T.Boone Pickens suggests that gas can replace coal for much of U.S. electricity generation, and oil for, at least, truck transportation1. Industry lobby groups such as ANGA declare "that the dream of clean, abundant, home grown energy is now reality"2. In Canada, politicians in British Columbia are racing to export the virtual bounty of shale gas via LNG to Asia (despite the fact that Canadian gas production is down 16 percent from its 2001 peak). And the EIA has forecast that the U.S. will become a net exporter of gas by 20213. Similarly, recent reports from Citigroup and Harvard suggest that an oil glut is on the horizon thanks in part to the application of fracking technology to formerly inaccessible low permeability tight oil plays. The fundamentals of well costs and declines belie this optimism. Shale gas is expensive gas. In the early days it was declared that "continuous plays" like shale gas were "manufacturing operations", and that geology didn't matter. One could drill a well anywhere, it was suggested, and expect consistent production. Unfortunately, Mother Nature always has the last word, and inevitably the vast expanses of purported potential shale gas resources contracted to "core" areas, where geological conditions were optimal. The cost to produce shale gas ranges from 4.00 per thousand cubic feet (mcf) to 10.00, depending on the play. Natural gas production is a story about declines which now amount to 32% per year in the U.S. So 22 billion cubic feet per day of production now has to be replaced each year to keep overall production flat. At current prices of 2.50/mcf, industry is short about 50 billion per year in cash flow to make this happen4. As a result I expect falling production and rising prices in the near to medium term. Similarly, tight oil plays in North Dakota and Texas have been heralded

  9. Oil sands water withdrawal challenges and the Athabasca River

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Baker, M. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre

    2003-07-01

    Drought conditions in Alberta have raised concerns regarding water withdrawal from the Athabasca River for oil sands development projects in the Regional Municipality of Wood Buffalo in Northeastern Alberta. In particular, concerns have been raised about the potential increased rates of water withdrawal during seasonal low flow periods. A committee has been established under the Cumulative Environmental Management Association (CEMA) to develop a management system for the Athabasca River. The committee includes stakeholders from federal and provincial governments, First Nations, non-government groups and industry. This paper describes the challenges facing oil sands developers in the region with particular emphasis on the role that the newly developed management system called 'Instream Flow Needs', will have on the cumulative water withdrawal from the Athabasca River. tabs., figs.

  10. Monitoring of the Canadian Oil Sands from the Aura Satellite

    Science.gov (United States)

    McLinden, C. A.; Shephard, M. W.; Fioletov, V.; Cady-Pereira, K. E.; Krotkov, N. A.; Boersma, K. F.; Li, C.; Luo, M.; Joiner, J.; Bhartia, P. K.

    2014-12-01

    Two instruments on-board the NASA Aura satellite, the Ozone Monitoring Instrument (OMI) and Tropospheric Emission Spectrometer (TES), have been used to monitor air pollution over the Canadian oil sands region. Between them they provide a unique perspective on the distributions, evolution, and sources of several key pollutants. This presentation will detail some highlights from these Aura-based oil sands studies: (i) the evolution of OMI-measured nitrogen dioxide and sulfur dioxide enhancements over the past decade, including comparisons with other nearby sources, (ii) two years of ammonia, carbon monoxide, methanol, and formic acid observations from TES special-observation transects, and (iii) preliminary insights into emissions derived from these observations.

  11. Field observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  12. Case study of an application of computer mapping in oil-shale resource mapping

    Energy Technology Data Exchange (ETDEWEB)

    Davis, F.G.F. Jr.; Smith, J.W.

    1979-01-01

    The Laramie Energy Technology Center, U.S. Department of Energy, is responsible for evaluating the resources of potential oil and the deposit characteristics of oil shales of the Green River Formation in Colorado, Utah, and Wyoming. While the total oil shale resource represents perhaps 2 trillion barrels of oil, only parts of this total are suitable for any particular development process. To evaluate the resource according to deposit characteristics, a computer system for making resource calculations and geological maps has been established. The system generates resource tables where the calculations have been performed over user-defined geological intervals. The system also has the capability of making area calculations and generating resource maps of geological quality. The graphics package that generates the maps uses corehole assay data and digitized map data. The generated maps may include the following features: selected drainages, towns, political boundaries, township and section surveys, and corehole locations. The maps are then generated according to user-defined scales.

  13. Assessment of In-Place Oil Shale Resources of the Green River Formation, Piceance Basin, Western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Pantea, Michael P.; Self, Jesse G.

    2009-01-01

    The U.S. Geological Survey (USGS) recently completed a reassessment of in-place oil shale resources, regardless of richness, in the Eocene Green River Formation in the Piceance Basin, western Colorado. A considerable amount of oil-yield data has been collected after previous in-place assessments were published, and these data were incorporated into this new assessment. About twice as many oil-yield data points were used, and several additional oil shale intervals were included that were not assessed previously for lack of data. Oil yields are measured using the Fischer assay method. The Fischer assay method is a standardized laboratory test for determining the oil yield from oil shale that has been almost universally used to determine oil yields for Green River Formation oil shales. Fischer assay does not necessarily measure the maximum amount of oil that an oil shale can produce, and there are retorting methods that yield more than the Fischer assay yield. However, the oil yields achieved by other technologies are typically reported as a percentage of the Fischer assay oil yield, and thus Fischer assay is still considered the standard by which other methods are compared.

  14. Environmental assessment: Geokinetics, Inc. oil shale research project, Uintah County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Geokinetics, Inc. (GKI) proposes to complete the remaining experimental program to develop the LOFRECO modified horizontal in situ oil shale retorting process. This Environmental Assessment Report addresses the impacts of the project, located in a remote area of east-central Utah, about 70 miles south of both Vernal and Roosevelt.

  15. Geochemical Characteristics and its Geological Significance of Oil Shale from the Youganwo Formation, Maoming Basin, China

    Science.gov (United States)

    Zhou, Yuanyuan; Qiu, Nansheng

    2016-04-01

    Geochemical elements of oil shale in the Maoming Basin were analyzed to discuss provenance attribute and depositional environment of the Youganwo formation. Experimental date of the major elements, trace elements and rare earth elements of 24 samples from the Maoye 1 well were examined.The analyzed oil shale samples were characterized by enrichment of Th, U, Pb and LREE, depleted of Zr, Cr and Hf,negative Eu and Ce anomalies, indicating that these samples were originated from continental crust. The chemical index of alteration (CIA) values and the Zr/Sc-Th/Sc diagrams indicate that source rocks had undergone intense chemical weathering and deposition recirculation. Based on the La/Th-Hf and La/Yb-∑REE diagrams and the negative anomaly of Eu element, the oil shale in the Maoming Basin has diverse sources, which mainly came from felsic source region of the upper crust or the mixture of felsic volcanic rocks, granite and sedimentary rocks. Ratios of the Sr/Cu, MgO/CaO suggest that oil shale was formed in fresh water under warm and humid climate, shallow water column became deeper during the middle and late sedimentary period. The depositional environment is interpreted to be limnetic with weak reduction at the early stage and gradually turned into semi-deep to deep lacustrine.

  16. Modeling calcium dissolution from oil shale ash: Part 2.. Continuous washing of the ash layer

    Energy Technology Data Exchange (ETDEWEB)

    Velts, O.; Kallas, J. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia); Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Hautaniemi, M.; Kuosa, M. [Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Kuusik, R. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia)

    2010-05-15

    In the present work a possible approach to the utilization of oil shale ash containing free lime in precipitated calcium carbonate (PCC) production is elucidated. This paper investigates the Ca (calcium) dissolution process during continuous washing of pulverized firing (PF) and fluidized bed combustion (FBC) oil shale ash layers in a packed-bed leaching column. The main characteristics of the Ca dissolution process from ash are established. The effect of water flow rate is investigated by conducting leaching experiments of oil shale ashes formed in boilers operating with different combustion technologies. The values of the overall and liquid phase mass transfer coefficients are evaluated based on experiments using the developed ash layer washing model. The model is a set of partial differential equations that describe the changes in Ca content in the stagnant layer of ash and in the water flowing through the ash layer. An example in which the model is applied to environmental assessment and estimation of Ca leaching from industrial oil shale ash fields is provided. (author)

  17. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands.

    Science.gov (United States)

    Kaasik, Ago; Vohla, Christina; Mõtlep, Riho; Mander, Ulo; Kirsimäe, Kalle

    2008-02-01

    The P-retention in hydrated calcareous ash sediment from oil-shale burning thermal power plants in Estonia was studied. Batch experiments indicate good (up to 65 mg P g(-1)) P-binding capacity of the hydrated oil-shale ash sediment, with a removal effectiveness of 67-85%. The high phosphorus sorption potential of hydrated oil-shale ash is considered to be due to the high content of reactive Ca-minerals, of which ettringite Ca6Al2(SO4)3(OH)12.26H2O and portlandite Ca(OH)2 are the most important. The equilibrium dissolution of ettringite provides free calcium ions that act as stable nuclei for phosphate precipitation. The precipitation mechanism of phosphorus removal in hydrated ash plateau sediment is suggested by Ca-phosphate formation in batch experiments at different P-loadings. Treatment with a P-containing solution causes partial-to-complete dissolution of ettringite and portlandite, and precipitation of Ca-carbonate and Ca-phosphate phases, which was confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM)-EDS studies. Thus, the hydrated oil-shale ash sediment can be considered as a potential filtration material for P removal in constructed wetlands for wastewater treatment.

  18. Geological settings of the protected Selisoo mire (northeastern Estonia threatened by oil shale mining

    Directory of Open Access Journals (Sweden)

    Helen Hiiemaa

    2014-05-01

    Full Text Available The protected Selisoo mire in northeastern Estonia is located above valuable oil shale resources, partly in the permitted mining area. We describe in detail the geomorphology and geological setting of the mire to understand the natural preconditions for its formation, development and preservation. We used the LiDAR-based digital elevation model for relief analysis, mapped the peat thickness with ground-penetrating radar and described the Quaternary cover through corings. Ridges, oriented perpendicular to the generally southward-sloping terrain, and shallow depressions at the surface of mineral soil have influenced mire formation and its spatio-temporal dynamics. The Quaternary cover under the mire is thin and highly variable. Therefore the mire is hydro­geologically insufficiently isolated from the limestone bedrock that is drained by the nearby oil shale mine and consequently the mining activities approaching the mire may have a negative influence on the wetland and proposed Natura 2000 site. Natura 2000 type wetlands, both protected or currently outside the nature reserves, cover a significant portion of the prospective oil shale mining areas. The distribution and resilience of those sites may significantly influence further utilization of oil shale resources.

  19. The serious effect of oil shale industry on air quality in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Raetsep, A.; Liblik, V. [Estonian Academy of Sciences, Tallinn (Spain). North-East Estonian Dept. Inst. of Ecology

    1995-12-31

    Oil shale is the most important mineral resource of Estonia and that is why the extremely serious environmental problems in north-eastern Estonia (Ida-Virumaa) during the last decades are frequently connected with mining, combustion and thermal processing of this resource. Estonian oil shale is unique due to its composition containing besides chemically complicated organic matter (24-30 %) many mineral components as Mg- and Ca-carbonates, clay minerals, quartz, orthoclase, gypsum, heavy metals etc. Organic matter (kerogene) contains in addition to carbon (77.5 %) and hydrogen (9.7 %, atomic ratio H/C=1.5), oxygen (10 %), sulphur (1.5-1.7 %), nitrogen (0.5 %) and chlorine (0.8%). Such complicated physico-chemical structure (organic-mineral high-molecular complex) decomposes during the processes of oil shale combustion and thermal processing (semi-coking) causing in different ways the volatilization of hundreds of toxic chemical compounds into atmospheric air. Dispersion of those in the atmosphere has influenced and influences seriously the chemical composition of the air in north-eastern region of Estonia. In this presentation the effect of aerotechnogenic influxes as dangerous environmental factors, connected immediately with utilization of oil shale, on the state of atmospheric air and on formation of concentration fields of pollutants in north-eastern Estonia is analyzed and discussed

  20. Discrimination of moist oil shale and limestone using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paris, P., E-mail: peeter.paris@ut.ee; Piip, K.; Lepp, A.; Lissovski, A.; Aints, M.; Laan, M.

    2015-05-01

    Laser-induced plasma emission spectra of Estonian oil shale and associated limestone with varying moisture content were studied. Time gated spectra excited by 1064 nm laser radiation were recorded. Spectral lines for determination of plasma parameters were selected. Moisture causes the reduction of the intensity of the total emission, and increases the intensity of the H{sub α} line. It was found that the effect of the moisture content on the plasma temperature and electron concentration was inconsiderable. Using the ratio of intensities of H{sub α} and Mg spectral lines, it was possible to distinguish reliably between limestone and oil shale independently of their moisture content. - Highlights: • Laser induced plasma emission spectra of both; Estonian oil shale and limestone with varying moisture content were studied. • The temporal change of the laser induced plasma plume temperature T{sub e} and electron density n{sub e} were evaluated. • Plasma temperature and electron concentration changed with the moisture content inconsiderably. • Limestone and oil shale are distinguished independently of their moisture content by the intensity ratio of H{sub α} and Mg lines.

  1. Assessment of shale-oil resources of the Central Sumatra Basin, Indonesia, 2015

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.

    2015-11-12

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 459 million barrels of shale oil, 275 billion cubic feet of associated gas, and 23 million barrels of natural gas liquids in the Central Sumatra Basin, Indonesia.

  2. Assessment of shale-oil resources of the Central Sumatra Basin, Indonesia, 2015

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.

    2015-11-12

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 459 million barrels of shale oil, 275 billion cubic feet of associated gas, and 23 million barrels of natural gas liquids in the Central Sumatra Basin, Indonesia.

  3. Managing the environmental challenges of oil sand development

    Energy Technology Data Exchange (ETDEWEB)

    Weagle, K. [Cumulative Environmental Management Association, Fort McMurray, AB (Canada)

    2003-07-01

    A brief overview of the development of the oil sand industry in Alberta was provided with reference to proposed projects, government revenue, and jobs in the industry between 1995 and 2002. The major environmental concerns facing the industry are: corporations and environmental risk; the process required by both the federal government and the government of Alberta to address cumulative effects; and, an increased interest in resource development. Self-regulation in the sector was discussed, examining who pays the bills, and the triad of self-regulation. The author described the Cumulative Environmental Management Association (CEMA) as being a multi-shareholder group working to implement sustainable development strategies by promoting management and understanding of cumulative impacts. The 14 themes of CEMA were examined, its goals reviewed, and the corporate structure described. Other challenges facing the oil sands industry originate from the Kyoto Protocol negotiations and construction costs. The Alberta government fosters a climate that encourages continued development in Alberta's oil sands areas. figs.

  4. Pyrolysis and Hydropyrolysis of Kentucky Oil Shale with Product Oil Characterization.

    Science.gov (United States)

    2014-09-26

    Reacticn Time (min.) j67 J n IcT .± o ! dram At i(aliv. This result reinforces the conc lusion that the rates of the gas forming reactions are slow...bonds hold in the kerogen in the. i nur ian1C mal rix of the oil shale react by ’"capping" r., Ict Io 11 in the presen’e of the free radical scavanging...8217 Al.,AP’x IF HFATFP TEF RERATUP1 EX(’EDS 740 - >32 !’ ’ = 1 TO( lt’r,, P!ER ( 163𔄀) --: .,!":I !’! 3! F ElT I’,EN -. ’ ’l .., ) (1 A, SES 1)ATA E A E

  5. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program`s oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994.

  6. Preliminary analysis of surface mining options for Naval Oil Shale Reserve 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-20

    The study was undertaken to determine the economic viability of surface mining to exploit the reserves. It is based on resource information already developed for NOSR 1 and conceptual designs of mining systems compatible with this resource. Environmental considerations as they relate to surface mining have been addressed qualitatively. The conclusions on economic viability were based primarily on mining costs projected from other industries using surface mining. An analysis of surface mining for the NOSR 1 resource was performed based on its particular overburden thickness, oil shale thickness, oil shale grade, and topography. This evaluation considered reclamation of the surface as part of its design and cost estimate. The capital costs for mining 25 GPT and 30 GPT shale and the operating costs for mining 25 GPT, 30 GPT, and 35 GPT shale are presented. The relationship between operating cost and stripping ratio, and the break-even stripping ratio (BESR) for surface mining to be competitive with room-and-pillar mining, are shown. Identification of potential environmental impacts shows that environmental control procedures for surface mining are more difficult to implement than those for underground mining. The following three areas are of prime concern: maintenance of air quality standards by disruption, movement, and placement of large quantities of overburden; disruption or cutting of aquifers during the mining process which affect area water supplies; and potential mineral leaching from spent shales into the aquifers. Although it is an operational benefit to place spent shale in the open pit, leaching of the spent shales and contamination of the water is detrimental. It is therefore concluded that surface mining on NOSR 1 currently is neither economically desirable nor environmentally safe. Stringent mitigation measures would have to be implemented to overcome some of the potential environmental hazards.

  7. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States) Dept. of Geology and Geological Engineering; Minnick, Matthew D [Colorado School of Mines, Golden, CO (United States) Dept. of Geology and Geological Engineering; Mattson, Earl D [Idaho National Lab. (INL), Idaho Falls, ID (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States) Dept. of Cilvil and Environmental Engineering; Murray, Kyle E. [Univ. of Oklahoma, Norman, OK (United States) Oklahoma Geological Survey

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor

  8. Shale oil value enhancement research. Quarterly report, March 1 - May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Activities during this quarter focused on integrating the various tasks and elements. During Phase-1, substantial effort was placed on designing and automating the identification of molecular types present in shale oil. The ability to know the molecular composition and to track a given ``target`` species through the initial concentration steps was deemed critically important to the ultimate success of the three-phase project. It has been this molecular tracking ability that clearly distinguishes the JWBA work from prior shale oil research. The major software and hardware tasks are not in place to rapidly perform these analytical efforts. Software improvements are expected as new questions arise. The existence of the major nitrogen and oxygen types in shale oil has been confirmed. Most importantly, the ability to convert higher molecular weight types to lower molecular weight types was preliminarily confirmed in the present quarter. This is significant because it confirms earlier hypothesis that values are found though out the boiling range. Potential yields of extremely high value chemicals, e.g., $1000/bbl of up to 10% by weight of the barrel remain a feasible objective. Market and economic assessment continue to show encouraging results. Markets for specialty and fine chemicals containing a nitrogen atom are expanding both in type and application. Initial discussions with pharmaceutical and agrochemical industries show a strong interest in nitrogen-based compounds. Major progress was made during this quarter in completing agreements with industry for testing of shale oil components for biological activity. Positive results of such testing will add to the previously known applications of shale oil components as pure compounds and concentrates. During this quarter, we will formulate the pilot plant strategy for Phase-11(a).

  9. Gasification of oil shale for hydrogen containing gas production

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); United Research and Development Center Ltd., Moscow (Russian Federation); Strizhakova, Yu. [Samara State Technical Univ. (Russian Federation); Zhagfarov, F.G.; Usova, T.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2010-12-30

    Qualified using of combustible shale, peat and wood for production of fuel and chemical products is a very actual problem for our country because of their large resource. It is possible to carry out two principal different ways of their use: thermal processing and gasification with following processing of gas products. Production of synthesis gas with composition CO:H{sub 2}=1:2 (vol) is possible at gasification of combustible shale. This gas is converted into the mixture of hydrocarbons over cobalt catalysts at 170-280 C at 1-3 bar. The hydrocarbons can be used as motor, including diesel, or reactive fuel. We proposed the effective catalysts at which conversion of synthesis gas in liquid products equals 80-90%. (orig.)

  10. Ecotoxicological impacts of effluents generated by oil sands bitumen extraction and oil sands lixiviation on Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Debenest, T; Turcotte, P; Gagné, F; Gagnon, C; Blaise, C

    2012-05-15

    The exploitation of Athabasca oil sands deposits in northern Alberta has known an intense development in recent years. This development has raised concern about the ecotoxicological risk of such industrial activities adjacent to the Athabasca River. Indeed, bitumen extraction generated large amounts of oil sands process-affected water (OSPW) which are discharged in tailing ponds in the Athabasca River watershed. This study sought to evaluate and compare the toxicity of OSPW and oil sands lixiviate water (OSLW) with a baseline (oil sands exposed to water; OSW) on a microalgae, Pseudokirchneriella subcapitata, at different concentrations (1.9, 5.5, 12.25, 25 and 37.5%, v/v). Chemical analyses of water-soluble contaminants showed that OSPW and OSLW were enriched in different elements such as vanadium (enrichment factor, EF=66 and 12, respectively), aluminum (EF=64 and 15, respectively), iron (EF=52.5 and 17.1, respectively) and chromium (39 and 10, respectively). The toxicity of OSPW on cells with optimal intracellular esterase activity and chlorophyll autofluorescence (viable cells) (72h-IC 50%37.5%, v/v). OSLW was 4.4 times less toxic (IC 50%=8.5%, v/v) than OSPW and 4.5 times more toxic than OSW. The inhibition of viable cell growth was significantly and highly correlated (copper, lead, molybdenum and vanadium concentrations. The specific photosynthetic responses studied with JIP-test (rapid and polyphasic chlorophyll a fluorescence emission) showed a stimulation of the different functional parameters (efficiency of PSII to absorb energy from photons, size of effective PSII antenna and vitality of photosynthetic apparatus for energy conversion) in cultures exposed to OSPW and OSLW. To our knowledge, our study highlights the first evidence of physiological effects of OSPW and OSLW on microalgae. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  11. Ecotoxicological impacts of effluents generated by oil sands bitumen extraction and oil sands lixiviation on Pseudokirchneriella subcapitata

    Energy Technology Data Exchange (ETDEWEB)

    Debenest, T., E-mail: tdebenest@yahoo.fr [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Turcotte, P. [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Gagne, F., E-mail: francois.gagne@ec.gc.ca [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Gagnon, C.; Blaise, C. [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada)

    2012-05-15

    The exploitation of Athabasca oil sands deposits in northern Alberta has known an intense development in recent years. This development has raised concern about the ecotoxicological risk of such industrial activities adjacent to the Athabasca River. Indeed, bitumen extraction generated large amounts of oil sands process-affected water (OSPW) which are discharged in tailing ponds in the Athabasca River watershed. This study sought to evaluate and compare the toxicity of OSPW and oil sands lixiviate water (OSLW) with a baseline (oil sands exposed to water; OSW) on a microalgae, Pseudokirchneriella subcapitata, at different concentrations (1.9, 5.5, 12.25, 25 and 37.5%, v/v). Chemical analyses of water-soluble contaminants showed that OSPW and OSLW were enriched in different elements such as vanadium (enrichment factor, EF = 66 and 12, respectively), aluminum (EF = 64 and 15, respectively), iron (EF = 52.5 and 17.1, respectively) and chromium (39 and 10, respectively). The toxicity of OSPW on cells with optimal intracellular esterase activity and chlorophyll autofluorescence (viable cells) (72 h-IC 50% < 1.9%) was 20 times higher than the one of OSW (72 h-IC 50% > 37.5%, v/v). OSLW was 4.4 times less toxic (IC 50% = 8.5%, v/v) than OSPW and 4.5 times more toxic than OSW. The inhibition of viable cell growth was significantly and highly correlated (<-0.7) with the increase of arsenic, beryllium, chromium, copper, lead, molybdenum and vanadium concentrations. The specific photosynthetic responses studied with JIP-test (rapid and polyphasic chlorophyll a fluorescence emission) showed a stimulation of the different functional parameters (efficiency of PSII to absorb energy from photons, size of effective PSII antenna and vitality of photosynthetic apparatus for energy conversion) in cultures exposed to OSPW and OSLW. To our knowledge, our study highlights the first evidence of physiological effects of OSPW and OSLW on microalgae.

  12. Variations in the geochemistry of closely interbedded oil-prone coals and shales

    Energy Technology Data Exchange (ETDEWEB)

    Curry, D.J. (Exxon Production Research, Houston, TX (United States))

    1994-07-01

    Paralic and deltaic environments frequently contain closely interbedded oil-prone coals and carbonaceous shales of similar organic facies. However, differences in depositional and diagenetic conditions can result in significant variations in geochemistry between these coals and shales. These variations are observed in sediments from a range of ages and areas, including Australia, New Zealand, and Indonesia. For example, pristane/phytane and pristane/n-C[sub 17] ratios are frequently higher in coals than in associated shales, although n-alkane distributions are similar. The C[sub 27] Ts/Tm ratios are frequently much lower in coals, although most other biomarker ratios are generally the same for coals and shales. However, absolute biomarker concentrations, particularly of C[sub 27] Tm hopane, can be two to four times higher in coals. Significantly, many coals contain high concentrations of diasteranes (equivalent to those observed in shales). Differences in other parameters such as the C[sub 30] diahopane/C[sub 30] hopane ratios and pyrolysate compositions are also evident. Data indicate that rocks begin to become more coal-like at TOCs of approximately 25%. The variations in these parameters are probably the result of variability in early depositional and diagenetic conditions, such as eH, pH, and microbial action. In addition, these parameters are probably influenced by the effects of an organic vs. an inorganic matrix. The impact of this variability must be considered when conducting oil-source correlation studies and when assessing the relative contributions of coals and shales to the generation of oil in a basin.

  13. Isoprenoid hydrocarbons in oil shales from the Aleksinac deposit

    Energy Technology Data Exchange (ETDEWEB)

    Saban, M.; Tesic, Z.; Vitorovic, D.

    1983-01-01

    It is established that the basic components of the fraction of branched and cyclic alkanes, isolated from shale bitumens, are aliphatic and polycyclic isoprenoid compounds. All members of the homological C15 to C20 series are identified among the aliphatic compounds, except for C17; C27 to C29 stearines and methyl to C29 styrene are discovered among the polycyclic compounds and C27 to C29 triterpenes and bicyclic tetraterpenes are identified among the pentacyclic compounds.

  14. The Xiamaling oil shale generated through Rhodophyta over 800 Ma ago

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A suit of oil shales, predominated by black argillaceous silicalite and finely laminated black-brown shale, has been discovered in a set of carbonaceous-siliceous mudstone formations (350 m in thickness) in the third member of Xiamaling Formation of the Upper Proterozoic Qingbaikou Series (900―873 MaBP), Xiahuayuan, Hebei Province, China. The oil shale, combustible with strong bitumen odour, has su- per-high TOC contents ranging from 21.4% to 22.9%, bitumen “A” contents from 0.58% to 0.88% and oil length from 5.29% to 10.57%. The ultrathin section observation of the shale and the identification of its kerogen demonstrate that its hydrocarbon-generative parent material is mainly benthonic Rhodophyta whose specific tetrasporangia are legible and abundant. It is rarely reported in the literature that such a hydrocarbon-generative parent material, composed mainly of Rhodophyta and with extraordinarily high contents of TOC and bitumen “A”, developed into a set of high-quality source rocks. The extracts of the oil shale are characteristic of richness in 17α(H)-diahopanes and n-alkyl tricyclic terpenoids but low in steranes. Such a biomarker feature is obviously different from that of the extracts from other Proterozoic marine carbonate source rocks of the studied area. Since the biological constitution of this oil shale is rather simple, it is clear that these biomarkers most likely represent to certain extent the specific mo- lecular constitutions of the benthonic Rhodophyta identified in the ultrathin sections of the samples. Studies on its lithologic association and depositional sequences suggest that this suit of the carbona- ceous-siliceous mudstone formation, which contains oil shales, was probably developed in an under- compensation deep-bay environment when a maximum transgression occurred during the formation of the third member of Xiamaling Formation. The high concentration of SiO2 in this organic-rich rock and the positive correlation between TOC

  15. The Xiamaling oil shale generated through Rhodophyta over 800 Ma ago

    Institute of Scientific and Technical Information of China (English)

    ZHANG ShuiChang; ZHANG BaoMin; BIAN LiZeng; JIN ZhiJun; WANG DaRui; CHEN JianFa

    2007-01-01

    A suit of oil shales, predominated by black argillaceous silicalite and finely laminated black-brown shale, has been discovered in a set of carbonaceous-siliceous mudstone formations(350 m in thickness)in the third member of Xiamaling Formation of the Upper Proterozoic Qingbaikou Series(900-873 MaBP), Xiahuayuan, Hebei Province, China. The oil shale, combustible with strong bitumen odour, has super-high TOC contents ranging from 21.4%to 22.9%,bitumen"A"contents from 0.58%to 0.88%and oil length from 5.29%to 10.57%.The ultrathin section observation of the shale and the identification of its kerogen demonstrate that its hydrocarbon-generative parent material is mainly benthonic Rhodophyta whose specific tetrasporangia are legible and abundant. It is rarely reported in the literature that such a hydrocarbon-generative parent material, composed mainly of Rhodophyta and with extraordinarily high contents of TOC and bitumen "A", developed into a set of high-quality source rocks. The extracts of the oil shale are characteristic of richness in 17α(H)-diahopanes and n-alkyl tricyclic terpenoids but low in steranes. Such a biomarker feature is obviously different from that of the extracts from other Proterozoic marine carbonate source rocks of the studied area. Since the biological constitution of this oil shale is rather simple, it is clear that these biomarkers most likely represent to certain extent the specific molecular constitutions of the benthonic Rhodophyta identified in the ultrathin sections of the samples. Studies on its lithologic association and depositional sequences suggest that this suit of the carbonsceous-siliceous mudstone formation, which contains oil shales, was probably developed in an undercompensation deep-bay environment when a maximum transgression occurred during the formation of the third member of Xiamaling Formation. The high concentration of SiO2 in this organic-rich rock and the positive correlation between TOC and some trace elements such as

  16. Modeling of oil mist and oil vapor concentration in the shale shaker area on offshore drilling installations.

    Science.gov (United States)

    Bråtveit, Magne; Steinsvåg, Kjersti; Lie, Stein Atle; Moen, Bente E

    2009-11-01

    The objective of this study was to develop regression models to predict concentrations of oil mist and oil vapor in the workplace atmosphere in the shale shaker area of offshore drilling installations. Collection of monitoring reports of oil mist and oil vapor in the mud handling areas of offshore drilling installations was done during visits to eight oil companies and five drilling contractors. A questionnaire was sent to the rig owners requesting information about technical design of the shaker area. Linear mixed-effects models were developed using concentration of oil mist or oil vapor measured by stationary sampling as dependent variables, drilling installation as random effect, and potential determinants related to process technical parameters and technical design of the shale shaker area as fixed effects. The dataset comprised stationary measurements of oil mist (n = 464) and oil vapor (n = 462) from the period 1998 to 2004. The arithmetic mean concentrations of oil mist and oil vapor were 3.89 mg/m(3) and 39.7 mg/m(3), respectively. The air concentration models including significant determinants such as viscosity of base oil, mud temperature, well section, type of rig, localization of shaker, mechanical air supply, air grids in outer wall, air curtain in front of shakers, and season explained 35% and 17% of the total variance in oil vapor and oil mist, respectively. The developed models could be used to indicate what impact differences in technical design and changes in process parameters have on air concentrations of oil mist and oil vapor. Thus, the models will be helpful in planning control measures to reduce the potential for occupational exposure.

  17. Coagulation-flocculation pretreatment of oil sands process affected water

    Energy Technology Data Exchange (ETDEWEB)

    Pourrezaei, P.; El-Din, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    This presentation addressed the issue of water use in the oil sands industry and efforts to use this limited resource more efficiently. Three wastewater treatment schemes for oil sands tailings ponds were proposed, notably primary, secondary and tertiary treatment. Primary treatment involves the removal of suspended solids using physical-chemical treatments. Secondary treatment involves the removal of dissolved solids and organics using chemical oxidation, ultrafiltration or nanofiltration. Tertiary treatment involves removal of residual organics/solids using biological activated carbon filtration, sand filtration or reverse osmosis. The composition of oil sands process water (OSPW) was also discussed with reference to suspended solids, salts, hydrocarbons, other dissolved organics (such as naphthenic acids and phenols), ammonia, inorganic compounds and trace elements. The conventional coagulation/flocculation process is essential in industrial wastewater treatment. It is cost effective, easy to operate and energy efficient. The process is used because small suspended and colloidal particles and dissolved constituents cannot be removed quickly by sedimentation. A chemical method must be used. Coagulation/flocculation brings small suspended and colloidal particles into contact so that they collide, stick and grow to a size that settles readily. Alum is the predominant and least expensive water treatment coagulant used for the coagulation/flocculation process. It provides positively charged ions to neutralize the negative charge of colloidal particles resulting in aggregation. It creates big settling flocs that enmesh colloids as it settles. The factors affecting the process include pH, chemical type, chemical concentration, rapid mixing intensity, slow mixing intensity and time. tabs., figs.

  18. Molecular characterization and comparison of shale oils generated by different pyrolysis methods using FT-ICR mass spectrometry

    Science.gov (United States)

    Jin, J.M.; Kim, S.; Birdwell, J.E.

    2011-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT ICR-MS) was applied in the analysis of shale oils generated using two different pyrolysis systems under laboratory conditions meant to simulate surface and in situ oil shale retorting. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules. Comparison of FT ICR-MS results to standard oil characterization methods (API gravity, SARA fractionation, gas chromatography-flame ionization detection) indicated correspondence between the average Double Bond Equivalence (DBE) and asphaltene content. The results show that, based on the average DBE values and DBE distributions of the shale oils examined, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions and in the presence of water.

  19. Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Hall, V.S. (comp.)

    1980-06-01

    This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

  20. Assessing the bioremediation potential of algal species indigenous to oil sands process-affected waters on mixtures of oil sands acid extractable organics.

    Science.gov (United States)

    Ruffell, Sarah E; Frank, Richard A; Woodworth, Adam P; Bragg, Leslie M; Bauer, Anthony E; Deeth, Lorna E; Müller, Kirsten M; Farwell, Andrea J; Dixon, D George; Servos, Mark R; McConkey, Brendan J

    2016-11-01

    Surface mining extraction of bitumen from oil sand in Alberta, Canada results in the accumulation of oil sands process-affected water (OSPW). In attempts to maximize water recycling, and because its constituents are recognized as being toxic, OSPW is retained in settling basins. Consequently, research efforts are currently focused on developing remediation strategies capable of detoxifying OSPW to allow for eventual release. One potential bioremediation strategy proposes to utilize phytoplankton native to the Alberta oil sand region to sequester, break down, or modify the complex oil sands acid extractable organic (AEO) mixtures in OSPW. Preliminary attempts to quantify changes in total oil sands AEO concentration in test solutions by ESI-MS following a 14-day algal remediation period revealed the presence of unknown organic acids in control samples, likely released by the phytoplankton strains and often of the same atomic mass range as the oil sands AEO under investigation. To address the presence of these "biogenic" organic acids in test samples, ESI-MS in MRM mode was utilized to identify oil sands AEO "marker ions" that were a) present within the tested oil sands AEO extract and b) unique to the oil sands AEO extract only (e.g. atomic masses different from biogenic organic acids). Using this approach, one of the 21 tested algal strains, Stichococcus sp. 1, proved capable of significantly reducing the AEO marker ion concentration at test concentrations of 10, 30, and 100mgL(-1). This result, along with the accelerated growth rate and recalcitrance of this algal strain with exposure to oil sands AEO, suggests the strong potential for the use of the isolated Stichococcus sp. 1 as a candidate for bioremediation strategies.

  1. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  2. A dual-porosity model for simulating solute transport in oil shale

    Science.gov (United States)

    Glover, K.C.

    1987-01-01

    A model is described for simulating three-dimensional groundwater flow and solute transport in oil shale and associated geohydrologic units. The model treats oil shale as a dual-porosity medium by simulating flow and transport within fractures using the finite-element method. Diffusion of solute between fractures and the essentially static water of the shale matrix is simulated by including an analytical solution that acts as a source-sink term to the differential equation of solute transport. While knowledge of fracture orientation and spacing is needed to effectively use the model, it is not necessary to map the locations of individual fractures. The computer program listed in the report incorporates many of the features of previous dual-porosity models while retaining a practical approach to solving field problems. As a result the theory of solute transport is not extended in any appreciable way. The emphasis is on bringing together various aspects of solute transport theory in a manner that is particularly suited to the unusual groundwater flow and solute transport characteristics of oil shale systems. (Author 's abstract)

  3. 页岩灰对油页岩低温干馏产物的影响%Impact of the Shale Ash on the Low-temperature Carbonization of the Oil Shale

    Institute of Scientific and Technical Information of China (English)

    牛玉梅; 张静; 孟宪鑫; 邢方亮; 朱晓霞

    2011-01-01

    分别介绍了油页岩低温干馏试验、油页岩与页岩灰掺混的干馏试验,结果表明,其他条件相同时,页岩灰与油页岩以4:1比例掺混时,油页岩干馏所产页岩油(凝点10℃,密度0.898 2g/cm3)与油页岩不掺混页岩灰干馏所得页岩油(凝点26℃,密度0.909 6g/cm3)相比,页岩油品质有所提升,有助于后续加工.%In the low-temperature carbonization process of the oil shale, the process conditions of the shale oil production in the presence of gray shale was introduced in this paper. The studies have shown that in the temperature around 520℃, comparing with shale oil (solidifying point of 26℃, density of 0.909 6g/cm3) produced by distillation of oil shale without mixing gray shale, shale oil (solidifying point of 10℃, density of 0.898 2g/cm3) produced by distillation of oil shale under the dry distillation conditions of oil shale and gray shale in a ratio of 4:1, enjoys higher quality and is helpful for subsequent processing.

  4. Alberta's economic development of the Athabasca oil sands

    Science.gov (United States)

    Steinmann, Michael

    This dissertation examines the 61-year evolution of public policies pertaining to development of Alberta's non-conventional source of crude oil. The Athabasca oil sands contain an estimated 1.5 trillion barrels and provide for a safe continental supply. The Provincial Government first sponsored this undertaking in 1943. The period from then to 1971 was one of a transition from a wheat economy to a natural-resource economic base. A stable government emerged and was able to negotiate viable development policies. A second period, 1971 to 1986, was marked by unstable world conditions that afforded the Alberta government the ability to set terms of development with multi-national oil firms. A 50% profit-sharing plan was implemented, and basic 1973 terms lasted until 1996. However, 1986 was a critical year because the Organization of Petroleum Exporting Countries (OPEC) reduced prices, causing the Alberta economy to lapse into recession. During a third period, 1986 to 1996, the Alberta Government was unable to adapt quickly to world conditions. A new leadership structure in 1996 made major changes to create ongoing fiscal and development policies. That history provides answers to two primary research questions: How do public policies affect the behaviors of the modern corporation and visa versa? What are the implications for development theory? Two sources of information were used for this study. First, it was possible to review the Premier's files located in the Provincial Archives. Materials from various government libraries were also examined. Some 7,000 documents were used to show the evolution of government policymaking. Second, interviews with leaders of oil companies and federal research facilities were important. Findings support the thesis that, to facilitate oil sands development, government and the private sector have closely collaborated. In particular, revenue policies have allowed for effective R&D organization. Relying on intensive technological

  5. The extraction of bitumen from western oil sands: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

  6. The extraction of bitumen from western oil sands: Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

  7. Eo-Oligocene Oil Shales of the Talawi, Lubuktaruk, and Kiliranjao Areas, West Sumatra: Are they potential source rocks?

    Directory of Open Access Journals (Sweden)

    M. Iqbal

    2014-12-01

    Full Text Available DOI:10.17014/ijog.v1i3.198To anticipate the increasing energy demand, additional data and information covering unconventional fossil fuels such as oil shale must be acquired to promote the usage of alternative energy sources to crude oil. The Talawi and Lubuktaruk regions situated within intra-montane Ombilin Basin, and the Kiliranjao assumed to be a small intra montane basin are occupied by Eo-Oligocene sediments of Sangkarewang and Kiliran Formations, respectively. Field activity, geochemical screening techniques, and organic petrographic analysis, supported by SEM mode, are methods used. Most of the oil shale sequence is typically of an organically rich-succession comprising predominantly well-bedded, laminated and fissile, brownish to dark grey organic-rich shale and mudstone rocks. The exinite macerals within oil shale comprise mainly Pediastrum-lamalginite with minor cutinite, resinite, liptodetrinite, sporinite, bituminite, and rare Botryococcus-telalginite. Therefore; the oil shale deposits can be described as “lamosites”. Minor vitrinite maceral is also recognized. TOC analysis on selected shale samples corresponds to a fair up to excellent category of source rock characterization. The hydrogen index (HI for all samples shows a range of values from 207 - 864, and pyrolysis yield (PY ranges from 2.67 to 79.72 mg HC/g rock. The kerogen is suggested to be of mixed Type II and Type I autochthonous materials such as alginite, with minor allochthonous substances. Oil samples collected appear to be positioned within more oil prone rather than gas prone. Thermal maturity of the oil shales gained from Tmax value and production index (PI tends to show immature to marginally/early mature stage. A consistency in the thermal maturity level results by using both Tmax and vitrinite reflectance value is recognized. On the basis of  SEM analysis, the oil shale has undergone a late eodiagenetic process. Thereby, overall, vitrinite reflectance

  8. Eo-Oligocene Oil Shales of the Talawi, Lubuktaruk, and Kiliranjao Areas, West Sumatra: Are they potential source rocks?

    Directory of Open Access Journals (Sweden)

    M. Iqbal

    2014-12-01

    Full Text Available DOI:10.17014/ijog.v1i3.198To anticipate the increasing energy demand, additional data and information covering unconventional fossil fuels such as oil shale must be acquired to promote the usage of alternative energy sources to crude oil. The Talawi and Lubuktaruk regions situated within intra-montane Ombilin Basin, and the Kiliranjao assumed to be a small intra montane basin are occupied by Eo-Oligocene sediments of Sangkarewang and Kiliran Formations, respectively. Field activity, geochemical screening techniques, and organic petrographic analysis, supported by SEM mode, are methods used. Most of the oil shale sequence is typically of an organically rich-succession comprising predominantly well-bedded, laminated and fissile, brownish to dark grey organic-rich shale and mudstone rocks. The exinite macerals within oil shale comprise mainly Pediastrum-lamalginite with minor cutinite, resinite, liptodetrinite, sporinite, bituminite, and rare Botryococcus-telalginite. Therefore; the oil shale deposits can be described as “lamosites”. Minor vitrinite maceral is also recognized. TOC analysis on selected shale samples corresponds to a fair up to excellent category of source rock characterization. The hydrogen index (HI for all samples shows a range of values from 207 - 864, and pyrolysis yield (PY ranges from 2.67 to 79.72 mg HC/g rock. The kerogen is suggested to be of mixed Type II and Type I autochthonous materials such as alginite, with minor allochthonous substances. Oil samples collected appear to be positioned within more oil prone rather than gas prone. Thermal maturity of the oil shales gained from Tmax value and production index (PI tends to show immature to marginally/early mature stage. A consistency in the thermal maturity level results by using both Tmax and vitrinite reflectance value is recognized. On the basis of  SEM analysis, the oil shale has undergone a late eodiagenetic process. Thereby, overall, vitrinite reflectance

  9. Characterization of napthenic acids in oil sands process-affected waters using fluorescence technology

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.; Alostaz, M.; Ulrich, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2009-07-01

    Process-affected water from oil sands production plants presents a major environmental challenge to oil sands operators due to its toxicity to different organisms as well as its corrosiveness in refinery units. This abstract investigated the use of fluorescence excitation-emission matrices to detect and characterize changes in naphthenic acid in oil sands process-affected waters. Samples from oil sands production plants and storage ponds were tested. The study showed that oil sands naphthenic acids show characteristic fluorescence signatures when excited by ultraviolet light in the range of 260 to 350 mm. The signal was a unique attribute of the naphthenic acid molecule. Changes in the fluorescence signature can be used to determine chemical changes such as degradation or aging. It was concluded that the technology can be used as a non-invasive continuous water quality monitoring tool to increase process control in oil sands processing plants.

  10. Processing of tailings in Canadian oil sands industry

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Vast amounts of tailings are produced daily in bitumen extraction from the Athabasca oil sands. The coarse sand from the tailings stream is used to build dykes around the containment basin. The run-off slurry arrives at the water's edge in the tailings pond at a solids concentration of about 3%~8% by mass. Settling of the solids takes place "relatively fast", over several days, creating a "free water zone" that contains little solids. When the fine mineral solids concentration has reached about 15% by mass, the suspension develops non-Newtonian properties. After 2~3 years, the suspension concentration reaches a value of about 30% by mass at which the settling rate becomes extremely slow. Methods to handle the already created tailings ponds and new approaches to eliminate the creation of new ones will be discussed both from the industrial and fundamental prospective.

  11. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  12. Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

    1981-10-13

    The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

  13. Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

    1981-10-13

    The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

  14. Occurrence of oil and gas in Devonian shales and equivalents in West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Schwietering, J. F.

    1981-03-01

    During the Devonian, an epicontinental sea was present in the Appalachian basin. The Catskill Clastic Wedge was formed in the eastern part of the basin by sediments derived from land along the margin of the continent. Three facies are recognized in the Catskill Clastic Wedge: (1) a red-bed facies deposited in terrestrial and nearshore marine environments; (2) a gray shale and sandstone facies deposited in a shallow- to moderately-deep marine environment; and (3) a dark-gray shale and siltstone facies deposited in the deepest part of the epicontinental sea. Oil and natural gas are being produced from Devonian shales in the western part of West Virginia and from upper Devonian sandstones and siltstones in the north-central part of the state. It is suggested that in addition to extending known areas of gas production, that drilling for natural gas be conducted in areas underlain by organic-rich shales and thick zones of interbedded siltstone and shale in the Devonian section in central, southern, and western West Virginia. The most promising areas for exploration are those areas where fractures are associated with folds, faults, and lineaments. 60 references.

  15. Regional sustainable development strategy for the Athabasca oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Braat, T.; Barrett, R. [Alberta Environment, Edmonton, AB (Canada)

    2003-07-01

    This paper describes the efforts by Alberta Environment to implement a regional sustainable development strategy for the oil sands industry. Alberta Environment gathers the views from industry, government, First Nations and non-governmental organizations on issues regarding cumulative environmental impacts and sustainable industrial development in Alberta's Athabasca oil sands area. This mandate is carried out through a multi-stakeholder partnership initiative called the Cumulative Environmental Management Association (CEMA). CEMA develops environmental management tools, guidelines and objectives to address environmental issues such as acid deposition, trace air pollutants and surface water quality. The NOx/SO{sub 2} Working Group and the Trace Metal and Air Contaminants Working Group of CEMA address air emissions issues. Their recommendations are referred to the appropriate regulatory agency for implementation. The Lakeland Industry and Community Association (LICA) was created in response to expansion of oil and gas production in the Cold Lake area. LICA is a not-for-profit organization that addresses the concerns of residents living near the Lakeland area to ensure that development is conducted in an environmentally responsible manner. The organization is developing regional environmental monitoring programs for soil, air and water. tabs., figs.

  16. Challenges related to flotation cleaning of oil shales. Issues due to compositional and surface features and post-grinding surface behavior

    OpenAIRE

    Altun N. Emre

    2016-01-01

    Oil shale is an important energy resource alternative. Despite its recognition as an unconventional oil source, oil shale is also considered as an important solid fossil fuel alternative to coal and lignites due to the solid form and remarkable extent of organic content. Utilization possibilites, similar to coal and lignites, have been considered in the past decades and direct use of oil shales in thermal power production has been possible in countries like Estonia and China. In the perspecti...

  17. 78 FR 18547 - Oil Shale Management-General

    Science.gov (United States)

    2013-03-27

    ... Basin in Utah, and the Green River and Washakie Basins in Wyoming. The tar sands resources are found in... annual effect on the economy of $100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety,...

  18. In-bed sulphur capture during pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (USA))

    1991-11-01

    The Institute of Gas Technology is developing a pressurized fluidized-bed hydroretorting (PFH) process for the production of oil from Eastern oil shales. The sulphur present in the Eastern oil shales is converted to H{sub 2}S during hydroretorting. A solid sorbent (limestone or siderite) may be added to the PFH reactor with the oil shale to achieve in-bed desulphurization. The effects of operating conditions on the effectiveness of in-bed sulphur capture with limestone and siderite have been investigated. Reactivities of a limestone and a siderite towards H{sub 2}S were determined in experiments conducted in an ambient pressure thermogravimetric analyser. These tests were conducted in the temperature range of 480-565{degree}C using solid sorbents with an average particle diameter of 0.018 cm ({minus}60{plus}100 mesh). The results of thermogravimetric analysis tests indicate that both limestone and siderite should be capable of capturing a significant fraction of H{sub 2}S removal with in-bed sorbents. The results of these tests confirm that a significant fraction of H{sub 2}S produced in the PFH reactor can be removed with in-bed sorbents. 10 refs., 8 figs., 6 tabs.

  19. Quantifying Sources of Methane in the Alberta Oil Sands

    Science.gov (United States)

    Baray, S.; Darlington, A. L.; Gordon, M.; Hayden, K.; Li, S. M.; Mittermeier, R. L.; O'brien, J.; Staebler, R. M.; McLaren, R.

    2015-12-01

    In the summer of 2013, an aircraft measurement campaign led by Environment Canada with participation from university researchers took place to investigate the sources and transformations of gas pollutants in the Alberta oil sands region close to Fort McMurray, Alberta. Apart from its ability to change the radiative forcing of the atmosphere, methane is also a significant precursor to the formation of formaldehyde, an important radical source. Thus, emissions of methane from facilities need to be understood since they can have air quality implications through alteration of the radical budget and hence, the oxidation capacity of the air mass. Methane was measured, along with other gases, via a cavity ring-down spectroscopy instrument installed on the Convair-580 aircraft. In total, there were 22 flights with 82 hours of measurements in the vicinity of oil sands facilities between August 13 and September 7, 2013. Various tools have been used to visualize the spatial and temporal variation in mixing ratios of methane and other trace gases in order to identify possible sources of methane. Enhancements of methane from background levels of 1.9 ppm up to ~4 ppm were observed close to energy mining facilities in the oil sands region. Sources of methane identified include open pit mining, tailings ponds, upgrader stacks and in-situ mining operations. Quantification of the emission rates of methane from distinct sources has been accomplished from box flights and downwind screen flights by identifying the ratios of trace gases emitted and through use of the Top-down Emission Rate Retrieval Algorithm (TERRA). Methane emission rates for some of these sources will be presented.

  20. Paleoenvironmental signals and paleoclimatic condition of the Early Maastrichtian oil shales from Central Eastern Desert, Egypt

    Science.gov (United States)

    Fathy, Douaa; Wagreich, Michael; Zaki, Rafat; Mohamed, Ramadan S. A.

    2016-04-01

    Early Maastrichtian oil shales are hosted in the Duwi Formation of the Central Eastern Desert, Egypt. The examined member represents up to 20% of the total Duwi Formation. This interval is mainly composed of siliciclastic facies, phosphorites facies and carbonate facies. Oil shales microfacies is mainly composed of smectite, kaolinite, calcite, fluorapatite, quartz and pyrite. They are enriched in a number of major elements and trace metals in particular Ca, P, V, Ni, Cr, Sr, Zn, Mo, Nb, U and Y compared to the post-Archaean Australian shale (PAAS). Chondrite-normalized REEs patterns of oil shales for the studied area display light rare earth elements enrichment relatively to heavy rare earth elements with negative Ce/Ce* and Eu/Eu* anomalies. The most remarkable indicators for redox conditions are enrichments of V, Mo, Ni, Cr, U content and depletion of Mn content. Besides, V/V+Ni, V/Ni, U/Th, Ni/Co, authigentic uranium ratios with presence of framboidal shape of pyrite and its size are reflecting the deposition of these shales under marine anoxic to euxinic environmental conditions. Additionally, the ratio of Strontium (Sr) to Barium (Ba) Sr/Ba reflected highly saline water during deposition. Elemental ratios critical to paleoclimate and paleoweathering (Rb /Sr, Al2O3/TiO2), CIA values, binary diagram between (Al2O3+K2O+Na2O) and SiO2 and types of clay minerals dominated reflect warm to humid climate conditions prevailing during the accumulation of these organic-rich petroleum source rocks.

  1. Stabilization of sand dunes with oil residue:Application to civil engineering construction and environmental implications

    Institute of Scientific and Technical Information of China (English)

    Esmail Aflaki; Alborz Hajiannia

    2015-01-01

    The present work ascertains the feasibility of oil residue treatment for stabilizing wind-blown sand dunes. Various combinations of natural collapsible saline from the Jandaq desert of Iran and oil residue from distillation towers of Iranian refineries were tested in laboratory experiments. Stabilized sands were evaluated in terms of geotechnical properties, permeability, and oil retention characteristics (i.e. bonding mechanisms, leaching and migrating behaviour of oil residue from the stabilized sands). Since the presence of oil residue in soils can pose an environmental threat, the optimum retention capacity of the stabilized sands is of critical concern. Relative to sand that was not augmented with oil residue, specimens made of 7% oil residues had the highest compressive strength, significantly higher cohesion and load bearing capacity, and considerably lower permeability. The effect of distilled water, saline water and municipal sewage on prepared specimens were also evaluated.

  2. Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Zumberge, J.E. (GeoMark Research Inc., Houston, TX (United States)); Macko, S. (Univ. of Virginia, Charlottesville, VA (United States)) Engel, M. (Univ. of Oklahoma, Norman, OK (United States)) (and others)

    1996-01-01

    Two of the largest gas fields in the world, Hasi R'Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have been generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.

  3. Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Zumberge, J.E. [GeoMark Research Inc., Houston, TX (United States); Macko, S. [Univ. of Virginia, Charlottesville, VA (United States)] Engel, M. [Univ. of Oklahoma, Norman, OK (United States)] [and others

    1996-12-31

    Two of the largest gas fields in the world, Hasi R`Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have been generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.

  4. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae; Morgan, Craig; Carney, Stephanie

    2012-04-30

    in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  5. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  6. Polar constituents isolated from Aleksinac oil shale. [Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Saban, M. (Univ. of Beograd, Yugoslavia); Porter, S.; Costello, C.; Djuricic, M.; Vitorovic, D.

    1980-01-01

    Continuing an investigation of the composition of bitumen from Aleksinac (Yugoslavia) shale, we report here in the bitumen extracted with benzene the following compounds: aromatic hydrocarbons, C/sub n/H/sub 2n-14/ (biphenyls) and C/sub n/H/sub 2n-18/ (anthracenes and/or phenanthrenes), oxygen compounds C/sub n/H/sub 2n/O/sub 2/ (methyl esters of fatty acids), C/sub n/H/sub 2n/O (aliphatic methyl ketones), and the triterpenoid ketone adiantone. The presence of these compounds in the bitumen is due to diagenetic changes of precursor biological material; adiantone alone presumably represents an intact residue of Miocene ferns.

  7. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H.; Klevtsov, I. [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1998-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  8. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. [Alabama Univ., University, AL (United States). Mineral Resources Inst.

    1991-12-31

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  9. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. (Alabama Univ., University, AL (United States). Mineral Resources Inst.)

    1991-01-01

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  10. Threshold Considerations and Wetland Reclamation in Alberta's Mineable Oil Sands

    Directory of Open Access Journals (Sweden)

    Lee Foote

    2012-03-01

    Full Text Available Oil sand extraction in Alberta, Canada is a multibillion dollar industry operating over 143 km² of open pit mining and 4600 km² of other bitumen strata in northern boreal forests. Oil production contributes to Canada-wide GDP, creates socio-cultural problems, provides energy exports and employment, and carries environmental risks regarding long-term reclamation uncertainties. Of particular concern are the implications for wetlands and water supply management. Mining of oil sands is very attractive because proven reserves of known quality occur in an accessible, politically stable environment with existing infrastructure and an estimated 5.5 billion extractable barrels to be mined over the next five decades. Extraction occurs under a set of limiting factors or thresholds including: limited social tolerance at local to international levels for externalities of oil sand production; water demands > availability; limited natural gas supplies for oil processing leading to proposals for hydroelectric dams and nuclear reactors to be constructed; difficulties in reclaiming sufficient habitat area to replace those lost. Replacement of the 85 km² of peat-forming wetlands forecast to be destroyed appears unlikely. Over 840 billion liters of toxic fluid byproducts are currently held in 170 km² of open reservoirs without any known process to purify this water in meaningful time frames even as some of it leaches into adjacent lands and rivers. Costs for wetland reclamation are high with estimates of $4 to $13 billion, or about 6% of the net profits generated from mining those sites. This raises a social equity question of how much reclamation is appropriate. Time frames for economic, political, and ecological actions are not well aligned. Local people on or near mine sites have had to change their area use for decades and have been affected by industrial development. Examining mining effects to estimate thresholds of biophysical realities, time scales

  11. New pitches with enhanced graphitization ability obtained from Moroccan oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Abourriche, A.; Oumam, M.; Mouhssim, A.; Dahiri, M.; Hannache, H. [Laboratoire des Materiaux Thermostructuraux, Faculte des Sciences Ben Mminutes or feetsik, B.P. 7955, Casablanca (Morocco); Chollon, G.; Pailler, R.; Naslain, R. [Laboratoire des Composites Thermostructuraux, UMR 5801, CNRS-CEA-SNECMA-Universite Bordeaux I, Domaine Universitaire, 3 Allee de la Boetie, F-33600 Pessac (France); Birot, M.; Pillot, J.-P. [Laboratoire de Chimie Organique et Organometallique, UMR 5802, CNRS-Universite Bordeaux I, 351 cours de la Liberation, F-33405 Talence Cedex (France)

    2004-06-01

    New pitches were obtained from the extraction of Moroccan oil shales. Their pyrolysis was studied in the temperature range of 1100-2800C by Raman spectroscopy and X-ray diffraction. The graphitization degree of the resulting carbon was tightly dependent on the composition of the pitch. Moreover, it was shown that phenol was a suitable extraction solvent to produce graphitizable carbon at relatively low temperature (T{>=}1800C)

  12. Evidence of stability of sedimentary organic matter during bacterial desilicification of an oil shale (SHORT COMMUNICATION

    Directory of Open Access Journals (Sweden)

    DRAGOMIR VITOROVIC

    2001-02-01

    Full Text Available Aleksinac oil shale organic matter appeared to remain unchanged, according to ele-mental, IR, P-GC and P-GC-MS analytical characterization, after exposure to Bacillus circulans-Jordan desilicification for 30 days. These experiments indicate that “siliceous bacteria” may have potential as an alternative, “biochemical agent” for the isolation of native kerogen, and justify further efforts toward continuedevaluation of this advantageous process.

  13. Geological settings of the protected Selisoo mire (northeastern Estonia) threatened by oil shale mining

    OpenAIRE

    Helen Hiiemaa; Mario Mustasaar; Marko Kohv; Tiit Hang; Argo Jõeleht; Katrin Lasberg; Volli Kalm

    2014-01-01

    The protected Selisoo mire in northeastern Estonia is located above valuable oil shale resources, partly in the permitted mining area. We describe in detail the geomorphology and geological setting of the mire to understand the natural preconditions for its formation, development and preservation. We used the LiDAR-based digital elevation model for relief analysis, mapped the peat thickness with ground-penetrating radar and described the Quaternary cover through corings. Ridges, oriented perp...

  14. The distribution of worm borings in brachiopod shells from the Caradoc Oil Shale of Estonia.

    OpenAIRE

    Vinn, Olev

    2005-01-01

    International audience; Abundant worm borings were found in some brachiopod shells (Clitambonites, Estlandia, Nicolella) from the Ordovician (Caradoc) oil shale in North Estonia. 9 of 21 brachiopod genera (43 %) have been bored. Excluding the size and thickness of valves, no common morphological feature discriminates the brachiopods with borings from those without them. The Trypanites are host-specific, and the frequency of bored valves varies from 6.5 % in Bekkerina to 51 % in Estlandia. The...

  15. The microbiology of oil sands tailings: past, present, future.

    Science.gov (United States)

    Foght, Julia M; Gieg, Lisa M; Siddique, Tariq

    2017-05-01

    Surface mining of enormous oil sands deposits in northeastern Alberta, Canada since 1967 has contributed greatly to Canada's economy but has also received negative international attention due largely to environmental concerns and challenges. Not only have microbes profoundly affected the composition and behavior of this petroleum resource over geological time, they currently influence the management of semi-solid tailings in oil sands tailings ponds (OSTPs) and tailings reclamation. Historically, microbial impacts on OSTPs were generally discounted, but next-generation sequencing and biogeochemical studies have revealed unexpectedly diverse indigenous communities and expanded our fundamental understanding of anaerobic microbial functions. OSTPs that experienced different processing and management histories have developed distinct microbial communities that influence the behavior and reclamation of the tailings stored therein. In particular, the interactions of Deltaproteobacteria and Firmicutes with methanogenic archaea impact greenhouse gas emissions, sulfur cycling, pore water toxicity, sediment biogeochemistry and densification, water usage and the trajectory of long-term mine waste reclamation. This review summarizes historical data; synthesizes current understanding of microbial diversity and activities in situ and in vitro; predicts microbial effects on tailings remediation and reclamation; and highlights knowledge gaps for future research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Robotics and automation for oil sands bitumen production and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Lipsett, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2008-07-01

    This presentation examined technical challenges and commercial challenges related to robotics and automation processes in the mining and oil sands industries. The oil sands industry has on-going cost pressures. Challenges include the depths to which miners must travel, as well as problems related to equipment reliability and safety. Surface mines must operate in all weather conditions with a variety of complex systems. Barriers for new technologies include high capital and operating expenses. It has also proven difficult to integrate new technologies within established mining practices. However, automation has the potential to improve mineral processing, production, and maintenance processes. Step changes can be placed in locations that are hazardous or inaccessible. Automated sizing, material, and ventilation systems are can also be implemented as well as tele-operated equipment. Prototypes currently being developed include advanced systems for cutting; rock bolting; loose rock detection systems; lump size estimation; unstructured environment sensing; environment modelling; and automatic task execution. Enabling technologies are now being developed for excavation, haulage, material handling systems, mining and reclamation methods, and integrated control and reliability. tabs., figs.

  17. On the application of heat integration in oil sands processing

    Energy Technology Data Exchange (ETDEWEB)

    Salama, A.I.A. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2005-07-01

    During bitumen recovery, process heat is generated by burning natural gas or by using electrical energy that is also generated from a hydrocarbon source, typically coal. This adds carbon dioxide (CO{sub 2}) emissions to the atmosphere and contributes to global warming. The Canadian oil sands industry is challenged by stringent environmental regulations, including Kyoto Protocol obligations. In order to address the challenge of reducing CO{sub 2} emissions to the atmosphere, the oil sands industry has adopted more efficient operations, has implemented heat and process integration and efficient energy management into its bitumen recovery operations. In particular, it has targeted the optimal integration of the supply and removal of heat among the process streams. The use of heat integration schemes results in conservation of heat energy and reductions in utility requirements, energy consumption, and production cost per unit of production. This paper described a heat exchanger network (HEN) design automation using pinch technology in which the existing problem table algorithm (PTA) is used to determine the optimal heat energy targets. It then proposed a simple modification of the existing PTA and presented a newly developed and improved algorithm called the simple problem table algorithm (SPTA) that eliminates the lumping stage in the PTA. The algorithm is used to determine the optimal heat energy targets. The main objective of this method is to save expense by maximizing process to-process heat recovery. This also reduces the external utility requirements for steam and cooling water. 22 refs., 4 tabs., 7 figs.

  18. Mass and heat balance approach for oil sand flowsheets

    Energy Technology Data Exchange (ETDEWEB)

    Salama, A.I.A. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2009-07-01

    Plant flowsheet mass balance is carried out in many industrial applications to evaluate overall plant performance and to optimize plant recoveries. This information is necessary for improving the economics of the operation and improving profitability. Flowsheet mass balance begins with the collection of plant stream samples using well-known sampling schemes. Stream samples collected using ASTM sampling standards are then analyzed using ASTM analytical techniques to characterize stream components which often contain sampling and analytical errors. The paper presented an approach for oil sands flowsheet mass and heat balance where different objective functions were presented depending on the nature of the stream error distributions. Hot water or steam is used to heat plant streams in oil sands extraction and froth treatment plants. As such, an approach is needed to integrate mass and heat balance. The mass and heat balance approach proposed in this paper integrated mass and heat balance and optimized the deviations/errors between the raw/observed and estimated data sets. The estimated data set was constrained to satisfy mass and heat balance conditions around the flowsheet internal nodes. Stream normalization and stream normalization conditions were forced. The relationship between the flowsheet independent, dependent, and reference streams were identified. The number of the independent stream mass splits was expressed in terms of the number of streams, number of nodes, and number of reference streams. 9 refs., 3 tabs., 2 figs.

  19. Vanadium Geochemistry of Oil Sands Fluid Petroleum Coke.

    Science.gov (United States)

    Nesbitt, Jake A; Lindsay, Matthew B J

    2017-03-07

    Vanadium has previously been linked to elevated toxicity of leachates derived from oil sands petroleum coke. However, geochemical controls on V mobility within coke deposits remain poorly constrained. Detailed examinations of porewater and solid-phase V geochemistry were therefore performed on oil sands fluid petroleum coke deposits in Alberta, Canada. Sample collection focused on both active and reclaimed deposits, which contained more than 3 × 10(7) m(3) of fluid petroleum coke. Dissolved V concentrations were highest (up to 3.0 mg L(-1)) immediately below the water table but decreased rapidly with increasing depth. This trend corresponded to a transition from mildly acidic (pH 6-7) and oxic conditions to mildly alkaline (pH 7-8.5) and anoxic conditions. Scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and micro-X-ray fluorescence (μXRF) mapping revealed coke particles exhibited an internal structure characterized by successive concentric layers. The outer margins of these layers were characterized by elevated V, Fe, Si, and Al concentrations, indicating the presence of inorganic phases. Micro-X-ray absorption near-edge structure (μXANES) spectroscopy revealed that V speciation was dominated by V(IV) porphyrins except at outer margins of layers, where octahedrally coordinated V(III) was a major component. Minor to trace V(V) was also detected within fluid petroleum coke particles.

  20. Remediation of oil-contaminated sand by coal agglomeration using ball milling.

    Science.gov (United States)

    Shin, Yu-Jen; Shen, Yun-Hwei

    2011-10-01

    The mechanical shear force provided by a less energy intensive device (usually operating at 20-200 rpm), a ball mill, was used toperform coal agglomeration and its effects on remediation of a model fuel oil-contaminated sand were evaluated. Important process parameters such as the amount of coal added, milling time, milling speed and the size of milling elements are discussed. The results suggested that highly hydrophobic oil-coal agglomerates, formed by adding suitable amounts of coal into the oil-contaminated sand, could be mechanically liberated from cleaned sand during ball milling and recovered as a surface coating on the steel balls. Over 90% removal of oil from oil-contaminated sand was achieved with 6 wt% of coal addition and an optimum ball milling time of 20 min and speed of 200 rpm. This novel process has considerable potential for cleaning oil-contaminated sands.

  1. Withdrawal of gases and liquids from an in situ oil shale retort

    Science.gov (United States)

    Siegel, Martin M.

    1982-01-01

    An in situ oil shale retort is formed within a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale. A production level drift extends below the fragmented mass, leaving a lower sill pillar of unfragmented formation between the production level drift and the fragmented mass. During retorting operations, liquid and gaseous products are recovered from a lower portion of the fragmented mass. A liquid outlet line extends from a lower portion of the fragmented mass through the lower sill pillar for conducting liquid products to a sump in the production level drift. Gaseous products are withdrawn from the fragmented mass through a plurality of gas outlet lines distributed across a horizontal cross-section of a lower portion of the fragmented mass. The gas outlet lines extend from the fragmented mass through the lower sill pillar and into the production level drift. The gas outlet lines are connected to a gas withdrawal manifold in the production level drift, and gaseous products are withdrawn from the manifold separately from withdrawal of liquid products from the sump in the production level drift.

  2. CO2 mineral sequestration in oil-shale wastes from Estonian power production.

    Science.gov (United States)

    Uibu, Mai; Uus, Mati; Kuusik, Rein

    2009-02-01

    In the Republic of Estonia, local low-grade carbonaceous fossil fuel--Estonian oil-shale--is used as a primary energy source. Combustion of oil-shale is characterized by a high specific carbon emission factor (CEF). In Estonia, the power sector is the largest CO(2) emitter and is also a source of huge amounts of waste ash. Oil-shale has been burned by pulverized firing (PF) since 1959 and in circulating fluidized-bed combustors (CFBCs) since 2004-2005. Depending on the combustion technology, the ash contains a total of up to 30% free Ca-Mg oxides. In consequence, some amount of emitted CO(2) is bound by alkaline transportation water and by the ash during hydraulic transportation and open-air deposition. The goal of this study was to investigate the possibility of improving the extent of CO(2) capture using additional chemical and technological means, in particular the treatment of aqueous ash suspensions with model flue gases containing 10-15% CO(2). The results indicated that both types of ash (PF and CFBC) could be used as sorbents for CO(2) mineral sequestration. The amount of CO(2) captured averaged 60-65% of the carbonaceous CO(2) and 10-11% of the total CO(2) emissions.

  3. Determination of sulfur anions in spent oil shale leachates by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Niss, N.D.

    1989-07-01

    The leaching and transport of chemical constituents from spent oil shale disposal areas is an area of environmental concern at the present time. Sulfur-containing compounds are prevalent in spent oil shales and have the potential to leach into aqueous systems surrounding disposal sites. Computer modeling has been used in recent years to predict the transport of species in an aqueous environment. The quality of model predictions, however, depends on the validation steps taken in comparing model predictions with laboratory data on ion speciation. Further, the quality of the validation step depends on the reliability of laboratory methods in generating ion speciation data. The purpose of this study was to develop methods to separate and quantify sulfur-containing anions in spent oil shale leachates by suppressed ion chromatography. The anions studied were S{sup 2{minus}} (sulfide), SO{sup 2{minus}}{sub 3} (sulfite), SO{sup 2{minus}}{sub 4} (sulfate), SCN{sup {minus}} (thiocyanate), S{sub 2}O{sup 2{minus}}{sub 3} (thiosulfate), and S{sub 4}O{sup 2{minus}}{sub 6} (tetrathionate). After the separations were developed, a series of method-challenging experiments were performed to test the reliability of the methods and assure the development of an analytically sound product. 24 refs., 7 figs., 5 tabs.

  4. Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.

  5. Medium and Long Term Crude Oil Price Outlook: Economic research on shale oil and gas production behavior in the United States (Japanese)

    OpenAIRE

    2015-01-01

    It has been pointed out that the steep fall in crude oil prices after the latter half of 2014 has been strongly affected by both demand side factors such as the slowdown of world economic growth and supply side factors such as a massive increase in shale oil production in the United States and other structural factors. Shale oil and gas production is well known for its different aspects compared to conventional oil and gas production such as differences in oil and gas reserves, differences in...

  6. Geokinetics in situ shale oil recovery project. Third annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L.

    1980-05-01

    Objective is to develop a true in situ process for recovering shale oil using a fire front moving in a horizontal direction. The project is being conductd at a field site located 70 miles south of Vernal, Utah. During 1979, five retorts were blasted. Four of these were small retorts (approx. 7000 tons), designed to collect data for improving the blast method. The fifth retort was a prototype of a full-sized retort measuring approximately 200 ft on each side. Two retorts, blasted the previous year, were burned, and a third retort was ignited near the end of the year. A total of 5170 bbl of oil was produced during the year.

  7. The Long-Run Oil-Natural Gas Price Relationship And The Shale Gas Revolution

    OpenAIRE

    2015-01-01

    The gas extraction technological developments of the 2000s have allowed shale gas production, which in the US has become a significant part of the total gas production. Such a significant change might have affected the long-run relationship between oil and natural gas prices postulated by several authors. By using monthly data of oil and gas prices, as well as gas quantities from 1997 to 2013, we test for the presence of a long-run relationship, allowing also for possible breaks. We first sho...

  8. Properties Correlations and Characterization of Athabasca Oil Sands-derived Synthetic Crude Oil

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Zhao Suoqi; Xu Chunming; Chung Keng H.

    2007-01-01

    Narrow fractions of Athabasca oil sands-derived synthetic crude oil (SCO) from Canada were obtained by distillation at 20 ℃ to 500 ℃ and characterized. The yield and properties, such as density, refractive index, viscosity,freezing point, sulfur and nitrogen content and UOP K-index, were correlated as a function of boiling temperature (Tb).The properties of naphtha fractions, jet fuel and diesel fractions could be predicted accurately with the correlations, which are useful for process design considerations, such as optimizing operating conditions of refinery processing units. The other key properties and characteristics of naphtha fractions, jet fuel, diesel and vacuum gas oil were also determined.

  9. The extraction of bitumen from western oil sands. Quarterly report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-07-01

    Accomplishments are briefly described for the following tasks: environmental impact statement; coupled fluidized bed bitumen recovery and coked sand combustion; water-based recovery of bitumen; rotary kiln process for recovery of bitumen and combustion of coke sand; recovery of bitumen from oil sands using fluidized bed reactors and combustion of spent sands in transport reactors; recovery of bitumen from oil sand and upgrading of bitumen by solvent extraction; catalytic and thermal upgrading of bitumens and bitumen-derived liquids; evaluation of Utah`s major oil sand deposits for the production of asphalt, high energy jet fuels and other specialty products; development of mathematical models for bitumen recovery and processing; completion of the cost examination study of the pilot plant restoration; development studies of equipment for three-product gravity separation of bitumen and sand; determine thickener requirements; and environmental studies of the North Salt Lake pilot plant rehabilitation and eventual operation and those environmental problems associated with eventual commercial products.

  10. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats

    Science.gov (United States)

    Brittingham, Margaret C.; Maloney, Kelly O.; Farag, Aïda M.; Harper, David D.; Bowen, Zachary H.

    2014-01-01

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  11. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.

    Science.gov (United States)

    Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H

    2014-10-07

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  12. NUMERICAL SIMULATION OF PARTICLE SEPARATION IN AN OIL-SAND SEPARATOR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gathering systems of crude oil are greatly endangered by thefine sand and soil in oil. Up to now, how to separate sand from the viscid oil is still a technical problem for oil production home or abroad. Recently, Institute of Mechanics in Chinese Academy of Sciences hasdeveloped a new type of oil-sand separator, which has been applied successfully in oil field in situ. In this paper, the numerical method of vortex-stream function is used to predict the liquid-solid separating course and the efficiency for this oil-sand separator. Results show that the viscosity and particle diameter have much influence on the particle motion. The calculating separating efficiency is compared with that of experiment and indicates that this method can be used to model the complex two-phase flow in the separator.

  13. Jet Fuel from Shale Oil - 1981 Technology Review,

    Science.gov (United States)

    1981-12-01

    PA 18105 Inc. Waverly Glover ASD/PMRSA WPAFB, OH 45433 Timothy N. Gootee AFWAL/POFF WPAFB, OH 45433 Dr. Shri K. Goya ! Amoco Oil Co. - R&D...Engineering Box 3965 San Francisco , CA 94119 Barry E. McMillen WPAFB - AFWAL/POFF 9578 Lower Valley Pk. Medway, OH 45341 Warren K. McOmber

  14. Effect of mineral matter and phenol in supercritical extraction of oil shale with toluene

    Energy Technology Data Exchange (ETDEWEB)

    Abourriche, A.; Ouman, M.; Ichcho, S.; Hannache, H. [Universite Hassan II, Lab. des Materiaux Thermostructuraux, Faculte des Sciences Ben M' Sik, Casablanca (Morocco); Pailler, R.; Naslain, R. [Laboratoire des Composites Thermostructuraux (LCTS), 33 - Pessac (France); Birot, M.; Pillot, J.P. [Bordeaux-1 Univ., Lab. de Chimie Organique et Organometallique, UMR 5802 CNRS, 33 - Talence (France)

    2005-03-01

    In the present work, Tarfaya oil shale was subjected to supercritical toluene extraction. The experimental results obtained show clearly that the mineral matter and phenol have a significant effect on the yield and the composition of the obtained oil. The yield and the composition of oil obtained by toluene+phenol extraction were markedly different from that obtained by toluene. Higher yield and maturation of the obtained oil of the toluene+phenol extraction indicate that the phenol not only acts as an extraction solvent but also reacts with the molecules from kerogen. This can be explained by the presence of a very reactive O-H group able to react with the majority of the kerogen functions.

  15. Proximate analysis of coal, oil shale, low quality fossil fuels and related materials by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Warne, S.S.J. (University of Newcastle, Newcastle, NSW (Australia). Dept. of Geology)

    The massive oil price increases of the 'oil crises' of 1973 and 1979 followed by continuing volatile price fluctuations have reduced the over-dependence on oil by increased coal utilization and generated interest in oil shale. Basic to the economic viability of this is the detailed characterization of a wide range of coals, particularly those of poorer quality (high ash) and lower cost. Fundamental to this is 'proximate analysis' where increased speed, lower unit cost per determination together with complementary and related determinations have been achieved by the technique of thermogravimetry. Other applications using different furnace atmosphere combinations and magnetic fields have contributed further data of economic and environmental importance. 18 refs., 5 figs.

  16. Analysis of Proppant Hydraulic Fracturing in a Sand Oil Reservoir in Southwest of Iran

    Directory of Open Access Journals (Sweden)

    Reza Masoomi

    2015-10-01

    Full Text Available Hydraulic fracturing is one way to increase the productivity of oil and gas wells. One of the most fundamental successes of hydraulic fracturing operation is selecting the proper size and type of proppants which are used during the process. The aim of this study is optimizing the type and size of used propant in hydraulic fracturing operation in a sand oil reservoir in southwest of Iran. In this study sand and ceramic (sintered bauxite have been considered as proppant type. Also the various types of resin-coated sand and resin-coated ceramic have been considered. Then the various scenarios have been designed to optimize the size and type of proppant used in hydraulic fracturing in a sand oil reservoir in southwest of Iran. Also in this study increasing the cumulative oil recovery in fractured and Non-fractured wells in a sand oil reservoir in southwest of Iran have been investigated.

  17. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer assay, Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  18. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    Science.gov (United States)

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  19. Biological marker and conventional organic geochemistry of oil sands/heavy oils, Western Canada Basin

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, P.W.; Fowler, M.G.; Macqueen, R.W. (Institute of Sedimentary and Petroleum Geology, Alberta (Canada))

    1988-01-01

    Forty-three samples of oil sands/heavy oils from most of the major Cretaceous deposits and the Upper Devonian Grosmont Formation of the underlying carbonate trend, have been examined by gas chromatography and gas chromatography-mass spectrometry. Major organic geochemical differences observed between samples/deposits include the presence or absence on n-alkanes and isoprenoid alkanes, together with changes in the distributions of biological marker compounds. These differences reflect the degree of biodegradation suffered by the deposits. Three geochemical factors demonstrate that at least the Cretaceous samples are strikingly similar to one another, once the effects of biodegradation are discounted. These factors are the carbon number distribution of steroidal alkanes (C{sub 27}, C{sub 28}, and C{sub 29} diasteranes); the presence of 28,30-bisnorhopanes; and the relative abundance of 28,30-bisnorhopanes and gammacerane as compared with the ubiquitous 17{alpha}(H)-hopanes. These distinctive biomarker compositions and ratios indicate that the same or very similar sources generated the Cretaceous oil sands/heavy oils, despite the enormous volumes and their widespread geographic and stratigraphic distribution. The extent of isomerization of regular steranes and hopanes indicates that the bitumens show the same general level of maturity. All these data suggest that the Cretaceous bitumens were derived from a mature, conventional oil which was in turn derived from a presently unknown source facies. This oil must have migrated over large distances, suffering extensive biodegradation in place and possibly during migration.

  20. Bitumen recovery from surface mined oil sands recycle water ponds

    Energy Technology Data Exchange (ETDEWEB)

    Mikula, R.J.; Munoz, V.A.; Elliott, G. L. [Natural Resources Canada, CanmetENERGY, Devon, Alberta (Canada)

    2011-07-01

    In surface mined oil sands, high bitumen recovery can be achieved but tailings have accumulated over the years. Several technologies have been proposed for recovering bitumen from tailings, but because this bitumen carries high surfactant concentrations there have been processing problems. This paper presents the application of oxidized ore characterization and processing methods to process tailings pond bitumen. Laboratory tests were carried out to characterize bitumen samples coming from four different tailings sources and tests were run with caustic additive. Results showed that high caustic additions can be applied to surfactant rich tailings pond bitumen to avoid downstream froth treatment emulsion problems; the oxidation degree should be carefully monitored. This study demonstrated that the use of caustic additive, already used for oxidized ores, can be applied to treat the bitumen recovered from tailings streams.

  1. Trace metals in heavy crude oils and tar sand bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.G.

    1990-11-28

    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  2. Oil sands tailings technology : understanding the impact to reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Mamer, M. [Suncor Energy Inc., Fort McMurray, AB (Canada)

    2010-07-01

    This paper discussed tailings management techniques at oil sands mines and their effects on reclamation schedules and outcomes. The layer of mature fine tailings (MFT) that forms in tailings ponds does not settle within a reasonable time frame, requiring more and larger tailings ponds for storing MFT. Consolidated tailings (CT) technology was developed to accelerate the consolidation of MFT, although the process nonetheless takes decades. CT is produced from mixing tailings sand, gypsum, and MFT to create a mixture that will consolidate more quickly and release water. However, CT production is tied to the extraction process, making it applicable only when the plant is operational, and a precise recipe and accurate injection are required for CT to work. In tailings reduction operations (TRO), a new approach to tailings management, MFT is mixed with a polymer flocculant, deposited in thin layers, and allowed to dry. TRO has a significant advantage over CT in that the latter takes up to 30 years to consolidate to a trafficable surface compared to weeks for TRO. TRO allows MFT to be consumed more quickly than it is produced, reducing need to build more tailings ponds, operates independent of plant operations, accelerates the reclamation time frame, and offers enhanced flexibility in final tailings placement sites. TRO also creates a dry landscape, to which well established reclamation techniques can be applied. Dried MFT is a new material type, and research is exploring optimum reclamation techniques. 2 figs.

  3. Development and application of a permit information system for shale oil (PERMISSO). Final report appendix: summary sheets of regulations required for oil shale development, June 1978--May 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This appendix is comprised of summaries of various governmental permits, licenses and other approvals required for oil shale development. The summaries were completed during the period June--October 1978, and are current as of July 1, 1978, although more recent authority was cited in some cases. One of the major purposes of Phase II of the project will be to update these summaries as statutes and regulations are added, changed or eliminated. This updating will be particularly important in the case of environmental permits and approvals. Many legislative and regulatory changes affecting environmental requirements are pending at this time and will alter many of the summaries herein. In addition, many regulatory proposals have been or likely will be challenged in the courts. When such conflicts are resolved further changes may be in order.

  4. Oil sands operations as a large source of secondary organic aerosols

    Science.gov (United States)

    Liggio, John; Li, Shao-Meng; Hayden, Katherine; Taha, Youssef M.; Stroud, Craig; Darlington, Andrea; Drollette, Brian D.; Gordon, Mark; Lee, Patrick; Liu, Peter; Leithead, Amy; Moussa, Samar G.; Wang, Danny; O'Brien, Jason; Mittermeier, Richard L.; Brook, Jeffrey R.; Lu, Gang; Staebler, Ralf M.; Han, Yuemei; Tokarek, Travis W.; Osthoff, Hans D.; Makar, Paul A.; Zhang, Junhua; L. Plata, Desiree; Gentner, Drew R.

    2016-06-01

    Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.

  5. Preliminary Study on PAHs Distribution in High-grade Oil Shale and Its Spontaneous Combustion Product in Fushun, Liaoning Province

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liping; ZENG Rongshu; XU Wendong

    2007-01-01

    Spontaneous combustion of oil shale is very common as a result of long-time exposure to the air in the Fushun West Open-Pit Mine and West Dump. The PAHs in the high-grade oil shale and its spontaneous combustion product were analyzed semiquantitatively by GC-MS in order to investigate their distribution in different states and their potential negative effects on the environment. Totally 57and 60 PAHs and their alkyl homologues were identified in the two analyzed samples, among which the alkyl derivatives were predominant, taking up to about 65 % in the total PAHs. Those low-molecular mass PAHs (3- or 4-ring) were the main compounds in the two samples. Ten of sixteen USEPA priority pollutant PAHs were detected in two samples, of which phenanthrene was the richest whose contents were 6.93% and 15.03%. Based on comparison of analysis results, the amount and contents of PAHs,except for triaromatic steroid group, were higher in the burning oil shale. So it can be determined that the effects caused by spontaneous combustion of oil shale would be more serious and that the effects of the Fushun oil shale and its spontaneous combustion on the environment should not be ignored in the future work.

  6. A Canadian perspective on the supply costs, production and economic impacts from oil sands development

    Energy Technology Data Exchange (ETDEWEB)

    McColl, D.; Masri, M. [Canadian Energy Research Inst., Calgary, AB (Canada)

    2008-05-15

    This article provided a synopsis of oil sands research recently conducted at the Canadian Energy Research Institute (CERI). The production profiles and capital expenditures that CERI has projected for oil sands projects were explored along with the macroeconomic benefits associated with oil sands development. In addition to rising capital and operating costs, bitumen producers are challenged by labour shortages and environmental concerns. However, CERI warrants continued growth in production from the oil sands industry, given the current high price state of the global oil market and security of supply concerns from oil importing countries. This article also provided background information and analysis to assess the implications of future development. The projected growth in the oil sands industry creates demands for infrastructure, housing, health care, education, and business services. The economic impacts were measured at the local, provincial, national and global levels in terms of changes in gross domestic product; changes in employment; and, changes in government revenues. It was concluded that with continued investment and development, Alberta's oil sands resource is expected to continue to produce oil for decades, and would eventually achieve 6 MMbpd production. 8 refs., 3 tabs., 10 figs.

  7. Economic and social impacts of rapid shale oil development in western North Dakota

    Science.gov (United States)

    Fernando, Wannakuwatte Mitiwaduge Felix Nirmal

    This dissertation comprises of five qualitative and exploratory studies. The studies focus on the social and economic impacts of rapid shale oil development, which is colloquially referred to as an "oil boom" on the communities and its members in western North Dakota. The dissertation presents a detailed exploration of the impacts and implications of the boom on community values and attitudes, quality of life, and community development. Impact of the boom on each topic is presented as an independent article or chapter. The data for the dissertation was collected through open-ended, face-to-face interviews. The findings highlight the opportunities created by the boom, barriers inhibiting community development, and the solutions necessary to achieve the community development potential created by the economic activity of the oil boom.

  8. Oil shale resources in the Eocene Green River Formation, Greater Green River Basin, Wyoming, Colorado, and Utah

    Science.gov (United States)

    ,

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales in the Eocene Green River in the Greater Green River Basin, Wyoming, Colorado, and Utah. This CD-ROM includes reports, data, and an ArcGIS project describing the assessment. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet and included in the CD-ROM. Total in-place resources for the three assessed units in the Green River Formation are: (1) Tipton Shale Member, 362,816 million barrels of oil (MMBO), (2) Wilkins Peak Member, 704,991 MMBO, and (3) LaClede Bed of the Laney Member, 377,184 MMBO, for a total of 1.44 trillion barrels of oil in place. This compares with estimated in-place resources for the Piceance Basin of Colorado of 1.53 trillion barrels and estimated in-place resources for the Uinta Basin of Utah and Colorado of 1.32 trillion barrels.

  9. Upgrading oil sands bitumen with FLUID COKING and FLEXICOKING technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamienski, P.; Phillips, G. [ExxonMobil Research and Engineering Co., Fairfax, VA (United States); McKnight, C.; Rumball, B. [Syncrude Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    This presentation described EMRE's Fluid Coking and Flexicoking technologies that are well suited for upgrading Alberta's heavy crudes and oil sands bitumen into pipelineable crudes or synthetic crudes, which can be further processed into transportation fuels. The Fluid Coking technology uses a fluidized bed reactor that thermally converts the heavy oils into light gases, liquids and coke. The metals and much of the sulphur are concentrated in the coke. Combustion of the coke provides process heat and the remaining coke is sold or stored on site for later recovery. Syncrude Canada currently operates 3 Fluid Coking units in northern Alberta. Flexicoking extends fluid coking by integrating air gasification to produce a carbon monoxide/hydrogen rich fuel gas that helps meet fuel and energy requirements of bitumen recovery and upgrading. The yields of light gas and liquids are similar to those of the Fluid Coking process. The partial combustion of coke provides the process heat for the thermal conversion and gasification steps. The remaining coke is gasified and desulphurized using Flexsorb technology. At present, there are 5 Flexicoking units in operation around the world. Interest in the technology is growing, particularly in locations with large demand for clean fuel or electricity. It is also suitable for steam assisted gravity drainage (SAGD) operations in Alberta. This presentation outlined the operating principles of the Flexicoking integrated gasification system and compared it with more expensive oxygen gasification processes. tabs., figs.

  10. Study of the environmental hazard caused by the oil shale industry solid waste.

    Science.gov (United States)

    Põllumaa, L; Maloveryan, A; Trapido, M; Sillak, H; Kahru, A

    2001-01-01

    The environmental hazard was studied of eight soil and solid waste samples originating from a region of Estonia heavily polluted by the oil shale industry. The samples were contaminated mainly with oil products (up to 7231mg/kg) and polycyclic aromatic hydrocarbons (PAHs; up to 434mg/kg). Concentrations of heavy metals and water-extractable phenols were low. The toxicities of the aqueous extracts of solid-phase samples were evaluated by using a battery of Toxkit tests (involving crustaceans, protozoa, rotifers and algae). Waste rock and fresh semi-coke were classified as of "high acute toxic hazard", whereas aged semi-coke and most of the polluted soils were classified as of "acute toxic hazard". Analysis of the soil slurries by using the photobacterial solid-phase flash assay showed the presence of particle-bound toxicity in most samples. In the case of four samples out of the eight, chemical and toxicological evaluations both showed that the levels of PAHs, oil products or both exceeded their respective permitted limit values for the living zone (20mg PAHs/kg and 500mg oil products/kg); the toxicity tests showed a toxic hazard. However, in the case of three samples, the chemical and toxicological hazard predictions differed markedly: polluted soil from the Erra River bank contained 2334mg oil/kg, but did not show any water-extractable toxicity. In contrast, spent rock and aged semi-coke that contained none of the pollutants in hazardous concentrations, showed adverse effects in toxicity tests. The environmental hazard of solid waste deposits from the oil shale industry needs further assessment.

  11. Predicted costs of environmental controls for a commercial oil shale industry. Volume 1. An engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nevens, T.D.; Culbertson, W.J. Jr.; Wallace, J.R.; Taylor, G.C.; Jovanovich, A.P.; Prien, C.H.; Hicks, R.E.; Probstein, R.F.; Domahidy, G.

    1979-07-01

    The pollution control costs for a commercial oil shale industry were determined in a joint effort by Denver Research Institute, Water Purification Associates of Cambridge, and Stone and Webster Engineering of Boston and Denver. Four commercial oil shale processes were considered. The results in terms of cost per barrel of syncrude oil are predicted to be as follows: Paraho Process, $0.67 to $1.01; TOSCO II Process, $1.43 to $1.91; MIS Process, $2.02 to $3.03; and MIS/Lurgi-Ruhrgas Process, $1.68 to $2.43. Alternative pollution control equipment and integrated pollution control strategies were considered and optimal systems selected for each full-scale plant. A detailed inventory of equipment (along with the rationale for selection), a detailed description of control strategies, itemized costs and predicted emission levels are presented for each process. Capital and operating cost data are converted to a cost per barrel basis using detailed economic evaluation procedures. Ranges of cost are determined using a subjective self-assessment of uncertainty approach. An accepted methodology for probability encoding was used, and cost ranges are presented as subjective probability distributions. Volume I presents the detailed engineering results. Volume II presents the detailed analysis of uncertainty in the predicted costs.

  12. Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data: False-Floor Experiment Flow Velocity and Shear Stress

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in...

  13. Laboratory Observations of Artificial Sand and Oil Agglomerates: Video and Velocity Data: Sea Floor Interaction Experiment Preview Video (GoPro)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in...

  14. Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land.

    Science.gov (United States)

    Xia, H P

    2004-01-01

    Vetiver grass (Vetiveria zizanioides), bahia grass (Paspalum notatum), St. Augustine grass (Stenotaphrum secundatum), and bana grass (Pennisetum glaucumxP. purpureum) were selected to rehabilitate the degraded ecosystem of an oil shale mined land of Maoming Petro-Chemical Company located in Southwest of Guangdong Province, China. Among them, vetiver had the highest survival rate, up to 99%, followed by bahia and St. Augustine, 96% and 91%, respectively, whereas bana had the lowest survival rate of 62%. The coverage and biomass of vetiver were also the highest after 6-month planting. Fertilizer application significantly increased biomass and tiller number of the four grasses, of which St. Augustine was promoted most, up to 70% for biomass, while vetiver was promoted least, only 27% for biomass. Two heavy metals, lead (Pb) and cadmium (Cd) tested in this trial had different concentrations in the oil shale residue, and also had different contents and distributions in the four grass species. Concentrations of Pb and Cd in the four grasses presented a disparity of only 1.6-3.8 times, but their uptake amounts to the two metals were apart up to 27.5-35.5 times, which was chiefly due to the significantly different biomasses among them. Fertilizer application could abate the ability of the four species to accumulate heavy metals, namely concentration of heavy metals in plants decreased as fertilizer was applied. The total amount of metals accumulated by each plant under the condition of fertilization did not decrease due to an increase of biomass. In summary, vetiver may be the best species used for vegetation rehabilitation in oil shale disposal piles.

  15. Atmospheric behaviour of oil-shale combustion fly ash in a chamber study

    Science.gov (United States)

    Teinemaa, Erik; Kirso, Uuve; Strommen, Michael R.; Kamens, Richard M.

    There are huge world deposits of oil shale, however, little is known about the fate of atmospheric oil-shale combustion fly ash. In the present work, oil-shale combustion fly-ash aerosol was investigated under simulated daytime and nighttime conditions. Fly-ash particles collected from the Baltic Power Plant (Estonia) were injected directly to a 190 m 3 outdoor Teflon film chamber. The initial concentration of particles was in the range from 15 to 20 mg/m 3. Particle size distributions were monitored continuously by various optical and electrical devices. During the course of an experiment the particle phase was collected on filters, and the gas phase was collected using denuders. The initial aerosol mass concentration decreased quickly due to the deposition of larger particles. Since fine particles dominated the count distribution, the change in aerosol number concentration was less significiant than the mass concentration over time. Experimental data showed a bimodal particle size distribution with maximums at about 0.07 and 4 μm. SEM images of aerosol particles also provided particle shape and size distribution information. The respirable fraction of particles, which contributes most to the health effects of the aerosol, significantly increased during the experiment, being 25% by mass immediately after the injection of fly ash and achieving 65% at the end of the experiment. Results of CG/MS analysis confirm the presence of different polycyclic aromatic hydrocarbons (PAHs) in the particle phase of the aerosol. Some of the individual compounds included phenanthrene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene. Several PAHs were found in the gas phase of the chamber after fly ash had aged for 2 h, indicating that PAHs desorbed from the particles over time.

  16. Carbon sequestration in a chronosequence of Scots pine stands in a reclaimed opencast oil shale mine

    Energy Technology Data Exchange (ETDEWEB)

    Karu, H. [Tartu Univ., Tartu (Estonia). Inst. of Ecology and Earth Sciences; Tallinn Univ., Tallinn (Estonia). Inst. of Ecology; Szava-Kovats, R.; Kull, O. [Tartu Univ., Tartu (Estonia). Inst. of Ecology and Earth Sciences; Pensa, M. [Tallinn Univ., Tallinn (Estonia). Inst. of Ecology

    2009-08-15

    The carbon balance of ecosystems emerging on former opencast mining areas was discussed. Since the carbon content of mine spoils is usually very low, soils developing on mine spoils can act as important sinks for carbon dioxide (CO{sub 2}) through accumulation of biomass and soil organic carbon (SOC). This study estimated the rate of carbon accumulation and its distribution along forest ecosystem partitions in young Scots pine plantations in the Narva opencast oil shale mine in Estonia. Although plantations established on mine spoils are useful sites to study carbon sequestration in forests, mine soils often contain large amounts of fossil carbon, which complicates the estimation of carbon sequestration. Measurement of radiocarbon activity has been used to differentiate between plant-derived recent carbon and fossil carbon. The objectives of this study were to estimate the rate of carbon accumulation in young Scots pine plantations growing on severely degraded land; to determine the distribution of sequestered carbon along forest ecosystem partitions; and to develop a simple and robust method for finding the recent carbon contribution to total SOC. The plantations of Scots pine showed remarkably good growth on calcareous and stony oil shale mining spoils, having the potential to accumulate over 130 t C per ha less than 40 years after establishment. Most of the sequestered carbon was allocated to tree stems, with their portion increasing with age from 28 to 51 per cent. The portion of recent SOC increased from 5 to 23 per cent, indicating that soils contribute significantly to carbon accumulation during early forest succession on degraded land. According to our results, soils contribute a significant part to total stand carbon sequestration. However, large uncertainties remain concerning the average rate of SOC accumulation in reclaimed oil shale opencast mines because of the high variability of the parent substrate. 50 refs., 5 tabs., 4 figs.

  17. Running Out Of and Into Oil. Analyzing Global Oil Depletion and Transition Through 2050

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hopson, Janet L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Jia [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-10-01

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value.

  18. Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

  19. Oil-shale gasification for obtaining of gas for synthesis of aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Strizhakova, Yu. [Samara State Univ. (Russian Federation); Avakyan, T.; Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Nowadays, the problem of qualified usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. Gasification with further processing of gaseous products is a one of possible ways of their use. Production of synthesis gas with H{sub 2}/CO ratio equal 2 is possible by gasification of oil-shale. This gas is converted into the mixture of hydrocarbons over cobalt catalyst at temperature from 160 to 210 C at atmospheric pressure. The hydrocarbons can be used as motor, including diesel, or reactive fuel. (orig.)

  20. Occupational exposure to asbestos during renovation of oil-shale fuelled power plants in Estonia.

    Science.gov (United States)

    Kangur, Maie

    2007-01-01

    Many thousands of tonnes of asbestos were used in buildings in the past, especially for thermal insulation of pipes and boilers in power plants. Occupational exposure to asbestos dust now mainly occurs during demolition, renovation and routine maintenance activities. The objective of this study was to evaluate occupational exposure to airborne asbestos during renovation of solid oil-shale fuelled power plants carried out in 2001-2003. Air monitoring inside and outside of the renovation area was performed. The concentration of airborne fibres in the working environment increased during renovation but the valid limit value (0.1 fibres/cm(3)) was not exceeded.

  1. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. (Institute of Gas Technology, Chicago, IL (United States)); Gidaspow, D.; Gupta, R.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States)); Pfister, R.M.: Krieger, E.J. (Ohio State Univ., Columbus, OH (United States))

    1992-05-01

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  2. Biomarkers of effects of hypoxia and oil-shale contaminated sediments in laboratory-exposed gibel carp (Carassius auratus gibelio).

    Science.gov (United States)

    Kreitsberg, Randel; Baršienė, Janina; Freiberg, Rene; Andreikėnaitė, Laura; Tammaru, Toomas; Rumvolt, Kateriina; Tuvikene, Arvo

    2013-12-01

    In North-East Estonia, considerable amounts of toxicants (e.g. polycyclic aromatic hydrocarbons (PAHs), phenols, heavy metals) leach into water bodies through discharges from the oil-shale industry. In addition, natural and anthropogenic hypoxic events in water bodies affect the health of aquatic organisms. Here we report a study on the combined effects of contaminated sediment and hypoxia on the physiology of gibel carp (Carssius auratus gibelio). We conducted a laboratory exposure study that involved exposure to polluted sediments from oil-shale industries (River Purtse) and sediments from a relatively clean environment (River Selja), together with sediments spiked with PAHs. The oxygen content (saturation vs. hypoxia (oil-shale industry on fish health parameters was clear under different oxygen levels. © 2013 Elsevier Inc. All rights reserved.

  3. Sustainable use of oil sands for geotechnical construction and road building

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-02-01

    Full Text Available of Oil Sand,? Final Progress Report, Phases I, II, & III, Submitted to Caterpillar, Inc., 2005. [3] Dusseault, M.B., and Morgenstern, N.R., ?Shear Strength of Athabasca Oil Sands,? Canadian Geotechnical Journal, Vol. 15, 1978, pp. 216?238. [4] Agar..., J.G., Morgenstern, N.R., and Scott, J.D., ?Shear Strength and Stress-Strain Behavior of Athabasca Oil Sand at Elevated Temperatures and Pressures,? Canadian Geotechnical Journal, Vol. 24, 1987, pp. 1?10. [5] Samieh, A.M., and Wong, R...

  4. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    Science.gov (United States)

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294

  5. Black gold rush in Canada[Tar sand oil]; Svart gullrush i Canada

    Energy Technology Data Exchange (ETDEWEB)

    Gundersen, Ina

    2006-07-01

    In Alberta, Canada, oil companies are competing for licences to extract oil from the tar sand deposits. The occurrences cover an area equal to Belgium, and the total of recoverable oil is estimated to around 1700 million barrels. Descriptions of the recovery process and the competing companies are given.

  6. Effect of drilling fluid systems and temperature on oil mist and vapour levels generated from shale shaker.

    Science.gov (United States)

    Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie

    2011-05-01

    Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40

  7. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  8. Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States); Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Tanana, Heather [Univ. of Utah, Salt Lake City, UT (United States); Holt, Rebecca [Univ. of Utah, Salt Lake City, UT (United States)

    2011-12-01

    Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully allocated, prospective development will require minimizing water use and seeking to use water resources in the most efficient manner. Conjunctive use of surface and groundwater provides just such an opportunity. Conjunctive use includes two main practices: First, integrating surface water diversions and groundwater withdrawals to maximize efficiency and minimize impacts on other resource users and ecological processes. Second, conjunctive use includes capturing surplus or unused surface water and injecting or infiltrating that water into groundwater aquifers in order to increase recharge rates. Conjunctive management holds promise as a means of addressing some of the West's most intractable problems. Conjunctive management can firm up water supplies by more effectively capturing spring runoff and surplus water, and by integrating its use with groundwater withdrawals; surface and groundwater use can be further integrated with managed aquifer recharge projects. Such integration can maximize water storage and availability, while simultaneously minimizing evaporative loss, reservoir sedimentation, and surface use impacts. Any of these impacts, if left unresolved, could derail commercial-scale unconventional fuel development. Unconventional fuel developers could therefore benefit from incorporating conjunctive use into their development plans. Despite its advantages, conjunctive use is not a panacea. Conjunctive use means using resources in harmony to maximize and stabilize long-term supplies it does not mean maximizing the use of two separate but interrelated resources for unsustainable short-term gains and it cannot resolve all problems or provide water where no unappropriated water exists. Moreover, conjunctive use may pose risks to ecological values forgone when water that would otherwise remain in a stream is diverted for aquifer recharge or other uses. To better understand the rapidly evolving field of conjunctive use, this Topical Report begins with a discussion of Utah water law, with an emphasis on conjunctive use issues. We contrast Utah's approach with efforts undertaken in neighboring states and by the federal government. We then relate conjunctive use to the unconventional fuel industry and discuss how conjunctive use can help address pressing challenges. While conjunctive management cannot create water where none exists, it does hold promise to manage existing resources in a more efficient manner. Moreover, conjunctive management reflects an important trend in western water law that could provide benefit to those contemplating activities that require large-scale water development.

  9. Proceedings of the symposium on assessing the industrial hygiene monitoring needs for the coal conversion and oil shale industries

    Energy Technology Data Exchange (ETDEWEB)

    White, O. Jr. (ed.)

    1979-03-01

    This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)

  10. Modeling calcium dissolution from oil shale ash: Part 1. Ca dissolution during ash washing in a batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Velts, O.; Kallas, J. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia); Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Hautaniemi, M. [Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Kuusik, R. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia)

    2010-05-15

    Batch dissolution experiments were carried out to investigate Ca leachability from oil shale ashes formed in boilers operating with different combustion technologies. The main characteristics of Ca dissolution equilibrium and dynamics, including Ca internal mass transfer through effective diffusion coefficients inside the ash particle were evaluated. Based on the collected data, models allowing simulation of the Ca dissolution process from oil shale ashes during ash washing in a batch reactor were developed. The models are a set of differential equations that describe the changes in Ca content in the solid and liquid phase of the ash-water suspension. (author)

  11. Long-Term Acid-Generating and Metal Leaching Potential of a Sub-Arctic Oil Shale

    Directory of Open Access Journals (Sweden)

    Kathryn A. Mumford

    2014-04-01

    Full Text Available Shales are increasingly being exploited for oil and unconventional gas. Exploitation of sub-arctic oil shales requires the creation of gravel pads to elevate workings above the heaving effects of ground ice. These gravel pads can potentially generate acidic leachate, which can enhance the mobility of metals from the shale. To examine this potential, pyrite-bearing shale originating from sub-Arctic gravel pad sites were subjected to leaching tests for 600 days at initial pH values ranging from 2 to 5, to simulate potential real world conditions. At set times over the 600 day experiment, pH, oxidation reduction potential (ORP, dissolved oxygen and temperature were recorded and small liquid samples withdrawn and analysed for elemental concentrations using total reflection X-ray fluorescence spectrometry (TRXRF. Six of eight shale samples were found to be acid generating, with pH declining and ORP becoming increasingly positive after 100 days. Two of the eight shale samples produced increasingly alkaline leachate conditions with relatively low ORP after 100 days, indicating an inbuilt buffering capacity. By 600 days the buffering capacity of all samples had been consumed and all leachate samples were acidic. TRXRF analyses demonstrated significant potential for the leaching of S, Fe, Ni, Cu, Zn and Mn with greatest concentrations found in reaction vessels with most acidic pH and highest ORP.

  12. Biodegradation of MC252 oil in oil:sand aggregates in a coastal headland beach environment.

    Science.gov (United States)

    Elango, Vijaikrishnah; Urbano, Marilany; Lemelle, Kendall R; Pardue, John H

    2014-01-01

    Unique oil:sand aggregates, termed surface residue balls (SRBs), were formed on coastal headland beaches along the northern Gulf of Mexico as emulsified MC252 crude oil mixed with sand following the Deepwater Horizon spill event. The objective of this study is to assess the biodegradation potential of crude oil components in these aggregates using multiple lines of evidence on a heavily-impacted coastal headland beach in Louisiana, USA. SRBs were sampled over a 19-month period on the supratidal beach environment with reasonable control over and knowledge of the residence time of the aggregates on the beach surface. Polycyclic aromatic hydrocarbons (PAHs) and alkane concentration ratios were measured including PAH/C30-hopane, C2/C3 phenanthrenes, C2/C3 dibenzothiophenes and alkane/C30-hopane and demonstrated that biodegradation was occurring in SRBs in the supratidal. These biodegradation reactions occurred over time frames relevant to the coastal processes moving SRBs off the beach. In contrast, submerged oil mat samples from the intertidal did not demonstrate chemical changes consistent with biodegradation. Review and analysis of additional biogeochemical parameters suggested the existence of a moisture and nutrient-limited biodegradation regime on the supratidal beach environment. At this location, SRBs possess moisture contents biodegradation in the literature. Despite these limitations, biodegradation of PAHs and alkanes proceeded at relevant rates (2-8 year(-1)) due in part to the presence of degrading populations, i.e., Mycobacterium sp., adapted to these conditions. For submerged oil mat samples in the intertidal, an oxygen and salinity-impacted regime is proposed that severely limits biodegradation of alkanes and PAHs in this environment. These results support the hypothesis that SRBs deposited at different locations on the beach have different biogeochemical characteristics (e.g., moisture, salinity, terminal electron acceptors, nutrient, and oil

  13. {sup 13}C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.V. dos, E-mail: mangrich@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mangrich, A.S. [Instituto Nacional de Ciencia e Tecnologia: Energia e Ambiente, Salvador, BA (Brazil); Pereira, B.F. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Pillon, C.N. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil). Estacao Experimental Cascata; Novotny, E.H. [EMBRAPA Solos, Rio de Janeiro, RJ (Brazil); Bonagamba, T.J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Abbt-Braun, G.; Frimmel, F.H. [Engler-Bunte-Institut, Universitaet Karlsruhe, TH (Germany)

    2013-02-15

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state {sup 13}C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand {sup 13}C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO{sup 2+} correlated positively with uronic acid-type hydrophilic organic structures, determined from the {sup 13}C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  14. Source characterization studies at the Paraho semiworks oil shale retort. [Redistribution of trace and major elements

    Energy Technology Data Exchange (ETDEWEB)

    Fruchter, J.S.; Wilkerson, C.L.; Evans, J.C.; Sanders, R.W.; Abel, K.W.

    1979-05-01

    In order to determine the redistribution of trace and major elements and species during aboveground oil shale retorting, a comprehensive program was carried out for the sampling and analysis of feedstock, products, effluents, and ambient particulates from the Paraho Semiworks Retort. Samples were obtained during two periods in 1977 when the retort was operating in the direct mode. The data were used to construct mass balances for 31 trace and major elements in various effluents, including the offgas. The computed mass balances indicated that approx. 1% or greater fractions of the As, Co, Hg, N, Ni, S, and Se were released during retorting and redistributed to the product oil, retort water, or product offgas. The fraction released for these seven elements ranged from approx. 1% for Co and Ni to 50 to 60% for Hg and N. Approximately 20% of the S and 5% each of the As and Se were released. Ambient aerosols were found to be elevated near the retorting facility and associated crushing and retorted shale disposal sites. Approximately 50% of these particles were in the respirable range (< 5 ..mu..m). The elevated dust loadings are presented very local, as indicated by relatively low aerosol loadings at background sites 100 to 200 m away. State-of-the-art dust control measures were not employed. 15 figures, 19 tables.

  15. Removal of Cu2+from Aqueous Solutions Using Na-A Zeolite from Oil Shale Ash

    Institute of Scientific and Technical Information of China (English)

    包维维; 刘璐; 邹海峰; 甘树才; 徐学纯; 季桂娟; 高桂梅; 郑克岩

    2013-01-01

    Na-A zeolite was synthesized using oil shale ash (OSA), which is a solid by-product of oil shale proc-essing. The samples were characterized by various techniques, such as scanning electron microscopy, X-ray diffrac-tion and Brunauer Emmet Teller method. The batch isothermal equilibrium adsorption experiments were performed to evaluate the ability of Na-A zeolite for removal of Cu (II) from aqueous solutions. The effects of operating pa-rameters, such as concentration of copper solutions, adsorbent dosages, pH value of solutions and temperature, on the adsorption efficiency were investigated. The equilibrium adsorption data were fitted with Langmuir and Freundlich models. The maximum adsorption capacity of Na-A zeolite obtained from the Langmuir adsorption iso-therm is 156.7 mg·g−1 of Cu (II). The increase of pH level in the adsorption process suggests that the uptake of heavy metals on the zeolite follows an ion exchange mechanism. The batch kinetic data fit the pseudo-second order equation well. The thermodynamic parameters, such as changes in Gibbs free energy (ΔG), enthalpy (ΔH) and en-tropy (ΔS), are used to predict the nature of the adsorption process. The negativeΔG values at different tempera-tures confirm that the adsorption processes are spontaneous.

  16. Developments in CO{sub 2} mineral carbonation of oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    Uibu, M., E-mail: maiuibu@staff.ttu.ee [Laboratory of Inorganic Materials, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Velts, O.; Kuusik, R. [Laboratory of Inorganic Materials, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia)

    2010-02-15

    Solid waste and atmospheric emissions originating from power production are serious problems worldwide. In the Republic of Estonia, the energy sector is predominantly based on combustion of a low-grade carbonaceous fossil fuel: Estonian oil shale. Depending on the combustion technology, oil shale ash contains 10-25% free lime. To transport the ash to wet open-air deposits, a hydraulic system is used in which 10{sup 7}-10{sup 8} cubic meters of Ca{sup 2+}-ion-saturated alkaline water (pH level 12-13) is recycled between the plant and sedimentation ponds. The goals of the current work were to design an ash-water suspension carbonation process in a continuous mode laboratory-scale plant and to search for potential means of intensifying the water neutralization process. The carbonation process was optimized by cascading reactor columns in which the pH progressed from alkaline to almost neutral. The amount of CO{sub 2} captured from flue gases can reach 1-1.2 million ton at the 2007 production level of the SC Narva Power Plants. Laboratory-scale neutralization experiments were carried out to compare two reactor designs. Sedimentation of PCC particles of rhombohedral crystalline structure was demonstrated and their main characteristics were determined. A new method providing 50x greater specific intensity is also discussed.

  17. Groundwater flow model of the Estonian oil shale mining area towards to innovative system

    Energy Technology Data Exchange (ETDEWEB)

    Lind, H. [Tallinn Univ. of Technology (Estonia). Dept. of Mining

    2010-07-01

    Changes in the Estonian groundwater regime are anticipated as oil shale deposits are mined. This paper described a dynamic groundwater flow model used to develop a 3-D groundwater elevation map of the Estonian oil shale mining area. The model was used to provide preliminary estimations of water inflow into the working underground mine areas. The model included 9 closed underground mines, 5 active mine sites, and 2 small open-cast sites. The closed mine sites were filled with water flowing in from the working mine sites. New mines and dewatering programs are planned for the future. A database from observation wells installed within the Keila-Kukruse aquifer was used to extract outputs and determine time steps. The model included 35 pumping stations from the active mine sites. The hydraulic properties for each model layer were defined in 4 model zones. Results of the model showed higher water in-flows from the closed underground sites than earlier predictions had anticipated. 9 refs., 1 tab., 4 figs.

  18. CO2 Rebinding by Oil Shale CFBC Ashes: Effect of Pre-Treatment

    Science.gov (United States)

    Trikkel, Andres; Keelmann, Merli; Aranson, Aljona; Kuusik, Rein

    Power production in Estonia is predominantly based on combustion of a local low-grade fossil fuel Estonian oil shale. Due to the high content of carbonaceous mineral matter in oil shale, its combustion is related to formation of lime-containing ashes (content of free CaO 10-30%) which could be utilized as sorbents for CO2. In the present research CO2 uptake by circulating fluidized bed and pulverized firing ashes from different technological devices (furnace, cyclones etc) of an operating power plant was studied and the effect of pre-treatment (grinding, calcination at different temperatures) of these ashes on their capture capacity was estimated using thermogravimetric, SEM, X-Ray and EDX analysis methods. It was found that capture capacities were determined mainly by free CaO content in the ashes, thereby, fluidized bed ashes showed higher CaO conversion levels (19.2-74.2%) as compared to pulverized firing ones (8.7-51.8%). Pre-treatment conditions influenced noticeably CO2 uptake. Grinding decreased CO2 capture capacity of fluidized bed ashes, calcination at higher temperatures decreased capture capacity of both types of ashes. Clarification of this phenomenon was given. Kinetic analysis of the process has been carried out, mechanism of the reactions and respective kinetic constants have been estimated.

  19. Releases of natural radionuclides from oil-shale-fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Realo, E.; Realo, K.; Jogi, J. [AN Ehstonskoj SSR, Tartu (Estonia). Inst. Fiziki

    1996-11-01

    In the vicinity of two large oil-shale-fired power plants in northeast Estonia, depth-dependent activity concentrations of natural radionuclides in soil were determined by gamma spectrometry. In the surface soil considerably higher (or lower) concentrations of {sup 40}k, {sup 226}Ra and {sup 232}Th were found than in deeper soil layers. The observed increase or decrease of the enrichment of radionuclides for different sampling sites was dependent on the relative concentrations of radionuclides in fly-ash and in deep soil layers. The fraction of the radionuclides deposited onto the ground was characterized by a mean {sup 226}Ra/{sup 232}Th activity concentration ratio of 2.2, approximately equal to the one (2.1) found for oil-shale filter ash. The atmospheric deposition rates of fly-ash radionuclides onto the ground were estimated and compared to other relevant published data. The migration of the deposited fly-ash radionuclides into soil was satisfactorily described assuming an exponential depth distribution with the relaxation length value, {alpha}{sup -1} = 2.9 {+-} 0.6 cm, for both {sup 226}Ra and {sup 232}Th. (Author).

  20. High-resistance controlled yielding supporting technique in deep-well oil shale roadways

    Institute of Scientific and Technical Information of China (English)

    Yu Yang; Bai Jianbiao; Wang Xiangyu; Wang Junde; Xue Shizhi; Xu Ke

    2014-01-01

    In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is:to‘resist’ by high pre-tightening force and high stiff-ness in the early stage, to‘yield’ by making use of the controlled deformation of a yielding tube in the middle stage, and to‘fix’ by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of‘high pre-tightening force yielding anchor bolt+small-bore pre-tight-ening force anchor cable+rebar ladder beam+rhombic metal mesh+lagging gunite’ has been estab-lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rhe-ology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.

  1. The specific carbon isotopic compositions of branched and cyclic hydrocarbons from Fushun oil shale

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi; WU Baoxiang; ZHENG Guodong; ZHANG Hui; ZHENG Chaoyang

    2004-01-01

    Various branched and cyclic hydrocarbons are isolated from the Fushun oil shale and their carbon isotopes are determined. The analytical results show that the branched and cyclic hydrocarbons are fully separated from n-alkanes by 5 A Molecular-sieve adduction using long time and cold solvent. The branched and cyclic hydrocarbon fraction obtained by this method is able to satisfy the analytic requests of GC-IRMS. The carbon isotopic compositions of these branched and cyclic hydrocarbons obtained from the sample indicate that they are derived from photoautotrophic algae, chemoautotrophic bacteria (-3.4‰ --39.0‰) and methanotrophic bacteria (-38.4‰--46.3‰). However the long-chain 2-methyl-branched alkanes indicate that their carbon isotopic compositions reflect biological origin from higher plants. The carbon isotopic composition of C30 4-methyl sterane (-22.1‰) is the heaviest in all studied ste- ranes, showing that the carbon source or growth condition for its precursor, dinoflagellate, may be different from that of regular steranes. The variation trend of δ13C values between isomers of hopanes shows that 13C-enriched precursors take precedence in process of their epimerization. Methanotrophic hopanes presented reveal the processes of strong transformation of organic matter and cycling of organic carbon in the water column and early diagenesis of oil shale.

  2. Bitumen recovery from oil sands using deep eutectic solvent and its aqueous solutions

    Science.gov (United States)

    Pulati, Nuerxida

    Oil sands compose a significant proportion of the world's known oil reserves. Oil sands are also known as tar sands and bituminous sands, are complex mixtures of sand, clays, water and bitumen, which is "heavy" and highly viscous oil. The extraction and separation of bitumen from oil sands requires significant amount of energy and large quantities of water and poses several environmental challenges. Bitumen can be successfully separated from oil sands using imidazolium based ionic liquids and nonpolar solvents, however, ionic liquids are expensive and toxic. In this thesis, the ionic liquid alternatives- deep eutectic solvent, were investigated. Oil sands separation can be successfully achieved by using deep eutectic solvents DES (choline chloride and urea) and nonpolar solvent naphtha in different types of oil sands, including Canadian ("water-wet"), Utah ("oil-wet") and low grade Kentucky oil sands. The separation quality depends on oil sands type, including bitumen and fine content, and separation condition, such as solvent ratio, temperature, mixing time and mechanical centrifuge. This separation claims to the DES ability to form ion /charge layering on mineral surface, which results in reduction of adhesion forces between bitumen and minerals and promote their separation. Addition of water to DES can reduce DES viscosity. DES water mixture as a media, oil sands separation can be achieved. However, concentration at about 50 % or higher might be required to obtain a clear separation. And the separation efficiency is oil sands sample dependent. The highest bitumen extraction yield happened at 75% DES-water solution for Utah oil sands samples, and at 50 60% DES-water solutions for Alberta oil sands samples. Force curves were measured using Atomic Force Microscopy new technique, PeakForce Tapping Quantitative Nanomechanical Mapping (PFTQNM). The results demonstrate that, by adding DES, the adhesion force between bitumen and silica and dissipation energy will

  3. Low temperature extraction and upgrading of oil sands and bitumen in supercritical fluid mixtures.

    Science.gov (United States)

    Brough, Sarah A; Riley, Sandra H; McGrady, G Sean; Tanhawiriyakul, Supaporn; Romero-Zerón, Laura; Willson, Christopher D

    2010-07-21

    Preliminary results are reported for the extraction and catalytic hydrocracking of Alberta bitumen and oil sands using supercritical fluid mixtures; high levels of extraction and upgrading were attained using reaction conditions significantly milder than those previously reported.

  4. The extraction of bitumen from western oil sands. Quarterly report, July--September, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-11-01

    This report cites task number followed by a brief statement of each task and the action taken this quarter. The tasks are: NEPA environmental information statement; coupled fluidized-bed bitumen recovery and coked sand combustion; water-based recovery of bitumen; rotary kiln process for recovery of bitumen and combustion of coke sand; recovery of bitumen from oil sands using fluidized bed reactors and combustion of spent sands in transport reactors; recovery of bitumen from oil sand and upgrading of bitumen by solvent extraction; catalytic and thermal upgrading of bitumens and bitumen-derived liquids; evaluation of Utah`s major oil sand deposits for the production of asphalt, high energy jet fuels, and other specialty products; development of mathematical models for bitumen recovery and processing; completion of the cost estimation study of the pilot plant restoration; development studies of equipment for three-product gravity separation of bitumen and sand; development studies of disposal of sand by conveying or pumping of high solids concentration sand-water slurries; and environmental studies of the North Salt Lake pilot plant rehabilitation and eventual operation and those environmental problems associated with eventual commercial products.

  5. Assessment of undiscovered oil and gas resources of the Devonian Marcellus Shale of the Appalachian Basin Province

    Science.gov (United States)

    Coleman, James L.; Milici, Robert C.; Cook, Troy A.; Charpentier, Ronald R.; Kirshbaum, Mark; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2011-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey (USGS) estimated a mean undiscovered natural gas resource of 84,198 billion cubic feet and a mean undiscovered natural gas liquids resource of 3,379 million barrels in the Devonian Marcellus Shale within the Appalachian Basin Province. All this resource occurs in continuous accumulations. In 2011, the USGS completed an assessment of the undiscovered oil and gas potential of the Devonian Marcellus Shale within the Appalachian Basin Province of the eastern United States. The Appalachian Basin Province includes parts of Alabama, Georgia, Kentucky, Maryland, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. The assessment of the Marcellus Shale is based on the geologic elements of this formation's total petroleum system (TPS) as recognized in the characteristics of the TPS as a petroleum source rock (source rock richness, thermal maturation, petroleum generation, and migration) as well as a reservoir rock (stratigraphic position and content and petrophysical properties). Together, these components confirm the Marcellus Shale as a continuous petroleum accumulation. Using the geologic framework, the USGS defined one TPS and three assessment units (AUs) within this TPS and quantitatively estimated the undiscovered oil and gas resources within the three AUs. For the purposes of this assessment, the Marcellus Shale is considered to be that Middle Devonian interval that consists primarily of shale and lesser amounts of bentonite, limestone, and siltstone occurring between the underlying Middle Devonian Onondaga Limestone (or its stratigraphic equivalents, the Needmore Shale and Huntersville Chert) and the overlying Middle Devonian Mahantango Formation (or its stratigraphic equivalents, the upper Millboro Shale and middle Hamilton Group).

  6. Design, fabrication, operation and Aspen simulation of oil shale pyrolysis and biomass gasification process using a moving bed downdraft reactor

    Science.gov (United States)

    Golpour, Hassan

    Energy is the major facilitator of the modern life. Every developed and developing economy requires access to advanced sources of energy to support its growth and prosperity. Declining worldwide crude oil reserves and increasing energy needs has focused attention on developing existing unconventional fossil fuels like oil shale and renewable resources such as biomass. Sustainable, renewable and reliable resources of domestically produced biomass comparing to wind and solar energy is a sensible motivation to establish a small-scale power plant using biomass as feed to supply electricity demand and heat for rural development. The work in Paper I focuses on the possibility of water pollution from spent oil shale which should be studied before any significant commercial production is attempted. In Paper II, the proposed Aspen models for oil shale pyrolysis is to identify the key process parameters for the reactor and optimize the rate of production of syncrude from oil shale. The work in Paper III focuses on (1) Design and operation of a vertical downdraft reactor, (2) Establishing an optimum operating methodology and parameters to maximize syngas production through process testing. Finally in Paper IV, a proposed Aspen model for biomass gasification simulates a real biomass gasification system discussed in Paper III.

  7. Environmental impact assessment in the Alberta oil sands area

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, I.B.; Herasymuik, G.; Schmidt, N.; Kovats, Z.; Clipperton, K. [Golder Associates Ltd., Calgary, AB (Canada)

    2004-07-01

    Some of the activities associated with the Environmental Impact Assessment (EIA) process in oil sands operations in Alberta were reviewed with particular reference to key regional issues such as instream flow needs (IFN), basal water management, lake acidification potential, and climate change. The proven approaches to maintain timelines and maximize success were also discussed with reference to the factors that can be managed to promote an efficient application, review and approval process. It was noted that although the EIA process is well-defined and robust, it is evolving due to new challenges such as increasingly complex tools and new regulations. Alberta's Cumulative Environmental Management Association (CEMA) continuously refines environmental objectives for NOx, SOx, surface water, and the Muskeg River and the Athabasca River watersheds. In particular, much effort has gone into determining the water withdrawals from the Athabasca River during the winter months and its effect on resident fish populations. Operators must determine the viability of a project if studies of IFN indicate that there is limited river flow available for abstraction. This paper identified several factors that can be addressed to keep the process on schedule. These include planning, understanding issues, completing baseline surveys, and commanding the attention of regulators. 12 refs., 1 tab., 8 figs.

  8. Co-gasification of oil sand coke with coal

    Energy Technology Data Exchange (ETDEWEB)

    Vejahati, Farshid; Gupta, Rajender [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2013-07-01

    Gasification of oil sand delayed coke with sub-bituminous and lignite coals was performed in an atmospheric entrained flow gasifier using steam and oxygen as gasifying agents. The underlying objective of this work was to assess the effects of the operating variables (i.e. temperature, oxygen and steam concentrations) and coal/coke blending ratio on gasification performance in a high-temperature in order to find the possible synergies in co-gasification of the fuels. Experiments were conducted at 1,400 C, using steam and oxygen to carbon weight ratios of (0.36-1.08) and (0.07-0.2), respectively in N{sub 2} carrier gas. The coke to coal weight ratios of 1/3, 1/2, and 2/3 were used for the blending tests. Particle size of 53-90 {mu}m with d{sub 50} = 75 {mu}m were used. In terms of char reactivity, blending did not show any significant positive effect. Slight deviations from linear additive line are in the order of experiment error. Gasification efficiency was also following a linear additive trend once more pointing out the lack of synergy in entrained flow gasification systems. The results however, showed that higher coke content clearly favored the H{sub 2} production.

  9. Production of high quality water for oil sands application

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette-Hodsman, C.; Macleod, B. [Pall Corp., Mississauga, ON (Canada); Venkatadri, R. [Pall Corp., East Hills, NY (United States)

    2008-10-15

    This paper described a pressurized microfiltration membrane system installed at an oil sands extraction site in Alberta. The system was designed to complement a reverse osmosis (RO) system installed at the site to produce the high quality feed water required by the system's boilers. Groundwater in the region exhibited moderate total suspended solids and high alkalinity and hardness levels, and the RO system required feed water with a silt density index of 3 or less. The conventional pretreatment system used at the site was slowing down production due to the severe fouling of the RO membranes. The new microfiltration system contained an automated PVDF hollow fiber microfiltration membrane system contained in a trailer. Suspended particles and bacteria were captured within the filter, and permeate was sent to the RO unit. Within 6 hours of being installed, the unit was producing water with SDI values in the range of 1.0 to 2.5. It was concluded that the microfiltration system performed reliably regardless of wide variations in feed water quality and flow rates. 3 refs., 1 tab., 8 figs.

  10. Review of four major environmental effects monitoring programs in the oil sands region

    Energy Technology Data Exchange (ETDEWEB)

    Lott, E.O.; Jones, R.K. [EO Consulting, BC (Canada)

    2010-10-15

    The lack of knowledge on current environmental effects monitoring programs for the mineable oil sands region generates a low public confidence in environment health monitoring and reporting programs for the oil sands operations. In 2010, the Oil Sands Research and Information Network (OSRIN) supervised a study reviewing the major environmental effects monitoring programs that are underway in the Regional Municipality of Wood Buffalo. Four main environmental effects monitoring and reporting organizations existing in the oil sands area were engaged to describe their programs through this study: Alberta Biodiversity Monitoring Institute (ABMI), Cumulative Environmental Management Association (CEMA), Regional Aquatic Monitoring Program (RAMP), Wood Buffalo Environmental Association (WBEA). These different organizations have specific roles in providing information, data and understanding of ecosystem effects. A one page visual summary of environmental effects monitoring in the oil sands area resulted from the information received from these organizations and detailed fact sheets were presented for each one of the programs. The report of this study also presents seven other environmental monitoring initiatives or organizations such as Alberta Environment and Environment Canada environmental effects monitoring program. The main observation that emerged from the review was the lack of detailed understanding shown by the stakeholders regarding the monitoring activities performed in the oil sands area. There is a lack of communication of the different programs that are conducted in the region. The study also pointed out that no efforts were put in cross-linking the various programs to be assured that every concerns related to environmental effects associated with oil sands operations were addressed. A better understanding of environmental effects and an improvement in public confidence in the data and its interpretation would probably be observed with the establishment of a

  11. Analysis of Proppant Hydraulic Fracturing in a Sand Oil Reservoir in Southwest of Iran

    OpenAIRE

    Reza Masoomi; Iniko Bassey; Dolgow Sergie Viktorovich; Hosein Dehghani

    2015-01-01

    Hydraulic fracturing is one way to increase the productivity of oil and gas wells. One of the most fundamental successes of hydraulic fracturing operation is selecting the proper size and type of proppants which are used during the process. The aim of this study is optimizing the type and size of used propant in hydraulic fracturing operation in a sand oil reservoir in southwest of Iran. In this study sand and ceramic (sintered bauxite) have been considered as proppant type. Also the various ...

  12. Experimental Investigation on Dilation Mechanisms of Land-Facies Karamay Oil Sand Reservoirs under Water Injection

    Science.gov (United States)

    Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.

    2016-04-01

    The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.

  13. Investigation of Thermal Conductivity and Heat Characteristics of Oil Sands Using Ultrasound Irradiation for Shortening the Preheating Time

    Science.gov (United States)

    Kamagata, Shingo; Kawamura, Youhei; Okawa, Hirokazu; Mizutani, Koichi

    2012-07-01

    Oil sands are attractive as an energy resource. Bitumen, which is found in oil sands, has high viscosity, so that it does not flow. Most oil sands are underground and are developed with a method called steam-assisted gravity drainage (SAGD). Hot steam is injected underground to fluidize bitumen and promote its recovery. However, the preheating time is too long. One way of reducing running costs is by shortening the preheating time. Previous studies have found that bitumen can be extracted from oil sands efficiently by applying ultrasonic irradiation, but SAGD was not applied directly in these cases. Thus, the purpose of this study is to apply ultrasonic irradiation to SAGD, thereby shortening the preheating time of oil sands. As a model experiment for SAGD, heat transfer experiments in a sand layer made with Toyoura sand and silicone oil were conducted and the thermal effect with ultrasound was investigated.

  14. Biomarker geochemistry of bituminous shale sequence and crude oil in the Ereǧli-Bor Basin (Konya-Niǧde), Central Anatolia, Turkey

    Science.gov (United States)

    Kara-Gulbay, Reyhan; Erdogan, Mert; Korkmaz, Sadettin; Kadinkiz, Gökhan

    2016-04-01

    In the Ereǧli-Bor Basin (Konya-Niǧde), Central Anatolia, bituminous shale sequence with thickness ranging between 72 and 160 m occurs in lacustrine deposits of Upper Miocene-Pliocene age. The live oil has also been observed in this bituminous shale sequence. Rock-Eval/TOC, GC and GC-MS analyses were conducted on selected bituminous shale samples from four borehole (key-12/1, key-12/2, key-12/3 key-12/4) and one crude oil sample from a borehole (key-12/2) in the basin. In this study, organic matter type, maturity and depositional environment of bituminous shale are evaluated and the origin of crude oil is determined by the bituminous shale-crude oil correlation. The total organic carbon (TOC) values of the bituminous shale samples range from 1.21-13.98 wt% with an average TOC value of 4.75wt%. The bituminous shale sequence is characterized by high HI (127-662 mg HC/g TOC) and low OI (7-50 mgCO2/TOC). Tmax varies from 332-419ᵒC. Very low Pr/Ph ratios of bituminous shale (0.09-0.22) are indicative of anoxic depositional conditions. C27 is dominate sterane for bituminous shale and crude oil samples with C27>C29>C28. Normal steranes are more dominant compare to iso- and diasteranes. Ouite high sterane/hopane ratios (1.14-2.70) indicate dominant algal organic matter input for bituminous shale and source rock of crude oil. C31R/hopane ratio for bituminous shale and crude oil samples are very low (0.09-0.13) and these ratio show a lacustrine depositional envirronment for bituminous shale and source rock of crude oil. Sterane and terpane distributions of bituminous shale and crude oil are very similar. A very good correlation in terms of biomarker between bituminous shale and crude oil samples indicate that source rock of crude oil is bituminous shale. The 22S/(22R + 22S) C32 homohopane ratios of bituminous shale and crude oil samples are found to be 0.56 and 0.61, indicating that homohopane isomerization has attained equilibrium and bituminous shale and crude oil are

  15. Impact of edible oil injection on the permeability of aquifer sands

    Science.gov (United States)

    Coulibaly, Kapo M.; Borden, Robert C.

    2004-07-01

    Recent laboratory and field studies have shown that food-grade edible oils can be injected into the subsurface for installation of in-situ permeable reactive barriers. However to be effective, the oil must be distributed out away from the oil injection points without excessive permeability loss. In this work, we examine the distribution of soybean oil in representative aquifer sediments as non-aqueous phase liquid oil (NAPL oil) or as an oil-in-water emulsion. Laboratory columns packed with sands or clayey sands were flushed with either NAPL oil or a soybean emulsion followed by plain water, while monitoring permeability loss and the final oil residual saturation. NAPL oil can be injected into coarse-grained sands. However NAPL injection into finer grained sediments requires high injection pressures which may not be feasible at some sites. In addition, NAPL injection results in high oil residual saturations and moderate permeability losses. In contrast, properly prepared emulsions can be distributed through sands with varying clay content without excessive pressure buildup, low oil retention and very low to moderate permeability loss. For effective transport, the emulsion must be stable, the oil droplets must be significantly smaller than the mean pore size of the sediment and the oil droplets should have a low to moderate tendency to stick to each other and the aquifer sediments. In our work, oil retention and associated permeability loss increased with sediment clay content and with the ratio of droplet size to pore size. For sandy sediments, the permeability loss is modest (0-40% loss) and is proportional to the oil residual saturation.

  16. Evaluating the oil sands reclamation process: Assessing policy capacity and stakeholder access for government and non-governmental organizations operating in Alberta's oil sands

    Science.gov (United States)

    Patterson, Tyler

    By employing interpretive policy analysis this thesis aims to assess, measure, and explain policy capacity for government and non-government organizations involved in reclaiming Alberta's oil sands. Using this type of analysis to assess policy capacity is a novel approach for understanding reclamation policy; and therefore, this research will provide a unique contribution to the literature surrounding reclamation policy. The oil sands region in northeast Alberta, Canada is an area of interest for a few reasons; primarily because of the vast reserves of bitumen and the environmental cost associated with developing this resource. An increase in global oil demand has established incentive for industry to seek out and develop new reserves. Alberta's oil sands are one of the largest remaining reserves in the world, and there is significant interest in increasing production in this region. Furthermore, tensions in several oil exporting nations in the Middle East remain unresolved, and this has garnered additional support for a supply side solution to North American oil demands. This solution relies upon the development of reserves in both the United States and Canada. These compounding factors have contributed to the increased development in the oil sands of northeastern Alberta. Essentially, a rapid expansion of oil sands operations is ongoing, and is the source of significant disturbance across the region. This disturbance, and the promises of reclamation, is a source of contentious debates amongst stakeholders and continues to be highly visible in the media. If oil sands operations are to retain their social license to operate, it is critical that reclamation efforts be effective. One concern non-governmental organizations (NGOs) expressed criticizes the current monitoring and enforcement of regulatory programs in the oil sands. Alberta's NGOs have suggested the data made available to them originates from industrial sources, and is generally unchecked by government

  17. Challenges related to flotation cleaning of oil shales. Issues due to compositional and surface features and post-grinding surface behavior

    Directory of Open Access Journals (Sweden)

    Altun N. Emre

    2016-01-01

    Full Text Available Oil shale is an important energy resource alternative. Despite its recognition as an unconventional oil source, oil shale is also considered as an important solid fossil fuel alternative to coal and lignites due to the solid form and remarkable extent of organic content. Utilization possibilites, similar to coal and lignites, have been considered in the past decades and direct use of oil shales in thermal power production has been possible in countries like Estonia and China. In the perspective of utilization of oil shales in a similar manner to coal and lignites, problems and restrictions related to the inorganic ash-making and potentially pollutant constituents are applied. In this respect, cleaning of this important energy source through mineral processing methods, particularly by flotation, is an outstanding option. However, on the basis of unique features and distinctive characteristics, treatment of oil shales like a type of coal is a big perception and may be highly misleading. This paper discusses specific challenges regarding flotation behavior of oil shales with reference to the surface characteristics and behavior of oil shale entities – probably the most important aspect that determines the efficiency and success of the flotation based cleaning process.

  18. Fischer Assays of Oil-Shale Drill Cores and Rotary Cuttings from the Greater Green River Basin, Southwestern Wyoming

    Science.gov (United States)

    ,

    2008-01-01

    Chapter 1 of this CD-ROM is a database of digitized Fischer (shale-oil) assays of cores and cuttings from boreholes drilled in the Eocene Green River oil shale deposits in southwestern Wyoming. Assays of samples from some surface sections are also included. Most of the Fischer assay analyses were made by the former U.S. Bureau of Mines (USBM) at its laboratory in Laramie, Wyoming. Other assays, made by institutional or private laboratories, were donated to the U.S. Geological Survey (USGS) and are included in this database as well as Adobe PDF-scanned images of some of the original laboratory assay reports and lithologic logs prepared by USBM geologists. The size of this database is 75.2 megabytes and includes information on 971 core holes and rotary-drilled boreholes and numerous surface sections. Most of these data were released previously by the USBM and the USGS through the National Technical Information Service but are no longer available from that agency. Fischer assays for boreholes in northeastern Utah and northwestern Colorado have been published by the USGS. Additional data include geophysical logs, groundwater data, chemical and X-ray diffraction analyses, and other data. These materials are available for inspection in the office of the USGS Central Energy Resources Team in Lakewood, Colorado. The digitized assays were checked with the original laboratory reports, but some errors likely remain. Other information, such as locations and elevations of core holes and oil and gas tests, were not thoroughly checked. However, owing to the current interest in oil-shale development, it was considered in the public interest to make this preliminary database available at this time. Chapter 2 of this CD-ROM presents oil-yield histograms of samples of cores and cuttings from exploration drill holes in the Eocene Green River Formation in the Great Divide, Green River, and Washakie Basins of southwestern Wyoming. A database was compiled that includes about 47

  19. Heavy oil components sorbed onto clay minerals in Canadian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Fendel, A.; Schwochau, K. (Institute for Petroleum and Organic Geochemistry, Nuclear Research Centre (KFA), Julich (DE))

    1988-06-01

    In siliciclastic reservoir rocks the surface-active clay minerals are presumed to be predominantly responsible for the sorption of polar oil components. In order to achieve a better insight into the nature of the oil components sorbed onto clay minerals, unconsolidated Canadian Oil Sands (Cold Lake, Athabasca) were exhaustively extracted with dichloromethane to remove the free oil. The clay minerals (grain fraction less than or equal to2 ..mu..m) were then separated by gravitational sedimentation. After the extraction up to 3 wt of organic carbon still remained on the clays. The amount of aliphatic carbon adhering to the clays was assessed by means of IR-spectroscopy. The clay minerals were successively extracted with solvent mixtures of increasing polarity in order to release the bound oil components. The extracts were fractionated into chemically defined compound classes by semi-preparative liquid chromatography and MPLC. The fractions were characterized by GC, GC-MS and IR-spectroscopy. Components containing oxygen functions (carboxylic acids, esters, alcohols, ketones) appear to be preferentially bound by clays. Moreover, a small amount of hydrocarbons, in particular saturates, are sorbed by clays.

  20. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.

  1. Assessment of undiscovered continuous oil resources in the Wolfcamp shale of the Midland Basin, Permian Basin Province, Texas, 2016

    Science.gov (United States)

    Gaswirth, Stephanie B.; Marra, Kristen R.; Lillis, Paul G.; Mercier, Tracey J.; Leathers-Miller, Heidi M.; Schenk, Christopher J.; Klett, Timothy R.; Le, Phuong A.; Tennyson, Marilyn E.; Hawkins, Sarah J.; Brownfield, Michael E.; Pitman, Janet K.; Finn, Thomas M.

    2016-11-15

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed technically recoverable mean resources of 20 billion barrels of oil and 16 trillion cubic feet of gas in the Wolfcamp shale in the Midland Basin part of the Permian Basin Province, Texas.

  2. Analysis and Modeling of Wangqing Oil Shale Drying Characteristics in a Novel Fluidized Bed Dryer with Asynchronous Rotating Air Distributor

    Institute of Scientific and Technical Information of China (English)

    Yang Ning; Zhou Yunlong; Miao Yanan

    2016-01-01

    In order to replace the conventional distributor, a novel asynchronous rotating air distributor, which can optimize the drying ability of lfuidized bed and strengthen the drying performance of oil shale particles, is creatively designed in this study. The rotating speed of the asynchronous rotating air distributor with an embedded center disk and an encircling disk is regulated to achieve the different air supply conditions. The impacts of different drying conditions on the drying characteristic of Wangqing oil shale particles are studied with the help of electronic scales. The dynamics of experimental data is analyzed with 9 common drying models. The results indicate that the particles distribution in lfuidized bed can be improved and the drying time can be reduced by decreasing the rotating speed of the embedded center disk and increasing the rotating speed of the encircling disk. The drying process of oil shale particles involves a rising drying rate period, a constant drying rate period and a falling drying rate period. Regulating the air distributor rotating speed reasonably will accelerate the shift of particles from the rising drying rate period to the falling drying rate period directly. The two-term model ifts properly the oil shale particles drying simulation among 9 drying models at different air supply conditions. Yet the air absorbed in the particles’ pores is diffused along with the moisture evaporation, and a small amount of moisture remains on the wall of lfuidized bed in each experiment, thus, the values of drying simulation are less than the experimental values.

  3. Wettability testing of unconsolidated oil sands using low field NMR technology

    Energy Technology Data Exchange (ETDEWEB)

    Ji, X.; Kantzas, A.; Bryan, J. [University of Calgary/TIPM Laboratory (Canada)

    2011-07-01

    In an oil field it is important to understand wettability within the reservoir as it has an important impact on several parameters. However it is difficult to measure wettability in oil sands since conventional Amott/USBM testing cannot be applied. The aim of this paper is to develop protocols to assess wettability from NMR spectra in heavy oil reservoirs. Research was conducted on water wet and oil wet conditions; 3 sets of experiments were carried out with oil phases of different viscosity. Results showed that the signal from oil is insensitive to the location of the oil when viscosity increases but that water relaxation times are linked to the presence of water so water peak shifts can be used to determine different wettability states. This study determined that using water phase NMR relaxation presents several advantages to extract wettability information in unconsolidated sand systems and a technique was developed to interpret wettability.

  4. Production and disposal of waste materials from gas and oil extraction from the Marcellus Shale Play in Pennsylvania

    Science.gov (United States)

    Maloney, Kelly O.; Yoxtheimer, David A.

    2012-01-01

    The increasing world demand for energy has led to an increase in the exploration and extraction of natural gas, condensate, and oil from unconventional organic-rich shale plays. However, little is known about the quantity, transport, and disposal method of wastes produced during the extraction process. We examined the quantity of waste produced by gas extraction activities from the Marcellus Shale play in Pennsylvania for 2011. The main types of wastes included drilling cuttings and fluids from vertical and horizontal drilling and fluids generated from hydraulic fracturing [i.e., flowback and brine (formation) water]. Most reported drill cuttings (98.4%) were disposed of in landfills, and there was a high amount of interstate (49.2%) and interbasin (36.7%) transport. Drilling fluids were largely reused (70.7%), with little interstate (8.5%) and interbasin (5.8%) transport. Reported flowback water was mostly reused (89.8%) or disposed of in brine or industrial waste treatment plants (8.0%) and largely remained within Pennsylvania (interstate transport was 3.1%) with little interbasin transport (2.9%). Brine water was most often reused (55.7%), followed by disposal in injection wells (26.6%), and then disposed of in brine or industrial waste treatment plants (13.8%). Of the major types of fluid waste, brine water was most often transported to other states (28.2%) and to other basins (9.8%). In 2011, 71.5% of the reported brine water, drilling fluids, and flowback was recycled: 73.1% in the first half and 69.7% in the second half of 2011. Disposal of waste to municipal sewage treatment plants decreased nearly 100% from the first half to second half of 2011. When standardized against the total amount of gas produced, all reported wastes, except flowback sands, were less in the second half than the first half of 2011. Disposal of wastes into injection disposal wells increased 129.2% from the first half to the second half of 2011; other disposal methods decreased. Some

  5. CT Experiment Research of Oil Shale under High Temperature%油页岩高温CT实验研究

    Institute of Scientific and Technical Information of China (English)

    杨栋; 康志勤; 赵静; 赵阳升

    2011-01-01

    The microcharacters of three kinds of oil shale from Nong' an, Changqing and Daqing were investigated under different temperatures from 100℃ to 600℃ by using high resolution CT test system. The comparison of the CT images of the oil shales under 100℃ and 600℃,reveals that: for oil shale from Nong'an, a great mount of crack 1 occurred with increasing temperature, but these cracks closed under even higher temperature; for oil shale from Changqing,there were many initial stratifications and high density minerals, cracks were continuously increasing with increasing temperature; for oil shale from Daqing, its pyrolysis style was closer to that of coal, there were many interconneted holes developed under high temperature. So the thermal crack characters of oil shale from different places were quite different. This difference was directly related to the difference in the techuological parameters for final oil shale heating production.%利用高分辨率显微CT实验系统,对农安、长庆和大庆的油页岩从100℃到600℃不同温度下的细观变化进行了CT测试.通过对比100℃与600℃三个矿区油页岩CT图像的变化,实验结果揭示农安油页岩随温度升高,首先会产生大量热破裂,但部分裂缝会在更高的温度下闭合;长庆的油页岩层理发育且密度大的矿物较多,随温度的升高,其内部的裂缝一直在增加.大庆油页岩更接近煤的热解模式,在高温作用下,会形成大量的连通空洞.与其他两矿油页岩相比,大庆油页岩在高温下孔隙、裂隙的发育最为明显.这种差异反映了油页岩油母成因的本质差别,这种不同将直接导致油页岩最终开采工艺参数选择的不同.

  6. Assessment of continuous oil resources in the Wolfcamp shale of the Midland Basin, Permian Basin Province, Texas, 2016

    Science.gov (United States)

    Gaswirth, Stephanie B.

    2017-03-06

    The U.S. Geological Survey completed a geology-based assessment of undiscovered, technically recoverable continuous petroleum resources in the Wolfcamp shale in the Midland Basin part of the Permian Basin Province of west Texas. This is the first U.S. Geological Survey evaluation of continuous resources in the Wolfcamp shale in the Midland Basin. Since the 1980s, the Wolfcamp shale in the Midland Basin has been part of the “Wolfberry” play. This play has traditionally been developed using vertical wells that are completed and stimulated in multiple productive stratigraphic intervals that include the Wolfcamp shale and overlying Spraberry Formation. Since the shift to horizontal wells targeting the organic-rich shale of the Wolfcamp, more than 3,000 horizontal wells have been drilled and completed in the Midland Basin Wolfcamp section. The U.S. Geological Survey assessed technically recoverable mean resources of 20 billion barrels of oil and 16 trillion cubic feet of associated gas in the Wolfcamp shale in the Midland Basin.

  7. Minimum bed parameters for in situ processing of oil shale. Third quarterly report, April 1-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Tyner, C. E.

    1980-11-01

    Oil shale retort runs 028 (16% void) and 029 (7% void), composed of competent shale blocks plus shale rubble, were completed. Retort 028, processed with air at a flux of 0.017 kg/sub air//m/sup 2/ /sub shale/.second, had peak temperatures of 700/sup 0/C, a retorting rate of 1.1 m/day, and a yield of 82% FA. Retort 029, processed with air at a flux of 0.027 kg/sub air//m/sup 2//sub shale/.second, had peak temperatures of 750/sup 0/C, a retorting rate of 1.6 m/day, and a yield of 75% FA. Comparisons of retort model calculations with experimental data from previous retort run 027 (16% void, air flux of .029 kg/sub air//m/sup 2//sub shale/.second were good; observed experimental yield was 95% FA, calculated yield, 92.8%; experimental retorting rates varied from 9.5 to 8.9 cm/h, calculated rates from 10.3 to 10.0 cm/h; observed local heating rates ranged from 29 to 14/sup 0/C/h, calculated heating rates from 20 to 16/sup 0/C/h; and observed peak temperatures ranged from 815 to 825/sup 0/C, calculated from 820 to 825/sup 0/C.

  8. Evaluation of oil shale from Eastern Canada by retorting and by concentration of a kerogen-rich fraction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.W.; Abbott, D.

    1981-12-16

    An apparatus was developed for testing the retorting behaviour of oil shales under pressures up to 500 psi hydrogen and 700/sup 0/C. Equipment was also constructed and brought into service for the determination of oil yields by the Fischer assay method. Six samples of Albert shale of varying oil content (<10 to 40-50 gals/ton) were tested by the Fischer method and by hydrogen retorting to determine yields of liquid distillate under different conditions of retorting. The Fischer assays gave oil yields of 2.9 to 47.5 gals/ton which corresponded to carbon conversion of 50.5 to 87.8 per cent. The hydrogen retorting tests at 700/sup 0/C and 500/sup 0/C gave carbon conversion rates of 53 to 87 per cent which are comparable to that for the Fischer retorting. Retorting at 500/sup 0/C gave oil yields similar to the Fischer assay but at 700/sup 0/C oil yields were reduced, 4 to 30 gals/ton, although gas yields increased. In the retorting tests performed, the use of hydrogen at 500 psi did not increase yields. More work is needed to understand the retorting behaviour of New Brunswick and other Canadian oil shales. Retorting tests for resource assessment purposes are also needed. These should be coupled to determining the rate of carbon conversion and hence the effectiveness of the retorting technique. Petrographic, chemical and thermogravimetric analyses of the oil shales were undertaken to characterize the materials for retorting tests. The second part of the project involved producing a kerogen concentrate by standard beneficiation methods, spherical agglomeration, gravity methods and by flotation. Only gravity separation showed promise of being a viable industrial process. Fine grinding and gravity separation gave high concetrations up to 70 gals/ton but yields were low. 11 figs., 13 tabs.

  9. Inversion of Airborne Electromagnetic Data: Application to Oil Sands Exploration

    Science.gov (United States)

    Cristall, J.; Farquharson, C. G.; Oldenburg, D. W.

    2004-05-01

    . We provide an example that involves the interpretation of an airborne time-domain electromagnetic data-set from an oil sands exploration project in Alberta. The target is the layer that potentially contains oil sands. This layer is relatively resistive, with its resistivity increasing with increasing hydrocarbon content, and is sandwiched between two more conductive layers. This is quite different from the classical electromagnetic geophysics scenario of looking for a conductive mineral deposit in resistive shield rocks. However, inverting the data enabled the depth, thickness and resistivity of the target layer to be well determined. As a consequence, it is concluded that airborne electromagnetic surveys, when combined with inversion procedures, can be a very cost-effective way of mapping even fairly subtle conductivity variations over large areas.

  10. Use of gravity drainage and quasi-homogenous dykes for containment of oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, L.; Czajewski, K. [Terracon Geotechnique Ltd., Calgary, AB (Canada)

    2008-06-15

    Solutions to the disposal of byproducts from oil sands processing into tailings ponds in Alberta were examined. Gravity drainage of composite tailings (CT) was used as a mechanism to facilitate the consolidation of CT in critical areas of the containment ponds through the use of internal sand layers within the body of the deposit. Critical areas were defined as the areas around the perimeters of the containment ponds. The aim of the solution was to provide long-term stability to the disposal area through the creation of stiff deposits around the perimeter and through the facilitation of reclamation efforts on the surface. It was concluded that use of the quasi-homogenous dykes is the only commercially proven method of reducing the fine tailings inventory of the oil sands industry. It was concluded that the use of gravity drainage and quasi-homogenous dykes for oil sands containment structures will assist the industry in reducing its environmental footprint.

  11. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  12. Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples.

    Science.gov (United States)

    Wang, Zhendi; Yang, C; Parrott, J L; Frank, R A; Yang, Z; Brown, C E; Hollebone, B P; Landriault, M; Fieldhouse, B; Liu, Y; Zhang, G; Hewitt, L M

    2014-04-30

    To facilitate monitoring efforts, a forensic chemical fingerprinting methodology has been applied to characterize and differentiate pyrogenic (combustion derived) and biogenic (organism derived) hydrocarbons from petrogenic (petroleum derived) hydrocarbons in environmental samples from the Canadian oil sands region. Between 2009 and 2012, hundreds of oil sands environmental samples including water (snowmelt water, river water, and tailings pond water) and sediments (from river beds and tailings ponds) have been analyzed. These samples were taken from sites where assessments of wild fish health, invertebrate communities, toxicology and detailed chemistry are being conducted as part of the Canada-Alberta Joint Oil Sands Monitoring Plan (JOSMP). This study describes the distribution patterns and potential sources of PAHs from these integrated JOSMP study sites, and findings will be linked to responses in laboratory bioassays and in wild organisms collected from these same sites. It was determined that hydrocarbons in Athabasca River sediments and waters were most likely from four sources: (1) petrogenic heavy oil sands bitumen; (2) biogenic compounds; (3) petrogenic hydrocarbons of other lighter fuel oils; and (4) pyrogenic PAHs. PAHs and biomarkers detected in snowmelt water samples collected near mining operations imply that these materials are derived from oil sands particulates (from open pit mines, stacks and coke piles).

  13. Examination of oil sands projects : gasification, CO{sub 2} emissions and supply costs

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, K. [Energy Resources Conservation Board, Calgary, AB (Canada)

    2008-10-15

    Non-conventional resources such as Alberta's oil sands are experiencing increased global interest because of the decline in global conventional oil and natural gas reserves. Bitumen extraction and upgrading is an energy intensive process. This paper provided a general discussion of Alberta's oil sands reserves, production and energy requirements. The paper discussed the application of different technologies to the oil sands, and in particular, the use of gasification as a method to produce bitumen-derived synthesis gas. Two oil sands projects currently under construction and implementing gasification technology were briefly described. The paper also provided a comparison of emission intensities from projects that employ gasification leading to a forecast of carbon dioxide equivalent emissions from the oil sands. The impact of Alberta's legislation and the federal framework on greenhouse gas emissions were also examined. Last, the paper discussed a supply cost methodology to compare an integrated extraction and upgrading project using gasification versus a similar project using a conventional steam methane reforming process (SMR). It was concluded that after comparing carbon dioxide emission intensities across different types of projects, the type of project that would be most heavily impacted by greenhouse gas emissions penalties was an in-situ extraction with an upgrading project that employed gasification technology. 36 refs., 5 tabs., 12 figs., 1 appendix.

  14. Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1982-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

  15. Evaluation of physical-chemical and biological treatment of shale oil retort water

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, B.W.; Mason, M.J.; Spencer, R.R.; Wong, A.L.; Wakamiya, W.

    1982-09-01

    Bench scale studies were conducted to evaluate conventional physical-chemical and biological treatment processes for removal of pollutants from retort water produced by in situ shale oil recovery methods. Prior to undertaking these studies, very little information had been reported on treatment of retort water. A treatment process train patterned after that generally used throughout the petroleum refining industry was envisioned for application to retort water. The treatment train would consist of processes for removing suspended matter, ammonia, biodegradable organics, and nonbiodegradable or refractory organics. The treatment processes evaluated include anaerobic digestion and activated sludge for removal of biodegradable organics and other oxidizable substances; activated carbon adsorption for removal of nonbiodegradable organics; steam stripping for ammonia removal; and chemical coagulation, sedimentation and filtration for removal of suspended matter. Preliminary cost estimates are provided.

  16. Rehabilitation potential and practices of Colorado oil shale lands. Progress report, June 1, 1976--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, P.L.

    1977-02-01

    Substantial progress has been made towards implementing all of the prescribed studies and satisfying the stated objectives since the Oil Shale Rehabilitation Project was actively initiated in June 1976. Concurrent with implementation, research objectives were substantively defined and supplemented without distracting or departing from the original purpose. Current studies are designed to fill voids in the present status of knowledge regarding lands disturbed by an impending oil shale industry in Colorado. The efforts of all contributing investigators have therefore been integrated and directed toward the goal of developing methodologies requisite for restoring diverse and complex ecosystems which will require only a minimal amount of maintenance or input of scarce resources. An intensive study site southeast of the Oil Shale Tract C-a has been obtained through a Cooperative Agreement with the Bureau of Land Management. Following this agreement, most subprojects were initiated at the intensive site. Additional programs will be implemented as spent shale becomes available this summer. Studies conducted principally in the laboratory and greenhouse, such as the microbiological and plant genetic studies, have achieved significant results.

  17. Oil shale fueled FBC power plant - ash deposits and fouling problems

    Energy Technology Data Exchange (ETDEWEB)

    O. Yoffe; A. Wohlfarth; Y. Nathan; S. Cohen; T. Minster [Geological Survey of Israel, Jerusalem (Israel)

    2007-12-15

    41 MWth oil shale fired demonstration power plant was built in 1989 by PAMA in Mishor Rotem, Negev, Israel. The raw material for the plant is the local 'oil shale', which is in fact organic-rich marl. Since then, and until today, the unit is operated at high reliability and availability. At first, heavy soft fouling occurred due to the Circulating Fluidized Bed Combustion (CFBC) mode of operation, which caused a considerable reduction in the heat transfer coefficient of the heat exchangers. By going over to the Fluidized Bed Combustion (FBC) mode of operation the soft fouling phenomenon stopped at once, the heat transfer coefficient improved, and the power plant could be operated at its designed values. After five months of operation at the FBC mode the boiler had to be shut down because Hard Deposits (HD) blocked physically the passes in the boiler. These deposits could be removed only with the help of mechanical devices. During the first two years the boiler had to be stopped, at least, three times a year for deposit cleaning purposes. Research conducted at the plant and in the laboratories of the Geological Survey of Israel enabled us to understand the mechanism of formation of these deposits. The results showed that the HD are formed in two stages: (1) Deposition of very fine ash particles on the pipes of the boiler, as a result of the impact of larger particles on the pipes. The fine particles adhere to the pipes and to each other, and step by step build the deposit. The growth of the deposit on the pipe surface is always perpendicular to the particles flow direction. (2) The deposits harden due to chemical reactions. 17 refs., 14 figs., 5 tabs.

  18. Study of greenhouse gases reduction alternatives for the exploitation of non conventional oil sands in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bouchonneau, Deborah [Institut Francais du Petrole (IFP), Paris (France)

    2008-07-01

    High energy prices and greenhouse gases reduction represent the main challenges the current worldwide energetic situation has to face. As a consequence, paradox strategies can be highlighted: oil prices are sufficiently high to exploit non conventional oil resources, like extra heavy oils and oil sands. But the production of these resources emits larger GHG than the conventional oil path and implies other major environmental issues (water management, risks of soil pollution, destruction of the boreal forest), incompatible with the rules validated by the protocol of Kyoto. At the light of the new greenhouse gases reduction regulation framework announced by the Canadian Federal government, this work focuses on the study of greenhouse gases reduction alternatives applied to the non conventional oil sands exploitation in Canada. (author)

  19. Historical trends in greenhouse gas emissions of the Alberta oil sands (1970-2010)

    Science.gov (United States)

    Englander, Jacob G.; Bharadwaj, Sharad; Brandt, Adam R.

    2013-12-01

    There has been increased scrutiny of the Alberta oil sands due to their high carbon intensity (CI) relative to conventional crude oil. Relying entirely on public and peer-reviewed data sources, we examine historical trends in the CI of oil sands extraction, upgrading, and refining. Monthly data were collected and interpolated from 1970 to 2010 (inclusive) for each oil sands project. Results show a reduction in oil sands CI over time, with industry-average full-fuel cycle (well-to-wheels, WTW) CI declining from 165 gCO2e MJ-1 higher heating value (HHV) of reformulated gasoline (RFG) to 105 (-12, +9) gCO2e MJ-1 HHV RFG. 2010 averages by production pathways are 102 gCO2e MJ-1 for Mining and 111 gCO2e MJ-1 for in situ. The CI of mining-based projects has declined due to upgrader efficiency improvements and a shift away from coke to natural gas as a process fuel. In situ projects have benefitted from substantial reductions in fugitive emissions from bitumen batteries. Both mining and in situ projects have benefitted from improved refining efficiencies. However, despite these improvements, the CI of oil sands production (on a pathway-average basis) ranges from 12 to 24% higher than CI values from conventional oil production. Due to growing output, total emissions from the oil sands continue to increase despite improved efficiency: total upstream emissions were roughly 65 MtCO2e in 2010, or 9% of Canada’s emissions.

  20. Application of microwave energy for curing of molding sands containing oil binders

    Directory of Open Access Journals (Sweden)

    M. Stachowicz

    2008-07-01

    Full Text Available This works presents the results of studies concerning possibility of application of microwave heating in the curing process of molding sands containing oil binders. Molding sands prepared with three kinds of binders, that is oils C, DL and Retanol, have been subject to experiments. The sands have been dried with two methods: in a microwave chamber of 750W power and, for comparison, with classical method at the temperature of 200°C for 120 minutes. Tensile and bending strength of the samples have been determined after cooling down. It has been found that microwave drying in the low-power device used for experiments is effective only in case of molding sand prepared with addition of DL binder. The temperature of heated, even up to 32 minutes in a microwave chamber, blocks prepared from the remaining two masses, was insufficient to initiate binding process. The undertaken attempts of binder modification and introduction of additives intensifying microwave heating process allowed for achievement of satisfactory results. It has been found that power of the heating device is the main factor determining efficiency of microwave curing of molding sands containing oil binders. An additional experiment has been conducted on a laboratory workstation allowing for microwave heating of small mass samples with a high output power of magnetron concentrated in a small substrate volume. It has been observed that microwave drying process of molding sands was of dynamic character over a short period of time, not exceeding 120 seconds, thus assuring efficient curing of the sands containing the used oil binders. Therefore, application of devices of properly high microwave output power allows for efficient drying of oil molding sands, while simultaneously assuring the possibility to reduce time and energy consumption necessary for production of foundry cores of proper functional characteristics.

  1. Taking the wheel : correcting the course of cumulative environmental management in the Athabasca oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Severson-Baker, C.; Grant, J.; Dyer, S.

    2008-08-18

    There are many concerns regarding unresolved environmental impacts from oil sands development, such as lower water levels in the Athabasca River, the creation of toxic tailings dumps, strip-mining and drilling thousands of square kilometres of Alberta's boreal forest. This report provided a proposal to reform the current approaches used by the governments of Alberta and Canada to environmental management in the Athabasca boreal region, since they have failed to protect Alberta's environment from rapidly expanding oil sands development. The report addressed oil sands fever issues as well as environmental mismanagement in the oil sands. Issues that were discussed included key ingredients for effective environmental management; the regional sustainable development strategy; best intentions and the Cumulative Environmental Management Association (CEMA); and losing confidence and leaving CEMA. A proposed path forward was suggested. Recommendations included suspending approvals until environmental management was implemented; re-constituting stakeholder engagement; and implementing a regional land use strategy. It was concluded that an integrated regional plan is a fundamental yet missing ingredient for effective environmental management in the oil sands region. 2 tabs., 2 figs., 1 appendix.

  2. Comparison of CO{sub 2} fixation in spent oil sand between experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dure; Jang, Dongha; Jeon, Yeongshin; Kim, Hyungtaek [Ajou Univ., Yeongtong-gu (Korea, Republic of). Div. of Energy Systems Research

    2013-07-01

    Global Warming caused by the Greenhouse gas has become a serious global issue due to the increasing in the use of fossil fuel and it is being exhausted. Recently, a great deal of research is being carried out to develop alternatives to fossil fuels. The oil sands have become one of the alternative energy sources. However, it is composed of about 10% bitumen and the rest becomes waste. Moreover, oil sands need a large amount of natural gas to provide heat and steam for bitumen extraction. In this study, it has been focused on the satisfaction both CO{sub 2} reduction and waste disposal by using spent oil sand after extraction bitumen from oil sand. Additionally, Aspen Plus was used to simulate to know about its carbonation reactivity. First, we analyzed the analysis of spent oil sand and discovered that it is of mostly composed of SiO{sub 2}, so it needs pretreatment with CaO aqueous solution. After the pretreatment, it is performed by changes in temperature and pressure. The optimum is decided 500 C, 25 atm and reduced rate of mass was calculated 21.92% about carbonation reactivity by using simulation.

  3. The mechanisms of electrical heating for the recovery of bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    McGee, B.C.W. [McMillan-McGee Corp., Edmonton, AB (Canada); Vermeulen, F.E. [Alberta Univ., Edmonton, AB (Canada)

    2004-07-01

    This paper described the Electro-Thermal Dynamic Stripping Process (ET-DSP), a thermal recovery process in which oil sands are electrically heated. This technology has evolved since the 1970s as an alternative to steam assisted gravity drainage (SAGD) and surface mining of Alberta's oil sands. The heat and mass transfer mechanisms associated with electrical heating were examined along with the gravity forces to better understand how the heated bitumen is recovered from the oil sand. Initially, all fluids are immobile. Heat is created in the oil sand as a current flows through the connate water. This results in a pressure and temperature distribution that is characteristic to an electrical heating process. The electrical heating process changes as the temperature of the oil sand increases and as the bitumen is produced. The heat, mass and electromagnetic fields are strongly coupled and are in a transient state throughout the recovery process. This paper presented the main mechanism for electrical heating in terms of equations. A 3-dimensional quasi-harmonic finite element electromagnetic model was coupled to a mass and energy equation and solved in time. A thermal recovery strategy was then presented in terms of electrode spacing, duration of heating, energy supply and ideal operating conditions.

  4. 3D Finite Element Analysis of PWA-Oil Sand Terrain System Interaction

    Directory of Open Access Journals (Sweden)

    Y. Li

    2012-01-01

    Full Text Available A simulator for analyzing the interaction between the oil sand terrain and a pipe wagon articulating (PWA system has been developed in this paper. An elastic-plastic oil sand model was built based on the finite element analysis (FEA method and von Mises yield criterion using the Algor mechanical event simulation (MES software. The three-dimensional (3D distribution of the stress, strain, nodal displacement, and deformed shape of the oil sands was animated at an environmental temperature of 25°C. The 3D behavior of the oil sand terrain was investigated with different loading conditions. The effect of the load and contact area on the stress and nodal displacement was analyzed, respectively. The results indicate that both the max stress and max nodal displacement increase with the load varying from 0 to 3.6+7 N and decrease with the contact area varying from 2 to 10 m2. The method presented in this paper forms the basis for evaluating the bearing capacity of oil sand ground.

  5. The Geopolitics of Shale Gas : The Implications of the US' Shale Gas Revolution on Intrastate Stability within Traditional Oil- and Natural Gas-Exporting Countries in the EU Neighborhood

    NARCIS (Netherlands)

    Jong, S. de; Auping, W.; Govers, J.; Peters, M.C.A.M.; Widdershoven, C.J.C.G.; Weterings, R.A.P.M.

    2014-01-01

    The US’ shale gas revolution could in the long term destabilize traditional oil- and gas exporters in the European Union (EU) neighborhood: A combination of substitution effects and greater energy efficiency, could put pressure on the price of oil, leading to fiscal difficulties in traditional hydro

  6. The Geopolitics of Shale Gas : The Implications of the US' Shale Gas Revolution on Intrastate Stability within Traditional Oil- and Natural Gas-Exporting Countries in the EU Neighborhood

    NARCIS (Netherlands)

    Jong, S. de; Auping, W.; Govers, J.; Peters, M.C.A.M.; Widdershoven, C.J.C.G.; Weterings, R.A.P.M.

    2014-01-01

    The US’ shale gas revolution could in the long term destabilize traditional oil- and gas exporters in the European Union (EU) neighborhood: A combination of substitution effects and greater energy efficiency, could put pressure on the price of oil, leading to fiscal difficulties in traditional

  7. Characterization of Clay Minerals and Kerogen in Alberta Oil Sands Geological End Members

    Science.gov (United States)

    Zheng, Limin

    The high degree of variability of oil sands ores can be attributed to a mixture of different geological end members, i.e., estuarine sand, estuarine clay, marine sand and marine clay. This study focused on the mineralogy, especially of clay minerals, and toluene insoluble organic matter, referred to as kerogen, in different oil sands end members. Clays and kerogens will likely have a significant impact on solvent recovery from the gangue following non-aqueous bitumen extraction. The bitumen-free solids were subjected to mineralogical and geochemical analysis. Kerogens were isolated and analyzed by various characterization methods. The types of clays were identified in oriented samples by X-ray diffraction analysis. The nitrogen to carbon ratio in the isolated kerogens is found to be higher than in bitumen. There are more type III kerogens in estuarine samples and more type II kerogens in marine samples.

  8. Life cycle greenhouse gas emissions of current oil sands technologies: GHOST model development and illustrative application.

    Science.gov (United States)

    Charpentier, Alex D; Kofoworola, Oyeshola; Bergerson, Joule A; MacLean, Heather L

    2011-11-01

    A life cycle-based model, GHOST (GreenHouse gas emissions of current Oil Sands Technologies), which quantifies emissions associated with production of diluted bitumen and synthetic crude oil (SCO) is developed. GHOST has the potential to analyze a large set of process configurations, is based on confidential oil sands project operating data, and reports ranges of resulting emissions, improvements over prior studies, which primarily included a limited set of indirect activities, utilized theoretical design data, and reported point estimates. GHOST is demonstrated through application to a major oil sands process, steam-assisted gravity drainage (SAGD). The variability in potential performance of SAGD technologies results in wide ranges of "well-to-refinery entrance gate" emissions (comprising direct and indirect emissions): 18-41 g CO(2)eq/MJ SCO, 9-18 g CO(2)eq/MJ dilbit, and 13-24 g CO(2)eq/MJ synbit. The primary contributor to SAGD's emissions is the combustion of natural gas to produce process steam, making a project's steam-to-oil ratio the most critical parameter in determining GHG performance. The demonstration (a) illustrates that a broad range of technology options, operating conditions, and resulting emissions exist among current oil sands operations, even when considering a single extraction technology, and (b) provides guidance about the feasibility of lowering SAGD project emissions.

  9. Life cycle Greenhouse gas emissions of current Oil Sands Technologies: surface mining and in situ applications.

    Science.gov (United States)

    Bergerson, Joule A; Kofoworola, Oyeshola; Charpentier, Alex D; Sleep, Sylvia; Maclean, Heather L

    2012-07-17

    Life cycle greenhouse gas (GHG) emissions associated with two major recovery and extraction processes currently utilized in Alberta's oil sands, surface mining and in situ, are quantified. Process modules are developed and integrated into a life cycle model-GHOST (GreenHouse gas emissions of current Oil Sands Technologies) developed in prior work. Recovery and extraction of bitumen through surface mining and in situ processes result in 3-9 and 9-16 g CO(2)eq/MJ bitumen, respectively; upgrading emissions are an additional 6-17 g CO(2)eq/MJ synthetic crude oil (SCO) (all results are on a HHV basis). Although a high degree of variability exists in well-to-wheel emissions due to differences in technologies employed, operating conditions, and product characteristics, the surface mining dilbit and the in situ SCO pathways have the lowest and highest emissions, 88 and 120 g CO(2)eq/MJ reformulated gasoline. Through the use of improved data obtained from operating oil sands projects, we present ranges of emissions that overlap with emissions in literature for conventional crude oil. An increased focus is recommended in policy discussions on understanding interproject variability of emissions of both oil sands and conventional crudes, as this has not been adequately represented in previous studies.

  10. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  11. Metal bioaccumulation and biomarkers of effects in caged mussels exposed in the Athabasca oil sands area.

    Science.gov (United States)

    Pilote, M; André, C; Turcotte, P; Gagné, F; Gagnon, C

    2017-08-11

    The Athabasca oil sands deposit is the world's largest known reservoir of crude bitumen and the third-largest proven crude oil reserve. Mining activity is known to release contaminants, including metals, and to potentially impact the aquatic environment. The purpose of this study was to determine the impacts of oil sands mining on water quality and metal bioaccumulation in mussels from the Fort McMurray area in northern Alberta, Canada. The study presents two consecutive years of contrasting mussel exposure conditions (low and high flows). Native freshwater mussels (Pyganodon grandis) were placed in cages and exposed in situ in the Athabasca River for four weeks. Metals and inorganic elements were then analyzed in water and in mussel gills and digestive glands to evaluate bioaccumulation, estimate the bioconcentration factor (BCF), and determine the effects of exposure by measuring stress biomarkers. This study shows a potential environmental risk to aquatic life from metal exposure associated with oil sands development along with the release of wastewater from a municipal treatment plant nearby. Increased bioaccumulation of Be, V, Ni and Pb was observed in mussel digestive glands in the Steepbank River, which flows directly through the oil sands mining area. Increased bioaccumulation of Al, V, Cr, Co, Ni, Mo and Ni was also observed in mussel gills from the Steepbank River. These metals are naturally present in oil sands and generally concentrate and increase with the extraction process. The results also showed different pathways of exposure (particulate or dissolved forms) for V and Ni resulting from different river water flows, distribution coefficient (Kd) and BCF. Increasing metal exposure downstream of the oil sands mining area had an impact on metallothionein and lipid peroxidation in mussels, posing a potential environmental risk to aquatic life. These results confirm the bioavailability of some metals in mussel tissues associated with detoxification of

  12. The growth and photosynthesis of Typha in oil sands process affected material and water

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L. [Alberta Univ., Edmonton, AB (Canada); Hornung, J. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    Aquatic plants such as cattail contribute substantially to the energy flow in wetlands. Since Typha (cattail) plants acquire and cycle carbon and nutrients through wetlands, their growth and recycling of captured nutrients are an important part of natural, healthy wetland ecosystems. Cattail are pervasive and satisfy many of the criteria to be used as indicators of wetland integrity. This study investigated if cattail growth and carbon accrual were influenced by oil sands process materials (OSPM) such as consolidated tailings (CT). The purpose was to facilitate land reclamation initiatives by evaluating the impact that constituents of oil sands process material have on aquatic plant growth. The study was conducted at Suncor's experimental trenches. Six lined basins were used, of which 3 were filled with natural water and 3 were filled with trench water. Cattail were planted in different growth medium combinations, including CT over CT; soil over soil; soil over CT; and soil over sterilized sand. All leaf lengths and widths were measured along with the photosynthesis of the leaves and root and plant biomass at planting and after 2-years growth. A larger leaf area was observed under oil sands process influence, which may indicate increased carbon accrual above ground. Leaf area data suggested that CT affected plants are quite productive. The study also indicated that oil sands affected water may reduce plant fitness, and therefore could influence the overall oil sands reclamation timelines. Conversely, cattail grown in soil capped process affected material had a much larger leaf area compared to those grown in soil capped sand, most likely due to the higher levels of ammonia in process affected material.

  13. Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, April, May, June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L.

    1980-08-01

    The Retort No. 18 burn was terminated on May 11, 1980. A total of 5547 barrels of shale oil or 46 percent of in-place resource was recovered from the retort. The EPA-DOE/LETC post-burn core sampling program is underway on Retort No. 16. Eleven core holes (of 18 planned) have been completed to date. Preliminary results indicate excellent core recovery has been achieved. Recovery of 702 ft of core was accomplished. The Prevention of Significant Deterioration (PSD) permit application was submitted to the EPA regional office in Denver for review by EPA and Utah air quality officials. The application for an Underground Injection Control (UIC) permit to authorize GKI to inject retort wastewater into the Mesa Verde Formation is being processed by the State of Utah. A hearing before the Board of Oil, Gas and Mining is scheduled in Salt Lake City, Utah, for July 22, 1980. Re-entry drilling on Retort No. 24 is progressing and placement of surface equipment is underway. Retort No. 25 blasthole drilling was completed and blast preparations are ongoing. Retort No. 25 will be blasted on July 18, 1980. The retort will be similar to Retort No. 24, with improvements in blasthole loading and detonation. US Patent No. 4,205,610 was assigned to GKI for a shale oil recovery process. Rocky Mountain Energy Company (RME) is evaluating oil shale holdings in Wyoming for application of the GKI process there.

  14. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation. Topical report for Task 4, Beneficiation research

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Mehta, R.K.; Lamont, W.E. [Alabama Univ., University, AL (United States); Chiang, S.H.; Venkatadri, R. [Pittsburgh Univ., PA (United States); Misra, M. [Nevada Univ., Reno, NV (United States)

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  15. Extraction, separation, and intramolecular carbon isotope characterization of athabasca oil sands acids in environmental samples.

    Science.gov (United States)

    Ahad, Jason M E; Pakdel, Hooshang; Savard, Martine M; Simard, Marie-Christine; Smirnoff, Anna

    2012-12-04

    Here we report a novel approach to extract, isolate, and characterize high molecular weight organic acids found in the Athabasca oil sands region using preparative capillary gas chromatography (PCGC) followed by thermal conversion/elemental analysis-isotope ratio mass spectrometry (TC/EA-IRMS). A number of different "naphthenic acids" surrogate standards were analyzed as were samples from the bitumen-rich unprocessed McMurray Formation, oil sands process water, groundwater from monitoring wells, and surface water from the Athabasca River. The intramolecular carbon isotope signature generated by online pyrolysis (δ(13)C(pyr)) showed little variation (±0.6‰) within any given sample across a large range of mass fractions separated by PCGC. Oil sand, tailings ponds, and deep McMurray Formation groundwater were significantly heavier (up to ∼9‰) compared to surface water and shallow groundwater samples, demonstrating the potential use of this technique in source apportionment studies.

  16. Air quality over the Alberta oil sands: Satellite observations of NO2 and SO2

    Science.gov (United States)

    McLinden, C. A.; Fioletov, V.

    2011-12-01

    A vast reserve of bitumen - oil mixed with sand, clay, and water generally referred to as oil sands - resides in northern Alberta, Canada. Extraction of bitumen and its upgrade to liquid fuel is very energy intensive and generates significant emissions, including nitrogen and sulphur oxides. Satellite observations of NO2 and SO2 vertical column densities have been used to assess the magnitude and distribution of these pollutants throughout the oil sands. Preliminary results indicate a statistically significant enhancement in both species over an area (~30 x 30 km2) of intensive surface mining. Quantifying the burden of these enhancements and their recent changes over such a small area, comparable to the resolution of the best air quality satellite instruments, represents a significant challenge. The methodology used to meet this challenge will be presented, as will initial results including trends over the past decade, comparisons with other large industrial operations, and an assessment of consistency with emission inventories.

  17. Satellite Monitoring Over the Canadian Oil Sands: Highlights from Aura OMI and TES

    Science.gov (United States)

    Shephard, Mark W.; McLinden, Chris; Fioletov, Vitali; Cady-Pereira, Karen E.; Krotkov, Nick A.; Boersma, Folkert; Li, Can; Luo, Ming; Bhartia, P. K.; Joiner, Joanna

    2014-01-01

    Satellite remote sensing provides a unique perspective for air quality monitoring in and around the Canadian Oil Sands as a result of its spatial and temporal coverage. Presented are Aura satellite observations of key pollutants including nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), ammonia (NH3), methanol (CH3OH), and formic acid (HCOOH) over the Canadian Oil Sands. Some of the highlights include: (i) the evolution of NO2 and SO2 from the Ozone Monitoring Instrument (OMI), including comparisons with other nearby sources, (ii) two years of ammonia, carbon monoxide, methanol, and formic acid observations from 240 km North-South Tropospheric Emission Spectrometer (TES) transects through the oils sands, and (iii) preliminary insights into emissions derived from these observations.

  18. Ozonation of oil sands process water removes naphthenic acids and toxicity.

    Science.gov (United States)

    Scott, Angela C; Zubot, Warren; MacKinnon, Michael D; Smith, Daniel W; Fedorak, Phillip M

    2008-03-01

    Naphthenic acids are naturally-occurring, aliphatic or alicyclic carboxylic acids found in petroleum. Water used to extract bitumen from the Athabasca oil sands becomes toxic to various organisms due to the presence of naphthenic acids released from the bitumen. Natural biodegradation was expected to be the most cost-effective method for reducing the toxicity of the oil sands process water (OSPW). However, naphthenic acids are poorly biodegraded in the holding ponds located on properties leased by the oil sands companies. In the present study, chemical oxidation using ozone was investigated as an option for mitigation of this toxicity. Ozonation of sediment-free OSPW was conducted using proprietary technology manufactured by Seair Diffusion Systems Inc. Ozonation for 50min generated a non-toxic effluent (based on the Microtox bioassay) and decreased the naphthenic acids concentration by approximately 70%. After 130min of ozonation, the residual naphthenic acids concentration was 2mgl(-1): or = 22).

  19. Monitoring degradation of oil sands constituents and foodweb dynamics in aquatic reclamation using stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Farwell, A.J.; Butler, B.J.; Dixon, D.G. [Waterloo Univ., ON (Canada). Dept. of Biology; Mackinnon, M.D. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2003-07-01

    The process of extracting bitumen from the Athabasca oil sands deposits in northern Alberta generates large volumes of process-affected water with highly toxic constituents such as naphthenic acids. Napthenic acids can biodegrade and become less toxic in reclaimed aquatic systems. This study used stable isotopes to examine the cycling of oil sands constituents in aquatic systems. Benthic invertebrates were collected from test pits at Syncrude Canada Ltd. Dragonflies and damselflies showed trends in carbon 13 depletion and nitrogen 15 enrichment in pits with high levels of process-affected water. Chironomids and amphipods showed only nitrogen 15 enrichment. Carbon 13 depletion suggests invertebrate assimilation and incorporation of oil sands constituents through the microbial foodweb. It is important to define the isotope pathway of naphthenic acid degradation because naphthenic acids could represent a major source of carbon in reclaimed systems.

  20. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK

    Science.gov (United States)

    Thomas, Merryn; Partridge, Tristan; Harthorn, Barbara Herr; Pidgeon, Nick

    2017-04-01

    Shale gas and oil production in the US has increased rapidly in the past decade, while interest in prospective development has also arisen in the UK. In both countries, shale resources and the method of their extraction (hydraulic fracturing, or 'fracking') have been met with opposition amid concerns about impacts on water, greenhouse gas emissions, and health effects. Here we report the findings of a qualitative, cross-national deliberation study of public perceptions of shale development in UK and US locations not yet subject to extensive shale development. When presented with a carefully calibrated range of risks and benefits, participants' discourse focused on risks or doubts about benefits, and potential impacts were viewed as inequitably distributed. Participants drew on direct, place-based experiences as well as national contexts in deliberating shale development. These findings suggest that shale gas development already evokes a similar 'signature' of risk across the US and UK.

  1. Shale oil value enhancement research. Quarterly report, June 1 - August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bunter, J.W.; Russell, C.P.; Tsai, J.C.H.; Cogswell, D.E.; Mihamou, H.; Wright, A.D. [Bunger (James W.) and Associates, Inc., Salt Lake City, UT (United States)

    1996-12-31

    The overall objective is to develop a new technology for manufacturing valuable marketable products from shale oil. The quarter`s efforts were concentrated on (a) THDA and reaction of alkylpyridines at elevated conditions, (b) compound type analysis of kerogen oil and its derived products, (b) thermal hydrodealkylation of the > 290{degrees}C polar fraction, (c) secondary reactions of pyridinic type compounds to form marketable products, and (d) preparation of presentation to the Dawnbreaker Commercial Assistance Program. Excellent progress is being made in all cases. Our market analysis and industrial feedback indicate that the low molecular weight pyridines are the main market driving force. We are concentrating our effort toward increasing the yield of ``light`` pyridines before the end of Phase II(a). Our current laboratory set-up can only produce analytical quantity of samples, which is not sufficient for marketing purpose. However, the completion of a secondary flow THDA unit for a pilot-scale production depends on the availability of the Phase-II(b) and Phase-III funding.

  2. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    Science.gov (United States)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  3. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  4. Proceedings of the CEMA reclamation workshop on creating wetlands in the oil sands : final report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, L. (comp.)

    2006-08-15

    The Creating Wetlands in the Oil Sands Reclamation workshop was held to solicit expert views from leading authorities in a number of disciplines related to the creation and study of wetlands, as well as to investigate challenges in the creation of wetlands in reclaimed oil sands landscapes. This document provided a detailed transcript of each presentation and all discussions that followed. The workshop was divided into 5 sessions: (1) wetlands background information; (2) groundwater conditions and boreal wetlands; (3) creating wetland types; (4) wildlife in boreal wetlands and traditional environmental knowledge; and (5) treatment wetlands. An expert panel overview provided presentations on post-mining restoration of boreal landscapes in oil sands regions; the creation of fens, marshes and shallow water wetlands at oil sands sites and the restoration of damaged peatlands. A outline of the physical scale of the oil sands mining disturbances was provided during the first session, as well a review of regulatory requirements for reclamation. A general overview of the chemical and biological properties of the process-affected waters from oil sands mining was provided. First Nations groups present at the workshop advised that research on muskeg should be a priority. Requirements for wetland development were reviewed. It was noted that climate, substrate and position on the landscape are important factors in the development of engineered wetlands. It was concluded that recent research activities have contributed to greater overall confidence that wetlands creation will become a successful reclamation strategy. While there are many variables beyond the control of reclamation management capabilities, important factors such as water chemistry, water level fluctuation and the amounts of nutrients within a wetlands system can be successfully managed in restoration scenarios. A total of 16 papers were presented.

  5. Tar sands showdown : Canada and the new politics of oil in an age of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, T. [Polaris Institute, Ottawa, ON (Canada)

    2009-07-01

    This book outlined the social and environmental issues facing the oil sands industry in Canada, including economic sovereignty, energy security, water rights and free trade. The tar sands have become vital to the Canadian economy, as they have the potential to increase Canada's foreign oil output by 4 to 5 times in the next 15 years. The author discussed the ecological and social impact of the Alberta tar sands and the real cost of development to Albertans and Canadians. Tar sands oil production generates more than 3 times the amount of greenhouse gas emissions than conventional oil production. The industry is also becoming a prime example of the abuse of water sources. The author emphasized the need to build an alternative energy future in an age of global warming. The main objective of this book was to help stimulate a nation-wide public debate about the tar sands and the critical issues at stake regarding Canada's energy future and an environmental strategy for more sustainable development. refs., tabs., figs.

  6. Oil shale project: run summary for small retort Run S-11

    Energy Technology Data Exchange (ETDEWEB)

    Sandholtz, W.A.; Ackerman, F.J.; Bierman, A.; Kaehler, M.; Raley, J.; Laswell, B.H.; Tripp, L.J. (eds.)

    1978-06-01

    Results are reported on retort run S-11 conducted to observe the effects of combustion retorting with undiluted air at relatively rapid burn (retorting) rates and to provide a base case for retorting small uniform shale (Anvil Points master batch -2.5 +- 1.3 cm) with undiluted air. It was found that a 0.6 m/sup 3//m/sup 2//minute superficial gas velocity gave an average rate of propagation of the combustion peak of about 2.7 m/day and an average maximum temperature on the centerline of the rubble bed of 1003/sup 0/C. Oil yield was 93 percent of Fischer assay. For small uniform shale particles (-2.5 + 1.3 cm) it is concluded that only small losses in yield (92 percent vs 96 percent in Run S-10) result from high retorting rates. Maximum temperature considerations preclude going to higher rates with undiluted air. Without diluent, a larger air flux would give excessive bed temperatures causing rock melting and potential closure to gas flow. In experimental retorts, another problem of excessive temperatures is potential damage to metal walls and in-situ sensors. No advantage is seen to using recycled off-gas as a combustion gas diluent. Inert diluents (e.g. nitrogen or steam) may be necessary for process control, but the fuel values in the off-gas should best be used for energy recovery rather than burned in the retort during recycle. Another consideration from model calculations is that the use of recycle gas containing fuel components retards the retorting rate and so is undesirable. No further recycle experiments are planned as the results of this run proved satisfactory.

  7. Utah Heavy Oil Program

    Energy Technology Data Exchange (ETDEWEB)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  8. [Analyzing and modeling methods of near infrared spectroscopy for in-situ prediction of oil yield from oil shale].

    Science.gov (United States)

    Liu, Jie; Zhang, Fu-Dong; Teng, Fei; Li, Jun; Wang, Zhi-Hong

    2014-10-01

    In order to in-situ detect the oil yield of oil shale, based on portable near infrared spectroscopy analytical technology, with 66 rock core samples from No. 2 well drilling of Fuyu oil shale base in Jilin, the modeling and analyzing methods for in-situ detection were researched. By the developed portable spectrometer, 3 data formats (reflectance, absorbance and K-M function) spectra were acquired. With 4 different modeling data optimization methods: principal component-mahalanobis distance (PCA-MD) for eliminating abnormal samples, uninformative variables elimination (UVE) for wavelength selection and their combina- tions: PCA-MD + UVE and UVE + PCA-MD, 2 modeling methods: partial least square (PLS) and back propagation artificial neural network (BPANN), and the same data pre-processing, the modeling and analyzing experiment were performed to determine the optimum analysis model and method. The results show that the data format, modeling data optimization method and modeling method all affect the analysis precision of model. Results show that whether or not using the optimization method, reflectance or K-M function is the proper spectrum format of the modeling database for two modeling methods. Using two different modeling methods and four different data optimization methods, the model precisions of the same modeling database are different. For PLS modeling method, the PCA-MD and UVE + PCA-MD data optimization methods can improve the modeling precision of database using K-M function spectrum data format. For BPANN modeling method, UVE, UVE + PCA-MD and PCA- MD + UVE data optimization methods can improve the modeling precision of database using any of the 3 spectrum data formats. In addition to using the reflectance spectra and PCA-MD data optimization method, modeling precision by BPANN method is better than that by PLS method. And modeling with reflectance spectra, UVE optimization method and BPANN modeling method, the model gets the highest analysis precision

  9. Impacts and mitigations of in situ bitumen production from Alberta oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, Neil

    2010-09-15

    85% or more of Alberta's oil sands is too deep to mine and will be recovered by in situ methods, i.e. from drill holes. This has been made commercially possible through the development in Alberta of Steam Assisted Gravity Drainage (SAGD). Does this impending development threaten the local ecosystem? A quantitative account is given of the principal impacts of in situ oil sands development in Alberta. Impacts on land (habitats), water, and air are considered in terms of local capacity, global benchmarks, and comparisons to alternative renewable technologies. Improvements due to new solvent-additive technology are highlighted.

  10. Mass spectrometry of oil sands naphthenic acids : degradation in OSPW and wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Headley, J. [Environment Canada, Saskatoon, SK (Canada). Water Science and Technology Directorate

    2009-07-01

    This presentation discussed mass spectrometry of oil sands naphthenic acids and the degradation in OSPW and wetland plants. It presented background information on the Athabasca oil sands and naphthenic acids which involve a mixture of alkanes and cycloalkane carboxylic acids with aliphatic side chains. The presentation also discussed mass spectrometry with electrospray operating in negative ion modes. Loop injection, external standard methods and solid phase extraction were reviewed along with improved analysis by removing background ions. Other topics that were presented included hydroponic test systems and wetland plant toxicity, growth and transpiration. It was concluded that dissipation included species containing oxygen, ozone, O{sub 4}, and O{sub 5}. tabs., figs.

  11. Characterization of oil sands process-affected waters by liquid chromatography orbitrap mass spectrometry.

    Science.gov (United States)

    Pereira, Alberto S; Bhattacharjee, Subir; Martin, Jonathan W

    2013-05-21

    Recovery of bitumen from oil sands<